WorldWideScience

Sample records for multiple body habitats

  1. Habitat structure and body size distributions: Cross-ecosystem comparison for taxa with determinate and indeterminate growth

    Science.gov (United States)

    Nash, Kirsty L.; Allen, Craig R.; Barichievy, Chris; Nystrom, Magnus; Sundstrom, Shana M.; Graham, Nicholas A.J.

    2014-01-01

    Habitat structure across multiple spatial and temporal scales has been proposed as a key driver of body size distributions for associated communities. Thus, understanding the relationship between habitat and body size is fundamental to developing predictions regarding the influence of habitat change on animal communities. Much of the work assessing the relationship between habitat structure and body size distributions has focused on terrestrial taxa with determinate growth, and has primarily analysed discontinuities (gaps) in the distribution of species mean sizes (species size relationships or SSRs). The suitability of this approach for taxa with indeterminate growth has yet to be determined. We provide a cross-ecosystem comparison of bird (determinate growth) and fish (indeterminate growth) body mass distributions using four independent data sets. We evaluate three size distribution indices: SSRs, species size–density relationships (SSDRs) and individual size–density relationships (ISDRs), and two types of analysis: looking for either discontinuities or abundance patterns and multi-modality in the distributions. To assess the respective suitability of these three indices and two analytical approaches for understanding habitat–size relationships in different ecosystems, we compare their ability to differentiate bird or fish communities found within contrasting habitat conditions. All three indices of body size distribution are useful for examining the relationship between cross-scale patterns of habitat structure and size for species with determinate growth, such as birds. In contrast, for species with indeterminate growth such as fish, the relationship between habitat structure and body size may be masked when using mean summary metrics, and thus individual-level data (ISDRs) are more useful. Furthermore, ISDRs, which have traditionally been used to study aquatic systems, present a potentially useful common currency for comparing body size distributions

  2. Does habitat disturbance affect stress, body condition and parasitism in two sympatric lemurs?

    Science.gov (United States)

    Rakotoniaina, Josué H; Kappeler, Peter M; Ravoniarimbinina, Pascaline; Pechouskova, Eva; Hämäläinen, Anni M; Grass, Juliane; Kirschbaum, Clemens; Kraus, Cornelia

    2016-01-01

    Understanding how animals react to human-induced changes in their environment is a key question in conservation biology. Owing to their potential correlation with fitness, several physiological parameters are commonly used to assess the effect of habitat disturbance on animals' general health status. Here, we studied how two lemur species, the fat-tailed dwarf lemur (Cheirogaleus medius) and the grey mouse lemur (Microcebus murinus), respond to changing environmental conditions by comparing their stress levels (measured as hair cortisol concentration), parasitism and general body condition across four habitats ordered along a gradient of human disturbance at Kirindy Forest, Western Madagascar. These two species previously revealed contrasting responses to human disturbance; whereas M. murinus is known as a resilient species, C. medius is rarely encountered in highly disturbed habitats. However, neither hair cortisol concentrations nor parasitism patterns (prevalence, parasite species richness and rate of multiple infections) and body condition varied across the gradient of anthropogenic disturbance. Our results indicate that the effect of anthropogenic activities at Kirindy Forest is not reflected in the general health status of both species, which may have developed a range of behavioural adaptations to deal with suboptimal conditions. Nonetheless, a difference in relative density among sites suggests that the carrying capacity of disturbed habitat is lower, and both species respond differently to environmental changes, with C. medius being more negatively affected. Thus, even for behaviourally flexible species, extended habitat deterioration could hamper long-term viability of populations.

  3. An artificial water body provides habitat for an endangered estuarine seahorse species

    Science.gov (United States)

    Claassens, Louw

    2016-10-01

    Anthropogenic development, especially the transformation of natural habitats to artificial, is a growing concern within estuaries and coastal areas worldwide. Thesen Islands marina, an artificial water body, added 25 ha of new estuarine habitat to the Knysna Estuary in South Africa, home to the Knysna seahorse. This study aimed to answer: (I) Can an artificial water body provide suitable habitat for an endangered seahorse species? And if so (II) what characteristics of this new habitat are important in terms of seahorse utilization? Four major habitat types were identified within the marina canals: (I) artificial reno mattress (wire baskets filled with rocks); (II) Codium tenue beds; (III) mixed vegetation on sediment; and (IV) barren canal floor. Seahorses were found throughout the marina system with significantly higher densities within the reno mattress habitat. The artificial water body, therefore, has provided suitable habitat for Hippocampus capensis, a noteworthy finding in the current environment of coastal development and the increasing shift from natural to artificial.

  4. Body Weight - Multiple Languages

    Science.gov (United States)

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Body Weight URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Body Weight - Multiple Languages To use the sharing features on this page, ...

  5. Body size distribution demonstrates flexible habitat shift of green turtle (Chelonia mydas

    Directory of Open Access Journals (Sweden)

    Ryota Hayashi

    2015-01-01

    Full Text Available Green turtles (Chelonia mydas, listed as Endangered on the IUCN redlist, have a broad migration area and undergo a habitat shift from the pelagic (hatchling to neritic (growth zones. We studied habitat utilisation of the coastal feeding grounds around Okinawajima Island, Japan, in 103 green turtles. The western and eastern turtle aggregations off Okinawa had homogeneous genetic compositions, but different body size distributions. The western coastal feeding ground supported larger individuals than the eastern coastal feeding ground. Thus, green turtles appear to prefer different feeding grounds during their growth, and have a flexible habitat shift including a secondary habitat shift from east to west around Okinawajima Island after they are recruited to the coastal habitats. This study suggests maintaining coastal habitat diversity is important for green turtle conservation.

  6. A geospatial modelling approach to predict seagrass habitat recovery under multiple stressor regimes

    Science.gov (United States)

    Restoration of estuarine seagrass habitats requires a clear understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We have developed and demonstrated a geospatial modeling a...

  7. Herbivore body condition response in altered environments: mule deer and habitat management.

    Directory of Open Access Journals (Sweden)

    Eric J Bergman

    Full Text Available The relationships between habitat, body condition, life history characteristics, and fitness components of ungulates are interwoven and of interest to researchers as they strive to understand the impacts of a changing environment. With the increased availability of portable ultrasound machines and the refinement of hormonal assays, assessment of ungulate body condition has become an accessible monitoring strategy. We employed body condition scoring, estimation of % ingesta-free body fat (%IFBF, assessment of free thyroid hormones (FT4 and FT3, and assessment of pregnancy, as metrics to determine if landscape-level habitat treatments affected body condition of adult (≥ 1.5 years old female mule deer (Odocoileus hemionus. All body condition related metrics were measured on 2 neighboring study areas--a reference area that had received no habitat treatments and a treatment study area that had received mechanical removal of pinyon pine (Pinyus edulis--Utah juniper (Juniperus osteosperma forest, chemical control of weeds, and reseeding with preferred mule deer browse species. A consistent trend of higher %IFBF was observed in the treatment study area [Formula: see text] than in the reference study area [Formula: see text], although variation of estimates was larger than hypothesized. A similar pattern was observed with higher thyroid hormones concentrations being observed in the treatment study area, but large amounts of variation within concentration estimates were also observed. The consistent pattern of higher body condition related estimates in our treatment study area provides evidence that large mammalian species are sensitive to landscape change, although variation within estimates underlie the challenge in detecting population level impacts stemming from environmental change.

  8. Environmental factors and habitat use influence body condition of individuals in a species at risk, the grizzly bear.

    Science.gov (United States)

    Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B; Janz, David M

    2014-01-01

    Metrics used to quantify the condition or physiological states of individuals provide proactive mechanisms for understanding population dynamics in the context of environmental factors. Our study examined how anthropogenic disturbance, habitat characteristics and hair cortisol concentrations interpreted as a sex-specific indicator of potential habitat net-energy demand affect the body condition of grizzly bears (n = 163) in a threatened population in Alberta, Canada. We quantified environmental variables by modelling spatial patterns of individual habitat use based on global positioning system telemetry data. After controlling for gender, age and capture effects, we assessed the influence of biological and environmental variables on body condition using linear mixed-effects models in an information theoretical approach. Our strongest model suggested that body condition was improved when patterns of habitat use included greater vegetation productivity, increased influence of forest harvest blocks and oil and gas well sites, and a higher percentage of regenerating and coniferous forest. However, body condition was negatively affected by habitat use in close proximity to roads and in areas where potential energetic demands were high. Poor body condition was also associated with increased selection of parks and protected areas and greater seasonal vegetation productivity. Adult females, females with cubs-of-year, juvenile females and juvenile males were in poorer body condition compared with adult males, suggesting that intra-specific competition and differences in habitat use based on gender and age may influence body condition dynamics. Habitat net-energy demand also tended to be higher in areas used by females which, combined with observed trends in body condition, could affect reproductive success in this threatened population. Our results highlight the importance of considering spatiotemporal variability in environmental factors and habitat use when assessing

  9. Using body mass dynamics to examine long-term habitat shifts of arctic-molting geese: Evidence for ecological change

    Science.gov (United States)

    Lewis, Tyler L.; Flint, Paul L.; Derksen, Dirk V.; Schmutz, Joel A.; Taylor, Eric J.; Bollinger, Karen S.

    2011-01-01

    From 1976 onward, molting brant geese (Branta bernicla) within the Teshekpuk Lake Special Area, Alaska, shifted from inland, freshwater lakes toward coastal wetlands. Two hypotheses explained this redistribution: (1) ecological change: redistribution of molting brant reflects improvements in coastal foraging habitats, which have undergone a succession toward salt-tolerant plants due to increased coastal erosion and saltwater intrusion as induced by climate change or (2) interspecific competition: greater white-fronted geese (Anser albifrons) populations increased 12-fold at inland lakes, limiting food availability and forcing brant into coastal habitats. Both hypotheses presume that brant redistributions were driven by food availability; thus, body mass dynamics may provide insight into the relevance of these hypotheses. We compared body mass dynamics of molting brant across decades (1978, 1987–1992, 2005–2007) and, during 2005–2007, across habitats (coastal vs. inland). Brant lost body mass during molt in all three decades. At inland habitats, rates of mass loss progressively decreased by decade despite the increased number of greater white-fronted geese. These results do not support an interspecific competition hypothesis, instead suggesting that ecological change enhanced foraging habitats for brant. During 2005–2007, rates of mass loss did not vary by habitat. Thus, while habitats have improved from earlier decades, our results cannot distinguish between ecological changes at inland versus coastal habitats. However, we speculate that coastal forage quality has improved beyond that of inland habitats and that the body mass benefits of these higher quality foods are offset by the disproportionate number of brant now molting coastally.

  10. The Importance of Providing Multiple-Channel Sections in Dredging Activities to Improve Fish Habitat Environments

    Directory of Open Access Journals (Sweden)

    Hung-Pin Chiu

    2016-01-01

    Full Text Available After Typhoon Morakot, dredging engineering was conducted while taking the safety of humans and structures into consideration, but partial stream reaches were formed in the multiple-channel sections in Cishan Stream because of anthropogenic and natural influences. This study mainly explores the distribution of each fish species in both the multiple- and single-channel sections in the Cishan Stream. Parts of the environments did not exhibit significant differences according to a one-way ANOVA comparing the multiple- and single-channel sections, but certain areas of the multiple-channel sections had more diverse habitats. Each fish species was widely distributed by non-metric multidimensional scaling in the multiple-channel sections as compared to those in the single-channel sections. In addition, according to the principal component analysis, each fish species has a preferred environment, and all of them have a wide choice of habitat environments in the multiple-channel sections. Finally, the existence of multiple-channel sections could significantly affect the existence of the fish species under consideration in this study. However, no environmental factors were found to have an influence on fish species in the single-channel sections, with the exception of Rhinogobius nantaiensis. The results show that providing multiple-channel sections in dredging activities could improve fish habitat environments.

  11. Condition-dependent trade-offs between sexual traits, body condition and immunity: the effect of novel habitats.

    Science.gov (United States)

    Iglesias-Carrasco, Maider; Head, Megan L; Jennions, Michael D; Cabido, Carlos

    2016-06-21

    The optimal allocation of resources to sexual signals and other life history traits is usually dependent on an individual's condition, while variation in the expression of sexual traits across environments depends on the combined effects of local adaptation, mean condition, and phenotypic responses to environment-specific cues that affect resource allocation. A clear contrast can often be drawn between natural habitats and novel habitats, such as forest plantations and urban areas. In some species, males seem to change their sexual signals in these novel environments, but why this occurs and how it affects signal reliability is still poorly understood. The relative size of sexual traits and level of immune responses were significantly lower for male palmate newts Lissotriton helveticus caught in pine and eucalyptus plantations compared to those caught in native forests, but there was no habitat-dependent difference in body condition (n = 18 sites, 382 males). The reliability with which sexual traits signalled body condition and immune responses was the same in all three habitats. Finally, we conducted a mesocosm experiment in which males were maintained in pine, eucalypt or oak infused water for 21 days. Males in plantation-like water (pine or eucalypt) showed significantly lower immune responses but no change in body condition. This matches the pattern seen for field-caught males. Unlike field-caught males, however, there was no relationship between water type and relative sexual trait size. Pine and eucalyptus plantations are likely to be detrimental to male palmate newt because they are associated with reduced immune function and smaller sexual traits. This could be because ecological aspects of these novel habitats, such as high water turbidity or changes in male-male competition, drive selection for reduced investment into sexual traits. However, it is more probable that there are differences in the ease of acquisition, hence optimal allocation, of

  12. Dynamics of habitat selection in birds: adaptive response to nest predation depends on multiple factors.

    Science.gov (United States)

    Devries, J H; Clark, R G; Armstrong, L M

    2018-05-01

    According to theory, habitat selection by organisms should reflect underlying habitat-specific fitness consequences and, in birds, reproductive success has a strong impact on population growth in many species. Understanding processes affecting habitat selection also is critically important for guiding conservation initiatives. Northern pintails (Anas acuta) are migratory, temperate-nesting birds that breed in greatest concentrations in the prairies of North America and their population remains below conservation goals. Habitat loss and changing land use practices may have decoupled formerly reliable fitness cues with respect to nest habitat choices. We used data from 62 waterfowl nesting study sites across prairie Canada (1997-2009) to examine nest survival, a primary fitness metric, at multiple scales, in combination with estimates of habitat selection (i.e., nests versus random points), to test for evidence of adaptive habitat choices. We used the same habitat covariates in both analyses. Pintail nest survival varied with nest initiation date, nest habitat, pintail breeding pair density, landscape composition and annual moisture. Selection of nesting habitat reflected patterns in nest survival in some cases, indicating adaptive selection, but strength of habitat selection varied seasonally and depended on population density and landscape composition. Adaptive selection was most evident late in the breeding season, at low breeding densities and in cropland-dominated landscapes. Strikingly, at high breeding density, habitat choice appears to become maladaptive relative to nest predation. At larger spatial scales, the relative availability of habitats with low versus high nest survival, and changing land use practices, may limit the reproductive potential of pintails.

  13. Central-place foraging and ecological effects of an invasive predator across multiple habitats.

    Science.gov (United States)

    Benkwitt, Cassandra E

    2016-10-01

    Cross-habitat foraging movements of predators can have widespread implications for predator and prey populations, community structure, nutrient transfer, and ecosystem function. Although central-place foraging models and other aspects of optimal foraging theory focus on individual predator behavior, they also provide useful frameworks for understanding the effects of predators on prey populations across multiple habitats. However, few studies have examined both the foraging behavior and ecological effects of nonnative predators across multiple habitats, and none has tested whether nonnative predators deplete prey in a manner predicted by these foraging models. I conducted behavioral observations of invasive lionfish (Pterois volitans) to determine whether they exhibit foraging movements similar to other central-place consumers. Then, I used a manipulative field experiment to test whether their effects on prey populations are consistent with three qualitative predictions from optimal foraging models. Specifically, I predicted that the effects of invasive lionfish on native prey will (1) occur at central sites first and then in surrounding habitats, (2) decrease with increasing distance away from their shelter site, and (3) extend to greater distances when prey patches are spaced closer together. Approximately 40% of lionfish exhibited short-term crepuscular foraging movements into surrounding habitats from the coral patch reefs where they shelter during daylight hours. Over the course of 7 weeks, lionfish depleted native fish populations on the coral patch reefs where they reside, and subsequently on small structures in the surrounding habitat. However, their effects did not decrease with increasing distance from the central shelter site and the influence of patch spacing was opposite the prediction. Instead, lionfish always had the greatest effects in areas with the highest prey densities. The differences between the predicted and observed effects of lionfish

  14. Ocean acidification in the coastal zone from an organism's perspective: multiple system parameters, frequency domains, and habitats.

    Science.gov (United States)

    Waldbusser, George G; Salisbury, Joseph E

    2014-01-01

    Multiple natural and anthropogenic processes alter the carbonate chemistry of the coastal zone in ways that either exacerbate or mitigate ocean acidification effects. Freshwater inputs and multiple acid-base reactions change carbonate chemistry conditions, sometimes synergistically. The shallow nature of these systems results in strong benthic-pelagic coupling, and marine invertebrates at different life history stages rely on both benthic and pelagic habitats. Carbonate chemistry in coastal systems can be highly variable, responding to processes with temporal modes ranging from seconds to centuries. Identifying scales of variability relevant to levels of biological organization requires a fuller characterization of both the frequency and magnitude domains of processes contributing to or reducing acidification in pelagic and benthic habitats. We review the processes that contribute to coastal acidification with attention to timescales of variability and habitats relevant to marine bivalves.

  15. Mapping habitat for multiple species in the Desert Southwest

    Science.gov (United States)

    Inman, Richard D.; Nussear, Kenneth E.; Esque, Todd C.; Vandergast, Amy G.; Hathaway, Stacie A.; Wood, Dustin A.; Barr, Kelly R.; Fisher, Robert N.

    2014-01-01

    Many utility scale renewable energy projects are currently proposed across the Mojave Ecoregion. Agencies that manage biological resources throughout this region need to understand the potential impacts of these renewable energy projects and their associated infrastructure (for example, transmission corridors, substations, access roads, etc.) on species movement, genetic exchange among populations, and species’ abilities to adapt to changing environmental conditions. Understanding these factors will help managers’ select appropriate project sites and possibly mitigate for anticipated effects of management activities. We used species distribution models to map habitat for 15 species across the Mojave Ecoregion to aid regional land-use management planning. Models were developed using a common 1 × 1 kilometer resolution with maximum entropy and generalized additive models. Occurrence data were compiled from multiple sources, including VertNet (http://vertnet.org/), HerpNET (http://www.herpnet.org), and MaNIS (http://manisnet.org), as well as from internal U.S. Geological Survey databases and other biologists. Background data included 20 environmental covariates representing terrain, vegetation, and climate covariates. This report summarizes these environmental covariates and species distribution models used to predict habitat for the 15 species across the Mojave Ecoregion.

  16. A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment

    Directory of Open Access Journals (Sweden)

    Lindgren Annie R

    2012-07-01

    Full Text Available Abstract Background The marine environment is comprised of numerous divergent organisms living under similar selective pressures, often resulting in the evolution of convergent structures such as the fusiform body shape of pelagic squids, fishes, and some marine mammals. However, little is known about the frequency of, and circumstances leading to, convergent evolution in the open ocean. Here, we present a comparative study of the molluscan class Cephalopoda, a marine group known to occupy habitats from the intertidal to the deep sea. Several lineages bear features that may coincide with a benthic or pelagic existence, making this a valuable group for testing hypotheses of correlated evolution. To test for convergence and correlation, we generate the most taxonomically comprehensive multi-gene phylogeny of cephalopods to date. We then create a character matrix of habitat type and morphological characters, which we use to infer ancestral character states and test for correlation between habitat and morphology. Results Our study utilizes a taxonomically well-sampled phylogeny to show convergent evolution in all six morphological characters we analyzed. Three of these characters also correlate with habitat. The presence of an autogenic photophore (those relying upon autonomous enzymatic light reactions is correlated with a pelagic habitat, while the cornea and accessory nidamental gland correlate with a benthic lifestyle. Here, we present the first statistical tests for correlation between convergent traits and habitat in cephalopods to better understand the evolutionary history of characters that are adaptive in benthic or pelagic environments, respectively. Discussion Our study supports the hypothesis that habitat has influenced convergent evolution in the marine environment: benthic organisms tend to exhibit similar characteristics that confer protection from invasion by other benthic taxa, while pelagic organisms possess features that

  17. Body mass in comparative primatology.

    Science.gov (United States)

    Smith, R J; Jungers, W L

    1997-06-01

    Data are presented on adult body mass for 230 of 249 primate species, based on a review of the literature and previously unpublished data. The issues involved in collecting data on adult body mass are discussed, including the definition of adults, the effects of habitat and pregnancy, the strategy for pooling data on single species from multiple studies, and use of an appropriate number of significant figures. An analysis of variability in body mass indicates that the coefficient of variation for body mass increases with increasing species mean mass. Evaluation of several previous body mass reviews reveals a number of shortcomings with data that have been used often in comparative studies.

  18. Allopatric diversification, multiple habitat shifts, and hybridization in the evolution of Pericallis (Asteraceae), a Macaronesian endemic genus.

    Science.gov (United States)

    Jones, Katy E; Reyes-Betancort, J Alfredo; Hiscock, Simon J; Carine, Mark A

    2014-04-01

    Geographic isolation, habitat shifts, and hybridization have contributed to the diversification of oceanic island floras. We investigated the contribution of these processes to the diversification of Pericallis, a genus endemic to Macaronesia. Data from the chloroplast psaI-accD and trnV-ndhC regions and the nuclear ribosomal internal transcribed spacer region (ITS) were sampled for multiple accessions of all taxa and used to establish phylogenetic hypotheses. Habitat preferences were optimized to investigate habitat shifts, and divergence times were estimated. Species nonmonophyly was investigated using Bayes factors. Much of the diversification in Pericallis has occurred recently, within the past 1.7 Ma. Three habitat shifts have occurred in the evolution of the genus. However, geographic isolation has played a greater role in its diversification. Novel allopatric patterns were revealed within some species, highlighting the significance of geographic isolation in the evolution of Pericallis. One species (P. appendiculata) that resolved as monophyletic in the ITS analysis was polyphyletic in the chloroplast analysis. Bayes factors provide strong support for the nonmonophyly of P. appendiculata haplotypes, and their phylogenetic placement suggests that ancient hybridization is responsible for the haplotype diversity observed. Multiple markers and extensive sampling provided new insights into the evolution of Pericallis. In contrast to previous studies, our results reveal a more significant role for allopatry than habitat shifts and new evidence for ancient hybridization in the evolution of Pericallis. Our study highlights the power of broad taxon sampling for unraveling diversity patterns and processes within oceanic island radiations.

  19. Associations of dragonflies (Odonata) to habitat variables within the Maltese Islands: a spatio-temporal approach.

    Science.gov (United States)

    Balzan, Mario V

    2012-01-01

    Relatively little information is available on environmental associations and the conservation of Odonata in the Maltese Islands. Aquatic habitats are normally spatio-temporally restricted, often located within predominantly rural landscapes, and are thereby susceptible to farmland water management practices, which may create additional pressure on water resources. This study investigates how odonate assemblage structure and diversity are associated with habitat variables of local breeding habitats and the surrounding agricultural landscapes. Standardized survey methodology for adult Odonata involved periodical counts over selected water-bodies (valley systems, semi-natural ponds, constructed agricultural reservoirs). Habitat variables relating to the type of water body, the floristic and physiognomic characteristics of vegetation, and the composition of the surrounding landscape, were studied and analyzed through a multivariate approach. Overall, odonate diversity was associated with a range of factors across multiple spatial scales, and was found to vary with time. Lentic water-bodies are probably of high conservation value, given that larval stages were mainly associated with this habitat category, and that all species were recorded in the adult stage in this habitat type. Comparatively, lentic and lotic seminatural waterbodies were more diverse than agricultural reservoirs and brackish habitats. Overall, different odonate groups were associated with different vegetation life-forms and height categories. The presence of the great reed, Arundo donax L., an invasive alien species that forms dense stands along several water-bodies within the Islands, seems to influence the abundance and/or occurrence of a number of species. At the landscape scale, roads and other ecologically disturbed ground, surface water-bodies, and landscape diversity were associated with particular components of the odonate assemblages. Findings from this study have several implications for the

  20. Genomic architecture of habitat-related divergence and signature of directional selection in the body shapes of Gnathopogon fishes.

    Science.gov (United States)

    Kakioka, Ryo; Kokita, Tomoyuki; Kumada, Hiroki; Watanabe, Katsutoshi; Okuda, Noboru

    2015-08-01

    Evolution of ecomorphologically relevant traits such as body shapes is important to colonize and persist in a novel environment. Habitat-related adaptive divergence of these traits is therefore common among animals. We studied the genomic architecture of habitat-related divergence in the body shape of Gnathopogon fishes, a novel example of lake-stream ecomorphological divergence, and tested for the action of directional selection on body shape differentiation. Compared to stream-dwelling Gnathopogon elongatus, the sister species Gnathopogon caerulescens, exclusively inhabiting a large ancient lake, had an elongated body, increased proportion of the caudal region and small head, which would be advantageous in the limnetic environment. Using an F2 interspecific cross between the two Gnathopogon species (195 individuals), quantitative trait locus (QTL) analysis with geometric morphometric quantification of body shape and restriction-site associated DNA sequencing-derived markers (1622 loci) identified 26 significant QTLs associated with the interspecific differences of body shape-related traits. These QTLs had small to moderate effects, supporting polygenic inheritance of the body shape-related traits. Each QTL was mostly located on different genomic regions, while colocalized QTLs were detected for some ecomorphologically relevant traits that are proxy of body and caudal peduncle depths, suggesting different degree of modularity among traits. The directions of the body shape QTLs were mostly consistent with the interspecific difference, and QTL sign test suggested a genetic signature of directional selection in the body shape divergence. Thus, we successfully elucidated the genomic architecture underlying the adaptive changes of the quantitative and complex morphological trait in a novel system. © 2015 John Wiley & Sons Ltd.

  1. Childhood body mass index and multiple sclerosis risk

    DEFF Research Database (Denmark)

    Munger, Kassandra L; Bentzen, Joan; Laursen, Bjarne

    2013-01-01

    BACKGROUND: Obesity in late adolescence has been associated with an increased risk of multiple sclerosis (MS); however, it is not known if body size in childhood is associated with MS risk. METHODS: Using a prospective design we examined whether body mass index (BMI) at ages 7-13 years...

  2. Food intake, body reserves and reproductive success of barnacle geese Branta leucopsis staging in different habitats

    NARCIS (Netherlands)

    Prop, J; Black, JM; Mehlum, F; Black, JM; Madsen, J

    1998-01-01

    This paper concerns the effect of habitat choice on the dynamics of deposition of body reserves in spring-staging barnacle geese Branta leucopsis. On their way to breeding areas in Spitsbergen, these geese reside for several weeks on islands off the coast of Helgeland, Norway. They use three

  3. The effects of overwintering and habitat type on body condition and locomotion of the wolf spider Pardosa alacris

    Science.gov (United States)

    Ingle, Kapilkumar; Horváth, Ádám; Gallé-Szpisjak, Nikolett; Gellért, Levente; Csata, Enikő; Gallé, Róbert

    2018-05-01

    Overwintering in temperate regions is a prominent mortality risk for invertebrates and may affect their behaviour and body condition. Pardosa alacris is a common ground dwelling spider in central European native and plantation forests, and habitat type and prey availability may play important roles in their overwintering. The effect of overwintering on body condition and behaviour of spiders in semi natural and exotic habitats is relatively unknown. Here we assess the effects of winter on spiders from native poplar and exotic pine plantations. The locomotory behaviour of P. alacris (distance covered and speed) was assessed by tracking their movement in a white circular plastic arena. We assessed body condition, body size, and total fat content. Forest type and sex had significant effects on body length. Fat content was significantly higher in the spring than in autumn, and spiders covered larger distances and were faster in autumn than in spring. Fat content had a significant negative effect on average speed. Spiders in native forests were smaller but grew more during the winter than in exotic plantations, possibly due to higher prey availability in native forests. Visually-hunting predators may significantly affect spiders. Fat spiders with better body condition moved less, and were thus less detectable by predators. However the low movement rate may result in a low rate of encountering prey items, thus lowering feeding efficiency.

  4. Habitat selection by Forster's Terns (Sterna forsteri) at multiple spatial scales in an urbanized estuary: The importance of salt ponds

    Science.gov (United States)

    Bluso-Demers, Jill; Ackerman, Joshua T.; Takekawa, John Y.; Peterson, Sarah

    2016-01-01

    The highly urbanized San Francisco Bay Estuary, California, USA, is currently undergoing large-scale habitat restoration, and several thousand hectares of former salt evaporation ponds are being converted to tidal marsh. To identify potential effects of this habitat restoration on breeding waterbirds, habitat selection of radiotagged Forster's Terns (Sterna forsteri) was examined at multiple spatial scales during the pre-breeding and breeding seasons of 2005 and 2006. At each spatial scale, habitat selection ratios were calculated by season, year, and sex. Forster's Terns selected salt pond habitats at most spatial scales and demonstrated the importance of salt ponds for foraging and roosting. Salinity influenced the types of salt pond habitats that were selected. Specifically, Forster's Terns strongly selected lower salinity salt ponds (0.5–30 g/L) and generally avoided higher salinity salt ponds (≥31 g/L). Forster's Terns typically used tidal marsh and managed marsh habitats in proportion to their availability, avoided upland and tidal flat habitats, and strongly avoided open bay habitats. Salt ponds provide important habitat for breeding waterbirds, and restoration efforts to convert former salt ponds to tidal marsh may reduce the availability of preferred breeding and foraging areas.

  5. Habitat risk assessment for regional ocean planning in the U.S. Northeast and Mid-Atlantic.

    Science.gov (United States)

    Wyatt, Katherine H; Griffin, Robert; Guerry, Anne D; Ruckelshaus, Mary; Fogarty, Michael; Arkema, Katie K

    2017-01-01

    Coastal habitats provide important benefits to people, including habitat for species targeted by fisheries and opportunities for tourism and recreation. Yet, such human activities also can imperil these habitats and undermine the ecosystem services they provide to people. Cumulative risk assessment provides an analytical framework for synthesizing the influence of multiple stressors across habitats and decision-support for balancing human uses and ecosystem health. To explore cumulative risk to habitats in the U.S. Northeast and Mid-Atlantic Ocean Planning regions, we apply the open-source InVEST Habitat Risk Assessment model to 13 habitats and 31 stressors in an exposure-consequence framework. In doing so, we advance the science priorities of EBM and both regional planning bodies by synthesizing the wealth of available data to improve our understanding of human uses and how they affect marine resources. We find that risk to ecosystems is greatest first, along the coast, where a large number of stressors occur in close proximity and secondly, along the continental shelf, where fewer, higher consequence activities occur. Habitats at greatest risk include soft and hard-bottom nearshore areas, tidal flats, soft-bottom shelf habitat, and rocky intertidal zones-with the degree of risk varying spatially. Across all habitats, our results indicate that rising sea surface temperatures, commercial fishing, and shipping consistently and disproportionally contribute to risk. Further, our findings suggest that management in the nearshore will require simultaneously addressing the temporal and spatial overlap as well as intensity of multiple human activities and that management in the offshore requires more targeted efforts to reduce exposure from specific threats. We offer a transparent, generalizable approach to evaluating cumulative risk to multiple habitats and illustrate the spatially heterogeneous nature of impacts along the eastern Atlantic coast and the importance of

  6. A tale of two polar bear populations: Ice habitat, harvest, and body condition

    Science.gov (United States)

    Rode, Karyn D.; Peacock, Elizabeth; Taylor, Mitchell K.; Stirling, Ian; Born, Erik W.; Laidre, Kristin L.; Wiig, Øystein

    2012-01-01

    One of the primary mechanisms by which sea ice loss is expected to affect polar bears is via reduced body condition and growth resulting from reduced access to prey. To date, negative effects of sea ice loss have been documented for two of 19 recognized populations. Effects of sea ice loss on other polar bear populations that differ in harvest rate, population density, and/or feeding ecology have been assumed, but empirical support, especially quantitative data on population size, demography, and/or body condition spanning two or more decades, have been lacking. We examined trends in body condition metrics of captured bears and relationships with summertime ice concentration between 1977 and 2010 for the Baffin Bay (BB) and Davis Strait (DS) polar bear populations. Polar bears in these regions occupy areas with annual sea ice that has decreased markedly starting in the 1990s. Despite differences in harvest rate, population density, sea ice concentration, and prey base, polar bears in both populations exhibited positive relationships between body condition and summertime sea ice cover during the recent period of sea ice decline. Furthermore, females and cubs exhibited relationships with sea ice that were not apparent during the earlier period (1977–1990s) when sea ice loss did not occur. We suggest that declining body condition in BB may be a result of recent declines in sea ice habitat. In DS, high population density and/or sea ice loss, may be responsible for the declines in body condition.

  7. Whole body MR in patients with multiple myeloma

    International Nuclear Information System (INIS)

    Piekarek, A.; Sosnowski, P.; Nowicki, A.; Komarnicki, M.

    2009-01-01

    Background: Multiple myeloma is a cancer of plasma cells which leads to bone marrow infiltration. Aim: Whole-body MR is the most sensitive imaging method available to detect multiple myeloma lesions. Ma terial and methods: MR scans were performed in 100 patients with multiple myeloma who were receiving treatment in the Haematology Clinic in Poznan in the years 2005 - 2006. Whole-body MR scans were performed with general coil 1.0 T in STIR sequences and T1 sequences, in coronal and sagittal planes with scanning area covering the head, neck, trunk and the limbs (FOV for specific regions was 36 -48 cm). The bone lesions were classified as focal (monofocal/multifocal lesions), infiltrative, mixed and 'salt and pepper' type. Depending on the size of the lesions the patients were included in one of three groups according to Salmon-Durie Plus classification. Results: Four main types of multiple myeloma were distinguished based on MR scans: focal (48 patients; monofocal in 10 patients), infiltrative (17 patients), mixed type (19 patients) and 'salt and pepper' type (4 patients). The remaining 12 patients had no multiple myeloma lesions in the bone marrow. Additionally, in 18% of patients a soft tissue mass could be observed. According to Salmon-Durie Plus categorisation 27 subjects were classified as having stage I, 16 patients stage and 57 patients stage III disease. In 12% of patients MR data changed the disease staging. Conclusions: WB MR is a sensitive and effective diagnostic method with an important impact on staging and further treatment of multiple myeloma. (authors)

  8. Endothermy in African platypleurine cicadas: the influence of body size and habitat (Hemiptera: Cicadidae).

    Science.gov (United States)

    Sanborn, Allen F; Villet, Martin H; Phillips, Polly K

    2004-01-01

    The platypleurine cicadas have a wide distribution across Africa and southern Asia. We investigate endothermy as a thermoregulatory strategy in 11 South African species from five genera, with comparisons to the lone ectothermic platypleurine we found, in an attempt to ascertain any influence that habitat and/or body size have on the expression of endothermy in the platypleurine cicadas. Field measurements of body temperature (T(b)) show that these animals regulate T(b) through endogenous heat production. Heat production in the laboratory elevated T(b) to the same range as in animals active in the field. Maximum T(b) measured during calling activity when there was no access to solar radiation ranged from 13.2 degrees to 22.3 degrees C above ambient temperature in the five species measured. The mean T(b) during activity without access to solar radiation did not differ from the mean T(b) during diurnal activity. All platypleurines exhibit a unique behavior for cicadas while warming endogenously, a temperature-dependent telescoping pulsation of the abdomen that probably functions in ventilation. Platypleurines generally call from trunks and branches within the canopy and appear to rely on endothermy even when the sun is available to elevate T(b), in contrast to the facultative endothermy exhibited by New World endothermic species. The two exceptions to this generalization we found within the platypleurines are Platypleura wahlbergi and Albanycada albigera, which were the smallest species studied. The small size of P. wahlbergi appears to have altered their thermoregulatory strategy to one of facultative endothermy, whereby they use the sun when it is available to facilitate increases in T(b). Albanycada albigera is the only ectothermic platypleurine we found. The habitat and host plant association of A. albigera appear to have influenced the choice of ectothermy as a thermoregulatory strategy, as the species possesses the metabolic machinery to elevate to the T

  9. Clinical, psychological and demographic parameters of body pain in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Ghasem Salehpoor

    2017-02-01

    Full Text Available Background: Body pain in multiple sclerosis (MS is a common phenomenon that can create or exacerbate by different parameters of clinical, psychological and demographic. The aim of this study was to investigate the relationship between parameters of clinical (fatigue, clinical course, body mass index and duration, psychological (depression, anxiety and stress and demographic (age, gender, marital status and education characters with multiple sclerosis patient’s body pain. Methods: This cross-sectional study has been performed in the Multiple Sclerosis Society of Guilan Province and Imam Reza Specialized and Sub-specialized Clinic, Rasht City, Iran during June to February 2010. In this study 162 patients with MS were selected by consecutive sampling. We used the clinical and demographic variables inventory, body pain subscale of the health survey questionnaire, depression, anxiety and stress scale and fatigue severity scale along with identical analog-spring balance. The data were analyzed by Pearson correlation coefficient and point bi-serial, one-way analysis of variance, Gabriel test and stepwise multiple regression. Results: The findings showed that patients who scored 3 or higher in relapses experienced significantly more body pain than patients who scored 1-2 times of relapses (P= 0.031. In the meantime, significant differences were not found between the two groups of patients with a score of 3 or higher in relapses and non-relapse and between non-relapse patients and with a score 1-2 times of relapses in terms of body pain. Also, significant differences were not found in different groups of hospitalization in terms of body pain. However, anxiety and fatigue together could explain significantly 25% of the shared variance of body pain (F= 26.29, P≤ 0.0009. Conclusion: This study showed the effect of psychological and clinical factors on body pain exacerbation in MS patients. Therefore, it is necessary for clinicians to consider

  10. Mind-Body Medicine for Multiple Sclerosis: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Angela Senders

    2012-01-01

    Full Text Available Background. Mind-body therapies are used to manage physical and psychological symptoms in many chronic health conditions. Objective. To assess the published evidence for using mind-body techniques for symptom management of multiple sclerosis. Methods. MEDLINE, PsycINFO, and Cochrane Clinical Trials Register were searched from inception to March 24, 2012. Eleven mind-body studies were reviewed (meditation, yoga, biofeedback, hypnosis, relaxation, and imagery. Results. Four high quality trials (yoga, mindfulness, relaxation, and biofeedback were found helpful for a variety of MS symptoms. Conclusions. The evidence for mind-body medicine in MS is limited, yet mind-body therapies are relatively safe and may provide a nonpharmacological benefit for MS symptoms.

  11. Multiple foreign bodies in the anterior and posterior urethra

    Directory of Open Access Journals (Sweden)

    Troy Sukkarieh

    2004-06-01

    Full Text Available Foreign bodies of the urethra and bladder are seen with iatrogenic injury, self-insertion, and rarely migration from adjacent sites. Treatment is focused on foreign body extraction, diagnosing complications, and avoiding compromise of erectile function. With advances in endourology, the majority of cases can now be managed endoscopically. We present a case of a man with multiple foreign bodies located both above and below the urogenital diaphragm. Advancing the posterior objects intravesically and extracting with a stone basket accomplished successful removal.

  12. Habitat modeling for biodiversity conservation.

    Science.gov (United States)

    Bruce G. Marcot

    2006-01-01

    Habitat models address only 1 component of biodiversity but can be useful in addressing and managing single or multiple species and ecosystem functions, for projecting disturbance regimes, and in supporting decisions. I review categories and examples of habitat models, their utility for biodiversity conservation, and their roles in making conservation decisions. I...

  13. Heavy metal concentrations in water, sediments and body tissues of red worm (Tubifex spp.) collected from natural habitats in Mumbai, India.

    Science.gov (United States)

    Singh, Ravendra Kumar; Chavan, Sugandha L; Sapkale, Pravin H

    2007-06-01

    Live feeds, especially Tubifex spp., which are collected from a wide variety of polluted habitats, are used by aquarium fish keepers in India. These habitats receive domestic sewage and industrial wastes from nearby residential and industrial areas. Reports of morbidity and mortality from aquarium fish culturists in and around Mumbai led to the present investigations on the ecology of these habitats with a view to assess the water quality, presence of heavy metals in the environment and their bioaccumulation in Tubifex worms, and to examine whether these habitats could be exploited to meet the demand of the industry. Six natural red worm (Tubifex spp.) collection centres in Mumbai and Thane districts of Maharashtra state in India constituting a major source of live Tubifex supply to aquarium fish industry were evaluated for pollution, heavy metal concentration in water, sediments and in the body tissues of Tubifex. Data revealed the presence of heavy metals in water and sediments at collection sites and bioaccumulation of cadmium, iron, lead, zinc and copper in body tissues of Tubifex worms. Cadmium ranged from 2.38 to 7.21 mg/kg, iron 671.9 to 5738 mg/kg, lead 14.95 to 33.49 mg/kg, zinc 60.20 to 166.60 mg/kg and copper 29.38 to 108.90 mg/kg of dry Tubifex worms. The study suggests that all the six collection sites are polluted and the red worms contaminated with heavy metals and hence, unfit for use in aquaria or feeding any variety of fish or crustaceans in the hatcheries.

  14. Prioritizing tropical habitats for long-distance migratory songbirds: an assessment of habitat quality at a stopover site in Colombia

    Directory of Open Access Journals (Sweden)

    Nicholas J. Bayly

    2016-12-01

    Full Text Available Long-distance migratory birds are declining globally and migration has been identified as the primary source of mortality in this group. Despite this, our lack of knowledge of habitat use and quality at stopovers, i.e., sites where the energy for migration is accumulated, remains a barrier to designing appropriate conservation measures, especially in tropical regions. There is therefore an urgent need to assess stopover habitat quality and concurrently identify efficient and cost-effective methods for doing so. Given that fuel deposition rates directly influence stopover duration, departure fuel load, and subsequent speed of migration, they are expected to provide a direct measure of habitat quality and have the advantage of being measurable through body-mass changes. Here, we examined seven potential indicators of quality, including body-mass change, for two ecologically distinct Neotropical migratory landbirds on stopover in shade-coffee plantations and tropical humid premontane forest during spring migration in Colombia: (1 rate of body-mass change; (2 foraging rate; (3 recapture rate; (4 density; (5 flock size; (6 age and sex ratios; and (7 body-mass distribution. We found higher rates of mass change in premontane forest than in shade-coffee in Tennessee Warbler Oreothlypis peregrina, a difference that was mirrored in higher densities and body masses in forest. In Gray-cheeked Thrush Catharus minimus, a lack of recaptures in shade-coffee and higher densities in forest, also suggested that forest provided superior fueling conditions. For a reliable assessment of habitat quality, we therefore recommend using a suite of indicators, taking into account each species' ecology and methodological considerations. Our results also imply that birds stopping over in lower quality habitats may spend a longer time migrating and require more stopovers, potentially leading to important carryover effects on reproductive fitness. Evaluating habitat quality is

  15. Understanding Existing Salmonid Habitat Availability and Connectivity to Improve River Management

    Science.gov (United States)

    Duffin, J.; Yager, E.; Tonina, D.; Benjankar, R. M.

    2017-12-01

    In the Pacific Northwest river restoration is common for salmon conservation. Mangers need methods to help target restoration to problem areas in rivers to create habitat that meets a species' needs. Hydraulic models and habitat suitability curves provide basic information on habitat availability and overall quality, but these analyses need to be expanded to address habitat quality based on the accessibility of habitats required for multiple life stages. Scientists are starting to use connectivity measurements to understand the longitudinal proximity of habitat patches, which can be used to address the habitat variability of a reach. By evaluating the availability and quality of habitat and calculating the connectivity between complementary habitats, such as spawning and rearing habitats, we aim to identify areas that should be targeted for restoration. To meet these goals, we assessed Chinook salmon habitat on the Lemhi River in Idaho. The depth and velocity outputs from a 2D hydraulic model are used in conjunction with locally created habitat suitability curves to evaluate the availability and quality of habitat for multiple Chinook salmon life stages. To assess the variability of the habitat, connectivity between habitat patches necessary for different life stages is calculated with a proximity index. A spatial representation of existing habitat quality and connectivity between complimentary habitats can be linked to river morphology by the evaluation of local geomorphic characteristics, including sinuosity and channel units. The understanding of the current habitat availability for multiple life stage needs, the connectivity between these habitat patches, and their relationship with channel morphology can help managers better identify restoration needs and direct their limited resources.

  16. Habitat prioritization across large landscapes, multiple seasons, and novel areas: an example using greater sage-grouse in Wyoming

    Science.gov (United States)

    Fedy, Bradley C.; Doherty, Kevin E.; Aldridge, Cameron L.; O'Donnell, Michael S.; Beck, Jeffrey L.; Bedrosian, Bryan; Gummer, David; Holloran, Matthew J.; Johnson, Gregory D.; Kaczor, Nicholas W.; Kirol, Christopher P.; Mandich, Cheryl A.; Marshall, David; McKee, Gwyn; Olson, Chad; Pratt, Aaron C.; Swanson, Christopher C.; Walker, Brett L.

    2014-01-01

    Animal habitat selection is an important and expansive area of research in ecology. In particular, the study of habitat selection is critical in habitat prioritization efforts for species of conservation concern. Landscape planning for species is happening at ever-increasing extents because of the appreciation for the role of landscape-scale patterns in species persistence coupled to improved datasets for species and habitats, and the expanding and intensifying footprint of human land uses on the landscape. We present a large-scale collaborative effort to develop habitat selection models across large landscapes and multiple seasons for prioritizing habitat for a species of conservation concern. Greater sage-grouse (Centrocercus urophasianus, hereafter sage-grouse) occur in western semi-arid landscapes in North America. Range-wide population declines of this species have been documented, and it is currently considered as “warranted but precluded” from listing under the United States Endangered Species Act. Wyoming is predicted to remain a stronghold for sage-grouse populations and contains approximately 37% of remaining birds. We compiled location data from 14 unique radiotelemetry studies (data collected 1994–2010) and habitat data from high-quality, biologically relevant, geographic information system (GIS) layers across Wyoming. We developed habitat selection models for greater sage-grouse across Wyoming for 3 distinct life stages: 1) nesting, 2) summer, and 3) winter. We developed patch and landscape models across 4 extents, producing statewide and regional (southwest, central, northeast) models for Wyoming. Habitat selection varied among regions and seasons, yet preferred habitat attributes generally matched the extensive literature on sage-grouse seasonal habitat requirements. Across seasons and regions, birds preferred areas with greater percentage sagebrush cover and avoided paved roads, agriculture, and forested areas. Birds consistently preferred

  17. Body fluid markers to monitor multiple sclerosis: The assays and the challenges

    NARCIS (Netherlands)

    Laman, J.D.; Thompson, E.J.; Kappos, L.

    1998-01-01

    The need for reliable markers of disease activity in multiple sclerosis (MS) to better guide basic research, diagnosis, treatment, and monitoring of therapy is well-recognized. A recent European Charcot Foundation Symposium (Body fluid markers for course and activity of disease in multiple sclerosis

  18. Role of sequential hemi-body irradiation in multiple myeloma: preliminary observations

    International Nuclear Information System (INIS)

    Kumar, H.S.; Chaudhary, R.K.; Kumar, Vanita

    1993-01-01

    Ten patients with multiple myeloma presenting in a highly painful condition were included in the study. They were treated by sequential hemi-body irradiation. A dose of 600 cGy was delivered to the upper hemi-body and 800 c Gy to the lower hemi-body. All patients has appreciable relief from pain. The maximum effect was achieved within 24 to 48 hours of treatment. 9 out of the 10 patients has an improvement in the performance status. All these patients were later subjected to combination chemotherapy. (author). 9 refs., 3 tabs

  19. Advantages of a Modular Mars Surface Habitat Approach

    Science.gov (United States)

    Rucker, Michelle A.; Hoffman, Stephan J.; Andrews, Alida; Watts, Kevin

    2018-01-01

    Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach.

  20. The relations between forest fragmentation and bird community body size and biodiversity and bird community body size.

    OpenAIRE

    Hopman, F.

    2017-01-01

    Bachelor thesis Future Planet Studies, major biologie ABSTRACT Animal species with a larger body-size tend to have larger home ranges than small-bodied animals. Therefore it is likely that they are more affected by habitat fragmentation than small-bodied species. Body size of birds also seems to have a negative relation with species richness. This research has therefore looked into whether birds with a larger body-size are more sensitive to habitat fragmentation caused by forest...

  1. Determination of Habitat Requirements For Birds in Suburban Areas

    Science.gov (United States)

    Jack Ward Thomas; Richard M. DeGraaf; Joseph C. Mawson

    1977-01-01

    Songbird populations can be related to habitat components by a method that allows the simultaneous determination of habitat requirements for a variety of species . Through correlation and multiple-regression analyses, 10 bird species were studied in a suburban habitat, which was stratified according to human density. Variables used to account for bird distribution...

  2. Surface Habitat Systems

    Science.gov (United States)

    Kennedy, Kriss J.

    2009-01-01

    the 1) surface habitat concept definition, 2) inflatable surface habitat development, and 3) autonomous habitat operations, and 4) cross-cutting / systems engineering. In subsequent years, the SHS-FIG will solicit a call for innovations and technologies that will support the development of these four development areas. The other development areas will be assessed yearly and identified on the SHS-FIG s Strategic Development Roadmap. Initial investment projects that are funded by the Constellation Program Office (CxPO), LSSPO, or the Exploration Technology Development Projects (ETDP) will also be included on the Roadmap. For example, in one or two years from now, the autonomous habitat operations and testbed would collaborations with the Integrated Systems Health Management (ISHM) and Automation for Operations ETDP projects, which will give the surface habitat projects an integrated habitat autonomy testbed to test software and systems. The SHS-FIG scope is to provide focused direction for multiple innovations, technologies and subsystems that are needed to support humans at a remote planetary surface habitat during the concept development, design definition, and integration phases of that project. Subsystems include: habitability, lightweight structures, power management, communications, autonomy, deployment, outfitting, life support, wireless connectivity, lighting, thermal and more.

  3. Habitat selection and quality for multiple cohorts of young-of-the-year bluefish ( Pomatomus saltatrix): Comparisons between estuarine and ocean beaches in southern New Jersey

    Science.gov (United States)

    Taylor, David L.; Nichols, Ryan S.; Able, Kenneth W.

    2007-07-01

    In this study, seasonal and annual variability in the use of estuarine and ocean beaches by young-of-the-year bluefish, Pomatomus saltatrix, was evaluated by indices of abundance in coastal areas of southern New Jersey (1998-2000). Biological and physical factors measured at specific sites were correlated with bluefish abundance to determine the mechanisms underlying habitat selection. In addition, integrative and discrete indicators of bluefish growth were used to examine spatio-temporal dynamics in habitat quality and its effect on habitat selection by multiple cohorts of bluefish. Intra-annual recruitment to coastal areas of southern New Jersey was episodic, and resulted from the ingress of spring-spawned bluefish (hatch-date ˜April) to estuarine beaches in late May to early June, followed by the recruitment of summer-spawned fish (hatch-date ˜early July) to ocean beaches from July to October. Bluefish utilized estuarine and ocean beaches in a facultative manner that was responsive to dynamics in prey composition and temperature conditions. The recruitment and residency of bluefish in the estuary (1998-1999) and ocean beaches (1998), for example, was coincidental with the presence of the Atlantic silverside Menidia menidia and bay anchovy Anchoa mitchilli, the principal prey species for bluefish occupying these respective habitat-types. Bluefish abundance in the estuary (2000) and ocean beaches (1999-2000) was also correlated with water temperature, with the greatest catches of juveniles coinciding with their optimal growth temperature (24 °C). Bluefish growth, estimated as the slope of age-length relationships and daily specific growth rates, equaled 1.27-2.63 mm fork length (FL) d -1 and 3.8-8.7% body length increase d -1, respectively. The growth of sagittal otoliths was also used as a proxy for changes in bluefish size during and shortly before their time of capture. Accordingly, otolith growth rates of summer-spawned bluefish were greater at ocean

  4. Scale dependency of American marten (Martes americana) habitat relations [Chapter 12

    Science.gov (United States)

    Andrew J. Shirk; Tzeidle N. Wasserman; Samuel A. Cushman; Martin G. Raphael

    2012-01-01

    Animals select habitat resources at multiple spatial scales; therefore, explicit attention to scale-dependency when modeling habitat relations is critical to understanding how organisms select habitat in complex landscapes. Models that evaluate habitat variables calculated at a single spatial scale (e.g., patch, home range) fail to account for the effects of...

  5. Varying energetic costs of Brent Geese along a continuum from aquatic to agricultural habitats: the importance of habitat-specific energy expenditure

    DEFF Research Database (Denmark)

    Clausen, Kevin Kuhlmann; Clausen, Preben; Fox, Anthony David

    2013-01-01

    and alert than birds feeding in aquatic areas, and also spent much less time roosting. Frequency of disturbance was found to be higher in terrestrial habitats compared to aquatic habitats. These stress-related behavioural differences between habitats highlight the vulnerability of the species associated...... with adapting to different food sources. Combining time-budgets with activity-specific BMR-multiplicators showed that activity-based metabolic rates ranged from 1.7 to 2.7 × BMR within habitats exploited by Brent Geese, and emphasized that aquatic areas represent the energetically least expensive foraging...... habitat for these birds. This is largely the result of habitat-specific variation in time spent flying. These findings underline the importance of measuring habitat-specific behaviour and disturbance when studying avian energetics, and demonstrate the risk of uncritically using allometric relationships...

  6. Subseafloor basalts as fungal habitats

    Directory of Open Access Journals (Sweden)

    M. Ivarsson

    2012-09-01

    Full Text Available The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50–200 µm in diameter body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  7. Distinguishing multiple rice body formation in chronic subacromial-subdeltoid bursitis from synovial chondromatosis

    International Nuclear Information System (INIS)

    Chen, Albert; Wong, Lun-Yick; Sheu, Chin-Yin; Chen, Be-Fong

    2002-01-01

    Multiple rice body formation is a complication of chronic bursitis. Although it resembles synovial chondromatosis clinically and on imaging, the literature suggests that analysis of radiographic and MR appearances should allow discrimination. We report the imaging findings in a 41-year-old man presenting with rice body formation in chronic subacromial-subdeltoid bursitis. We found that the signal intensity of the rice bodies is helpful in making the diagnosis. (orig.)

  8. Distinguishing multiple rice body formation in chronic subacromial-subdeltoid bursitis from synovial chondromatosis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Albert; Wong, Lun-Yick; Sheu, Chin-Yin [Department of Radiology, Mackay Memorial Hospital, Taipei (Taiwan); Chen, Be-Fong [Department of Pathology, Mackay Memorial Hospital, Taipei (Taiwan)

    2002-02-01

    Multiple rice body formation is a complication of chronic bursitis. Although it resembles synovial chondromatosis clinically and on imaging, the literature suggests that analysis of radiographic and MR appearances should allow discrimination. We report the imaging findings in a 41-year-old man presenting with rice body formation in chronic subacromial-subdeltoid bursitis. We found that the signal intensity of the rice bodies is helpful in making the diagnosis. (orig.)

  9. Do multiple body modifications alter pain threshold?

    Science.gov (United States)

    Yamamotová, A; Hrabák, P; Hříbek, P; Rokyta, R

    2017-12-30

    In recent years, epidemiological data has shown an increasing number of young people who deliberately self-injure. There have also been parallel increases in the number of people with tattoos and those who voluntarily undergo painful procedures associated with piercing, scarification, and tattooing. People with self-injury behaviors often say that they do not feel the pain. However, there is no information regarding pain perception in those that visit tattoo parlors and piercing studios compared to those who don't. The aim of this study was to compare nociceptive sensitivity in four groups of subjects (n=105, mean age 26 years, 48 women and 57 men) with different motivations to experience pain (i.e., with and without multiple body modifications) in two different situations; (1) in controlled, emotionally neutral conditions, and (2) at a "Hell Party" (HP), an event organized by a piercing and tattoo parlor, with a main event featuring a public demonstration of painful techniques (burn scars, hanging on hooks, etc.). Pain thresholds of the fingers of the hand were measured using a thermal stimulator and mechanical algometer. In HP participants, information about alcohol intake, self-harming behavior, and psychiatric history were used in the analysis as intervening variables. Individuals with body modifications as well as without body modifications had higher thermal pain thresholds at Hell Party, compared to thresholds measured at control neutral conditions. No such differences were found relative to mechanical pain thresholds. Increased pain threshold in all HP participants, irrespectively of body modification, cannot be simply explained by a decrease in the sensory component of pain; instead, we found that the environment significantly influenced the cognitive and affective component of pain.

  10. Body size and hosts of Triatoma infestans populations affect the size of bloodmeal contents and female fecundity in rural northwestern Argentina.

    Science.gov (United States)

    Gürtler, Ricardo E; Fernández, María Del Pilar; Cecere, María Carla; Cohen, Joel E

    2017-12-01

    Human sleeping quarters (domiciles) and chicken coops are key source habitats of Triatoma infestans-the principal vector of the infection that causes Chagas disease-in rural communities in northern Argentina. Here we investigated the links among individual bug bloodmeal contents (BMC, mg), female fecundity, body length (L, mm), host blood sources and habitats. We tested whether L, habitat and host blood conferred relative fitness advantages using generalized linear mixed-effects models and a multimodel inference approach with model averaging. The data analyzed include 769 late-stage triatomines collected in 120 sites from six habitats in 87 houses in Figueroa, Santiago del Estero, during austral spring. L correlated positively with other body-size surrogates and was modified by habitat type, bug stage and recent feeding. Bugs from chicken coops were significantly larger than pig-corral and kitchen bugs. The best-fitting model of log BMC included habitat, a recent feeding, bug stage, log Lc (mean-centered log L) and all two-way interactions including log Lc. Human- and chicken-fed bugs had significantly larger BMC than bugs fed on other hosts whereas goat-fed bugs ranked last, in consistency with average blood-feeding rates. Fecundity was maximal in chicken-fed bugs from chicken coops, submaximal in human- and pig-fed bugs, and minimal in goat-fed bugs. This study is the first to reveal the allometric effects of body-size surrogates on BMC and female fecundity in a large set of triatomine populations occupying multiple habitats, and discloses the links between body size, microsite temperatures and various fitness components that affect the risks of transmission of Trypanosoma cruzi.

  11. Body size and hosts of Triatoma infestans populations affect the size of bloodmeal contents and female fecundity in rural northwestern Argentina.

    Directory of Open Access Journals (Sweden)

    Ricardo E Gürtler

    2017-12-01

    Full Text Available Human sleeping quarters (domiciles and chicken coops are key source habitats of Triatoma infestans-the principal vector of the infection that causes Chagas disease-in rural communities in northern Argentina. Here we investigated the links among individual bug bloodmeal contents (BMC, mg, female fecundity, body length (L, mm, host blood sources and habitats. We tested whether L, habitat and host blood conferred relative fitness advantages using generalized linear mixed-effects models and a multimodel inference approach with model averaging. The data analyzed include 769 late-stage triatomines collected in 120 sites from six habitats in 87 houses in Figueroa, Santiago del Estero, during austral spring. L correlated positively with other body-size surrogates and was modified by habitat type, bug stage and recent feeding. Bugs from chicken coops were significantly larger than pig-corral and kitchen bugs. The best-fitting model of log BMC included habitat, a recent feeding, bug stage, log Lc (mean-centered log L and all two-way interactions including log Lc. Human- and chicken-fed bugs had significantly larger BMC than bugs fed on other hosts whereas goat-fed bugs ranked last, in consistency with average blood-feeding rates. Fecundity was maximal in chicken-fed bugs from chicken coops, submaximal in human- and pig-fed bugs, and minimal in goat-fed bugs. This study is the first to reveal the allometric effects of body-size surrogates on BMC and female fecundity in a large set of triatomine populations occupying multiple habitats, and discloses the links between body size, microsite temperatures and various fitness components that affect the risks of transmission of Trypanosoma cruzi.

  12. Habitat capacity for Sacramento delta - Life Cycle Modeling of Life History Diversity and Habitat Relationships

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goals of this project are to examine 1) the relative importance of multiple aquatic habitats (streams, estuaries, and nearshore areas, for example) used by...

  13. Impact strength of small icy bodies that experienced multiple collisions

    Science.gov (United States)

    Yasui, Minami; Hayama, Ryo; Arakawa, Masahiko

    2014-05-01

    Frequent collisions are common for small bodies in the Solar System, and the cumulative damage to these bodies is thought to significantly affect their evolution. It is important to study the effects of multiple impacts such as the number of impacts on the impact strength and the ejection velocity of impact fragments. Here we conducted multiple-impact experiments using a polycrystalline water ice target, varying the number of impacts from 1 to 10 times. An ice cylindrical projectile was impacted at 84-502 m s-1 by using a single-stage gas gun in a cold room between -10 and -15 °C. The impact strength of the ice target that experienced a single impact and multiple impacts is expressed by the total energy density applied to the same target, ΣQ, and this value was observed to be 77.6 J kg-1. The number of fine impact fragments at a fragment mass normalized by an initial target mass, m/Mt0 ∼ 10-6, nm, had a good correlation with the single energy density at each shot, Qj, and the relationship was shown to be nm=10·Qj1.31±0.12. We also estimated the cumulative damage of icy bodies as a total energy density accumulated by past impacts, according to the crater scaling laws proposed by Housen et al. (Housen, K.R., Schmidt, R.M., Holsapple, K.A. [1983]. J. Geophys. Res. 88, 2485-2499) of ice and the crater size distributions observed on Phoebe, a saturnian icy satellite. We found that the cumulative damage of Phoebe depended significantly on the impact speed of the impactor that formed the craters on Phoebe; and the cumulative damage was about one-third of the impact strength ΣQ* at 500 m s-1 whereas it was almost zero at 3.2 km s-1.

  14. A wireless body measurement system to study fatigue in multiple sclerosis

    NARCIS (Netherlands)

    Yu, F.; Bilberg, A.; Stenager, E.; Rabotti, C.; Zhang, B.; Mischi, M.

    2012-01-01

    Fatigue is reported as the most common symptom by patients with multiple sclerosis (MS). The physiological and functional parameters related to fatigue in MS patients are currently not well established. A new wearable wireless body measurement system, named Fatigue Monitoring System (FAMOS), was

  15. Multitasking for flows about multiple body configurations using the chimera grid scheme

    Science.gov (United States)

    Dougherty, F. C.; Morgan, R. L.

    1987-01-01

    The multitasking of a finite-difference scheme using multiple overset meshes is described. In this chimera, or multiple overset mesh approach, a multiple body configuration is mapped using a major grid about the main component of the configuration, with minor overset meshes used to map each additional component. This type of code is well suited to multitasking. Both steady and unsteady two dimensional computations are run on parallel processors on a CRAY-X/MP 48, usually with one mesh per processor. Flow field results are compared with single processor results to demonstrate the feasibility of running multiple mesh codes on parallel processors and to show the increase in efficiency.

  16. Light indirectly mediates bivalve habitat modification and impacts on seagrass

    DEFF Research Database (Denmark)

    Castorani, Max C. N.; Glud, Ronnie; Hasler-Sheetal, Harald

    2015-01-01

    Environmental context may influence the sign, strength, andmechanisms of species interactions but few studies have experimentally tested the potential for abiotic conditions to mediate interactions through multiple cooccurring stress pathways. Abiotic conditionsmay mediate species interactions...... by directly or indirectly influencing the effects of habitat-modifying organisms that are capable of simultaneously ameliorating and exacerbating multiple stressors. Itwas hypothesized that light availability changes seagrassmetabolismand thereby indirectly regulates bivalve habitat modification...

  17. Evaluating habitat associations of a fish assemblage at multiple spatial scales in a minimally disturbed stream using low-cost remote sensing

    Science.gov (United States)

    Cheek, Brandon D.; Grabowski, Timothy B.; Bean, Preston T.; Groeschel, Jillian R.; Magnelia, Stephan J.

    2016-01-01

    Habitat heterogeneity at multiple scales is a major factor affecting fish assemblage structure. However, assessments that examine these relationships at multiple scales concurrently are lacking. The lack of assessments at these scales is a critical gap in understanding as conservation and restoration efforts typically work at these levels.A combination of low-cost side-scan sonar surveys, aerial imagery using an unmanned aerial vehicle, and fish collections were used to evaluate the relationship between physicochemical and landscape variables at various spatial scales (e.g. micro-mesohabitat, mesohabitat, channel unit, stream reach) and stream–fish assemblage structure and habitat associations in the South Llano River, a spring-fed second-order stream on the Edwards Plateau in central Texas during 2012–2013.Low-cost side-scan sonar surveys have not typically been used to generate data for riverscape assessments of assemblage structure, thus the secondary objective was to assess the efficacy of this approach.The finest spatial scale (micro-mesohabitat) and the intermediate scale (channel unit) had the greatest explanatory power for variation in fish assemblage structure.Many of the fish endemic to the Edwards Plateau showed similar associations with physicochemical and landscape variables suggesting that conservation and restoration actions targeting a single endemic species may provide benefits to a large proportion of the endemic species in this system.Low-cost side-scan sonar proved to be a cost-effective means of acquiring information on the habitat availability of the entire river length and allowed the assessment of how a full suite of riverscape-level variables influenced local fish assemblage structure.

  18. Sequential hemi-body radiotherapy in advanced multiple myeloma

    International Nuclear Information System (INIS)

    Jaffe, J.P.; Bosch, A.; Raich, P.C.

    1979-01-01

    Eleven patients with advanced multiple myeloma refractory to standard chemotherapy were treated with a regimen of sequential hemi-body radiotherapy consisting of 800 rad midplane in a single dose to each half. 9/10 patients experienced significant relief of skeletal pain and there were 5/11 objective tumor responses with one complete remission. Treatment-related morbidity was significant and consisted primarily of nausea and emesis, bone marrow suppression, and pneumonitis. This therapy is helpful in the management of advanced myeloma, and should be studied earlier in the course of the disease

  19. Expandable Habitat Outfit Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Topic H3.01 captures the need for robust, multipurpose deployable structures with high packing efficiencies for next generation orbital habitats. Multiple launch and...

  20. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat.

    Science.gov (United States)

    Mao, Donghai; Yu, Li; Chen, Dazhou; Li, Lanying; Zhu, Yuxing; Xiao, Yeqing; Zhang, Dechun; Chen, Caiyan

    2015-07-01

    Dongxiang wild rice is phylogenetically close to temperate japonica and contains multiple cold resistance loci conferring its adaptation to high-latitude habitat. Understanding the nature of adaptation in wild populations will benefit crop breeding in the development of climate-resilient crop varieties. Dongxiang wild rice (DXWR), the northernmost common wild rice known, possesses a high degree of cold tolerance and can survive overwintering in its native habitat. However, to date, it is still unclear how DXWR evolved to cope with low-temperature environment, resulting in limited application of DXWR in rice breeding programs. In this study, we carried out both QTL mapping and phylogenetic analysis to discern the genetic mechanism underlying the strong cold resistance. Through a combination of interval mapping and single locus analysis in two genetic populations, at least 13 QTLs for seedling cold tolerance were identified in DXWR. A phylogenetic study using both genome-wide InDel markers and markers associated with cold tolerance loci reveals that DXWR belongs to the Or-III group, which is most closely related to cold-tolerant Japonica rice rather than to the Indica cultivars that are predominant in the habitat where DXWR grows. Our study paves the way toward an understanding of the nature of adaptation to a northern habitat in O. rufipogon. The QTLs identified in DXWR in this study will be useful for molecular breeding of cold-tolerant rice.

  1. Whole-Body MRI versus PET in assessment of multiple myeloma disease activity.

    LENUS (Irish Health Repository)

    Shortt, Conor P

    2009-04-01

    The purpose of this study was to compare FDG PET; whole-body MRI; and the reference standard, bone marrow aspiration and biopsy, to determine the best imaging technique for assessment of disease activity in multiple myeloma.

  2. Habitat disturbance results in chronic stress and impaired health status in forest-dwelling paleotropical bats.

    Science.gov (United States)

    Seltmann, Anne; Czirják, Gábor Á; Courtiol, Alexandre; Bernard, Henry; Struebig, Matthew J; Voigt, Christian C

    2017-01-01

    Anthropogenic habitat disturbance is a major threat to biodiversity worldwide. Yet, before population declines are detectable, individuals may suffer from chronic stress and impaired immunity in disturbed habitats, making them more susceptible to pathogens and adverse weather conditions. Here, we tested in a paleotropical forest with ongoing logging and fragmentation, whether habitat disturbance influences the body mass and immunity of bats. We measured and compared body mass, chronic stress (indicated by neutrophil to lymphocyte ratios) and the number of circulating immune cells between several bat species with different roost types living in recovering areas, actively logged forests, and fragmented forests in Sabah, Malaysia. In a cave-roosting species, chronic stress levels were higher in individuals from fragmented habitats compared with conspecifics from actively logged areas. Foliage-roosting species showed a reduced body mass and decrease in total white blood cell counts in actively logged areas and fragmented forests compared with conspecifics living in recovering habitats. Our study highlights that habitat disturbance may have species-specific effects on chronic stress and immunity in bats that are potentially related to the roost type. We identified foliage-roosting species as particularly sensitive to forest habitat deterioration. These species may face a heightened extinction risk in the near future if anthropogenic habitat alterations continue.

  3. Scrub-shrub bird habitat associations at multiple spatial scales in beaver meadows in Massachusetts

    Science.gov (United States)

    Chandler, R.B.; King, D.I.; DeStefano, S.

    2009-01-01

    Most scrub-shrub bird species are declining in the northeastern United States, and these declines are largely attributed to regional declines in habitat availability. American Beaver (Castor canadensis; hereafter “beaver”) populations have been increasing in the Northeast in recent decades, and beavers create scrub-shrub habitat through their dam-building and foraging activities. Few systematic studies have been conducted on the value of beaver-modified habitats for scrub-shrub birds, and these data are important for understanding habitat selection of scrub-shrub birds as well as for assessing regional habitat availability for these species. We conducted surveys in 37 beaver meadows in a 2,800-km2 study area in western Massachusetts during 2005 and 2006 to determine the extent to which these beaver-modified habitats are used by scrub-shrub birds, as well as the characteristics of beaver meadows most closely related to bird use. We modeled bird abundance in relation to microhabitat-, patch-, and landscape-context variables while adjusting for survey-specific covariates affecting detectability using N-mixture models. We found that scrub-shrub birds of regional conservation concern occupied these sites and that birds responded differently to microhabitat, patch, and landscape characteristics of beaver meadows. Generally, scrub-shrub birds increased in abundance along a gradient of increasing vegetation complexity, and three species were positively related to patch size. We conclude that these habitats can potentially play an important role in regional conservation of scrub-shrub birds and recommend that conservation priority be given to larger beaver meadows with diverse vegetation structure and composition.

  4. Determinants of Habitat Selection by Hatchling Australian Freshwater Crocodiles

    Science.gov (United States)

    Somaweera, Ruchira; Webb, Jonathan K.; Shine, Richard

    2011-01-01

    Animals almost always use habitats non-randomly, but the costs and benefits of using specific habitat types remain unknown for many types of organisms. In a large lake in northwestern Australia (Lake Argyle), most hatchling (banks rather than the more widely available open banks. Mean body sizes of young crocodiles did not differ among the three habitat types. We tested four potential explanations for non-random habitat selection: proximity to nesting sites, thermal conditions, food availability, and exposure to predation. The three alternative habitat types did not differ in proximity to nesting sites, or in thermal conditions. Habitats with higher food availability harboured more hatchlings, and feeding rates (obtained by stomach-flushing of recently-captured crocodiles) were highest in such areas. Predation risk may also differ among habitats: we were twice as likely to capture a crocodile after seeing it in open-bank sites than in the other two habitat types. Thus, habitat selection of hatchling crocodiles in this system may be driven both by prey availability and by predation risk. PMID:22163308

  5. Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: a multi-parameter approach.

    Science.gov (United States)

    Hübner, Lena; Pennings, Steven C; Zimmer, Martin

    2015-08-01

    Distinct habitats are often linked through fluxes of matter and migration of organisms. In particular, intertidal ecotones are prone to being influenced from both the marine and the terrestrial realms, but whether or not small-scale migration for feeding, sheltering or reproducing is detectable may depend on the parameter studied. Within the ecotone of an upper saltmarsh in the United States, we investigated the sex-specific movement of the semi-terrestrial crab Armases cinereum using an approach of determining multiple measures of across-ecotone migration. To this end, we determined food preference, digestive abilities (enzyme activities), bacterial hindgut communities (genetic fingerprint), and the trophic position of Armases and potential food sources (stable isotopes) of males versus females of different sub-habitats, namely high saltmarsh and coastal forest. Daily observations showed that Armases moved frequently between high-intertidal (saltmarsh) and terrestrial (forest) habitats. Males were encountered more often in the forest habitat, whilst gravid females tended to be more abundant in the marsh habitat but moved more frequently. Food preference was driven by both sex and habitat. The needlerush Juncus was preferred over three other high-marsh detrital food sources, and the periwinkle Littoraria was the preferred prey of male (but not female) crabs from the forest habitats; both male and female crabs from marsh habitat preferred the fiddler crab Uca over three other prey items. In the field, the major food sources were clearly vegetal, but males have a higher trophic position than females. In contrast to food preference, isotope data excluded Uca and Littoraria as major food sources, except for males from the forest, and suggested that Armases consumes a mix of C4 and C3 plants along with animal prey. Digestive enzyme activities differed significantly between sexes and habitats and were higher in females and in marsh crabs. The bacterial hindgut community

  6. Loss and modification of habitat

    Science.gov (United States)

    Lemckert, Francis; Hecnar, Stephen; Pilliod, David S.; Wilkinson, John W.; Heatwole, Harold

    2012-01-01

    Amphibians live in a wide variety of habitats around the world, many of which have been modified or destroyed by human activities. Most species have unique life history characteristics adapted to specific climates, habitats (e.g., lentic, lotic, terrestrial, arboreal, fossorial, amphibious), and local conditions that provide suitable areas for reproduction, development and growth, shelter from environmental extremes, and predation, as well as connectivity to other populations or habitats. Although some species are entirely aquatic or terrestrial, most amphibians, as their name implies, lead a dual life and require a mosaic of habitats in both aquatic and terrestrial ecosystems. With over 6 billion people on Earth, most species are now persisting in habitats that have been directly or indirectly influenced by human activities. Some species have disappeared where their habitats have been completely destroyed, reduced, or rendered unsuitable. Habitat loss and degradation are widely considered by most researchers as the most important causes of amphibian population decline globally (Barinaga 1990; Wake and Morowitz 1991; Alford and Richards 1999). In this chapter, a background on the diverse habitat requirements of amphibians is provided, followed by a discussion of the effects of urbanization, agriculture, livestock grazing, timber production and harvesting, fire and hazardous fuel management, and roads on amphibians and their habitats. Also briefly discussed is the influence on amphibian habitats of natural disturbances, such as extreme weather events and climate change, given the potential for human activities to impact climate in the longer term. For amphibians in general, microhabitats are of greater importance than for other vertebrates. As ectotherms with a skin that is permeable to water and with naked gelatinous eggs, amphibians are physiologically constrained to be active during environmental conditions that provide appropriate body temperatures and adequate

  7. Relevance of multiple spatial scales in habitat models: A case study with amphibians and grasshoppers

    Science.gov (United States)

    Altmoos, Michael; Henle, Klaus

    2010-11-01

    Habitat models for animal species are important tools in conservation planning. We assessed the need to consider several scales in a case study for three amphibian and two grasshopper species in the post-mining landscapes near Leipzig (Germany). The two species groups were selected because habitat analyses for grasshoppers are usually conducted on one scale only whereas amphibians are thought to depend on more than one spatial scale. First, we analysed how the preference to single habitat variables changed across nested scales. Most environmental variables were only significant for a habitat model on one or two scales, with the smallest scale being particularly important. On larger scales, other variables became significant, which cannot be recognized on lower scales. Similar preferences across scales occurred in only 13 out of 79 cases and in 3 out of 79 cases the preference and avoidance for the same variable were even reversed among scales. Second, we developed habitat models by using a logistic regression on every scale and for all combinations of scales and analysed how the quality of habitat models changed with the scales considered. To achieve a sufficient accuracy of the habitat models with a minimum number of variables, at least two scales were required for all species except for Bufo viridis, for which a single scale, the microscale, was sufficient. Only for the European tree frog ( Hyla arborea), at least three scales were required. The results indicate that the quality of habitat models increases with the number of surveyed variables and with the number of scales, but costs increase too. Searching for simplifications in multi-scaled habitat models, we suggest that 2 or 3 scales should be a suitable trade-off, when attempting to define a suitable microscale.

  8. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss.

    Science.gov (United States)

    Bommarco, Riccardo; Biesmeijer, Jacobus C; Meyer, Birgit; Potts, Simon G; Pöyry, Juha; Roberts, Stuart P M; Steffan-Dewenter, Ingolf; Ockinger, Erik

    2010-07-07

    Habitat loss poses a major threat to biodiversity, and species-specific extinction risks are inextricably linked to life-history characteristics. This relationship is still poorly documented for many functionally important taxa, and at larger continental scales. With data from five replicated field studies from three countries, we examined how species richness of wild bees varies with habitat patch size. We hypothesized that the form of this relationship is affected by body size, degree of host plant specialization and sociality. Across all species, we found a positive species-area slope (z = 0.19), and species traits modified this relationship. Large-bodied generalists had a lower z value than small generalists. Contrary to predictions, small specialists had similar or slightly lower z value compared with large specialists, and small generalists also tended to be more strongly affected by habitat loss as compared with small specialists. Social bees were negatively affected by habitat loss (z = 0.11) irrespective of body size. We conclude that habitat loss leads to clear shifts in the species composition of wild bee communities.

  9. Body Esteem Among Women with Multiple Sclerosis and its Relationship with Demographic, Clinical and Socio-Psychological Factors.

    Science.gov (United States)

    Wilski, M; Tasiemski, T; Dąbrowski, A

    2016-06-01

    The principal aim of this study was to verify if specific socio-demographic, clinical, and socio-psychological factors are correlates of body esteem in women with multiple sclerosis (MS). The study included 185 women with MS who completed the Body Esteem Scale (BES), Rosenberg Self-Esteem Scale (RSES), Multiple Sclerosis Impact Scale (MSIS-29), Brief Illness Perception Questionnaire (B-IPQ), Actually Received Support Scale (a part of the Berlin Social Support Scale), and Expanded Disability Status Scale (EDSS). The patients were recruited as a result of cooperation with the Multiple Sclerosis Rehabilitation Centre in Borne Sulinowo and Polish Society of Multiple Sclerosis. The demographic characteristics of the participants and their illness-related problems were determined with a self-report survey. A hierarchical multiple regression revealed that four factors, psychological condition (R (2) = 0.23, p ≤ 0.001), received support (R (2) = 0.28, p ≤ 0.001), personal control (R (2) = 0.30, p ≤ 0.001), and physical condition (R (2) = 0.31, p ≤ 0.001), were significant correlates of the general body esteem in our study group of women with MS. The model explained 31 % of variance in body esteem. Positive body esteem, an important component of self-esteem in women with MS, is associated with better social support, overcoming negative illness-related appraisals and improvement of psychological well-being. Subjective perception of a negative impact of MS on one's physical condition may be helpful in the identification of women with MS being at increased risk of decreased body esteem.

  10. Multi-scale habitat selection modeling: A review and outlook

    Science.gov (United States)

    Kevin McGarigal; Ho Yi Wan; Kathy A. Zeller; Brad C. Timm; Samuel A. Cushman

    2016-01-01

    Scale is the lens that focuses ecological relationships. Organisms select habitat at multiple hierarchical levels and at different spatial and/or temporal scales within each level. Failure to properly address scale dependence can result in incorrect inferences in multi-scale habitat selection modeling studies.

  11. Multiple and fast: The accretion of ordinary chondrite parent bodies

    International Nuclear Information System (INIS)

    Vernazza, P.; Barge, P.; Zanda, B.; Hewins, R.; Binzel, R. P.; DeMeo, F. E.; Lockhart, M.; Hiroi, T.; Birlan, M.; Ricci, L.

    2014-01-01

    Although petrologic, chemical, and isotopic studies of ordinary chondrites and meteorites in general have largely helped establish a chronology of the earliest events of planetesimal formation and their evolution, there are several questions that cannot be resolved via laboratory measurements and/or experiments alone. Here, we propose the rationale for several new constraints on the formation and evolution of ordinary chondrite parent bodies (and, by extension, most planetesimals) from newly available spectral measurements and mineralogical analysis of main-belt S-type asteroids (83 objects) and unequilibrated ordinary chondrite meteorites (53 samples). Based on the latter, we suggest that spectral data may be used to distinguish whether an ordinary chondrite was formed near the surface or in the interior of its parent body. If these constraints are correct, the suggested implications include that: (1) large groups of compositionally similar asteroids are a natural outcome of planetesimal formation and, consequently, meteorites within a given class can originate from multiple parent bodies; (2) the surfaces of large (up to ∼200 km) S-type main-belt asteroids mostly expose the interiors of the primordial bodies, a likely consequence of impacts by small asteroids (D < 10 km) in the early solar system; (3) the duration of accretion of the H chondrite parent bodies was likely short (instantaneous or in less than ∼10 5 yr, but certainly not as long as 1 Myr); (4) LL-like bodies formed closer to the Sun than H-like bodies, a possible consequence of the radial mixing and size sorting of chondrules in the protoplanetary disk prior to accretion.

  12. Habitat degradation and fishing effects on the size structure of coral reef fish communities.

    Science.gov (United States)

    Wilson, S K; Fisher, R; Pratchett, M S; Graham, N A J; Dulvy, N K; Turner, R A; Cakacaka, A; Polunin, N V C

    2010-03-01

    Overfishing and habitat degradation through climate change pose the greatest threats to sustainability of marine resources on coral reefs. We examined how changes in fishing pressure and benthic habitat composition influenced the size spectra of island-scale reef fish communities in Lau, Fiji. Between 2000 and 2006 fishing pressure declined in the Lau Islands due to declining human populations and reduced demand for fresh fish. At the same time, coral cover declined and fine-scale architectural complexity eroded due to coral bleaching and outbreaks of crown-of-thorns starfish, Acanthaster planci. We examined the size distribution of reef fish communities using size spectra analysis, the linearized relationship between abundance and body size class. Spatial variation in fishing pressure accounted for 31% of the variation in the slope of the size spectra in 2000, higher fishing pressure being associated with a steeper slope, which is indicative of fewer large-bodied fish and/or more small-bodied fish. Conversely, in 2006 spatial variation in habitat explained 53% of the variation in the size spectra slopes, and the relationship with fishing pressure was much weaker (approximately 12% of variation) than in 2000. Reduced cover of corals and lower structural complexity was associated with less steep size spectra slopes, primarily due to reduced abundance of fish < 20 cm. Habitat degradation will compound effects of fishing on coral reefs as increased fishing reduces large-bodied target species, while habitat loss results in fewer small-bodied juveniles and prey that replenish stocks and provide dietary resources for predatory target species. Effective management of reef resources therefore depends on both reducing fishing pressure and maintaining processes that encourage rapid recovery of coral habitat.

  13. A test of the substitution-habitat hypothesis in amphibians.

    Science.gov (United States)

    Martínez-Abraín, Alejandro; Galán, Pedro

    2017-12-08

    Most examples that support the substitution-habitat hypothesis (human-made habitats act as substitutes of original habitat) deal with birds and mammals. We tested this hypothesis in 14 amphibians by using percentage occupancy as a proxy of habitat quality (i.e., higher occupancy percentages indicate higher quality). We classified water body types as original habitat (no or little human influence) depending on anatomical, behavioral, or physiological adaptations of each amphibian species. Ten species had relatively high probabilities (0.16-0.28) of occurrence in original habitat, moderate probability of occurrence in substitution habitats (0.11-0.14), and low probability of occurrence in refuge habitats (0.05-0.08). Thus, the substitution-habitat hypothesis only partially applies to amphibians because the low occupancy of refuges could be due to the negligible human persecution of this group (indicating good conservation status). However, low occupancy of refuges could also be due to low tolerance of refuge conditions, which could have led to selective extinction or colonization problems due to poor dispersal capabilities. That original habitats had the highest probabilities of occupancy suggests amphibians have a good conservation status in the region. They also appeared highly adaptable to anthropogenic substitution habitats. © 2017 Society for Conservation Biology.

  14. Scale-Dependent Habitat Selection and Size-Based Dominance in Adult Male American Alligators.

    Directory of Open Access Journals (Sweden)

    Bradley A Strickland

    Full Text Available Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17 on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their

  15. Scale-dependent habitat selection and size-based dominance in adult male American alligators

    Science.gov (United States)

    Strickland, Bradley A.; Vilella, Francisco; Belant, Jerrold L.

    2016-01-01

    Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range) then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17) on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their social dominance

  16. Determinants of habitat selection by hatchling Australian freshwater crocodiles.

    Directory of Open Access Journals (Sweden)

    Ruchira Somaweera

    Full Text Available Animals almost always use habitats non-randomly, but the costs and benefits of using specific habitat types remain unknown for many types of organisms. In a large lake in northwestern Australia (Lake Argyle, most hatchling (<12-month-old freshwater crocodiles (Crocodylus johnstoni are found in floating vegetation mats or grassy banks rather than the more widely available open banks. Mean body sizes of young crocodiles did not differ among the three habitat types. We tested four potential explanations for non-random habitat selection: proximity to nesting sites, thermal conditions, food availability, and exposure to predation. The three alternative habitat types did not differ in proximity to nesting sites, or in thermal conditions. Habitats with higher food availability harboured more hatchlings, and feeding rates (obtained by stomach-flushing of recently-captured crocodiles were highest in such areas. Predation risk may also differ among habitats: we were twice as likely to capture a crocodile after seeing it in open-bank sites than in the other two habitat types. Thus, habitat selection of hatchling crocodiles in this system may be driven both by prey availability and by predation risk.

  17. Morphological differences between habitats are associated with physiological and behavioural trade-offs in stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Seebacher, Frank; Webster, Mike M; James, Rob S; Tallis, Jason; Ward, Ashley J W

    2016-06-01

    Local specialization can be advantageous for individuals and may increase the resilience of the species to environmental change. However, there may be trade-offs between morphological responses and physiological performance and behaviour. Our aim was to test whether habitat-specific morphology of stickleback (Gasterosteus aculeatus) interacts with physiological performance and behaviour at different salinities. We rejected the hypothesis that deeper body shape of fish from habitats with high predation pressure led to decreases in locomotor performance. However, there was a trade-off between deeper body shape and muscle quality. Muscle of deeper-bodied fish produced less force than that of shallow-bodied saltmarsh fish. Nonetheless, saltmarsh fish had lower swimming performance, presumably because of lower muscle mass overall coupled with smaller caudal peduncles and larger heads. Saltmarsh fish performed better in saline water (20 ppt) relative to freshwater and relative to fish from freshwater habitats. However, exposure to salinity affected shoaling behaviour of fish from all habitats and shoals moved faster and closer together compared with freshwater. We show that habitat modification can alter phenotypes of native species, but local morphological specialization is associated with trade-offs that may reduce its benefits.

  18. Microcomputer software for calculating an elk habitat effectiveness index on Blue Mountain winter ranges.

    Science.gov (United States)

    Mark Hitchcock; Alan. Ager

    1992-01-01

    National Forests in the Pacific Northwest Region have incorporated elk habitat standards into Forest plans to ensure that elk habitat objectives are met on multiple use land allocations. Many Forests have employed versions of the habitat effectiveness index (HEI) as a standard method to evaluate habitat. Field application of the HEI model unfortunately is a formidable...

  19. Functional morphology of the bovid astragalus in relation to habitat: controlling phylogenetic signal in ecomorphology.

    Science.gov (United States)

    Barr, W Andrew

    2014-11-01

    Bovid astragali are one of the most commonly preserved bones in the fossil record. Accordingly, astragali are an important target for studies seeking to predict the habitat preferences of fossil bovids based on bony anatomy. However, previous work has not tested functional hypotheses linking astragalar morphology with habitat while controlling for body size and phylogenetic signal. This article presents a functional framework relating the morphology of the bovid astragalus to habitat-specific locomotor ecology and tests four hypotheses emanating from this framework. Highly cursorial bovids living in structurally open habitats are hypothesized to differ from their less cursorial closed-habitat dwelling relatives in having (1) relatively short astragali to maintain rotational speed throughout the camming motion of the rotating astragalus, (2) a greater range of angular excursion at the hock, (3) relatively larger joint surface areas, and (4) a more pronounced "spline-and-groove" morphology promoting lateral joint stability. A diverse sample of 181 astragali from 50 extant species was scanned using a Next Engine laser scanner. Species were assigned to one of four habitat categories based on the published ecological literature. A series of 11 linear measurements and three joint surface areas were measured on each astragalus. A geometric mean body size proxy was used to size-correct the measurement data. Phylogenetic generalized least squares (PGLS) was used to test for differences between habitat categories while controlling for body size differences and phylogenetic signal. Statistically significant PGLS results support Hypotheses 1 and 2 (which are not mutually exclusive) as well as Hypothesis 3. No support was found for Hypothesis 4. These findings confirm that the morphology of the bovid astragalus is related to habitat-specific locomotor ecology, and that this relationship is statistically significant after controlling for body size and phylogeny. Thus, this study

  20. Evaluating anthropogenic risk of grassland and forest habitat degradation using land-cover data

    Science.gov (United States)

    Kurt Riitters; James Wickham; Timothy Wade

    2009-01-01

    The effects of landscape context on habitat quality are receiving increased attention in conservation biology. The objective of this research is to demonstrate a landscape-level approach to mapping and evaluating the anthropogenic risks of grassland and forest habitat degradation by examining habitat context as defined by intensive anthropogenic land uses at multiple...

  1. Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type.

    Science.gov (United States)

    Marshall, Leon; Carvalheiro, Luísa G; Aguirre-Gutiérrez, Jesús; Bos, Merijn; de Groot, G Arjen; Kleijn, David; Potts, Simon G; Reemer, Menno; Roberts, Stuart; Scheper, Jeroen; Biesmeijer, Jacobus C

    2015-10-01

    Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs' usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and

  2. Estimating the per-capita contribution of habitats and pathways in a migratory network: A modelling approach

    Science.gov (United States)

    Wiederholt, Ruscena; Mattsson, Brady J.; Thogmartin, Wayne E.; Runge, Michael C.; Diffendorfer, Jay E.; Erickson, Richard A.; Federico, Paula; Lopez-Hoffman, Laura; Fryxell, John; Norris, D. Ryan; Sample, Christine

    2018-01-01

    Every year, migratory species undertake seasonal movements along different pathways between discrete regions and habitats. The ability to assess the relative demographic contributions of these different habitats and pathways to the species’ overall population dynamics is critical for understanding the ecology of migratory species, and also has practical applications for management and conservation. Metrics for assessing habitat contributions have been well-developed for metapopulations, but an equivalent metric is not currently available for migratory populations. Here, we develop a framework for estimating the demographic contributions of the discrete habitats and pathways used by migratory species throughout the annual cycle by estimating the per capita contribution of cohorts using these locations. Our framework accounts for seasonal movements between multiple breeding and non-breeding habitats and for both resident and migratory cohorts. We illustrate our framework using a hypothetical migratory network of four habitats, which allows us to better understand how variations in habitat quality affect per capita contributions. Results indicate that per capita contributions for any habitat or pathway are dependent on habitat-specific survival probabilities in all other areas used as part of the migratory circuit, and that contribution metrics are spatially linked (e.g. reduced survival in one habitat also decreases the contribution metric for other habitats). Our framework expands existing theory on the dynamics of spatiotemporally structured populations by developing a generalized approach to estimate the habitat- and pathway-specific contributions of species migrating between multiple breeding and multiple non-breeding habitats for a range of life histories or migratory strategies. Most importantly, it provides a means of prioritizing conservation efforts towards those migratory pathways and habitats that are most critical for the population viability of

  3. Mapping Thermal Habitat of Ectotherms Based on Behavioral Thermoregulation in a Controlled Thermal Environment

    Science.gov (United States)

    Fei, T.; Skidmore, A.; Liu, Y.

    2012-07-01

    Thermal environment is especially important to ectotherm because a lot of physiological functions rely on the body temperature such as thermoregulation. The so-called behavioural thermoregulation function made use of the heterogeneity of the thermal properties within an individual's habitat to sustain the animal's physiological processes. This function links the spatial utilization and distribution of individual ectotherm with the thermal properties of habitat (thermal habitat). In this study we modelled the relationship between the two by a spatial explicit model that simulates the movements of a lizard in a controlled environment. The model incorporates a lizard's transient body temperatures with a cellular automaton algorithm as a way to link the physiology knowledge of the animal with the spatial utilization of its microhabitat. On a larger spatial scale, 'thermal roughness' of the habitat was defined and used to predict the habitat occupancy of the target species. The results showed the habitat occupancy can be modelled by the cellular automaton based algorithm at a smaller scale, and can be modelled by the thermal roughness index at a larger scale.

  4. Development of fauna of water beetles (Coleoptera in waters bodies of a river valley – habitat factors, landscape and geomorphology

    Directory of Open Access Journals (Sweden)

    Pakulnicka Joanna

    2016-01-01

    Full Text Available The goal of the study was to identify the beetle fauna of a small lowland river valley against its spatial arrangement and the directions of beetle migrations between habitats, as well as to determine which environmental factors affect the characteristics of water beetle populations in a river valley's lentic water bodies. The field studies were carried out in various types of water bodies. 112 species of beetles with various ecological characteristics were identified. It was demonstrated that the diversity of water bodies in the valley is conducive to high local species richness. At the same time, the observed high degree of faunistic individualism may be regarded as a sign of poor symmetry in the directions of fauna propagation, particularly that of stagnobionts. The authors argue that high individualism is the consequence of poor hydrological contact between the water bodies due to topography and rare instances of high tide in the river, which, in turn, is the reason for active overflights remaining the main mean of migration between those water bodies. The factors restricting migration of fauna between the water bodies include certain landscape characteristics of the catchment which form topographical obstacles, mainly numerous and dense forest areas. The character of fauna in the respective types of water bodies is affected also by internal environmental factors, particularly the degree to which they are overgrown with macrophytes, type of bottom, type of mineral and organic matter as well as physical parameters of water, such as saturation, pH, temperature and biological oxygen demand.

  5. Partitioning mechanisms of predator interference in different habitats.

    Science.gov (United States)

    Griffen, Blaine D; Byers, James E

    2006-01-01

    Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific.

  6. Habitat-specific morphological variation among threespine sticklebacks (Gasterosteus aculeatus within a drainage basin.

    Directory of Open Access Journals (Sweden)

    Mike M Webster

    Full Text Available Habitat-specific morphological variation, often corresponding to resource specialization, is well documented in freshwater fishes. In this study we used landmark based morphometric analyses to investigate morphological variation among threespine sticklebacks (Gasterosteus aculeatus L. from four interconnected habitat types within a single lowland drainage basin in eastern England. These included the upper and lower reaches of the river, the estuary, a connected ditch network and a coastal salt marsh. We found significant habitat-specific differences in morphology, with three axes of variation describing differences in orbit diameter, body depth, caudal peduncle shape and pectoral fin positioning as well as variation in relative dorsal and pelvic spine size. Interestingly, the ditch system, an artificial and heavily managed habitat, is populated by sticklebacks with a characteristic morphology, suggesting that human management of habitats can in some circumstances lead to morphological variation among the animals that inhabit them. We discuss the mechanisms that conceivably underlie the observed morphological variation and the further work necessary to identify them. Finally, we consider the implications of habitat-specific body shape variation for the behavioural ecology of this ecologically generalist species.

  7. Habitat-Specific Morphological Variation among Threespine Sticklebacks (Gasterosteus aculeatus) within a Drainage Basin

    Science.gov (United States)

    Webster, Mike M.; Atton, Nicola; Hart, Paul J. B.; Ward, Ashley J. W.

    2011-01-01

    Habitat-specific morphological variation, often corresponding to resource specialization, is well documented in freshwater fishes. In this study we used landmark based morphometric analyses to investigate morphological variation among threespine sticklebacks (Gasterosteus aculeatus L.) from four interconnected habitat types within a single lowland drainage basin in eastern England. These included the upper and lower reaches of the river, the estuary, a connected ditch network and a coastal salt marsh. We found significant habitat-specific differences in morphology, with three axes of variation describing differences in orbit diameter, body depth, caudal peduncle shape and pectoral fin positioning as well as variation in relative dorsal and pelvic spine size. Interestingly, the ditch system, an artificial and heavily managed habitat, is populated by sticklebacks with a characteristic morphology, suggesting that human management of habitats can in some circumstances lead to morphological variation among the animals that inhabit them. We discuss the mechanisms that conceivably underlie the observed morphological variation and the further work necessary to identify them. Finally, we consider the implications of habitat-specific body shape variation for the behavioural ecology of this ecologically generalist species. PMID:21698269

  8. Habitat and sex differences in physiological condition of breeding Southwestern Willow Flycatchers (Empidonax traillii extimus)

    Science.gov (United States)

    Owen, J.C.; Sogge, M.K.; Kern, M.D.

    2005-01-01

    The Southwestern Willow Flycatcher (Empidonax traillii extimus; here- after “flycatcher”) is a federally listed endangered species that breeds in densely vegetated riparian habitats dominated by native and exotic plants, including introduced monotypic saltcedar (Tamarix ramosissima). Some workers have theorized that saltcedar is unsuitable habitat for the flycatcher, primarily because it generally supports a smaller and less diverse invertebrate community (the flycatcher's food base) than native habitats (e.g. Salix spp.). However, differences in insect communities between native and saltcedar habitats are not proof that saltcedar habitats are inferior. The only way to evaluate whether the habitats differ in dietary or energetic quality is to document actual food limitation or its manifestations. Measurements of an individual's body condition and metabolic state can serve as indicators of environmental stressors, such as food limitation and environmental extremes. We captured 130 flycatchers breeding in native and saltcedar habitats in Arizona and New Mexico and measured 12 variables of physiological condition. These variables included body mass, fat level, body condition index, hematocrit, plasma triglycerides, plasma free fatty acids and glycerol, plasma glucose and beta-hydroxybutyrate, plasma uric acid, total leukocyte count, and heterophil-to-lymphocyte ratio. We found substantial sex-based differences in the condition of male and female flycatchers. Ten of the 12 measures of physiological condition differed significantly between the sexes. In all cases where male and female condition differed (except mass), the differences suggest that males were in poorer condition than females. We found few habitat-based differences in flycatcher condition. Only 3 of the 12 physiological condition indices differed significantly between habitats. Our data show that, at least in some parts of the flycatcher's range, there is no evidence that flycatchers breeding in

  9. Multiple representations and free-body diagrams: Do students benefit from using them?

    Science.gov (United States)

    Rosengrant, David R.

    2007-12-01

    Introductory physics students have difficulties understanding concepts and solving problems. When they solve problems, they use surface features of the problems to find an equation to calculate a numerical answer often not understanding the physics in the problem. How do we help students approach problem solving in an expert manner? A possible answer is to help them learn to represent knowledge in multiple ways and then use these different representations for conceptual understanding and problem solving. This solution follows from research in cognitive science and in physics education. However, there are no studies in physics that investigate whether students who learn to use multiple representations are in fact better problem solvers. This study focuses on one specific representation used in physics--a free body diagram. A free-body diagram is a graphical representation of forces exerted on an object of interest by other objects. I used the free-body diagram to investigate five main questions: (1) If students are in a course where they consistently use free body diagrams to construct and test concepts in mechanics, electricity and magnetism and to solve problems in class and in homework, will they draw free-body diagrams on their own when solving exam problems? (2) Are students who use free-body diagrams to solve problems more successful then those who do not? (3) Why do students draw free-body diagrams when solving problems? (4) Are students consistent in constructing diagrams for different concepts in physics and are they consistent in the quality of their diagrams? (5) What are possible relationships between features of a problem and how likely a student will draw a free body diagram to help them solve the problem? I utilized a mixed-methods approach to answer these questions. Questions 1, 2, 4 and 5 required a quantitative approach while question 3 required a qualitative approach, a case study. When I completed my study, I found that if students are in an

  10. Pelagic habitat visualization: the need for a third (and fourth) dimension: HabitatSpace

    Science.gov (United States)

    Beegle-Krause, C; Vance, Tiffany; Reusser, Debbie; Stuebe, David; Howlett, Eoin

    2009-01-01

    Habitat in open water is not simply a 2-D to 2.5-D surface such as the ocean bottom or the air-water interface. Rather, pelagic habitat is a 3-D volume of water that can change over time, leading us to the term habitat space. Visualization and analysis in 2-D is well supported with GIS tools, but a new tool was needed for visualization and analysis in four dimensions. Observational data (cruise profiles (xo, yo, z, to)), numerical circulation model fields (x,y,z,t), and trajectories (larval fish, 4-D line) need to be merged together in a meaningful way for visualization and analysis. As a first step toward this new framework, UNIDATA’s Integrated Data Viewer (IDV) has been used to create a set of tools for habitat analysis in 4-D. IDV was designed for 3-D+time geospatial data in the meteorological community. NetCDF JavaTM libraries allow the tool to read many file formats including remotely located data (e.g. data available via OPeNDAP ). With this project, IDV has been adapted for use in delineating habitat space for multiple fish species in the ocean. The ability to define and visualize boundaries of a water mass, which meets specific biologically relevant criteria (e.g., volume, connectedness, and inter-annual variability) based on model results and observational data, will allow managers to investigate the survival of individual year classes of commercially important fisheries. Better understanding of the survival of these year classes will lead to improved forecasting of fisheries recruitment.

  11. An Advanced N -body Model for Interacting Multiple Stellar Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brož, Miroslav [Astronomical Institute of the Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, CZ-18000 Praha 8 (Czech Republic)

    2017-06-01

    We construct an advanced model for interacting multiple stellar systems in which we compute all trajectories with a numerical N -body integrator, namely the Bulirsch–Stoer from the SWIFT package. We can then derive various observables: astrometric positions, radial velocities, minima timings (TTVs), eclipse durations, interferometric visibilities, closure phases, synthetic spectra, spectral energy distribution, and even complete light curves. We use a modified version of the Wilson–Devinney code for the latter, in which the instantaneous true phase and inclination of the eclipsing binary are governed by the N -body integration. If all of these types of observations are at one’s disposal, a joint χ {sup 2} metric and an optimization algorithm (a simplex or simulated annealing) allow one to search for a global minimum and construct very robust models of stellar systems. At the same time, our N -body model is free from artifacts that may arise if mutual gravitational interactions among all components are not self-consistently accounted for. Finally, we present a number of examples showing dynamical effects that can be studied with our code and we discuss how systematic errors may affect the results (and how to prevent this from happening).

  12. Global patterns of fragmentation and connectivity of mammalian carnivore habitat.

    Science.gov (United States)

    Crooks, Kevin R; Burdett, Christopher L; Theobald, David M; Rondinini, Carlo; Boitani, Luigi

    2011-09-27

    Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges, a greater proportion of habitat within their range, greater habitat connectivity and a lower risk of extinction. Species with higher connectivity (i.e. less habitat isolation) also had a greater proportion of high-quality habitat, but had smaller, not larger, ranges, probably reflecting shorter distances between habitat patches for species with restricted distributions; such species were also more threatened, as would be expected given the negative relationship between range size and extinction risk. Fragmentation and connectivity did not differ among Carnivora families, and body mass was associated with connectivity but not fragmentation. On average, only 54.3 per cent of a species' geographical range comprised high-quality habitat, and more troubling, only 5.2 per cent of the range comprised such habitat within protected areas. Identification of global hotspots of fragmentation and connectivity will help guide strategic priorities for carnivore conservation.

  13. A Multiple Watershed Approach to Assessing the Effects of Habitat Restoration Actions on Anadromous and Resident Fish Populations, Technical Report 2003-2004.

    Energy Technology Data Exchange (ETDEWEB)

    Marmorek, David

    2004-03-01

    for future habitat restoration actions. Such designs are being developed concurrently with this project by several other groups in the Columbia Basin (RME Workgroup 2003, NMFS 2003, Hillman and Paulsen 2002, Hillman 2003). By addressing questions about habitat restoration and monitoring (in coordination with other related efforts), we hope that this project will catalyze a shift in the Basin's paradigm of habitat restoration, moving from implementation of individual watershed projects towards rigorously designed and monitored, multiwatershed, adaptive management experiments. The project involved three phases of work, which were closely integrated with various related and ongoing efforts in the region: (1) Scoping - We met with a Core Group of habitat experts and managers to scope out a set of testable habitat restoration hypotheses, identify candidate watersheds and recommend participants for a data evaluation workshop. (2) Data Assembly - We contacted over 80 scientists and managers to help evaluate the suitability of each candidate watershed's historical data for assessing the effectiveness of past restoration actions. We eventually settled on the Yakima, Wenatchee, Clearwater, and Salmon subbasins, and began gathering relevant data for these watersheds at a workshop with habitat experts and managers. Data assembly continued for several months after the workshop. (3) Data Analysis and Synthesis - We explored statistical approaches towards retrospectively analyzing the effects of restoration 'treatments' at nested spatial scales across multiple watersheds (Chapters 2-5 of this report). These analyses provided a foundation for identifying existing constraints to testing restoration hypotheses, and opportunities to overcome these constraints through improved experimental designs, monitoring protocols and project selection strategies (Chapters 6 and 7 of this report). Finally, we developed a set of recommendations to improve the design

  14. Habitat disturbance and hydrological parameters determine the body size and reproductive strategy of alluvial ground beetles.

    Science.gov (United States)

    Gerisch, Michael

    2011-01-01

    Environmental variability is the main driver for the variation of biological characteristics (life-history traits) of species. Therefore, life-history traits are particularly suited to identify mechanistic linkages between environmental variability and species occurrence and can help in explaining ecological patterns. For ground beetles, few studies directly related species traits to environmental variables. This study aims to analyse how life-history traits of alluvial ground beetles are controlled by environmental factors. I expected that the occurrence of species and the occurrence of specific traits are closely related to hydrological and disturbance parameters. Furthermore I expected most of the trait-variation to be explained by a combination of environmental variables, rather than by their isolated effects. Ground beetles were sampled in the year 2005 in floodplain grassland along the Elbe River in Germany. I used redundancy analysis to quantify the effects of hydrological, sediment, and disturbance related parameters on both species occurrence and species traits. I applied variation partitioning to analyse which environmental compartments explain most of the trait variation. Species occurrence and trait variation were both mainly controlled by hydrological and flood disturbance parameters. I could clearly identify reproductive traits and body size as key traits for floodplain ground beetles to cope with the environmental variability. Furthermore, combinations of hydrological, habitat disturbance, habitat type, and species diversity parameters, rather than their isolated effects, explained large parts of ground beetle trait variation. Thus, a main conclusion of this study is that ground beetle occurrence is mainly determined by complex, multi-scale interactions between environmental variability and their life-history traits.

  15. Inferring Evolution of Habitat Usage and Body Size in Endangered, Seasonal Cynopoeciline Killifishes from the South American Atlantic Forest through an Integrative Approach (Cyprinodontiformes: Rivulidae.

    Directory of Open Access Journals (Sweden)

    Wilson J E M Costa

    Full Text Available Cynopoecilines comprise a diversified clade of small killifishes occurring in the Atlantic Forest, one of the most endangered biodiversity hotspots in the world. They are found in temporary pools of savannah-like and dense forest habitats, and most of them are highly threatened with extinction if not already extinct. The greatest gap in our knowledge of cynopoecilines stems from the absence of an integrative approach incorporating molecular phylogenetic data of species still found in their habitats with phylogenetic data taken from the rare and possibly extinct species without accessible molecular information. An integrative analysis combining 115 morphological characters with a multigene dataset of 2,108 bp comprising three nuclear loci (GLYT1, ENC1, Rho, provided a robust phylogeny of cynopoeciline killifishes, which was herein used to attain an accurate phylogenetic placement of nearly extinct species. The analysis indicates that the most recent common ancestor of the Cynopoecilini lived in open vegetation habitats of the Atlantic Forest of eastern Brazil and was a miniature species, reaching between 25 and 28 mm of standard length. The rare cases of cynopoecilines specialized in inhabiting pools within dense forests are interpreted as derived from four independent evolutionary events. Shifts in habitat usage and biogeographic patterns are tentatively associated to Cenozoic paleogeographic events, but the evolutionary history of cynopoecilines may be partially lost by a combination of poor past sampling and recent habitat decline. A sharp evolutionary shift directed to increased body size in a clade encompassing the genera Campellolebias and Cynopoecilus may be related to a parallel acquisition of an internally-fertilizing reproductive strategy, unique among aplocheiloid killifishes. This study reinforces the importance of adding morphological information to molecular databases as a tool to understand the biological complexity of organisms

  16. Inferring Evolution of Habitat Usage and Body Size in Endangered, Seasonal Cynopoeciline Killifishes from the South American Atlantic Forest through an Integrative Approach (Cyprinodontiformes: Rivulidae).

    Science.gov (United States)

    Costa, Wilson J E M

    2016-01-01

    Cynopoecilines comprise a diversified clade of small killifishes occurring in the Atlantic Forest, one of the most endangered biodiversity hotspots in the world. They are found in temporary pools of savannah-like and dense forest habitats, and most of them are highly threatened with extinction if not already extinct. The greatest gap in our knowledge of cynopoecilines stems from the absence of an integrative approach incorporating molecular phylogenetic data of species still found in their habitats with phylogenetic data taken from the rare and possibly extinct species without accessible molecular information. An integrative analysis combining 115 morphological characters with a multigene dataset of 2,108 bp comprising three nuclear loci (GLYT1, ENC1, Rho), provided a robust phylogeny of cynopoeciline killifishes, which was herein used to attain an accurate phylogenetic placement of nearly extinct species. The analysis indicates that the most recent common ancestor of the Cynopoecilini lived in open vegetation habitats of the Atlantic Forest of eastern Brazil and was a miniature species, reaching between 25 and 28 mm of standard length. The rare cases of cynopoecilines specialized in inhabiting pools within dense forests are interpreted as derived from four independent evolutionary events. Shifts in habitat usage and biogeographic patterns are tentatively associated to Cenozoic paleogeographic events, but the evolutionary history of cynopoecilines may be partially lost by a combination of poor past sampling and recent habitat decline. A sharp evolutionary shift directed to increased body size in a clade encompassing the genera Campellolebias and Cynopoecilus may be related to a parallel acquisition of an internally-fertilizing reproductive strategy, unique among aplocheiloid killifishes. This study reinforces the importance of adding morphological information to molecular databases as a tool to understand the biological complexity of organisms under intense

  17. Habitat fragmentation causes rapid genetic differentiation and ...

    African Journals Online (AJOL)

    ... city buildings. These results were supported by multiple statistical analyses including Mantel's test, PCOORDA and AMOVA. Genetic enrichment and epigenetic variation studies can be included in habitat fragmentation analysis and its implications in inducing homogenization and susceptibility in natural plant populations.

  18. Non-native salmonids affect amphibian occupancy at multiple spatial scales

    Science.gov (United States)

    Pilliod, David S.; Hossack, Blake R.; Bahls, Peter F.; Bull, Evelyn L.; Corn, Paul Stephen; Hokit, Grant; Maxell, Bryce A.; Munger, James C.; Wyrick, Aimee

    2010-01-01

    Aim The introduction of non-native species into aquatic environments has been linked with local extinctions and altered distributions of native species. We investigated the effect of non-native salmonids on the occupancy of two native amphibians, the long-toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), across three spatial scales: water bodies, small catchments and large catchments. Location Mountain lakes at ≥ 1500 m elevation were surveyed across the northern Rocky Mountains, USA. Methods We surveyed 2267 water bodies for amphibian occupancy (based on evidence of reproduction) and fish presence between 1986 and 2002 and modelled the probability of amphibian occupancy at each spatial scale in relation to habitat availability and quality and fish presence. Results After accounting for habitat features, we estimated that A. macrodactylum was 2.3 times more likely to breed in fishless water bodies than in water bodies with fish. Ambystoma macrodactylum also was more likely to occupy small catchments where none of the water bodies contained fish than in catchments where at least one water body contained fish. However, the probability of salamander occupancy in small catchments was also influenced by habitat availability (i.e. the number of water bodies within a catchment) and suitability of remaining fishless water bodies. We found no relationship between fish presence and salamander occupancy at the large-catchment scale, probably because of increased habitat availability. In contrast to A. macrodactylum, we found no relationship between fish presence and R. luteiventris occupancy at any scale. Main conclusions Our results suggest that the negative effects of non-native salmonids can extend beyond the boundaries of individual water bodies and increase A. macrodactylum extinction risk at landscape scales. We suspect that niche overlap between non-native fish and A. macrodactylum at higher elevations in the northern Rocky

  19. Skin Sensitive Difference of Human Body Sections under Clothing--Multiple Analysis of Skin Surface Temperature Changes

    Institute of Scientific and Technical Information of China (English)

    李俊; 吴海燕; 张渭源

    2003-01-01

    A new researching method on clothing comfort perception is developed.By it the skin surface temperature changes and subjective psychological perception of human body sections stimulated by the same cold stimulation are studied.With the multiple comparison analysis method the changing laws of skin temperature of main human body sections is obtained.

  20. A multilocus molecular phylogeny of combtooth blennies (Percomorpha: Blennioidei: Blenniidae): Multiple invasions of intertidal habitats

    KAUST Repository

    Hundt, Peter J.

    2014-01-01

    The combtooth blennies (f. Blenniidae) is a diverse family of primarily marine fishes with approximately 387 species that inhabit subtidal, intertidal, supralittoral habitats in tropical and warm temperate regions throughout the world. The Blenniidae has typically been divided into six groups based on morphological characters: Blenniini, Nemophini, Omobranchini, Phenablenniini, Parablenniini, and Salariini. There is, however, considerable debate over the validity of these groups and their relationships. Since little is known about the relationships in this group, other aspects of their evolutionary history, such as habitat evolution and remain unexplored. Herein, we use Bayesian and maximum likelihood analyses of four nuclear loci (ENC1, myh6, ptr, and tbr1) from 102 species, representing 41 genera, to resolve the phylogeny of the Blenniidae, determine the validity of the previously recognized groupings, and explore the evolution of habitat association using ancestral state reconstruction. Bayesian and maximum likelihood analyses of the resulting 3100. bp of DNA sequence produced nearly identical topologies, and identified many well-supported clades. Of these clades, Nemophini was the only traditionally recognized group strongly supported as monophyletic. This highly resolved and thoroughly sampled blenniid phylogeny provides strong evidence that the traditional rank-based classification does not adequately delimit monophyletic groups with the Blenniidae. This phylogeny redefines the taxonomy of the group and supports the use of 13 unranked clades for the classification of blenniids. Ancestral state reconstructions identified four independent invasions of intertidal habitats within the Blenniidae, and subsequent invasions into supralittoral and freshwater habitats from these groups. The independent invasions of intertidal habitats are likely to have played an important role in the evolutionary history of blennies. © 2013 Elsevier Inc.

  1. Habitat selection of the Mauritian lowland forest day gecko at multiple spatial scales: A baseline for translocation

    Directory of Open Access Journals (Sweden)

    Steeves Buckland

    2014-08-01

    Full Text Available Of 30 known subpopulations of Phelsuma guimbeaui, 18 are in patches of exotic forest and are predicted to disappear in the next decade. One possible means of mitigating the reduction in genetic diversity associated with the loss of subpopulations is to translocate “at risk” subpopulations to more secure habitats. Prior to any such intervention, it is important to identify a species’ basic ecological needs. We had three main objectives: to calculate home range sizes of adult geckos; characterise habitat selection among age groups; and identify the order of importance of each habitat predictor. Habitat selection of P. guimbeaui was explored at the population, home range and microhabitat levels. Males had larger home ranges than females, and overlapped temporally with more females than males. We showed that habitat selection differed between age groups. In order of importance, tree diversity, tree species, tree height, trunk dbh and cavity density were important habitat predictors. We discuss how these data can be used to inform the choice of sites for the translocation of threatened subpopulations. Our results also highlight the importance of undertaking habitat restoration for the long-term conservation of the 12 subpopulations that survive in patches of endemic forest.

  2. Habitat use, daily activity periods, and thermal ecology of Ameiva ameiva (Squamata: Teiidae in a caatinga area of northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Eliza M. X. Freire

    2011-12-01

    Full Text Available We studied the use of spatial, temporal, and thermal resources by the Neotropical lizard Ameiva ameiva during rainy and dry seasons in a caatinga (xerophilous open forests environment in northeasternBrazil. Lizards used the vegetation habitats and microhabitats in the ground, but never were seen in the rocky habitat. Adults usually used the arboreal-shrubby habitat, whereas juveniles were sighted more often in the shrubby-herbaceous habitat. Ontogenetic differences in spatial use seem to be linked to different thermal needs between age groups owing to differences in body size. Body temperatures were significantly higher in juveniles than in adults. Most teiid species have elevated body temperatures, usually above 37oC, and are active during the hottest times of day, as was observed for A. ameiva in this study. Seasonality influenced habitat use and daily activity periods of adults, but not body temperatures. We verified annual fluctuations in adult abundance, with a decline of active lizards in the dry season; this phenomenon may be related to aestivation and/or increased mortality rate during the driest months.

  3. Development of a Whole-Body Haptic Sensor with Multiple Supporting Points and Its Application to a Manipulator

    Science.gov (United States)

    Hanyu, Ryosuke; Tsuji, Toshiaki

    This paper proposes a whole-body haptic sensing system that has multiple supporting points between the body frame and the end-effector. The system consists of an end-effector and multiple force sensors. Using this mechanism, the position of a contact force on the surface can be calculated without any sensor array. A haptic sensing system with a single supporting point structure has previously been developed by the present authors. However, the system has drawbacks such as low stiffness and low strength. Therefore, in this study, a mechanism with multiple supporting points was proposed and its performance was verified. In this paper, the basic concept of the mechanism is first introduced. Next, an evaluation of the proposed method, performed by conducting some experiments, is presented.

  4. Loss and modification of habitat: Chapter 1

    Science.gov (United States)

    Lemckert, Francis; Hecnar, Stephen; Pilliod, David S.

    2012-01-01

    Amphibians live in a wide variety of habitats around the world, many of which have been modified or destroyed by human activities. Most species have unique life history characteristics adapted to specific climates, habitats (e.g., lentic, lotic, terrestrial, arboreal, fossorial, amphibious), and local conditions that provide suitable areas for reproduction, development and growth, shelter from environmental extremes, and predation, as well as connectivity to other populations or habitats. Although some species are entirely aquatic or terrestrial, most amphibians, as their name implies, lead a dual life and require a mosaic of habitats in both aquatic and terrestrial ecosystems. With over 6 billion people on Earth, most species are now persisting in habitats that have been directly or indirectly influenced by human activities. Some species have disappeared where their habitats have been completely destroyed, reduced, or rendered unsuitable. Habitat loss and degradation are widely considered by most researchers as the most important causes of amphibian population decline globally (Barinaga 1990; Wake and Morowitz 1991; Alford and Richards 1999). In this chapter, a background on the diverse habitat requirements of amphibians is provided, followed by a discussion of the effects of urbanization, agriculture, livestock grazing, timber production and harvesting, fire and hazardous fuel management, and roads on amphibians and their habitats. Also briefly discussed is the influence on amphibian habitats of natural disturbances, such as extreme weather events and climate change, given the potential for human activities to impact climate in the longer term. For amphibians in general, microhabitats are of greater importance than for other vertebrates. As ectotherms with a skin that is permeable to water and with naked gelatinous eggs, amphibians are physiologically constrained to be active during environmental conditions that provide appropriate body temperatures and adequate

  5. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    Science.gov (United States)

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-01-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03–0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  6. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats.

    Science.gov (United States)

    Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F

    2013-11-01

    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.

  7. Competition and habitat quality influence age and sex distribution in wintering rusty blackbirds.

    Science.gov (United States)

    Mettke-Hofmann, Claudia; Hamel, Paul B; Hofmann, Gerhard; Zenzal, Theodore J; Pellegrini, Anne; Malpass, Jennifer; Garfinkel, Megan; Schiff, Nathan; Greenberg, Russell

    2015-01-01

    Bird habitat quality is often inferred from species abundance measures during the breeding and non-breeding season and used for conservation management decisions. However, during the non-breeding season age and sex classes often occupy different habitats which suggest a need for more habitat-specific data. Rusty Blackbird (Euphagus carolinus) is a forested wetland specialist wintering in bottomland hardwood forests in the south-eastern U. S. and belongs to the most steeply declining songbirds in the U.S. Little information is available to support priority birds such as the Rusty Blackbird wintering in this threatened habitat. We assessed age and sex distribution and body condition of Rusty Blackbirds among the three major habitats used by this species in the Lower Mississippi Alluvial Valley and also measured food availability. Overall, pecan groves had the highest biomass mainly driven by the amount of nuts. Invertebrate biomass was highest in forests but contributed only a small percentage to overall biomass. Age and sex classes were unevenly distributed among habitats with adult males primarily occupying pecan groves containing the highest nut biomass, females being found in forests which had the lowest nut biomass and young males primarily staying in forest fragments along creeks which had intermediate nut biomass. Males were in better body condition than females and were in slightly better condition in pecan groves. The results suggest that adult males occupy the highest quality habitat and may competitively exclude the other age and sex classes.

  8. Competition and habitat quality influence age and sex distribution in wintering rusty blackbirds.

    Directory of Open Access Journals (Sweden)

    Claudia Mettke-Hofmann

    Full Text Available Bird habitat quality is often inferred from species abundance measures during the breeding and non-breeding season and used for conservation management decisions. However, during the non-breeding season age and sex classes often occupy different habitats which suggest a need for more habitat-specific data. Rusty Blackbird (Euphagus carolinus is a forested wetland specialist wintering in bottomland hardwood forests in the south-eastern U. S. and belongs to the most steeply declining songbirds in the U.S. Little information is available to support priority birds such as the Rusty Blackbird wintering in this threatened habitat. We assessed age and sex distribution and body condition of Rusty Blackbirds among the three major habitats used by this species in the Lower Mississippi Alluvial Valley and also measured food availability. Overall, pecan groves had the highest biomass mainly driven by the amount of nuts. Invertebrate biomass was highest in forests but contributed only a small percentage to overall biomass. Age and sex classes were unevenly distributed among habitats with adult males primarily occupying pecan groves containing the highest nut biomass, females being found in forests which had the lowest nut biomass and young males primarily staying in forest fragments along creeks which had intermediate nut biomass. Males were in better body condition than females and were in slightly better condition in pecan groves. The results suggest that adult males occupy the highest quality habitat and may competitively exclude the other age and sex classes.

  9. Habitat and food resources of otters (Mustelidae) in Peninsular Malaysia

    Science.gov (United States)

    Abdul-Patah, P.; Nur-Syuhada, N.; Md-Nor, S.; Sasaki, H.; Md-Zain, B. M.

    2014-09-01

    Habitat and food resources of otters were studied in several locations in Peninsular Malaysia. A total of 210 fecal samples were collected from April 2010 to March 2011 believed to be of otter's were analyzed for their diet composition and their habitat preferences. The DNA testing conducted revealed that only 126 samples were identified as Lultrogale perspicillata and Aonyx cinereus with 105 and 21 samples, respectively. Habitat analyses revealed that these two species preferred paddy fields and mangroves as their main habitats but L. perspicillata preferred to hunt near habitat with large water bodies, such as mangroves, rivers, ponds, and lakes. A. cinereus on the other hand, were mainly found near land-based habitat, such as paddy fields, casuarinas forest and oil palms near mangroves. Habitats chosen were influenced by their food preferences where L. perspicillata consumed a variety of fish species with a supplementary diet of prawns, small mammals, and amphibians, compared to A. cinereus which consumed less fish and more non-fish food items, such as insects, crabs, and snails. Since, the most of the otter habitats in this study are not located within the protected areas, conservation effort involving administrations, landowners, private organizations and public are necessary.

  10. A wireless body measurement system to study fatigue in multiple sclerosis

    DEFF Research Database (Denmark)

    Yu, Fei; Rabotti, Chiara; Bilberg, Arne

    2012-01-01

    Fatigue is reported as the most common symptom by patients with multiple sclerosis (MS). The physiological and functional parameters related to fatigue in MS patients are currently not well established. A new wearable wireless body measurement system, named Fatigue Monitoring System (FAMOS......), was developed to study fatigue in MS. It can continuously measure electrocardiogram, body-skin temperature, electromyogram and motions of feet. The goal of this study is to test the ability of distinguishing fatigued MS patients from healthy subjects by the use of FAMOS. This paper presents the realization...... of the measurement system including the design of both hardware and dedicated signal processing algorithms. Twenty-six participants including 17 MS patients with fatigue and 9 sex- and age-matched healthy controls were included in the study for continuous 24 h monitoring. The preliminary results show significant...

  11. Identifying temporal bottlenecks for the conservation of large-bodied fishes: Lake Sturgeon (Acipenser fulvescens show highly restricted movement and habitat use over-winter

    Directory of Open Access Journals (Sweden)

    Donnette Thayer

    2017-04-01

    Full Text Available The relationship between species’ size and home range size has been well studied. In practice, home range may provide a good surrogate of broad spatial coverage needed for species conservation, however, many species can show restricted movement during critical life stages, such as breeding and over-wintering. This suggests the existence of either a behavioral or habitat mediated ‘temporal bottleneck,’ where restricted or sedentary movement can make populations more susceptible to harm during specific life stages. Here, we study over-winter movement and habitat use of Lake Sturgeon (Acipenser fulvescens, the largest freshwater fish in North America. We monitored over-winter movement of 86 fish using a hydro-acoustic receiver array in the South Saskatchewan River, Canada. Overall, 20 fish remained within our study system throughout the winter. Lake Sturgeon showed strong aggregation and sedentary movement over-winter, demonstrating a temporal bottleneck. Movement was highly restricted during ice-on periods (ranging from 0.9 km/day in November and April to 0.2 km/day in mid-November to mid-March, with Lake Sturgeon seeking deeper, slower pools. We also show that Lake Sturgeon have strong aggregation behavior, where distance to conspecifics decreased (from 575 to 313 m in preparation for and during ice-on periods. Although the Lake Sturgeon we studied had access to 1100 kilometers of unfragmented riverine habitat, we show that during the over-winter period Lake Sturgeon utilized a single, deep pool (<0.1% of available habitat. The temporal discrepancy between mobile and sedentary behaviors in Lake Sturgeon suggest adaptive management is needed with more localized focus during periods of temporal bottlenecks, even for large-bodied species.

  12. Effects of drought and prolonged winter on Townsend's ground squirrel demography in shrubsteppe habitats

    Science.gov (United States)

    Van Horne, Beatrice; Olson, Gail S.; Schooley, Robert L.; Corn, Janelle G.; Burnham, Kenneth P.

    1997-01-01

    During a mark–recapture study of Townsend's ground squirrels (Spermophilus townsendii) on 20 sites in the Snake River Birds of Prey National Conservation Area, Idaho, in 1991 through 1994, 4407 animals were marked in 17639 capture events. This study of differences in population dynamics of Townsend's ground squirrels among habitats spanned a drought near the extreme of the 130-yr record, followed by prolonged winter conditions.Townsend's ground squirrels have a short active season (≈4 mo) in which to reproduce and store fat for overwintering. Their food consists largely of succulent grasses and forbs in this dry shrubsteppe and grassland habitat. The drought in the latter half of the 1992 active season produced early drying of Sandberg's bluegrass (Poa secunda) and was associated with low adult and juvenile body masses prior to immergence into estivation/hibernation. The following prolonged winter was associated with late emergence of females in 1993. Early-season body masses of adults were low in 1993 relative to 1992, whereas percentage of body fat in males was relatively high. These weather patterns in spring 1992 and winter 1993 also resulted in reduced adult persistence through the ≈7-mo inactive period, especially for adult females, and near-zero persistence of >1200 juveniles. Consequently, densities of Townsend's ground squirrels across the 20 livetrap sites declined.The demographic effects of drought and prolonged winter lasted at least through the subsequent breeding season. Adult females that survived these weather extremes produced fewer emergent young per female than did adult females prior to the event. Prior to the drought/prolonged winter, yearling female body masses were higher than, or indistinguishable from, those of adults. Females produced in 1993 had lower body masses as yearlings than did adult females.Demographic response to the drought and prolonged winter varied with habitat; ground squirrels in sagebrush habitat showed less decline

  13. Information needs for habitat protection: Marbled murrelet habitat identification. Restoration project 93051b. Exxon Valdez oil spill restoration project final report

    Energy Technology Data Exchange (ETDEWEB)

    Kuletz, K.J.; Marks, D.K.; Naslund, N.L.; Goodson, N.G.; Cody, M.B.

    1994-12-01

    To define murrelet nesting habitat in southcentral Alaska, we surveyed inland activity of murrelets and measured habitat features between 1991 and 1993, in Prince William Sound, Kenai Fjords National Park and Afognak Island, Alaska (N=262 sites). Using all study areas, we developed statistical models that explain variation in murrelet activity levels and predict the occurrence of behaviors indicative of nesting, based on temporal, geographic, topographic, weather and habitat variables. The multiple regression analyses explained 52 percent of the variation in murrelet activity level. Stepwise logistic regression was used to identify variables that could predict the occurrence of nesting behaviors. The best model included survey method (from a boat, shore or inland), location relative to the head of a bay, tree diameter and number of potential nesting platforms on trees. Overall, the features indicative of murrelet nesting habitat included low elevation locations near the heads of bays, with extensive forest cover of large old-growth trees.

  14. Redox-Stratified Bacterial Communities in Sediments Associated with Multiple Lucinid Bivalve Species: Implications for Symbiosis in Changing Coastal Habitats

    Science.gov (United States)

    Paterson, A. T.; Fortier, C. M.; Long, B.; Kokesh, B. S.; Lim, S. J.; Campbell, B. J.; Anderson, L. C.; Engel, A. S.

    2017-12-01

    Lucinids, chemosymbiotic marine bivalves, occupy strong redox gradient habitats, including the rhizosphere of coastal seagrass beds and mangrove forests in subtropical to tropical ecosystems. Lucinids and their sulfide-oxidizing gammaproteobacterial endosymbionts, which are acquired from the environment, provide a critical ecosystem service by removing toxic reduced sulfur compounds from the surrounding environment, and lucinids may be an important food source to economically valuable fisheries. The habitats of Phacoides pectinatus, Stewartia floridana, Codakia orbicularis, Ctena orbiculata, and Lucina pensylvanica lucinids in Florida and San Salvador in The Bahamas were evaluated in comprehensive malacological, microbiological, and geochemical surveys. Vegetation cover included different seagrass species or calcareous green macroalgae. All sites were variably affected by anthropogenic activities, as evidenced by visible prop scars in seagrass beds, grain size distributions atypical of low energy environments (i.e., artificial fill or dredge material from nearby channels), and high levels of pyrogenic hydrocarbon compounds in sediment indicative of urbanization impact. Where present, lucinid population densities frequently exceeded 2000 individuals per cubic meter, and were typically more abundant underlying seagrass compared to unvegetated, bare sand. Dissolved oxygen and sulfide levels varied from where lucinids were recovered. The sediment bacterial communities from classified 16S rRNA gene sequences indicated that the diversity of putative anaerobic groups increased with sediment depth, but putative aerobes, including of Gammaproteobacteria related to the lucinid endosymbionts, decreased with depth. Where multiple seagrass species co-occurred, retrieved bacterial community compositions correlated to overlying seagrass species, but diversity differed from bare sand patches, including among putative free-living endosymbiont groups. As such, continued sea

  15. Competition and habitat selection in a forest-floor small mammal fauna

    Energy Technology Data Exchange (ETDEWEB)

    Dueser, R D [Univ. of Virginia, Charlottesville; Hallett, J G

    1980-01-01

    In a study of habitat exploitation in a forest-floor small mammal community, we have collected habitat and population data for Peromyscus leucopus, Ochrotomys nuttalli, and Tamias striatus. Using multiple regression analysis, researchers estimate the effects of habitat selection and competition on the local distributions of these species during three seasons. Each of the partial regression coefficients relating the density of an independent species to the density of the dependent species is negative. This result indicates that competition is pervasive among these species. Competitive ability and habitat selectivity both increase in the order Peromyscus-Tamias-Ochrotomys. Peromyscus is a poorly competitive habitat generalist, Ochrotomys is a strongly competitive habitat specialist, and Tamias is intermediate in both respects. The competitive hierarchy is stable between seasons. These results both confirm the conclusions reached in previous studies of this small mammal community and suggest the design of experiments to further clarify the mode and consequences of interaction between these species.

  16. Wildlife Habitats in Managed Forests the Blue Mountains of Oregon and Washington

    Science.gov (United States)

    Jack Ward [Technical Editor] Thomas

    1979-01-01

    The Nation's forests are one of the last remaining natural habitats forterrestrial wildlife. Much of this vast forest resource has changed dramatically in the last 200 years and can no longer be considered wild. It is now managed for multiple use benefits, including timber production. Timber harvesting and roadbuilding now alter wildlife habitat more than any...

  17. Multi scale habitat relationships of Martes americana in northern Idaho, U.S.A.

    Science.gov (United States)

    Tzeidle N. Wasserman; Samuel A. Cushman; David O. Wallin; Jim Hayden

    2012-01-01

    We used bivariate scaling and logistic regression to investigate multiple-scale habitat selection by American marten (Martes americana). Bivariate scaling reveals dramatic differences in the apparent nature and strength of relationships between marten occupancy and a number of habitat variables across a range of spatial scales. These differences include reversals in...

  18. Habitat Fragmentation and Native Bees: a Premature Verdict?

    Directory of Open Access Journals (Sweden)

    James H. Cane

    2001-06-01

    Full Text Available Few studies directly address the consequences of habitat fragmentation for communities of pollinating insects, particularly for the key pollinator group, bees (Hymenoptera: Apiformes. Bees typically live in habitats where nesting substrates and bloom are patchily distributed and spatially dissociated. Bee studies have all defined habitat fragments as remnant patches of floral hosts or forests, overlooking the nesting needs of bees. Several authors conclude that habitat fragmentation is broadly deleterious, but their own data show that some native species proliferate in sampled fragments. Other studies report greater densities and comparable diversities of native bees at flowers in some fragment size classes relative to undisrupted habitats, but find dramatic shifts in species composition. Insightful studies of habitat fragmentation and bees will consider fragmentation, alteration, and loss of nesting habitats, not just patches of forage plants, as well as the permeability of the surrounding matrix to interpatch movement. Inasmuch as the floral associations and nesting habits of bees are often attributes of species or subgenera, ecological interpretations hinge on authoritative identifications. Study designs must accommodate statistical problems associated with bee community samples, especially non-normal data and frequent zero values. The spatial scale of fragmentation must be appreciated: bees of medium body size can regularly fly 1-2 km from nest site to forage patch. Overall, evidence for prolonged persistence of substantial diversity and abundances of native bee communities in habitat fragments of modest size promises practical solutions for maintaining bee populations. Provided that reserve selection, design, and management can address the foraging and nesting needs of bees, networks of even small reserves may hold hope for sustaining considerable pollinator diversity and the ecological services pollinators provide.

  19. Local Plant Diversity Across Multiple Habitats Supports a Diverse Wild Bee Community in Pennsylvania Apple Orchards.

    Science.gov (United States)

    Kammerer, Melanie A; Biddinger, David J; Rajotte, Edwin G; Mortensen, David A

    2016-02-01

    Wild pollinators supply essential, historically undervalued pollination services to crops and other flowering plant communities with great potential to ensure agricultural production against the loss of heavily relied upon managed pollinators. Local plant communities provision wild bees with crucial floral and nesting resources, but the distribution of floristic diversity among habitat types in North American agricultural landscapes and its effect on pollinators are diverse and poorly understood, especially in orchard systems. We documented floristic diversity in typical mid-Atlantic commercial apple (Malus domestica Borkh.) orchards including the forest and orchard-forest edge ("edge") habitats surrounding orchards in a heterogeneous landscape in south-central Pennsylvania, USA. We also assessed the correlation between plant richness and orchard pollinator communities. In this apple production region, edge habitats are the most species rich, supporting 146 out of 202 plant species recorded in our survey. Plant species richness in the orchard and edge habitats were significant predictors of bee species richness and abundance in the orchard, as well as landscape area of the forest and edge habitats. Both the quantity and quality of forest and edges close to orchards play a significant role in provisioning a diverse wild bee community in this agroecosystem. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals

    Science.gov (United States)

    Crooks, Kevin R.; Burdett, Christopher L.; Theobald, David M.; King, Sarah R. B.; Rondinini, Carlo; Boitani, Luigi

    2017-01-01

    Although habitat fragmentation is often assumed to be a primary driver of extinction, global patterns of fragmentation and its relationship to extinction risk have not been consistently quantified for any major animal taxon. We developed high-resolution habitat fragmentation models and used phylogenetic comparative methods to quantify the effects of habitat fragmentation on the world’s terrestrial mammals, including 4,018 species across 26 taxonomic Orders. Results demonstrate that species with more fragmentation are at greater risk of extinction, even after accounting for the effects of key macroecological predictors, such as body size and geographic range size. Species with higher fragmentation had smaller ranges and a lower proportion of high-suitability habitat within their range, and most high-suitability habitat occurred outside of protected areas, further elevating extinction risk. Our models provide a quantitative evaluation of extinction risk assessments for species, allow for identification of emerging threats in species not classified as threatened, and provide maps of global hotspots of fragmentation for the world’s terrestrial mammals. Quantification of habitat fragmentation will help guide threat assessment and strategic priorities for global mammal conservation. PMID:28673992

  1. Body composition differences between adults with multiple sclerosis and BMI-matched controls without MS.

    Science.gov (United States)

    Wingo, Brooks C; Young, Hui-Ju; Motl, Robert W

    2018-04-01

    Persons with multiple sclerosis (MS) have many health conditions related to overweight and obesity, but little is known about how body composition among those with MS compares to those without MS at the same weight. To compare differences in whole body and regional body composition between persons with and without MS matched for sex and body mass index (BMI). Persons with MS (n = 51) and non-MS controls (n = 51) matched for sex and BMI. Total mass, lean mass, fat mass, and percent body fat (%BF) of total body and arm, leg, and trunk segments were assessed using dual-energy X-ray absorptiometry (DXA). Men with MS had significantly less whole body lean mass (mean difference: 9933.5 ± 3123.1 g, p MS counterparts. Further, men with MS had significantly lower lean mass in the arm (p = 0.02) and leg (p MS. Men with MS had significantly higher %BF in all three regions (p MS. There were no differences between women with and without MS. We observed significant differences in whole body and regional body composition between BMI-matched men with and without MS. Additional research is needed to further explore differences in body composition, adipose distribution, and the impact of these differences on the health and function of men with MS. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Habitat use patterns of the invasive red lionfish Pterois volitans: a comparison between mangrove and reef systems in San Salvador, Bahamas

    Science.gov (United States)

    Pimiento, Catalina; Nifong, James C.; Hunter, Margaret E.; Monaco, Eric; Silliman, Brian R.

    2015-01-01

    The Indo-Pacific red lionfish Pterois volitans is widespread both in its native and its non-native habitats. The rapid invasion of this top predator has had a marked negative effect on fish populations in the Western Atlantic and the Caribbean. It is now well documented that lionfish are invading many tropical and sub-tropical habitats. However, there are fewer data available on the change in lionfish abundance over time and the variation of body size and diet across habitats. A recent study in San Salvador, Bahamas, found body size differences between individuals from mangrove and reef systems. That study further suggested that ontogenetic investigation of habitat use patterns could help clarify whether lionfish are using the mangrove areas of San Salvador as nurseries. The aim of the present study is to determine temporal trends in lionfish relative abundance in mangrove and reef systems in San Salvador, and to further assess whether there is evidence suggesting an ontogenetic shift from mangroves to reef areas. Accordingly, we collected lionfish from mangrove and reef habitats and calculated catch per unit effort (a proxy for relative abundance), compared body size distributions across these two systems, and employed a combination of stable isotope, stomach content, and genetic analyses of prey, to evaluate differences in lionfish trophic interactions and habitat use patterns. Our results show that populations may have increased in San Salvador during the last 4 years, and that there is a strong similarity in body size between habitats, stark differences in prey items, and no apparent overlap in the use of habitat and/or food resources. These results suggest that there is not evidence an for ontogenetic shift from mangroves to reefs, and support other studies that propose lionfish are opportunistic forages with little movement across habitats.

  3. Thermal biology mediates responses of amphibians and reptiles to habitat modification.

    Science.gov (United States)

    Nowakowski, A Justin; Watling, James I; Thompson, Michelle E; Brusch, George A; Catenazzi, Alessandro; Whitfield, Steven M; Kurz, David J; Suárez-Mayorga, Ángela; Aponte-Gutiérrez, Andrés; Donnelly, Maureen A; Todd, Brian D

    2018-03-01

    Human activities often replace native forests with warmer, modified habitats that represent novel thermal environments for biodiversity. Reducing biodiversity loss hinges upon identifying which species are most sensitive to the environmental conditions that result from habitat modification. Drawing on case studies and a meta-analysis, we examined whether observed and modelled thermal traits, including heat tolerances, variation in body temperatures, and evaporative water loss, explained variation in sensitivity of ectotherms to habitat modification. Low heat tolerances of lizards and amphibians and high evaporative water loss of amphibians were associated with increased sensitivity to habitat modification, often explaining more variation than non-thermal traits. Heat tolerances alone explained 24-66% (mean = 38%) of the variation in species responses, and these trends were largely consistent across geographic locations and spatial scales. As habitat modification alters local microclimates, the thermal biology of species will likely play a key role in the reassembly of terrestrial communities. © 2018 John Wiley & Sons Ltd/CNRS.

  4. Spatial patterns of aquatic habitat richness in the Upper Mississippi River floodplain, USA

    Science.gov (United States)

    De Jager, Nathan R.; Rohweder, Jason J.

    2012-01-01

    Interactions among hydrology and geomorphology create shifting mosaics of aquatic habitat patches in large river floodplains (e.g., main and side channels, floodplain lakes, and shallow backwater areas) and the connectivity among these habitat patches underpins high levels of biotic diversity and productivity. However, the diversity and connectivity among the habitats of most floodplain rivers have been negatively impacted by hydrologic and structural modifications that support commercial navigation and control flooding. We therefore tested the hypothesis that the rate of increase in patch richness (# of types) with increasing scale reflects anthropogenic modifications to habitat diversity and connectivity in a large floodplain river, the Upper Mississippi River (UMR). To do this, we calculated the number of aquatic habitat patch types within neighborhoods surrounding each of the ≈19 million 5-m aquatic pixels of the UMR for multiple neighborhood sizes (1–100 ha). For all of the 87 river-reach focal areas we examined, changes in habitat richness (R) with increasing neighborhood length (L, # pixels) were characterized by a fractal-like power function R = Lz (R2 > 0.92 (P z) measures the rate of increase in habitat richness with neighborhood size and is related to a fractal dimension. Variation in z reflected fundamental changes to spatial patterns of aquatic habitat richness in this river system. With only a few exceptions, z exceeded the river-wide average of 0.18 in focal areas where side channels, contiguous floodplain lakes, and contiguous shallow-water areas exceeded 5%, 5%, and 10% of the floodplain respectively. In contrast, z was always less than 0.18 for focal areas where impounded water exceeded 40% of floodplain area. Our results suggest that rehabilitation efforts that target areas with <5% of the floodplain in side channels, <5% in floodplain lakes, and/or <10% in shallow-water areas could improve habitat diversity across multiple scales in the UMR.

  5. Scale dependence in habitat selection: The case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain)

    Science.gov (United States)

    Maria C. Mateo Sanchez; Samuel A. Cushman; Santiago Saura

    2013-01-01

    Animals select habitat resources at multiple spatial scales. Thus, explicit attention to scale dependency in species-habitat relationships is critical to understand the habitat suitability patterns as perceived by organisms in complex landscapes. Identification of the scales at which particular environmental variables influence habitat selection may be as important as...

  6. Breeding Guild Determines Frog Distributions in Response to Edge Effects and Habitat Conversion in the Brazil's Atlantic Forest.

    Directory of Open Access Journals (Sweden)

    Rodrigo B Ferreira

    Full Text Available Understanding the response of species with differing life-history traits to habitat edges and habitat conversion helps predict their likelihood of persistence across changing landscape. In Brazil's Atlantic Forest, we evaluated frog richness and abundance by breeding guild at four distances from the edge of a reserve: i 200 m inside the forest, ii 50 m inside the forest, iii at the forest edge, and iv 50 m inside three different converted habitats (coffee plantation, non-native Eucalyptus plantation, and abandoned pastures, hereafter matrix types. By sampling a dry and a wet season, we recorded 622 individual frogs representing 29 species, of which three were undescribed. Breeding guild (i.e. bromeliad, leaf-litter, and water-body breeders was the most important variable explaining frog distributions in relation to edge effects and matrix types. Leaf-litter and bromeliad breeders decreased in richness and abundance from the forest interior toward the matrix habitats. Water-body breeders increased in richness toward the matrix and remained relatively stable in abundance across distances. Number of large trees (i.e. DBH > 15 cm and bromeliads best explained frog richness and abundance across distances. Twenty species found in the interior of the forest were not found in any matrix habitat. Richness and abundance across breeding guilds were higher in the rainy season but frog distributions were similar across the four distances in the two seasons. Across matrix types, leaf-litter species primarily used Eucalyptus plantations, whereas water-body species primarily used coffee plantations. Bromeliad breeders were not found inside any matrix habitat. Our study highlights the importance of primary forest for bromeliad and leaf-litter breeders. We propose that water-body breeders use edge and matrix habitats to reach breeding habitats along the valleys. Including life-history characteristics, such as breeding guild, can improve predictions of frog

  7. Breeding Guild Determines Frog Distributions in Response to Edge Effects and Habitat Conversion in the Brazil's Atlantic Forest.

    Science.gov (United States)

    Ferreira, Rodrigo B; Beard, Karen H; Crump, Martha L

    2016-01-01

    Understanding the response of species with differing life-history traits to habitat edges and habitat conversion helps predict their likelihood of persistence across changing landscape. In Brazil's Atlantic Forest, we evaluated frog richness and abundance by breeding guild at four distances from the edge of a reserve: i) 200 m inside the forest, ii) 50 m inside the forest, iii) at the forest edge, and iv) 50 m inside three different converted habitats (coffee plantation, non-native Eucalyptus plantation, and abandoned pastures, hereafter matrix types). By sampling a dry and a wet season, we recorded 622 individual frogs representing 29 species, of which three were undescribed. Breeding guild (i.e. bromeliad, leaf-litter, and water-body breeders) was the most important variable explaining frog distributions in relation to edge effects and matrix types. Leaf-litter and bromeliad breeders decreased in richness and abundance from the forest interior toward the matrix habitats. Water-body breeders increased in richness toward the matrix and remained relatively stable in abundance across distances. Number of large trees (i.e. DBH > 15 cm) and bromeliads best explained frog richness and abundance across distances. Twenty species found in the interior of the forest were not found in any matrix habitat. Richness and abundance across breeding guilds were higher in the rainy season but frog distributions were similar across the four distances in the two seasons. Across matrix types, leaf-litter species primarily used Eucalyptus plantations, whereas water-body species primarily used coffee plantations. Bromeliad breeders were not found inside any matrix habitat. Our study highlights the importance of primary forest for bromeliad and leaf-litter breeders. We propose that water-body breeders use edge and matrix habitats to reach breeding habitats along the valleys. Including life-history characteristics, such as breeding guild, can improve predictions of frog distributions in

  8. Evolution of extreme body size disparity in monitor lizards (Varanus).

    Science.gov (United States)

    Collar, David C; Schulte, James A; Losos, Jonathan B

    2011-09-01

    Many features of species' biology, including life history, physiology, morphology, and ecology are tightly linked to body size. Investigation into the causes of size divergence is therefore critical to understanding the factors shaping phenotypic diversity within clades. In this study, we examined size evolution in monitor lizards (Varanus), a clade that includes the largest extant lizard species, the Komodo dragon (V. komodoensis), as well as diminutive species that are nearly four orders of magnitude smaller in adult body mass. We demonstrate that the remarkable body size disparity of this clade is a consequence of different selective demands imposed by three major habitat use patterns-arboreality, terrestriality, and rock-dwelling. We reconstructed phylogenetic relationships and ancestral habitat use and applied model selection to determine that the best-fitting evolutionary models for species' adult size are those that infer oppositely directed adaptive evolution associated with terrestriality and rock-dwelling, with terrestrial lineages evolving extremely large size and rock-dwellers becoming very small. We also show that habitat use affects the evolution of several ecologically important morphological traits independently of body size divergence. These results suggest that habitat use exerts a strong, multidimensional influence on the evolution of morphological size and shape disparity in monitor lizards. © 2011 The Author(s).

  9. Correlated factors in amphibian decline: Exotic species and habitat change in western Washington

    Science.gov (United States)

    Adams, Michael J.

    1999-01-01

    Amphibian declines may frequently be associated with multiple, correlated factors. In western North America, exotic species and hydrological changes are often correlated and are considered 2 of the greatest threats to freshwater systems. Bullfrog (Rana catesbeiana) introductions are frequently cited as a threat to lentic-breeding anurans native to western North America and are a suspected factor in the decline of red-legged frogs (Rana aurora) in California. Introduced fish and habitat change are cited less frequently but are equally viable hypotheses. I examined the relation among introduced species, habitat, and the distribution and abundance of red-legged frogs in western Washington. Red-legged frog occurrence in the Puget Lowlands was more closely associated with habitat structure and the presence of exotic fish than with the presence of bull-frogs. The spread of exotics is correlated with a shift toward greater permanence in wetland habitats regionally. Conservation of more ephemeral wetland habitats may have direct benefits for some native amphibians and may also reduce the threat of exotic fish and bullfrogs, both of which were associated with permanent wetlands. Research and conservation efforts for lowland anurans in the West should emphasize the complexities of multiple contributing factors to amphibian losses.

  10. Stratification of habitats for identifying habitat selection by Merriam's turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1992-01-01

    Habitat selection patterns of Merriam’s Turkeys were compared in hierarchical analyses of three levels of habitat stratification. Habitat descriptions in first-level analyses were based on dominant species of vegetation. Habitat descriptions in second-level analyses were based on dominant species of vegetation and overstory canopy cover. Habitat descriptions in third-...

  11. Diet selectivity in a terrestrial forest invertebrate, the Auckland tree wētā, across three habitat zones.

    Science.gov (United States)

    Brown, Matthew B G J; Gemmill, Chrissen E C; Miller, Steven; Wehi, Priscilla M

    2018-03-01

    Insects are important but overlooked components of forest ecosystems in New Zealand. For many insect species, information on foraging patterns and trophic relationships is lacking. We examined diet composition and selectivity in a large-bodied insect, the Auckland tree wētā Hemideina thoracica , in three habitat zones in a lowland New Zealand forest. We asked whether H. thoracica selectively forage from available plant food sources, and whether these choices were lipid-rich compared to nonpreferred available plants. We also identified the proportion of invertebrates in their frass as a proxy for omnivory. From reconnaissance plot sampling, together with fecal fragment analysis, we report that more than 93% of individual tree wētā had eaten invertebrates before capture. Additionally, wētā in the highest elevation hillslope habitat zone consumed significantly fewer species of plants on average than wētā on the low-elevation terrace habitat. Upper hillslope wētā also had the highest average number of invertebrate fragments in their frass, significantly more than wētā in the low-elevation terrace habitat zone. Wētā showed high variability in the consumption of fruit and seeds across all habitat zones. Generally, we did not observe diet differences between the sexes (although it appears that male wētā in the mid-hillslope habitat ate fruits and seeds more voraciously than females), suggesting that the sexes have similar niche breadths and display similar degrees of omnivorous behavior. Extraction of leaf lipids demonstrated a range of lipid content values in available plants, and Ivlev's Electivity Index indicated that plant species which demonstrated high electivity tended to have higher concentrations of lipids in their leaves. Our findings indicate that H. thoracica forage omnivorously and selectively, and hence play multiple roles in native ecosystems and food webs.

  12. Habitat structure influences parent-offspring association in a social lizard

    Directory of Open Access Journals (Sweden)

    Thomas Botterill-James

    2016-08-01

    Full Text Available Parental care emerges as a result of an increase in the extent of interaction between parents and their offspring. These interactions can provide the foundation for the evolution of a range of complex parental behaviors. Therefore, fundamental to understanding the evolution of parental care is an understanding of the factors that promote this initial increase in parent-offspring association. Here, we used large outdoor enclosures to test how the spatial structure of high-quality habitat affects the occurrence of parent-offspring associations in a social lizard (Liopholis whitii. We found that the extent of parent-offspring association was higher when high-quality habitat was aggregated relative to when it was dispersed. This may be the result of greater competitive exclusion of adults and offspring from high quality crevices sites in the aggregated treatment compared to the dispersed treatment. Associating with parents had significant benefits for offspring growth and body condition but there were no concomitant effects on offspring survival. We did not find costs of parent-offspring association for parents in terms of increased harassment and loss of body condition. We discuss a number of potential mechanisms underlying these results. Regardless of mechanisms, our results suggest that habitat structure may shape the extent of parent-offspring association in L. whitti, and that highly aggregated habitats may set the stage for the diversification of more complex forms of care observed across closely related species.

  13. 78 FR 43005 - Endangered and Threatened Species: Designation of Critical Habitat for the Northwest Atlantic...

    Science.gov (United States)

    2013-07-18

    ...-growing animals that use multiple habitats across entire ocean basins throughout their life history. This complex life history encompasses terrestrial, inshore/estuarine, nearshore, and open ocean habitats. The..., ambient light from the open sky creates a relatively bright horizon compared to the dark silhouette of the...

  14. Different in the dark: The effect of habitat characteristics on community composition and beta diversity in bromeliad microfauna.

    Directory of Open Access Journals (Sweden)

    Annika Busse

    Full Text Available The mechanisms which structure communities have been the focus of a large body of research. Here, we address the question if habitat characteristics describing habitat quality may drive changes in community composition and beta diversity of bromeliad-inhabiting microfauna. In our system, changes in canopy cover along an environmental gradient may affect resource availability, disturbance in form of daily water temperature fluctuations and predation, and thus may lead to changes in community structure of bromeliad microfauna through differences in habitat quality along this gradient. Indeed, we observed distinct changes in microfauna community composition along the environmental gradient explained by changes in the extent of daily water temperature fluctuations. We found beta diversity to be higher under low habitat quality (low canopy cover than under high habitat quality (high canopy cover, which could potentially be explained by a higher relative importance of stochastic processes under low habitat quality. We also partitioned beta diversity into turnover and nestedness components and we found a nested pattern of beta diversity along the environmental gradient, with communities from the lower-quality habitat being nested subsets of communities from the higher-quality habitat. However, this pattern resulted from an increase in microfauna alpha diversity with an increase in habitat quality. By providing insights into microfauna-environment relationships our results contribute to the mechanistic understanding of community dynamics in small freshwater bodies. Here, we highlight the importance of habitat characteristics representing habitat quality in structuring communities, and suggest that this information may help to improve conservation practices of small freshwater ecosystems.

  15. Different in the dark: The effect of habitat characteristics on community composition and beta diversity in bromeliad microfauna

    Science.gov (United States)

    Antiqueira, Pablo A. P.; Neutzling, Alexandre S.; Wolf, Anna M.; Romero, Gustavo Q.; Petermann, Jana S.

    2018-01-01

    The mechanisms which structure communities have been the focus of a large body of research. Here, we address the question if habitat characteristics describing habitat quality may drive changes in community composition and beta diversity of bromeliad-inhabiting microfauna. In our system, changes in canopy cover along an environmental gradient may affect resource availability, disturbance in form of daily water temperature fluctuations and predation, and thus may lead to changes in community structure of bromeliad microfauna through differences in habitat quality along this gradient. Indeed, we observed distinct changes in microfauna community composition along the environmental gradient explained by changes in the extent of daily water temperature fluctuations. We found beta diversity to be higher under low habitat quality (low canopy cover) than under high habitat quality (high canopy cover), which could potentially be explained by a higher relative importance of stochastic processes under low habitat quality. We also partitioned beta diversity into turnover and nestedness components and we found a nested pattern of beta diversity along the environmental gradient, with communities from the lower-quality habitat being nested subsets of communities from the higher-quality habitat. However, this pattern resulted from an increase in microfauna alpha diversity with an increase in habitat quality. By providing insights into microfauna-environment relationships our results contribute to the mechanistic understanding of community dynamics in small freshwater bodies. Here, we highlight the importance of habitat characteristics representing habitat quality in structuring communities, and suggest that this information may help to improve conservation practices of small freshwater ecosystems. PMID:29401522

  16. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats

    Science.gov (United States)

    Lefcheck, Jonathan S.; Byrnes, Jarrett E. K.; Isbell, Forest; Gamfeldt, Lars; Griffin, John N.; Eisenhauer, Nico; Hensel, Marc J. S.; Hector, Andy; Cardinale, Bradley J.; Duffy, J. Emmett

    2015-01-01

    The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups. PMID:25907115

  17. Multiple-scale roost habitat comparisons of female Merriam's wild turkeys in the southern Black Hills, South Dakota

    Science.gov (United States)

    Daniel J. Thompson; Mark A. Rumble; Lester D. Flake; Chad P. Lehman

    2009-01-01

    Because quantity and quality of roosting habitat can affect Merriam's Wild Turkey (Meleagris gallopavo merriami) distribution, we described habitat characteristics of Merriam's turkey roost sites in the southern Black Hills of South Dakota. Varying proportions of Merriam's turkeys in the southern Black Hills depended on supplemental feed from livestock...

  18. A checklist of the winter bird community in different habitat types of Rosekandy Tea Estate of Assam, India

    Directory of Open Access Journals (Sweden)

    A. Ahmed

    2014-02-01

    Full Text Available This study was aimed at preparing an inventory of the avifauna and to document the species composition of birds during winter in different habitat types of Rosekandy Tea Estate of Cachar District of Assam. Four habitat types, viz., tea plantation, ecotone zone, secondary growth forest and water bodies were selected within the tea estate and surveyed from mid-December 2010 (early winter to mid-April 2011 (late winter covering four months of survey. A total of 88 species were recorded during the survey period with the highest number of species in ecotone zone (n=63, followed by secondary forest (n=60, tea plantation (n=48 and water bodies (n=17. The species were further categorized into different feeding and habitat guilds to study the distribution of bird species in different habitat types according to various guilds.

  19. Quantification of whole-body bradykinesia in Parkinson's disease participants using multiple inertial sensors.

    Science.gov (United States)

    Memar, Sara; Delrobaei, Mehdi; Pieterman, Marcus; McIsaac, Kenneth; Jog, Mandar

    2018-04-15

    Bradykinesia (slowness of movement) is a common motor symptom of Parkinson's disease (PD) that can severely affect quality of life for those living with the disease. Assessment and treatment of PD motor symptoms largely depends on clinical scales such as the Unified Parkinson's Disease Rating Scale (UPDRS). However, such clinical scales rely on the visual assessment by a human observer, naturally resulting in inter-rater variability. Although previous studies have developed objective means for measuring bradykinesia in PD patients, their evaluation was restricted by the type of movement and number of joints assessed. These studies failed to provide a more comprehensive, whole-body evaluation capable of measuring multiple joints simultaneously. This study utilizes wearable inertial measurement units (IMUs) to quantify whole-body movements, providing novel bradykinesia indices for walking (WBI) and standing up from a chair (sit-to-stand; SBI). The proposed bradykinesia indices include the joint angles at both upper and lower limbs and trunk motion to compute a complete, objective score for whole body bradykinesia. Thirty PD and 11 age-matched healthy control participants were recruited for the study. The participants performed two standard walking tasks that involved multiple body joints in the upper and lower limbs. The WBI and SBI successfully identified differences between control and PD participants. The indices also effectively identified differences within the PD population, distinguishing participants assessed with (ON) and without (OFF) levodopa; the gold-standard of treatment for PD. The goal of this study is to provide health professionals with an objective score for whole body bradykinesia by simultaneously measuring the upper and lower extremities along with truncal movement. This method demonstrates potential to be used in conjunction with current clinical standards for motor symptom assessment, and may also be promising for the remote assessment of PD

  20. Young Adult and Usual Adult Body Mass Index and Multiple Myeloma Risk: A Pooled Analysis in the International Multiple Myeloma Consortium (IMMC).

    Science.gov (United States)

    Birmann, Brenda M; Andreotti, Gabriella; De Roos, Anneclaire J; Camp, Nicola J; Chiu, Brian C H; Spinelli, John J; Becker, Nikolaus; Benhaim-Luzon, Véronique; Bhatti, Parveen; Boffetta, Paolo; Brennan, Paul; Brown, Elizabeth E; Cocco, Pierluigi; Costas, Laura; Cozen, Wendy; de Sanjosé, Silvia; Foretová, Lenka; Giles, Graham G; Maynadié, Marc; Moysich, Kirsten; Nieters, Alexandra; Staines, Anthony; Tricot, Guido; Weisenburger, Dennis; Zhang, Yawei; Baris, Dalsu; Purdue, Mark P

    2017-06-01

    Background: Multiple myeloma risk increases with higher adult body mass index (BMI). Emerging evidence also supports an association of young adult BMI with multiple myeloma. We undertook a pooled analysis of eight case-control studies to further evaluate anthropometric multiple myeloma risk factors, including young adult BMI. Methods: We conducted multivariable logistic regression analysis of usual adult anthropometric measures of 2,318 multiple myeloma cases and 9,609 controls, and of young adult BMI (age 25 or 30 years) for 1,164 cases and 3,629 controls. Results: In the pooled sample, multiple myeloma risk was positively associated with usual adult BMI; risk increased 9% per 5-kg/m 2 increase in BMI [OR, 1.09; 95% confidence interval (CI), 1.04-1.14; P = 0.007]. We observed significant heterogeneity by study design ( P = 0.04), noting the BMI-multiple myeloma association only for population-based studies ( P trend = 0.0003). Young adult BMI was also positively associated with multiple myeloma (per 5-kg/m 2 ; OR, 1.2; 95% CI, 1.1-1.3; P = 0.0002). Furthermore, we observed strong evidence of interaction between younger and usual adult BMI ( P interaction adult BMI may increase multiple myeloma risk and suggest that healthy BMI maintenance throughout life may confer an added benefit of multiple myeloma prevention. Cancer Epidemiol Biomarkers Prev; 26(6); 876-85. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Habitat Use Database - Groundfish Essential Fish Habitat (EFH) Habitat Use Database (HUD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Habitat Use Database (HUD) was specifically designed to address the need for habitat-use analyses in support of groundfish EFH, HAPCs, and fishing and nonfishing...

  2. Habitat change influences mate search behaviour in three-spined sticklebacks

    DEFF Research Database (Denmark)

    Heuschele, Jan; Salminen, Tiina; Candolin, Ulrika

    2012-01-01

    Mate choice is one of the main mechanisms of sexual selection, with profound implications for individual fitness. Changes in environmental conditions can cause individuals to alter their mate search behaviour, with consequences for mate choice. Human-induced eutrophication of water bodies...... is a global problem that alters habitat structure and visibility in aquatic ecosystems. We investigated whether changes in habitat complexity and male cue modality, visual or olfactory, influence mate search behaviour of female three-spined sticklebacks, Gasterosteus aculeatus. We allowed gravid females...... evaluation in the absence of visual stimulation. This reduced the rate of mate encounters and probably also the opportunity for choice. Our results show that changes in habitat structure and visibility can alter female mate searching, with potential consequences for the opportunity for sexual selection....

  3. Reduced body size and cub recruitment in polar bears associated with sea ice decline

    Science.gov (United States)

    Rode, Karyn D.; Amstrup, Steven C.; Regehr, Eric V.

    2010-01-01

    Rates of reproduction and survival are dependent upon adequate body size and condition of individuals. Declines in size and condition have provided early indicators of population decline in polar bears (Ursus maritimus) near the southern extreme of their range. We tested whether patterns in body size, condition, and cub recruitment of polar bears in the southern Beaufort Sea of Alaska were related to the availability of preferred sea ice habitats and whether these measures and habitat availability exhibited trends over time, between 1982 and 2006. The mean skull size and body length of all polar bears over three years of age declined over time, corresponding with long‐term declines in the spatial and temporal availability of sea ice habitat. Body size of young, growing bears declined over time and was smaller after years when sea ice availability was reduced. Reduced litter mass and numbers of yearlings per female following years with lower availability of optimal sea ice habitat, suggest reduced reproductive output and juvenile survival. These results, based on analysis of a long‐term data set, suggest that declining sea ice is associated with nutritional limitations that reduced body size and reproduction in this population.

  4. Patterns of diversity in soft-bodied meiofauna: dispersal ability and body size matter.

    Science.gov (United States)

    Curini-Galletti, Marco; Artois, Tom; Delogu, Valentina; De Smet, Willem H; Fontaneto, Diego; Jondelius, Ulf; Leasi, Francesca; Martínez, Alejandro; Meyer-Wachsmuth, Inga; Nilsson, Karin Sara; Tongiorgi, Paolo; Worsaae, Katrine; Todaro, M Antonio

    2012-01-01

    Biogeographical and macroecological principles are derived from patterns of distribution in large organisms, whereas microscopic ones have often been considered uninteresting, because of their supposed wide distribution. Here, after reporting the results of an intensive faunistic survey of marine microscopic animals (meiofauna) in Northern Sardinia, we test for the effect of body size, dispersal ability, and habitat features on the patterns of distribution of several groups. As a dataset we use the results of a workshop held at La Maddalena (Sardinia, Italy) in September 2010, aimed at studying selected taxa of soft-bodied meiofauna (Acoela, Annelida, Gastrotricha, Nemertodermatida, Platyhelminthes and Rotifera), in conjunction with data on the same taxa obtained during a previous workshop hosted at Tjärnö (Western Sweden) in September 2007. Using linear mixed effects models and model averaging while accounting for sampling bias and potential pseudoreplication, we found evidence that: (1) meiofaunal groups with more restricted distribution are the ones with low dispersal potential; (2) meiofaunal groups with higher probability of finding new species for science are the ones with low dispersal potential; (3) the proportion of the global species pool of each meiofaunal group present in each area at the regional scale is negatively related to body size, and positively related to their occurrence in the endobenthic habitat. Our macroecological analysis of meiofauna, in the framework of the ubiquity hypothesis for microscopic organisms, indicates that not only body size but mostly dispersal ability and also occurrence in the endobenthic habitat are important correlates of diversity for these understudied animals, with different importance at different spatial scales. Furthermore, since the Western Mediterranean is one of the best-studied areas in the world, the large number of undescribed species (37%) highlights that the census of marine meiofauna is still very far

  5. Interactive effects of temperature and habitat complexity on freshwater communities.

    Science.gov (United States)

    Scrine, Jennifer; Jochum, Malte; Ólafsson, Jón S; O'Gorman, Eoin J

    2017-11-01

    Warming can lead to increased growth of plants or algae at the base of the food web, which may increase the overall complexity of habitat available for other organisms. Temperature and habitat complexity have both been shown to alter the structure and functioning of communities, but they may also have interactive effects, for example, if the shade provided by additional habitat negates the positive effect of temperature on understory plant or algal growth. This study explored the interactive effects of these two major environmental factors in a manipulative field experiment, by assessing changes in ecosystem functioning (primary production and decomposition) and community structure in the presence and absence of artificial plants along a natural stream temperature gradient of 5-18°C. There was no effect of temperature or habitat complexity on benthic primary production, but epiphytic production increased with temperature in the more complex habitat. Cellulose decomposition rate increased with temperature, but was unaffected by habitat complexity. Macroinvertebrate communities were less similar to each other as temperature increased, while habitat complexity only altered community composition in the coldest streams. There was also an overall increase in macroinvertebrate abundance, body mass, and biomass in the warmest streams, driven by increasing dominance of snails and blackfly larvae. Presence of habitat complexity, however, dampened the strength of this temperature effect on the abundance of macroinvertebrates in the benthos. The interactive effects that were observed suggest that habitat complexity can modify the effects of temperature on important ecosystem functions and community structure, which may alter energy flow through the food web. Given that warming is likely to increase habitat complexity, particularly at higher latitudes, more studies should investigate these two major environmental factors in combination to improve our ability to predict the

  6. AN AGENT-BASED APPROACH TO MODELING MAMMALIAN EVOLUTION: HOW RESOURCE DISTRIBUTION AND PREDATION AFFECT BODY SIZE

    OpenAIRE

    ANNE KANDLER; JEROEN B. SMAERS

    2012-01-01

    Macro-evolutionary investigations into cross-scale patterns of body size variation have put many of the pieces of the evolutionary body size puzzle in place. To further tackle micro- and meso-scale process-based reasons underlying changes in body size, researchers compare natural populations across different habitat structures, assessing which habitat structures correspond to which changes in body size variation. The complex multi-scale dynamics underlying the effect of the external environme...

  7. Ground-based simulations of cosmic ray heavy ion interactions in spacecraft and planetary habitat shielding materials

    Science.gov (United States)

    Miller, J.; Zeitlin, C.; Heilbronn, L.; Borak, T.; Carter, T.; Frankel, K. A.; Fukumura, A.; Murakami, T.; Rademacher, S. E.; Schimmerling, W.; hide

    1998-01-01

    This paper surveys some recent accelerator-based measurements of the nuclear fragmentation of high energy nuclei in shielding and tissue-equivalent materials. These data are needed to make accurate predictions of the radiation field produced at depth in spacecraft and planetary habitat shielding materials and in the human body by heavy charged particles in the galactic cosmic radiation. Projectile-target combinations include 1 GeV/nucleon 56Fe incident on aluminum and graphite and 600 MeV/nucleon 56Fe and 290 MeV/nucleon 12C on polyethylene. We present examples of the dependence of fragmentation on material type and thickness, of a comparison between data and a fragmentation model, and of multiple fragments produced along the beam axis.

  8. Riverine habitat dynamics

    Science.gov (United States)

    Jacobson, R.B.

    2013-01-01

    The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration

  9. Environmental, biological and anthropogenic effects on grizzly bear body size: temporal and spatial considerations.

    Science.gov (United States)

    Nielsen, Scott E; Cattet, Marc R L; Boulanger, John; Cranston, Jerome; McDermid, Greg J; Shafer, Aaron B A; Stenhouse, Gordon B

    2013-09-08

    Individual body growth is controlled in large part by the spatial and temporal heterogeneity of, and competition for, resources. Grizzly bears (Ursus arctos L.) are an excellent species for studying the effects of resource heterogeneity and maternal effects (i.e. silver spoon) on life history traits such as body size because their habitats are highly variable in space and time. Here, we evaluated influences on body size of grizzly bears in Alberta, Canada by testing six factors that accounted for spatial and temporal heterogeneity in environments during maternal, natal and 'capture' (recent) environments. After accounting for intrinsic biological factors (age, sex), we examined how body size, measured in mass, length and body condition, was influenced by: (a) population density; (b) regional habitat productivity; (c) inter-annual variability in productivity (including silver spoon effects); (d) local habitat quality; (e) human footprint (disturbances); and (f) landscape change. We found sex and age explained the most variance in body mass, condition and length (R(2) from 0.48-0.64). Inter-annual variability in climate the year before and of birth (silver spoon effects) had detectable effects on the three-body size metrics (R(2) from 0.04-0.07); both maternal (year before birth) and natal (year of birth) effects of precipitation and temperature were related with body size. Local heterogeneity in habitat quality also explained variance in body mass and condition (R(2) from 0.01-0.08), while annual rate of landscape change explained additional variance in body length (R(2) of 0.03). Human footprint and population density had no observed effect on body size. These results illustrated that body size patterns of grizzly bears, while largely affected by basic biological characteristics (age and sex), were also influenced by regional environmental gradients the year before, and of, the individual's birth thus illustrating silver spoon effects. The magnitude of the silver

  10. Habitat-related specialization of lateral-line system morphology in a habitat-generalist and a habitat-specialist New Zealand eleotrid.

    Science.gov (United States)

    Vanderpham, J P; Nakagawa, S; Senior, A M; Closs, G P

    2016-04-01

    An investigation of intraspecific habitat-related patterns of variation in oculoscapular lateral-line superficial neuromasts (SN) identified a decrease in the ratio of total SNs to pores, and a trend towards decreased asymmetry in SNs in the habitat-generalist common bully Gobiomorphus cotidianus from fluvial habitats compared to lacustrine habitats, suggesting habitat-related phenotypic variability. A greater ratio of pores to SNs, as well as less variation in the total number and asymmetry of SNs observed in the fluvial habitat-specialist redfin bully Gobiomorphus huttoni may provide further evidence of variations in the oculoscapular lateral-line morphology of fluvial habitat G. cotidianus individuals serving as adaptations to more turbulent environments. © 2016 The Fisheries Society of the British Isles.

  11. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants

    Directory of Open Access Journals (Sweden)

    Alessandro Ossola

    2015-10-01

    Full Text Available Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i ant abundance and species richness would be higher in high-complexity urban habitats, (ii ant assemblages would differ between low- and high-complexity habitats and (iii ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size.

  12. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants

    Science.gov (United States)

    Nash, Michael A.; Christie, Fiona J.; Hahs, Amy K.; Livesley, Stephen J.

    2015-01-01

    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416

  13. Assessing habitat connectivity for ground-dwelling animals in an urban environment.

    Science.gov (United States)

    Braaker, S; Moretti, M; Boesch, R; Ghazoul, J; Obrist, M K; Bontadina, F

    To ensure viable species populations in fragmented landscapes, individuals must be able to move between suitable habitat patches. Despite the increased interest in biodiversity assessment in urban environments, the ecological relevance of habitat connectivity in highly fragmented landscapes remains largely unknown. The first step to understanding the role of habitat connectivity in urban ecology is the challenging task of assessing connectivity in the complex patchwork of contrasting habitats that is found in cities. We developed a data-based framework, minimizing the use of subjective assumptions, to assess habitat connectivity that consists of the following sequential steps: (1) identification of habitat preference based on empirical habitat-use data; (2) derivation of habitat resistance surfaces evaluating various transformation functions; (3) modeling of different connectivity maps with electrical circuit theory (Circuitscape), a method considering all possible pathways across the landscape simultaneously; and (4) identification of the best connectivity map with information-theoretic model selection. We applied this analytical framework to assess habitat connectivity for the European hedgehog Erinaceus europaeus, a model species for ground-dwelling animals, in the city of Zurich, Switzerland, using GPS track points from 40 individuals. The best model revealed spatially explicit connectivity “pinch points,” as well as multiple habitat connections. Cross-validation indicated the general validity of the selected connectivity model. The results show that both habitat connectivity and habitat quality affect the movement of urban hedgehogs (relative importance of the two variables was 19.2% and 80.8%, respectively), and are thus both relevant for predicting urban animal movements. Our study demonstrates that even in the complex habitat patchwork of cities, habitat connectivity plays a major role for ground-dwelling animal movement. Data-based habitat connectivity

  14. Contrasting patterns of survival and dispersal in multiple habitats reveal an ecological trap in a food-caching bird.

    Science.gov (United States)

    Norris, D Ryan; Flockhart, D T Tyler; Strickland, Dan

    2013-11-01

    A comprehensive understanding of how natural and anthropogenic variation in habitat influences populations requires long-term information on how such variation affects survival and dispersal throughout the annual cycle. Gray jays Perisoreus canadensis are widespread boreal resident passerines that use cached food to survive over the winter and to begin breeding during the late winter. Using multistate capture-recapture analysis, we examined apparent survival and dispersal in relation to habitat quality in a gray jay population over 34 years (1977-2010). Prior evidence suggests that natural variation in habitat quality is driven by the proportion of conifers on territories because of their superior ability to preserve cached food. Although neither adults (>1 year) nor juveniles (conifer territories, both age classes were less likely to leave high-conifer territories and, when they did move, were more likely to disperse to high-conifer territories. In contrast, survival rates were lower on territories that were adjacent to a major highway compared to territories that did not border the highway but there was no evidence for directional dispersal towards or away from highway territories. Our results support the notion that natural variation in habitat quality is driven by the proportion of coniferous trees on territories and provide the first evidence that high-mortality highway habitats can act as an equal-preference ecological trap for birds. Reproductive success, as shown in a previous study, but not survival, is sensitive to natural variation in habitat quality, suggesting that gray jays, despite living in harsh winter conditions, likely favor the allocation of limited resources towards self-maintenance over reproduction.

  15. Preliminary data on Saga pedo – specific habitats

    Directory of Open Access Journals (Sweden)

    LUPU N. Gabriel

    2007-10-01

    Full Text Available Due to its exceptional size (from 53 to 75 mm of body to which one adds an oviscapte approximately 35 mm Saga pedo is considered one off the largest insect of Europe. Its exclusively carnivorous diet and parthenogenetic reproduction makes it an exceptional insect. The present paper gives an overview on the habitats from northern Dobrogea where this species occurs.

  16. Septic shock after posterior spinal arthrodesis on a patient with Scheuermann kyphosis and multiple body piercings.

    Science.gov (United States)

    Tsirikos, Athanasios I; Subramanian, Ashok Sridhara

    2011-10-15

    A case report. We report septic shock as postoperative complication following an instrumented posterior spinal arthrodesis on a patient with multiple body piercings. The management of this potentially catastrophic complication and outcome of treatment is been discussed. Body piercing has become increasingly more common because of change in culture or as a fashion statement. This has been associated with local or generalized ill effects including tissue injury, skin and systemic infections, and septic shock. There is no clear guideline pathway regarding removal and reinsertion of body piercings in patients who undergo major surgery. Complications following orthopedic or spinal procedures associated with body piercing have not been reported. We reviewed the medical notes and radiographs of an adolescent patient with Scheuermann kyphosis and multiple body piercings who underwent a posterior spinal arthrodesis and developed septic shock. Septic shock developed on postoperative day 2 after reinsertion of all piercings following the patient's request. The patient became systemically very unwell and required intensive medical management, as well as a total course of antibiotics of 3 months. The piercings remained in situ. She did not develop a wound infection despite the presence of bacteremia and spinal instrumentation. The patient had no new piercings subsequent to her deformity procedure. Two and a half years after spinal surgery she reported no medical problems, had a balanced spine with no loss of kyphosis correction and no evidence of nonunion or recurrence of deformity. The development of septic shock as a result of piercing reinsertion in the postoperative period has not been previously reported. This is an important consideration to prevent potentially life-threatening complications following major spinal surgery.

  17. Introduction to the Special Section--Bat Habitat Use in Eastern North American Temperate Forests: Site, Stand, an Landscape Effects

    Science.gov (United States)

    Robert T. Brooks; W. Mark Ford

    2006-01-01

    Forest bats of eastern North America select habitats for roosting, foraging, and winter hibernation/migration over a myriad of scales. An understanding of forest-bat habitat use over scales of time and space is important for their conservation and management. The papers in this Special Section report studies of bat habitat use across multiple scales from locations...

  18. An approach of habitat degradation assessment for characterization on coastal habitat conservation tendency.

    Science.gov (United States)

    Zhou, Xi-Yin; Lei, Kun; Meng, Wei

    2017-09-01

    Coastal zones are population and economy highly intensity regions all over the world, and coastal habitat supports the sustainable development of human society. The accurate assessment of coastal habitat degradation is the essential prerequisite for coastal zone protection. In this study, an integrated framework of coastal habitat degradation assessment including landuse classification, habitat classifying and zoning, evaluation criterion of coastal habitat degradation and coastal habitat degradation index has been established for better regional coastal habitat assessment. Through establishment of detailed three-class landuse classification, the fine landscape change is revealed, the evaluation criterion of coastal habitat degradation through internal comparison based on the results of habitat classifying and zoning could indicate the levels of habitat degradation and distinguish the intensity of human disturbances in different habitat subareas under the same habitat classification. Finally, the results of coastal habitat degradation assessment could be achieved through coastal habitat degradation index (CHI). A case study of the framework is carried out in the Circum-Bohai-Sea-Coast, China, and the main results show the following: (1) The accuracy of all land use classes are above 90%, which indicates a satisfactory accuracy for the classification map. (2) The Circum-Bohai-Sea-Coast is divided into 3 kinds of habitats and 5 subareas. (3) In the five subareas of the Circum-Bohai-Sea-Coast, the levels of coastal habitat degradation own significant difference. The whole Circum-Bohai-Sea-Coast generally is in a worse state according to area weighting of each habitat subarea. This assessment framework of coastal habitat degradation would characterize the landuse change trend, realize better coastal habitat degradation assessment, reveal the habitat conservation tendency and distinguish intensity of human disturbances. Furthermore, it would support for accurate coastal

  19. Habitat degradation may affect niche segregation patterns in lizards

    Science.gov (United States)

    Pelegrin, N.; Chani, J. M.; Echevarria, A. L.; Bucher, E. H.

    2013-08-01

    Lizards partition resources in three main niche dimensions: time, space and food. Activity time and microhabitat use are strongly influenced by thermal environment, and may differ between species according to thermal requirements and tolerance. As thermal characteristics are influenced by habitat structure, microhabitat use and activity of lizards can change in disturbed habitats. We compared activity and microhabitat use of two abundant lizard species of the Semi-arid Chaco of Argentina between a restored and a highly degraded Chaco forest, to determine how habitat degradation affects lizard segregation in time and space, hypothesizing that as activity and microhabitat use of lizards are related to habitat structure, activity and microhabitat use of individual species can be altered in degraded habitats, thus changing segregation patterns between them. Activity changed from an overlapped pattern in a restored forest to a segregated pattern in a degraded forest. A similar trend was observed for microhabitat use, although to a less extent. No correlation was found between air temperature and lizard activity, but lizard activity varied along the day and among sites. Contrary to what was believed, activity patterns of neotropical diurnal lizards are not fixed, but affected by multiple factors related to habitat structure and possibly to interspecific interactions. Changes in activity patterns and microhabitat use in degraded forests may have important implications when analyzing the effects of climate change on lizard species, due to synergistic effects.

  20. Early recognition is important when multiple magnets masquerade as a single chain after foreign body ingestion

    Directory of Open Access Journals (Sweden)

    Auriel August

    2016-10-01

    Full Text Available Ingestions of multiple magnets can lead to serious damage to the gastrointestinal tract. Moreover, these foreign bodies can take deceptive shapes such as single chains which may mislead clinicians. We report the case of a ten-year-old boy who swallowed 33 magnets, the most yet reported, which took on the appearance of a single loop in the stomach, while actually being located in the stomach, small bowel, and colon. Early recognition and prompt intervention are necessary to avoid complications of this foreign body misadventure.

  1. Selecting habitat to survive: the impact of road density on survival in a large carnivore.

    Directory of Open Access Journals (Sweden)

    Mathieu Basille

    Full Text Available Habitat selection studies generally assume that animals select habitat and food resources at multiple scales to maximise their fitness. However, animals sometimes prefer habitats of apparently low quality, especially when considering the costs associated with spatially heterogeneous human disturbance. We used spatial variation in human disturbance, and its consequences on lynx survival, a direct fitness component, to test the Hierarchical Habitat Selection hypothesis from a population of Eurasian lynx Lynx lynx in southern Norway. Data from 46 lynx monitored with telemetry indicated that a high proportion of forest strongly reduced the risk of mortality from legal hunting at the home range scale, while increasing road density strongly increased such risk at the finer scale within the home range. We found hierarchical effects of the impact of human disturbance, with a higher road density at a large scale reinforcing its negative impact at a fine scale. Conversely, we demonstrated that lynx shifted their habitat selection to avoid areas with the highest road densities within their home ranges, thus supporting a compensatory mechanism at fine scale enabling lynx to mitigate the impact of large-scale disturbance. Human impact, positively associated with high road accessibility, was thus a stronger driver of lynx space use at a finer scale, with home range characteristics nevertheless constraining habitat selection. Our study demonstrates the truly hierarchical nature of habitat selection, which aims at maximising fitness by selecting against limiting factors at multiple spatial scales, and indicates that scale-specific heterogeneity of the environment is driving individual spatial behaviour, by means of trade-offs across spatial scales.

  2. Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, J. R.; Dawley, Earl M.; Coleman, Andre M.; Ostrand, Kenneth G.; Hanson, Kyle C.; Woodruff, Dana L.; Donley, Erin E.; Ke, Yinghai; Buenau, Kate E.; Bryson, Amanda J.; Townsend, Richard L.

    2011-10-01

    This report describes the 2010 research conducted under the U.S. Army Corps of Engineers (USACE) project EST-P-09-1, titled Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, and known as the 'Salmon Benefits' study. The primary goal of the study is to establish scientific methods to quantify habitat restoration benefits to listed salmon and trout in the lower Columbia River and estuary (LCRE) in three required areas: habitat connectivity, early life history diversity, and survival (Figure ES.1). The general study approach was to first evaluate the state of the science regarding the ability to quantify benefits to listed salmon and trout from habitat restoration actions in the LCRE in the 2009 project year, and then, if feasible, in subsequent project years to develop quantitative indices of habitat connectivity, early life history diversity, and survival. Based on the 2009 literature review, the following definitions are used in this study. Habitat connectivity is defined as a landscape descriptor concerning the ability of organisms to move among habitat patches, including the spatial arrangement of habitats (structural connectivity) and how the perception and behavior of salmon affect the potential for movement among habitats (functional connectivity). Life history is defined as the combination of traits exhibited by an organism throughout its life cycle, and for the purposes of this investigation, a life history strategy refers to the body size and temporal patterns of estuarine usage exhibited by migrating juvenile salmon. Survival is defined as the probability of fish remaining alive over a defined amount of space and/or time. The objectives of the 4-year study are as follows: (1) develop and test a quantitative index of juvenile salmon habitat connectivity in the LCRE incorporating structural, functional, and hydrologic components; (2

  3. Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations.

    Science.gov (United States)

    Rode, Karyn D; Regehr, Eric V; Douglas, David C; Durner, George; Derocher, Andrew E; Thiemann, Gregory W; Budge, Suzanne M

    2014-01-01

    Polar bears (Ursus maritimus) have experienced substantial changes in the seasonal availability of sea ice habitat in parts of their range, including the Beaufort, Chukchi, and Bering Seas. In this study, we compared the body size, condition, and recruitment of polar bears captured in the Chukchi and Bering Seas (CS) between two periods (1986-1994 and 2008-2011) when declines in sea ice habitat occurred. In addition, we compared metrics for the CS population 2008-2011 with those of the adjacent southern Beaufort Sea (SB) population where loss in sea ice habitat has been associated with declines in body condition, size, recruitment, and survival. We evaluated how variation in body condition and recruitment were related to feeding ecology. Comparing habitat conditions between populations, there were twice as many reduced ice days over continental shelf waters per year during 2008-2011 in the SB than in the CS. CS polar bears were larger and in better condition, and appeared to have higher reproduction than SB bears. Although SB and CS bears had similar diets, twice as many bears were fasting in spring in the SB than in the CS. Between 1986-1994 and 2008-2011, body size, condition, and recruitment indices in the CS were not reduced despite a 44-day increase in the number of reduced ice days. Bears in the CS exhibited large body size, good body condition, and high indices of recruitment compared to most other populations measured to date. Higher biological productivity and prey availability in the CS relative to the SB, and a shorter recent history of reduced sea ice habitat, may explain the maintenance of condition and recruitment of CS bears. Geographic differences in the response of polar bears to climate change are relevant to range-wide forecasts for this and other ice-dependent species. © 2013 John Wiley & Sons Ltd.

  4. Variation in the response of an Arctic top predator experiencing habitat loss: Feeding and reproductive ecology of two polar bear populations

    Science.gov (United States)

    Rode, Karyn D.; Regehr, Eric V.; Douglas, David C.; Durner, George M.; Derocher, Andrew E.; Thiemann, Gregory W.; Budge, Suzanne M.

    2014-01-01

    Polar bears (Ursus maritimus) have experienced substantial changes in the seasonal availability of sea ice habitat in parts of their range, including the Beaufort, Chukchi, and Bering Seas. In this study, we compared the body size, condition, and recruitment of polar bears captured in the Chukchi and Bering Seas (CS) between two periods (1986–1994 and 2008–2011) when declines in sea ice habitat occurred. In addition, we compared metrics for the CS population 2008–2011 with those of the adjacent southern Beaufort Sea (SB) population where loss in sea ice habitat has been associated with declines in body condition, size, recruitment, and survival. We evaluated how variation in body condition and recruitment were related to feeding ecology. Comparing habitat conditions between populations, there were twice as many reduced ice days over continental shelf waters per year during 2008–2011 in the SB than in the CS. CS polar bears were larger and in better condition, and appeared to have higher reproduction than SB bears. Although SB and CS bears had similar diets, twice as many bears were fasting in spring in the SB than in the CS. Between 1986–1994 and 2008–2011, body size, condition, and recruitment indices in the CS were not reduced despite a 44-day increase in the number of reduced ice days. Bears in the CS exhibited large body size, good body condition, and high indices of recruitment compared to most other populations measured to date. Higher biological productivity and prey availability in the CS relative to the SB, and a shorter recent history of reduced sea ice habitat, may explain the maintenance of condition and recruitment of CS bears. Geographic differences in the response of polar bears to climate change are relevant to range-wide forecasts for this and other ice-dependent species.

  5. Predicting micro thermal habitat of lizards in a dynamic thermal environment

    NARCIS (Netherlands)

    Fei, T.; Skidmore, A.K.; Venus, V.; Wang, T.; Toxopeus, A.G.; Bian, B.M.; Liu, Y.

    2012-01-01

    Understanding behavioural thermoregulation and its consequences is a central topic in ecology. In this study, a spatial explicit model was developed to simulate the movement and thermal habitat use of lizards in a controlled environment. The model incorporates a lizard's transient body temperatures

  6. Three-dimensional habitat structure and landscape genetics: a step forward in estimating functional connectivity.

    Science.gov (United States)

    Milanesi, P; Holderegger, R; Bollmann, K; Gugerli, F; Zellweger, F

    2017-02-01

    Estimating connectivity among fragmented habitat patches is crucial for evaluating the functionality of ecological networks. However, current estimates of landscape resistance to animal movement and dispersal lack landscape-level data on local habitat structure. Here, we used a landscape genetics approach to show that high-fidelity habitat structure maps derived from Light Detection and Ranging (LiDAR) data critically improve functional connectivity estimates compared to conventional land cover data. We related pairwise genetic distances of 128 Capercaillie (Tetrao urogallus) genotypes to least-cost path distances at multiple scales derived from land cover data. Resulting β values of linear mixed effects models ranged from 0.372 to 0.495, while those derived from LiDAR ranged from 0.558 to 0.758. The identification and conservation of functional ecological networks suffering from habitat fragmentation and homogenization will thus benefit from the growing availability of detailed and contiguous data on three-dimensional habitat structure and associated habitat quality. © 2016 by the Ecological Society of America.

  7. Identifying Greater Sage-Grouse source and sink habitats for conservation planning in an energy development landscape.

    Science.gov (United States)

    Kirol, Christopher P; Beck, Jeffrey L; Huzurbazar, Snehalata V; Holloran, Matthew J; Miller, Scott N

    2015-06-01

    Conserving a declining species that is facing many threats, including overlap of its habitats with energy extraction activities, depends upon identifying and prioritizing the value of the habitats that remain. In addition, habitat quality is often compromised when source habitats are lost or fragmented due to anthropogenic development. Our objective was to build an ecological model to classify and map habitat quality in terms of source or sink dynamics for Greater Sage-Grouse (Centrocercus urophasianus) in the Atlantic Rim Project Area (ARPA), a developing coalbed natural gas field in south-central Wyoming, USA. We used occurrence and survival modeling to evaluate relationships between environmental and anthropogenic variables at multiple spatial scales and for all female summer life stages, including nesting, brood-rearing, and non-brooding females. For each life stage, we created resource selection functions (RSFs). We weighted the RSFs and combined them to form a female summer occurrence map. We modeled survival also as a function of spatial variables for nest, brood, and adult female summer survival. Our survival-models were mapped as survival probability functions individually and then combined with fixed vital rates in a fitness metric model that, when mapped, predicted habitat productivity (productivity map). Our results demonstrate a suite of environmental and anthropogenic variables at multiple scales that were predictive of occurrence and survival. We created a source-sink map by overlaying our female summer occurrence map and productivity map to predict habitats contributing to population surpluses (source habitats) or deficits (sink habitat) and low-occurrence habitats on the landscape. The source-sink map predicted that of the Sage-Grouse habitat within the ARPA, 30% was primary source, 29% was secondary source, 4% was primary sink, 6% was secondary sink, and 31% was low occurrence. Our results provide evidence that energy development and avoidance of

  8. Body temperature is elevated and linked to fatigue in relapsing-remitting multiple sclerosis, even without heat exposure.

    Science.gov (United States)

    Sumowski, James F; Leavitt, Victoria M

    2014-07-01

    To investigate whether (1) resting body temperature is elevated in patients with relapsing-remitting multiple sclerosis (RRMS) relative to healthy individuals and patients with secondary progressive multiple sclerosis (SPMS), and (2) warmer body temperature is linked to worse fatigue in patients with RRMS. Cross-sectional study. Climate-controlled laboratory (∼22°C) within a nonprofit medical rehabilitation research center. Patients with RRMS (n=50), matched healthy controls (n=40), and patients with SPMS (n=22). Not applicable. Body temperature was measured with an aural infrared thermometer (normative body temperature for this thermometer, 36.75°C), and differences were compared across patients with RRMS and SPMS and healthy persons. Patients with RRMS completed measures of general fatigue (Fatigue Severity Scale [FSS]), as well as physical and cognitive fatigue (Modified Fatigue Impact Scale [MFIS]). There was a large effect of group (Pphysical fatigue (physical fatigue subscale of the MFIS; rp=.318, P=.026), but not cognitive fatigue (cognitive fatigue subscale of the MIFS; rp=-.017, P=.909). These are the first-ever demonstrations that body temperature is elevated endogenously in patients with RRMS and linked to worse fatigue. We discuss these findings in the context of failed treatments for fatigue in RRMS, including several failed randomized controlled trials (RCTs) of stimulants (modafinil). In contrast, our findings may help explain how RCTs of cooling garments and antipyretics (aspirin) have effectively reduced MS fatigue, and encourage further research on cooling/antipyretic treatments of fatigue in RRMS. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Innate recognition of water bodies in echolocating bats.

    Science.gov (United States)

    Greif, Stefan; Siemers, Björn M

    2010-11-02

    In the course of their lives, most animals must find different specific habitat and microhabitat types for survival and reproduction. Yet, in vertebrates, little is known about the sensory cues that mediate habitat recognition. In free flying bats the echolocation of insect-sized point targets is well understood, whereas how they recognize and classify spatially extended echo targets is currently unknown. In this study, we show how echolocating bats recognize ponds or other water bodies that are crucial for foraging, drinking and orientation. With wild bats of 15 different species (seven genera from three phylogenetically distant, large bat families), we found that bats perceived any extended, echo-acoustically smooth surface to be water, even in the presence of conflicting information from other sensory modalities. In addition, naive juvenile bats that had never before encountered a water body showed spontaneous drinking responses from smooth plates. This provides the first evidence for innate recognition of a habitat cue in a mammal.

  10. A novel statistical method for classifying habitat generalists and specialists

    DEFF Research Database (Denmark)

    Chazdon, Robin L; Chao, Anne; Colwell, Robert K

    2011-01-01

    in second-growth (SG) and old-growth (OG) rain forests in the Caribbean lowlands of northeastern Costa Rica. We evaluate the multinomial model in detail for the tree data set. Our results for birds were highly concordant with a previous nonstatistical classification, but our method classified a higher......: (1) generalist; (2) habitat A specialist; (3) habitat B specialist; and (4) too rare to classify with confidence. We illustrate our multinomial classification method using two contrasting data sets: (1) bird abundance in woodland and heath habitats in southeastern Australia and (2) tree abundance...... fraction (57.7%) of bird species with statistical confidence. Based on a conservative specialization threshold and adjustment for multiple comparisons, 64.4% of tree species in the full sample were too rare to classify with confidence. Among the species classified, OG specialists constituted the largest...

  11. A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Science.gov (United States)

    Ried, Janina S.; Jeff M., Janina; Chu, Audrey Y.; Bragg-Gresham, Jennifer L.; van Dongen, Jenny; Huffman, Jennifer E.; Ahluwalia, Tarunveer S.; Cadby, Gemma; Eklund, Niina; Eriksson, Joel; Esko, Tõnu; Feitosa, Mary F.; Goel, Anuj; Gorski, Mathias; Hayward, Caroline; Heard-Costa, Nancy L.; Jackson, Anne U.; Jokinen, Eero; Kanoni, Stavroula; Kristiansson, Kati; Kutalik, Zoltán; Lahti, Jari; Luan, Jian'an; Mägi, Reedik; Mahajan, Anubha; Mangino, Massimo; Medina-Gomez, Carolina; Monda, Keri L.; Nolte, Ilja M.; Pérusse, Louis; Prokopenko, Inga; Qi, Lu; Rose, Lynda M.; Salvi, Erika; Smith, Megan T.; Snieder, Harold; Stančáková, Alena; Ju Sung, Yun; Tachmazidou, Ioanna; Teumer, Alexander; Thorleifsson, Gudmar; van der Harst, Pim; Walker, Ryan W.; Wang, Sophie R.; Wild, Sarah H.; Willems, Sara M.; Wong, Andrew; Zhang, Weihua; Albrecht, Eva; Couto Alves, Alexessander; Bakker, Stephan J. L.; Barlassina, Cristina; Bartz, Traci M.; Beilby, John; Bellis, Claire; Bergman, Richard N.; Bergmann, Sven; Blangero, John; Blüher, Matthias; Boerwinkle, Eric; Bonnycastle, Lori L.; Bornstein, Stefan R.; Bruinenberg, Marcel; Campbell, Harry; Chen, Yii-Der Ida; Chiang, Charleston W. K.; Chines, Peter S.; Collins, Francis S; Cucca, Fracensco; Cupples, L Adrienne; D'Avila, Francesca; de Geus, Eco J .C.; Dedoussis, George; Dimitriou, Maria; Döring, Angela; Eriksson, Johan G.; Farmaki, Aliki-Eleni; Farrall, Martin; Ferreira, Teresa; Fischer, Krista; Forouhi, Nita G.; Friedrich, Nele; Gjesing, Anette Prior; Glorioso, Nicola; Graff, Mariaelisa; Grallert, Harald; Grarup, Niels; Gräßler, Jürgen; Grewal, Jagvir; Hamsten, Anders; Harder, Marie Neergaard; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew Tym; Havulinna, Aki S.; Heliövaara, Markku; Hillege, Hans; Hofman, Albert; Holmen, Oddgeir; Homuth, Georg; Hottenga, Jouke-Jan; Hui, Jennie; Husemoen, Lise Lotte; Hysi, Pirro G.; Isaacs, Aaron; Ittermann, Till; Jalilzadeh, Shapour; James, Alan L.; Jørgensen, Torben; Jousilahti, Pekka; Jula, Antti; Marie Justesen, Johanne; Justice, Anne E.; Kähönen, Mika; Karaleftheri, Maria; Tee Khaw, Kay; Keinanen-Kiukaanniemi, Sirkka M.; Kinnunen, Leena; Knekt, Paul B.; Koistinen, Heikki A.; Kolcic, Ivana; Kooner, Ishminder K.; Koskinen, Seppo; Kovacs, Peter; Kyriakou, Theodosios; Laitinen, Tomi; Langenberg, Claudia; Lewin, Alexandra M.; Lichtner, Peter; Lindgren, Cecilia M.; Lindström, Jaana; Linneberg, Allan; Lorbeer, Roberto; Lorentzon, Mattias; Luben, Robert; Lyssenko, Valeriya; Männistö, Satu; Manunta, Paolo; Leach, Irene Mateo; McArdle, Wendy L.; Mcknight, Barbara; Mohlke, Karen L.; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Montasser, May E.; Morris, Andrew P.; Müller, Gabriele; Musk, Arthur W.; Narisu, Narisu; Ong, Ken K.; Oostra, Ben A.; Osmond, Clive; Palotie, Aarno; Pankow, James S.; Paternoster, Lavinia; Penninx, Brenda W.; Pichler, Irene; Pilia, Maria G.; Polašek, Ozren; Pramstaller, Peter P.; Raitakari, Olli T; Rankinen, Tuomo; Rao, D. C.; Rayner, Nigel W.; Ribel-Madsen, Rasmus; Rice, Treva K.; Richards, Marcus; Ridker, Paul M.; Rivadeneira, Fernando; Ryan, Kathy A.; Sanna, Serena; Sarzynski, Mark A.; Scholtens, Salome; Scott, Robert A.; Sebert, Sylvain; Southam, Lorraine; Sparsø, Thomas Hempel; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Stolk, Ronald P.; Strauch, Konstantin; Stringham, Heather M.; Swertz, Morris A.; Swift, Amy J.; Tönjes, Anke; Tsafantakis, Emmanouil; van der Most, Peter J.; Van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Vartiainen, Erkki; Venturini, Cristina; Verweij, Niek; Viikari, Jorma S.; Vitart, Veronique; Vohl, Marie-Claude; Vonk, Judith M.; Waeber, Gérard; Widén, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Winkler, Thomas W.; Wright, Alan F.; Yerges-Armstrong, Laura M.; Hua Zhao, Jing; Carola Zillikens, M.; Boomsma, Dorret I.; Bouchard, Claude; Chambers, John C.; Chasman, Daniel I.; Cusi, Daniele; Gansevoort, Ron T.; Gieger, Christian; Hansen, Torben; Hicks, Andrew A.; Hu, Frank; Hveem, Kristian; Jarvelin, Marjo-Riitta; Kajantie, Eero; Kooner, Jaspal S.; Kuh, Diana; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A.; Lehtimäki, Terho; Metspalu, Andres; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Palmer, Lyle J.; Pedersen, Oluf; Perola, Markus; Peters, Annette; Psaty, Bruce M.; Puolijoki, Hannu; Rauramaa, Rainer; Rudan, Igor; Salomaa, Veikko; Schwarz, Peter E. H.; Shudiner, Alan R.; Smit, Jan H.; Sørensen, Thorkild I. A.; Spector, Timothy D.; Stefansson, Kari; Stumvoll, Michael; Tremblay, Angelo; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; Völker, Uwe; Vollenweider, Peter; Wareham, Nicholas J.; Watkins, Hugh; Wilson, James F.; Zeggini, Eleftheria; Abecasis, Goncalo R.; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; van Duijn, Cornelia M.; Fox, Caroline; Groop, Leif C.; Heid, Iris M.; Hunter, David J.; Kaplan, Robert C.; McCarthy, Mark I.; North, Kari E.; O'Connell, Jeffrey R.; Schlessinger, David; Thorsteinsdottir, Unnur; Strachan, David P.; Frayling, Timothy; Hirschhorn, Joel N.; Müller-Nurasyid, Martina; Loos, Ruth J. F.

    2016-01-01

    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways. PMID:27876822

  12. Global habitat suitability for framework-forming cold-water corals.

    Directory of Open Access Journals (Sweden)

    Andrew J Davies

    Full Text Available Predictive habitat models are increasingly being used by conservationists, researchers and governmental bodies to identify vulnerable ecosystems and species' distributions in areas that have not been sampled. However, in the deep sea, several limitations have restricted the widespread utilisation of this approach. These range from issues with the accuracy of species presences, the lack of reliable absence data and the limited spatial resolution of environmental factors known or thought to control deep-sea species' distributions. To address these problems, global habitat suitability models have been generated for five species of framework-forming scleractinian corals by taking the best available data and using a novel approach to generate high resolution maps of seafloor conditions. High-resolution global bathymetry was used to resample gridded data from sources such as World Ocean Atlas to produce continuous 30-arc second (∼1 km(2 global grids for environmental, chemical and physical data of the world's oceans. The increased area and resolution of the environmental variables resulted in a greater number of coral presence records being incorporated into habitat models and higher accuracy of model predictions. The most important factors in determining cold-water coral habitat suitability were depth, temperature, aragonite saturation state and salinity. Model outputs indicated the majority of suitable coral habitat is likely to occur on the continental shelves and slopes of the Atlantic, South Pacific and Indian Oceans. The North Pacific has very little suitable scleractinian coral habitat. Numerous small scale features (i.e., seamounts, which have not been sampled or identified as having a high probability of supporting cold-water coral habitat were identified in all ocean basins. Field validation of newly identified areas is needed to determine the accuracy of model results, assess the utility of modelling efforts to identify vulnerable marine

  13. A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity

    Energy Technology Data Exchange (ETDEWEB)

    Scolozzi, Rocco, E-mail: rocco.scolozzi@fmach.it [Sustainable Agro-ecosystems and Bioresources Department, IASMA Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all& #x27; Adige, (Italy); Geneletti, Davide, E-mail: geneletti@ing.unitn.it [Department of Civil and Environmental Engineering, University of Trento, Trento (Italy)

    2012-09-15

    Habitat loss and fragmentation are often concurrent to land conversion and urbanization. Simple application of GIS-based landscape pattern indicators may be not sufficient to support meaningful biodiversity impact assessment. A review of the literature reveals that habitat definition and habitat fragmentation are frequently inadequately considered in environmental assessment, notwithstanding the increasing number of tools and approaches reported in the landscape ecology literature. This paper presents an approach for assessing impacts on habitats on a local scale, where availability of species data is often limited, developed for an alpine valley in northern Italy. The perspective of the methodology is multiple scale and species-oriented, and provides both qualitative and quantitative definitions of impact significance. A qualitative decision model is used to assess ecological values in order to support land-use decisions at the local level. Building on recent studies in the same region, the methodology integrates various approaches, such as landscape graphs, object-oriented rule-based habitat assessment and expert knowledge. The results provide insights into future habitat loss and fragmentation caused by land-use changes, and aim at supporting decision-making in planning and suggesting possible ecological compensation. - Highlights: Black-Right-Pointing-Pointer Many environmental assessments inadequately consider habitat loss and fragmentation. Black-Right-Pointing-Pointer Species-perspective for defining habitat quality and connectivity is claimed. Black-Right-Pointing-Pointer Species-based tools are difficult to be applied with limited availability of data. Black-Right-Pointing-Pointer We propose a species-oriented and multiple scale-based qualitative approach. Black-Right-Pointing-Pointer Advantages include being species-oriented and providing value-based information.

  14. A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity

    International Nuclear Information System (INIS)

    Scolozzi, Rocco; Geneletti, Davide

    2012-01-01

    Habitat loss and fragmentation are often concurrent to land conversion and urbanization. Simple application of GIS-based landscape pattern indicators may be not sufficient to support meaningful biodiversity impact assessment. A review of the literature reveals that habitat definition and habitat fragmentation are frequently inadequately considered in environmental assessment, notwithstanding the increasing number of tools and approaches reported in the landscape ecology literature. This paper presents an approach for assessing impacts on habitats on a local scale, where availability of species data is often limited, developed for an alpine valley in northern Italy. The perspective of the methodology is multiple scale and species-oriented, and provides both qualitative and quantitative definitions of impact significance. A qualitative decision model is used to assess ecological values in order to support land-use decisions at the local level. Building on recent studies in the same region, the methodology integrates various approaches, such as landscape graphs, object-oriented rule-based habitat assessment and expert knowledge. The results provide insights into future habitat loss and fragmentation caused by land-use changes, and aim at supporting decision-making in planning and suggesting possible ecological compensation. - Highlights: ► Many environmental assessments inadequately consider habitat loss and fragmentation. ► Species-perspective for defining habitat quality and connectivity is claimed. ► Species-based tools are difficult to be applied with limited availability of data. ► We propose a species-oriented and multiple scale-based qualitative approach. ► Advantages include being species-oriented and providing value-based information.

  15. Mapping anuran habitat suitability to estimate effects of grassland and wetland conservation programs

    Science.gov (United States)

    Mushet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    The conversion of the Northern Great Plains of North America to a landscape favoring agricultural commodity production has negatively impacted wildlife habitats. To offset impacts, conservation programs have been implemented by the U.S. Department of Agriculture and other agencies to restore grassland and wetland habitat components. To evaluate effects of these efforts on anuran habitats, we used call survey data and environmental data in ecological niche factor analyses implemented through the program Biomapper to quantify habitat suitability for five anuran species within a 196 km2 study area. Our amphibian call surveys identified Northern Leopard Frogs (Lithobates pipiens), Wood Frogs (Lithobates sylvaticus), Boreal Chorus Frogs (Pseudacris maculata), Great Plains Toads (Anaxyrus cognatus), and Woodhouse’s Toads (Anaxyrus woodhousii) occurring within the study area. Habitat suitability maps developed for each species revealed differing patterns of suitable habitat among species. The most significant findings of our mapping effort were 1) the influence of deep-water overwintering wetlands on suitable habitat for all species encountered except the Boreal Chorus Frog; 2) the lack of overlap between areas of core habitat for both the Northern Leopard Frog and Wood Frog compared to the core habitat for both toad species; and 3) the importance of conservation programs in providing grassland components of Northern Leopard Frog and Wood Frog habitat. The differences in habitats suitable for the five species we studied in the Northern Great Plains, i.e., their ecological niches, highlight the importance of utilizing an ecosystem based approach that considers the varying needs of multiple species in the development of amphibian conservation and management plans.

  16. Using multiscale spatial models to assess potential surrogate habitat for an imperiled reptile.

    Directory of Open Access Journals (Sweden)

    Jennifer M Fill

    Full Text Available In evaluating conservation and management options for species, practitioners might consider surrogate habitats at multiple scales when estimating available habitat or modeling species' potential distributions based on suitable habitats, especially when native environments are rare. Species' dependence on surrogates likely increases as optimal habitat is degraded and lost due to anthropogenic landscape change, and thus surrogate habitats may be vital for an imperiled species' survival in highly modified landscapes. We used spatial habitat models to examine a potential surrogate habitat for an imperiled ambush predator (eastern diamondback rattlesnake, Crotalus adamanteus; EDB at two scales. The EDB is an apex predator indigenous to imperiled longleaf pine ecosystems (Pinus palustris of the southeastern United States. Loss of native open-canopy pine savannas and woodlands has been suggested as the principal cause of the species' extensive decline. We examined EDB habitat selection in the Coastal Plain tidewater region to evaluate the role of marsh as a potential surrogate habitat and to further quantify the species' habitat requirements at two scales: home range (HR and within the home range (WHR. We studied EDBs using radiotelemetry and employed an information-theoretic approach and logistic regression to model habitat selection as use vs.We failed to detect a positive association with marsh as a surrogate habitat at the HR scale; rather, EDBs exhibited significantly negative associations with all landscape patches except pine savanna. Within home range selection was characterized by a negative association with forest and a positive association with ground cover, which suggests that EDBs may use surrogate habitats of similar structure, including marsh, within their home ranges. While our HR analysis did not support tidal marsh as a surrogate habitat, marsh may still provide resources for EDBs at smaller scales.

  17. A chimera grid scheme. [multiple overset body-conforming mesh system for finite difference adaptation to complex aircraft configurations

    Science.gov (United States)

    Steger, J. L.; Dougherty, F. C.; Benek, J. A.

    1983-01-01

    A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.

  18. Matrix Intensification Affects Body and Physiological Condition of Tropical Forest-Dependent Passerines.

    Science.gov (United States)

    Deikumah, Justus P; McAlpine, Clive A; Maron, Martine

    2015-01-01

    Matrix land-use intensification is a relatively recent and novel landscape change that can have important influences on the biota within adjacent habitat patches. While there are immediate local changes that it brings about, the influences on individual animals occupying adjacent habitats may be less evident initially. High-intensity land use could induce chronic stress in individuals in nearby remnants, leading ultimately to population declines. We investigated how physiological indicators and body condition measures of tropical forest-dependent birds differ between forest adjacent to surface mining sites and that near farmlands at two distances from remnant edge in southwest Ghana. We used mixed effects models of several condition indices including residual body mass and heterophil to lymphocyte (H/L) ratios (an indicator of elevated chronic stress) to explore the effect of matrix intensity on forest-dependent passerines classed as either sedentary area-sensitive habitat specialists or nomadic generalists. Individual birds occupying tropical forest remnants near surface mining sites were in poorer condition, as indicated by lower residual body mass and elevated chronic stress, compared to those in remnants near agricultural lands. The condition of the sedentary forest habitat specialists white-tailed alethe, Alethe diademata and western olive sunbird, Cyanomitra obscura was most negatively affected by high-intensity surface mining land-use adjacent to remnants, whereas generalist species were not affected. Land use intensification may set in train a new trajectory of faunal relaxation beyond that expected based on habitat loss alone. Patterns of individual condition may be useful in identifying habitats where species population declines may occur before faunal relaxation has concluded.

  19. The Habitat Connection.

    Science.gov (United States)

    Naturescope, 1987

    1987-01-01

    Consists of activities which address the causes of habitat destruction and the effects of habitat loss on animals and plants. Identifies habitat loss as the major reason for the endangerment and extinction of plant and animal species. (ML)

  20. Non-trauma-associated additional findings in whole-body CT examinations in patients with multiple trauma

    International Nuclear Information System (INIS)

    Hoffstetter, P.; Herold, T.; Daneschnejad, M.; Zorger, N.; Jung, E.M.; Feuerbach, S.; Schreyer, A.G.

    2008-01-01

    Purpose: whole-body CT scans for patients with multiple trauma represent an increasingly accepted first diagnostic tool. The multidetector approach in particular provides appropriate diagnostic algorithms for detecting nearly all relevant traumatic findings in a short time with a high grade of sensitivity and specificity. Non-trauma-associated additional findings are commonly depicted based on these CT examinations. The aim of this study is to evaluate the number and quality of these additional findings in consecutive patients with multiple trauma. Materials and methods: between 3/04 and 8/06 we scanned 304 patients according to our dedicated multiple trauma protocol. The examination protocol includes a head scan without intravenous contrast followed by a whole-body scan including the neck, thorax and abdomen acquired by a 16-row CT Scanner (Siemens, Sensation 16). The CT scans were retrospectively analyzed by two radiologists with respect to non-trauma-associated findings. Lesions were assessed according to their clinical relevance (highly relevant, moderately relevant, not relevant). For patients with highly relevant findings, additional follow-up research was performed. Results: The average age was 43 years (range 3 - 92). 236 of the patients were male (77.6%), 68 female (22.4%). 153 patients (50.3%) had additional non-trauma-associated findings. In 20 cases (6.6%) lesions with high clinical relevance were detected (e.g. carcinoma of the kidney or the ovary). In 71 patients (23.4%) findings with moderate relevance were described. In 63 patients (20.7%) additional findings without major relevance were diagnosed. Conclusion: Whole-body CT scans of patients randomized by a trauma show a considerable number of non-trauma-associated additional findings. In about 30% of cases, these findings are clinically relevant because further diagnostic workup or treatment in the short or medium-term is needed. The results of these analyses emphasize the diagnostic value of CT

  1. Measurement of the carrying capacity of benthic habitats using a metabolic-rate based index.

    Science.gov (United States)

    Edgar, G J

    1993-03-01

    Carrying capacities of grazed habitats are typically expressed as numbers or biomass of animals per unit area; however, such parameters are appropriate only when the body size of animals is constant because consumption and other metabolic-rate based parameters such as respiration and production are proportional to body mass raised by a power of ≈0.75 rather than 0 or 1. Habitat carrying levels are therefore better expressed in the form of an index of total community consumption by summing the body masses of individual animals after they have been scaled using a biomass exponent of ≈0.75. A parameter scaled in this way,P 20 , varied in a predictable manner when calculated for the mobile epifaunal assemblages associated with rope fibre habitats placed at marine and estuarine sites;P 20 showed no significant difference between 17 shallow, clear-water sites worldwide, but declined consistently when photosynthesis was reduced.P 20 also did not vary significantly when calculated for the mobile epifaunal communities associated with fourAmphibolis antarctica seagrass habitats in Australia ([Formula: see text] = 100 µg ·g -1 · day -1 ), and reached but did not significantly exceed a ceiling of ≈280 μg · g -1 · day -1 forSargassum plants. These results are consistent with the hypothesis that the production of shallow-water epifaunal communities of grazers is constrained by resource ceilings which can be quantified using metabolic-rate based indices. If this "production ceiling" hypothesis is correct then diffuse competition is generally more important than predation or environmental disturbance in restricting the growth of mobile epifaunal populations.

  2. Body condition of Morelet’s Crocodiles (Crocodylus moreletii) from northern Belize

    Science.gov (United States)

    Mazzotti, Frank J.; Cherkiss, Michael S.; Brandt, Laura A.; Fujisaki, Ikuko; Hart, Kristen; Jeffery, Brian; McMurry, Scott T.; Platt, Steven G.; Rainwater, Thomas R.; Vinci, Joy

    2012-01-01

    Body condition factors have been used as an indicator of health and well-being of crocodilians. We evaluated body condition of Morelet's Crocodiles (Crocodylus moreletii) in northern Belize in relation to biotic (size, sex, and habitat) and abiotic (location, water level, and air temperature) factors. We also tested the hypothesis that high water levels and warm temperatures combine or interact to result in a decrease in body condition. Size class, temperature, and water level explained 20% of the variability in condition of Morelet's Crocodiles in this study. We found that adult crocodiles had higher condition scores than juveniles/subadults but that sex, habitat, and site had no effect. We confirmed our hypothesis that warm temperatures and high water levels interact to decrease body condition. We related body condition of Morelet's Crocodiles to natural fluctuations in air temperatures and water levels in northern Belize, providing baseline conditions for population and ecosystem monitoring.

  3. Habitat characteristics provide insights of carbon storage in seagrass meadows

    KAUST Repository

    Mazarrasa, Inés

    2018-02-17

    Seagrass meadows provide multiple ecosystem services, yet they are among the most threatened ecosystems on earth. Because of their role as carbon sinks, protection and restoration of seagrass meadows contribute to climate change mitigation. Blue Carbon strategies aim to enhance CO2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding of the habitat characteristics that influence Corg sequestration. Here, we review the existing knowledge on Blue Carbon research in seagrass meadows to identify the key habitat characteristics that influence Corg sequestration in seagrass meadows, those factors that threaten this function and those with unclear effects. We demonstrate that not all seagrass habitats have the same potential, identify research priorities and describe the implications of the results found for the implementation and development of efficient Blue Carbon strategies based on seagrass meadows.

  4. Effect of body size and temperature on respiration of Galaxias maculatus (Pisces: Galaxiidae)

    Science.gov (United States)

    Milano, D.; Vigliano, P.H.; Beauchamp, David A.

    2017-01-01

    Body mass and temperature are primary determinants of metabolic rate in ectothermic animals. Oxygen consumption of post-larval Galaxias maculatus was measured in respirometry trials under different temperatures (5–21°C) and varying body masses (0.1–>1.5 g) spanning a relevant range of thermal conditions and sizes. Specific respiration rates (R in g O2 g−1 d−1) declined as a power function of body mass and increased exponentially with temperature and was expressed as: R = 0.0007 * W −0.31 * e 0.13 * T. The ability of this model to predict specific respiration rate was evaluated by comparing observed values with those predicted by the model. Our findings suggest that the respiration rate of G. maculatus is the result of multiple interactive processes (intrinsic and extrinsic factors) that modulate each other in ‘meta-mechanistic’ ways; this would help to explain the species’ ability to undergo the complex ontogenetic habitat shifts observed in the lakes of the Andean Patagonic range.

  5. Wyoming greater sage-grouse habitat prioritization: A collection of multi-scale seasonal models and geographic information systems land management tools

    Science.gov (United States)

    O'Donnell, Michael S.; Aldridge, Cameron L.; Doherty, Kevin E.; Fedy, Bradley C.

    2015-01-01

    With rapidly changing landscape conditions within Wyoming and the potential effects of landscape changes on sage-grouse habitat, land managers and conservation planners, among others, need procedures to assess the location and juxtaposition of important habitats, land-cover, and land-use patterns to balance wildlife requirements with multiple human land uses. Biologists frequently develop habitat-selection studies to identify prioritization efforts for species of conservation concern to increase understanding and help guide habitat-conservation efforts. Recently, the authors undertook a large-scale collaborative effort that developed habitat-selection models for Greater Sage-grouse (Centrocercus urophasianus) across large landscapes in Wyoming, USA and for multiple life-stages (nesting, late brood-rearing, and winter). We developed these habitat models using resource selection functions, based upon sage-grouse telemetry data collected for localized studies and within each life-stage. The models allowed us to characterize and spatially predict seasonal sage-grouse habitat use in Wyoming. Due to the quantity of models, the diversity of model predictors (in the form of geographic information system data) produced by analyses, and the variety of potential applications for these data, we present here a resource that complements our published modeling effort, which will further support land managers.

  6. Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems.

    Science.gov (United States)

    Dirnböck, Thomas; Djukic, Ika; Kitzler, Barbara; Kobler, Johannes; Mol-Dijkstra, Janet P; Posch, Max; Reinds, Gert Jan; Schlutow, Angela; Starlinger, Franz; Wamelink, Wieger G W

    2017-01-01

    Climate change and excess deposition of airborne nitrogen (N) are among the main stressors to floristic biodiversity. One particular concern is the deterioration of valuable habitats such as those protected under the European Habitat Directive. In future, climate-driven shifts (and losses) in the species potential distribution, but also N driven nutrient enrichment may threaten these habitats. We applied a dynamic geochemical soil model (VSD+) together with a novel niche-based plant response model (PROPS) to 5 forest habitat types (18 forest sites) protected under the EU Directive in Austria. We assessed how future climate change and N deposition might affect habitat suitability, defined as the capacity of a site to host its typical plant species. Our evaluation indicates that climate change will be the main driver of a decrease in habitat suitability in the future in Austria. The expected climate change will increase the occurrence of thermophilic plant species while decreasing cold-tolerant species. In addition to these direct impacts, climate change scenarios caused an increase of the occurrence probability of oligotrophic species due to a higher N immobilisation in woody biomass leading to soil N depletion. As a consequence, climate change did offset eutrophication from N deposition, even when no further reduction in N emissions was assumed. Our results show that climate change may have positive side-effects in forest habitats when multiple drivers of change are considered.

  7. Improvisation and the self-organization of multiple musical bodies.

    Directory of Open Access Journals (Sweden)

    Ashley eWalton

    2015-04-01

    Full Text Available Understanding everyday behavior relies heavily upon understanding our ability to improvise, how we are able to continuously anticipate and adapt in order to coordinate with our environment and others. Here we consider the ability of musicians to improvise, where they must spontaneously coordinate their actions with co-performers in order to produce novel musical expressions. Investigations of this behavior have traditionally focused on describing the organization of cognitive structures. The focus, here, however, is on the ability of the time-evolving patterns of inter-musician movement coordination as revealed by the mathematical tools of complex dynamical systems to provide a new understanding of what potentiates the novelty of spontaneous musical action. We demonstrate this approach through the application of cross wavelet spectral analysis, which isolates the strength and patterning of the behavioral coordination that occurs between improvising musicians across a range of nested time-scales. Revealing the sophistication of the previously unexplored dynamics of movement coordination between improvising musicians is an important step towards understanding how creative musical expressions emerge from the spontaneous coordination of multiple musical bodies.

  8. Improvisation and the self-organization of multiple musical bodies.

    Science.gov (United States)

    Walton, Ashley E; Richardson, Michael J; Langland-Hassan, Peter; Chemero, Anthony

    2015-01-01

    Understanding everyday behavior relies heavily upon understanding our ability to improvise, how we are able to continuously anticipate and adapt in order to coordinate with our environment and others. Here we consider the ability of musicians to improvise, where they must spontaneously coordinate their actions with co-performers in order to produce novel musical expressions. Investigations of this behavior have traditionally focused on describing the organization of cognitive structures. The focus, here, however, is on the ability of the time-evolving patterns of inter-musician movement coordination as revealed by the mathematical tools of complex dynamical systems to provide a new understanding of what potentiates the novelty of spontaneous musical action. We demonstrate this approach through the application of cross wavelet spectral analysis, which isolates the strength and patterning of the behavioral coordination that occurs between improvising musicians across a range of nested time-scales. Revealing the sophistication of the previously unexplored dynamics of movement coordination between improvising musicians is an important step toward understanding how creative musical expressions emerge from the spontaneous coordination of multiple musical bodies.

  9. Freshwater ecosystems and resilience of Pacific salmon: Habitat Management based on natural variability

    Science.gov (United States)

    Bisson, P.A.; Dunham, J.B.; Reeves, G.H.

    2009-01-01

    In spite of numerous habitat restoration programs in fresh waters with an aggregate annual funding of millions of dollars, many populations of Pacific salmon remain significantly imperiled. Habitat restoration strategies that address limited environmental attributes and partial salmon life-history requirements or approaches that attempt to force aquatic habitat to conform to idealized but ecologically unsustainable conditions may partly explain this lack of response. Natural watershed processes generate highly variable environmental conditions and population responses, i.e., multiple life histories, that are often not considered in restoration. Examples from several locations underscore the importance of natural variability to the resilience of Pacific salmon. The implication is that habitat restoration efforts will be more likely to foster salmon resilience if they consider processes that generate and maintain natural variability in fresh water. We identify three specific criteria for management based on natural variability: the capacity of aquatic habitat to recover from disturbance, a range of habitats distributed across stream networks through time sufficient to fulfill the requirements of diverse salmon life histories, and ecological connectivity. In light of these considerations, we discuss current threats to habitat resilience and describe how regulatory and restoration approaches can be modified to better incorporate natural variability. ?? 2009 by the author(s).

  10. Freshwater Ecosystems and Resilience of Pacific Salmon: Habitat Management Based on Natural Variability

    Directory of Open Access Journals (Sweden)

    Peter A. Bisson

    2009-06-01

    Full Text Available In spite of numerous habitat restoration programs in fresh waters with an aggregate annual funding of millions of dollars, many populations of Pacific salmon remain significantly imperiled. Habitat restoration strategies that address limited environmental attributes and partial salmon life-history requirements or approaches that attempt to force aquatic habitat to conform to idealized but ecologically unsustainable conditions may partly explain this lack of response. Natural watershed processes generate highly variable environmental conditions and population responses, i.e., multiple life histories, that are often not considered in restoration. Examples from several locations underscore the importance of natural variability to the resilience of Pacific salmon. The implication is that habitat restoration efforts will be more likely to foster salmon resilience if they consider processes that generate and maintain natural variability in fresh water. We identify three specific criteria for management based on natural variability: the capacity of aquatic habitat to recover from disturbance, a range of habitats distributed across stream networks through time sufficient to fulfill the requirements of diverse salmon life histories, and ecological connectivity. In light of these considerations, we discuss current threats to habitat resilience and describe how regulatory and restoration approaches can be modified to better incorporate natural variability.

  11. Habitat use by larval fishes in a temperate South African surf zone

    Science.gov (United States)

    Watt-Pringle, Peter; Strydom, Nadine A.

    2003-12-01

    Larval fishes were sampled in the Kwaaihoek surf zone on the south east coast of South Africa. On six occasions between February and May 2002, larval fishes were collected in two habitat types identified in the inner surf zone using a modified beach-seine net. The surf zone habitats were classified as either sheltered trough areas or adjacent exposed surf areas. Temperature, depth and current measurements were taken at all sites. Trough habitats consisted of a depression in surf topography characterised by reduced current velocities and greater average depth than adjacent surf areas. In total, 325 larval fishes were collected. Of these, 229 were collected in trough and 96 in surf habitats. At least 22 families and 37 species were represented in the catch. Dominant families were the Mugilidae, Sparidae, Atherinidae, and Engraulidae. Dominant species included Liza tricuspidens and Liza richardsonii (Mugilidae), Rhabdosargus holubi and Sarpa salpa (Sparidae), Atherina breviceps (Atherinidae) and Engraulis japonicus (Engraulide). Mean CPUE of postflexion larvae of estuary-dependent species was significantly greater in trough areas. The proportion of postflexion larval fishes in trough habitat was significantly greater than that of preflexion stages, a result that was not apparent in surf habitat sampled. CPUE of postflexion larvae of estuary-dependent fishes was negatively correlated with current magnitude and positively correlated with habitat depth. Mean body length of larval fishes was significantly greater in trough than in surf habitats. These results provide evidence that the CPUE of postflexion larvae of estuary-dependent fishes is higher in trough habitat in the surf zone and this may be indicative of active habitat selection for areas of reduced current velocity/wave action. The implications of this behaviour for estuarine recruitment processes are discussed.

  12. Persistence at distributional edges: Columbia spotted frog habitat in the arid Great Basin, USA.

    Science.gov (United States)

    Arkle, Robert S; Pilliod, David S

    2015-09-01

    A common challenge in the conservation of broadly distributed, yet imperiled species is understanding which factors facilitate persistence at distributional edges, locations where populations are often vulnerable to extirpation due to changes in climate, land use, or distributions of other species. For Columbia spotted frogs (Rana luteiventris) in the Great Basin (USA), a genetically distinct population segment of conservation concern, we approached this problem by examining (1) landscape-scale habitat availability and distribution, (2) water body-scale habitat associations, and (3) resource management-identified threats to persistence. We found that areas with perennial aquatic habitat and suitable climate are extremely limited in the southern portion of the species' range. Within these suitable areas, native and non-native predators (trout and American bullfrogs [Lithobates catesbeianus]) are widespread and may further limit habitat availability in upper- and lower-elevation areas, respectively. At the water body scale, spotted frog occupancy was associated with deeper sites containing abundant emergent vegetation and nontrout fish species. Streams with American beaver (Castor canadensis) frequently had these structural characteristics and were significantly more likely to be occupied than ponds, lakes, streams without beaver, or streams with inactive beaver ponds, highlighting the importance of active manipulation of stream environments by beaver. Native and non-native trout reduced the likelihood of spotted frog occupancy, especially where emergent vegetation cover was sparse. Intensive livestock grazing, low aquatic connectivity, and ephemeral hydroperiods were also negatively associated with spotted frog occupancy. We conclude that persistence of this species at the arid end of its range has been largely facilitated by habitat stability (i.e., permanent hydroperiod), connectivity, predator-free refugia, and a commensalistic interaction with an ecosystem

  13. Does size matter? An investigation of habitat use across a carnivore assemblage in the Serengeti, Tanzania.

    Science.gov (United States)

    Durant, Sarah M; Craft, Meggan E; Foley, Charles; Hampson, Katie; Lobora, Alex L; Msuha, Maurus; Eblate, Ernest; Bukombe, John; McHetto, John; Pettorelli, Nathalie

    2010-09-01

    1. This study utilizes a unique data set covering over 19 000 georeferenced records of species presence collected between 1993 and 2008, to explore the distribution and habitat selectivity of an assemblage of 26 carnivore species in the Serengeti-Ngorongoro landscape in northern Tanzania. 2. Two species, the large-spotted genet and the bushy-tailed mongoose, were documented for the first time within this landscape. Ecological Niche Factor Analysis (ENFA) was used to examine habitat selectivity for 18 of the 26 carnivore species for which there is sufficient data. Eleven ecogeographical variables (EGVs), such as altitude and habitat type, were used for these analyses. 3. The ENFA demonstrated that species differed in their habitat selectivity, and supported the limited ecological information already available for these species, such as the golden jackals' preference for grassland and the leopards' preference for river valleys. 4. Two aggregate scores, marginality and tolerance, are generated by the ENFA, and describe each species' habitat selectivity in relation to the suite of EGVs. These scores were used to test the hypothesis that smaller species are expected to be more selective than larger species [Science, 1989, 243, 1145]. Two predictions were tested: Marginality should decrease with body mass; and tolerance should increase with body mass. Our study provided no evidence for either prediction. 5. Our results not only support previous analyses of carnivore diet breadth, but also represent a novel approach to the investigation of habitat selection across species assemblages. Our method provides a powerful tool to explore similar questions in other systems and for other taxa.

  14. Les nouvelles formes de l'habitat rural de l'îlot domestique à la ...

    African Journals Online (AJOL)

    Dans la vallée du Saf-Saf et durant ces cinq dernières décennies, l'habitat rural a connu des transformations importantes en raison des multiples actions qui ont été entreprises soit par les pouvoirs publics soit par la société rurale elle-même. En considérant l'habitat rural, qui ne cesse de se développer, comme élément ...

  15. Evaluating Anthropogenic Risk of Grassland and Forest Habitat Degradation using Land-Cover Data

    Directory of Open Access Journals (Sweden)

    Kurt Riitters

    2009-09-01

    Full Text Available The effects of landscape context on habitat quality are receiving increased attention in conservation biology. The objective of this research is to demonstrate a landscape-level approach to mapping and evaluating the anthropogenic risks of grassland and forest habitat degradation by examining habitat context as defined by intensive anthropogenic land uses at multiple spatial scales. A landscape mosaic model classifies a given location according to the amounts of intensive agriculture and intensive development in its surrounding landscape, providing measures of anthropogenic risks attributable to habitat isolation and edge effects at that location. The model is implemented using a land-cover map (0.09 ha/pixel of the conterminous United States and six landscape sizes (4.4, 15.2, 65.6, 591, 5300, and 47800 ha to evaluate the spatial scales of anthropogenic risk. Statistics for grassland and forest habitat are extracted by geographic overlays of the maps of land-cover and landscape mosaics. Depending on landscape size, 81 to 94 percent of all grassland and forest habitat occurs in landscapes that are dominated by natural land-cover including habitat itself. Within those natural-dominated landscapes, 50 percent of grassland and 59 percent of forest is within 590 m of intensive agriculture and/or intensive developed land which is typically a minor component of total landscape area. The conclusion is that anthropogenic risk attributable to habitat patch isolation affects a small proportion of the total grassland or forest habitat area, while the majority of habitat area is exposed to edge effects.

  16. From ground pools to treeholes: convergent evolution of habitat and phenotype in Aedes mosquitoes.

    Science.gov (United States)

    Soghigian, John; Andreadis, Theodore G; Livdahl, Todd P

    2017-12-19

    Invasive mosquito species are responsible for millions of vector-borne disease cases annually. The global invasive success of Aedes mosquitoes such as Aedes aegypti and Aedes albopictus has relied on the human transport of immature stages in container habitats. However, despite the importance of these mosquitoes and this ecological specialization to their widespread dispersal, evolution of habitat specialization in this group has remained largely unstudied. We use comparative methods to evaluate the evolution of habitat specialization and its potential influence on larval morphology, and evaluate whether container dwelling and invasiveness are monophyletic in Aedes. We show that habitat specialization has evolved repeatedly from ancestral ground pool usage to specialization in container habitats. Furthermore, we find that larval morphological scores are significantly associated with larval habitat when accounting for evolutionary relationships. We find that Ornstein-Uhleinbeck models with unique optima for each larval habitat type are preferred over several other models based predominantly on neutral processes, and that OU models can reliably simulate real morphological data. Our results demonstrate that multiple lineages of Aedes have convergently evolved a key trait associated with invasive success: the use of container habitats for immature stages. Moreover, our results demonstrate convergence in morphological characteristics as well, and suggest a role of adaptation to habitat specialization in driving phenotypic diversity in this mosquito lineage. Finally, our results highlight that the genus Aedes is not monophyletic.

  17. Adaptation to ephemeral habitat may overcome natural barriers and severe habitat fragmentation in a fire-dependent species, the Bachman's Sparrow (Peucaea aestivalis).

    Science.gov (United States)

    Cerame, Blain; Cox, James A; Brumfield, Robb T; Tucker, James W; Taylor, Sabrina S

    2014-01-01

    Bachman's Sparrow (Peucaea aestivalis) is a fire-dependent species that has undergone range-wide population declines in recent decades. We examined genetic diversity in Bachman's Sparrows to determine whether natural barriers have led to distinct population units and to assess the effect of anthropogenic habitat loss and fragmentation. Genetic diversity was examined across the geographic range by genotyping 226 individuals at 18 microsatellite loci and sequencing 48 individuals at mitochondrial and nuclear genes. Multiple analyses consistently demonstrated little genetic structure and high levels of genetic variation, suggesting that populations are panmictic. Based on these genetic data, separate management units/subspecies designations or translocations to promote gene flow among fragmented populations do not appear to be necessary. Panmixia in Bachman's Sparrow may be a consequence of an historical range expansion and retraction. Alternatively, high vagility in Bachman's Sparrow may be an adaptation to the ephemeral, fire-mediated habitat that this species prefers. In recent times, high vagility also appears to have offset inbreeding and loss of genetic diversity in highly fragmented habitat.

  18. Habitat heterogeneity and connectivity shape microbial communities in South American peatlands.

    Science.gov (United States)

    Oloo, Felix; Valverde, Angel; Quiroga, María Victoria; Vikram, Surendra; Cowan, Don; Mataloni, Gabriela

    2016-05-10

    Bacteria play critical roles in peatland ecosystems. However, very little is known of how habitat heterogeneity affects the structure of the bacterial communities in these ecosystems. Here, we used amplicon sequencing of the 16S rRNA and nifH genes to investigate phylogenetic diversity and bacterial community composition in three different sub-Antarctic peat bog aquatic habitats: Sphagnum magellanicum interstitial water, and water from vegetated and non-vegetated pools. Total and putative nitrogen-fixing bacterial communities from Sphagnum interstitial water differed significantly from vegetated and non-vegetated pool communities (which were colonized by the same bacterial populations), probably as a result of differences in water chemistry and biotic interactions. Total bacterial communities from pools contained typically aquatic taxa, and were more dissimilar in composition and less species rich than those from Sphagnum interstitial waters (which were enriched in taxa typically from soils), probably reflecting the reduced connectivity between the former habitats. These results show that bacterial communities in peatland water habitats are highly diverse and structured by multiple concurrent factors.

  19. Habitat heterogeneity and connectivity shape microbial communities in South American peatlands

    Science.gov (United States)

    Oloo, Felix; Valverde, Angel; Quiroga, María Victoria; Vikram, Surendra; Cowan, Don; Mataloni, Gabriela

    2016-01-01

    Bacteria play critical roles in peatland ecosystems. However, very little is known of how habitat heterogeneity affects the structure of the bacterial communities in these ecosystems. Here, we used amplicon sequencing of the 16S rRNA and nifH genes to investigate phylogenetic diversity and bacterial community composition in three different sub-Antarctic peat bog aquatic habitats: Sphagnum magellanicum interstitial water, and water from vegetated and non-vegetated pools. Total and putative nitrogen-fixing bacterial communities from Sphagnum interstitial water differed significantly from vegetated and non-vegetated pool communities (which were colonized by the same bacterial populations), probably as a result of differences in water chemistry and biotic interactions. Total bacterial communities from pools contained typically aquatic taxa, and were more dissimilar in composition and less species rich than those from Sphagnum interstitial waters (which were enriched in taxa typically from soils), probably reflecting the reduced connectivity between the former habitats. These results show that bacterial communities in peatland water habitats are highly diverse and structured by multiple concurrent factors. PMID:27162086

  20. Distribution, habitats and role as intermediate host of the freshwater snail, Bulinus forskalii, in South Africa

    Directory of Open Access Journals (Sweden)

    K.N. De Kock

    2005-09-01

    Full Text Available This paper focuses on the geographical distribution and habitats of Bulinus forskalii, the snail intermediate host of the conical fluke of equids, Gastrodiscus aegyptiacus as reflected by the 1 209 samples in the database of the National Freshwater Snail Collection of South Africa. The 362 different loci on record represent an extensive distribution in KwaZulu-Natal Province, the Limpopo Province, the coastal areas of the Eastern Cape Province and the south-eastern part of the North West Province. Although it was recorded from all types of water-body represented in the database, the highest percentages of samples were recovered from dams (30.4 % and brooks (28.2 %. The majority of samples came from perennial habitats (59.1%, 60.7% from habitats with standing water, 54.0 % from habitats with clear water and 71.8 % from habitats of which the water was described as fresh. The majority of samples (39.5 % were collected in habitats of which the substratum was recorded as muddy. The highest percentage of samples, by far (81.5 %, was collected in habitats that fell within the mean yearly temperature interval ranging from 15-20 °C. An integrated decision tree constructed from the data in the database indicated that temperature and type of water-body played a decisive role in determining the presence of B. forskalii in a given area. The results of experimental exposure to miracidia of a local strain of both Schistosoma haematobium and Schistosoma mattheei in the laboratory indicated that a local strain of B. forskalii was incompatible with both these strains of parasite. Research to clarify the role of B. forskalii in the transmission of both Calicophoron microbothrium and G. aegyptiacus in South Africa, is recommended.

  1. Matrix Intensification Affects Body and Physiological Condition of Tropical Forest-Dependent Passerines.

    Directory of Open Access Journals (Sweden)

    Justus P Deikumah

    Full Text Available Matrix land-use intensification is a relatively recent and novel landscape change that can have important influences on the biota within adjacent habitat patches. While there are immediate local changes that it brings about, the influences on individual animals occupying adjacent habitats may be less evident initially. High-intensity land use could induce chronic stress in individuals in nearby remnants, leading ultimately to population declines. We investigated how physiological indicators and body condition measures of tropical forest-dependent birds differ between forest adjacent to surface mining sites and that near farmlands at two distances from remnant edge in southwest Ghana. We used mixed effects models of several condition indices including residual body mass and heterophil to lymphocyte (H/L ratios (an indicator of elevated chronic stress to explore the effect of matrix intensity on forest-dependent passerines classed as either sedentary area-sensitive habitat specialists or nomadic generalists. Individual birds occupying tropical forest remnants near surface mining sites were in poorer condition, as indicated by lower residual body mass and elevated chronic stress, compared to those in remnants near agricultural lands. The condition of the sedentary forest habitat specialists white-tailed alethe, Alethe diademata and western olive sunbird, Cyanomitra obscura was most negatively affected by high-intensity surface mining land-use adjacent to remnants, whereas generalist species were not affected. Land use intensification may set in train a new trajectory of faunal relaxation beyond that expected based on habitat loss alone. Patterns of individual condition may be useful in identifying habitats where species population declines may occur before faunal relaxation has concluded.

  2. Lighting Automation Flying an Earthlike Habitat

    Science.gov (United States)

    Clark, Toni A.; Kolomenski, Andrei

    2017-01-01

    Currently, spacecraft lighting systems are not demonstrating innovations in automation due to perceived costs in designing circuitry for the communication and automation of lights. The majority of spacecraft lighting systems employ lamps or zone specific manual switches and dimmers. This type of 'hardwired' solution does not easily convert to automation. With advances in solid state lighting, the potential to enhance a spacecraft habitat is lost if the communication and automation problem is not tackled. If we are to build long duration environments, which provide earth-like habitats, minimize crew time, and optimize spacecraft power reserves, innovation in lighting automation is a must. This project researched the use of the DMX512 communication protocol originally developed for high channel count lighting systems. DMX512 is an internationally governed, industry-accepted, lighting communication protocol with wide industry support. The lighting industry markets a wealth of hardware and software that utilizes DMX512, and there may be incentive to space certify the system. Our goal in this research is to enable the development of automated spacecraft habitats for long duration missions. To transform how spacecraft lighting environments are automated, our project conducted a variety of tests to determine a potential scope of capability. We investigated utilization and application of an industry accepted lighting control protocol, DMX512 by showcasing how the lighting system could help conserve power, assist with lighting countermeasures, and utilize spatial body tracking. We hope evaluation and the demonstrations we built will inspire other NASA engineers, architects and researchers to consider employing DMX512 "smart lighting" capabilities into their system architecture. By using DMX512 we will prove the 'wheel' does not need to be reinvented in terms of smart lighting and future spacecraft can use a standard lighting protocol to produce an effective, optimized and

  3. Lighting Automation - Flying an Earthlike Habitat

    Science.gov (United States)

    Clark, Tori A. (Principal Investigator); Kolomenski, Andrei

    2017-01-01

    Currently, spacecraft lighting systems are not demonstrating innovations in automation due to perceived costs in designing circuitry for the communication and automation of lights. The majority of spacecraft lighting systems employ lamps or zone specific manual switches and dimmers. This type of 'hardwired' solution does not easily convert to automation. With advances in solid state lighting, the potential to enhance a spacecraft habitat is lost if the communication and automation problem is not tackled. If we are to build long duration environments, which provide earth-like habitats, minimize crew time, and optimize spacecraft power reserves, innovation in lighting automation is a must. This project researched the use of the DMX512 communication protocol originally developed for high channel count lighting systems. DMX512 is an internationally governed, industry-accepted, lighting communication protocol with wide industry support. The lighting industry markets a wealth of hardware and software that utilizes DMX512, and there may be incentive to space certify the system. Our goal in this research is to enable the development of automated spacecraft habitats for long duration missions. To transform how spacecraft lighting environments are automated, our project conducted a variety of tests to determine a potential scope of capability. We investigated utilization and application of an industry accepted lighting control protocol, DMX512 by showcasing how the lighting system could help conserve power, assist with lighting countermeasures, and utilize spatial body tracking. We hope evaluation and the demonstrations we built will inspire other NASA engineers, architects and researchers to consider employing DMX512 "smart lighting" capabilities into their system architecture. By using DMX512 we will prove the 'wheel' does not need to be reinvented in terms of smart lighting and future spacecraft can use a standard lighting protocol to produce an effective, optimized and

  4. Elevated body temperature is linked to fatigue in an Italian sample of relapsing-remitting multiple sclerosis patients.

    Science.gov (United States)

    Leavitt, V M; De Meo, E; Riccitelli, G; Rocca, M A; Comi, G; Filippi, M; Sumowski, J F

    2015-11-01

    Elevated body temperature was recently reported for the first time in patients with relapsing-remitting multiple sclerosis (RRMS) relative to healthy controls. In addition, warmer body temperature was associated with worse fatigue. These findings are highly novel, may indicate a novel pathophysiology for MS fatigue, and therefore warrant replication in a geographically separate sample. Here, we investigated body temperature and its association to fatigue in an Italian sample of 44 RRMS patients and 44 age- and sex-matched healthy controls. Consistent with our original report, we found elevated body temperature in the RRMS sample compared to healthy controls. Warmer body temperature was associated with worse fatigue, thereby supporting the notion of endogenous temperature elevations in patients with RRMS as a novel pathophysiological factor underlying fatigue. Our findings highlight a paradigm shift in our understanding of the effect of heat in RRMS, from exogenous (i.e., Uhthoff's phenomenon) to endogenous. Although randomized controlled trials of cooling treatments (i.e., aspirin, cooling garments) to reduce fatigue in RRMS have been successful, consideration of endogenously elevated body temperature as the underlying target will enhance our development of novel treatments.

  5. Habitat characteristics provide insights of carbon storage in seagrass meadows.

    Science.gov (United States)

    Mazarrasa, Inés; Samper-Villarreal, Jimena; Serrano, Oscar; Lavery, Paul S; Lovelock, Catherine E; Marbà, Núria; Duarte, Carlos M; Cortés, Jorge

    2018-02-16

    Seagrass meadows provide multiple ecosystem services, yet they are among the most threatened ecosystems on earth. Because of their role as carbon sinks, protection and restoration of seagrass meadows contribute to climate change mitigation. Blue Carbon strategies aim to enhance CO 2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding of the habitat characteristics that influence C org sequestration. Here, we review the existing knowledge on Blue Carbon research in seagrass meadows to identify the key habitat characteristics that influence C org sequestration in seagrass meadows, those factors that threaten this function and those with unclear effects. We demonstrate that not all seagrass habitats have the same potential, identify research priorities and describe the implications of the results found for the implementation and development of efficient Blue Carbon strategies based on seagrass meadows. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Estuarine environments as rearing habitats for juvenile Coho Salmon in contrasting south-central Alaska watersheds

    Science.gov (United States)

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2013-01-01

    For Pacific salmon, estuaries are typically considered transitional staging areas between freshwater and marine environments, but their potential as rearing habitat has only recently been recognized. The objectives of this study were two-fold: (1) to determine if Coho Salmon Oncorhynchus kisutch were rearing in estuarine habitats, and (2) to characterize and compare the body length, age, condition, and duration and timing of estuarine occupancy of juvenile Coho Salmon between the two contrasting estuaries. We examined use of estuary habitats with analysis of microchemistry and microstructure of sagittal otoliths in two watersheds of south-central Alaska. Juvenile Coho Salmon were classified as estuary residents or nonresidents (recent estuary immigrants) based on otolith Sr : Ca ratios and counts of daily growth increments on otoliths. The estuaries differed in water source (glacial versus snowmelt hydrographs) and in relative estuarine and watershed area. Juvenile Coho Salmon with evidence of estuary rearing were greater in body length and condition than individuals lacking evidence of estuarine rearing. Coho Salmon captured in the glacial estuary had greater variability in body length and condition, and younger age-classes predominated the catch compared with the nearby snowmelt-fed, smaller estuary. Estuary-rearing fish in the glacial estuary arrived later and remained longer (39 versus 24 d of summer growth) during the summer than did fish using the snowmelt estuary. Finally, we observed definitive patterns of overwintering in estuarine and near shore environments in both estuaries. Evidence of estuary rearing and overwintering with differences in fish traits among contrasting estuary types refute the notion that estuaries function as only staging or transitional habitats in the early life history of Coho Salmon.

  7. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change.

    Science.gov (United States)

    Albert, Cécile H; Rayfield, Bronwyn; Dumitru, Maria; Gonzalez, Andrew

    2017-12-01

    Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land-use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land-use change projections with the latest developments in network-connectivity research and spatial, multipurpose conservation prioritization. We used land-use change simulations to explore robustness of species' habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land-use change. The application of connectivity criteria alongside habitat-quality criteria for protected-area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade-offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low. © 2017 Society for Conservation Biology.

  8. Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems

    Science.gov (United States)

    Djukic, Ika; Kitzler, Barbara; Kobler, Johannes; Mol-Dijkstra, Janet P.; Posch, Max; Reinds, Gert Jan; Schlutow, Angela; Starlinger, Franz; Wamelink, Wieger G. W.

    2017-01-01

    Climate change and excess deposition of airborne nitrogen (N) are among the main stressors to floristic biodiversity. One particular concern is the deterioration of valuable habitats such as those protected under the European Habitat Directive. In future, climate-driven shifts (and losses) in the species potential distribution, but also N driven nutrient enrichment may threaten these habitats. We applied a dynamic geochemical soil model (VSD+) together with a novel niche-based plant response model (PROPS) to 5 forest habitat types (18 forest sites) protected under the EU Directive in Austria. We assessed how future climate change and N deposition might affect habitat suitability, defined as the capacity of a site to host its typical plant species. Our evaluation indicates that climate change will be the main driver of a decrease in habitat suitability in the future in Austria. The expected climate change will increase the occurrence of thermophilic plant species while decreasing cold-tolerant species. In addition to these direct impacts, climate change scenarios caused an increase of the occurrence probability of oligotrophic species due to a higher N immobilisation in woody biomass leading to soil N depletion. As a consequence, climate change did offset eutrophication from N deposition, even when no further reduction in N emissions was assumed. Our results show that climate change may have positive side-effects in forest habitats when multiple drivers of change are considered. PMID:28898262

  9. Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems.

    Directory of Open Access Journals (Sweden)

    Thomas Dirnböck

    Full Text Available Climate change and excess deposition of airborne nitrogen (N are among the main stressors to floristic biodiversity. One particular concern is the deterioration of valuable habitats such as those protected under the European Habitat Directive. In future, climate-driven shifts (and losses in the species potential distribution, but also N driven nutrient enrichment may threaten these habitats. We applied a dynamic geochemical soil model (VSD+ together with a novel niche-based plant response model (PROPS to 5 forest habitat types (18 forest sites protected under the EU Directive in Austria. We assessed how future climate change and N deposition might affect habitat suitability, defined as the capacity of a site to host its typical plant species. Our evaluation indicates that climate change will be the main driver of a decrease in habitat suitability in the future in Austria. The expected climate change will increase the occurrence of thermophilic plant species while decreasing cold-tolerant species. In addition to these direct impacts, climate change scenarios caused an increase of the occurrence probability of oligotrophic species due to a higher N immobilisation in woody biomass leading to soil N depletion. As a consequence, climate change did offset eutrophication from N deposition, even when no further reduction in N emissions was assumed. Our results show that climate change may have positive side-effects in forest habitats when multiple drivers of change are considered.

  10. Scale-specific correlations between habitat heterogeneity and soil fauna diversity along a landscape structure gradient.

    Science.gov (United States)

    Vanbergen, Adam J; Watt, Allan D; Mitchell, Ruth; Truscott, Anne-Marie; Palmer, Stephen C F; Ivits, Eva; Eggleton, Paul; Jones, T Hefin; Sousa, José Paulo

    2007-09-01

    Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates-species with small range sizes-is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km(2)) and local (up to 200 m(2)) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together

  11. Spatial, temporal, and density-dependent components of habitat quality for a desert owl.

    Directory of Open Access Journals (Sweden)

    Aaron D Flesch

    Full Text Available Spatial variation in resources is a fundamental driver of habitat quality but the realized value of resources at any point in space may depend on the effects of conspecifics and stochastic factors, such as weather, which vary through time. We evaluated the relative and combined effects of habitat resources, weather, and conspecifics on habitat quality for ferruginous pygmy-owls (Glaucidium brasilianum in the Sonoran Desert of northwest Mexico by monitoring reproductive output and conspecific abundance over 10 years in and around 107 territory patches. Variation in reproductive output was much greater across space than time, and although habitat resources explained a much greater proportion of that variation (0.70 than weather (0.17 or conspecifics (0.13, evidence for interactions among each of these components of the environment was strong. Relative to habitat that was persistently low in quality, high-quality habitat buffered the negative effects of conspecifics and amplified the benefits of favorable weather, but did not buffer the disadvantages of harsh weather. Moreover, the positive effects of favorable weather at low conspecific densities were offset by intraspecific competition at high densities. Although realized habitat quality declined with increasing conspecific density suggesting interference mechanisms associated with an Ideal Free Distribution, broad spatial heterogeneity in habitat quality persisted. Factors linked to food resources had positive effects on reproductive output but only where nest cavities were sufficiently abundant to mitigate the negative effects of heterospecific enemies. Annual precipitation and brooding-season temperature had strong multiplicative effects on reproductive output, which declined at increasing rates as drought and temperature increased, reflecting conditions predicted to become more frequent with climate change. Because the collective environment influences habitat quality in complex ways

  12. Initial Clinical Experience in Multiple Myeloma Staging by Means of Whole-Body Resonance Techniques

    International Nuclear Information System (INIS)

    Gallego, J. I.; Concepcion, L.; Alonso, S.; Sanchez, B.; Manzi, F.

    2003-01-01

    To develop a magnetic resonance (MR) exploratory technique equivalent to serial bone X-ray, and to compare their precision in the staging of multiple myeloma (MM) patients. Multiple acquisition T1-weights TSE and STIR sequences in the coronal plane were performed. Ten healthy volunteers and 11 multiple myeloma diagnosed patients were included. The visualization of bony structures was particularly noted,with special attention given to those which would normally be included in a serial bone X-ray. In the case of the patients, a comparison was made between diagnostic capacities of the MR sequences. MR highlighters significantly more (p<0.05) bony elements than did the serial bone X-ray. This was greatly due to a sequential displacement of the scanner bed, allowing for field-of-views which were minimally from head to third proximal of the leg. Magnetic resonance detected a significantly higher number (p<0.05) of lesions. It was, in turn, capable of revealing greater lesion extensions, even to the point of implying staging classification changes in 18% of the patients. The utilization of whole-body MR techniques in multiple myeloma patients is feasible and clinically beneficial. MR is both more sensitive and more specific than serial bone X-ray for evaluation of bony lesions in MM. It is currently serving as a valid alternative in a growing numbers of patients. (Author) 10 refs

  13. Hydrologic and water-quality rehabilitation of environments for suitable fish habitat

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Xiang, H.; Liu, C. M.; Zhang, H. T.; Yang, Z. L.; Zhang, Y.; Sun, Y.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.

    2015-11-01

    Aquatic ecological rehabilitation is attracting increasing public and research attention, but without knowledge of the responses of aquatic species to their habitats the success of habitat restoration is uncertain. Thus efficient study of species response to habitat, through which to prioritize the habitat factors influencing aquatic ecosystems, is highly important. However many current models have too high requirement for assemblage information and have great bias in results due to consideration of only the species' attribute of presence/absence, abundance or biomass, thus hindering the wider utility of these models. This paper, using fish as a case, presents a framework for identification of high-priority habitat factors based on the responses of aquatic species to their habitats, using presence/absence, abundance and biomass data. This framework consists of four newly developed sub-models aiming to determine weightings for the evaluation of species' contributions to their communities, to quantitatively calculate an integrated habitat suitability index for multi-species based on habitat factors, to assess the suitable probability of habitat factors and to assess the rehabilitation priority of habitat factors. The framework closely links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. Breakpoint identification techniques based on curvature in cumulated dominance along with a newly developed weighting calculation model based on theory of mass systems were used to help identify the dominant fish, based on which the presence and abundance of multiple fish were normalized to estimate the integrated habitat suitability index along gradients of various factors, based on their variation with principal habitat factors. Then, the appropriate probability of every principal habitat factor was

  14. Systematic review of the influence of foraging habitat on red-cockaded woodpecker reproductive success.

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, James E. [North Carolina State University

    2014-04-01

    Relationships between foraging habitat and reproductive success provide compelling evidence of the contribution of specific vegetative features to foraging habitat quality, a potentially limiting factor for many animal populations. For example, foraging habitat quality likely will gain importance in the recovery of the threatened red-cockaded woodpecker Picoides borealis (RCW) in the USA as immediate nesting constraints are mitigated. Several researchers have characterized resource selection by foraging RCWs, but emerging research linking reproductive success (e.g. clutch size, nestling and fledgling production, and group size) and foraging habitat features has yet to be synthesized. Therefore, we reviewed peer-refereed scientific literature and technical resources (e.g. books, symposia proceedings, and technical reports) that examined RCW foraging ecology, foraging habitat, or demography to evaluate evidence for effects of the key foraging habitat features described in the species’ recovery plan on group reproductive success. Fitness-based habitat models suggest foraging habitat with low to intermediate pine Pinus spp. densities, presence of large and old pines, minimal midstory development, and herbaceous groundcover support more productive RCW groups. However, the relationships between some foraging habitat features and RCW reproductive success are not well supported by empirical data. In addition, few regression models account for > 30% of variation in reproductive success, and unstandardized multiple and simple linear regression coefficient estimates typically range from -0.100 to 0.100, suggesting ancillary variables and perhaps indirect mechanisms influence reproductive success. These findings suggest additional research is needed to address uncertainty in relationships between foraging habitat features and RCW reproductive success and in the mechanisms underlying those relationships.

  15. Proximate content of wild and cultured eel (Anguilla bicolor) in different part of body

    Science.gov (United States)

    Wijayanti, I.; Susilo, E. S.

    2018-02-01

    Proximate content in fish varies depends on intrinsic and extrinsic factors. Intrinsic factors include species, sexual maturity, size and body parts. Extrinsic factors include habitat, season and type of food (diet). This study aimed to know the effect of fish body parts (intrinsic factor) on proximate levels in wild and cultured eel (extrinsic). The experimental design used factorial completely randomized design with two factors 2x3. The first factor is the habitat of eel (wild and cultured) and the second factor is the part of the body (head, body and tail) with five replications. The result of statistical analysis showed that there was interaction between fish habitat and body part on moisture, protein, ash and carbohydrate content (P interaction on fat content and energy (P> 0.05). The highest water content (67.02%) was found in head of wild and the lowest one (59.44%) in the tail of wild eel; The highest protein content (18.09%) was found in the body of cultured eel and the lowest one (15.72%) was in the body of wild eel; The highest ash content (3.73%) was the head of wild eel and the lowest (1.32%) was in the body of cultured eel; The highest carbohydrate (3.73%) was found in the head of cultured eel and the lowest one (0.16%) was in the body of cultured. The wild eel had higher fat content and energy than cultured one, while the fat content and energy in body and tail were higher than in head.

  16. A multilocus molecular phylogeny of combtooth blennies (Percomorpha: Blennioidei: Blenniidae): Multiple invasions of intertidal habitats

    KAUST Repository

    Hundt, Peter J.; Iglé sias, Samuel Paco; Hoey, Andrew; Simons, Andrew M.

    2014-01-01

    and their relationships. Since little is known about the relationships in this group, other aspects of their evolutionary history, such as habitat evolution and remain unexplored. Herein, we use Bayesian and maximum likelihood analyses of four nuclear loci (ENC1, myh6

  17. Using DNA Barcoding and Standardized Sampling to Compare Geographic and Habitat Differentiation of Crustaceans: A Hawaiian Islands Example

    Directory of Open Access Journals (Sweden)

    M. Julian Caley

    2011-09-01

    Full Text Available Recently, the Census of Marine Life has explored methods to assess coral reef diversity by combining standardized sampling (to permit comparison across sites with molecular techniques (to make rapid counts of species possible. To date, this approach has been applied across geographically broad scales (seven sites spanning the Indian, Pacific and Atlantic Oceans, focusing on similar habitats at all sites (10–12 m forereef. Here we examine crustacean spatial diversity patterns for a single atoll, comparing results for four sites (comprising forereef, backreef, and lagoon habitats at French Frigate Shoals (FFS, Northwestern Hawaiian Islands, Hawaii, USA, within the Papahanaumokuakea Marine National Monument. The Bray-Curtis index of similarity across these habitats at FFS was the same or greater than the similarity between similar habitats on Heron Island and Lizard Island in the Great Barrier Reef and much greater than similarity between more widely separated localities in the Indo-Pacific Ocean (e.g., Ningaloo, Moorea, French Polynesia or the Line Islands. These results imply that, at least for shallow reefs, sampling multiple locations versus sampling multiple habitats within a site maximizes the rate at which we can converge on the best global estimate of coral reef biodiversity.

  18. Winter habitat predictions of a key Southern Ocean predator, the Antarctic fur seal (Arctocephalus gazella)

    Science.gov (United States)

    Arthur, Benjamin; Hindell, Mark; Bester, Marthan; De Bruyn, P. J. Nico; Trathan, Phil; Goebel, Michael; Lea, Mary-Anne

    2017-06-01

    Quantification of the physical and biological environmental factors that influence the spatial distribution of higher trophic species is central to inform management and develop ecosystem models, particularly in light of ocean changes. We used tracking data from 184 female Antarctic fur seals (Arctocephalus gazella) to develop habitat models for three breeding colonies for the poorly studied Southern Ocean winter period. Models were used to identify and predict the broadly important winter foraging habitat and to elucidate the environmental factors influencing these areas. Model predictions closely matched observations and several core areas of foraging habitat were identified for each colony, with notable areas of inter-colony overlap suggesting shared productive foraging grounds. Seals displayed clear choice of foraging habitat, travelling through areas of presumably poorer quality to access habitats that likely offer an energetic advantage in terms of prey intake. The relationships between environmental predictors and foraging habitat varied between colonies, with the principal predictors being wind speed, sea surface temperature, chlorophyll a concentration, bathymetry and distance to the colony. The availability of core foraging areas was not consistent throughout the winter period. The habitat models developed in this study not only reveal the core foraging habitats of Antarctic fur seals from multiple colonies, but can facilitate the hindcasting of historical foraging habitats as well as novel predictions of important habitat for other major colonies currently lacking information of the at-sea distribution of this major Southern Ocean consumer.

  19. Whole-body voxel-based personalized dosimetry: Multiple voxel S-value approach for heterogeneous media with non-uniform activity distributions.

    Science.gov (United States)

    Lee, Min Sun; Kim, Joong Hyun; Paeng, Jin Chul; Kang, Keon Wook; Jeong, Jae Min; Lee, Dong Soo; Lee, Jae Sung

    2017-12-14

    Personalized dosimetry with high accuracy is becoming more important because of the growing interests in personalized medicine and targeted radionuclide therapy. Voxel-based dosimetry using dose point kernel or voxel S-value (VSV) convolution is available. However, these approaches do not consider medium heterogeneity. Here, we propose a new method for whole-body voxel-based personalized dosimetry for heterogeneous media with non-uniform activity distributions, which is referred to as the multiple VSV approach. Methods: The multiple numbers (N) of VSVs for media with different densities covering the whole-body density ranges were used instead of using only a single VSV for water. The VSVs were pre-calculated using GATE Monte Carlo simulation; those were convoluted with the time-integrated activity to generate density-specific dose maps. Computed tomography-based segmentation was conducted to generate binary maps for each density region. The final dose map was acquired by the summation of N segmented density-specific dose maps. We tested several sets of VSVs with different densities: N = 1 (single water VSV), 4, 6, 8, 10, and 20. To validate the proposed method, phantom and patient studies were conducted and compared with direct Monte Carlo, which was considered the ground truth. Finally, patient dosimetry (10 subjects) was conducted using the multiple VSV approach and compared with the single VSV and organ-based dosimetry approaches. Errors at the voxel- and organ-levels were reported for eight organs. Results: In the phantom and patient studies, the multiple VSV approach showed significant improvements regarding voxel-level errors, especially for the lung and bone regions. As N increased, voxel-level errors decreased, although some overestimations were observed at lung boundaries. In the case of multiple VSVs ( N = 8), we achieved voxel-level errors of 2.06%. In the dosimetry study, our proposed method showed much improved results compared to the single VSV and

  20. Keeping Pace with Climate Change: Habitat Protection in the Face of Uncertainty

    Science.gov (United States)

    Flitcroft, R. L.; Burnett, K.; Giannico, G.

    2014-12-01

    Estuaries provide critical habitat for many economically and culturally important species. In the Pacific Northwest, intertidal and subtidal areas provide critical habitat for production of native and commercial oysters (Olympia oyster Ostrea lurida and Pacific oyster Crassostrea gigas, respectively) that in turn provide refuge and rearing habitat for Dungeness Crab, Metacarcinus magister. Environments ranging from subtidal through freshwater zones provide nursery areas for juvenile salmonids at different development stages in their life history. Most Oregon estuaries have been significantly altered by humans over the past century, reducing the quantity and diversity of available habitats. Management agencies have responded with projects to restore and enhance estuarine habitats. Unfortunately, future climate change and sea-level rise could render many current restoration projects ineffective over time. Planning for habitat restoration that keeps pace with climate change will be critical to the sustainable production of seafood and maintenance of ecosystem function. However, land managers and citizens lack the spatially-explicit data needed to incorporate the potential effects of climate change and sea-level rise into planning for habitat improvement projects in estuarine areas. To meet this need, we developed simple models using LiDAR to characterize the geomorphologies of multiple Oregon estuaries. We were able to map the margin of current mean high tide, and contour intervals associated with different potential increases in mean high tide. Because our analysis relied on digital data, we compared three types of digital data in one estuary to assess the utility of different data sets in predicting changes in estuary shape. For each estuary, we assessed changes in the amount and complexity of edge habitats. The simple modeling approach we applied can also be used to identify areas that may be most amenable to pre-emptive restoration actions to mitigate or enhance

  1. Effects of hurricanes Katrina and Rita on Louisiana black bear habitat

    Science.gov (United States)

    Clark, Joseph D.; Murrow, Jennifer L.

    2012-01-01

    The Louisiana black bear (Ursus americanus luteolus) is comprised of 3 subpopulations, each being small, geographically isolated, and vulnerable to extinction. Hurricanes Katrina and Rita struck the Louisiana and Mississippi coasts in 2005, potentially altering habitat occupied by this federally threatened subspecies. We used data collected on radio-telemetered bears from 1993 to 1995 and pre-hurricane landscape data to develop a habitat model based on the Mahalanobis distance (D2) statistic. We then applied that model to post-hurricane landscape data where the telemetry data were collected (i.e., occupied study area) and where bear range expansion might occur (i.e., unoccupied study area) to quantify habitat loss or gain. The D2 model indicated that quality bear habitat was associated with areas of high mast-producing forest density, low water body density, and moderate forest patchiness. Cross-validation and testing on an independent data set in central Louisiana indicated that prediction and transferability of the model were good. Suitable bear habitat decreased from 348 to 345 km2 (0.9%) within the occupied study area and decreased from 34,383 to 33,891 km2 (1.4%) in the unoccupied study area following the hurricanes. Our analysis indicated that bear habitat was not significantly degraded by the hurricanes, although changes that could have occurred on a microhabitat level would be more difficult to detect at the resolution we used. We suggest that managers continue to monitor the possible long-term effects of these hurricanes (e.g., vegetation changes from flooding, introduction of toxic chemicals, or water quality changes).

  2. Increased body size along urbanization gradients at both community and intraspecific level in macro-moths.

    Science.gov (United States)

    Merckx, Thomas; Kaiser, Aurélien; Van Dyck, Hans

    2018-05-23

    Urbanization involves a cocktail of human-induced rapid environmental changes and is forecasted to gain further importance. Urban-heat-island effects result in increased metabolic costs expected to drive shifts towards smaller body sizes. However, urban environments are also characterized by strong habitat fragmentation, often selecting for dispersal phenotypes. Here, we investigate to what extent, and at which spatial scale(s), urbanization drives body size shifts in macro-moths-an insect group characterized by positive size-dispersal links-at both the community and intraspecific level. Using light and bait trapping as part of a replicated, spatially nested sampling design, we show that despite the observed urban warming of their woodland habitat, macro-moth communities display considerable increases in community-weighted mean body size because of stronger filtering against small species along urbanization gradients. Urbanization drives intraspecific shifts towards increased body size too, at least for a third of species analysed. These results indicate that urbanization drives shifts towards larger, and hence, more mobile species and individuals in order to mitigate low connectivity of ecological resources in urban settings. Macro-moths are a key group within terrestrial ecosystems, and since body size is central to species interactions, such urbanization-driven phenotypic change may impact urban ecosystem functioning, especially in terms of nocturnal pollination and food web dynamics. Although we show that urbanization's size-biased filtering happens simultaneously and coherently at both the inter- and intraspecific level, we demonstrate that the impact at the community level is most pronounced at the 800 m radius scale, whereas species-specific size increases happen at local and landscape scales (50-3,200 m radius), depending on the species. Hence, measures-such as creating and improving urban green infrastructure-to mitigate the effects of urbanization on

  3. Habitats and Species Covered by the EEC Habitats Directive

    DEFF Research Database (Denmark)

    Pihl, S.; Søgaard, B.; Ejrnæs, R.

    of Conservation (SAC's), Natura 2000. The designations are based upon the presence of 60 of the natural habitat types listed in Annex I of the Directive and approx. 44 of the species listed in Annex II which occur within the territory of Denmark and for the conservation of which the Community has a special...... and the Danish county authorities have initiated a co-operative programme to provide and compile the data necessary to assess the conservation status of the natural habitat types and species concerned. The purpose of this report is to present the conservation status of the habitats and species in Denmark...

  4. Use of multiple chemical tracers to define habitat use of Indo-Pacific mangrove crab, Scylla serrata (Decapoda: Portunidae)

    Science.gov (United States)

    Demopoulos, A.W.J.; Cormier, N.; Ewel, K.C.; Fry, B.

    2008-01-01

    The mangrove or mud crab, Scylla serrata, is an important component of mangrove fisheries throughout the Indo-Pacific. Understanding crab diets and habitat use should assist in managing these fisheries and could provide additional justification for conservation of the mangrove ecosystem itself. We used multiple chemical tracers to test whether crab movements were restricted to local mangrove forests, or extended to include adjacent seagrass beds and reef flats. We sampled three mangrove forests on the island of Kosrae in the Federated States of Micronesia at Lelu Harbor, Okat River, and Utwe tidal channel. Samples of S. serrata and likely food sources were analyzed for stable carbon (??13C), nitrogen (??15N), and sulfur (??34S) isotopes. Scylla serrata tissues also were analyzed for phosphorus (P), cations (K, Ca, Mg, Na), and trace elements (Mn, Fe, Cu, Zn, and B). Discriminant analysis indicated that at least 87% of the crabs remain in each site as distinct populations. Crab stable isotope values indicated potential differences in habitat use within estuaries. Values for ??13C and ??34S in crabs from Okat and Utwe were low and similar to values expected from animals feeding within mangrove forests, e.g., feeding on infauna that had average ??13C values near -26.5???. In contrast, crabs from Lelu had higher ?? 13C and ??34S values, with average values of -21.8 and 7.8???, respectively. These higher isotope values are consistent with increased crab foraging on reef flats and seagrasses. Given that S. serrata have been observed feeding on adjacent reef and seagrass environments on Kosrae, it is likely that they move in and out of the mangroves for feeding. Isotope mixing model results support these conclusions, with the greatest mangrove ecosystem contribution to S. serrata diet occurring in the largest mangrove forests. Conserving larger island mangrove forests (> 1 km deep) appears to support crab foraging activities. ?? 2007 Coastal and Estuarine Research

  5. Modelling Fish Habitat Suitability in the Eastern English Channel. Application to community habitat level

    OpenAIRE

    Vaz, Sandrine; Carpentier, Andre; Loots, Christophe; Koubbi, Philippe

    2004-01-01

    Valuable marine habitats and living resources can be found in the Eastern English Channel and in 2003, a Franco-British Interreg IIIA project, ‘Eastern Channel Habitat Atlas for Marine Resource Management’ (CHARM), was initiated to support decision-making for management of essential fish habitats. Fish habitat corresponds to geographic areas within which ranges of environmental factors define the presence of a particular species. Habitat Suitability index (HSI) modelling was used to relate fi...

  6. Two-dimensional physical habitat modeling of effects of habitat structures on urban stream restoration

    Directory of Open Access Journals (Sweden)

    Dongkyun Im

    2011-12-01

    Full Text Available River corridors, even if highly modified or degraded, still provide important habitats for numerous biological species, and carry high aesthetic and economic values. One of the keys to urban stream restoration is recovery and maintenance of ecological flows sufficient to sustain aquatic ecosystems. In this study, the Hongje Stream in the Seoul metropolitan area of Korea was selected for evaluating a physically-based habitat with and without habitat structures. The potential value of the aquatic habitat was evaluated by a weighted usable area (WUA using River2D, a two-dimensional hydraulic model. The habitat suitability for Zacco platypus in the Hongje Stream was simulated with and without habitat structures. The computed WUA values for the boulder, spur dike, and riffle increased by about 2%, 7%, and 131%, respectively, after their construction. Also, the three habitat structures, especially the riffle, can contribute to increasing hydraulic heterogeneity and enhancing habitat diversity.

  7. A Bayesian method for assessing multiscalespecies-habitat relationships

    Science.gov (United States)

    Stuber, Erica F.; Gruber, Lutz F.; Fontaine, Joseph J.

    2017-01-01

    ContextScientists face several theoretical and methodological challenges in appropriately describing fundamental wildlife-habitat relationships in models. The spatial scales of habitat relationships are often unknown, and are expected to follow a multi-scale hierarchy. Typical frequentist or information theoretic approaches often suffer under collinearity in multi-scale studies, fail to converge when models are complex or represent an intractable computational burden when candidate model sets are large.ObjectivesOur objective was to implement an automated, Bayesian method for inference on the spatial scales of habitat variables that best predict animal abundance.MethodsWe introduce Bayesian latent indicator scale selection (BLISS), a Bayesian method to select spatial scales of predictors using latent scale indicator variables that are estimated with reversible-jump Markov chain Monte Carlo sampling. BLISS does not suffer from collinearity, and substantially reduces computation time of studies. We present a simulation study to validate our method and apply our method to a case-study of land cover predictors for ring-necked pheasant (Phasianus colchicus) abundance in Nebraska, USA.ResultsOur method returns accurate descriptions of the explanatory power of multiple spatial scales, and unbiased and precise parameter estimates under commonly encountered data limitations including spatial scale autocorrelation, effect size, and sample size. BLISS outperforms commonly used model selection methods including stepwise and AIC, and reduces runtime by 90%.ConclusionsGiven the pervasiveness of scale-dependency in ecology, and the implications of mismatches between the scales of analyses and ecological processes, identifying the spatial scales over which species are integrating habitat information is an important step in understanding species-habitat relationships. BLISS is a widely applicable method for identifying important spatial scales, propagating scale uncertainty, and

  8. Aquatic habitats of Canaan Valley, West Virginia: Diversity and environmental threats

    Science.gov (United States)

    Snyder, C.D.; Young, J.A.; Stout, B. M.

    2006-01-01

    We conducted surveys of aquatic habitats during the spring and summer of 1995 in Canaan Valley, WV, to describe the diversity of aquatic habitats in the valley and identify issues that may threaten the viability of aquatic species. We assessed physical habitat and water chemistry of 126 ponds and 82 stream sites, and related habitat characteristics to landscape variables such as geology and terrain. Based on our analyses, we found two issues likely to affect the viability of aquatic populations in the valley. The first issue was acid rain and the extent to which it potentially limits the distribution of aquatic and semi-aquatic species, particularly in headwater portions of the watershed. We estimate that nearly 46%, or 56 kilometers of stream, had pH levels that would not support survival and reproduction of Salvelinuw fontinalis (brook trout), one of the most acid-tolerant fishes in the eastern US. The second issue was the influence of Castor canadensis (beaver) activity. In the Canaan Valley State Park portion of the valley, beaver have transformed 4.7 kilometers of stream (approximately 17% of the total) to pond habitat through their dam building. This has resulted in an increase in pond habitat, a decrease in stream habitat, and a fragmented stream network (i.e., beaver ponds dispersed among stream reaches). In addition, beaver have eliminated an undetermined amount of forested riparian area through their foraging activities. Depending on the perspective, beaver-mediated changes can be viewed as positive or negative. Increases in pond habitat may increase habitat heterogeneity with consequent increases in biological diversity. In contrast, flooding associated with beaver activity may eliminate lowland wetlands and associated species, create barriers to fish dispersal, and possibly contribute to low dissolved oxygen levels in the Blackwater River. We recommend that future management strategies for the wildlife refuge be viewed in the context of these two issues

  9. Habitat stability and occurrences of malaria vector larvae in western Kenya highlands

    Directory of Open Access Journals (Sweden)

    Atieli Harrysone

    2009-10-01

    Full Text Available Abstract Background Although the occurrence of malaria vector larvae in the valleys of western Kenya highlands is well documented, knowledge of larval habitats in the uphill sites is lacking. Given that most inhabitants of the highlands actually dwell in the uphill regions, it is important to develop understanding of mosquito breeding habitat stability in these sites in order to determine their potential for larval control. Methods A total of 128 potential larval habitats were identified in hilltops and along the seasonal streams in the Sigalagala area of Kakamega district, western Kenya. Water availability in the habitats was followed up daily from August 3, 2006 to February 23, 2007. A habitat is defined as stable when it remains aquatic continuously for at least 12 d. Mosquito larvae were observed weekly. Frequencies of aquatic, stable and larvae positive habitats were compared between the hilltop and seasonal stream area using χ2-test. Factors affecting the presence/absence of Anopheles gambiae larvae in the highlands were determined using multiple logistic regression analysis. Results Topography significantly affected habitat availability and stability. The occurrence of aquatic habitats in the hilltop was more sporadic than in the stream area. The percentage of habitat occurrences that were classified as stable during the rainy season is 48.76% and 80.79% respectively for the hilltop and stream area. Corresponding frequencies of larvae positive habitats were 0% in the hilltop and 5.91% in the stream area. After the rainy season, only 23.42% of habitat occurrences were stable and 0.01% larvae positive habitats were found in the hilltops, whereas 89.75% of occurrences remained stable in the stream area resulting in a frequency of 12.21% larvae positive habitats. The logistic regression analysis confirmed the association between habitat stability and larval occurrence and indicated that habitat surface area was negatively affecting the

  10. Application of Bayesian methods to habitat selection modeling of the northern spotted owl in California: new statistical methods for wildlife research

    Science.gov (United States)

    Howard B. Stauffer; Cynthia J. Zabel; Jeffrey R. Dunk

    2005-01-01

    We compared a set of competing logistic regression habitat selection models for Northern Spotted Owls (Strix occidentalis caurina) in California. The habitat selection models were estimated, compared, evaluated, and tested using multiple sample datasets collected on federal forestlands in northern California. We used Bayesian methods in interpreting...

  11. Habitat-Lite: A GSC case study based on free text terms for environmental metadata

    Energy Technology Data Exchange (ETDEWEB)

    Kyrpides, Nikos; Hirschman, Lynette; Clark, Cheryl; Cohen, K. Bretonnel; Mardis, Scott; Luciano, Joanne; Kottmann, Renzo; Cole, James; Markowitz, Victor; Kyrpides, Nikos; Field, Dawn

    2008-04-01

    There is an urgent need to capture metadata on the rapidly growing number of genomic, metagenomic and related sequences, such as 16S ribosomal genes. This need is a major focus within the Genomic Standards Consortium (GSC), and Habitat is a key metadata descriptor in the proposed 'Minimum Information about a Genome Sequence' (MIGS) specification. The goal of the work described here is to provide a light-weight, easy-to-use (small) set of terms ('Habitat-Lite') that captures high-level information about habitat while preserving a mapping to the recently launched Environment Ontology (EnvO). Our motivation for building Habitat-Lite is to meet the needs of multiple users, such as annotators curating these data, database providers hosting the data, and biologists and bioinformaticians alike who need to search and employ such data in comparative analyses. Here, we report a case study based on semi-automated identification of terms from GenBank and GOLD. We estimate that the terms in the initial version of Habitat-Lite would provide useful labels for over 60% of the kinds of information found in the GenBank isolation-source field, and around 85% of the terms in the GOLD habitat field. We present a revised version of Habitat-Lite and invite the community's feedback on its further development in order to provide a minimum list of terms to capture high-level habitat information and to provide classification bins needed for future studies.

  12. Spatial distribution and habitat characterisation of Anopheles larvae along the Kenyan coast.

    Science.gov (United States)

    Mwangangi, Joseph M; Mbogo, Charles M; Muturi, Ephantus J; Nzovu, Joseph G; Githure, John I; Yan, Guiyun; Minakawa, Noboru; Novak, Robert; Beier, John C

    2007-03-01

    A study was conducted to characterise larval habitats and to determine spatial heterogeneity of the Anopheles mosquito larvae. The study was conducted from May to June 1999 in nine villages along the Kenyan coast. Aquatic habitats were sampled by use of standard dipping technique. The habitats were characterised based on size, pH, distance to the nearest house, coverage of canopy, surface debris, algae and emergent plants, turbidity, substrate, and habitat type. A total of 110 aquatic habitats like stream pools (n=10); puddles (n=65); tire tracks (n=5); ponds (n=5) and swamps (n=25) were sampled in nine villages located in three districts of the Kenyan coast. A total of 7,263 Anopheles mosquito larvae were collected, 63.9% were early instars and 36.1% were late instars. Morphological identification of the III and IV instar larvae by use of microscopy yielded 90.66% (n=2377) Anopheles gambiae Complex, 0.88% (n=23) An. funestus, An. coustani 7.63% (n=200), An. rivulorum 0.42% (n=11), An. pharoensis 0.19% (n=5), An. swahilicus 0.08% (n=2), An. wilsoni 0.04% (n=1) and 0.11% (n=3) were unidentified. A subset of the An. gambiae Complex larvae identified morphologically, was further analysed using rDNA-PCR technique resulting in 68.22% (n=1290) An. gambiae s.s., 7.93% (n=150) An. arabiensis and 23.85% (n=451) An. merus. Multiple logistic regression model showed that emergent plants (p = 0.019), and floating debris (p = 0.038) were the best predictors of An. gambiae larval abundance in these habitats. Habitat type, floating debris and emergent plants were found to be the key factors determining the presence of Anopheles larvae in the habitats. For effective larval control, the type of habitat should be considered and most productive habitat type be given a priority in the mosquito abatement programme.

  13. European red list of habitats. Part 1: Marine habitats

    NARCIS (Netherlands)

    Gubbay, S.; Sanders, N.; Haynes, T.; Janssen, J.A.M.; Rodwell, J.R.; Nieto, A.; Garcia Criado, M.; Beal, S.; Borg, J.

    2016-01-01

    The European Red List of Habitats provides an overview of the risk
    of collapse (degree of endangerment) of marine, terrestrial and
    freshwater habitats in the European Union (EU28) and adjacent
    regions (EU28+), based on a consistent set of categories and
    criteria, and detailed data

  14. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: manmade habitats.

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ira David Luman; Ralph. Anderson

    1979-01-01

    Manmade structures on rangelands provide specialized habitats for some species. These habitats and how they function as specialized habitat features are examined in this publication. The relationships of the wildlife of the Great Basin to such structures are detailed.

  15. Behavioral response of the coachwhip (Masticophis flagellum) to habitat fragment size and isolation in an urban landscape

    Science.gov (United States)

    Mitrovich, Milan J.; Diffendorfer, Jay E.; Fisher, Robert N.

    2009-01-01

    Habitat fragmentation is a significant threat to biodiversity worldwide. Habitat loss and the isolation of habitat fragments disrupt biological communities, accelerate the extinction of populations, and often lead to the alteration of behavioral patterns typical of individuals in large, contiguous natural areas. We used radio-telemetry to study the space-use behavior of the Coachwhip, a larger-bodied, wide-ranging snake species threatened by habitat fragmentation, in fragmented and contiguous areas of coastal southern California. We tracked 24 individuals at three sites over two years. Movement patterns of Coachwhips changed in habitat fragments. As area available to the snakes was reduced, individuals faced increased crowding, had smaller home-range sizes, tolerated greater home-range overlap, and showed more concentrated movement activity and convoluted movement pathways. The behavioral response shown by Coachwhips suggests, on a regional level, area-effects alone cannot explain observed extinctions on habitat fragments but, instead, suggests changes in habitat configuration are more likely to explain the decline of this species. Ultimately, if "edge-exposure" is a common cause of decline, then isolated fragments, appropriately buffered to reduce emigration and edge effects, may support viable populations of fragmentation-sensitive species.

  16. A Tool for the Automated Design and Evaluation of Habitat Interior Layouts

    Science.gov (United States)

    Simon, Matthew A.; Wilhite, Alan W.

    2013-01-01

    The objective of space habitat design is to minimize mass and system size while providing adequate space for all necessary equipment and a functional layout that supports crew health and productivity. Unfortunately, development and evaluation of interior layouts is often ignored during conceptual design because of the subjectivity and long times required using current evaluation methods (e.g., human-in-the-loop mockup tests and in-depth CAD evaluations). Early, more objective assessment could prevent expensive design changes that may increase vehicle mass and compromise functionality. This paper describes a new interior design evaluation method to enable early, structured consideration of habitat interior layouts. This interior layout evaluation method features a comprehensive list of quantifiable habitat layout evaluation criteria, automatic methods to measure these criteria from a geometry model, and application of systems engineering tools and numerical methods to construct a multi-objective value function measuring the overall habitat layout performance. In addition to a detailed description of this method, a C++/OpenGL software tool which has been developed to implement this method is also discussed. This tool leverages geometry modeling coupled with collision detection techniques to identify favorable layouts subject to multiple constraints and objectives (e.g., minimize mass, maximize contiguous habitable volume, maximize task performance, and minimize crew safety risks). Finally, a few habitat layout evaluation examples are described to demonstrate the effectiveness of this method and tool to influence habitat design.

  17. Increased body mass of ducks wintering in California's Central Valley

    Science.gov (United States)

    Fleskes, Joseph P.; Yee, Julie L.; Yarris, Gregory S.; Loughman, Daniel L.

    2016-01-01

    Waterfowl managers lack the information needed to fully evaluate the biological effects of their habitat conservation programs. We studied body condition of dabbling ducks shot by hunters at public hunting areas throughout the Central Valley of California during 2006–2008 compared with condition of ducks from 1979 to 1993. These time periods coincide with habitat increases due to Central Valley Joint Venture conservation programs and changing agricultural practices; we modeled to ascertain whether body condition differed among waterfowl during these periods. Three dataset comparisons indicate that dabbling duck body mass was greater in 2006–2008 than earlier years and the increase was greater in the Sacramento Valley and Suisun Marsh than in the San Joaquin Valley, differed among species (mallard [Anas platyrhynchos], northern pintail [Anas acuta], America wigeon [Anas americana], green-winged teal [Anas crecca], and northern shoveler [Anas clypeata]), and was greater in ducks harvested late in the season. Change in body mass also varied by age–sex cohort and month for all 5 species and by September–January rainfall for all except green-winged teal. The random effect of year nested in period, and sometimes interacting with other factors, improved models in many cases. Results indicate that improved habitat conditions in the Central Valley have resulted in increased winter body mass of dabbling ducks, especially those that feed primarily on seeds, and this increase was greater in regions where area of post-harvest flooding of rice and other crops, and wetland area, has increased. Conservation programs that continue to promote post-harvest flooding and other agricultural practices that benefit wintering waterfowl and continue to restore and conserve wetlands would likely help maintain body condition of wintering dabbling ducks in the Central Valley of California.

  18. Evaluating carbon storage, timber harvest, and habitat possibilities for a Western Cascades (USA) forest landscape.

    Science.gov (United States)

    Kline, Jeffrey D; Harmon, Mark E; Spies, Thomas A; Morzillo, Anita T; Pabst, Robert J; McComb, Brenda C; Schnekenburger, Frank; Olsen, Keith A; Csuti, Blair; Vogeler, Jody C

    2016-10-01

    Forest policymakers and managers have long sought ways to evaluate the capability of forest landscapes to jointly produce timber, habitat, and other ecosystem services in response to forest management. Currently, carbon is of particular interest as policies for increasing carbon storage on federal lands are being proposed. However, a challenge in joint production analysis of forest management is adequately representing ecological conditions and processes that influence joint production relationships. We used simulation models of vegetation structure, forest sector carbon, and potential wildlife habitat to characterize landscape-level joint production possibilities for carbon storage, timber harvest, and habitat for seven wildlife species across a range of forest management regimes. We sought to (1) characterize the general relationships of production possibilities for combinations of carbon storage, timber, and habitat, and (2) identify management variables that most influence joint production relationships. Our 160 000-ha study landscape featured environmental conditions typical of forests in the Western Cascade Mountains of Oregon (USA). Our results indicate that managing forests for carbon storage involves trade-offs among timber harvest and habitat for focal wildlife species, depending on the disturbance interval and utilization intensity followed. Joint production possibilities for wildlife species varied in shape, ranging from competitive to complementary to compound, reflecting niche breadth and habitat component needs of species examined. Managing Pacific Northwest forests to store forest sector carbon can be roughly complementary with habitat for Northern Spotted Owl, Olive-sided Flycatcher, and red tree vole. However, managing forests to increase carbon storage potentially can be competitive with timber production and habitat for Pacific marten, Pileated Woodpecker, and Western Bluebird, depending on the disturbance interval and harvest intensity chosen

  19. Diagnostic accuracy of full-body linear X-ray scanning in multiple trauma patients in comparison to computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Joeres, A.P.W.; Heverhagen, J.T.; Bonel, H. [Inselspital - University Hospital Bern (Switzerland). Univ. Inst. of Diagnostic, Interventional and Pediatric Radiology; Exadaktylos, A. [Inselspital - University Hospital Bern (Switzerland). Dept. of Emergency Medicine; Klink, T. [Inselspital - University Hospital Bern (Switzerland). Univ. Inst. of Diagnostic, Interventional and Pediatric Radiology; Wuerzburg Univ. (Germany). Inst. of Diagnostic and Interventional Radiology

    2016-02-15

    The purpose of this study was to evaluate the diagnostic accuracy of full-body linear X-ray scanning (LS) in multiple trauma patients in comparison to 128-multislice computed tomography (MSCT). 106 multiple trauma patients (female: 33; male: 73) were retrospectively included in this study. All patients underwent LS of the whole body, including extremities, and MSCT covering the neck, thorax, abdomen, and pelvis. The diagnostic accuracy of LS for the detection of fractures of the truncal skeleton and pneumothoraces was evaluated in comparison to MSCT by two observers in consensus. Extremity fractures detected by LS were documented. The overall sensitivity of LS was 49.2%, the specificity was 93.3%, the positive predictive value was 91%, and the negative predictive value was 57.5%. The overall sensitivity for vertebral fractures was 16.7%, and the specificity was 100%. The sensitivity was 48.7% and the specificity 98.2% for all other fractures. Pneumothoraces were detected in 12 patients by CT, but not by LS.40 extremity fractures were detected by LS, of which 4 fractures were dislocated, and 2 were fully covered by MSCT. The diagnostic accuracy of LS is limited in the evaluation of acute trauma of the truncal skeleton. LS allows fast whole-body X-ray imaging, and may be valuable for detecting extremity fractures in trauma patients in addition to MSCT.

  20. Habitat fragmentation effects on birds in grasslands and wetlands: A critique of our knowledge

    Science.gov (United States)

    Johnson, D.H.

    2001-01-01

    Habitat fragmentation exacerbates the problem of habitat loss for grassland and wetland birds. Remaining patches of grasslands and wetlands may be too small, too isolated, and too influenced by edge effects to maintain viable populations of some breeding birds. Knowledge of the effects of fragmentation on bird populations is critically important for decisions about reserve design, grassland and wetland management, and implementation of cropland set-aside programs that benefit wildlife. In my review of research that has been conducted on habitat fragmentation, I found at least five common problems in the methodology used. The results of many studies are compromised by these problems: passive sampling (sampling larger areas in larger patches), confounding effects of habitat heterogeneity, consequences of inappropriate pooling of data from different species, artifacts associated with artificial nest data, and definition of actual habitat patches. As expected, some large-bodied birds with large territorial requirements, such as the northern harrier (Circus cyaneus), appear area sensitive. In addition, some small species of grassland birds favor patches of habitat far in excess of their territory size, including the Savannah (Passerculus sandwichensis), grasshopper (Ammodramus savannarum) and Henslow's (A. henslowii) sparrows, and the bobolink (Dolichonyx oryzivorus). Other species may be area sensitive as well, but the data are ambiguous. Area sensitivity among wetland birds remains unknown since virtually no studies have been based on solid methodologies. We need further research on grassland bird response to habitat that distinguishes supportable conclusions from those that may be artifactual.

  1. Headwater biodiversity among different levels of stream habitat hierarchy

    DEFF Research Database (Denmark)

    Göthe, Emma; Friberg, Nikolai; Kahlert, Maria

    2014-01-01

    of a- and b-diversity to y-diversity between two levels of stream habitat hierarchy (catchment and region level). The relationship between species community structure and local environmental factors was also assessed. Our results show that both a- and b-diversity made a significant contribution to y......-diversity. b-diversity remained relatively constant between the two levels of habitat hierarchy even though local environmental control of the biota decreased from the catchment to the region level. To capture most of headwater y-diversity, management should therefore target sites that are locally diverse......, but at the same time select sites so that b-diversity is maximized. As environmental control of the biota peaked at the catchment level, the conservation of headwater stream diversity is likely to be most effective when management targets environmental conditions across multiple local sites within relatively...

  2. Movement, demographics, and occupancy dynamics of a federally-threatened salamander: evaluating the adequacy of critical habitat

    Directory of Open Access Journals (Sweden)

    Nathan F. Bendik

    2016-03-01

    Full Text Available Critical habitat for many species is often limited to occupied localities. For rare and cryptic species, or those lacking sufficient data, occupied habitats may go unrecognized, potentially hindering species recovery. Proposed critical habitat for the aquatic Jollyville Plateau salamander (Eurycea tonkawae and two sister species were delineated based on the assumption that surface habitat is restricted to springs and excludes intervening stream reaches. To test this assumption, we performed two studies to understand aspects of individual, population, and metapopulation ecology of E. tonkawae. First, we examined movement and population demographics using capture-recapture along a spring-influenced stream reach. We then extended our investigation of stream habitat use with a study of occupancy and habitat dynamics in multiple headwater streams. Indications of extensive stream channel use based on capture-recapture results included frequent movements of >15 m, and high juvenile abundance downstream of the spring. Initial occupancy of E. tonkawae was associated with shallow depths, maidenhair fern presence and low temperature variation (indicative of groundwater influence, although many occupied sites were far from known springs. Additionally, previously dry sites were three times more likely to be colonized than wet sites. Our results indicate extensive use of stream habitats, including intermittent ones, by E. tonkawae. These areas may be important for maintaining population connectivity or even as primary habitat patches. Restricting critical habitat to occupied sites will result in a mismatch with actual habitat use, particularly when assumptions of habitat use are untested, thus limiting the potential for recovery.

  3. [Species composition, diversity and density of small fishes in two different habitats in Niushan Lake].

    Science.gov (United States)

    Ye, Shao-Wen; Li, Zhong-Jie; Cao, Wen-Xuan

    2007-07-01

    This paper studied the spatial distribution of small fishes in a shallow macrophytic lake, Niushan Lake in spring 2003, and its relations with habitat heterogeneity. Based on the macrophyte cover condition, distance from lake shore and water depth, two representative habitat types in the lake were selected. Habitat A was near the shore with dense submersed macrophyte, while habitat B was far from the shore with sparse submersed macrophyte. Small fishes were sampled quantitatively by block net (180 m2), and their densities within the net area were estimated by multiple mark-recapture or Zippin's removal method. The results showed that there were some differences in species composition, biodiversity measurement, and estimated density of small fishes between the two habitats: 1) the catches in habitat A consisted of 14 small fish species from 5 families, among which, benthopelagic species Rhodeus ocellatus, Paracheilognathus imberbis and Pseudorasbora parva were considered as dominant species, while those in habitat B consisted of 9 small fish species from 3 families, among which, bottom species Rhinogobius giurinus and Micropercops swinhonis were dominant; 2) the Bray-Curtis index between the two small fish communities was 0.222, reflecting their low structure similarity, and no significant difference was observed between their rank/ abundance distributions, both of which belonged to log series distribution; 3) the total density of 9 major species in habitat A was 8.71 ind x m(-2), while that of 5 major species in habitat B was only 3.54 ind x m(-2). The fact that the spatial distribution of the small fishes differed with habitats might be related to their habitat need for escaping predators, feeding, and breeding, and thus, aquatic macrophyte habitat should be of significance in the rational exploitation of small fish resources as well as the conservation of fish resource diversity.

  4. Deep Space Habitat Configurations Based on International Space Station Systems

    Science.gov (United States)

    Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples, Dauphne; Miernik, Janie

    2012-01-01

    A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

  5. Afferent thermosensory function in relapsing-remitting multiple sclerosis following exercise-induced increases in body temperature.

    Science.gov (United States)

    Filingeri, Davide; Chaseling, Georgia; Hoang, Phu; Barnett, Michael; Davis, Scott L; Jay, Ollie

    2017-08-01

    What is the central question of this study? Between 60 and 80% of multiple sclerosis (MS) patients experience transient worsening of symptoms with increased body temperature (heat sensitivity). As sensory abnormalities are common in MS, we asked whether afferent thermosensory function is altered in MS following exercise-induced increases in body temperature. What is the main finding and its importance? Increases in body temperature of as little as ∼0.4°C were sufficient to decrease cold, but not warm, skin thermosensitivity (∼10%) in MS, across a wider temperature range than in age-matched healthy individuals. These findings provide new evidence on the impact of heat sensitivity on afferent function in MS, which could be useful for clinical evaluation of this neurological disease. In multiple sclerosis (MS), increases in body temperature result in transient worsening of clinical symptoms (heat sensitivity or Uhthoff's phenomenon). Although the impact of heat sensitivity on efferent physiological function has been investigated, the effects of heat stress on afferent sensory function in MS are unknown. Hence, we quantified afferent thermosensory function in MS following exercise-induced increases in body temperature with a new quantitative sensory test. Eight relapsing-remitting MS patients (three men and five women; 51.4 ± 9.1 years of age; Expanded Disability Status Scale score 2.8 ± 1.1) and eight age-matched control (CTR) subjects (five men and three women; 47.4 ± 9.1 years of age) rated the perceived magnitude of two cold (26 and 22°C) and two warm stimuli (34 and 38°C) applied to the dorsum of the hand before and after 30 min cycling in the heat (30°C air; 30% relative humidity). Exercise produced similar increases in mean body temperature in MS [+0.39°C (95% CI: +0.21, +0.53) P = 0.001] and CTR subjects [+0.41°C (95% CI: +0.25, +0.58) P = 0.001]. These changes were sufficient to decrease thermosensitivity significantly to all cold [26

  6. Architecture and life support systems for a rotating space habitat

    Science.gov (United States)

    Misra, Gaurav

    habitat. In order to ensure Thermal control of the habitat, multiple radiators on the exterior and a thermal shield on the inner circumference of the habitat are proposed. Food production on-board the habitat is proposed to be facilitated through vertical farming systems. These multi-storey farming systems are known to be more efficient in terms of area and sustainable than conventional farms. Agriculture on-board these farms are proposed to be facilitated through hydroponics and enriched regolith. Apart from food production, these farms can cater to fish farming as means of food, animal and insect breeding. In order to ensure waste treatment of organic matter, a biogas plant is proposed in the habitat which can be used to generate electrical or mechanical power .An optimum atmospheric pressure of 51.1Kpa is proposed for the habitat comprising of Oxygen and Helium. Recreational facilities although not directly related to life support systems, play a very important role in optimum liveability of inhabitants. Open spaces, sports facilities, micro gravity swimming pools, orbital hotels are proposed as modes of recreation to ensure long term sustainability for the inhabitants.

  7. Habitat Predicts Levels of Genetic Admixture in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Viranga Tilakaratna

    2017-09-01

    Full Text Available Genetic admixture can provide material for populations to adapt to local environments, and this process has played a crucial role in the domestication of plants and animals. The model yeast, Saccharomyces cerevisiae, has been domesticated multiple times for the production of wine, sake, beer, and bread, but the high rate of admixture between yeast lineages has so far been treated as a complication for population genomic analysis. Here, we make use of the low recombination rate at centromeres to investigate admixture in yeast using a classic Bayesian approach and a locus-by-locus phylogenetic approach. Using both approaches, we find that S. cerevisiae from stable oak woodland habitats are less likely to show recent genetic admixture compared with those isolated from transient habitats such as fruits, wine, or human infections. When woodland yeast strains do show recent genetic admixture, the degree of admixture is lower than in strains from other habitats. Furthermore, S. cerevisiae populations from oak woodlands are genetically isolated from each other, with only occasional migration between woodlands and local fruit habitats. Application of the phylogenetic approach suggests that there is a previously undetected population in North Africa that is the closest outgroup to the European S. cerevisiae, including the domesticated Wine population. Careful testing for admixture in S. cerevisiae leads to a better understanding of the underlying population structure of the species and will be important for understanding the selective processes underlying domestication in this economically important species.

  8. Habitat Predicts Levels of Genetic Admixture in Saccharomyces cerevisiae.

    Science.gov (United States)

    Tilakaratna, Viranga; Bensasson, Douda

    2017-09-07

    Genetic admixture can provide material for populations to adapt to local environments, and this process has played a crucial role in the domestication of plants and animals. The model yeast, Saccharomyces cerevisiae , has been domesticated multiple times for the production of wine, sake, beer, and bread, but the high rate of admixture between yeast lineages has so far been treated as a complication for population genomic analysis. Here, we make use of the low recombination rate at centromeres to investigate admixture in yeast using a classic Bayesian approach and a locus-by-locus phylogenetic approach. Using both approaches, we find that S. cerevisiae from stable oak woodland habitats are less likely to show recent genetic admixture compared with those isolated from transient habitats such as fruits, wine, or human infections. When woodland yeast strains do show recent genetic admixture, the degree of admixture is lower than in strains from other habitats. Furthermore, S. cerevisiae populations from oak woodlands are genetically isolated from each other, with only occasional migration between woodlands and local fruit habitats. Application of the phylogenetic approach suggests that there is a previously undetected population in North Africa that is the closest outgroup to the European S. cerevisiae , including the domesticated Wine population. Careful testing for admixture in S. cerevisiae leads to a better understanding of the underlying population structure of the species and will be important for understanding the selective processes underlying domestication in this economically important species. Copyright © 2017 Tilakaratna and Bensasson.

  9. Using Field Data and GIS-Derived Variables to Model Occurrence of Williamson's Sapsucker Nesting Habitat at Multiple Spatial Scales.

    Directory of Open Access Journals (Sweden)

    Mark C Drever

    Full Text Available Williamson's sapsucker (Sphyrapicus thyroideus is a migratory woodpecker that breeds in mixed coniferous forests in western North America. In Canada, the range of this woodpecker is restricted to three small populations in southern British Columbia, precipitating a national listing as 'Endangered' in 2005, and the need to characterize critical habitat for its survival and recovery. We compared habitat attributes between Williamson's sapsucker nest territories and random points without nests or detections of this sapsucker as part of a resource selection analysis to identify the habitat features that best explain the probability of nest occurrence in two separate geographic regions in British Columbia. We compared the relative explanatory power of generalized linear models based on field-derived and Geographic Information System (GIS data within both a 225 m and 800 m radius of a nest or random point. The model based on field-derived variables explained the most variation in nest occurrence in the Okanagan-East Kootenay Region, whereas nest occurrence was best explained by GIS information at the 800 m scale in the Western Region. Probability of nest occurrence was strongly tied to densities of potential nest trees, which included open forests with very large (diameter at breast height, DBH, ≥57.5 cm western larch (Larix occidentalis trees in the Okanagan-East Kootenay Region, and very large ponderosa pine (Pinus ponderosa and large (DBH 17.5-57.5 cm trembling aspen (Populus tremuloides trees in the Western Region. Our results have the potential to guide identification and protection of critical habitat as required by the Species at Risk Act in Canada, and to better manage Williamson's sapsucker habitat overall in North America. In particular, management should focus on the maintenance and recruitment of very large western larch and ponderosa pine trees.

  10. Using Field Data and GIS-Derived Variables to Model Occurrence of Williamson's Sapsucker Nesting Habitat at Multiple Spatial Scales.

    Science.gov (United States)

    Drever, Mark C; Gyug, Les W; Nielsen, Jennifer; Stuart-Smith, A Kari; Ohanjanian, I Penny; Martin, Kathy

    2015-01-01

    Williamson's sapsucker (Sphyrapicus thyroideus) is a migratory woodpecker that breeds in mixed coniferous forests in western North America. In Canada, the range of this woodpecker is restricted to three small populations in southern British Columbia, precipitating a national listing as 'Endangered' in 2005, and the need to characterize critical habitat for its survival and recovery. We compared habitat attributes between Williamson's sapsucker nest territories and random points without nests or detections of this sapsucker as part of a resource selection analysis to identify the habitat features that best explain the probability of nest occurrence in two separate geographic regions in British Columbia. We compared the relative explanatory power of generalized linear models based on field-derived and Geographic Information System (GIS) data within both a 225 m and 800 m radius of a nest or random point. The model based on field-derived variables explained the most variation in nest occurrence in the Okanagan-East Kootenay Region, whereas nest occurrence was best explained by GIS information at the 800 m scale in the Western Region. Probability of nest occurrence was strongly tied to densities of potential nest trees, which included open forests with very large (diameter at breast height, DBH, ≥57.5 cm) western larch (Larix occidentalis) trees in the Okanagan-East Kootenay Region, and very large ponderosa pine (Pinus ponderosa) and large (DBH 17.5-57.5 cm) trembling aspen (Populus tremuloides) trees in the Western Region. Our results have the potential to guide identification and protection of critical habitat as required by the Species at Risk Act in Canada, and to better manage Williamson's sapsucker habitat overall in North America. In particular, management should focus on the maintenance and recruitment of very large western larch and ponderosa pine trees.

  11. Nestedness patterns of container-dwelling mosquitoes: Effects of larval habitat within variable terrestial matrices

    Science.gov (United States)

    Distributions of mosquito larvae likely are a consequence of multiple factors, although two commonly studied factors (quality of the larval environment and the terrestrial matrix in which these habitats reside) have rarely and simultaneously been varied in the field to understand...

  12. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model

    Science.gov (United States)

    Settele, Josef; Dormann, Carsten F.

    2018-01-01

    Solitary bees are important but declining wild pollinators. During daily foraging in agricultural landscapes, they encounter a mosaic of patches with nest and foraging habitat and unsuitable matrix. It is insufficiently clear how spatial allocation of nesting and foraging resources and foraging traits of bees affect their daily foraging performance. We investigated potential brood cell construction (as proxy of fitness), number of visited flowers, foraging habitat visitation and foraging distance (pollination proxies) with the model SOLBEE (simulating pollen transport by solitary bees, tested and validated in an earlier study), for landscapes varying in landscape fragmentation and spatial allocation of nesting and foraging resources. Simulated bees varied in body size and nesting preference. We aimed to understand effects of landscape fragmentation and bee traits on bee fitness and the pollination services bees provide, as well as interactions between them, and the general consequences it has to our understanding of the system. This broad scope gives multiple key results. 1) Body size determines fitness more than landscape fragmentation, with large bees building fewer brood cells. High pollen requirements for large bees and the related high time budgets for visiting many flowers may not compensate for faster flight speeds and short handling times on flowers, giving them overall a disadvantage compared to small bees. 2) Nest preference does affect distribution of bees over the landscape, with cavity-nesting bees being restricted to nesting along field edges, which inevitably leads to performance reductions. Fragmentation mitigates this for cavity-nesting bees through increased edge habitat. 3) Landscape fragmentation alone had a relatively small effect on all responses. Instead, the local ratio of nest to foraging habitat affected bee fitness positively through reduced local competition. The spatial coverage of pollination increases steeply in response to this ratio

  13. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model.

    Science.gov (United States)

    Everaars, Jeroen; Settele, Josef; Dormann, Carsten F

    2018-01-01

    Solitary bees are important but declining wild pollinators. During daily foraging in agricultural landscapes, they encounter a mosaic of patches with nest and foraging habitat and unsuitable matrix. It is insufficiently clear how spatial allocation of nesting and foraging resources and foraging traits of bees affect their daily foraging performance. We investigated potential brood cell construction (as proxy of fitness), number of visited flowers, foraging habitat visitation and foraging distance (pollination proxies) with the model SOLBEE (simulating pollen transport by solitary bees, tested and validated in an earlier study), for landscapes varying in landscape fragmentation and spatial allocation of nesting and foraging resources. Simulated bees varied in body size and nesting preference. We aimed to understand effects of landscape fragmentation and bee traits on bee fitness and the pollination services bees provide, as well as interactions between them, and the general consequences it has to our understanding of the system. This broad scope gives multiple key results. 1) Body size determines fitness more than landscape fragmentation, with large bees building fewer brood cells. High pollen requirements for large bees and the related high time budgets for visiting many flowers may not compensate for faster flight speeds and short handling times on flowers, giving them overall a disadvantage compared to small bees. 2) Nest preference does affect distribution of bees over the landscape, with cavity-nesting bees being restricted to nesting along field edges, which inevitably leads to performance reductions. Fragmentation mitigates this for cavity-nesting bees through increased edge habitat. 3) Landscape fragmentation alone had a relatively small effect on all responses. Instead, the local ratio of nest to foraging habitat affected bee fitness positively through reduced local competition. The spatial coverage of pollination increases steeply in response to this ratio

  14. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model.

    Directory of Open Access Journals (Sweden)

    Jeroen Everaars

    Full Text Available Solitary bees are important but declining wild pollinators. During daily foraging in agricultural landscapes, they encounter a mosaic of patches with nest and foraging habitat and unsuitable matrix. It is insufficiently clear how spatial allocation of nesting and foraging resources and foraging traits of bees affect their daily foraging performance. We investigated potential brood cell construction (as proxy of fitness, number of visited flowers, foraging habitat visitation and foraging distance (pollination proxies with the model SOLBEE (simulating pollen transport by solitary bees, tested and validated in an earlier study, for landscapes varying in landscape fragmentation and spatial allocation of nesting and foraging resources. Simulated bees varied in body size and nesting preference. We aimed to understand effects of landscape fragmentation and bee traits on bee fitness and the pollination services bees provide, as well as interactions between them, and the general consequences it has to our understanding of the system. This broad scope gives multiple key results. 1 Body size determines fitness more than landscape fragmentation, with large bees building fewer brood cells. High pollen requirements for large bees and the related high time budgets for visiting many flowers may not compensate for faster flight speeds and short handling times on flowers, giving them overall a disadvantage compared to small bees. 2 Nest preference does affect distribution of bees over the landscape, with cavity-nesting bees being restricted to nesting along field edges, which inevitably leads to performance reductions. Fragmentation mitigates this for cavity-nesting bees through increased edge habitat. 3 Landscape fragmentation alone had a relatively small effect on all responses. Instead, the local ratio of nest to foraging habitat affected bee fitness positively through reduced local competition. The spatial coverage of pollination increases steeply in response

  15. Elliptic Fourier Analysis of body shape variation of Hippocampus spp. (seahorse in Danajon Bank, Philippines

    Directory of Open Access Journals (Sweden)

    S. R. M. Tabugo-Rico

    2017-12-01

    Full Text Available Seahorses inhabit various ecosystems hence, had become a flagship species of the marine environment. The Philippines as a hot spot of biodiversity in Asia holds a number of species of seahorses. This serve as an exploratory study to describe body shape variation of selected common seahorse species: Hippocampus comes, Hippocampus histrix, Hippocampus spinosissimus and Hippocampus kuda from Danajon bank using Elliptic Fourier Analysis. The method was done to test whether significant yet subtle differences in body shape variation can be species-specific, habitat-influenced and provide evidence of sexual dimorphism. It is hypothesized that phenotypic divergence may provide evidence for genetic differentiation or mere adaptations to habitat variation. Results show significant considerable differences in the body shapes of the five populations based on the canonical variate analysis (CVA and multivariate analysis of variance (MANOVA with significant p values. Populations were found to be distinct from each other suggesting that body shape variation is species-specific, habitat-influenced and provided evidence for sexual dimorphism. Results of discriminant analysis show further support for species specific traits and sexual dimorphism. This study shows the application of the method of geometric morphometrics specifically elliptic fourier analysis in describing subtle body shape variation of selected Hippocampus species.

  16. A NEW HABITAT CLASSIFICATION AND MANUAL FOR STANDARDIZED HABITAT MAPPING

    Directory of Open Access Journals (Sweden)

    A. KUN

    2007-01-01

    Full Text Available Today the documentation of natural heritage with scientific methods but for conservation practice – like mapping of actual vegetation – becomes more and more important. For this purpose mapping guides containing only the names and descriptions of vegetation types are not sufficient. Instead, new, mapping-oriented vegetation classification systems and handbooks are needed. There are different standardised systems fitted to the characteristics of a region already published and used successfully for surveying large territories. However, detailed documentation of the aims and steps of their elaboration is still missing. Here we present a habitat-classification method developed specifically for mapping and the steps of its development. Habitat categories and descriptions reflect site conditions, physiognomy and species composition as well. However, for species composition much lower role was given deliberately than in the phytosociological systems. Recognition and mapping of vegetation types in the field is highly supported by a definition, list of subtypes and list of ‘types not belonging to this habitat category’. Our system is two-dimensional: the first dimension is habitat type, the other is naturalness based habitat quality. The development of the system was conducted in two steps, over 200 mappers already tested it over 7000 field days in different projects.

  17. Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Superficiel (MSS).

    Science.gov (United States)

    Mammola, Stefano; Giachino, Pier Mauro; Piano, Elena; Jones, Alexandra; Barberis, Marcel; Badino, Giovanni; Isaia, Marco

    2016-12-01

    The term Milieu Souterrain Superficiel (MSS) has been used since the early 1980s in subterranean biology to categorize an array of different hypogean habitats. In general terms, a MSS habitat represents the underground network of empty air-filled voids and cracks developing within multiple layers of rock fragments. Its origins can be diverse and is generally covered by topsoil. The MSS habitat is often connected both with the deep hypogean domain-caves and deep rock cracks-and the superficial soil horizon. A MSS is usually characterized by peculiar microclimatic conditions, and it can harbor specialized hypogean, endogean, and surface-dwelling species. In light of the many interpretations given by different authors, we reviewed 235 papers regarding the MSS in order to provide a state-of-the-art description of these habitats and facilitate their study. We have briefly described the different types of MSS mentioned in the scientific literature (alluvial, bedrock, colluvial, volcanic, and other types) and synthesized the advances in the study of the physical and ecological factors affecting this habitat-i.e., microclimate, energy flows, animal communities, and trophic interactions. We finally described and reviewed the available sampling methods used to investigate MSS fauna.

  18. Landscape alteration and habitat modification: impacts on plant-pollinator systems

    OpenAIRE

    Vanbergen, Adam J.

    2014-01-01

    Insect pollinators provide an important ecosystem service to many crop species and underpin the reproductive assurance of many wild plant species. Multiple, anthropogenic pressures threaten insect pollinators. Land-use change and intensification alters the habitats and landscapes that provide food and nesting resources for pollinators. These impacts vary according to species traits, producing winners and losers, while the intrinsic robustness of plant-pollinator networks may provide stability...

  19. Multiscale sagebrush rangeland habitat modeling in southwest Wyoming

    Science.gov (United States)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Coan, Michael J.; Bowen, Zachary H.

    2009-01-01

    Sagebrush-steppe ecosystems in North America have experienced dramatic elimination and degradation since European settlement. As a result, sagebrush-steppe dependent species have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, would improve the ability to maintain existing sagebrush habitats. However, current data only identify resource availability locally, with rigorous spatial tools and models that accurately model and map sagebrush habitats over large areas still unavailable. Here we report on an effort to produce a rigorous large-area sagebrush-habitat classification and inventory with statistically validated products and estimates of precision in the State of Wyoming. This research employs a combination of significant new tools, including (1) modeling sagebrush rangeland as a series of independent continuous field components that can be combined and customized by any user at multiple spatial scales; (2) collecting ground-measured plot data on 2.4-meter imagery in the same season the satellite imagery is acquired; (3) effective modeling of ground-measured data on 2.4-meter imagery to maximize subsequent extrapolation; (4) acquiring multiple seasons (spring, summer, and fall) of an additional two spatial scales of imagery (30 meter and 56 meter) for optimal large-area modeling; (5) using regression tree classification technology that optimizes data mining of multiple image dates, ratios, and bands with ancillary data to extrapolate ground training data to coarser resolution sensors; and (6) employing rigorous accuracy assessment of model predictions to enable users to understand the inherent uncertainties. First-phase results modeled eight rangeland components (four primary targets and four secondary targets) as continuous field predictions. The primary targets included percent bare ground, percent herbaceousness, percent shrub, and percent litter. The

  20. Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice

    International Nuclear Information System (INIS)

    Vermeulen, Frouke; Van den Brink, Nico W.; D'Have, Helga; Mubiana, Valentine K.; Blust, Ronny; Bervoets, Lieven; De Coen, Wim

    2009-01-01

    The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way. - Our study provided essential insights into habitat-specific accumulation patterns with respect to factors influencing metal bioaccumulation, BAFs, and site-specific risk assessment.

  1. Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, Frouke, E-mail: frouke.vermeulen@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van den Brink, Nico W., E-mail: nico.vandenbrink@wur.n [Alterra, Wageningen UR, Box 47, NL6700AA Wageningen (Netherlands); D' Have, Helga [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Mubiana, Valentine K., E-mail: kayawe.mubiana@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Blust, Ronny, E-mail: ronny.blust@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Bervoets, Lieven, E-mail: lieven.bervoets@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); De Coen, Wim, E-mail: wim.decoen@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2009-11-15

    The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way. - Our study provided essential insights into habitat-specific accumulation patterns with respect to factors influencing metal bioaccumulation, BAFs, and site-specific risk assessment.

  2. Habitat Ecology Visual Surveys of Demersal Fishes and Habitats off California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Since 1992, the Habitat Ecology team has been conducting fishery independent, visual surveys of demersal fishes and associated habitats in deep water (20 to 900...

  3. Multi-species genetic connectivity in a terrestrial habitat network.

    Science.gov (United States)

    Marrotte, Robby R; Bowman, Jeff; Brown, Michael G C; Cordes, Chad; Morris, Kimberley Y; Prentice, Melanie B; Wilson, Paul J

    2017-01-01

    Habitat fragmentation reduces genetic connectivity for multiple species, yet conservation efforts tend to rely heavily on single-species connectivity estimates to inform land-use planning. Such conservation activities may benefit from multi-species connectivity estimates, which provide a simple and practical means to mitigate the effects of habitat fragmentation for a larger number of species. To test the validity of a multi-species connectivity model, we used neutral microsatellite genetic datasets of Canada lynx ( Lynx canadensis ), American marten ( Martes americana ), fisher ( Pekania pennanti ), and southern flying squirrel ( Glaucomys volans ) to evaluate multi-species genetic connectivity across Ontario, Canada. We used linear models to compare node-based estimates of genetic connectivity for each species to point-based estimates of landscape connectivity (current density) derived from circuit theory. To our knowledge, we are the first to evaluate current density as a measure of genetic connectivity. Our results depended on landscape context: habitat amount was more important than current density in explaining multi-species genetic connectivity in the northern part of our study area, where habitat was abundant and fragmentation was low. In the south however, where fragmentation was prevalent, genetic connectivity was correlated with current density. Contrary to our expectations however, locations with a high probability of movement as reflected by high current density were negatively associated with gene flow. Subsequent analyses of circuit theory outputs showed that high current density was also associated with high effective resistance, underscoring that the presence of pinch points is not necessarily indicative of gene flow. Overall, our study appears to provide support for the hypothesis that landscape pattern is important when habitat amount is low. We also conclude that while current density is proportional to the probability of movement per unit area

  4. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    Directory of Open Access Journals (Sweden)

    Chantel E Markle

    Full Text Available Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015 and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  5. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    Science.gov (United States)

    Markle, Chantel E; Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  6. Sequential hemi-body radiotherapy in advanced multiple myeloma. [Side effects of indicated x-ray therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, J.P.; Bosch, A.; Raich, P.C.

    1979-01-01

    Eleven patients with advanced multiple myeloma refractory to standard chemotherapy were treated with a regimen of sequential hemi-body radiotherapy consisting of 800 rad midplane in a single dose to each half. 9/10 patients experienced significant relief of skeletal pain and there were 5/11 objective tumor responses with one complete remission. Treatment-related morbidity was significant and consisted primarily of nausea and emesis, bone marrow suppression, and pneumonitis. This therapy is helpful in the management of advanced myeloma, and should be studied earlier in the course of the disease.

  7. Reproductive habitat selection in alien and native populations of the genus Discoglossus

    Science.gov (United States)

    Escoriza, Daniel; Boix, Dani

    2014-08-01

    The existence of suitable breeding habitats is an important factor explaining the regional presence of an anuran species. This study examined patterns of habitat selection in populations of three species of the genus Discoglossus: Discoglossusgalganoi (south-western Iberian Peninsula), Discoglossusscovazzi (Morocco) and Discoglossuspictus (three different areas were included in the study: Sicily, Tunisia and north-eastern Iberian Peninsula). The populations of D. pictus on the Iberian Peninsula are allochthonous, and analysis of these patterns may provide insights into the processes that regulate the invasion phase. The hypotheses tested were: (i) congeneric species show the same patterns of habitat selection, and alien species have been established following these patterns; (ii) there are differences in species associations between assemblages structured deterministically and by chance, i.e. native versus invaded assemblages. The larval habitats of three species of this genus were characterized by measuring physical and chemical parameters of the water bodies. We examined the covariation between the presence of Discoglossus species and the species richness of sympatric anurans, and investigated a possible relationship between morphological similarity (as a proxy of functional group) and overlap in habitat use. The results showed that congeneric species are morphologically conservative and also select very similar types of aquatic habitat. The alien population and other sympatric species showed a high degree of overlap in habitat use, which was greater than that observed in the native assemblage with a similar functional richness. Species associations were not structured on the basis of morphological similarity in any of the assemblages. Among native populations, the presence of Discoglossus was either negatively correlated or not significantly correlated with species richness. Only the alien population showed a positive correlation between its presence and species

  8. Avian BMR in marine and non-marine habitats: a test using shorebirds.

    Science.gov (United States)

    Gutiérrez, Jorge S; Abad-Gómez, José M; Sánchez-Guzmán, Juan M; Navedo, Juan G; Masero, José A

    2012-01-01

    Basal metabolic rate (BMR) is closely linked to different habitats and way of life. In birds, some studies have noted that BMR is higher in marine species compared to those inhabiting terrestrial habitats. However, the extent of such metabolic dichotomy and its underlying mechanisms are largely unknown. Migratory shorebirds (Charadriiformes) offer a particularly interesting opportunity for testing this marine-non-marine difference as they are typically divided into two broad categories in terms of their habitat occupancy outside the breeding season: 'coastal' and 'inland' shorebirds. Here, we measured BMR for 12 species of migratory shorebirds wintering in temperate inland habitats and collected additional BMR values from the literature for coastal and inland shorebirds along their migratory route to make inter- and intraspecific comparisons. We also measured the BMR of inland and coastal dunlins Calidris alpina wintering at a similar latitude to facilitate a more direct intraspecific comparison. Our interspecific analyses showed that BMR was significantly lower in inland shorebirds than in coastal shorebirds after the effects of potentially confounding climatic (latitude, temperature, solar radiation, wind conditions) and organismal (body mass, migratory status, phylogeny) factors were accounted for. This indicates that part of the variation in basal metabolism might be attributed to genotypic divergence. Intraspecific comparisons showed that the mass-specific BMR of dunlins wintering in inland freshwater habitats was 15% lower than in coastal saline habitats, suggesting that phenotypic plasticity also plays an important role in generating these metabolic differences. We propose that the absence of tidally-induced food restrictions, low salinity, and less windy microclimates associated with inland freshwater habitats may reduce the levels of energy expenditure, and hence BMR. Further research including common-garden experiments that eliminate phenotypic plasticity

  9. Response of the agile antechinus to habitat edge, configuration and condition in fragmented forest.

    Directory of Open Access Journals (Sweden)

    Christopher P Johnstone

    Full Text Available Habitat fragmentation and degradation seriously threaten native animal communities. We studied the response of a small marsupial, the agile antechinus Antechinus agilis, to several environmental variables in anthropogenically fragmented Eucalyptus forest in south-east Australia. Agile antechinus were captured more in microhabitats dominated by woody debris than in other microhabitats. Relative abundances of both sexes were positively correlated with fragment core area. Male and female mass-size residuals were smaller in larger fragments. A health status indicator, haemoglobin-haematocrit residuals (HHR, did not vary as a function of any environmental variable in females, but male HHR indicated better health where sites' microhabitats were dominated by shrubs, woody debris and trees other than Eucalyptus. Females were trapped less often in edge than interior fragment habitat and their physiological stress level, indicated by the neutrophil/lymphocyte ratio in peripheral blood, was higher where fragments had a greater proportion of edge habitat. The latter trend was potentially due to lymphopoenia resulting from stress hormone-mediated leukocyte trafficking. Using multiple indicators of population condition and health status facilitates a comprehensive examination of the effects of anthropogenic disturbances, such as habitat fragmentation and degradation, on native vertebrates. Male agile antechinus' health responded negatively to habitat degradation, whilst females responded negatively to the proportion of edge habitat. The health and condition indicators used could be employed to identify conservation strategies that would make habitat fragments less stressful for this or similar native, small mammals.

  10. Habitat Blocks and Wildlife Corridors

    Data.gov (United States)

    Vermont Center for Geographic Information — Habitat blocks are areas of contiguous forest and other natural habitats that are unfragmented by roads, development, or agriculture. Vermonts habitat blocks are...

  11. Exercise Training in Progressive Multiple Sclerosis: A Comparison of Recumbent Stepping and Body Weight-Supported Treadmill Training.

    Science.gov (United States)

    Pilutti, Lara A; Paulseth, John E; Dove, Carin; Jiang, Shucui; Rathbone, Michel P; Hicks, Audrey L

    2016-01-01

    Background: There is evidence of the benefits of exercise training in multiple sclerosis (MS); however, few studies have been conducted in individuals with progressive MS and severe mobility impairment. A potential exercise rehabilitation approach is total-body recumbent stepper training (TBRST). We evaluated the safety and participant-reported experience of TBRST in people with progressive MS and compared the efficacy of TBRST with that of body weight-supported treadmill training (BWSTT) on outcomes of function, fatigue, and health-related quality of life (HRQOL). Methods: Twelve participants with progressive MS (Expanded Disability Status Scale scores, 6.0-8.0) were randomized to receive TBRST or BWSTT. Participants completed three weekly sessions (30 minutes) of exercise training for 12 weeks. Primary outcomes included safety assessed as adverse events and patient-reported exercise experience assessed as postexercise response and evaluation of exercise equipment. Secondary outcomes included the Multiple Sclerosis Functional Composite, the Modified Fatigue Impact Scale, and the Multiple Sclerosis Quality of Life-54 questionnaire scores. Assessments were conducted at baseline and after 12 weeks. Results: Safety was confirmed in both exercise groups. Participants reported enjoying both exercise modalities; however, TBRST was reviewed more favorably. Both interventions reduced fatigue and improved HRQOL (P ≤ .05); there were no changes in function. Conclusions: Both TBRST and BWSTT seem to be safe, well tolerated, and enjoyable for participants with progressive MS with severe disability. Both interventions may also be efficacious for reducing fatigue and improving HRQOL. TBRST should be further explored as an exercise rehabilitation tool for patients with progressive MS.

  12. Groundwater management institutions to protect riparian habitat

    Science.gov (United States)

    Orr, Patricia; Colby, Bonnie

    2004-12-01

    Groundwater pumping affects riparian habitat when it causes the water table to drop beyond the reach of riparian plants. Riparian habitat provides services that are not directly traded in markets, as is the case with many environmental amenities. There is no direct market where one may buy or sell the mix of services provided by a riparian corridor. The objective of this article is to review groundwater management mechanisms and assess their strengths and weaknesses for preserving the ecological integrity of riparian areas threatened by groundwater pumping. Policy instruments available to those concerned with the effects of groundwater pumping on riparian areas fall into three broad categories: (1) command and control (CAC), (2) incentive-based economic instruments, and (3) cooperative/suasive strategies. The case of the San Pedro River illustrates multiple and overlapping strategies applied in an ongoing attempt to reverse accumulating damage to a riparian ecosystem. Policy makers in the United States can choose among a broad menu of policy options to protect riparian habitat from groundwater pumping. They can capitalize on the clarity of command-and-control strategies, the flexibility and less obtrusive nature of incentive-based economic strategies, and the benefits that collaborative efforts can bring in the form of mutual consideration. While collaborative problem solving and market-based instruments are important policy tools, experience indicates that a well-formulated regulatory structure to limit regional groundwater pumping is an essential component of an effective riparian protection strategy.

  13. 75 FR 34975 - Notice of Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration...

    Science.gov (United States)

    2010-06-21

    ... Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration Strategy; Request... interagency Estuary Habitat Restoration Council, is providing notice of the Council's intent to revise the ''Estuary Habitat Restoration Strategy'' and requesting public comments to guide its revision. DATES...

  14. Vacant habitats in the Universe.

    Science.gov (United States)

    Cockell, Charles S

    2011-02-01

    The search for life on other planets usually makes the assumption that where there is a habitat, it will contain life. On the present-day Earth, uninhabited habitats (or vacant habitats) are rare, but might occur, for example, in subsurface oils or impact craters that have been thermally sterilized in the past. Beyond Earth, vacant habitats might similarly exist on inhabited planets or on uninhabited planets, for example on a habitable planet where life never originated. The hypothesis that vacant habitats are abundant in the Universe is testable by studying other planets. In this review, I discuss how the study of vacant habitats might ultimately inform an understanding of how life has influenced geochemical conditions on Earth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Habitat Evaluation Procedures (HEP) Report : Rainwater Wildlife Area, 1998-2001 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen

    2004-01-01

    vegetation species, allowance of normative processes such as fire occurrence, and facilitating development of natural stable stream channels and associated floodplains. Implementation of habitat enhancement and restoration activities could generate an additional 1,850 habitat units in 10 years. Baseline and estimated future habitat units total 7,035.3 for the Rainwater Wildlife Area. Habitat protection, enhancement and restoration will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program. Longer-term benefits of protection and enhancement activities include increases in native species diversity and plant community resiliency in all cover types. Watershed conditions, including floodplain/riparian, and instream habitat quality should improve as well providing multiple benefits for terrestrial and aquatic resources. While such benefits are not necessarily recognized by HEP models and reflected in the number of habitat units generated, they are consistent with the NPPC Fish and Wildlife Program.

  16. Migration, Multiple Citizenships, and the Right toParticipate in Official Electoral Bodies in Mexico

    Directory of Open Access Journals (Sweden)

    Francisco Antonio Rojas Choza

    2017-07-01

    Full Text Available El fenómeno migratorio en México y el recono-cimiento de la ciudadanía múltiple ha abierto dis-tintas problemáticas en torno al ejercicio de los derechos políticos, en particular, el derecho a in-tegrar autoridades electorales. El objetivo del pre-sente texto es reflejar cuantitativamente la posible dimensión de la ciudadanía múltiple en México, producto de la creciente migración internacional, y realizar un análisis jurídico de las restricciones por motivo de la ciudadanía múltiple en el ejerci-cio de la función electoral. Para el caso de Méxi-co, dichas restricciones son discriminatorias y no guardan razonabilidad ni proporcionalidad entre los distintos cargos, sean autoridades electorales administrativas o jurisdiccionales. / Migration and the recognition of multiple citizenship have opened up different problems in the exercise of political rights, and specifically, the right to be part of official electoral bodies. This article aims to quantify the possible effects of multiple citizenship in Mexico due to growing international migration, as well as to analyze the legal restrictions on the exercise of electoral rights due to multiple citizenship. In the case of Mexico, these restrictions are discriminatory and neither reasonable nor proportional to the different administrative or jurisdictional electoral positions.

  17. Retention of habitat complexity minimizes disassembly of reef fish communities following disturbance: a large-scale natural experiment.

    Directory of Open Access Journals (Sweden)

    Michael J Emslie

    Full Text Available High biodiversity ecosystems are commonly associated with complex habitats. Coral reefs are highly diverse ecosystems, but are under increasing pressure from numerous stressors, many of which reduce live coral cover and habitat complexity with concomitant effects on other organisms such as reef fishes. While previous studies have highlighted the importance of habitat complexity in structuring reef fish communities, they employed gradient or meta-analyses which lacked a controlled experimental design over broad spatial scales to explicitly separate the influence of live coral cover from overall habitat complexity. Here a natural experiment using a long term (20 year, spatially extensive (∼ 115,000 kms(2 dataset from the Great Barrier Reef revealed the fundamental importance of overall habitat complexity for reef fishes. Reductions of both live coral cover and habitat complexity had substantial impacts on fish communities compared to relatively minor impacts after major reductions in coral cover but not habitat complexity. Where habitat complexity was substantially reduced, species abundances broadly declined and a far greater number of fish species were locally extirpated, including economically important fishes. This resulted in decreased species richness and a loss of diversity within functional groups. Our results suggest that the retention of habitat complexity following disturbances can ameliorate the impacts of coral declines on reef fishes, so preserving their capacity to perform important functional roles essential to reef resilience. These results add to a growing body of evidence about the importance of habitat complexity for reef fishes, and represent the first large-scale examination of this question on the Great Barrier Reef.

  18. Effect of stocking sub-yearling Atlantic salmon on the habitat use of sub-yearling rainbow trout

    Science.gov (United States)

    Johnson, James H.

    2016-01-01

    Atlantic salmon (Salmo salar) restoration in the Lake Ontario watershed may depend on the species' ability to compete with naturalized non-native salmonids, including rainbow trout (Oncorhynchus mykiss) in Lake Ontario tributaries. This study examined interspecific habitat associations between sub-yearling Atlantic salmon and rainbow trout as well as the effect of salmon stocking on trout habitat in two streams in the Lake Ontario watershed. In sympatry, Atlantic salmon occupied significantly faster velocities and deeper areas than rainbow trout. However, when examining the habitat use of rainbow trout at all allopatric and sympatric sites in both streams, trout habitat use was more diverse at the sympatric sites with an orientation for increased cover and larger substrate. In Grout Brook, where available habitat remained constant, there was evidence suggesting that trout may have shifted to slower and shallower water in the presence of salmon. The ability of sub-yearling Atlantic salmon to affect a habitat shift in rainbow trout may be due to their larger body size and/or larger pectoral fin size. Future studies examining competitive interactions between these species during their first year of stream residence should consider the size advantage that earlier emerging Atlantic salmon will have over rainbow trout.

  19. Multi-scale habitat modification by coexisting ecosystem engineers drives spatial separation of macrobenthic functional groups

    NARCIS (Netherlands)

    Donadi, S.; van der Heide, T.; Piersma, T.; van der Zee, E.M.; Weerman, E.J.; van de Koppel, J.; Olff, H.; Devine, C.; Hernawan, U. E.; Boers, M.; Planthof, L.; Eriksson, B.K.

    2015-01-01

    By changing habitat conditions, ecosystem engineers increase niche diversity and have profound effects on the distribution and abundances of other organisms. Although many ecosystems contain several engineering species, it is still unclear how the coexistence of multiple engineers affects the

  20. Habitat quality influences population distribution, individual space use and functional responses in habitat selection by a large herbivore.

    Science.gov (United States)

    Bjørneraas, Kari; Herfindal, Ivar; Solberg, Erling Johan; Sæther, Bernt-Erik; van Moorter, Bram; Rolandsen, Christer Moe

    2012-01-01

    Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.

  1. An Improved Neural Network for Regional Giant Panda Habitat Suitability Mapping: A Case Study in Ya’an Prefecture

    Directory of Open Access Journals (Sweden)

    Jingwei Song

    2014-06-01

    Full Text Available Expert knowledge is a combination of prior information and subjective opinions based on long-experience; as such it is often not sufficiently objective to produce convincing results in animal habitat suitability index mapping. In this study, an animal habitat assessment method based on a learning neural network is proposed to reduce the level of subjectivity in animal habitat assessments. Based on two hypotheses, this method substitutes habitat suitability index with apparent density and has advantages over conventional ones such as those based on analytical hierarchy process or multivariate regression approaches. Besides, this method is integrated with a learning neural network and is suitable for building non-linear transferring functions to fit complex relationships between multiple factors influencing habitat suitability. Once the neural network is properly trained, new earth observation data can be integrated for rapid habitat suitability monitoring which could save time and resources needed for traditional data collecting approaches through extensive field surveys. Giant panda (Ailuropoda melanoleuca natural habitat in Ya’an prefecture and corresponding landsat images, DEM and ground observations are tested for validity of using the methodology reported. Results show that the method scores well in key efficiency and performance indicators and could be extended for habitat assessments, particularly of other large, rare and widely distributed animal species.

  2. Bird Habitat Conservation at Various Scales in the Atlantic Coast Joint Venture

    Science.gov (United States)

    Andrew Milliken; Craig Watson; Chuck Hayes

    2005-01-01

    The Atlantic Coast Joint Venture is a partnership focused on the conservation of habitats for migratory birds within the Atlantic Flyway/Atlantic Coast Region from Maine south to Puerto Rico. In order to be effective in planning and implementing conservation in this large and diverse area, the joint venture must work at multiple spatial scales, from the largest ?...

  3. Habitat Selectivity and Reliance on Live Corals for Indo-Pacific Hawkfishes (Family: Cirrhitidae)

    KAUST Repository

    Coker, Darren James; Hoey, Andrew S.; Wilson, Shaun K.; Depczynski, Martial; Graham, Nicholas A. J.; Hobbs, Jean-Paul A.; Holmes, Thomas H.; Pratchett, Morgan S.

    2015-01-01

    Hawkfishes (family: Cirrhitidae) are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus) associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals) are critically important for sustaining high abundance and diversity of fishes on coral reefs.

  4. Habitat Selectivity and Reliance on Live Corals for Indo-Pacific Hawkfishes (Family: Cirrhitidae.

    Directory of Open Access Journals (Sweden)

    Darren J Coker

    Full Text Available Hawkfishes (family: Cirrhitidae are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals are critically important for sustaining high abundance and diversity of fishes on coral reefs.

  5. Habitat Selectivity and Reliance on Live Corals for Indo-Pacific Hawkfishes (Family: Cirrhitidae).

    Science.gov (United States)

    Coker, Darren J; Hoey, Andrew S; Wilson, Shaun K; Depczynski, Martial; Graham, Nicholas A J; Hobbs, Jean-Paul A; Holmes, Thomas H; Pratchett, Morgan S

    2015-01-01

    Hawkfishes (family: Cirrhitidae) are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus) associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals) are critically important for sustaining high abundance and diversity of fishes on coral reefs.

  6. Habitat Selectivity and Reliance on Live Corals for Indo-Pacific Hawkfishes (Family: Cirrhitidae)

    KAUST Repository

    Coker, Darren James

    2015-11-03

    Hawkfishes (family: Cirrhitidae) are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus) associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals) are critically important for sustaining high abundance and diversity of fishes on coral reefs.

  7. Extensions of Island Biogeography Theory predict the scaling of functional trait composition with habitat area and isolation.

    Science.gov (United States)

    Jacquet, Claire; Mouillot, David; Kulbicki, Michel; Gravel, Dominique

    2017-02-01

    The Theory of Island Biogeography (TIB) predicts how area and isolation influence species richness equilibrium on insular habitats. However, the TIB remains silent about functional trait composition and provides no information on the scaling of functional diversity with area, an observation that is now documented in many systems. To fill this gap, we develop a probabilistic approach to predict the distribution of a trait as a function of habitat area and isolation, extending the TIB beyond the traditional species-area relationship. We compare model predictions to the body-size distribution of piscivorous and herbivorous fishes found on tropical reefs worldwide. We find that small and isolated reefs have a higher proportion of large-sized species than large and connected reefs. We also find that knowledge of species body-size and trophic position improves the predictions of fish occupancy on tropical reefs, supporting both the allometric and trophic theory of island biogeography. The integration of functional ecology to island biogeography is broadly applicable to any functional traits and provides a general probabilistic approach to study the scaling of trait distribution with habitat area and isolation. © 2016 John Wiley & Sons Ltd/CNRS.

  8. Habitat loss and gain: Influence on habitat attractiveness for estuarine fish communities

    Science.gov (United States)

    Amorim, Eva; Ramos, Sandra; Elliott, Michael; Franco, Anita; Bordalo, Adriano A.

    2017-10-01

    Habitat structure and complexity influence the structuring and functioning of fish communities. Habitat changes are one of the main pressures affecting estuarine systems worldwide, yet the degree and rate of change and its impact on fish communities is still poorly understood. In order to quantify historical modifications in habitat structure, an ecohydrological classification system using physiotopes, i.e. units with homogenous abiotic characteristics, was developed for the lower Lima estuary (NW Portugal). Field data, aerial imagery, historical maps and interpolation methods were used to map input variables, including bathymetry, substratum (hard/soft), sediment composition, hydrodynamics (current velocity) and vegetation coverage. Physiotopes were then mapped for the years of 1933 and 2013 and the areas lost and gained over the 80 years were quantified. The implications of changes for the benthic and demersal fish communities using the lower estuary were estimated using the attractiveness to those communities of each physiotope, while considering the main estuarine habitat functions for fish, namely spawning, nursery, feeding and refuge areas and migratory routes. The lower estuary was highly affected due to urbanisation and development and, following a port/harbour expansion, its boundary moved seaward causing an increase in total area. Modifications led to the loss of most of its sandy and saltmarsh intertidal physiotopes, which were replaced by deeper subtidal physiotopes. The most attractive physiotopes for fish (defined as the way in which they supported the fish ecological features) decreased in area while less attractive ones increased, producing an overall lower attractiveness of the studied area in 2013 compared to 1933. The implications of habitat alterations for the fish using the estuary include potential changes in the nursery carrying capacity and the functioning of the fish community. The study also highlighted the poor knowledge of the impacts of

  9. Habitat differences in deep-sea megafaunal communities off New Zealand: implications for vulnerability to anthropogenic disturbance and management

    Directory of Open Access Journals (Sweden)

    Ashley Alun Rowden

    2016-11-01

    Full Text Available Research on benthic communities in the deep sea has focused largely on habitats in isolation, with few studies considering multiple habitats simultaneously in a comparable manner. The present study aimed to determine the structural differences in benthic communities of continental slope, seamount, canyon, vent, and seep habitats, and assess their relative vulnerabilities to disturbance from bottom trawling and potential seabed mining. Megafaunal invertebrate communities of these habitats were sampled in two regions off New Zealand, in four depth strata between 700 and 1500 m, using an epibenthic sled and a beam trawl. Patterns of community and trophic structure, and the potential influence of environmental variables, were determined using multivariate analyses. The difference in community structure between regions was greater than among habitats and depth strata. Levels of food availability may explain regional differences in community structure, although some influence of fishing disturbance is also possible. Differences in community and trophic structure were most pronounced between the chemosynthetic vent and seep habitats, and other habitats. Differences among these other habitats within a region were inconsistent, except that canyon and slope communities always differed from each other. Community and trophic structural patterns were partly explained by the environmental differences observed among habitats. The relative vulnerabilities of benthic communities to human disturbance in the two regions were determined based on patterns of abundance and feeding mode of the megafauna. Communities of vent and seep habitats were assessed to be more vulnerable to disturbance than those of the other habitats based on a number of habitat-related attributes. However, the relative vulnerability of megafaunal communities at slope, canyon, and seamount habitats could not confidently be assessed on a habitat basis alone. The results of the present study have

  10. Seasonal changes in caddis larvae assemblages in river-floodplain habitats along a hydrological connectivity gradient

    NARCIS (Netherlands)

    Van den Brink, F.W.B.; Van der Velde, G.; Wijnhoven, S.

    2013-01-01

    In order to assess the impact of seasonality versus connectivity on the ecological quality of the Lower Rhine river-floodplain habitats, we studied the seasonal variation in diversity and species assemblages of caddis larvae by monthly sampling of the littoral zone of four water bodies over a

  11. Population trends, bend use relative to available habitat and within-river-bend habitat use of eight indicator species of Missouri and Lower Kansas River benthic fishes: 15 years after baseline assessment

    Science.gov (United States)

    Wildhaber, Mark L.; Yang, Wen-Hsi; Arab, Ali

    2016-01-01

    A baseline assessment of the Missouri River fish community and species-specific habitat use patterns conducted from 1996 to 1998 provided the first comprehensive analysis of Missouri River benthic fish population trends and habitat use in the Missouri and Lower Yellowstone rivers, exclusive of reservoirs, and provided the foundation for the present Pallid Sturgeon Population Assessment Program (PSPAP). Data used in such studies are frequently zero inflated. To address this issue, the zero-inflated Poisson (ZIP) model was applied. This follow-up study is based on PSPAP data collected up to 15 years later along with new understanding of how habitat characteristics among and within bends affect habitat use of fish species targeted by PSPAP, including pallid sturgeon. This work demonstrated that a large-scale, large-river, PSPAP-type monitoring program can be an effective tool for assessing population trends and habitat usage of large-river fish species. Using multiple gears, PSPAP was effective in monitoring shovelnose and pallid sturgeons, sicklefin, shoal and sturgeon chubs, sand shiner, blue sucker and sauger. For all species, the relationship between environmental variables and relative abundance differed, somewhat, among river segments suggesting the importance of the overall conditions of Upper and Middle Missouri River and Lower Missouri and Kansas rivers on the habitat usage patterns exhibited. Shoal and sicklefin chubs exhibited many similar habitat usage patterns; blue sucker and shovelnose sturgeon also shared similar responses. For pallid sturgeon, the primary focus of PSPAP, relative abundance tended to increase in Upper and Middle Missouri River paralleling stocking efforts, whereas no evidence of an increasing relative abundance was found in the Lower Missouri River despite stocking.

  12. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.

    Directory of Open Access Journals (Sweden)

    Eliningaya J Kweka

    Full Text Available Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya.A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60% and An.arabiensis (18.34%, the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024 and An. arabiensis (P = 0.002 larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001, grass cover (P≤0.001, while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001. The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001 when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002. When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines.These findings suggest that implementation of effective larval control programme should be targeted with larval

  13. Habitat associations of juvenile fish at Ningaloo Reef, Western Australia: the importance of coral and algae.

    Directory of Open Access Journals (Sweden)

    Shaun K Wilson

    2010-12-01

    Full Text Available Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and

  14. Relationship between habitat, densities and metabolic profile in brown hares (Lepus europaeus Pallas

    Directory of Open Access Journals (Sweden)

    Marco Bagliacca

    2010-01-01

    Full Text Available Some habitat traits and haematic parameters were studied to understand the relationships between the hare densities, habitat characteristics and physiological and nutritional condition of the animals. A total of 33 protected areas, reserved for wild game reproduction, located in the Province of Florence (Central Italy, were monitored during a 2-year period. In each protected area the hares were submitted to census. The habitat features of the protected areas were studied and the following parameters were categorised: altitude; cleared-land/total-land ratio; main exposure; main ground composition; water availability; main slope; anthropogenic presence; predator presence; wooded borders; presence of trees and shrubs; surveillance against hunting; demographic predator control; kind of cultivation; unharvested crops for game. After the census the hares were captured for translocation outside in “free” hunting areas. During capture the hares were put in darkened, wooden capture-boxes and remained inside for a variable period of time (10min to 3h. A sample of 3 to 7 hares, captured per year and per each protected area, were removed from the boxes (physically restrained, with covered eyes for blood sample collection, sex, age and live weight determination. The following analyses were performed on frozen plasma samples: ALanine aminoTransferase (ALT, ASpartate aminoTransferase (AST, glucose, cholesterol, Blood Urea Nitrogen (BUN, Ca, P, Mg, Na, K, and Cl concentrations. The relationship between hare density and habitat characteristics was analysed by single regressions analysis. Then the habitat characteristics were subjected to multivariate analysis in relationship to hare body condition. The haematic parameters were analysed by least square means considering habitat traits, animal density, age and sex, as main categorical factors, interaction sex*age, and “pregnant and non-reproducing” nested within sex. Results showed that the highest density

  15. ɑ-Synuclein strains and seeding in Parkinson's disease, incidental Lewy body disease, dementia with Lewy bodies and multiple system atrophy: similarities and differences.

    Science.gov (United States)

    Peelaerts, W; Bousset, L; Baekelandt, V; Melki, R

    2018-04-27

    Several age-related neurodegenerative disorders are characterized by the deposition of aberrantly folded endogenous proteins. These proteins have prion-like propagation and amplification properties but so far appear nontransmissible between individuals. Because of the features they share with the prion protein, PrP, the characteristics of pathogenic protein aggregates in several progressive brain disorders, including different types of Lewy body diseases (LBDs), such as Parkinson's disease (PD), multiple system atrophy (MSA) and dementia with Lewy bodies (DLB), have been actively investigated. Even though the pleomorphic nature of these syndromes might suggest different underlying causes, ɑ-synuclein (ɑSyn) appears to play an important role in this heterogeneous group of diseases (the synucleinopathies). An attractive hypothesis is that different types of ɑSyn protein assemblies have a unique and causative role in distinct synucleinopathies. We will discuss the recent research progress on ɑSyn assemblies involved in PD, MSA and DLB; their behavior as strains; current spreading hypotheses; their ability to seed centrally and peripherally; and their implication for disease pathogenesis.

  16. Role of oaks in fisher habitat quality in the Sierra Nevada mountains at multiple spatial scales

    Science.gov (United States)

    Craig M. Thompson; Kathryn Purcell; Rebecca Green; Richard. Sweitzer

    2015-01-01

    Fishers (Pekania pennanti) occur in ponderosa pine, mixed conifer, and mixed hardwood conifer habitats in the southern Sierra Nevada at elevations from approximately 1400 to 2300 m. They are a candidate species for listing under both the Federal and California Endangered Species Acts. Since 2007, the U.S. Department of Agriculture, Forest Service (...

  17. Where to “Rock”? Choice of retreat sites by a gecko in a semi-arid habitat

    Directory of Open Access Journals (Sweden)

    Andreia Penado

    2015-06-01

    Full Text Available The Selvagens gecko (Tarentola boettgeri bischoffi Joger, 1984 is a medium sized gecko endemic to the Selvagens archipelago, Madeira, Portugal. The biology of this gecko is poorly known and in this study we present the first evidence regarding its habitat use. In 2010 (spring and autumn and 2011 (spring, we collected data on the characteristics of the habitat surrounding 168 rocks used by these geckos as retreat sites, as well as on 75 randomly selected rocks. We also recorded body measurements of the individuals caught under each rock. In both seasons retreat site occupancy was found to be related to rock area, with geckos being found mainly under large rocks. Interestingly, we found that in spring heavier males, in better body condition, occupied the largest rocks and larger geckos occupied rocks closer to creek beds. Our results shed some light upon the behavioural ecology of this nocturnally active ectotherm, that spends the day under a retreat site: i intraspecific competition may be an ecological factor prevalent in this species, since larger individuals occupy larger rocks, located in a presumably high quality micro-habitat; ii the possibility of spring territoriality in males, that compete for good quality shelters.

  18. Modeling the effects of integrating larval habitat source reduction and insecticide treated nets for malaria control.

    Directory of Open Access Journals (Sweden)

    Laith Yakob

    Full Text Available Integrated vector management for malaria control has received a lot of recent interest. Attacking multiple points in the transmission cycle is hoped to act synergistically and improve upon current single-tool interventions based on the use of insecticide-treated bed nets (ITNs. In the present study, we theoretically examined the application of larval habitat source reduction with ITNs in reducing malaria transmission. We selected this type of environmental management to complement ITNs because of a potential secondary mode of action that both control strategies share. In addition to increasing vector mortality, ITNs reduce the rate at which female mosquitoes locate human hosts for blood feeding, thereby extending their gonotrophic cycle. Similarly, while reducing adult vector emergence and abundance, source reduction of larval habitats may prolong the cycle duration by extending delays in locating oviposition sites. We found, however, that source reduction of larval habitats only operates through this secondary mode of action when habitat density is below a critical threshold. Hence, we illustrate how this strategy becomes increasingly effective when larval habitats are limited. We also demonstrate that habitat source reduction is better suited to human populations of higher density and in the presence of insecticide resistance or when the insecticidal properties of ITNs are depleted.

  19. Habitat specialization through germination cueing: a comparative study of herbs from forests and open habitats.

    Science.gov (United States)

    Ten Brink, Dirk-Jan; Hendriksma, Harmen Pieter; Bruun, Hans Henrik

    2013-02-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently accompanied by specialization in their regeneration niche; and (2) species are thereby adapted to utilize different windows of opportunity in time (season) and space (habitat). Seed germination response to temperature, light and stratification was tested for 17 congeneric pairs, each consisting of one forest species and one open-habitat species. A factorial design was used with temperature levels and diurnal temperature variation (10 °C constant, 15-5 °C fluctuating, 20 °C constant, 25-15 °C fluctuating), and two light levels (light and darkness) and a cold stratification treatment. The congeneric species pair design took phylogenetic dependence into account. Species from open habitats germinated better at high temperatures, whereas forest species performed equally well at low and high temperatures. Forest species tended to germinate only after a period of cold stratification that could break dormancy, while species from open habitats generally germinated without cold stratification. The empirically derived germination strategies correspond quite well with establishment opportunities for forest and open-habitat plant species in nature. Annual changes in temperature and light regime in temperate forest delimit windows of opportunity for germination and establishment. Germination strategies of forest plants are adaptations to utilize such narrow windows in time. Conversely, lack of fit between germination ecology and environment may explain why species of open habitats generally fail to establish in forests. Germination strategy should be considered an important mechanism for habitat specialization in temperate herbs to forest habitats. The findings strongly suggest that

  20. California Condor Critical Habitat

    Data.gov (United States)

    California Natural Resource Agency — These Data identify (in general) the areas where critical habitat for the California Condor occur. Critical habitat for the species consists of the following 10...

  1. Alternative stable states generated by ontogenetic niche shift in the presence of multiple resource use.

    Directory of Open Access Journals (Sweden)

    Takefumi Nakazawa

    2011-02-01

    Full Text Available It has been suggested that when juveniles and adults use different resources or habitats, alternative stable states (ASS may exist in systems coupled by an ontogenetic niche shift. However, mainly the simplest system, i.e., the one-consumer-two-resource system, has been studied previously, and little is known about the development of ASS existing in more complex systems. Here, I theoretically investigated the development of ASS caused by an ontogenetic niche shift in the presence of multiple resource use. I considered three independent scenarios; (i additional resources, (ii multiple habitats, and (iii interstage resource sharing. The model analyses illustrate that relative balance between the total resource availability in the juvenile and adult habitats is crucial for the development of ASS. This balance is determined by factors such as local habitat productivity, subsidy inputs, colonization area, and foraging mobility. Furthermore, it is also shown that interstage resource sharing generally suppresses ASS. These results suggest that the anthropogenic impacts of habitat modifications (e.g., fragmentation and destruction or interaction modifications (e.g., changes in ontogeny and foraging behavior propagate through space and may cause or prevent regime shifts in the regional community structure.

  2. Habitat Suitability analysis of Koklass (Pucrasia macrolopha) Pheasant in Churdhar Wildlife Sanctuary of Himachal Pradesh, India using Geospatial Technology

    Science.gov (United States)

    Eliza, K.; Sarma, K.

    2014-12-01

    Pheasants are at the brink of destruction due to degradation of forests, environmental pollution, climatic changes and extensive hunting of wild floras and faunas.The problem is more acute in the developing countries where wildlife and biodiversity conservation are often less prioritized due to more pressing demands of food security and poverty alleviation. Koklass Pheasant (Pucrasia macrolopha) species is distributed from Afghanistan and Pakistan in the east along the Himalayas to southeastern Tibet, western China and southeastern Mongolia.This species is grouped under endangered species in Red Data Book of Zoological Survey of India and also classified as least concern species according to IUCN Red List of Threatened Species.Conservation biologists and managers need a range of both classical analyses and specific modern tools to face the increasing threats to biodiversity. Among these tools, habitat-suitability modeling has recently emerged as a relevant technique to assess global impacts to define wide conservation priorities.The present study is carried out using remote sensing satellite imagery and GIS modeling technique for assessing habitat suitability of Koklass Pheasants and finding out the habitat factors influencing the Koklass distribution in Churdhar Wildlife Sanctuary, India. Effective management and conservation of wildlife populations and their habitats largely depend on our ability to understand and predict species-habitat interactions. Different thematic maps viz., land use/cover, forest types, drainage buffer, multiple ring buffers of sighting locations and multiple ring buffers of roads have been prepared to support the objective of the study. The Weighted Overlay Analysis model is used for identifying different potential areas of habitat for this endangered species. The most suitable area for Koklass Pheasant within the Wildlife Sanctuary is found to be about 23.8 percent of the total area which is due to favourable habitat conditions for the

  3. Headwater Stream Management Dichotomies: Local Amphibian Habitat vs. Downstream Fish Habitat

    Science.gov (United States)

    Jackson, C. R.

    2002-12-01

    Small headwater streams in mountainous areas of the Pacific Northwest often do not harbor fish populations because of low water depth and high gradients. Rather, these streams provide habitat for dense assemblages of stream-dwelling amphibians. A variety of management goals have been suggested for such streams such as encouraging large woody debris recruitment to assist in sediment trapping and valley floor formation, encouraging large woody debris recruitment to provide downstream wood when debris flows occur, providing continuous linear stream buffers within forest harvest areas to provide shade and bank stability, etc. A basic problem with analying the geomorphic or biotic benefits of any of these strategies is the lack of explicit management goals for such streams. Should managers strive to optimize downstream fish habitat, local amphibian habitat, or both? Through observational data and theoretical considerations, it will be shown that these biotic goals will lead to very different geomorphic management recommendations. For instance, woody debris greater than 60 cm diameter may assist in valley floor development, but it is likely to create subsurface channel flow of unknown value to amphibians. Trapping and retention of fine sediments within headwater streams may improve downstream spawning gravels, but degrades stream-dwelling amphibian habitat. In response to the need for descriptive information on habitat and channel morphology specific to small, non-fish-bearing streams in the Pacific Northwest, morphologies and wood frequencies in forty-two first- and second-order forested streams less than four meters wide were surveyed. Frequencies and size distributions of woody debris were compared between small streams and larger fish-bearing streams as well as between second-growth and virgin timber streams. Statistical models were developed to explore dominant factors affecting channel morphology and habitat. Findings suggest geomorphological relationships

  4. Effect of Antenna Type on the Capacity of Body-to-Body Capacity When Using Uniform Power Allocation

    KAUST Repository

    Ghanem, Khalida; Al-Quwaiee, Hessa; Khan, Imdad; Hall, Peter

    2012-01-01

    Body-area networks are led to target multimedia applications where high-data rate is involved. In this paper, the characterization of the measured body-to-body channels and the ergodic capacity with uniform power allocation is discussed when using multiple-input multiple-output (MIMO) PIFA and IFA antenna systems. This capacity is compared to the measured belt-head and belt-chest on-body channels using PIFA antennas in the same environment. It is shown that body channels reach less ergodic capacity than the equivalent Rayleigh channel because of the presence of a LOS component. The capacity is the same for the body-to-body case regardless of the antenna and the on-body channels reach better capacity values compared to these former. © 2012 IEEE.

  5. Effect of Antenna Type on the Capacity of Body-to-Body Capacity When Using Uniform Power Allocation

    KAUST Repository

    Ghanem, Khalida

    2012-09-01

    Body-area networks are led to target multimedia applications where high-data rate is involved. In this paper, the characterization of the measured body-to-body channels and the ergodic capacity with uniform power allocation is discussed when using multiple-input multiple-output (MIMO) PIFA and IFA antenna systems. This capacity is compared to the measured belt-head and belt-chest on-body channels using PIFA antennas in the same environment. It is shown that body channels reach less ergodic capacity than the equivalent Rayleigh channel because of the presence of a LOS component. The capacity is the same for the body-to-body case regardless of the antenna and the on-body channels reach better capacity values compared to these former. © 2012 IEEE.

  6. Diel activity and variability in habitat use of white sea bream in a temperate marine protected area.

    Science.gov (United States)

    Di Lorenzo, Manfredi; Fernández, Tomás Vega; Badalamenti, Fabio; Guidetti, Paolo; Starr, Richard M; Giacalone, Vincenzo Maximiliano; Di Franco, Antonio; D'Anna, Giovanni

    2016-05-01

    Fish populations are often comprised of individuals that use habitats and associated resources in different ways. We placed sonic transmitters in, and tracked movements of, white sea bream (Diplodus sargus sargus) in the no-take zone of a Mediterranean marine protected area: the Torre Guaceto marine protected area, (Adriatic Sea, Italy). Tagged fish displayed three types of diel activity patterns in three different habitats: sand, rocky reefs and "matte" of the seagrass Posidonia oceanica. Individuals were more active during the day than at night. Overall, white sea bream displayed a remarkable behavioural plasticity in habitat use. Our results indicate that the observed behavioural plasticity in the marine protected area could be the result of multiple ecological and environmental drivers such as size, sex and increased intra-specific competition. Our findings support the view that habitat diversity helps support high densities of fishes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. L-Reactor Habitat Mitigation Study

    International Nuclear Information System (INIS)

    1988-02-01

    The L-Reactor Fish and Wildlife Resource Mitigation Study was conducted to quantify the effects on habitat of the L-Reactor restart and to identify the appropriate mitigation for these impacts. The completed project evaluated in this study includes construction of a 1000 acre reactor cooling reservoir formed by damming Steel Creek. Habitat impacts identified include a loss of approximately 3,700 average annual habitat units. This report presents a mitigation plan, Plan A, to offset these habitat losses. Plan A will offset losses for all species studied, except whitetailed deer. The South Carolina Wildlife and Marine Resources Department strongly recommends creation of a game management area to provide realistic mitigation for loss of deer habitats. 10 refs., 5 figs., 3 tabs

  8. Environmental factors affecting large-bodied coral reef fish assemblages in the Mariana Archipelago.

    Directory of Open Access Journals (Sweden)

    Benjamin L Richards

    Full Text Available Large-bodied reef fishes represent an economically and ecologically important segment of the coral reef fish assemblage. Many of these individuals supply the bulk of the reproductive output for their population and have a disproportionate effect on their environment (e.g. as apex predators or bioeroding herbivores. Large-bodied reef fishes also tend to be at greatest risk of overfishing, and their loss can result in a myriad of either cascading (direct or indirect trophic and other effects. While many studies have investigated habitat characteristics affecting populations of small-bodied reef fishes, few have explored the relationship between large-bodied species and their environment. Here, we describe the distribution of the large-bodied reef fishes in the Mariana Archipelago with an emphasis on the environmental factors associated with their distribution. Of the factors considered in this study, a negative association with human population density showed the highest relative influence on the distribution of large-bodied reef fishes; however, depth, water temperature, and distance to deep water also were important. These findings provide new information on the ecology of large-bodied reef fishes can inform discussions concerning essential fish habitat and ecosystem-based management for these species and highlight important knowledge gaps worthy of additional research.

  9. Coastal Critical Habitat Designations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Endangered Species Act (ESA) requires the Federal government to designate critical habitat, areas of habitat essential to the species' conservation, for ESA...

  10. New England wildlife: management forested habitats

    Science.gov (United States)

    Richard M. DeGraaf; Mariko Yamasaki; William B. Leak; John W. Lanier

    1992-01-01

    Presents silvicultural treatments for six major cover-type groups in New England to produce stand conditions that provide habitat opportunities for a wide range of wildlife species. Includes matrices for species occurrence and utilization by forested and nonforested habitats, habitat breadth and size class, and structural habitat features for the 338 wildlife species...

  11. Predicting occurrence of juvenile shark habitat to improve conservation planning.

    Science.gov (United States)

    Oh, Beverly Z L; Sequeira, Ana M M; Meekan, Mark G; Ruppert, Jonathan L W; Meeuwig, Jessica J

    2017-06-01

    Fishing and habitat degradation have increased the extinction risk of sharks, and conservation strategies recognize that survival of juveniles is critical for the effective management of shark populations. Despite the rapid expansion of marine protected areas (MPAs) globally, the paucity of shark-monitoring data on large scales (100s-1000s km) means that the effectiveness of MPAs in halting shark declines remains unclear. Using data collected by baited remote underwater video systems (BRUVS) in northwestern Australia, we developed generalized linear models to elucidate the ecological drivers of habitat suitability for juvenile sharks. We assessed occurrence patterns at the order and species levels. We included all juvenile sharks sampled and the 3 most abundant species sampled separately (grey reef [Carcharhinus amblyrhynchos], sandbar [Carcharhinus plumbeus], and whitetip reef sharks [Triaenodon obesus]). We predicted the occurrence of juvenile sharks across 490,515 km 2 of coastal waters and quantified the representation of highly suitable habitats within MPAs. Our species-level models had higher accuracy (ĸ ≥ 0.69) and deviance explained (≥48%) than our order-level model (ĸ = 0.36 and deviance explained of 10%). Maps of predicted occurrence revealed different species-specific patterns of highly suitable habitat. These differences likely reflect different physiological or resource requirements between individual species and validate concerns over the utility of conservation targets based on aggregate species groups as opposed to a species-focused approach. Highly suitable habitats were poorly represented in MPAs with the most restrictions on extractive activities. This spatial mismatch possibly indicates a lack of explicit conservation targets and information on species distribution during the planning process. Non-extractive BRUVS provided a useful platform for building the suitability models across large scales to assist conservation planning across

  12. Greater reproductive investment, but shorter lifespan, in agrosystem than in natural-habitat toads

    Directory of Open Access Journals (Sweden)

    Francisco Javier Zamora-Camacho

    2017-09-01

    Full Text Available Global amphibian decline is due to several factors: habitat loss, anthropization, pollution, emerging diseases, and global warming. Amphibians, with complex life cycles, are particularly susceptible to habitat alterations, and their survival may be impaired in anthropized habitats. Increased mortality is a well-known consequence of anthropization. Life-history theory predicts higher reproductive investment when mortality is increased. In this work, we compared age, body size, and different indicators of reproductive investment, as well as prey availability, in natterjack toads (Epidalea calamita from agrosystems and adjacent natural pine groves in Southwestern Spain. Mean age was lower in agrosystems than in pine groves, possibly as a consequence of increased mortality due to agrosystem environmental stressors. Remarkably, agrosystem toads were larger despite being younger, suggesting accelerated growth rate. Although we detected no differences in prey availability between habitats, artificial irrigation could shorten aestivation in agrosystems, thus increasing energy trade. Moreover, agrosystem toads exhibited increased indicators of reproductive investment. In the light of life-history theory, agrosystem toads might compensate for lesser reproductive events—due to shorter lives—with a higher reproductive investment in each attempt. Our results show that agrosystems may alter demography, which may have complex consequences on both individual fitness and population stability.

  13. Wildlife habitat considerations

    Science.gov (United States)

    Helen Y. Smith

    2000-01-01

    Fire, insects, disease, harvesting, and precommercial thinning all create mosaics on Northern Rocky Mountain landscapes. These mosaics are important for faunal habitat. Consequently, changes such as created openings or an increase in heavily stocked areas affect the water, cover, and food of forest habitats. The “no action” alternative in ecosystem management of low...

  14. Body temperature is elevated and linked to fatigue in relapsing-remitting multiple sclerosis, even without heat exposure

    Science.gov (United States)

    Sumowski, James F.; Leavitt, Victoria M.

    2014-01-01

    Objective To investigate whether resting body temperature is elevated and linked to fatigue in patients with relapsing-remitting multiple sclerosis (RRMS). Design Cross-sectional study investigating (a) differences in resting body temperature across RRMS, SPMS, and healthy groups, and (b) the relationship between body temperature and fatigue in RRMS patients. Setting Climate-controlled laboratory (~22°C) within a non-profit medical rehabilitation research center. Participants Fifty patients with RRMS, 40 matched healthy controls, and 22 patients with secondary-progressive MS (SPMS). Intervention None. Main Outcome Measure(s) Body temperature was measured with an aural infrared thermometer (normal body temperature for this thermometer is 36.75°C), and differences were compared across RRMS, SPMS, and healthy persons. RRMS patients completed measures of general fatigue (Fatigue Severity Scale; FSS), as well as physical and cognitive fatigue (Modified Fatigue Impact Scale; MFIS). Results There was a large effect of group (ptemperature was higher in RRMS patients (37.04°C±0.27) relative to healthy controls (36.83 ± 0.33; p = .009) and SPMS patients (36.75°C±0.39; p=.001). Warmer body temperature in RRMS patients was associated with worse general fatigue (FSS; rp=.315, p=.028) and physical fatigue (pMFIS; rp=.318, p=.026), but not cognitive fatigue (cMIFS; rp=−.017, p=.909). Conclusions These are the first-ever demonstrations that body temperature is elevated endogenously in RRMS patients, and linked to worse fatigue. We discuss these findings in the context of failed treatments for fatigue in RRMS, including several failed randomized controlled trials (RCTs) of stimulants (modafinil). In contrast, our findings may help explain how RCTs of cooling garments and antipyretics (aspirin) have effectively reduced MS fatigue, and encourage further research on cooling/antipyretic treatments of fatigue in RRMS. PMID:24561056

  15. Mechanisms Affecting Population Density in Fragmented Habitat

    Directory of Open Access Journals (Sweden)

    Lutz Tischendorf

    2005-06-01

    Full Text Available We conducted a factorial simulation experiment to analyze the relative importance of movement pattern, boundary-crossing probability, and mortality in habitat and matrix on population density, and its dependency on habitat fragmentation, as well as inter-patch distance. We also examined how the initial response of a species to a fragmentation event may affect our observations of population density in post-fragmentation experiments. We found that the boundary-crossing probability from habitat to matrix, which partly determines the emigration rate, is the most important determinant for population density within habitat patches. The probability of crossing a boundary from matrix to habitat had a weaker, but positive, effect on population density. Movement behavior in habitat had a stronger effect on population density than movement behavior in matrix. Habitat fragmentation and inter-patch distance may have a positive or negative effect on population density. The direction of both effects depends on two factors. First, when the boundary-crossing probability from habitat to matrix is high, population density may decline with increasing habitat fragmentation. Conversely, for species with a high matrix-to-habitat boundary-crossing probability, population density may increase with increasing habitat fragmentation. Second, the initial distribution of individuals across the landscape: we found that habitat fragmentation and inter-patch distance were positively correlated with population density when individuals were distributed across matrix and habitat at the beginning of our simulation experiments. The direction of these relationships changed to negative when individuals were initially distributed across habitat only. Our findings imply that the speed of the initial response of organisms to habitat fragmentation events may determine the direction of observed relationships between habitat fragmentation and population density. The time scale of post

  16. Habitat Effect on Allometry of a Xeric Shrub (Artemisia ordosica Krasch in the Mu Us Desert of Northern China

    Directory of Open Access Journals (Sweden)

    Weiwei She

    2015-12-01

    Full Text Available Allometric models are useful for assessment of aboveground net primary productivity (ANPP and aboveground biomass (AGB of forests and shrubs, and are widely implemented in forest inventory and management. Multiple forms of allometric models have been used to estimate vegetation carbon storage for desert shrubland, but their validity for biomass estimation has not been tested at a region scale with different habitats. To verify the validity of habitat-specific models, general models (combining data from all habitats/sites, and previously developed models for biomass prediction, we developed both general models and habitat-specific models for aboveground biomass and ANPP of Artemisia ordosica Krasch, a dominant shrub of the Mu Us Desert. Our results showed that models based on crown area or canopy volume consistently explained large parts of the variations in aboveground biomass and ANPP. Model fitting highlighted that general allometric models were inadequate across different habitats, and habitat-specific models were useful for that specific habitat. Previous models might be inappropriate for other sites because of site quality differences. There was a strong habitat effect on the allometric relationships of A. ordosica. Although our study is a case in point, the results indicate that allometric models for desert shrubs should be used with caution and require robust validation if adopted from other studies or applied to different sites/habitats.

  17. Food web structure shaped by habitat size and climate across a latitudinal gradient.

    Science.gov (United States)

    Romero, Gustavo Q; Piccoli, Gustavo C O; de Omena, Paula M; Gonçalves-Souza, Thiago

    2016-10-01

    Habitat size and climate are known to affect the trophic structure and dynamics of communities, but their interactive effects are poorly understood. Organisms from different trophic levels vary in terms of metabolic requirements and heat dissipation. Indeed, larger species such as keystone predators require more stable climatic conditions than their prey. Likewise, habitat size disproportionally affects large-sized predators, which require larger home ranges and are thus restricted to larger habitats. Therefore, food web structure in patchy ecosystems is expected to be shaped by habitat size and climate variations. Here we investigate this prediction using natural aquatic microcosm (bromeliad phytotelmata) food webs composed of litter resources (mainly detritus), detritivores, mesopredators, and top predators (damselflies). We surveyed 240 bromeliads of varying sizes (water retention capacity) across 12 open restingas in SE Brazil spread across a wide range of tropical latitudes (-12.6° to -27.6°, ca. 2,000 km) and climates (Δ mean annual temperature = 5.3°C). We found a strong increase in predator-to-detritivore mass ratio with habitat size, which was representative of a typical inverted trophic pyramid in larger ecosystems. However, this relationship was contingent among the restingas; slopes of linear models were steeper in more stable and favorable climates, leading to inverted trophic pyramids (and top-down control) being more pronounced in environments with more favorable climatic conditions. By contrast, detritivore-resource and mesopredator-detritivore mass ratios were not affected by habitat size or climate variations across latitudes. Our results highlight that the combined effects of habitat size, climate and predator composition are pivotal to understanding the impacts of multiple environmental factors on food web structure and dynamics. © 2016 by the Ecological Society of America.

  18. Sound solutions for habitat monitoring

    Science.gov (United States)

    Mary M. Rowland; Lowell H. Suring; Christina D. Vojta

    2015-01-01

    For agencies and organizations to effectively manage wildlife, knowledge about the status and trend of wildlife habitat is critical. Traditional wildlife monitoring, however, has focused on populations rather than habitat, because ultimately population status drives long-term species viability. Still, habitat loss has contributed to the decline of nearly all at-risk...

  19. Mosquito Vector Diversity across Habitats in Central Thailand Endemic for Dengue and Other Arthropod-Borne Diseases

    Science.gov (United States)

    Thongsripong, Panpim; Green, Amy; Kittayapong, Pattamaporn; Kapan, Durrell; Wilcox, Bruce; Bennett, Shannon

    2013-01-01

    Recent years have seen the greatest ecological disturbances of our times, with global human expansion, species and habitat loss, climate change, and the emergence of new and previously-known infectious diseases. Biodiversity loss affects infectious disease risk by disrupting normal relationships between hosts and pathogens. Mosquito-borne pathogens respond to changing dynamics on multiple transmission levels and appear to increase in disturbed systems, yet current knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat change is limited. We characterize mosquito communities across habitats with differing levels of anthropogenic ecological disturbance in central Thailand. During the 2008 rainy season, adult mosquito collections from 24 sites, representing 6 habitat types ranging from forest to urban, yielded 62,126 intact female mosquitoes (83,325 total mosquitoes) that were assigned to 109 taxa. Female mosquito abundance was highest in rice fields and lowest in forests. Diversity indices and rarefied species richness estimates indicate the mosquito fauna was more diverse in rural and less diverse in rice field habitats, while extrapolated estimates of true richness (Chao1 and ACE) indicated higher diversity in the forest and fragmented forest habitats and lower diversity in the urban. Culex sp. (Vishnui subgroup) was the most common taxon found overall and the most frequent in fragmented forest, rice field, rural, and suburban habitats. The distributions of species of medical importance differed significantly across habitat types and were always lowest in the intact, forest habitat. The relative abundance of key vector species, Aedes aegypti and Culex quinquefasciatus, was negatively correlated with diversity, suggesting that direct species interactions and/or habitat-mediated factors differentially affecting invasive disease vectors may be important mechanisms linking biodiversity loss to human health. Our results are an

  20. The Relationship between Habitat Loss and Fragmentation during Urbanization: An Empirical Evaluation from 16 World Cities.

    Directory of Open Access Journals (Sweden)

    Zhifeng Liu

    Full Text Available Urbanization results in habitat loss and habitat fragmentation concurrently, both influencing biodiversity and ecological processes. To evaluate these impacts, it is important to understand the relationships between habitat loss and habitat fragmentation per se (HLHF during urbanization. The objectives of this study were two-fold: 1 to quantify the different forms of the HLHF relationship during urbanization using multiple landscape metrics, and 2 to test the validity of the HLHF relations reported in the literature. Our analysis was based on a long-term urbanization dataset (1800-2000 of 16 large cities from around the world. Habitat area was represented as the percentage of non-built-up area in the landscape, while habitat fragmentation was measured using several landscape metrics. Our results show that the relationship between habitat loss and habitat fragmentation during urbanization is commonly monotonic-linear, exponential, or logarithmic, indicating that the degree of habitat fragmentation per se increases with habitat loss in general. We compared our results with 14 hypothesized HLHF relationships based on simulated landscapes found in the literature, and found that four of them were consistent with those of urbanization, whereas the other ten were not. Also, we identified six new HLHF relationships when fragmentation was measured by total core area, normalized total core area, patch density, edge density and landscape shape index, respectively. In addition, our study demonstrated that the "space-for-time" approach, frequently used in ecology and geography, generated specious HLHF relationships, suggesting that this approach is largely inappropriate for analyses of urban landscapes that are highly heterogeneous in space and unusually contingent in dynamics. Our results show both generalities and idiosyncrasies of the HLHF relationship, providing new insights for assessing ecological effects of urbanization.

  1. Nutritional assessment with body composition measurements

    International Nuclear Information System (INIS)

    Shizgal, H.M.

    1987-01-01

    The measurement of body composition by multiple isotope dilution provides an accurate and precise measure of both the nutritional state and the response to nutritional support. A multiple isotope dilution technique has been developed that permits measurement of the three major components of body composition: body fat, extracellular mass (ECM), and body cell mass (BCM). Normal body composition was defined by data obtained in 25 healthy volunteers. Malnutrition is characterized by a loss of BCM and an expansion of the ECM, and as a result the lean body mass is not significantly different from normal. The loss of body weight with malnutrition therefore often reflects the loss of body fat. The utility of body composition measurements was demonstrated by determining the effect of total parenteral nutrition on body composition to determine the relationship between caloric intake and the change in the BCM. A statistically significant relationship was developed which demonstrated that a caloric intake in the range of 30-40 cal/kg/day is required for maintenance. To restore a depleted or malnourished BCM requires a caloric intake in excess of that required for maintenance. The measurement of body composition by multiple isotope dilution is complex and time consuming, and requires specialized laboratory facilities and specially trained personnel. As a result, these measurements are not suited for routine patient management, but should rather be reserved for research purposes

  2. Equine Grazing in Managed Subalpine Wetlands: Effects on Arthropods and Plant Structure as a Function of Habitat

    Science.gov (United States)

    Holmquist, Jeffrey G.; Schmidt-Gengenbach, Jutta; Haultain, Sylvia A.

    2013-12-01

    Grazing management necessarily emphasizes the most spatially extensive vegetation assemblages, but landscapes are mosaics, often with more mesic vegetation types embedded within a matrix of drier vegetation. Our primary objective was to contrast effects of equine grazing on both subalpine vegetation structure and associated arthropods in a drier reed grass ( Calamagrostis muiriana) dominated habitat versus a wetter, more productive sedge habitat ( Carex utriculata). A second objective was to compare reed grass and sedge as habitats for fauna, irrespective of grazing. All work was done in Sequoia National Park (CA, USA), where detailed, long-term records of stock management were available. We sampled paired grazed and control wet meadows that contained both habitats. There were moderate negative effects of grazing on vegetation, and effects were greater in sedge than in reed grass. Conversely, negative grazing effects on arthropods, albeit limited, were greater in the drier reed grass, possibly due to microhabitat differences. The differing effects on plants and animals as a function of habitat emphasize the importance of considering both flora and fauna, as well as multiple habitat types, when making management decisions. Sedge supported twice the overall arthropod abundance of reed grass as well as greater diversity; hemipteran and dipteran taxa were particularly abundant in sedge. Given the greater grazing effects on sedge vegetation, greater habitat provision for terrestrial arthropods, and value as aquatic arthropod habitat, the wetter sedge assemblage is worthy of additional consideration by managers when planning for grazing and other aspects of land usage.

  3. Effects of Buffering Key Habitat for Terrestrial Salamanders: Implications for the Management of the Federally Threatened Red Hills Salamander (Phaeognathus hubrichti and Other Imperiled Plethodontids

    Directory of Open Access Journals (Sweden)

    Joseph J. Apodaca

    2015-03-01

    Full Text Available Forestry practices are placing ever increasing emphasis on sustainability and the maintenance of ecological processes, biodiversity, and endangered species or populations. Balancing timber harvest and the management of imperiled species presents a particularly difficult challenge during this shift, as we often know very little about these species’ natural history and how and why silviculture practices affect their populations. Accordingly, investigation of and improvement on current management practices for threatened species is imperative. We investigated the effectiveness of habitat buffers as a management technique for the imperiled Red Hills salamander (Phaeognathus hubrichti by combining genetic, transect, and body-condition data. We found that populations where habitat buffers have been employed have higher genetic diversity and higher population densities, and individuals have better overall body condition. These results indicate that buffering the habitat of imperiled species can be an effective management tool for terrestrial salamanders. Additionally, they provide further evidence that leaving the habitat of imperiled salamanders unbuffered can have both immediate and long-term negative impacts on populations.

  4. Fish Habitat Utilization Patterns and Evaluation of the Efficacy of Marine Protected Areas in Hawaii: Integration of NOAA Digital Benthic Habitat Mapping and Coral Reef Ecological Studies

    OpenAIRE

    Friedlander, Alan M.; Brown, Eric; Monaco, Mark E.; Clarke, Athline

    2006-01-01

    Over the past four decades, the state of Hawaii has developed a system of eleven Marine Life Conservation Districts (MLCDs) to conserve and replenish marine resources around the state. Initially established to provide opportunities for public interaction with the marine environment, these MLCDs vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning marine protected area (MPA) design and function using multiple discreet sampling ...

  5. Integrating spatially explicit indices of abundance and habitat quality: an applied example for greater sage-grouse management.

    Science.gov (United States)

    Coates, Peter S; Casazza, Michael L; Ricca, Mark A; Brussee, Brianne E; Blomberg, Erik J; Gustafson, K Benjamin; Overton, Cory T; Davis, Dawn M; Niell, Lara E; Espinosa, Shawn P; Gardner, Scott C; Delehanty, David J

    2016-02-01

    Predictive species distributional models are a cornerstone of wildlife conservation planning. Constructing such models requires robust underpinning science that integrates formerly disparate data types to achieve effective species management.Greater sage-grouse Centrocercus urophasianus , hereafter 'sage-grouse' populations are declining throughout sagebrush-steppe ecosystems in North America, particularly within the Great Basin, which heightens the need for novel management tools that maximize the use of available information.Herein, we improve upon existing species distribution models by combining information about sage-grouse habitat quality, distribution and abundance from multiple data sources. To measure habitat, we created spatially explicit maps depicting habitat selection indices (HSI) informed by >35 500 independent telemetry locations from >1600 sage-grouse collected over 15 years across much of the Great Basin. These indices were derived from models that accounted for selection at different spatial scales and seasons. A region-wide HSI was calculated using the HSI surfaces modelled for 12 independent subregions and then demarcated into distinct habitat quality classes.We also employed a novel index to describe landscape patterns of sage-grouse abundance and space use (AUI). The AUI is a probabilistic composite of the following: (i) breeding density patterns based on the spatial configuration of breeding leks and associated trends in male attendance; and (ii) year-round patterns of space use indexed by the decreasing probability of use with increasing distance to leks. The continuous AUI surface was then reclassified into two classes representing high and low/no use and abundance. Synthesis and application s. Using the example of sage-grouse, we demonstrate how the joint application of indices of habitat selection, abundance and space use derived from multiple data sources yields a composite map that can guide effective allocation of management

  6. Integrating spatially explicit indices of abundance and habitat quality: an applied example for greater sage-grouse management

    Science.gov (United States)

    Coates, Peter S.; Casazza, Michael L.; Ricca, Mark A.; Brussee, Brianne E.; Blomberg, Erik J.; Gustafson, K. Benjamin; Overton, Cory T.; Davis, Dawn M.; Niell, Lara E.; Espinosa, Shawn P.; Gardner, Scott C.; Delehanty, David J.

    2016-01-01

    Predictive species distributional models are a cornerstone of wildlife conservation planning. Constructing such models requires robust underpinning science that integrates formerly disparate data types to achieve effective species management. Greater sage-grouse Centrocercus urophasianus, hereafter “sage-grouse” populations are declining throughout sagebrush-steppe ecosystems in North America, particularly within the Great Basin, which heightens the need for novel management tools that maximize use of available information. Herein, we improve upon existing species distribution models by combining information about sage-grouse habitat quality, distribution, and abundance from multiple data sources. To measure habitat, we created spatially explicit maps depicting habitat selection indices (HSI) informed by > 35 500 independent telemetry locations from > 1600 sage-grouse collected over 15 years across much of the Great Basin. These indices were derived from models that accounted for selection at different spatial scales and seasons. A region-wide HSI was calculated using the HSI surfaces modelled for 12 independent subregions and then demarcated into distinct habitat quality classes. We also employed a novel index to describe landscape patterns of sage-grouse abundance and space use (AUI). The AUI is a probabilistic composite of: (i) breeding density patterns based on the spatial configuration of breeding leks and associated trends in male attendance; and (ii) year-round patterns of space use indexed by the decreasing probability of use with increasing distance to leks. The continuous AUI surface was then reclassified into two classes representing high and low/no use and abundance. Synthesis and applications. Using the example of sage-grouse, we demonstrate how the joint application of indices of habitat selection, abundance, and space use derived from multiple data sources yields a composite map that can guide effective allocation of management intensity across

  7. Indicators: Physical Habitat Complexity

    Science.gov (United States)

    Physical habitat complexity measures the amount and variety of all types of cove at the water’s edge in lakes. In general, dense and varied shoreline habitat is able to support more diverse communities of aquatic life.

  8. Physical habitat and its alteration: A common ground for exposure of amphibians to environmental stressors

    Science.gov (United States)

    Bishop, Christine A.; Cunnington, David C.; Fellers, Gary M.; Gibbs, James P.; Pauli, Bruce D.; Rothermel, Betsie B.; Linder, Greg L.; Krest, Sherry K.; Sparling, Donald W.

    2003-01-01

    Amphibians as a class of vertebrates have persisted for hundreds of millions of years (Stebbins and Cohen 1995), but they are currently threatened by a variety of stressors, many resulting from human-related alterations of the environment. Most species of amphibians live closely associated with moist environments throughout their life and have evolved specialized adaptations that conserve water and reduce desiccation (Stebbins and Cohen 1995; Henry 2000; Chapter 2A). Amphibians are ectotherms, so their body temperatures fluctuate with the local environment. Latitude, elevation, and habitat affect environmental temperature and have a strong influence on amphibian distributions. Despite these physiological and habitat constraints, the 4750 species of amphibians in the world today have exploited a wide variety of habitats that range from dry deserts to tropical rain forests and from sea level to elevations above 4000 m (McDairmid and Mitchell 2000).The direct loss of suitable habitat has had a profound effect on amphibian populations (Johnson 1992), as it has on nearly all species of wildlife. In the U.S., 53% of wetlands have been lost to human development in the last 200 years (Dahl 1990). Similar loss of wetlands has occurred throughout much of the world, especially in developing countries (Miller 1993). In many regions, deforestation has reduced or eliminated suitable terrestrial habitats, and this may prove to be the largest global threat to amphibian populations (Johnson 1992). Eight thousand years ago, forests covered approximately 40% of the world’s land (6 billion hectares), but by 1997, the world’s forests had been reduced to 3.5 billion hectares, a 42% loss worldwide (CIDA 2001). The effect of habitat loss is generally both obvious and predictable; with increasing restriction of suitable habitat, amphibian populations will probably not survive. The anthropogenic effects on the quality of the habitat that remains are often less obvious.

  9. Habitat-dependent olfactory discrimination in three-spined sticklebacks (Gasterosteus aculeatus).

    Science.gov (United States)

    Hiermes, Meike; Mehlis, Marion; Rick, Ingolf P; Bakker, Theo C M

    2015-07-01

    The ability to recognize conspecifics is indispensible for differential treatment of particular individuals in social contexts like grouping behavior. The advantages of grouping are multifarious, and there exist numerous additional benefits of joining aggregations of conspecifics. Recognition is based on different signals and transmitted via multiple channels, among others the olfactory channel. The sensory system or the combination of sensory modalities used in recognition processes is highly dependent on the availability and effectiveness of modalities, which are a function of the environmental conditions. Using F1-generations of six three-spined stickleback (Gasterosteus aculeatus) populations from two habitat types (tea-stained and clear-water lakes) from the Outer Hebrides, Scotland, we investigated whether individuals are able to recognize members of their own population solely based on olfactory cues and whether the habitat type an individual originated from had an influence on its recognition abilities. When given the choice (own vs. foreign population) sticklebacks from tea-stained lakes significantly preferred the odor of their own population, whereas fish from clear-water habitats did not show any preference. Moreover, fish from the two habitat types differed significantly in their recognition abilities, indicating that olfactory communication is better developed when visual signaling is disturbed. Thus, the observed odor preferences appear to be the consequence of different selective constraints and adaptations as a result of the differences in environmental conditions that have acted on the parental generations. These adaptations are likely genetically based as the differences are present in the F1-generation that had been reared under identical laboratory conditions.

  10. Ontogenetic and evolutionary effects of predation and competition on nine-spined stickleback (Pungitius pungitius) body size.

    Science.gov (United States)

    Välimäki, Kaisa; Herczeg, Gábor

    2012-07-01

    1. Individual- and population-level variation in body size and growth often correlates with many fitness traits. Predation and food availability are expected to affect body size and growth as important agents of both natural selection and phenotypic plasticity. How differences in predation and food availability affect body size/growth during ontogeny in populations adapted to different predation and competition regimes is rarely studied. 2. Nine-spined stickleback (Pungitius pungitius) populations originating from habitats with varying levels of predation and competition are known to be locally adapted to their respective habitats in terms of body size and growth. Here, we studied how different levels of perceived predation risk and competition during ontogeny affect the reaction norms of body size and growth in (i) marine and pond populations adapted to different levels of predation and competition and (ii) different sexes. We reared nine-spined stickleback in a factorial experiment under two levels of perceived predation risk (present/absent) and competition (high/low food supply). 3. We found divergence in the reaction norms at two levels: (i) predation-adapted marine stickleback had stronger reactions to predatory cues than intraspecific competition-adapted pond stickleback, the latter being more sensitive to available food than the marine fish and (ii) females reacting more strongly to the treatments than males. 4. The repeated, habitat-dependent nature of the differences suggests that natural selection is the agent behind the observed patterns. Our results suggest that genetic adaptation to certain environmental factors also involves an increase in the range of expressible phenotypic plasticity. We found support for this phenomenon at two levels: (i) across populations driven by habitat type and (ii) within populations driven by sex. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  11. Cerebriform intradermal nevus presenting as cutis verticis gyrata with multiple cellular blue nevus over the body: A rare occurrence

    Directory of Open Access Journals (Sweden)

    Somenath Sarkar

    2014-01-01

    Full Text Available Cutis verticis gyrata is a rare skin condition characterized by swelling of scalp resembling the surface of the brain. Various conditions, like cerebriform intradermal nevus (CIN, may give rise to this clinical entity. Moreover, its association with cellular blue nevus is extremely rare and has not been reported so far. Here, we report a 28-year-old male with a huge cerebriform swelling covering the occipital lobe along with multiple nodules all over the body. Histology of the scalp swelling showed solitary or clusters of nevus cells in the dermis and from the body lesions showed features of cellular blue nevus. The diagnosis of CIN with cellular blue nevus was confirmed

  12. A spatial theory for emergent multiple predator-prey interactions in food webs.

    Science.gov (United States)

    Northfield, Tobin D; Barton, Brandon T; Schmitz, Oswald J

    2017-09-01

    Predator-prey interaction is inherently spatial because animals move through landscapes to search for and consume food resources and to avoid being consumed by other species. The spatial nature of species interactions necessitates integrating spatial processes into food web theory and evaluating how predators combine to impact their prey. Here, we present a spatial modeling approach that examines emergent multiple predator effects on prey within landscapes. The modeling is inspired by the habitat domain concept derived from empirical synthesis of spatial movement and interactions studies. Because these principles are motivated by synthesis of short-term experiments, it remains uncertain whether spatial contingency principles hold in dynamical systems. We address this uncertainty by formulating dynamical systems models, guided by core habitat domain principles, to examine long-term multiple predator-prey spatial dynamics. To describe habitat domains, we use classical niche concepts describing resource utilization distributions, and assume species interactions emerge from the degree of overlap between species. The analytical results generally align with those from empirical synthesis and present a theoretical framework capable of demonstrating multiple predator effects that does not depend on the small spatial or temporal scales typical of mesocosm experiments, and help bridge between empirical experiments and long-term dynamics in natural systems.

  13. 3.10. Habitat restoration and creation

    OpenAIRE

    2016-01-01

    1.12.1 Terrestrial habitat Based on the collated evidence, what is the current assessment of the effectiveness of interventions for terrestrial habitat restoration and creation? Beneficial ● Replant vegetation Likely to be beneficial ● Clear vegetation● Create artificial hibernacula or aestivation sites● Create refuges● Restore habitat connectivity Unknown effectiveness (limited evidence) ● Change mowing regime No evidence found (no assessment) ● Create habitat connectivity Beneficial Repla...

  14. Effects of marine reserves versus nursery habitat availability on structure of reef fish communities.

    Science.gov (United States)

    Nagelkerken, Ivan; Grol, Monique G G; Mumby, Peter J

    2012-01-01

    No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤ 25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.

  15. Effects of marine reserves versus nursery habitat availability on structure of reef fish communities.

    Directory of Open Access Journals (Sweden)

    Ivan Nagelkerken

    Full Text Available No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas for small nursery fish (≤ 25 cm total length. For large-bodied individuals of nursery species (>25 cm total length, an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass than from proximity to nurseries (139% higher. The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.

  16. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem.

    Directory of Open Access Journals (Sweden)

    Victor K Muposhi

    Full Text Available An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats.

  17. Emotional Communicative Body Animation for Multiple Characters

    NARCIS (Netherlands)

    Egges, A.; Magnenat-Thalmann, N.

    2005-01-01

    Current body animation systems for Interactive Virtual Humans are mostly procedural or key-frame based. Although such methods provide for a high flexibility of the animation system, often it is not possible to create animations that are as realistic as animations obtained using a motion capture

  18. Habitat quality of the woolly spider monkey (Brachyteles hypoxanthus).

    Science.gov (United States)

    da Silva Júnior, Wilson Marcelo; Alves Meira-Neto, João Augusto; da Silva Carmo, Flávia Maria; Rodrigues de Melo, Fabiano; Santana Moreira, Leandro; Ferreira Barbosa, Elaine; Dias, Luiz Gustavo; da Silva Peres, Carlos Augusto

    2009-01-01

    This study examines how habitat structure affects the home range use of a group of Brachyteles hypoxanthus in the Brigadeiro State Park, Brazil. It has been reported that most of the annual feeding time of woolly spider monkeys is spent eating leaves, but they prefer fruits when available. We hypothesise that the protein-to-fibre ratio (PF; best descriptor of habitat quality for folivorous primates) is a better descriptor of habitat quality and abundance for these primates than the structural attributes of forests (basal area is the best descriptor of habitat quality for frugivorous primates of Africa and Asia). We evaluated plant community structure, successional status, and PF of leaf samples from the dominant tree populations, both within the core and from a non-core area of the home range of our study group. Forest structure was a combination of stem density and basal area of dominant tree populations. The core area had larger trees, a higher forest basal area, and higher stem density than the non-core area. Mean PF did not differ significantly between these sites, although PF was influenced by differences in tree regeneration guilds. Large-bodied monkeys could be favoured by later successional stages of forests because larger trees and denser stems prevent the need for a higher expenditure of energy for locomotion as a consequence of vertical travel when the crowns of trees are disconnected in early successional forests. Forest structure variables (such as basal area of trees) driven by succession influence woolly spider monkey abundance in a fashion similar to frugivorous monkeys of Asia and Africa, and could explain marked differences in ranging behaviour and home range use by B. hypoxanthus. Copyright 2009 S. Karger AG, Basel.

  19. Rainbow trout movement behavior and habitat occupancy are influenced by sex and Pacific salmon presence in an Alaska river system

    Science.gov (United States)

    Fraley, Kevin M.; Falke, Jeffrey A.; McPhee, Megan V.; Prakash, Anupma

    2018-01-01

    We used spatially continuous field-measured and remotely-sensed aquatic habitat characteristics paired with weekly ground-based telemetry tracking and snorkel surveys to describe movements and habitat occupancy of adult rainbow trout (N = 82) in a runoff-fed, salmon-influenced southcentral Alaska river system. We found that during the ice-free feeding season (June through September) rainbow trout occurrence was associated more with fine-scale (channel unit) characteristics relative to coarse-scale (stream reach) variables. The presence of Pacific salmon (which provide an important seasonal food subsidy), and habitat size were particularly useful predictors. Weekly movement distance differed between pre- and post- spawning salmon arrival, but did not vary by sex. Habitat quality, season, and the arrival of spawning salmon influenced the likelihood of rainbow trout movement, and fish moved farther to seek out higher quality habitats. Because rainbow trout respond to habitat factors at multiple scales and seek out salmon-derived subsidies, it will be important to take a multiscale approach in protecting trout and salmon populations and managing the associated fisheries.

  20. Natural Propagation and Habitat Improvement, Volume I, Oregon, Supplement C, White River Habitat Inventory, 1983 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Heller, David

    1984-04-01

    More than 130 miles of stream fish habitat was inventoried and evaluated on the Mt. Hood National Forest during the first year of this multi-year project. First year tasks included field inventory and evaluation of habitat conditions on the White River and tributary streams thought to have the highest potential for supporting anadromous fish populations. All streams inventoried were located on the Mt. Hood National Forest. The surveyed area appears to contain most of the high quality anadromous fish habitat in the drainage. Habitat conditions appear suitable for steelhead, coho, and chinook salmon, and possibly sockeye. One hundred and twenty-four miles of potential anadromous fish habitat were identifed in the survey. Currently, 32 miles of this habitat would be readily accessible to anadromous fish. An additional 72 miles of habitat could be accessed with only minor passage improvement work. About 20 miles of habitat, however, will require major investment to provide fish passage. Three large lakes (Boulder, 14 acres; Badger, 45 acres; Clear, 550 acres) appear to be well-suited for rearing anadromous fish, although passage enhancement would be needed before self-sustaining runs could be established in any of the lakes.

  1. Multi- and hyperspectral remote sensing of tropical marine benthic habitats

    Science.gov (United States)

    Mishra, Deepak R.

    Tropical marine benthic habitats such as coral reef and associated environments are severely endangered because of the environmental degradation coupled with hurricanes, El Nino events, coastal pollution and runoff, tourism, and economic development. To monitor and protect this diverse environment it is important to not only develop baseline maps depicting their spatial distribution but also to document their changing conditions over time. Remote sensing offers an important means of delineating and monitoring coral reef ecosystems. Over the last twenty years the scientific community has been investigating the use and potential of remote sensing techniques to determine the conditions of the coral reefs by analyzing their spectral characteristics from space. One of the problems in monitoring coral reefs from space is the effect of the water column on the remotely sensed signal. When light penetrates water its intensity decreases exponentially with increasing depth. This process, known as water column attenuation, exerts a profound effect on remotely sensed data collected over water bodies. The approach presented in this research focuses on the development of semi-analytical models that resolves the confounding influence water column attenuation on substrate reflectance to characterize benthic habitats from high resolution remotely sensed imagery on a per-pixel basis. High spatial resolution satellite and airborne imagery were used as inputs in the models to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). These parameters were subsequently used in various bio-optical algorithms to deduce bottom albedo and then to classify the benthos, generating a detailed map of benthic habitats. IKONOS and QuickBird multispectral satellite data and AISA Eagle hyperspectral airborne data were used in this research for benthic habitat mapping along the north shore of Roatan Island, Honduras. The AISA Eagle classification was

  2. Anthropogenic areas as incidental substitutes for original habitat.

    Science.gov (United States)

    Martínez-Abraín, Alejandro; Jiménez, Juan

    2016-06-01

    One speaks of ecological substitutes when an introduced species performs, to some extent, the ecosystem function of an extirpated native species. We suggest that a similar case exists for habitats. Species evolve within ecosystems, but habitats can be destroyed or modified by natural and human-made causes. Sometimes habitat alteration forces animals to move to or remain in a suboptimal habitat type. In that case, the habitat is considered a refuge, and the species is called a refugee. Typically refugee species have lower population growth rates than in their original habitats. Human action may lead to the unintended generation of artificial or semiartificial habitat types that functionally resemble the essential features of the original habitat and thus allow a population growth rate of the same magnitude or higher than in the original habitat. We call such areas substitution habitats and define them as human-made habitats within the focal species range that by chance are partial substitutes for the species' original habitat. We call species occupying a substitution habitat adopted species. These are 2 new terms in conservation biology. Examples of substitution habitats are dams for European otters, wheat and rice fields for many steppeland and aquatic birds, and urban areas for storks, falcons, and swifts. Although substitution habitats can bring about increased resilience against the agents of global change, the conservation of original habitat types remains a conservation priority. © 2016 Society for Conservation Biology.

  3. Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees.

    Science.gov (United States)

    Pisanty, Gideon; Mandelik, Yael

    2015-04-01

    Wild pollinators, bees in particular, may greatly contribute to crop pollination and provide a safety net against declines in commercial pollinators. However, the identity, life history traits, and environmental sensitivities of main crop pollinator species.have received limited attention. These are crucial for predicting pollination services of different communities and for developing management practices that enhance crop pollinators. We sampled wild bees in three crop systems (almond, confection sunflower, and seed watermelon) in a mosaic Israeli Mediterranean landscape. Bees were sampled in field/orchard edges and interiors, and in seminatural scrub surrounding the fields/orchards. We also analyzed land cover at 50-2500 m radii around fields/orchards. We used this data to distinguish crop from non-crop pollinators based on a set of life history traits (nesting, lecty, sociality, body size) linked to habitat preference and crop visitation. Bee abundance and species richness decreased from the surrounding seminatural habitat to the field/orchard interior, especially across the seminatural habitat-field edge ecotone. Thus, although rich bee communities were found near fields, only small fractions crossed the ecotone and visited crop flowers in substantial numbers. The bee assemblage in agricultural fields/orchards and on crop flowers was dominated by ground-nesting bees of the tribe Halictini, which tend to nest within fields. Bees' habitat preferences were determined mainly by nesting guild, whereas crop visitation was determined mainly by sociality. Lecty and body size also affected both measures. The percentage of surrounding seminatural habitat at 250-2500 m radii had a positive effect on wild bee diversity in field edges, for all bee guilds, while at 50-100 m radii, only aboveground nesters were positively affected. In sum, we found that crop and non-crop pollinators are distinguished by behavioral and morphological traits. Hence, analysis of life

  4. Linking seasonal home range size with habitat selection and movement in a mountain ungulate.

    Science.gov (United States)

    Viana, Duarte S; Granados, José Enrique; Fandos, Paulino; Pérez, Jesús M; Cano-Manuel, Francisco Javier; Burón, Daniel; Fandos, Guillermo; Aguado, María Ángeles Párraga; Figuerola, Jordi; Soriguer, Ramón C

    2018-01-01

    Space use by animals is determined by the interplay between movement and the environment, and is thus mediated by habitat selection, biotic interactions and intrinsic factors of moving individuals. These processes ultimately determine home range size, but their relative contributions and dynamic nature remain less explored. We investigated the role of habitat selection, movement unrelated to habitat selection and intrinsic factors related to sex in driving space use and home range size in Iberian ibex, Capra pyrenaica . We used GPS collars to track ibex across the year in two different geographical areas of Sierra Nevada, Spain, and measured habitat variables related to forage and roost availability. By using integrated step selection analysis (iSSA), we show that habitat selection was important to explain space use by ibex. As a consequence, movement was constrained by habitat selection, as observed displacement rate was shorter than expected under null selection. Selection-independent movement, selection strength and resource availability were important drivers of seasonal home range size. Both displacement rate and directional persistence had a positive relationship with home range size while accounting for habitat selection, suggesting that individual characteristics and state may also affect home range size. Ibex living at higher altitudes, where resource availability shows stronger altitudinal gradients across the year, had larger home ranges. Home range size was larger in spring and autumn, when ibex ascend and descend back, and smaller in summer and winter, when resources are more stable. Therefore, home range size decreased with resource availability. Finally, males had larger home ranges than females, which might be explained by differences in body size and reproductive behaviour. Movement, selection strength, resource availability and intrinsic factors related to sex determined home range size of Iberian ibex. Our results highlight the need to integrate

  5. Using low-cost drones to map malaria vector habitats.

    Science.gov (United States)

    Hardy, Andy; Makame, Makame; Cross, Dónall; Majambere, Silas; Msellem, Mwinyi

    2017-01-14

    There is a growing awareness that if we are to achieve the ambitious goal of malaria elimination, we must compliment indoor-based vector control interventions (such as bednets and indoor spraying) with outdoor-based interventions such as larval source management (LSM). The effectiveness of LSM is limited by our capacity to identify and map mosquito aquatic habitats. This study provides a proof of concept for the use of a low-cost (drone (DJI Phantom) for mapping water bodies in seven sites across Zanzibar including natural water bodies, irrigated and non-irrigated rice paddies, peri-urban and urban locations. With flying times of less than 30 min for each site, high-resolution (7 cm) georeferenced images were successfully generated for each of the seven sites, covering areas up to 30 ha. Water bodies were readily identifiable in the imagery, as well as ancillary information for planning LSM activities (access routes to water bodies by road and foot) and public health management (e.g. identification of drinking water sources, mapping individual households and the nature of their construction). The drone-based surveys carried out in this study provide a low-cost and flexible solution to mapping water bodies for operational dissemination of LSM initiatives in mosquito vector-borne disease elimination campaigns. Generated orthomosaics can also be used to provide vital information for other public health planning activities.

  6. Development of Multiple Capsule Robots in Pipe

    Directory of Open Access Journals (Sweden)

    Shuxiang Guo

    2018-05-01

    Full Text Available Swallowable capsule robots which travel in body cavities to implement drug delivery, minimally invasive surgery, and diagnosis have provided great potential for medical applications. However, the space constraints of the internal environment and the size limitations of the robots are great challenges to practical application. To address the fundamental challenges of narrow body cavities, a different-frequency driven approach for multiple capsule robots with screw structure manipulated by external electromagnetic field is proposed in this paper. The multiple capsule robots are composed of driven permanent magnets, joint permanent magnets, and a screw body. The screw body generates a propulsive force in a fluidic environment. Moreover, robots can form new constructions via mutual docking and release. To provide manipulation guidelines for active locomotion, a dynamic model of axial propulsion and circumferential torque is established. The multiple start and step-out frequencies for multiple robots are defined theoretically. Moreover, the different-frequency driven approach based on geometrical parameters of screw structure and the overlap angles of magnetic polarities is proposed to drive multiple robots in an identical electromagnetic field. Finally, two capsule robots were prototyped and experiments in a narrow pipe were conducted to verify the different motions such as docking, release, and cooperative locomotion. The experimental results demonstrated the validity of the driven approach for multiple capsule robots in narrow body cavities.

  7. The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus

    Science.gov (United States)

    Vitt, Laurie J.; Caldwell, Janalee P.; Zani, Peter A.; Titus, Tom A.

    1997-01-01

    We compared morphology of two geographically close populations of the tropical lizard Tropidurus hispidus to test the hypothesis that habitat structure influences the evolution of morphology and ecology at the population level. T. hispidus isolated on a rock outcrop surrounded by tropical forest use rock crevices for refuge and appear dorsoventrally compressed compared with those in open savanna. A principal components analysis revealed that the populations were differentially distributed along an axis representing primarily three components of shape: body width, body height, and hind-leg length. Morphological divergence was supported by a principal components analysis of size-free morphological variables. Mitochondrial DNA sequences of ATPase 6 indicate that these populations are closely related relative to other T. hispidus, the rock outcrop morphology and ecology are derived within T. hispidus, and morphological and ecological divergence has occurred more rapidly than genetic divergence. This suggests that natural selection can rapidly adjust morphology and ecology in response to a recent history of exposure to habitats differing in structure, a result heretofore implied from comparative studies among lizard species. PMID:9108063

  8. The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus.

    Science.gov (United States)

    Vitt, L J; Caldwell, J P; Zani, P A; Titus, T A

    1997-04-15

    We compared morphology of two geographically close populations of the tropical lizard Tropidurus hispidus to test the hypothesis that habitat structure influences the evolution of morphology and ecology at the population level. T. hispidus isolated on a rock outcrop surrounded by tropical forest use rock crevices for refuge and appear dorsoventrally compressed compared with those in open savanna. A principal components analysis revealed that the populations were differentially distributed along an axis representing primarily three components of shape: body width, body height, and hind-leg length. Morphological divergence was supported by a principal components analysis of size-free morphological variables. Mitochondrial DNA sequences of ATPase 6 indicate that these populations are closely related relative to other T. hispidus, the rock outcrop morphology and ecology are derived within T. hispidus, and morphological and ecological divergence has occurred more rapidly than genetic divergence. This suggests that natural selection can rapidly adjust morphology and ecology in response to a recent history of exposure to habitats differing in structure, a result heretofore implied from comparative studies among lizard species.

  9. Fractionated half body irradiation for palliation of multiple symptomatic bone metastases from solid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, Kenji; Hayashi, Shinya; Sunagawa, Yoshimitsu; Sougawa, Mitsuharu; Nakazawa, Masanori; Yamashita, Takashi (Japanese Foundation for Cancer Research, Tokyo (Japan). Hospital)

    1992-06-01

    This was a phase I-II nonrandomized study that explored the toxicity and response of fractionated half-body irradiation (F-HBI) in patients with multiple symptomatic osseous metastases. The patients had no premedication and received 10 Gy in 5 fractions with a dose rate of 15 cGy/min. At the Cancer Institute Hospital, 9 patients were treated by this technique (1 upper and lower F-HBI, 6 upper F-HBI, 2 lower F-HBI). All patients were female and had adenocarcinomas (8 breast and 1 lung). Adverse effects were myelosuppression, vomiting and partial alopecia. But hematologic toxicity was treated with blood transfusion or G-CSF. All toxicity was transient, and no pneumonitis nor radiation-related deaths occurred. When given as palliation, F-HBI was found to relieve pain in 80% of the patients. In 10% of the patients the pain relief was complete. The mean time to achieve pain relief in responders after F-HBI was 9 days. The pain relief was long-lasting and continued without need of reirradiation for 40% of the remaining patient's life. This treatment modality appears to be well tolerated and effective in patients with multiple symptomatic osseous metastases. The optimal indications, dose and fractionation for F-HBI should be further explored in randomized trials. (author).

  10. Aquatic insects dealing with dehydration: do desiccation resistance traits differ in species with contrasting habitat preferences?

    Directory of Open Access Journals (Sweden)

    Susana Pallarés

    2016-08-01

    Full Text Available Background Desiccation resistance shapes the distribution of terrestrial insects at multiple spatial scales. However, responses to drying stress have been poorly studied in aquatic groups, despite their potential role in constraining their distribution and diversification, particularly in arid and semi-arid regions. Methods We examined desiccation resistance in adults of four congeneric water beetle species (Enochrus, family Hydrophilidae with contrasting habitat specificity (lentic vs. lotic systems and different salinity optima from fresh- to hypersaline waters. We measured survival, recovery capacity and key traits related to desiccation resistance (fresh mass, % water content, % cuticle content and water loss rate under controlled exposure to desiccation, and explored their variability within and between species. Results Meso- and hypersaline species were more resistant to desiccation than freshwater and hyposaline ones, showing significantly lower water loss rates and higher water content. No clear patterns in desiccation resistance traits were observed between lotic and lentic species. Intraspecifically, water loss rate was positively related to specimens’ initial % water content, but not to fresh mass or % cuticle content, suggesting that the dynamic mechanism controlling water loss is mainly regulated by the amount of body water available. Discussion Our results support previous hypotheses suggesting that the evolution of desiccation resistance is associated with the colonization of saline habitats by aquatic beetles. The interespecific patterns observed in Enochrus also suggest that freshwater species may be more vulnerable than saline ones to drought intensification expected under climate change in semi-arid regions such as the Mediterranean Basin.

  11. Simulating range-wide population and breeding habitat dynamics for an endangered woodland warbler in the face of uncertainty

    Science.gov (United States)

    Adam Duarte,; Hatfield, Jeffrey; Todd M. Swannack,; Michael R. J. Forstner,; M. Clay Green,; Floyd W. Weckerly,

    2015-01-01

    Population viability analyses provide a quantitative approach that seeks to predict the possible future status of a species of interest under different scenarios and, therefore, can be important components of large-scale species’ conservation programs. We created a model and simulated range-wide population and breeding habitat dynamics for an endangered woodland warbler, the golden-cheeked warbler (Setophaga chrysoparia). Habitat-transition probabilities were estimated across the warbler's breeding range by combining National Land Cover Database imagery with multistate modeling. Using these estimates, along with recently published demographic estimates, we examined if the species can remain viable into the future given the current conditions. Lastly, we evaluated if protecting a greater amount of habitat would increase the number of warblers that can be supported in the future by systematically increasing the amount of protected habitat and comparing the estimated terminal carrying capacity at the end of 50 years of simulated habitat change. The estimated habitat-transition probabilities supported the hypothesis that habitat transitions are unidirectional, whereby habitat is more likely to diminish than regenerate. The model results indicated population viability could be achieved under current conditions, depending on dispersal. However, there is considerable uncertainty associated with the population projections due to parametric uncertainty. Model results suggested that increasing the amount of protected lands would have a substantial impact on terminal carrying capacities at the end of a 50-year simulation. Notably, this study identifies the need for collecting the data required to estimate demographic parameters in relation to changes in habitat metrics and population density in multiple regions, and highlights the importance of establishing a common definition of what constitutes protected habitat, what management goals are suitable within those protected

  12. Habitat use and movement of the endangered Arroyo Toad (Anaxyrus californicus) in coastal southern California

    Science.gov (United States)

    Gallegos, Elizabeth; Lyren, Lisa M.; Lovich, Robert E.; Mitrovich, Milan J.; Fisher, Robert N.

    2011-01-01

    Information on the habitat use and movement patterns of Arroyo Toads (Anaxyrus californicus) is limited. The temporal and spatial characteristics of terrestrial habitat use, especially as it relates to upland use in coastal areas of the species' range, are poorly understood. We present analyses of radiotelemetry data from 40 individual adult toads tracked at a single site in coastal southern California from March through November of 2004. We quantify adult Arroyo Toad habitat use and movements and interpret results in the context of their life history. We show concentrated activity by both male and female toads along stream terraces during and after breeding, and, although our fall sample size is low, the continued presence of adult toads in the floodplain through the late fall. Adult toads used open sandy flats with sparse vegetation. Home-range size and movement frequency varied as a function of body mass. Observed spatial patterns of movement and habitat use both during and outside of the breeding period as well as available climatological data suggest that overwintering of toads in floodplain habitats of near-coastal areas of southern California may be more common than previously considered. If adult toads are not migrating out of the floodplain at the close of the breeding season but instead overwinter on stream terraces in near-coastal areas, then current management practices that assume toad absence from floodplain habitats may be leaving adult toads over-wintering on stream terraces vulnerable to human disturbance during a time of year when Arroyo Toad mortality is potentially highest.

  13. Habitat Suitability Index Models: Yellow-headed blackbird

    Science.gov (United States)

    Schroeder, Richard L.

    1982-01-01

    Habitat preferences of the yellow-headed blackbird (Xanthocephalus xanthocephalus) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available infomration on the species-habitat requirements of the species. Habitat use information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities.

  14. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    Directory of Open Access Journals (Sweden)

    Gustaf Samelius

    Full Text Available Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1 before and after lynx re-established in the study area and (2 in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection. Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  15. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    Science.gov (United States)

    Samelius, Gustaf; Andrén, Henrik; Kjellander, Petter; Liberg, Olof

    2013-01-01

    Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1) before and after lynx re-established in the study area and (2) in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection). Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  16. Assessing risks to multiple resources affected by wildfire and forest management using an integrated probabilistic framework

    Science.gov (United States)

    Steven P. Norman; Danny C. Lee; Sandra Jacobson; Christine Damiani

    2010-01-01

    The tradeoffs that surround forest management are inherently complex, often involving multiple temporal and spatial scales. For example, conflicts may result when fuel treatments are designed to mediate long-term fuel hazards, but activities could impair sensitive aquatic habitat or degrade wildlife habitat in the short term. This complexity makes it hard for managers...

  17. MULTIPLE-COURSE PHOTODYNAMIC THERAPY FOR VERRUCOUS LEUKOPLAKIA OF MUCOUS MEMBRANE OF BODY OF THE TONGUE (CASE REPORT

    Directory of Open Access Journals (Sweden)

    Yu. P. Istomin

    2016-01-01

    Full Text Available The results of treatment of the patient with verrucous luekoplakia of mucous membrane of body of the tongue with photodynamic therapy are represented. In 2015 the patient underwent 4 courses of photodynamic therapy with photosensitizer photolon. Photolon was injected at dose of 2 mg/kg 3 h before irradiation (laser output power was 0.262 W, light dose – 50 and 100 J/cm2. The result of treatment was assessed as complete regression: 4 months after multiple-course photodynamic therapy there were no clinical and histological signs of luekoplakia.

  18. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet

    Science.gov (United States)

    Michelot, Candice; Pinaud, David; Fortin, Matthieu; Maes, Philippe; Callard, Benjamin; Leicher, Marine; Barbraud, Christophe

    2017-07-01

    Studies of habitat selection by higher trophic level species are necessary for using top predator species as indicators of ecosystem functioning. However, contrary to terrestrial ecosystems, few habitat selection studies have been conducted at a fine scale for coastal marine top predator species, and fewer have coupled diet data with habitat selection modeling to highlight a link between prey selection and habitat use. The aim of this study was to characterize spatially and oceanographically, at a fine scale, the habitats used by the European Shag Phalacrocorax aristotelis in the Special Protection Area (SPA) of Houat-Hœdic in the Mor Braz Bay during its foraging activity. Habitat selection models were built using in situ observation data of foraging shags (transect sampling) and spatially explicit environmental data to characterize marine benthic habitats. Observations were first adjusted for detectability biases and shag abundance was subsequently spatialized. The influence of habitat variables on shag abundance was tested using Generalized Linear Models (GLMs). Diet data were finally confronted to habitat selection models. Results showed that European shags breeding in the Mor Braz Bay changed foraging habitats according to the season and to the different environmental and energetic constraints. The proportion of the main preys also varied seasonally. Rocky and coarse sand habitats were clearly preferred compared to fine or muddy sand habitats. Shags appeared to be more selective in their foraging habitats during the breeding period and the rearing of chicks, using essentially rocky areas close to the colony and consuming preferentially fish from the Labridae family and three other fish families in lower proportions. During the post-breeding period shags used a broader range of habitats and mainly consumed Gadidae. Thus, European shags seem to adjust their feeding strategy to minimize energetic costs, to avoid intra-specific competition and to maximize access

  19. Habitat Suitability Index Models: Red-winged blackbird

    Science.gov (United States)

    Short, Henry L.

    1985-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the red-winged blackbird (Agelaius phoeniceus L.). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  20. Asotin Creek instream habitat alteration projects : habitat evaluation, adult and juvenile habitat utilization and water temperature monitoring : 2001 progress report

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.

    2002-01-01

    Asotin Creek originates from a network of deeply incised streams on the slopes of the Blue Mountains of southeastern Washington. The watershed drains an area of 322 square miles that provides a mean annual flow of 74 cfs. The geomorphology of the watershed exerts a strong influence on biologic conditions for fish within the stream. Historic and contemporary land-use practices have had a profound impact on the kind, abundance, and distribution of anadromous salmonids in the watershed. Fish habitat in Asotin Creek and other local streams has been affected by agricultural development, grazing, tilling practices, logging, recreational activities and implementation of flood control structures (Neilson 1950). The Asotin Creek Model Watershed Master Plan was completed in 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories: (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were: (1) create more pools, (2) increase the amount of large organic debris (LOD), (3) increase the riparian buffer zone through tree planting, and (4) increase fencing to limit livestock access. All of these actions, in combination with other activities identified in the Plan, are intended to stabilize the river channel, reduce sediment input, increase the amount of available fish habitat (adult and juvenile) and protect private property. Evaluation work described within this report was to document the success or failure of the program regarding the first two items listed (increasing pools and LOD). Beginning in 1996, the ACCD, with cooperation from local landowners and funding from Bonneville Power Administration began constructing instream

  1. Moving Targets and Biodiversity Offsets for Endangered Species Habitat: Is Lesser Prairie Chicken Habitat a Stock or Flow?

    Directory of Open Access Journals (Sweden)

    Todd K. BenDor

    2014-03-01

    Full Text Available The US Fish and Wildlife Service will make an Endangered Species Act listing decision for the lesser prairie chicken (Tympanuchus pallidicinctus; “LPC” in March 2014. Based on the findings of a single, Uzbek antelope study, conservation plans put forth for the LPC propose to modify and re-position habitat in the landscape through a series of temporary preservation/restoration efforts. We argue that for certain species, including the LPC, dynamic habitat offsets represent a dangerous re-interpretation of habitat provision and recovery programs, which have nearly-universally viewed ecosystem offsets (habitat, wetlands, streams, etc. as “stocks” that accumulate characteristics over time. Any effort to create a program of temporary, moving habitat offsets must consider species’ (1 life history characteristics, (2 behavioral tendencies (e.g., avoidance of impacted areas, nesting/breeding site fidelity, and (3 habitat restoration characteristics, including long temporal lags in reoccupation. If misapplied, species recovery programs using temporary, moving habitat risk further population declines.

  2. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in rural Africa.

    Science.gov (United States)

    Hardy, Andrew J; Gamarra, Javier G P; Cross, Dónall E; Macklin, Mark G; Smith, Mark W; Kihonda, Japhet; Killeen, Gerry F; Ling'ala, George N; Thomas, Chris J

    2013-01-01

    Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools.

  3. A meta-analysis of lesser prairie-chicken nesting and brood-rearing habitats: implications for habitat management

    Science.gov (United States)

    Hagen, Christian A.; Grisham, Blake A.; Boal, Clint W.; Haukos, David A.

    2013-01-01

    The distribution and range of lesser prairie-chicken (Tympanuchus pallidicinctus) has been reduced by >90% since European settlement of the Great Plains of North America. Currently, lesser prairie-chickens occupy 3 general vegetation communities: sand sagebrush (Artemisia filifolia), sand shinnery oak (Quercus havardii), and mixed-grass prairies juxtaposed with Conservation Reserve Program grasslands. As a candidate for protection under the Endangered Species Act, there is a need for a synthesis that characterizes habitat structure rangewide. Thus, we conducted a meta-analysis of vegetation characteristics at nest sites and brood habitats to determine whether there was an overall effect (Hedges' d) of habitat selection and to estimate average (95% CI) habitat characteristics at use sites. We estimated effect sizes (di) from the difference between use (nests and brood sites) and random sampling sites for each study (n = 14), and derived an overall effect size (d++). There was a general effect for habitat selection as evidenced by low levels of variation in effect sizes across studies and regions. There was a small to medium effect (d++) = 0.20-0.82) of selection for greater vertical structure (visual obstruction) by nesting females in both vegetation communities, and selection against bare ground (d++ = 0.20-0.58). Females with broods exhibited less selectivity for habitat components except for vertical structure. The variation of d++ was greater during nesting than brooding periods, signifying a seasonal shift in habitat use, and perhaps a greater range of tolerance for brood-rearing habitat. The overall estimates of vegetation cover were consistent with those provided in management guidelines for the species.

  4. Stable Isotope Analysis Reveals That Agricultural Habitat Provides an Important Dietary Component for Nonbreeding Dunlin

    Directory of Open Access Journals (Sweden)

    Lesley Joan Evans Ogden

    2005-12-01

    Full Text Available Although shorebirds spending the winter in temperate areas frequently use estuarine and supratidal (upland feeding habitats, the relative contribution of each habitat to individual diets has not been directly quantified. We quantified the proportional use that Calidris alpina pacifica (Dunlin made of estuarine vs. terrestrial farmland resources on the Fraser River Delta, British Columbia, using stable isotope analysis (δ13C, δ15N of blood from 268 Dunlin over four winters, 1997 through 2000. We tested for individual, age, sex, morphological, seasonal, and weather-related differences in dietary sources. Based on single- (δ13C and dual-isotope mixing models, the agricultural habitat contributed approximately 38% of Dunlin diet averaged over four winters, with the balance from intertidal flats. However, there was a wide variation among individuals in the extent of agricultural feeding, ranging from about 1% to 95% of diet. Younger birds had a significantly higher terrestrial contribution to diet (43% than did adults (35%. We estimated that 6% of adults and 13% of juveniles were obtaining at least 75% of their diet from terrestrial sources. The isotope data provided no evidence for sex or overall body size effects on the proportion of diet that is terrestrial in origin. The use of agricultural habitat by Dunlin peaked in early January. Adult Dunlin obtained a greater proportion of their diet terrestrially during periods of lower temperatures and high precipitation, whereas no such relationship existed for juveniles. Seasonal variation in the use of agricultural habitat suggests that it is used more during energetically stressful periods. The terrestrial farmland zone appears to be consistently important as a habitat for juveniles, but for adults it may provide an alternative feeding site used as a buffer against starvation during periods of extreme weather. Loss or reduction of agricultural habitat adjacent to estuaries may negatively impact

  5. Wildlife Habitat Evaluation Handbook.

    Science.gov (United States)

    Neilson, Edward L., Jr.; Benson, Delwin E.

    The National 4-H Wildlife Invitational is a competitive event to teach youth about the fundamentals of wildlife management. Youth learn that management for wildlife means management of wildlife habitat and providing for the needs of wildlife. This handbook provides information about wildlife habitat management concepts in both urban and rural…

  6. Role of whole-body 64-slice multidetector computed tomography in treatment planning for multiple myeloma.

    Science.gov (United States)

    Razek, Ahmed Abdel Khalek Abdel; Ezzat, Amany; Azmy, Emad; Tharwat, Nehal

    2013-08-01

    The authors evaluated the role of whole-body 64-slice multidetector computed tomography (WB-MDCT) in treatment planning for multiple myeloma. This was a prospective study of 28 consecutive patients with multiple myeloma (19 men, nine women; age range, 51-73 years; mean age, 60 years) who underwent WB-MDCT and conventional radiography (CR) of the skeleton. The images were interpreted for the presence of bony lesions, medullary lesions, fractures and extraosseous lesions. We evaluated any changes in treatment planning as a result of WB-MDCT findings. WB-MDCT was superior to CR for detecting bony lesions (p=0.001), especially of the spine (p=0.001) and thoracic cage (p=0.006). WB-MDCT upstaged 14 patients, with a significant difference in staging (p=0.002) between WB-MDCT and CR. Medullary involvement either focal (n=6) or diffuse (n=3) had a positive correlation with the overall score (r=0.790) and stage (r=0.618) of disease. Spine fractures were better detected at WB-MDCT (n=4) than at CR (n=2). Extraosseous soft tissue lesions (n=7) were detected only at WB-MDCT. Findings detected at the WB-MDCT led to changes in the patient's treatment plan in 39% of cases. Upstaging of seven patients (25%) altered the medical treatment plan, and four of 28 (14%) patients required additional radiotherapy (7%) and vertebroplasty (7%). We conclude that WB-MDCT has an impact on treatment planning and prognosis in patients with multiple myeloma, as it has high rate of detecting cortical and medullary bone lesions, spinal fracture and extraosseous lesions. This information may alter treatment planning in multiple myeloma due to disease upstaging and detection of spine fracture and extraosseous spinal lesions.

  7. Mapping the Relative Probability of Common Toad Occurrence in Terrestrial Lowland Farm Habitat in the United Kingdom.

    Directory of Open Access Journals (Sweden)

    Rosie D Salazar

    Full Text Available The common toad (Bufo bufo is of increasing conservation concern in the United Kingdom (UK due to dramatic population declines occurring in the past century. Many of these population declines coincided with reductions in both terrestrial and aquatic habitat availability and quality and have been primarily attributed to the effect of agricultural land conversion (of natural and semi-natural habitats to arable and pasture fields and pond drainage. However, there is little evidence available to link habitat availability with common toad population declines, especially when examined at a broad landscape scale. Assessing such patterns of population declines at the landscape scale, for instance, require an understanding of how this species uses terrestrial habitat.We intensively studied the terrestrial resource selection of a large population of common toads in Oxfordshire, England, UK. Adult common toads were fitted with passive integrated transponder (PIT tags to allow detection in the terrestrial environment using a portable PIT antenna once toads left the pond and before going into hibernation (April/May-October 2012 and 2013. We developed a population-level resource selection function (RSF to assess the relative probability of toad occurrence in the terrestrial environment by collecting location data for 90 recaptured toads.The predicted relative probability of toad occurrence for this population was greatest in wooded habitat near to water bodies; relative probability of occurrence declined dramatically > 50 m from these habitats. Toads also tended to select habitat near to their breeding pond and toad occurrence was negatively related to urban environments.

  8. Feeding ecology of Rhabdosargus holubi (family Sparidae) in multiple vegetated refugia of selected warm temperate estuaries in South Africa

    Science.gov (United States)

    Nel, L.; Strydom, N. A.; Perissinotto, R.; Adams, J. B.; Lemley, D. A.

    2017-10-01

    Estuarine marine-dependent species, such as Rhabdosargus holubi, depend greatly on structured sheltered environments and important feeding areas provided by estuaries. In this study, we investigate the ecological feeding niches of the estuarine marine-dependent sparid, R. holubi, by using conventional stomach contents and stable isotope methods (δ13C and δ15N signatures). The study has been carried out in five temperate estuaries in order to understand how fish feed in multiple intertidal vegetated habitats. These habitats included the submerged seagrass, Zostera capensis, and both previously unexplored small intertidal cord grass, Spartina maritima, and the common reed, Phragmites australis. The diet varied amongst habitats, estuaries and fish sizes and data consistently confirmed their omnivorous diet relating to ontogenetic niche shifts. Stomach contents revealed the importance of benthic prey within both the S. maritima and P. australis habitats in the absence of large intertidal vegetation, available during low tides. Similarly, isotopic mixing models showed that R. holubi from these habitats have a greater isotopic niche compared to the Z. capensis habitat, due to their limited availability during the falling tide, suggesting migration between available habitats. Stable isotopes confirmed that R. holubi actively feeds on the epiphytic algae (especially diatoms) covering the leaves and stalks of plant matter, as supported by Bayesian mixing models. These findings add to the current knowledge regarding habitat partitioning in multiple aquatic vegetation types critical to fish ecology and the effective management and conservation of estuaries.

  9. Effects of Changes in Lugu Lake Water Quality on Schizothorax Yunnansis Ecological Habitat Based on HABITAT Model

    Science.gov (United States)

    Huang, Wei; Mynnet, Arthur

    Schizothorax Yunnansis is an unique fish species only existing in Lugu Lake, which is located in the southwestern China. The simulation and research on Schizothorax Yunnansis habitat environment have a vital significance to protect this rare fish. With the development of the tourism industry, there bring more pressure on the environmental protection. The living environment of Schizothorax Yunnansis is destroyed seriously because the water quality is suffering the sustaining pollution of domestic sewage from the peripheral villages. This paper analyzes the relationship between water quality change and Schizothorax Yunnansis ecological habitat and evalutes Schizothorax Yunnansis's ecological habitat impact based on HABITAT model. The results show that when the TP concentration in Lugu Lake does not exceed Schizothorax Yunnansis's survival threshold, Schizothorax Yunnansis can get more nutrients and the suitable habitat area for itself is increased. Conversely, it can lead to TP toxicity in the Schizothorax Yunnansis and even death. Therefore, unsuitable habitat area for Schizothorax Yunnansis is increased. It can be seen from the results that HABITAT model can assist in ecological impact assessment studies by translating results of hydrological, water quality models into effects on the natural environment and human society.

  10. BIRC3 is a biomarker of mesenchymal habitat of glioblastoma, and a mediator of survival adaptation in hypoxia-driven glioblastoma habitats.

    Science.gov (United States)

    Wang, Dapeng; Berglund, Anders E; Kenchappa, Rajappa S; MacAulay, Robert J; Mulé, James J; Etame, Arnold B

    2017-08-24

    Tumor hypoxia is an established facilitator of survival adaptation and mesenchymal transformation in glioblastoma (GBM). The underlying mechanisms that direct hypoxia-mediated survival in GBM habitats are unclear. We previously identified BIRC3 as a mediator of therapeutic resistance in GBM to standard temozolomide (TMZ) chemotherapy and radiotherapy (RT). Here we report that BIRC3 is a biomarker of the hypoxia-mediated adaptive mesenchymal phenotype of GBM. Specifically, in the TCGA dataset elevated BIRC3 gene expression was identified as a superior and selective biomarker of mesenchymal GBM versus neural, proneural and classical subtypes. Further, BIRC3 protein was highly expressed in the tumor cell niches compared to the perivascular niche across multiple regions in GBM patient tissue microarrays. Tumor hypoxia was found to mechanistically induce BIRC3 expression through HIF1-alpha signaling in GBM cells. Moreover, in human GBM xenografts robust BIRC3 expression was noted within hypoxic regions of the tumor. Importantly, selective inhibition of BIRC3 reversed therapeutic resistance of GBM cells to RT in hypoxic microenvironments through enhanced activation of caspases. Collectively, we have uncovered a novel role for BIRC3 as a targetable biomarker and mediator of hypoxia-driven habitats in GBM.

  11. Subacromial bursitis with rice bodies : a case report

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Joo, Kyung Bin; Park, Dong Woo; Lee, Hak Soo; Oh, Jae Cheon; Lee, Yong Joo; Lee, Won Mi

    1998-01-01

    Multiple rice bodies in joints or bursae are rarely encountered in patients with rheumatoid arthritis. We report the radiologic findings of massive subacromial bursitis with innumerable rice bodies on the right shoulder of a 38-year-old man with rheumatoid arthritis. Subacromial bursography showed markedly distended bursa with multiple nodular filling defects. Precontrast CT scanning revealed well-demarcated hypodense lesion without calcification in subacromio-subdeltoid bursa. Multiple rice bodies showed slightly high signal intensity of T1WI and T2WI, and no enhancement after gadolinium injection. (author). 7 refs., 4 figs

  12. Subacromial bursitis with rice bodies : a case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Joo, Kyung Bin; Park, Dong Woo; Lee, Hak Soo; Oh, Jae Cheon; Lee, Yong Joo; Lee, Won Mi [Hanyang Univ., Seoul (Korea, Republic of). Coll. of Medicine

    1998-04-01

    Multiple rice bodies in joints or bursae are rarely encountered in patients with rheumatoid arthritis. We report the radiologic findings of massive subacromial bursitis with innumerable rice bodies on the right shoulder of a 38-year-old man with rheumatoid arthritis. Subacromial bursography showed markedly distended bursa with multiple nodular filling defects. Precontrast CT scanning revealed well-demarcated hypodense lesion without calcification in subacromio-subdeltoid bursa. Multiple rice bodies showed slightly high signal intensity of T1WI and T2WI, and no enhancement after gadolinium injection. (author). 7 refs., 4 figs.

  13. Multiple stress response of lowland stream benthic macroinvertebrates is dependent on habitat type

    DEFF Research Database (Denmark)

    Graeber, Daniel; Jensen, Tinna M.; Rasmussen, Jes

    2017-01-01

    Worldwide, lowland stream ecosystems are exposed to multiple anthropogenic stress due to the combination of water scarcity, eutrophication and fine sedimentation. The understanding of the effects of such multiple stress on stream benthic macroinvertebrates has been growing in the recent years...

  14. Habitat segregation in fish assemblages

    OpenAIRE

    Ibbotson, A.T.

    1990-01-01

    The segregation of habitats of fish assemblages found in the chalk streams and rivers within the Wessex, South West and Southern Water Authority boundaries in southern England have been examined. Habitat segregation is the most frequent type of resource partitioning in natural communities. The habitat of individual fish species will be defined in order to determine the following: (1) the requirements of each species in terms of depth, current velocity, substrate, cover etc.; (2) identify the ...

  15. Hydrologic characteristics of freshwater mussel habitat: novel insights from modeled flows

    Science.gov (United States)

    Drew, C. Ashton; Eddy, Michele; Kwak, Thomas J.; Cope, W. Gregory; Augspurger, Tom

    2018-01-01

    The ability to model freshwater stream habitat and species distributions is limited by the spatially sparse flow data available from long-term gauging stations. Flow data beyond the immediate vicinity of gauging stations would enhance our ability to explore and characterize hydrologic habitat suitability. The southeastern USA supports high aquatic biodiversity, but threats, such as landuse alteration, climate change, conflicting water-resource demands, and pollution, have led to the imperilment and legal protection of many species. The ability to distinguish suitable from unsuitable habitat conditions, including hydrologic suitability, is a key criterion for successful conservation and restoration of aquatic species. We used the example of the critically endangered Tar River Spinymussel (Parvaspina steinstansana) and associated species to demonstrate the value of modeled flow data (WaterFALL™) to generate novel insights into population structure and testable hypotheses regarding hydrologic suitability. With ordination models, we: 1) identified all catchments with potentially suitable hydrology, 2) identified 2 distinct hydrologic environments occupied by the Tar River Spinymussel, and 3) estimated greater hydrological habitat niche breadth of assumed surrogate species associates at the catchment scale. Our findings provide the first demonstrated application of complete, continuous, regional modeled hydrologic data to freshwater mussel distribution and management. This research highlights the utility of modeling and data-mining methods to facilitate further exploration and application of such modeled environmental conditions to inform aquatic species management. We conclude that such an approach can support landscape-scale management decisions that require spatial information at fine resolution (e.g., enhanced National Hydrology Dataset catchments) and broad extent (e.g., multiple river basins).

  16. Critical Habitat :: NOAA Fisheries

    Science.gov (United States)

    occupied by the species at the time of listing, if they contain physical or biological features essential essential for conservation. Critical Habitat Maps NOTE: The critical habitat maps provided here are for Data Leatherback Turtle (U.S. West Coast) » Biological Report » Economic Report 2012 77 FR 4170 Go to

  17. Watershed Evaluation and Habitat Response to Recent Storms : Annual Report for 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Jonathan J.; Huntington, Charles W.

    2000-02-01

    evaluated and the methods used to evaluate them. Watershed responses and attributes evaluated include mass failures, historic soil loss, the integration of roads with the drainage network, estimated flood recurrence intervals, and headwater channel morphology. Habitat attributes evaluated include large woody debris, pool frequency and depth, substrate conditions, and bank stability. Multiple analyses of habitat data in the Tucannon and Wenaha subbasins remain to be completed due to difficulties stemming from data characteristics that indicated that some of the pre-existing data may have be of questionable accuracy. Diagnostic attributes of the questionable data included a change in monitoring protocols during the pre- to post-flood analysis period, physically implausible temporal trends in some habitat attributes at some sites, and conflicting results for the same attribute at the same locations from different data sources. Since unreliable data can lead to spurious results, criteria were developed to screen the data for analysis, as described in this report. It is anticipated that while the data screening will prevent spurious results, it will also truncate some of the planned analysis in the Tucannon and Wenaha systems.

  18. Watershed evaluation and habitat response to recent storms; annual report for 1999

    International Nuclear Information System (INIS)

    Rhodes, Jonathan J.; Huntington, Charles W.

    2000-01-01

    evaluated and the methods used to evaluate them. Watershed responses and attributes evaluated include mass failures, historic soil loss, the integration of roads with the drainage network, estimated flood recurrence intervals, and headwater channel morphology. Habitat attributes evaluated include large woody debris, pool frequency and depth, substrate conditions, and bank stability. Multiple analyses of habitat data in the Tucannon and Wenaha subbasins remain to be completed due to difficulties stemming from data characteristics that indicated that some of the pre-existing data may have be of questionable accuracy. Diagnostic attributes of the questionable data included a change in monitoring protocols during the pre- to post-flood analysis period, physically implausible temporal trends in some habitat attributes at some sites, and conflicting results for the same attribute at the same locations from different data sources. Since unreliable data can lead to spurious results, criteria were developed to screen the data for analysis, as described in this report. It is anticipated that while the data screening will prevent spurious results, it will also truncate some of the planned analysis in the Tucannon and Wenaha systems

  19. Riparian Habitat - Product of 2 riparian habitat workshops

    Data.gov (United States)

    California Natural Resource Agency — In two riparian habitat workshops held between 2001 and 2002, scientists and managers identified the need for determining the scope of a consistent and acceptable...

  20. Habitat stability, predation risk and 'memory syndromes'.

    Science.gov (United States)

    Dalesman, S; Rendle, A; Dall, S R X

    2015-05-27

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits ('memory syndrome') related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population.

  1. NEPR Benthic Habitat Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This benthic habitat map was created from a semi-automated habitat mapping process, using a combination of bathymetry, satellite imagery, aerial imagery and...

  2. Community structure of age-0 fishes in paired mainstem and created shallow-water habitats in the Lower Missouri River

    Science.gov (United States)

    Starks, Trevor A.; Long, James M.; Dzialowski, Andrew R.

    2016-01-01

    Anthropogenic alterations to aquatic ecosystems have greatly reduced and homogenized riverine habitat, especially those used by larval and juvenile fishes. Creation of shallow-water habitats is used as a restoration technique in response to altered conditions in several studies globally, but only recently in the USA. In the summer of 2012, the U.S. Army Corps of Engineers sampled larval and juvenile fishes at six paired sites (mainstem and constructed chute shallow-water habitats) along a section of the Missouri River between Rulo, NE and St. Louis, MO, USA. From those samples, we enumerated and identified a total of 7622 fishes representing 12 families. Community responses of fishes to created shallow-water habitats were assessed by comparisons of species richness and diversity measures between paired sites and among sampling events. Shannon entropy measures were transformed, and gamma diversity (total diversity) was partitioned into two components, alpha (within community) and beta (between community) diversity using a multiplicative decomposition method. Mantel test results suggest site location, time of sampling event and habitat type were drivers of larval and juvenile community structure. Paired t-test results indicated little to no differences in beta diversity between habitat types; however, chute habitats had significantly higher alpha and gamma diversity as well as increased abundances of Asian carp larvae when compared with mainstem shallow-water habitat. Our results not only show the importance of created shallow-water habitat in promoting stream fish diversity but also highlight the role space and time may play in future restoration and management efforts. 

  3. Body: presence and transience

    Directory of Open Access Journals (Sweden)

    Marcelo Andrés Comandú

    2012-11-01

    Full Text Available We conceive presence as an event that takes place in the body and among the bodies. In the work of making themselves present, the performer creates a territory-body of habitability/inter-penetration of states, actions, thoughts, voices, sonorities; a body-space with multiple trajectories, withdrawn and projected from its own existence/subjectivity, extended in other matters and exposed to other odies/subjects/objects. We regard the performer’s body as an intense, outstretched, and expanded body. We deal with these categories from the standpoint of various practices and conceptualizations of body and event, in order to reflect on the constitution/construction of presence in performance.

  4. Assessing the link between coastal urbanization and the quality of nekton habitat in mangrove tidal tributaries

    Science.gov (United States)

    Krebs, Justin M.; Bell, Susan S.; McIvor, Carole C.

    2014-01-01

    To assess the potential influence of coastal development on habitat quality for estuarine nekton, we characterized body condition and reproduction for common nekton from tidal tributaries classified as undeveloped, industrial, urban or man-made (i.e., mosquito-control ditches). We then evaluated these metrics of nekton performance, along with several abundance-based metrics and community structure from a companion paper (Krebs et al. 2013) to determine which metrics best reflected variation in land-use and in-stream habitat among tributaries. Body condition was not significantly different among undeveloped, industrial, and man-made tidal tributaries for six of nine taxa; however, three of those taxa were in significantly better condition in urban compared to undeveloped tributaries. Palaemonetes shrimp were the only taxon in significantly poorer condition in urban tributaries. For Poecilia latipinna, there was no difference in body condition (length–weight) between undeveloped and urban tributaries, but energetic condition was significantly better in urban tributaries. Reproductive output was reduced for both P. latipinna (i.e., fecundity) and grass shrimp (i.e., very low densities, few ovigerous females) in urban tributaries; however a tradeoff between fecundity and offspring size confounded meaningful interpretation of reproduction among land-use classes for P. latipinna. Reproductive allotment by P. latipinna did not differ significantly among land-use classes. Canonical correspondence analysis differentiated urban and non-urban tributaries based on greater impervious surface, less natural mangrove shoreline, higher frequency of hypoxia and lower, more variable salinities in urban tributaries. These characteristics explained 36 % of the variation in nekton performance, including high densities of poeciliid fishes, greater energetic condition of sailfin mollies, and low densities of several common nekton and economically important taxa from urban tributaries

  5. Can animal habitat use patterns influence their vulnerability to extreme climate events? An estuarine sportfish case study.

    Science.gov (United States)

    Boucek, Ross E; Heithaus, Michael R; Santos, Rolando; Stevens, Philip; Rehage, Jennifer S

    2017-10-01

    Global climate forecasts predict changes in the frequency and intensity of extreme climate events (ECEs). The capacity for specific habitat patches within a landscape to modulate stressors from extreme climate events, and animal distribution throughout habitat matrices during events, could influence the degree of population level effects following the passage of ECEs. Here, we ask (i) does the intensity of stressors of an ECE vary across a landscape? And (ii) Do habitat use patterns of a mobile species influence their vulnerability to ECEs? Specifically, we measured how extreme cold spells might interact with temporal variability in habitat use to affect populations of a tropical, estuarine-dependent large-bodied fish Common Snook, within Everglades National Park estuaries (FL US). We examined temperature variation across the estuary during cold disturbances with different degrees of severity, including an extreme cold spell. Second, we quantified Snook distribution patterns when the passage of ECEs is most likely to occur from 2012 to 2016 using passive acoustic tracking. Our results revealed spatial heterogeneity in the intensity of temperature declines during cold disturbances, with some habitats being consistently 3-5°C colder than others. Surprisingly, Snook distributions during periods of greatest risk to experience an extreme cold event varied among years. During the winters of 2013-2014 and 2014-2015 a greater proportion of Snook occurred in the colder habitats, while the winters of 2012-2013 and 2015-2016 featured more Snook observed in the warmest habitats. This study shows that Snook habitat use patterns could influence vulnerability to extreme cold events, however, whether Snook habitat use increases or decreases their vulnerability to disturbance depends on the year, creating temporally dynamic vulnerability. Faunal global change research should address the spatially explicit nature of extreme climate events and animal habitat use patterns to identify

  6. Landsat ETM+ and SRTM Data Provide Near Real-Time Monitoring of Chimpanzee (Pan troglodytes Habitats in Africa

    Directory of Open Access Journals (Sweden)

    Samuel M. Jantz

    2016-05-01

    Full Text Available All four chimpanzee sub-species populations are declining due to multiple factors including human-caused habitat loss. Effective conservation efforts are therefore needed to ensure their long-term survival. Habitat suitability models serve as useful tools for conservation planning by depicting relative environmental suitability in geographic space over time. Previous studies mapping chimpanzee habitat suitability have been limited to small regions or coarse spatial and temporal resolutions. Here, we used Random Forests regression to downscale a coarse resolution habitat suitability calibration dataset to estimate habitat suitability over the entire chimpanzee range at 30-m resolution. Our model predicted habitat suitability well with an r2 of 0.82 (±0.002 based on 50-fold cross validation where 75% of the data was used for model calibration and 25% for model testing; however, there was considerable variation in the predictive capability among the four sub-species modeled individually. We tested the influence of several variables derived from Landsat Enhanced Thematic Mapper Plus (ETM+ that included metrics of forest canopy and structure for four three-year time periods between 2000 and 2012. Elevation, Landsat ETM+ band 5 and Landsat derived canopy cover were the strongest predictors; highly suitable areas were associated with dense tree canopy cover for all but the Nigeria-Cameroon and Central Chimpanzee sub-species. Because the models were sensitive to such temporally based predictors, our results are the first to highlight the value of integrating continuously updated variables derived from satellite remote sensing into temporally dynamic habitat suitability models to support  near real-time monitoring of habitat status and decision support systems.

  7. Evaluating methods to establish habitat suitability criteria: A case study in the upper Delaware River Basin, USA

    Science.gov (United States)

    Galbraith, Heather S.; Blakeslee, Carrie J.; Cole, Jeffrey C.; Talbert, Colin; Maloney, Kelly O.

    2016-01-01

    Defining habitat suitability criteria (HSC) of aquatic biota can be a key component to environmental flow science. HSC can be developed through numerous methods; however, few studies have evaluated the consistency of HSC developed by different methodologies. We directly compared HSC for depth and velocity developed by the Delphi method (expert opinion) and by two primary literature meta-analyses (literature-derived range and interquartile range) to assess whether these independent methods produce analogous criteria for multiple species (rainbow trout, brown trout, American shad, and shallow fast guild) and life stages. We further evaluated how these two independently developed HSC affect calculations of habitat availability under three alternative reservoir management scenarios in the upper Delaware River at a mesohabitat (main channel, stream margins, and flood plain), reach, and basin scale. In general, literature-derived HSC fell within the range of the Delphi HSC, with highest congruence for velocity habitat. Habitat area predicted using the Delphi HSC fell between the habitat area predicted using two literature-derived HSC, both at the basin and the site scale. Predicted habitat increased in shallow regions (stream margins and flood plain) using literature-derived HSC while Delphi-derived HSC predicted increased channel habitat. HSC generally favoured the same reservoir management scenario; however, no favoured reservoir management scenario was the most common outcome when applying the literature range HSC. The differences found in this study lend insight into how different methodologies can shape HSC and their consequences for predicted habitat and water management decisions. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  8. The relationship between habitat complexity and nursery provision for an estuarine-dependent fish species in a permanently open South African Estuary

    Science.gov (United States)

    Leslie, Timothy; James, Nicola C.; Potts, Warren M.; Rajkaran, Anusha

    2017-11-01

    Estuarine-dependent marine fish species rely on shallow, sheltered and food rich habitats for protection from predators, growth and ultimately recruitment to adult populations. Hence, habitats within estuaries function as critical nursery areas for an abundance of fish species. However, these habitats vary in the degree of nursery function they provide and few studies have quantitatively assessed the relative nursery value of different habitat types within estuaries, particularly in the context of habitat complexity. This study aimed to assess the nursery value of the dominant vegetated habitats, namely the submergent Zostera capensis (Setch.) (seagrass) beds and emergent Spartina maritima (Curtis) Fernald (salt marsh) beds in the Bushmans Estuary, South Africa. Biomass and stem density were sampled seasonally in order to gain insight into the vegetation dynamics of seagrass and salt marsh beds. Aerial cover, canopy height and underwater camera imagery were used to develop multiple complexity indices for prioritizing habitat complexity. The relatively consistent results of the dimensionless indices (interstitial space indices and fractal geometry) suggest that Z. capensis exhibits an overall greater degree of complexity than S. maritima, and hence it can be expected that fish abundance is likely to be higher in Z. capensis beds than in S. maritima habitats. Underwater video cameras were deployed in seagrass, salt marsh and sand flat habitats to assess the relative abundance and behaviour of the estuarine-dependent sparid Rhabosargus holubi (Steindachner 1881) in different habitats. The relative abundance of R. holubi was significantly higher in Z. capensis seagrass than S. maritima salt marsh and sand flats, whilst the behaviour of R. holubi indicated a high degree of habitat use in structured habitats (both Z. capensis and S. martima) and a low degree of habitat use in unstructured sand flat habitats.

  9. Consequences of severe habitat fragmentation on density, genetics, and spatial capture-recapture analysis of a small bear population.

    Directory of Open Access Journals (Sweden)

    Sean M Murphy

    Full Text Available Loss and fragmentation of natural habitats caused by human land uses have subdivided several formerly contiguous large carnivore populations into multiple small and often isolated subpopulations, which can reduce genetic variation and lead to precipitous population declines. Substantial habitat loss and fragmentation from urban development and agriculture expansion relegated the Highlands-Glades subpopulation (HGS of Florida, USA, black bears (Ursus americanus floridanus to prolonged isolation; increasing human land development is projected to cause ≥ 50% loss of remaining natural habitats occupied by the HGS in coming decades. We conducted a noninvasive genetic spatial capture-recapture study to quantitatively describe the degree of contemporary habitat fragmentation and investigate the consequences of habitat fragmentation on population density and genetics of the HGS. Remaining natural habitats sustaining the HGS were significantly more fragmented and patchier than those supporting Florida's largest black bear subpopulation. Genetic diversity was low (AR = 3.57; HE = 0.49 and effective population size was small (NE = 25 bears, both of which remained unchanged over a period spanning one bear generation despite evidence of some immigration. Subpopulation density (0.054 bear/km2 was among the lowest reported for black bears, was significantly female-biased, and corresponded to a subpopulation size of 98 bears in available habitat. Conserving remaining natural habitats in the area occupied by the small, genetically depauperate HGS, possibly through conservation easements and government land acquisition, is likely the most important immediate step to ensuring continued persistence of bears in this area. Our study also provides evidence that preferentially placing detectors (e.g., hair traps or cameras primarily in quality habitat across fragmented landscapes poses a challenge to estimating density-habitat covariate relationships using spatial

  10. Linking movement and reproductive history of brook trout to assess habitat connectivity in a heterogeneous stream network

    Science.gov (United States)

    Yoichiro Kanno; Benjamin H. Letcher; Jason A. Coombs; Keith H. Nislow; Andrew R. Whiteley

    2014-01-01

    Defining functional connectivity between habitats in spatially heterogeneous landscapes is a particular challenge for small-bodied aquatic species. Traditional approaches (e.g. mark-recapture studies) preclude an assessment of animal movement over the life cycle (birth to reproduction), and movement of individuals may not represent the degree of gene movement for...

  11. Habitat Evaluation Procedures (HEP) Report : Hellsgate Project, 1999-2000 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Matthew

    2000-05-01

    A Habitat Evaluation Procedure (HEP) study was conducted on lands acquired and/or managed (4,568 acres total) by the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate project) to mitigate some of the losses associated with the original construction and operation of Grand Coulee Dam and inundation of habitats behind the dams. Three separate properties, totaling 2,224 acres were purchased in 1998. One property composed of two separate parcels, mostly grassland lies southeast of the town of Nespelem in Okanogan County (770 acres) and was formerly called the Hinman property. The former Hinman property lies within an area the Tribes have set aside for the protection and preservation of the sharp-tailed grouse (Agency Butte unit). This special management area minus the Hinman acquisition contains 2,388 acres in a long-term lease with the Tribes. The second property lies just south of the Silver Creek turnoff (Ferry County) and is bisected by the Hellsgate Road (part of the Friedlander unit). This parcel contains 60 acres of riparian and conifer forest cover. The third property (now named the Sand Hills unit) acquired for mitigation (1,394 acres) lies within the Hellsgate Reserve in Ferry County. This new acquisition links two existing mitigation parcels (the old Sand Hills parcels and the Lundstrum Flat parcel, all former Kuehne purchases) together forming one large unit. HEP team members included individuals from the Colville Confederated Tribes Fish and Wildlife Department (CTCR), Washington Department of Fish and Wildlife (WDFW), and Bureau of Land Management (BLM). The HEP team conducted a baseline habitat survey using the following HEP species models: mule deer (Odocoileus hemionus), mink (Mustela vison), downy woodpecker (Picoides pubescens), bobcat (Lynx rufus), yellow warbler (Dendroica petechia), and sharp-tailed grouse (Tympanuchus phasianellus columbianus). HEP analysis and results are discussed within the body of the text. The cover types

  12. Deep Space Habitat Concept Demonstrator

    Science.gov (United States)

    Bookout, Paul S.; Smitherman, David

    2015-01-01

    This project will develop, integrate, test, and evaluate Habitation Systems that will be utilized as technology testbeds and will advance NASA's understanding of alternative deep space mission architectures, requirements, and operations concepts. Rapid prototyping and existing hardware will be utilized to develop full-scale habitat demonstrators. FY 2014 focused on the development of a large volume Space Launch System (SLS) class habitat (Skylab Gen 2) based on the SLS hydrogen tank components. Similar to the original Skylab, a tank section of the SLS rocket can be outfitted with a deep space habitat configuration and launched as a payload on an SLS rocket. This concept can be used to support extended stay at the Lunar Distant Retrograde Orbit to support the Asteroid Retrieval Mission and provide a habitat suitable for human missions to Mars.

  13. Salmon River Habitat Enhancement, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Richard C.

    1986-04-01

    This report has four volumes: a Tribal project annual report (Part 1) and three reports (Parts 2, 3, and 4) prepared for the Tribes by their engineering subcontractor. The Tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved habitat and fish inventories in Bear Valley Creek, Valley County, Idaho that will be used to evaluate responses to ongoing habitat enhancement. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur within the traditional Treaty (Fort Bridger Treaty of 1868) fishing areas of the Shoshone-Bannock Tribes, Fort Hall Reservation, Idaho. Subproject III involved habitat and fish inventories (pretreatment) and habitat problem identification on the Yankee Fork of the Salmon River (including Jordan Creek). Subproject IV during 1985 involved habitat problem identification in the East Fork of the Salmon River and habitat and fish inventories (pretreatment) in Herd Creek, a tributary to the East Fork.

  14. Characteristics of malaria vector breeding habitats in Sri Lanka: relevance for environmental management

    DEFF Research Database (Denmark)

    Hoek, Wim van der; Amerasinghe, F P; Konradsen, F

    1998-01-01

    , potential secondary vectors, were characterized by site, exposure to sunlight, substratum, turbidity of the water, presence of vegetation, and presence of fauna. Availability of pools of stagnant water in the stream near the village and along the edge of the village tank was highly predictive for presence......In and around a village in the Anuradhapura District of Sri Lanka anopheline larvae were sampled from July 1994 to April 1996 in all surface water bodies. Samples positive for Anopheles culicifacies, the established vector of malaria in Sri Lanka, and for An. barbirostris, An. vagus, and An. varuna...... clear water pools, was able to exploit habitats that were shaded and contained turbid water. Environmental management interventions to control An. culicifacies breeding have to take into account that the secondary vectors of malaria exploit other habitats and would not be affected by the interventions....

  15. Scaling local species-habitat relations to the larger landscape with a hierarchical spatial count model

    Science.gov (United States)

    Thogmartin, W.E.; Knutson, M.G.

    2007-01-01

    Much of what is known about avian species-habitat relations has been derived from studies of birds at local scales. It is entirely unclear whether the relations observed at these scales translate to the larger landscape in a predictable linear fashion. We derived habitat models and mapped predicted abundances for three forest bird species of eastern North America using bird counts, environmental variables, and hierarchical models applied at three spatial scales. Our purpose was to understand habitat associations at multiple spatial scales and create predictive abundance maps for purposes of conservation planning at a landscape scale given the constraint that the variables used in this exercise were derived from local-level studies. Our models indicated a substantial influence of landscape context for all species, many of which were counter to reported associations at finer spatial extents. We found land cover composition provided the greatest contribution to the relative explained variance in counts for all three species; spatial structure was second in importance. No single spatial scale dominated any model, indicating that these species are responding to factors at multiple spatial scales. For purposes of conservation planning, areas of predicted high abundance should be investigated to evaluate the conservation potential of the landscape in their general vicinity. In addition, the models and spatial patterns of abundance among species suggest locations where conservation actions may benefit more than one species. ?? 2006 Springer Science+Business Media B.V.

  16. NORTHWOODS Wildlife Habitat Data Base

    Science.gov (United States)

    Mark D. Nelson; Janine M. Benyus; Richard R. Buech

    1992-01-01

    Wildlife habitat data from seven Great Lakes National Forests were combined into a wildlife-habitat matrix named NORTHWOODS. Several electronic file formats of NORTHWOODS data base and documentation are available on floppy disks for microcomputers.

  17. Habitat Demonstration Unit Project Leadership and Management Strategies

    Science.gov (United States)

    Kennedy, Kriss J.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and

  18. 50 CFR 17.94 - Critical habitats.

    Science.gov (United States)

    2010-10-01

    ... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the... physical constituent elements within the defined area of Critical Habitat that are essential to the... 50 Wildlife and Fisheries 2 2010-10-01 2010-10-01 false Critical habitats. 17.94 Section 17.94...

  19. Differential population responses of native and alien rodents to an invasive predator, habitat alteration and plant masting.

    Science.gov (United States)

    Fukasawa, Keita; Miyashita, Tadashi; Hashimoto, Takuma; Tatara, Masaya; Abe, Shintaro

    2013-12-22

    Invasive species and anthropogenic habitat alteration are major drivers of biodiversity loss. When multiple invasive species occupy different trophic levels, removing an invasive predator might cause unexpected outcomes owing to complex interactions among native and non-native prey. Moreover, external factors such as habitat alteration and resource availability can affect such dynamics. We hypothesized that native and non-native prey respond differently to an invasive predator, habitat alteration and bottom-up effects. To test the hypothesis, we used Bayesian state-space modelling to analyse 8-year data on the spatio-temporal patterns of two endemic rat species and the non-native black rat in response to the continual removal of the invasive small Indian mongoose on Amami Island, Japan. Despite low reproductive potentials, the endemic rats recovered better after mongoose removal than did the black rat. The endemic species appeared to be vulnerable to predation by mongooses, whose eradication increased the abundances of the endemic rats, but not of the black rat. Habitat alteration increased the black rat's carrying capacity, but decreased those of the endemic species. We propose that spatio-temporal monitoring data from eradication programmes will clarify the underlying ecological impacts of land-use change and invasive species, and will be useful for future habitat management.

  20. Habitat continuity and stepping-stone oceanographic distances explain population genetic connectivity of the brown alga Cystoseira amentacea.

    Science.gov (United States)

    Buonomo, Roberto; Assis, Jorge; Fernandes, Francisco; Engelen, Aschwin H; Airoldi, Laura; Serrão, Ester A

    2017-02-01

    Effective predictive and management approaches for species occurring in a metapopulation structure require good understanding of interpopulation connectivity. In this study, we ask whether population genetic structure of marine species with fragmented distributions can be predicted by stepping-stone oceanographic transport and habitat continuity, using as model an ecosystem-structuring brown alga, Cystoseira amentacea var. stricta. To answer this question, we analysed the genetic structure and estimated the connectivity of populations along discontinuous rocky habitat patches in southern Italy, using microsatellite markers at multiple scales. In addition, we modelled the effect of rocky habitat continuity and ocean circulation on gene flow by simulating Lagrangian particle dispersal based on ocean surface currents allowing multigenerational stepping-stone dynamics. Populations were highly differentiated, at scales from few metres up to thousands of kilometres. The best possible model fit to explain the genetic results combined current direction, rocky habitat extension and distance along the coast among rocky sites. We conclude that a combination of variable suitable habitat and oceanographic transport is a useful predictor of genetic structure. This relationship provides insight into the mechanisms of dispersal and the role of life-history traits. Our results highlight the importance of spatially explicit modelling of stepping-stone dynamics and oceanographic directional transport coupled with habitat suitability, to better describe and predict marine population structure and differentiation. This study also suggests the appropriate spatial scales for the conservation, restoration and management of species that are increasingly affected by habitat modifications. © 2016 John Wiley & Sons Ltd.

  1. The areal extent of brown shrimp habitat suitability in Mobile Bay, Alabama, USA: Targeting vegetated habitat restoration

    Science.gov (United States)

    Smith, L.M.; Nestlerode, J.A.; Harwell, L.C.; Bourgeois, P.

    2010-01-01

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability. ?? 2010 Springer Science+Business Media B.V.

  2. Crucial nesting habitat for gunnison sage-grouse: A spatially explicit hierarchical approach

    Science.gov (United States)

    Aldridge, Cameron L.; Saher, D.J.; Childers, T.M.; Stahlnecker, K.E.; Bowen, Z.H.

    2012-01-01

    Gunnison sage-grouse (Centrocercus minimus) is a species of special concern and is currently considered a candidate species under Endangered Species Act. Careful management is therefore required to ensure that suitable habitat is maintained, particularly because much of the species' current distribution is faced with exurban development pressures. We assessed hierarchical nest site selection patterns of Gunnison sage-grouse inhabiting the western portion of the Gunnison Basin, Colorado, USA, at multiple spatial scales, using logistic regression-based resource selection functions. Models were selected using Akaike Information Criterion corrected for small sample sizes (AIC c) and predictive surfaces were generated using model averaged relative probabilities. Landscape-scale factors that had the most influence on nest site selection included the proportion of sagebrush cover >5%, mean productivity, and density of 2 wheel-drive roads. The landscape-scale predictive surface captured 97% of known Gunnison sage-grouse nests within the top 5 of 10 prediction bins, implicating 57% of the basin as crucial nesting habitat. Crucial habitat identified by the landscape model was used to define the extent for patch-scale modeling efforts. Patch-scale variables that had the greatest influence on nest site selection were the proportion of big sagebrush cover >10%, distance to residential development, distance to high volume paved roads, and mean productivity. This model accurately predicted independent nest locations. The unique hierarchical structure of our models more accurately captures the nested nature of habitat selection, and allowed for increased discrimination within larger landscapes of suitable habitat. We extrapolated the landscape-scale model to the entire Gunnison Basin because of conservation concerns for this species. We believe this predictive surface is a valuable tool which can be incorporated into land use and conservation planning as well the assessment of

  3. An Interference-Aware Traffic-Priority-Based Link Scheduling Algorithm for Interference Mitigation in Multiple Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Thien T. T. Le

    2016-12-01

    Full Text Available Currently, wireless body area networks (WBANs are effectively used for health monitoring services. However, in cases where WBANs are densely deployed, interference among WBANs can cause serious degradation of network performance and reliability. Inter-WBAN interference can be reduced by scheduling the communication links of interfering WBANs. In this paper, we propose an interference-aware traffic-priority-based link scheduling (ITLS algorithm to overcome inter-WBAN interference in densely deployed WBANs. First, we model a network with multiple WBANs as an interference graph where node-level interference and traffic priority are taken into account. Second, we formulate link scheduling for multiple WBANs as an optimization model where the objective is to maximize the throughput of the entire network while ensuring the traffic priority of sensor nodes. Finally, we propose the ITLS algorithm for multiple WBANs on the basis of the optimization model. High spatial reuse is also achieved in the proposed ITLS algorithm. The proposed ITLS achieves high spatial reuse while considering traffic priority, packet length, and the number of interfered sensor nodes. Our simulation results show that the proposed ITLS significantly increases spatial reuse and network throughput with lower delay by mitigating inter-WBAN interference.

  4. A Place to Call Home: A Synthesis of Delta Smelt Habitat in the Upper San Francisco Estuary

    Directory of Open Access Journals (Sweden)

    Ted Sommer

    2013-06-01

    Full Text Available We used a combination of published literature and field survey data to synthesize the available information about habitat use by delta smelt Hypomesus transpacificus, a declining native species in the San Francisco Estuary. Delta smelt habitat ranges from San Pablo and Suisun bays to their freshwater tributaries, including the Sacramento and San Joaquin rivers. In recent years, substantial numbers of delta smelt have colonized habitat in Liberty Island, a north Delta area that flooded in 1997. The species has a more upstream distribution during spawning as opposed to juvenile rearing periods. Post-larvae and juveniles tend to have a more downstream distribution during wetter years. Delta smelt are most common in low-salinity habitat (<6 psu with high turbidities (>12 NTU and moderate temperatures (7 °C to 25 °C. They do not appear to have strong substrate preferences, but sandy shoals are important for spawning in other osmerids. The evidence to date suggests that they generally require at least some tidal flow in their habitats. Delta smelt also occur in a wide range of channel sizes, although they seem to be rarer in small channels (<15 m wide. Nonetheless, there is some evidence that open water adjacent to habitats with long water-residence times (e.g. tidal marsh, shoal, low-order channels may be favorable. Other desirable features of delta smelt habitat include high calanoid copepod densities and low levels of submerged aquatic vegetation (SAV and the toxic algae Microcystis. Although enough is known to plan for large-scale pilot habitat projects, these efforts are vulnerable to several factors, most notably climate change, which will change salinity regimes and increase the occurrence of lethal temperatures. We recommend restoration of multiple geographical regions and habitats coupled with extensive monitoring and adaptive management. An overall emphasis on ecosystem processes rather than specific habitat features is also likely to be

  5. Predicting habitat distribution to conserve seagrass threatened by sea level rise

    Science.gov (United States)

    Saunders, M. I.; Baldock, T.; Brown, C. J.; Callaghan, D. P.; Golshani, A.; Hamylton, S.; Hoegh-guldberg, O.; Leon, J. X.; Lovelock, C. E.; Lyons, M. B.; O'Brien, K.; Mumby, P.; Phinn, S. R.; Roelfsema, C. M.

    2013-12-01

    Sea level rise (SLR) over the 21st century will cause significant redistribution of valuable coastal habitats. Seagrasses form extensive and highly productive meadows in shallow coastal seas support high biodiversity, including economically valuable and threatened species. Predictive habitat models can inform local management actions that will be required to conserve seagrass faced with multiple stressors. We developed novel modelling approaches, based on extensive field data sets, to examine the effects of sea level rise and other stressors on two representative seagrass habitats in Australia. First, we modelled interactive effects of SLR, water clarity and adjacent land use on estuarine seagrass meadows in Moreton Bay, Southeast Queensland. The extent of suitable seagrass habitat was predicted to decline by 17% by 2100 due to SLR alone, but losses were predicted to be significantly reduced through improvements in water quality (Fig 1a) and by allowing space for seagrass migration with inundation. The rate of sedimentation in seagrass strongly affected the area of suitable habitat for seagrass in sea level rise scenarios (Fig 1b). Further research to understand spatial, temporal and environmental variability of sediment accretion in seagrass is required. Second, we modelled changes in wave energy distribution due to predicted SLR in a linked coral reef and seagrass ecosystem at Lizard Island, Great Barrier Reef. Scenarios where the water depth over the coral reef deepened due to SLR and minimal reef accretion, resulted in larger waves propagating shoreward, changing the existing hydrodynamic conditions sufficiently to reduce area of suitable habitat for seagrass. In a scenario where accretion of the coral reef was severely compromised (e.g. warming, acidification, overfishing), the probability of the presence of seagrass declined significantly. Management to maintain coral health will therefore also benefit seagrasses subject to SLR in reef environments. Further

  6. The Importance of Maintaining Upland Forest Habitat Surrounding Salamander Breeding Ponds: Case Study of the Eastern Tiger Salamander in New York, USA

    Directory of Open Access Journals (Sweden)

    Valorie Titus

    2014-12-01

    Full Text Available Most amphibians use both wetland and upland habitats, but the extent of their movement in forested habitats is poorly known. We used radiotelemetry to observe the movements of adult and juvenile eastern tiger salamanders over a 4-year period. Females tended to move farther from the breeding ponds into upland forested habitat than males, while the distance a juvenile moved appeared to be related to body size, with the largest individuals moving as far as the adult females. Individuals chose refugia in native pitch pine—oak forested habitat and avoided open fields, roads, and developed areas. We also observed a difference in potential predation pressures in relation to the distance an individual moved from the edge of the pond. Our results support delineating forested wetland buffer zones on a case-by-case basis to reduce the impacts of concentrated predation, to increase and protect the availability of pitch pine—oak forests near the breeding pond, and to focus primarily on the habitat needs of the adult females and larger juveniles, which in turn will encompass habitat needs of adult males and smaller juveniles.

  7. Fuzzy modelling of Atlantic salmon physical habitat

    Science.gov (United States)

    St-Hilaire, André; Mocq, Julien; Cunjak, Richard

    2015-04-01

    Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.

  8. Does learning or instinct shape habitat selection?

    Directory of Open Access Journals (Sweden)

    Scott E Nielsen

    Full Text Available Habitat selection is an important behavioural process widely studied for its population-level effects. Models of habitat selection are, however, often fit without a mechanistic consideration. Here, we investigated whether patterns in habitat selection result from instinct or learning for a population of grizzly bears (Ursus arctos in Alberta, Canada. We found that habitat selection and relatedness were positively correlated in female bears during the fall season, with a trend in the spring, but not during any season for males. This suggests that habitat selection is a learned behaviour because males do not participate in parental care: a genetically predetermined behaviour (instinct would have resulted in habitat selection and relatedness correlations for both sexes. Geographic distance and home range overlap among animals did not alter correlations indicating that dispersal and spatial autocorrelation had little effect on the observed trends. These results suggest that habitat selection in grizzly bears are partly learned from their mothers, which could have implications for the translocation of wildlife to novel environments.

  9. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Costello, Cecily M.; van Manen, Frank T.; Haroldson, Mark A.; Ebinger, Michael R.; Cain, Steven L.; Gunther, Kerry A.; Bjornlie, Daniel D.

    2014-01-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000–2011. We calculated Manly–Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas.

  10. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem.

    Science.gov (United States)

    Costello, Cecily M; van Manen, Frank T; Haroldson, Mark A; Ebinger, Michael R; Cain, Steven L; Gunther, Kerry A; Bjornlie, Daniel D

    2014-05-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August-30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000-2011. We calculated Manly-Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas.

  11. Geographic body size variation in the periodical cicadas Magicicada: implications for life cycle divergence and local adaptation.

    Science.gov (United States)

    Koyama, T; Ito, H; Kakishima, S; Yoshimura, J; Cooley, J R; Simon, C; Sota, T

    2015-06-01

    Seven species in three species groups (Decim, Cassini and Decula) of periodical cicadas (Magicicada) occupy a wide latitudinal range in the eastern United States. To clarify how adult body size, a key trait affecting fitness, varies geographically with climate conditions and life cycle, we analysed the relationships of population mean head width to geographic variables (latitude, longitude, altitude), habitat annual mean temperature (AMT), life cycle and species differences. Within species, body size was larger in females than males and decreased with increasing latitude (and decreasing habitat AMT), following the converse Bergmann's rule. For the pair of recently diverged 13- and 17-year species in each group, 13-year cicadas were equal in size or slightly smaller on average than their 17-year counterparts despite their shorter developmental time. This fact suggests that, under the same climatic conditions, 17-year cicadas have lowered growth rates compared to their 13-years counterparts, allowing 13-year cicadas with faster growth rates to achieve body sizes equivalent to those of their 17-year counterparts at the same locations. However, in the Decim group, which includes two 13-year species, the more southerly, anciently diverged 13-year species (Magicicada tredecim) was characterized by a larger body size than the other, more northerly 13- and 17-year species, suggesting that local adaptation in warmer habitats may ultimately lead to evolution of larger body sizes. Our results demonstrate how geographic clines in body size may be maintained in sister species possessing different life cycles. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  12. Aging, body image, and body shape.

    Science.gov (United States)

    Ferraro, F Richard; Muehlenkamp, Jennifer J; Paintner, Ashley; Wasson, Kayla; Hager, Tracy; Hoverson, Fallon

    2008-10-01

    Participants were 25 older men (M age = 72 years, SD = 10 years) and 27 older women (M age = 71 years, SD = 8 years) who examined multiple line-drawing figures of babies, children, young adults, middle-aged adults, and older adults. Participants picked a number on a Likert-type scale ranging from 1 (very thin) to 9 (very obese) in response to questions including "Which is the most attractive?" and "Which figure would you most like to look like?" They also completed questionnaires about their body image and body shape. In response to the age-specific line drawings (e.g., those depicting older men and older women), older women endorsed thinner figures (e.g., picked smaller numbers) than did men. Likewise, older women reported thinking more about their body shape and appearance than did men and perceived their body image as "a little too big" in comparison with the older men who perceived their body image as "just the right size." However, a breakdown of normal and overweight women in this sample revealed that for some overweight elderly women, obesity could become a satisfactory way of life. Much as with college-aged women, the endorsement of a thinner body image by many of the older adult female participants appeared to persist into late adulthood and suggests that research into body image issues with older adults is relevant and necessary.

  13. Estimating habitat carrying capacity for migrating and wintering waterfowl: Considerations, pitfalls and improvements

    Science.gov (United States)

    Williams, Christopher; Dugger, Bruce D.; Brasher, Michael G.; Coluccy, John M.; Cramer, Dane M.; Eadie, John M.; Gray, Matthew J.; Hagy, Heath M.; Livolsi, Mark; McWilliams, Scott R.; Petrie, Matthew; Soulliere, Gregory J.; Tirpak, John M.; Webb, Elisabeth B.

    2014-01-01

    Population-based habitat conservation planning for migrating and wintering waterfowl in North America is carried out by habitat Joint Venture (JV) initiatives and is based on the premise that food can limit demography (i.e. food limitation hypothesis). Consequently, planners use bioenergetic models to estimate food (energy) availability and population-level energy demands at appropriate spatial and temporal scales, and translate these values into regional habitat objectives. While simple in principle, there are both empirical and theoretical challenges associated with calculating energy supply and demand including: 1) estimating food availability, 2) estimating the energy content of specific foods, 3) extrapolating site-specific estimates of food availability to landscapes for focal species, 4) applicability of estimates from a single species to other species, 5) estimating resting metabolic rate, 6) estimating cost of daily behaviours, and 7) estimating costs of thermoregulation or tissue synthesis. Most models being used are daily ration models (DRMs) whose set of simplifying assumptions are well established and whose use is widely accepted and feasible given the empirical data available to populate such models. However, DRMs do not link habitat objectives to metrics of ultimate ecological importance such as individual body condition or survival, and largely only consider food-producing habitats. Agent-based models (ABMs) provide a possible alternative for creating more biologically realistic models under some conditions; however, ABMs require different types of empirical inputs, many of which have yet to be estimated for key North American waterfowl. Decisions about how JVs can best proceed with habitat conservation would benefit from the use of sensitivity analyses that could identify the empirical and theoretical uncertainties that have the greatest influence on efforts to estimate habitat carrying capacity. Development of ABMs at

  14. Habitat preference of Roan Antelope (Hippotragus equinus ...

    African Journals Online (AJOL)

    Key words: Habitat Preference, Roan Antelope, Seasons. INTRODUCTION. Habitat quality and quantity have been identified as the primary limiting factors that influence animal population dynamics. (Jansen et al., 2001). Habitat influences the presence, abundance, distribution, movement and behavior of game animals.

  15. Movement behaviour of the carabid beetle Pterostichus melanarius in crops and at a habitat interface explains patterns of population redistribution in the field.

    Directory of Open Access Journals (Sweden)

    Bas Allema

    Full Text Available Animals may respond to habitat quality and habitat edges and these responses may affect their distribution between habitats. We studied the movement behaviour of a ground-dwelling generalist predator, the carabid beetle Pterostichus melanarius (Illiger. We performed a mark-recapture experiment in two adjacent habitats; a large plot with oilseed radish (Raphanus sativus and a plot with rye (Secale cereale. We used model selection to identify a minimal model representing the mark-recapture data, and determine whether habitat-specific motility and boundary behaviour affected population redistribution. We determined movement characteristics of P. melanarius in laboratory arenas with the same plant species using video recording. Both the field and arena results showed preference behaviour of P. melanarius at the habitat interface. In the field, significantly more beetles moved from rye to oilseed radish than from radish to rye. In the arena, habitat entry was more frequent into oilseed radish than into rye. In the field, movement was best described by a Fokker-Planck diffusion model that contained preference behaviour at the interface and did not account for habitat specific motility. Likewise, motility calculated from movement data using the Patlak model was not different between habitats in the arena studies. Motility (m2 d-1 calculated from behavioural data resulted in estimates that were similar to those determined in the field. Thus individual behaviour explained population redistribution in the field qualitatively as well as quantitatively. The findings provide a basis for evaluating movement within and across habitats in complex agricultural landscapes with multiple habitats and habitat interfaces.

  16. Linking movement and reproductive history of brook trout to assess habitat connectivity in a heterogeneous stream network

    Science.gov (United States)

    Kanno, Yoichiro; Letcher, Benjamin H.; Coombs, Jason A.; Nislow, Keith H.; Whiteley, Andrew R.

    2013-01-01

    1. Defining functional connectivity between habitats in spatially heterogeneous landscapes is a particular challenge for small-bodied aquatic species. Traditional approaches (e.g. mark–recapture studies) preclude an assessment of animal movement over the life cycle (birth to reproduction), and movement of individuals may not represent the degree of gene movement for fecund species.

  17. Spatial pattern of a fish assemblage in a seasonal tropical wetland: effects of habitat, herbaceous plant biomass, water depth, and distance from species sources

    Directory of Open Access Journals (Sweden)

    Izaias M Fernandes

    Full Text Available The influence of habitat, biomass of herbaceous vegetation, depth and distance from permanent water bodies on the structure of fish assemblages of a seasonal floodplain was evaluated using data collected along 22 transects in an area of 25 km² in the floodplain of Cuiabá River, Pantanal, Brazil. Each transect was sampled for fish using throw traps and gillnets during the flood period of 2006. Multivariate multiple regression analysis and multivariate analysis of covariance indicated that depth was the only variable that affected the structure of the fish assemblage, both for quantitative data (abundance and qualitative data (presence-absence. Species such as Neofundulus parvipinnis and Laetacara dorsigera were more abundant in shallower sites (below 25 cm, while Serrasalmus maculatus and Metynnis mola were found mostly in the deepest areas (over 55 cm. However, species such as Hoplias malabaricus and Hoplerythrinus unitaeniatus occurred at all sampled depths. Although the distribution of most species was restricted to a few sites, there was a positive relationship between species richness and depth of the water body. Surprisingly, the replacement of native vegetation by exotic pasture did not affect the fish assemblage in the area, at the probability level considered.

  18. Habitat-specific population growth of a farmland bird.

    Directory of Open Access Journals (Sweden)

    Debora Arlt

    Full Text Available BACKGROUND: To assess population persistence of species living in heterogeneous landscapes, the effects of habitat on reproduction and survival have to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: We used a matrix population model to estimate habitat-specific population growth rates for a population of northern wheatears Oenanthe oenanthe breeding in farmland consisting of a mosaic of distinct habitat (land use types. Based on extensive long-term data on reproduction and survival, habitats characterised by tall field layers (spring- and autumn-sown crop fields, ungrazed grasslands displayed negative stochastic population growth rates (log lambda(s: -0.332, -0.429, -0.168, respectively, that were markedly lower than growth rates of habitats characterised by permanently short field layers (pastures grazed by cattle or horses, and farmyards, log lambda(s: -0.056, +0.081, -0.059. Although habitats differed with respect to reproductive performance, differences in habitat-specific population growth were largely due to differences in adult and first-year survival rates, as shown by a life table response experiment (LTRE. CONCLUSIONS/SIGNIFICANCE: Our results show that estimation of survival rates is important for realistic assessments of habitat quality. Results also indicate that grazed grasslands and farmyards may act as source habitats, whereas crop fields and ungrazed grasslands with tall field layers may act as sink habitats. We suggest that the strong decline of northern wheatears in Swedish farmland may be linked to the corresponding observed loss of high quality breeding habitat, i.e. grazed semi-natural grasslands.

  19. Habitat engineering by the invasive zebra mussel Dreissena polymorpha (Pallas) in a boreal coastal lagoon: impact on biodiversity

    Science.gov (United States)

    Zaiko, Anastasija; Daunys, Darius; Olenin, Sergej

    2009-03-01

    Habitat engineering role of the invasive zebra mussel Dreissena polymorpha (Pallas) was studied in the Curonian lagoon, a shallow water body in the SE Baltic. Impacts of live zebra mussel clumps and its shell deposits on benthic biodiversity were differentiated and referred to unmodified (bare) sediments. Zebra mussel bed was distinguished from other habitat types by higher benthic invertebrate biomass, abundance, and species richness. The impact of live mussels on biodiversity was more pronounced than the effect of shell deposits. The structure of macrofaunal community in the habitats with >103 g/m2 of shell deposits devoid of live mussels was similar to that found within the zebra mussel bed. There was a continuous shift in species composition and abundance along the gradient ‘bare sediments—shell deposits—zebra mussel bed’. The engineering impact of zebra mussel on the benthic community became apparent both in individual patches and landscape-level analyses.

  20. Teaching animal habitat selection using wildlife tracking equipment

    Science.gov (United States)

    Laskowski, Jessica; Gillespie, Caitlyn R.; Corral, Lucia; Oden, Amy; Fricke, Kent A.; Fontaine, Joseph J.

    2016-01-01

    We present a hands-on outdoor activity coupled with classroom discussion to teach students about wildlife habitat selection, the process by which animals choose where to live. By selecting locations or habitats with many benefits (e.g., food, shelter, mates) and few costs (e.g., predators), animals improve their ability to survive and reproduce. Biologists track animal movement using radio telemetry technology to study habitat selection so they can better provide species with habitats that promote population growth. We present a curriculum in which students locate “animals” (transmitters) using radio telemetry equipment and apply math skills (use of fractions and percentages) to assess their “animal's” habitat selection by comparing the availability of habitat types with the proportion of “animals” they find in each habitat type.

  1. Creating complex habitats for restoration and reconciliation

    NARCIS (Netherlands)

    Loke, L.H.L.; Ladle, R.J.; Bouma, T.J.; Todd, P.A.

    2015-01-01

    Simplification of natural habitats has become a major conservation challenge and there is a growing consensus that incorporating and enhancing habitat complexity is likely to be critical for future restoration efforts. Habitat complexity is often ascribed an important role in controlling species

  2. Elevational variation in body-temperature response to immune challenge in a lizard

    Directory of Open Access Journals (Sweden)

    Francisco Javier Zamora-Camacho

    2016-04-01

    Full Text Available Immunocompetence benefits animal fitness by combating pathogens, but also entails some costs. One of its main components is fever, which in ectotherms involves two main types of costs: energy expenditure and predation risk. Whenever those costs of fever outweigh its benefits, ectotherms are expected not to develop fever, or even to show hypothermia, reducing costs of thermoregulation and diverting the energy saved to other components of the immune system. Environmental thermal quality, and therefore the thermoregulation cost/benefit balance, varies geographically. Hence, we hypothesize that, in alpine habitats, immune-challenged ectotherms should show no thermal response, given that (1 hypothermia would be very costly, as the temporal window for reproduction is extremely small, and (2 fever would have a prohibitive cost, as heat acquisition is limited in such habitat. However, in temperate habitats, immune-challenged ectotherms might show a febrile response, due to lower cost/benefit balance as a consequence of a more suitable thermal environment. We tested this hypothesis in Psammodromus algirus lizards from Sierra Nevada (SE Spain, by testing body temperature preferred by alpine and non-alpine lizards, before and after activating their immune system with a typical innocuous pyrogen. Surprisingly, non-alpine lizards responded to immune challenge by decreasing preferential body-temperature, presumably allowing them to save energy and reduce exposure to predators. On the contrary, as predicted, immune-challenged alpine lizards maintained their body-temperature preferences. These results match with increased costs of no thermoregulation with elevation, due to the reduced window of time for reproduction in alpine environment.

  3. Extinction Debt and Colonizer Credit on a Habitat Perturbed Fishing Bank.

    Science.gov (United States)

    Duplisea, Daniel E; Frisk, Michael G; Trenkel, Verena M

    2016-01-01

    Temporal changes in occupancy of the Georges Bank (NE USA) fish and invertebrate community were examined and interpreted in the context of systems ecological theory of extinction debt (EDT). EDT posits that in a closed system with a mix of competitor and colonizer species and experiencing habitat fragmentation and loss, the competitor species will show a gradual decline in fitness (occupancy) eventually leading to their extinction (extirpation) over multiple generations. A corollary of this is a colonizer credit, where colonizer species occupancy may increase with fragmentation because the disturbance gives that life history a transient relative competitive advantage. We found that competitor species occupancy decreased in time concomitant with an increase in occupancy of colonizer species and this may be related to habitat fragmentation or loss owing to industrialized bottom trawl fishing. Mean species richness increased over time which suggests less specialization (decreased dominance) of the assemblage that may result from habitat homogenization. These analyses also showed that when abundance of species was decreased by fishing but eventually returned to previous levels, on average it had a lower occupancy than earlier in the series which could increase their vulnerability to depletion by fishing. Changing occupancy and diversity patterns of the community over time is consistent with EDT which can be exacerbated by direct impacts of fishery removals as well as climate change impacts on the fish community assemblage.

  4. Extinction Debt and Colonizer Credit on a Habitat Perturbed Fishing Bank.

    Directory of Open Access Journals (Sweden)

    Daniel E Duplisea

    Full Text Available Temporal changes in occupancy of the Georges Bank (NE USA fish and invertebrate community were examined and interpreted in the context of systems ecological theory of extinction debt (EDT. EDT posits that in a closed system with a mix of competitor and colonizer species and experiencing habitat fragmentation and loss, the competitor species will show a gradual decline in fitness (occupancy eventually leading to their extinction (extirpation over multiple generations. A corollary of this is a colonizer credit, where colonizer species occupancy may increase with fragmentation because the disturbance gives that life history a transient relative competitive advantage. We found that competitor species occupancy decreased in time concomitant with an increase in occupancy of colonizer species and this may be related to habitat fragmentation or loss owing to industrialized bottom trawl fishing. Mean species richness increased over time which suggests less specialization (decreased dominance of the assemblage that may result from habitat homogenization. These analyses also showed that when abundance of species was decreased by fishing but eventually returned to previous levels, on average it had a lower occupancy than earlier in the series which could increase their vulnerability to depletion by fishing. Changing occupancy and diversity patterns of the community over time is consistent with EDT which can be exacerbated by direct impacts of fishery removals as well as climate change impacts on the fish community assemblage.

  5. Habitat heterogeneity of hadal trenches: Considerations and implications for future studies

    Science.gov (United States)

    Stewart, Heather A.; Jamieson, Alan J.

    2018-02-01

    The hadal zone largely comprises a series of subduction trenches that do not form part of the continental shelf-slope rise to abyssal plain continuum. Instead they form geographically isolated clusters of deep-sea (6000-11,000 m water depth) environments. There is a growing realization in hadal science that ecological patterns and processes are not driven solely by responses to hydrostatic pressure, with comparable levels of habitat heterogeneity as observed in other marine biozones. Furthermore, this heterogeneity can be expressed at multiple scales from inter-trench levels (degrees of geographical isolation, and biochemical province), to intra-trench levels (variation between trench flanks and axis), topographical features within the trench interior (sedimentary basins, ridges, escarpments, 'deeps', seamounts) to the substrate of the trench floor (seabed-sediment composition, mass movement deposits, bedrock outcrop). Using best available bathymetry data combined with the largest lander-derived imaging dataset that spans the full depth range of three hadal trenches (including adjacent slopes); the Mariana, Kermadec and New Hebrides trenches, the topographic variability, fine-scale habitat heterogeneity and distribution of seabed sediments of these three trenches have been assessed for the first time. As well as serving as the first descriptive study of habitat heterogeneity at hadal depths, this study also provides guidance for future hadal sampling campaigns taking into account geographic isolation, total trench particulate organic matter flux, maximum water depth and area.

  6. Habitat specialization through germination cueing

    DEFF Research Database (Denmark)

    Ten Brink, Dirk-Jan; Hendriksma, Harmen; Bruun, Hans Henrik

    2013-01-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently...

  7. Habitat Use and Selection by Giant Pandas

    Science.gov (United States)

    Hull, Vanessa; Zhang, Jindong; Huang, Jinyan; Zhou, Shiqiang; Viña, Andrés; Shortridge, Ashton; Li, Rengui; Liu, Dian; Xu, Weihua; Ouyang, Zhiyun; Zhang, Hemin; Liu, Jianguo

    2016-01-01

    Animals make choices about where to spend their time in complex and dynamic landscapes, choices that reveal information about their biology that in turn can be used to guide their conservation. Using GPS collars, we conducted a novel individual-based analysis of habitat use and selection by the elusive and endangered giant pandas (Ailuropoda melanoleuca). We constructed spatial autoregressive resource utilization functions (RUF) to model the relationship between the pandas' utilization distributions and various habitat characteristics over a continuous space across seasons. Results reveal several new insights, including use of a broader range of habitat characteristics than previously understood for the species, particularly steep slopes and non-forest areas. We also used compositional analysis to analyze habitat selection (use with respect to availability of habitat types) at two selection levels. Pandas selected against low terrain position and against the highest clumped forest at the at-home range level, but no significant factors were identified at the within-home range level. Our results have implications for modeling and managing the habitat of this endangered species by illustrating how individual pandas relate to habitat and make choices that differ from assumptions made in broad scale models. Our study also highlights the value of using a spatial autoregressive RUF approach on animal species for which a complete picture of individual-level habitat use and selection across space is otherwise lacking. PMID:27627805

  8. Habitat Use and Selection by Giant Pandas.

    Directory of Open Access Journals (Sweden)

    Vanessa Hull

    Full Text Available Animals make choices about where to spend their time in complex and dynamic landscapes, choices that reveal information about their biology that in turn can be used to guide their conservation. Using GPS collars, we conducted a novel individual-based analysis of habitat use and selection by the elusive and endangered giant pandas (Ailuropoda melanoleuca. We constructed spatial autoregressive resource utilization functions (RUF to model the relationship between the pandas' utilization distributions and various habitat characteristics over a continuous space across seasons. Results reveal several new insights, including use of a broader range of habitat characteristics than previously understood for the species, particularly steep slopes and non-forest areas. We also used compositional analysis to analyze habitat selection (use with respect to availability of habitat types at two selection levels. Pandas selected against low terrain position and against the highest clumped forest at the at-home range level, but no significant factors were identified at the within-home range level. Our results have implications for modeling and managing the habitat of this endangered species by illustrating how individual pandas relate to habitat and make choices that differ from assumptions made in broad scale models. Our study also highlights the value of using a spatial autoregressive RUF approach on animal species for which a complete picture of individual-level habitat use and selection across space is otherwise lacking.

  9. Spatial heterogeneity and scale-dependent habitat selection for two sympatric raptors in mixed-grass prairie.

    Science.gov (United States)

    Atuo, Fidelis Akunke; O'Connell, Timothy John

    2017-08-01

    Sympatric predators are predicted to partition resources, especially under conditions of food limitation. Spatial heterogeneity that influences prey availability might play an important role in the scales at which potential competitors select habitat. We assessed potential mechanisms for coexistence by examining the role of heterogeneity in resource partitioning between sympatric raptors overwintering in the southern Great Plains. We conducted surveys for wintering Red-tailed hawk ( Buteo jamaicensis ) and Northern Harrier ( Circus cyanea ) at two state wildlife management areas in Oklahoma, USA. We used information from repeated distance sampling to project use locations in a GIS. We applied resource selection functions to model habitat selection at three scales and analyzed for niche partitioning using the outlying mean index. Habitat selection of the two predators was mediated by spatial heterogeneity. The two predators demonstrated significant fine-scale discrimination in habitat selection in homogeneous landscapes, but were more sympatric in heterogeneous landscapes. Red-tailed hawk used a variety of cover types in heterogeneous landscapes but specialized on riparian forest in homogeneous landscapes. Northern Harrier specialized on upland grasslands in homogeneous landscapes but selected more cover types in heterogeneous landscapes. Our study supports the growing body of evidence that landscapes can affect animal behaviors. In the system we studied, larger patches of primary land cover types were associated with greater allopatry in habitat selection between two potentially competing predators. Heterogeneity within the scale of raptor home ranges was associated with greater sympatry in use and less specialization in land cover types selected.

  10. Models of regional habitat quality and connectivity for pumas (Puma concolor) in the southwestern United States.

    Science.gov (United States)

    Dickson, Brett G; Roemer, Gary W; McRae, Brad H; Rundall, Jill M

    2013-01-01

    The impact of landscape changes on the quality and connectivity of habitats for multiple wildlife species is of global conservation concern. In the southwestern United States, pumas (Puma concolor) are a well distributed and wide-ranging large carnivore that are sensitive to loss of habitat and to the disruption of pathways that connect their populations. We used an expert-based approach to define and derive variables hypothesized to influence the quality, location, and permeability of habitat for pumas within an area encompassing the entire states of Arizona and New Mexico. Survey results indicated that the presence of woodland and forest cover types, rugged terrain, and canyon bottom and ridgeline topography were expected to be important predictors of both high quality habitat and heightened permeability. As road density, distance to water, or human population density increased, the quality and permeability of habitats were predicted to decline. Using these results, we identified 67 high quality patches across the study area, and applied concepts from electronic circuit theory to estimate regional patterns of connectivity among these patches. Maps of current flow among individual pairs of patches highlighted possible pinch points along two major interstate highways. Current flow summed across all pairs of patches highlighted areas important for keeping the entire network connected, regardless of patch size. Cumulative current flow was highest in Arizona north of the Colorado River and around Grand Canyon National Park, and in the Sky Islands region owing to the many small habitat patches present. Our outputs present a first approximation of habitat quality and connectivity for dispersing pumas in the southwestern United States. Map results can be used to help target finer-scaled analyses in support of planning efforts concerned with the maintenance of puma metapopulation structure, as well as the protection of landscape features that facilitate the dispersal

  11. Models of regional habitat quality and connectivity for pumas (Puma concolor in the southwestern United States.

    Directory of Open Access Journals (Sweden)

    Brett G Dickson

    Full Text Available The impact of landscape changes on the quality and connectivity of habitats for multiple wildlife species is of global conservation concern. In the southwestern United States, pumas (Puma concolor are a well distributed and wide-ranging large carnivore that are sensitive to loss of habitat and to the disruption of pathways that connect their populations. We used an expert-based approach to define and derive variables hypothesized to influence the quality, location, and permeability of habitat for pumas within an area encompassing the entire states of Arizona and New Mexico. Survey results indicated that the presence of woodland and forest cover types, rugged terrain, and canyon bottom and ridgeline topography were expected to be important predictors of both high quality habitat and heightened permeability. As road density, distance to water, or human population density increased, the quality and permeability of habitats were predicted to decline. Using these results, we identified 67 high quality patches across the study area, and applied concepts from electronic circuit theory to estimate regional patterns of connectivity among these patches. Maps of current flow among individual pairs of patches highlighted possible pinch points along two major interstate highways. Current flow summed across all pairs of patches highlighted areas important for keeping the entire network connected, regardless of patch size. Cumulative current flow was highest in Arizona north of the Colorado River and around Grand Canyon National Park, and in the Sky Islands region owing to the many small habitat patches present. Our outputs present a first approximation of habitat quality and connectivity for dispersing pumas in the southwestern United States. Map results can be used to help target finer-scaled analyses in support of planning efforts concerned with the maintenance of puma metapopulation structure, as well as the protection of landscape features that facilitate

  12. Data Collection and Simulation of Ecological Habitat and Recreational Habitat in the Shenandoah River, Virginia

    Science.gov (United States)

    Krstolic, Jennifer L.

    2015-01-01

    This report presents updates to methods, describes additional data collected, documents modeling results, and discusses implications from an updated habitat-flow model that can be used to predict ecological habitat for fish and recreational habitat for canoeing on the main stem Shenandoah River in Virginia. Given a 76-percent increase in population predictions for 2040 over 1995 records, increased water-withdrawal scenarios were evaluated to determine the effects on habitat and recreation in the Shenandoah River. Projected water demands for 2040 vary by watershed: the North Fork Shenandoah River shows a 55.9-percent increase, the South Fork Shenandoah River shows a 46.5-percent increase, and the main stem Shenandoah River shows a 52-percent increase; most localities are projected to approach the total permitted surface-water and groundwater withdrawals values by 2040, and a few localities are projected to exceed these values.

  13. Novel application of lower body positive-pressure in the rehabilitation of an individual with multiple lower extremity fractures.

    Science.gov (United States)

    Takacs, Judit; Leiter, Jeff R S; Peeler, Jason D

    2011-06-01

    Lower extremity fractures, if not treated appropriately, can increase the risk of morbidity. Partial weight-bearing after surgical repair is recommended; however, current methods of partial weight-bearing may cause excessive loads through the lower extremity. A new rehabilitation tool that uses lower body positive-pressure is described, that may allow partial weight-bearing while preventing excessive loads, thereby improving functional outcomes. A patient with multiple lower extremity fractures underwent a 6-month rehabilitation programme using bodyweight support technology 3 times per week, post-surgery. The patient experienced a reduction in pain and an improvement in ankle range of motion (p=0.002), walking speed (p>0.05) and physical function (p=0.004), as assessed by the Foot and Ankle Module of the American Academy of Orthopaedic Surgeons Lower Limb Outcomes Assessment Instrument. Training did not appear to affect fracture healing, as was evident on radiograph. The effect of lower body positive-pressure on effusion, which has not previously been reported in the literature, was also investigated. No significant difference in effusion of the foot and ankle when using lower body positive-pressure was found. Initial results suggest that this new technology may be a useful rehabilitation tool that allows partial weight-bearing during the treatment of lower extremity injuries.

  14. Excess Body Weight during Childhood and Adolescence Is Associated with the Risk of Multiple Sclerosis: A Meta-Analysis.

    Science.gov (United States)

    Liu, Zhen; Zhang, Ting-Ting; Yu, Jie; Liu, Ying-Li; Qi, Su-Fen; Zhao, Jing-Jing; Liu, Dian-Wu; Tian, Qing-Bao

    2016-01-01

    Several epidemiological studies have reported the association between obesity and multiple sclerosis (MS). A literature search of the observational studies, published as original articles in English before December 2015, was performed using electronic databases. Five observational studies were included, of which 3 were case-control studies and 2 were cohort studies. The pooled relative risk (RR) for overweight and obesity during childhood and adolescence compared with normal weight (body mass index = 18.5-24.9 kg/m2) was 1.44 (95% CI 1.22-1.70) and 2.01 (95% CI 1.63-2.48), respectively. In subgroup analyses, we found that excess body weight during childhood and adolescence increased the risk of MS in the female group (overweight: pooled RR = 1.62, 95% CI 1.35-1.94; obesity: pooled RR = 2.25, 95% CI 1.77-2.85), but not in the male group (overweight: pooled RR = 1.19, 95% CI 0.91-1.55; obesity: pooled RR = 1.22, 95% CI 0.79-1.90). Excess body weight during childhood and adolescence was associated with an increased risk of MS; severe obesity demonstrated a stronger risk. A statistically significant association was found in the female group, but not in the male group. © 2016 S. Karger AG, Basel.

  15. Assessing habitat selection when availability changes

    Science.gov (United States)

    Arthur, S.; Garner, G.; ,

    1996-01-01

    We present a method of comparing data on habitat use and availability that allows availability to differ among observations. This method is applicable when habitats change over time and when animals are unable to move throughout a predetermined study area between observations. We used maximum-likelihood techniques to derive an index that estimates the probability that each habitat type would be used if all were equally available. We also demonstrate how these indices can be used to compare relative use of available habitats, assign them ranks, and assess statistical differences between pairs of indices. The set of these indices for all habitats can be compared between groups of animals that represent different seasons, sex or age classes, or experimental treatments. This method allows quantitative comparisons among types and is not affected by arbitrary decisions about which habitats to include in the study. We provide an example by comparing the availability of four categories of sea ice concentration to their use by adult female polar bears, whose movements were monitored by satellite radio tracking in the Bering and Chukchi Seas during 1990. Use of ice categories by bears was nonrandom, and the pattern of use differed between spring and late summer seasons.

  16. Habitat features and predictive habitat modeling for the Colorado chipmunk in southern New Mexico

    Science.gov (United States)

    Rivieccio, M.; Thompson, B.C.; Gould, W.R.; Boykin, K.G.

    2003-01-01

    Two subspecies of Colorado chipmunk (state threatened and federal species of concern) occur in southern New Mexico: Tamias quadrivittatus australis in the Organ Mountains and T. q. oscuraensis in the Oscura Mountains. We developed a GIS model of potentially suitable habitat based on vegetation and elevation features, evaluated site classifications of the GIS model, and determined vegetation and terrain features associated with chipmunk occurrence. We compared GIS model classifications with actual vegetation and elevation features measured at 37 sites. At 60 sites we measured 18 habitat variables regarding slope, aspect, tree species, shrub species, and ground cover. We used logistic regression to analyze habitat variables associated with chipmunk presence/absence. All (100%) 37 sample sites (28 predicted suitable, 9 predicted unsuitable) were classified correctly by the GIS model regarding elevation and vegetation. For 28 sites predicted suitable by the GIS model, 18 sites (64%) appeared visually suitable based on habitat variables selected from logistic regression analyses, of which 10 sites (36%) were specifically predicted as suitable habitat via logistic regression. We detected chipmunks at 70% of sites deemed suitable via the logistic regression models. Shrub cover, tree density, plant proximity, presence of logs, and presence of rock outcrop were retained in the logistic model for the Oscura Mountains; litter, shrub cover, and grass cover were retained in the logistic model for the Organ Mountains. Evaluation of predictive models illustrates the need for multi-stage analyses to best judge performance. Microhabitat analyses indicate prospective needs for different management strategies between the subspecies. Sensitivities of each population of the Colorado chipmunk to natural and prescribed fire suggest that partial burnings of areas inhabited by Colorado chipmunks in southern New Mexico may be beneficial. These partial burnings may later help avoid a fire

  17. The evolution of coloniality in birds in relation to food, habitat, predation, and life-history traits: a comparative analysis.

    Science.gov (United States)

    Rolland, C; Danchin, E; de Fraipont, M

    1998-06-01

    Coloniality in birds has been intensively studied under the cost and benefit approach, but no general conclusion can be given concerning its evolutionary function. Here, we report on a comparative analysis carried out on 320 species of birds using the general method of comparative analysis for discrete variables and the contrast method to analyze the evolution of coloniality. Showing a mean of 23 convergences and 10 reversals, coloniality appears to be a rather labile trait. Colonial breeding appears strongly correlated with the absence of feeding territory, the aquatic habitat, and nest exposure to predators but was not correlated with changes in life-history traits (body mass and clutch size). The correlation of coloniality with the aquatic habitat is in fact explained by a strong correlation with the marine habitat. Unexpectedly, we found that the evolution toward a marine habitat in birds was contingent on coloniality and that coloniality evolved before the passage to a marine life. These results-along with the lack of transitions from the nonmarine to marine habitat in solitary species and the precedence of the loss of feeding territoriality on the passage to a marine life-contradict most of the hypotheses classically accepted to explain coloniality and suggest that we use a different framework to study this evolutionary enigma.

  18. Instream Physical Habitat Modelling Types

    DEFF Research Database (Denmark)

    Conallin, John; Boegh, Eva; Krogsgaard, Jørgen

    2010-01-01

    The introduction of the EU Water Framework Directive (WFD) is providing member state water resource managers with significant challenges in relation to meeting the deadline for 'Good Ecological Status' by 2015. Overall, instream physical habitat modelling approaches have advantages and disadvanta......The introduction of the EU Water Framework Directive (WFD) is providing member state water resource managers with significant challenges in relation to meeting the deadline for 'Good Ecological Status' by 2015. Overall, instream physical habitat modelling approaches have advantages...... suit their situations. This paper analyses the potential of different methods available for water managers to assess hydrological and geomorphological impacts on the habitats of stream biota, as requested by the WFD. The review considers both conventional and new advanced research-based instream...... physical habitat models. In parametric and non-parametric regression models, model assumptions are often not satisfied and the models are difficult to transfer to other regions. Research-based methods such as the artificial neural networks and individual-based modelling have promising potential as water...

  19. Comparison of fish assemblages in two littoral habitats in a Neotropical morichal stream in Venezuela

    Directory of Open Access Journals (Sweden)

    Carmen G. Montaña

    Full Text Available Morichales are lowland streams in South American savannas with riparian forest dominated by the moriche palm (Mauritia flexuosa. We sampled littoral habitats from ten flooded vegetated patches (dominated by Mauritiella aculeate and six sand banks in two months of the dry season (Feb-Mar 2005 in a stream in the savannas of Apure State, Venezuela. We collected samples that compromised 12,407 individual fishes of 107 species. Small-bodied fishes (< 100 mm, representing diverse trophic and life history strategies, were abundant. The most abundant species were in the families Characidae and Cichlidae. Fish assemblages from flooded vegetated patches differed significantly from those on adjacent sand banks. High structural complexity along vegetated shoreline habitats of morichal streams likely contributes to species richness and affects assemblage composition.

  20. Multiscale sagebrush rangeland habitat modeling in the Gunnison Basin of Colorado

    Science.gov (United States)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.

    2013-01-01

    North American sagebrush-steppe ecosystems have decreased by about 50 percent since European settlement. As a result, sagebrush-steppe dependent species, such as the Gunnison sage-grouse, have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, is needed to help maintain existing sagebrush habitats; however, products that accurately model and map sagebrush habitats in detail over the Gunnison Basin in Colorado are still unavailable. The goal of this project is to provide a rigorous large-area sagebrush habitat classification and inventory with statistically validated products and estimates of precision across the Gunnison Basin. This research employs a combination of methods, including (1) modeling sagebrush rangeland as a series of independent objective components that can be combined and customized by any user at multiple spatial scales; (2) collecting ground measured plot data on 2.4-meter QuickBird satellite imagery in the same season the imagery is acquired; (3) modeling of ground measured data on 2.4-meter imagery to maximize subsequent extrapolation; (4) acquiring multiple seasons (spring, summer, and fall) of Landsat Thematic Mapper imagery (30-meter) for optimal modeling; (5) using regression tree classification technology that optimizes data mining of multiple image dates, ratios, and bands with ancillary data to extrapolate ground training data to coarser resolution Landsat Thematic Mapper; and 6) employing accuracy assessment of model predictions to enable users to understand their dependencies. Results include the prediction of four primary components including percent bare ground, percent herbaceous, percent shrub, and percent litter, and four secondary components including percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata wyomingensis), and shrub height (centimeters

  1. Geographic variation in the diet of opaleye (Girella nigricans with respect to temperature and habitat.

    Directory of Open Access Journals (Sweden)

    Michael D Behrens

    Full Text Available We studied diet variation in an omnivorous fish across its range, which allowed us to test predictions about the effect of ocean temperature and habitat on herbivory. Throughout most of its geographic range, from Southern California to central Baja California, the opaleye (Girella nigricans fed primarily on red and green algae, but there was significant variation in the amount of algal material in the diet among sites. The proportion of algal material in the diet was related to habitat, with algae making up a larger proportion of a fish's diet in algal-dominated habitats than in urchin barrens. Independent of habitat, the proportion of algal material in the diet increased with environmental temperature. Analyses of stable isotopes revealed similar changes in trophic position and confirmed that these associations with diet persisted over relatively long time scales. The shift to a more herbivorous diet at warmer temperatures is in agreement with past laboratory studies on this species that show a diet-dependent change in performance with temperature and can indicate a diet shift across the species' geographic range to meet its physiological demands. A possible plastic response to herbivory was a longer gut relative to body size. The results of this study are consistent with past findings that associate temperature with increases in the relative diversity of herbivorous fishes in tropical parts of the ocean.

  2. Half body irradiation of patients with multiple bone metastases: A phase II trial

    DEFF Research Database (Denmark)

    Berg, Randi; Yilmaz, Mette; Høyer, Morten

    2009-01-01

    AIM OF STUDY: The primary aim of this study was to evaluate the effect of half-body irradiation (HBI) on pain and quality of life in cancer patients with multiple bone metastases. The secondary aim was to evaluate side effects of the treatment. PATIENTS AND METHODS: A total of 44 patients received...... lower (n = 37), upper (n = 5), or sequential HBI (n = 2). The dose for lower HBI was 8 Gy in one fraction and for upper HBI 7 Gy in one fraction, with reduction of the lung dose to 6 Gy in one fraction by partial shielding. The majority of patients (n = 41) were males with prostate cancers (93......%). Outcome and side effects were measured by the EORTC Quality of Life Questionnaire C30 (QLQ-C30), and by the doctors' toxicity scores in the medical record. Pain relief was defined as a reduction of more than 10 points on the QLQ-C30 scale. Evaluations were performed before and 2, 4, 8, 16, and 24 weeks...

  3. Estimation of Body Weight from Body Size Measurements and Body Condition Scores in Dairy Cows

    DEFF Research Database (Denmark)

    Enevoldsen, Carsten; Kristensen, T.

    1997-01-01

    , and body condition score were consistently associated with BW. The coefficients of multiple determination varied from 80 to 89%. The number of significant terms and the parameter estimates of the models differed markedly among groups of cows. Apparently, these differences were due to breed and feeding...... regimen. Results from this study indicate that a reliable model for estimating BW of very different dairy cows maintained in a wide range of environments can be developed using body condition score, demographic information, and measurements of hip height and hip width. However, for management purposes......The objective of this study was to evaluate the use of hip height and width, body condition score, and relevant demographic information to predict body weight (BW) of dairy cows. Seven regression models were developed from data from 972 observations of 554 cows. Parity, hip height, hip width...

  4. A Multi-Band Body-Worn Distributed Radio-Frequency Exposure Meter: Design, On-Body Calibration and Study of Body Morphology

    Science.gov (United States)

    Thielens, Arno; Agneessens, Sam; Van Torre, Patrick; Van den Bossche, Matthias; Eeftens, Marloes; Huss, Anke; Vermeulen, Roel; de Seze, René; Mazet, Paul; Cardis, Elisabeth; Röösli, Martin; Martens, Luc; Joseph, Wout

    2018-01-01

    A multi-band Body-Worn Distributed exposure Meter (BWDM) calibrated for simultaneous measurement of the incident power density in 11 telecommunication frequency bands, is proposed. The BDWM consists of 22 textile antennas integrated in a garment and is calibrated on six human subjects in an anechoic chamber to assess its measurement uncertainty in terms of 68% confidence interval of the on-body antenna aperture. It is shown that by using multiple antennas in each frequency band, the uncertainty of the BWDM is 22 dB improved with respect to single nodes on the front and back of the torso and variations are decreased to maximum 8.8 dB. Moreover, deploying single antennas for different body morphologies results in a variation up to 9.3 dB, which is reduced to 3.6 dB using multiple antennas for six subjects with various body mass index values. The designed BWDM, has an improved uncertainty of up to 9.6 dB in comparison to commercially available personal exposure meters calibrated on body. As an application, an average incident power density in the range of 26.7–90.8 μW·m−2 is measured in Ghent, Belgium. The measurements show that commercial personal exposure meters underestimate the actual exposure by a factor of up to 20.6. PMID:29346280

  5. A Multi-Band Body-Worn Distributed Radio-Frequency Exposure Meter: Design, On-Body Calibration and Study of Body Morphology

    Directory of Open Access Journals (Sweden)

    Reza Aminzadeh

    2018-01-01

    Full Text Available A multi-band Body-Worn Distributed exposure Meter (BWDM calibrated for simultaneous measurement of the incident power density in 11 telecommunication frequency bands, is proposed. The BDWM consists of 22 textile antennas integrated in a garment and is calibrated on six human subjects in an anechoic chamber to assess its measurement uncertainty in terms of 68% confidence interval of the on-body antenna aperture. It is shown that by using multiple antennas in each frequency band, the uncertainty of the BWDM is 22 dB improved with respect to single nodes on the front and back of the torso and variations are decreased to maximum 8.8 dB. Moreover, deploying single antennas for different body morphologies results in a variation up to 9.3 dB, which is reduced to 3.6 dB using multiple antennas for six subjects with various body mass index values. The designed BWDM, has an improved uncertainty of up to 9.6 dB in comparison to commercially available personal exposure meters calibrated on body. As an application, an average incident power density in the range of 26.7–90.8 μW·m − 2 is measured in Ghent, Belgium. The measurements show that commercial personal exposure meters underestimate the actual exposure by a factor of up to 20.6.

  6. Distribution, habitat and adaptability of the genus Tapirus.

    Science.gov (United States)

    García, Manolo J; Medici, Emília Patrícia; Naranjo, Eduardo J; Novarino, Wilson; Leonardo, Raquel S

    2012-12-01

    In this manuscript, as a starting point, the ancient and current distribution of the genus Tapirus are summarized, from its origins, apparently in Europe, to current ranges. Subsequently, original and current tapir habitats are described, as well as changes in ancient habitats. As the manuscript goes on, we examine the ways in which tapir species interact with their habitats and the main aspects of habitat use, spatial ecology and adaptability. Having reviewed the historic and current distribution of tapirs, as well as their use and selection of habitats, we introduce the concept of adaptability, considering that some of the tapir physiological characteristics and behavioral strategies can reduce the negative impact of habitat alteration and climate change. Finally, we provide recommendations for future research priorities. The conservation community is still missing important pieces of information for the effective conservation of tapirs and their remaining habitats in Central and South America and Southeast Asia. Reconstructing how tapir species reached their current distribution ranges, interpreting how they interact with their habitats and gathering information regarding the strategies they use to cope with habitat changes will increase our understanding about these animals and contribute to the development of conservation strategies. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  7. Habitat stability, predation risk and ‘memory syndromes’

    Science.gov (United States)

    Dalesman, S.; Rendle, A.; Dall, S.R.X.

    2015-01-01

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits (‘memory syndrome’) related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population. PMID:26013966

  8. Food technology in space habitats

    Science.gov (United States)

    Karel, M.

    1979-01-01

    The research required to develop a system that will provide for acceptable, nutritious, and safe diets for man during extended space missions is discussed. The development of a food technology system for space habitats capable of converting raw materials produced in the space habitats into acceptable food is examined.

  9. Managing multiple diffuse pressures on water quality and ecological habitat: Spatially targeting effective mitigation actions at the landscape scale.

    Science.gov (United States)

    Joyce, Hannah; Reaney, Sim

    2015-04-01

    Catchment systems provide multiple benefits for society, including: land for agriculture, climate regulation and recreational space. Yet, these systems also have undesirable externalities, such as flooding, and the benefits they create can be compromised through societal use. For example, agriculture, forestry and urban land use practices can increase the export of fine sediment and faecal indicator organisms (FIO) delivered to river systems. These diffuse landscape pressures are coupled with pressures on the in stream temperature environment from projected climate change. Such pressures can have detrimental impacts on water quality and ecological habitat and consequently the benefits they provide for society. These diffuse and in-stream pressures can be reduced through actions at the landscape scale but are commonly tackled individually. Any intervention may have benefits for other pressures and hence the challenge is to consider all of the different pressures simultaneously to find solutions with high levels of cross-pressure benefits. This research presents (1) a simple but spatially distributed model to predict the pattern of multiple pressures at the landscape scale, and (2) a method for spatially targeting the optimum location for riparian woodland planting as mitigation action against these pressures. The model follows a minimal information requirement approach along the lines of SCIMAP (www.scimap.org.uk). This approach defines the critical source areas of fine sediment diffuse pollution, rapid overland flow and FIOs, based on the analysis of the pattern of the pressure in the landscape and the connectivity from source areas to rivers. River temperature was modeled using a simple energy balance equation; focusing on temperature of inflowing and outflowing water across a catchment. The model has been calibrated using a long term observed temperature record. The modelling outcomes enabled the identification of the severity of each pressure in relative rather

  10. Diversity, occurrence and feeding traits of caddisfly larvae as indicators for ecological integrity of river-floodplain habitats along a connectivity gradient

    NARCIS (Netherlands)

    Van den Brink, F.W.B.; Van der Velde, G.; Wijnhoven, S.

    2013-01-01

    In order to assess ecological values of Lower Rhine and Meuse floodplain habitats we studied the spatial and seasonal variation in diversity, species assemblages and feeding traits of caddisfly larvae in water bodies over the lateral connectivity gradient: eupotamon: main and secondary channels:

  11. Environmental variation and habitat separation among small mammals

    International Nuclear Information System (INIS)

    Vickery, W.L.; Iverson, S.L.; Mihok, S.; Schwartz, B.

    1989-01-01

    Habitat use and population density of five species of forest small mammals were monitored by annual spring snap-trap censuses at Pinawa, Manitoba, over 14 years. Population sizes were positively correlated among species and showed no evidence of density-dependent effects. Species were habitat selectors. Habitat use by species did not vary among years. Habitat separation between the dominant species was not correlated with environmental variables or with population size. We suggest that habitat selection and positive covariance among species abundances are the principal factors characterizing the dynamics of this community

  12. Mourning Dove nesting habitat and nest success in Central Missouri

    Science.gov (United States)

    Drobney, R.D.; Schulz, J.H.; Sheriff, S.L.; Fuemmeler, W.J.

    1998-01-01

    Previous Mourning Dove (Zenaida macroura) nesting studies conducted in areas containing a mixture of edge and continuous habitats have focused on edge habitats. Consequently, little is known about the potential contribution of continuous habitats to dove production. In this study we evaluated the relative importance of these two extensive habitat types by monitoring the habitat use and nest success of 59 radio-marked doves during 1990-1991 in central Missouri. Of 83 nests initiated by our marked sample, most (81.9%) were located in edge habitats. Although continuous habitats were selected less as nest sites, the proportion of successful nests did not differ significantly from that in edge habitats. Our data indicate that continuous habitats should not be considered marginal nesting habitat. If the intensity of use and nest success that we observed are representative regionally or nationally, continuous habitats could contribute substantially to annual Mourning Dove production because of the high availability of these habitats throughout much of the Mourning Dove breeding range.

  13. Responses of stream microbes to multiple anthropogenic stressors in a mesocosm study.

    Science.gov (United States)

    Nuy, Julia K; Lange, Anja; Beermann, Arne J; Jensen, Manfred; Elbrecht, Vasco; Röhl, Oliver; Peršoh, Derek; Begerow, Dominik; Leese, Florian; Boenigk, Jens

    2018-08-15

    Stream ecosystems are affected by multiple anthropogenic stressors worldwide. Even though effects of many single stressors are comparatively well studied, the effects of multiple stressors are difficult to predict. In particular bacteria and protists, which are responsible for the majority of ecosystem respiration and element flows, are infrequently studied with respect to multiple stressors responses. We conducted a stream mesocosm experiment to characterize the responses of single and multiple stressors on microbiota. Two functionally important stream habitats, leaf litter and benthic phototrophic rock biofilms, were exposed to three stressors in a full factorial design: fine sediment deposition, increased chloride concentration (salinization) and reduced flow velocity. We analyzed the microbial composition in the two habitat types of the mesocosms using an amplicon sequencing approach. Community analysis on different taxonomic levels as well as principle component analyses (PCoAs) based on realtive abundances of operational taxonomic units (OTUs) showed treatment specific shifts in the eukaryotic biofilm community. Analysis of variance (ANOVA) revealed that Bacillariophyta responded positively salinity and sediment increase, while the relative read abundance of chlorophyte taxa decreased. The combined effects of multiple stressors were mainly antagonistic. Therefore, the community composition in multiply stressed environments resembled the composition of the unstressed control community in terms of OTU occurrence and relative abundances. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Adaptations to different habitats in sexual and asexual populations of parasitoid wasps: a meta-analysis.

    Science.gov (United States)

    Amat, Isabelle; van Alphen, Jacques J M; Kacelnik, Alex; Desouhant, Emmanuel; Bernstein, Carlos

    2017-01-01

    Coexistence of sexual and asexual populations remains a key question in evolutionary ecology. We address the question how an asexual and a sexual form of the parasitoid Venturia canescens can coexist in southern Europe. We test the hypothesis that both forms are adapted to different habitats within their area of distribution. Sexuals inhabit natural environments that are highly unpredictable, and where density of wasps and their hosts is low and patchily distributed. Asexuals instead are common in anthropic environments (e.g., grain stores) where host outbreaks offer periods when egg-load is the main constraint on reproductive output. We present a meta-analysis of known adaptations to these habitats. Differences in behavior, physiology and life-history traits between sexual and asexual wasps were standardized in term of effect size (Cohen's d value; Cohen, 1988). Seeking consilience from the differences between multiple traits, we found that sexuals invest more in longevity at the expense of egg-load, are more mobile, and display higher plasticity in response to thermal variability than asexual counterparts. Thus, each form has consistent multiple adaptations to the ecological circumstances in the contrasting environments.

  15. Adaptations to different habitats in sexual and asexual populations of parasitoid wasps: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Isabelle Amat

    2017-09-01

    Full Text Available Background Coexistence of sexual and asexual populations remains a key question in evolutionary ecology. We address the question how an asexual and a sexual form of the parasitoid Venturia canescens can coexist in southern Europe. We test the hypothesis that both forms are adapted to different habitats within their area of distribution. Sexuals inhabit natural environments that are highly unpredictable, and where density of wasps and their hosts is low and patchily distributed. Asexuals instead are common in anthropic environments (e.g., grain stores where host outbreaks offer periods when egg-load is the main constraint on reproductive output. Methods We present a meta-analysis of known adaptations to these habitats. Differences in behavior, physiology and life-history traits between sexual and asexual wasps were standardized in term of effect size (Cohen’s d value; Cohen, 1988. Results Seeking consilience from the differences between multiple traits, we found that sexuals invest more in longevity at the expense of egg-load, are more mobile, and display higher plasticity in response to thermal variability than asexual counterparts. Discussion Thus, each form has consistent multiple adaptations to the ecological circumstances in the contrasting environments.

  16. Conflation and aggregation of spatial data improve predictive models for species with limited habitats: a case of the threatened yellow-billed cuckoo in Arizona, USA

    Science.gov (United States)

    Villarreal, Miguel L.; van Riper, Charles; Petrakis, Roy E.

    2013-01-01

    Riparian vegetation provides important wildlife habitat in the Southwestern United States, but limited distributions and spatial complexity often leads to inaccurate representation in maps used to guide conservation. We test the use of data conflation and aggregation on multiple vegetation/land-cover maps to improve the accuracy of habitat models for the threatened western yellow-billed cuckoo (Coccyzus americanus occidentalis). We used species observations (n = 479) from a state-wide survey to develop habitat models from 1) three vegetation/land-cover maps produced at different geographic scales ranging from state to national, and 2) new aggregate maps defined by the spatial agreement of cover types, which were defined as high (agreement = all data sets), moderate (agreement ≥ 2), and low (no agreement required). Model accuracies, predicted habitat locations, and total area of predicted habitat varied considerably, illustrating the effects of input data quality on habitat predictions and resulting potential impacts on conservation planning. Habitat models based on aggregated and conflated data were more accurate and had higher model sensitivity than original vegetation/land-cover, but this accuracy came at the cost of reduced geographic extent of predicted habitat. Using the highest performing models, we assessed cuckoo habitat preference and distribution in Arizona and found that major watersheds containing high-probably habitat are fragmented by a wide swath of low-probability habitat. Focus on riparian restoration in these areas could provide more breeding habitat for the threatened cuckoo, offset potential future habitat losses in adjacent watershed, and increase regional connectivity for other threatened vertebrates that also use riparian corridors.

  17. [Intracardial fungal multiplication of order Mucor in an almost totally carbonised part of a male body found after ten days missing].

    Science.gov (United States)

    Iannaccone, Silvia Farkašová; Klán, Jaroslav; Lamps, Laura W; Farkaš, Daniel; Švajdler Ml, Marián; Szabo, Miroslav

    Determination of time of death belongs to the most difficult and also the most important issues for the medical examiners, especially those who deal with violent death. Besides the most frequently evaluated postmortal changes it is sometimes possible to perform the evaluation on the basis of less frequently observed findings. One of such findings is for example the fungal multiplication on the body or in the very close vicinity. Knowledge of moulds as well as information about their speed of growth should contribute to confirmation or negation of some information gained during police investigation. In this case report authors describe the macroscopically visible fungal intracardiac multiplication in heart chambers and aorta in an almost totally carbonised body which was missing for only ten days. Based on the molecular examination it was detected that the body belonged to the 64-year-old man who was repeatedly hospitalised in psychiatry for depression with suicidal tendencies. The last hospitalisation was six weeks before death and there was no organic disability. The cause of fire was a naked flame. The cause of death was burn injury or asphyxia. The almost total carbonisation did not allow to perform toxicological investigation. By histological investigation we found the presence of wide long non-septate moulds growing in the heart muscle, which belonged to the order Mucor. Since there was no obvious inflammatory response, we suppose their growth started on the congealed blood after death.

  18. Defining ecological and economical hydropoweroperations: a framework for managing dam releasesto meet multiple conflicting objectives

    Science.gov (United States)

    Irwin, Elise R.

    2014-01-01

    Hydroelectric dams are a flexible source of power, provide flood control, and contribute to the economic growth of local communities through real-estate and recreation. Yet the impoundment of rivers can alter and fragment miles of critical riverine habitat needed for other competing needs such as downstream consumptive water use, fish and wildlife population viability, or other forms of recreation. Multiple conflicting interests can compromise progressive management especially with recognized uncertainties related to whether management actions will fulfill the objectives of policy makers, resource managers and/or facility owners. Decision analytic tools were used in a stakeholder-driven process to develop and implement a template for evaluation and prediction of the effects of water resource management of multiple-use systems under the context provided by R.L. Harris Dam on the Tallapoosa River, Alabama, USA. The approach provided a transparent and structured framework for decision-making and incorporated both existing and new data to meet multiple management objectives. Success of the template has been evaluated by the stakeholder governing body in an adaptive resource management framework since 2005 and is ongoing. Consequences of management of discharge at the dam were evaluated annually relative to stakeholder satisfaction to allow for adjustment of both management scenarios and objectives. This template can be applied to attempt to resolve conflict inherent in many dam-regulated systems where management decisions impact diverse values of stakeholders.

  19. Body talk among undergraduate women: why conversations about exercise and weight loss differentially predict body appreciation.

    Science.gov (United States)

    Wasylkiw, Louise; Butler, Nicole A

    2014-08-01

    Undergraduate women (N = 143) completed self-reports on exercise behavior, body orientation, body appreciation, and body-related talk. Results showed that conversations about weight loss/dieting and conversations about exercise differentially predicted body appreciation. Importantly, multiple regression analyses showed that the relationship between talk type and body appreciation was explained by the object-process dichotomy: Conversations about exercise oriented women to consider what their bodies can do which, in turn, predicted appreciation of one's body. In contrast, the relationship between conversations about weight loss/dieting and body appreciation was mediated by negative attitudes about one's body but not by an object orientation. © The Author(s) 2013.

  20. Landscape-Scale Factors Affecting Feral Horse Habitat Use During Summer Within The Rocky Mountain Foothills

    Science.gov (United States)

    Girard, Tisa L.; Bork, Edward W.; Neilsen, Scott E.; Alexander, Mike J.

    2013-02-01

    Public lands occupied by feral horses in North America are frequently managed for multiple uses with land use conflict occurring among feral horses, livestock, wildlife, and native grassland conservation. The factors affecting habitat use by horses is critical to understand where conflict may be greatest. We related horse presence and abundance to landscape attributes in a GIS to examine habitat preferences using 98 field plots sampled within a portion of the Rocky Mountain Forest Reserve of SW Alberta, Canada. Horse abundance was greatest in grassland and cut block habitats, and lowest in conifer and mixedwood forest. Resource selection probability functions and count models of faecal abundance indicated that horses preferred areas closer to water, with reduced topographic ruggedness, situated farther from forests, and located farther away from primary roads and trails frequented by recreationalists, but closer to small linear features (i.e. cut lines) that may be used as beneficial travel corridors. Horse presence and abundance were closely related to cattle presence during summer, suggesting that both herbivores utilise the same habitats. Estimates of forage biomass removal (44 %) by mid-July were near maximum acceptable levels. In contrast to horse-cattle associations, horses were negatively associated with wild ungulate abundance, although the mechanism behind this remains unclear and warrants further investigation. Our results indicate that feral horses in SW Alberta exhibit complex habitat selection patterns during spring and summer, including overlap in use with livestock. This finding highlights the need to assess and manage herbivore populations consistent with rangeland carrying capacity and the maintenance of range health.

  1. Correlates of Recent Declines of Rodents in Northern and Southern Australia: Habitat Structure Is Critical.

    Directory of Open Access Journals (Sweden)

    Michael J Lawes

    Full Text Available Australia has experienced dramatic declines and extinctions of its native rodent species over the last 200 years, particularly in southern Australia. In the tropical savanna of northern Australia significant declines have occurred only in recent decades. The later onset of these declines suggests that the causes may differ from earlier declines in the south. We examine potential regional effects (northern versus southern Australia on biological and ecological correlates of range decline in Australian rodents. We demonstrate that rodent declines have been greater in the south than in the tropical north, are strongly influenced by phylogeny, and are consistently greater for species inhabiting relatively open or sparsely vegetated habitat. Unlike in marsupials, where some species have much larger body size than rodents, body mass was not an important predictor of decline in rodents. All Australian rodent species are within the prey-size range of cats (throughout the continent and red foxes (in the south. Contrary to the hypothesis that mammal declines are related directly to ecosystem productivity (annual rainfall, our results are consistent with the hypothesis that disturbances such as fire and grazing, which occur in non-rainforest habitats and remove cover used by rodents for shelter, nesting and foraging, increase predation risk. We agree with calls to introduce conservation management that limits the size and intensity of fires, increases fire patchiness and reduces grazing impacts at ecological scales appropriate for rodents. Controlling feral predators, even creating predator-free reserves in relatively sparsely-vegetated habitats, is urgently required to ensure the survival of rodent species, particularly in northern Australia where declines are not yet as severe as those in the south.

  2. A Filifactor alocis-centered co-occurrence group associates with periodontitis across different oral habitats

    Science.gov (United States)

    Chen, Hui; Liu, Ying; Zhang, Menghui; Wang, Guoyang; Qi, Zhengnan; Bridgewater, Laura; Zhao, Liping; Tang, Zisheng; Pang, Xiaoyan

    2015-01-01

    Periodontitis is a highly prevalent polymicrobial disease worldwide, yet the synergistic pattern of the multiple oral pathogens involved is still poorly characterized. Here, saliva, supragingival and subgingival plaque samples from periodontitis patients and periodontally healthy volunteers were collected and profiled with 16S rRNA gene pyrosequencing. Different oral habitats harbored significantly different microbiota, and segregation of microbiota composition between periodontitis and health was observed as well. Two-step redundancy analysis identified twenty-one OTUs, including Porphyromonas gingivalis, Tannerella forsythia and Filifactor alocis, as potential pathogens that were significantly associated with periodontitis and with two periodontitis diagnostic parameters (pocket depth and attachment loss) in both saliva and supragingival plaque habitats. Interestingly, pairwise correlation analysis among the 21 OTUs revealed that Filifactor alocis was positively correlated with seven other putative pathogens (R > 0.6, P periodontitis patients. This bacterial cluster showed a higher diagnostic value for periodontitis than did any individual potential pathogens, especially in saliva. Thus, our study identified a potential synergistic ecological pattern involving eight co-infecting pathogens across various oral habitats, providing a new framework for understanding the etiology of periodontitis and developing new diagnoses and therapies. PMID:25761675

  3. Wetlands in changed landscapes: the influence of habitat transformation on the physico-chemistry of temporary depression wetlands.

    Science.gov (United States)

    Bird, Matthew S; Day, Jenny A

    2014-01-01

    Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated) occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology) are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis) indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m); although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%), relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%). The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m) buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality.

  4. Wetlands in changed landscapes: the influence of habitat transformation on the physico-chemistry of temporary depression wetlands.

    Directory of Open Access Journals (Sweden)

    Matthew S Bird

    Full Text Available Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m; although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%, relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%. The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality.

  5. Sparing land for biodiversity at multiple spatial scales

    Directory of Open Access Journals (Sweden)

    Johan eEkroos

    2016-01-01

    Full Text Available A common approach to the conservation of farmland biodiversity and the promotion of multifunctional landscapes, particularly in landscapes containing only small remnants of non-crop habitats, has been to maintain landscape heterogeneity and reduce land-use intensity. In contrast, it has recently been shown that devoting specific areas of non-crop habitats to conservation, segregated from high-yielding farmland (‘land sparing’, can more effectively conserve biodiversity than promoting low-yielding, less intensively managed farmland occupying larger areas (‘land sharing’. In the present paper we suggest that the debate over the relative merits of land sparing or land sharing is partly blurred by the differing spatial scales at which it is suggested that land sparing should be applied. We argue that there is no single correct spatial scale for segregating biodiversity protection and commodity production in multifunctional landscapes. Instead we propose an alternative conceptual construct, which we call ‘multiple-scale land sparing’, targeting biodiversity and ecosystem services in transformed landscapes. We discuss how multiple-scale land sparing may overcome the apparent dichotomy between land sharing and land sparing and help to find acceptable compromises that conserve biodiversity and landscape multifunctionality.

  6. Physical habitat classification and instream flow modeling to determine habitat availability during low-flow periods, North Fork Shenandoah River, Virginia

    Science.gov (United States)

    Krstolic, Jennifer L.; Hayes, Donald C.; Ruhl, Peter M.

    2006-01-01

    Increasing development and increasing water withdrawals for public, industrial, and agricultural water supply threaten to reduce streamflows in the Shenandoah River basin in Virginia. Water managers need more information to balance human water-supply needs with the daily streamflows necessary for maintaining the aquatic ecosystems. To meet the need for comprehensive information on hydrology, water supply, and instream-flow requirements of the Shenandoah River basin, the U.S. Geological Survey and the Northern Shenandoah Valley Regional Commission conducted a cooperative investigation of habitat availability during low-flow periods on the North Fork Shenandoah River. Historic streamflow data and empirical data on physical habitat, river hydraulics, fish community structure, and recreation were used to develop a physical habitat simulation model. Hydraulic measurements were made during low, medium, and high flows in six reaches at a total of 36 transects that included riffles, runs, and pools, and that had a variety of substrates and cover types. Habitat suitability criteria for fish were developed from detailed fish-community sampling and microhabitat observations. Fish were grouped into four guilds of species and life stages with similar habitat requirements. Simulated habitat was considered in the context of seasonal flow regimes to show the availability of flows that sustain suitable habitat during months when precipitation and streamflow are scarce. The North Fork Shenandoah River basin was divided into three management sections for analysis purposes: the upper section, middle section, and lower section. The months of July, August, and September were chosen to represent a low-flow period in the basin with low mean monthly flows, low precipitation, high temperatures, and high water withdrawals. Exceedance flows calculated from the combined data from these three months describe low-flow periods on the North Fork Shenandoah River. Long-term records from three

  7. Restricted cross-scale habitat selection by American beavers.

    Science.gov (United States)

    Francis, Robert A; Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming

    2017-12-01

    Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection.

  8. Habitat specialization in tropical continental shelf demersal fish assemblages.

    Directory of Open Access Journals (Sweden)

    Ben M Fitzpatrick

    Full Text Available The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304 collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1-10 m depth, down the fore reef slope to the reef base (10-30 m depth then across the adjacent continental shelf (30-110 m depth. Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of

  9. Metallic foreign body in esophagus: Are multiple radiographs ...

    African Journals Online (AJOL)

    X-rays that established the diagnosis and prompted the referral. Despite the initial X-ray films confirming the diagnosis, further plain X-rays of the neck soft tissue, chest and abdomen may be obtained to confirm the position of the foreign body before operative extraction is attempted, thus exposing the patient to further doses ...

  10. Body mass, wing length, and condition of wintering ducks relative to hematozoa infection

    Science.gov (United States)

    Fleskes, Joseph; Ramey, Andrew M.; Reeves, Andrew; Yee, Julie L.

    2017-01-01

    Waterfowl managers lack information regarding factors that may be reducing the positive response of waterfowl body condition to habitat improvements. Protozoan blood parasites (i.e., hematozoa) are commonly found in birds and have been related to reduced body mass, wing length, and body condition. We studied relationships between 12 measures of hematozoa infection and body mass, wing length, and body mass divided by wing length (i.e., body condition index [BCI]) of the five most common duck species (northern pintail [Anas acuta], mallard [A. platyrhynchos], green-winged teal [A. crecca], American wigeon [A. Americana], northern shoveler [A. clypeata]) wintering in the Central Valley of California during October 2006-January 2007. After accounting for variation due to species, age-sex cohort, Central Valley region, and month; wing length, body mass, and BCI were found to be negatively related to infection by Leucocytozoon and by "any hematozoa" but not related to infection by only Plasmodium or Haemoproteus, or coinfections of greater than one genera or parasite haplotype (albeit, few ducks had Plasmodium or Haemoproteus infection or coinfections). Evidence of a negative relationship with infection was stronger for body mass and BCI than for wing length and indicated that the relationships varied among species, age-sex cohorts, regions, and months. Compared to uninfected ducks, hematozoa-infected duck body mass, wing length, and BCI was -1.63% (85% CI = -2.79%- -0.47%), -0.12% (-0.41%- +0.17%), and -1.38% (-2.49%- -0.26%), respectively. Although, seemingly small, the -1.63% difference in body mass represents a large percentage (e.g., 38% for northern pintail) of the observed increase in wintering duck body mass associated with Central Valley habitat improvements. Because infection prevalence and relationship to body condition might change over time due to climate or other factors, tracking hematozoa infection prevalence might be important to inform and accurately

  11. Body piercing, tattooing, self-esteem, and body investment in adolescent girls.

    Science.gov (United States)

    Carroll, Lynne; Anderson, Roxanne

    2002-01-01

    Postmodern perspectives of body piercing and tattooing interpret these as signifiers of the self and attempts to attain mastery and control over the body in an age of increasing alienation. In this exploratory study, 79 adolescent females, ages 15 to 18 (M = 16.08, SD = 1.36), completed the Coopersmith Self-Esteem Inventory (SEI; Coopersmith, 1981), the Beck Depression Inventory (BDI; Beck, 1978), the Body Investment Scale (BIS; Orbach & Mikulincer, 1998), and the State-Trait Anger Expression Inventory (STAXI-2; Spielberger, 1996). Analyses revealed that body piercings and tattoos were significantly correlated with trait anger (Angry Reaction subscale scores). A multiple regression analysis indicated that three of the dependent variables (Trait Anger-Reaction, BDI, and Feeling subscale of the BIS) were predictors of the total number of body piercings and tattoos.

  12. Beaked Whale Habitat Characterization and Prediction

    National Research Council Canada - National Science Library

    Ward, Jessica A; Mitchell, Glenn H; Farak, Amy M; Keane, Ellen P

    2005-01-01

    The objective of this study was to characterize known beaked whale habitat and create a predictive beaked whale habitat model of the Gulf of Mexico and east coast of the United States using available...

  13. Pacific Northwest Salmon Habitat Project Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the Pacific Northwest Salmon Habitat Project Database Across the Pacific Northwest, both public and private agents are working to improve riverine habitat for a...

  14. A technical guide for monitoring wildlife habitat

    Science.gov (United States)

    M.M. Rowland; C.D. Vojta

    2013-01-01

    Information about status and trend of wildlife habitat is important for the U.S. Department of Agriculture, Forest Service to accomplish its mission and meet its legal requirements. As the steward of 193 million acres (ac) of Federal land, the Forest Service needs to evaluate the status of wildlife habitat and how it compares with desired conditions. Habitat monitoring...

  15. Clay Animals and Their Habitats

    Science.gov (United States)

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  16. Interfacing models of wildlife habitat and human development to predict the future distribution of puma habitat

    Science.gov (United States)

    Burdett, Christopher L.; Crooks, Kevin R.; Theobald, David M.; Wilson, Kenneth R.; Boydston, Erin E.; Lyren, Lisa A.; Fisher, Robert N.; Vickers, T. Winston; Morrison, Scott A.; Boyce, Walter M.

    2010-01-01

    The impact of human land uses on ecological systems typically differ relative to how extensively natural conditions are modified. Exurban development is intermediate-intensity residential development that often occurs in natural landscapes. Most species-habitat models do not evaluate the effects of such intermediate levels of human development and even fewer predict how future development patterns might affect the amount and configuration of habitat. We addressed these deficiencies by interfacing a habitat model with a spatially-explicit housing-density model to study the effect of human land uses on the habitat of pumas (Puma concolor) in southern California. We studied the response of pumas to natural and anthropogenic features within their home ranges and how mortality risk varied across a gradient of human development. We also used our housing-density model to estimate past and future housing densities and model the distribution of puma habitat in 1970, 2000, and 2030. The natural landscape for pumas in our study area consisted of riparian areas, oak woodlands, and open, conifer forests embedded in a chaparral matrix. Pumas rarely incorporated suburban or urban development into their home ranges, which is consistent with the hypothesis that the behavioral decisions of individuals can be collectively manifested as population-limiting factors at broader spatial scales. Pumas incorporated rural and exurban development into their home ranges, apparently perceiving these areas as modified, rather than non-habitat. Overall, pumas used exurban areas less than expected and showed a neutral response to rural areas. However, individual pumas that selected for or showed a neutral response to exurban areas had a higher risk of mortality than pumas that selected against exurban habitat. Exurban areas are likely hotspots for puma-human conflict in southern California. Approximately 10% of our study area will transform from exurban, rural, or undeveloped areas to suburban or

  17. Shifts in Plant Assemblages Reduce the Richness of Galling Insects Across Edge-Affected Habitats in the Atlantic Forest.

    Science.gov (United States)

    Souza, Danielle G; Santos, Jean C; Oliveira, Marcondes A; Tabarelli, Marcelo

    2016-10-01

    Impacts of habitat loss and fragmentation on specialist herbivores have been rarely addressed. Here we examine the structure of plant and galling insect assemblages in a fragmented landscape of the Atlantic forest to verify a potential impoverishment of these assemblages mediated by edge effects. Saplings and galling insects were recorded once within a 0.1-ha area at habitat level, covering forest interior stands, forest edges, and small fragments. A total of 1,769 saplings from 219 tree species were recorded across all three habitats, with differences in terms of sapling abundance and species richness. Additionally, edge-affected habitats exhibited reduced richness of both host-plant and galling insects at plot and habitat spatial scale. Attack levels also differed among forest types at habitat spatial scale (21.1% of attacked stems in forest interior, 12.4% in small fragments but only 8.5% in forest edges). Plot ordination resulted in three clearly segregated clusters: one formed by forest interior, one by small fragments, and another formed by edge plots. Finally, the indicator species analysis identified seven and one indicator plant species in forest interior and edge-affected habitats, respectively. Consequently, edge effects lead to formation of distinct taxonomic groups and also an impoverished assemblage of plants and galling insects at multiple spatial scales. The results of the present study indicate that fragmentation-related changes in plant assemblages can have a cascade effects on specialist herbivores. Accordingly, hyperfragmented landscapes may not be able to retain an expressive portion of tropical biodiversity. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Bioeffects Assessment in Kvichak and Nushagak Bay, Alaska: Characterization of Soft Bottom Benthic Habitats, Fish Body Burdens and Contaminant Baseline Assessment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of this project is to assess habitat conditions that influence biodiversity and distribution of benthic infaunal communities, contaminants, and chemical...

  19. Habitat selection by green turtles in a spatially heterogeneous benthic landscape in Dry Tortugas National Park, Florida

    Science.gov (United States)

    Fujisaki, Ikuko; Hart, Kristen M.; Sartain-Iverson, Autumn R.

    2016-01-01

    We examined habitat selection by green turtles Chelonia mydas at Dry Tortugas National Park, Florida, USA. We tracked 15 turtles (6 females and 9 males) using platform transmitter terminals (PTTs); 13 of these turtles were equipped with additional acoustic transmitters. Location data by PTTs comprised periods of 40 to 226 d in varying months from 2009 to 2012. Core areas were concentrated in shallow water (mean bathymetry depth of 7.7 m) with a comparably dense coverage of seagrass; however, the utilization distribution overlap index indicated a low degree of habitat sharing. The probability of detecting a turtle on an acoustic receiver was inversely associated with the distance from the receiver to turtle capture sites and was lower in shallower water. The estimated daily detection probability of a single turtle at a given acoustic station throughout the acoustic array was small (turtle detections was even smaller. However, the conditional probability of multiple turtle detections, given at least one turtle detection at a receiver, was much higher despite the small number of tagged turtles in each year (n = 1 to 5). Also, multiple detections of different turtles at a receiver frequently occurred within a few minutes (40%, or 164 of 415, occurred within 1 min). Our numerical estimates of core area overlap, co-occupancy probabilities, and habitat characterization for green turtles could be used to guide conservation of the area to sustain the population of this species.

  20. Living in sympatry: The effect of habitat partitioning on the thermoregulation of three Mediterranean lizards.

    Science.gov (United States)

    Sagonas, Kostas; Kapsalas, Grigoris; Valakos, Efstratios; Pafilis, Panayiotis

    2017-04-01

    The ability for effective, accurate and precise thermoregulation is of paramount importance for ectotherms. Sympatric lizards often partition their niche and select different microhabitats. These microhabitats, however, usually differ in their thermal conditions and lizards have to adapt their thermoregulation behavior accordingly. Here, we evaluated the impact of habitat partitioning on the thermal biology of three syntopic, congeneric lacertids (Podarcis peloponnesiacus, P. tauricus and P. muralis) from central Peloponnese, Greece. We assessed thermoregulation effectiveness (E) using the three standard thermal parameters: body (T b ), operative (T e ) and preferred (T pref ) temperatures. We hypothesized that the microhabitats used by each species would differ in thermal quality. We also predicted that all species would effectively thermoregulate, as they inhabit a thermally challenging mountain habitat. As expected, the partition of the habitat had an effect on the thermoregulation of lizards since microhabitats had different thermal qualities. All three species were effective and accurate thermoregulators but one of them achieved smaller E values as a result of the lower T b in the field. This discrepancy could be attributed to the cooler (but more benign) thermal microhabitats that this species occupies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Multisource multibeam backscatter data: developing a strategy for the production of benthic habitat maps using semi-automated seafloor classification methods

    Science.gov (United States)

    Lacharité, Myriam; Brown, Craig J.; Gazzola, Vicki

    2018-06-01

    The establishment of multibeam echosounders (MBES) as a mainstream tool in ocean mapping has facilitated integrative approaches towards nautical charting, benthic habitat mapping, and seafloor geotechnical surveys. The bathymetric and backscatter information generated by MBES enables marine scientists to present highly accurate bathymetric data with a spatial resolution closely matching that of terrestrial mapping, and can generate customized thematic seafloor maps to meet multiple ocean management needs. However, when a variety of MBES systems are used, the creation of objective habitat maps can be hindered by the lack of backscatter calibration, due for example, to system-specific settings, yielding relative rather than absolute values. Here, we describe an approach using object-based image analysis to combine 4 non-overlapping and uncalibrated (backscatter) MBES coverages to form a seamless habitat map on St. Anns Bank (Atlantic Canada), a marine protected area hosting a diversity of benthic habitats. The benthoscape map was produced by analysing each coverage independently with supervised classification (k-nearest neighbor) of image-objects based on a common suite of 7 benthoscapes (determined with 4214 ground-truthing photographs at 61 stations, and characterized with backscatter, bathymetry, and bathymetric position index). Manual re-classification based on uncertainty in membership values to individual classes—especially at the boundaries between coverages—was used to build the final benthoscape map. Given the costs and scarcity of MBES surveys in offshore marine ecosystems—particularly in large ecosystems in need of adequate conservation strategies, such as in Canadian waters—developing approaches to synthesize multiple datasets to meet management needs is warranted.

  2. Trapping Triatominae in Silvatic Habitats

    Directory of Open Access Journals (Sweden)

    Noireau François

    2002-01-01

    Full Text Available Large-scale trials of a trapping system designed to collect silvatic Triatominae are reported. Live-baited adhesive traps were tested in various ecosystems and different triatomine habitats (arboreal and terrestrial. The trials were always successful, with a rate of positive habitats generally over 20% and reaching 48.4% for palm trees of the Amazon basin. Eleven species of Triatominae belonging to the three genera of public health importance (Triatoma, Rhodnius and Panstrongylus were captured. This trapping system provides an effective way to detect the presence of triatomines in terrestrial and arboreal silvatic habitats and represents a promising tool for ecological studies. Various lines of research are contemplated to improve the performance of this trapping system.

  3. Urinary tract infection as a single presenting sign of multiple vaginal foreign bodies: case report and review of the literature.

    Science.gov (United States)

    Neulander, Endre Z; Tiktinsky, Alex; Romanowsky, Igor; Kaneti, Jacob

    2010-02-01

    Vaginal foreign bodies in children usually present with foul-smelling discharge and/or vaginal bleeding. Rarely, these basic clinical diagnostic signs are not present. We report on a 5(1/2)-year-old girl with recurrent lower urinary tract infection as the sole presentation of multiple vaginal foreign bodies. Ultrasound of the lower urinary tract was inconclusive, and cystography indicated for recurrent urinary tract infections was declined by the patient in an outpatient setting. Cystography under general anesthesia raised the suspicion of foreign vaginal objects, and the definitive diagnosis was made by vaginoscopy. The relevant literature covering this subject is reviewed. High level of suspicion and strict basic diagnostic protocol are the most important steps for a timely diagnosis of this condition. Copyright 2010 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  4. Development of a Regional Habitat Classification Scheme for the ...

    African Journals Online (AJOL)

    development, image processing techniques and field survey methods are outlined. Habitat classification, and regional-scale comparisons of relative habitat composition are described. The study demonstrates the use of remote sensing data to construct digital habitat maps for the comparison of regional habitat coverage, ...

  5. On a dhole trail: examining ecological and anthropogenic correlates of dhole habitat occupancy in the Western ghats of India.

    Directory of Open Access Journals (Sweden)

    Arjun Srivathsa

    Full Text Available Although they play a critical role in shaping ecological communities, many threatened predator species are data-deficient. The Dhole Cuon alpinus is one such rare canid with a global population thought to be <2500 wild individuals. We assessed habitat occupancy patterns of dholes in the Western Ghats of Karnataka, India, to understand ecological and anthropogenic determinants of their distribution and habitat-use. We conducted spatially replicated detection/non-detection surveys of dhole signs along forest trails at two appropriate scales: the entire landscape and a single wildlife reserve. Landscape-scale habitat occupancy was assessed across 38,728 km(2 surveying 206 grid cells of 188-km(2 each. Finer scale habitat-use within 935 km2 Bandipur Reserve was studied surveying 92 grid cells of 13-km(2 km each. We analyzed the resulting data of dhole signs using likelihood-based habitat occupancy models. The models explicitly addressed the problematic issue of imperfect detection of dhole signs during field surveys as well as potential spatial auto-correlation between sign detections made on adjacent trail segments. We show that traditional 'presence versus absence' analyses underestimated dhole habitat occupancy by 60% or 8682 km2 [naïve = 0.27; ψL(SE  = 0.68 (0.08] in the landscape. Addressing imperfect sign detections by estimating detection probabilities [p(t(L (SE = 0.12 (0.11] was critical for reliable estimation. Similar underestimation occurred while estimating habitat-use probability at reserve-scale [naïve = 0.39; Ψs(SE = 0.71 (0.06]. At landscape scale, relative abundance of principal ungulate prey primarily influenced dhole habitat occupancy. Habitat-use within a reserve, however, was predominantly and negatively influenced by anthropogenic disturbance. Our results are the first rigorous assessment of dhole occupancy at multiple spatial scales with potential conservation value. The approach used in this study has potential

  6. CisLunar Habitat Internal Architecture Design Criteria

    Science.gov (United States)

    Jones, R.; Kennedy, K.; Howard, R.; Whitmore, M.; Martin, C.; Garate, J.

    2017-01-01

    BACKGROUND: In preparation for human exploration to Mars, there is a need to define the development and test program that will validate deep space operations and systems. In that context, a Proving Grounds CisLunar habitat spacecraft is being defined as the next step towards this goal. This spacecraft will operate differently from the ISS or other spacecraft in human history. The performance envelope of this spacecraft (mass, volume, power, specifications, etc.) is being defined by the Future Capabilities Study Team. This team has recognized the need for a human-centered approach for the internal architecture of this spacecraft and has commissioned a CisLunar Phase-1 Habitat Internal Architecture Study Team to develop a NASA reference configuration, providing the Agency with a "smart buyer" approach for future acquisition. THE CISLUNAR HABITAT INTERNAL ARCHITECTURE STUDY: Overall, the CisLunar Habitat Internal Architecture study will address the most significant questions and risks in the current CisLunar architecture, habitation, and operations concept development. This effort is achieved through definition of design criteria, evaluation criteria and process, design of the CisLunar Habitat Phase-1 internal architecture, and the development and fabrication of internal architecture concepts combined with rigorous and methodical Human-in-the-Loop (HITL) evaluations and testing of the conceptual innovations in a controlled test environment. The vision of the CisLunar Habitat Internal Architecture Study is to design, build, and test a CisLunar Phase-1 Habitat Internal Architecture that will be used for habitation (e.g. habitability and human factors) evaluations. The evaluations will mature CisLunar habitat evaluation tools, guidelines, and standards, and will interface with other projects such as the Advanced Exploration Systems (AES) Program integrated Power, Avionics, Software (iPAS), and Logistics for integrated human-in-the-loop testing. The mission of the Cis

  7. Possibilities of whole-body MRI for investigating musculoskeletal diseases

    International Nuclear Information System (INIS)

    Lenk, S.; Claussen, C.D.; Schlemmer, H.P.; Fischer, S.; Koetter, I.

    2004-01-01

    This contribution outlines possibilities and limitations of whole-body MRI for investigating musculoskeletal diseases. Benefits and drawbacks of the novel whole-body MRI technology are discussed and a possible whole-body MRI sequence protocol for musculoskeletal examinations is proposed. Muscle, joint and bone diseases are discussed in which the application of whole-body MRI may be of advantage. Particularly, polymyositis, muscledystrophy, rheumatoid arthritis, spondylitis ancylosans, multiple trauma, skeletal metastases, multiple myeloma and malignant lymphoma are mentioned. Whole-body MRI opens new advantages for the examination of multifocal musculoskeletal diseases. The clinical benefit of this method for particular diseases has to be evaluated in further studies, however. (orig.) [de

  8. Habitat selection and management of the Hawaiian crow

    Science.gov (United States)

    Giffen, J.G.; Scott, J.M.; Mountainspring, S.

    1987-01-01

    The abundance and range of the Hawaiian crow, or alala, (Corvus hawaiiensis) have decreased drastically since the 1890's. Fewer than 10 breeding pairs remained in the wild in 1985. A sample of 82 nests during 1970-82 were used to determine habitat associations. Two hundred firty-nine alala observations were used to estimate densities occurring in different vegetation types in 1978. Compared to available habitat, more nests and higher bird densities during the breeding season occurred in areas where: (1) canopy cover was > 60%; (2) koa (Acacia koa) and ohia (Metrosideros polymorpha) were dominant species in the crown layer; (3) native plants constituted > 75% of the understory cover; and (4) the elevation was 1,100-1,500 m. Compared to breeding habitat, nonbreeding habitat tended to lie at lower elevations and in wetter forests having the crown layer dominated by ohia but lacking koa. Habitat loss is a major factor underlying the decline of this species although predation on fledgings, avian disease, and shooting also have reduced the population. Remaining key habitat areas have little or no legal protection through zoning and land ownership. Preserves should be established to encompass the location of existing pairs and to assure the provision of optimum breeding habitat and suitable nonbreeding habitat.

  9. Does habitat variability really promote metabolic network modularity?

    Science.gov (United States)

    Takemoto, Kazuhiro

    2013-01-01

    The hypothesis that variability in natural habitats promotes modular organization is widely accepted for cellular networks. However, results of some data analyses and theoretical studies have begun to cast doubt on the impact of habitat variability on modularity in metabolic networks. Therefore, we re-evaluated this hypothesis using statistical data analysis and current metabolic information. We were unable to conclude that an increase in modularity was the result of habitat variability. Although horizontal gene transfer was also considered because it may contribute for survival in a variety of environments, closely related to habitat variability, and is known to be positively correlated with network modularity, such a positive correlation was not concluded in the latest version of metabolic networks. Furthermore, we demonstrated that the previously observed increase in network modularity due to habitat variability and horizontal gene transfer was probably due to a lack of available data on metabolic reactions. Instead, we determined that modularity in metabolic networks is dependent on species growth conditions. These results may not entirely discount the impact of habitat variability and horizontal gene transfer. Rather, they highlight the need for a more suitable definition of habitat variability and a more careful examination of relationships of the network modularity with horizontal gene transfer, habitats, and environments.

  10. Robot-Assisted Body-Weight-Supported Treadmill Training in Gait Impairment in Multiple Sclerosis Patients: A Pilot Study.

    Science.gov (United States)

    Łyp, Marek; Stanisławska, Iwona; Witek, Bożena; Olszewska-Żaczek, Ewelina; Czarny-Działak, Małgorzata; Kaczor, Ryszard

    2018-02-13

    This study deals with the use of a robot-assisted body-weight-supported treadmill training in multiple sclerosis (MS) patients with gait dysfunction. Twenty MS patients (10 men and 10 women) of the mean of 46.3 ± 8.5 years were assigned to a six-week-long training period with the use of robot-assisted treadmill training of increasing intensity of the Lokomat type. The outcome measure consisted of the difference in motion-dependent torque of lower extremity joint muscles after training compared with baseline before training. We found that the training uniformly and significantly augmented the torque of both extensors and flexors of the hip and knee joints. The muscle power in the lower limbs of SM patients was improved, leading to corrective changes of disordered walking movements, which enabled the patients to walk with less effort and less assistance of care givers. The torque augmentation could have its role in affecting the function of the lower extremity muscle groups during walking. The results of this pilot study suggest that the robot-assisted body-weight-supported treadmill training may be a potential adjunct measure in the rehabilitation paradigm of 'gait reeducation' in peripheral neuropathies.

  11. Effects of spatial subsidies and habitat structure on the foraging ecology and size of geckos.

    Directory of Open Access Journals (Sweden)

    Amy A Briggs

    Full Text Available While it is well established that ecosystem subsidies--the addition of energy, nutrients, or materials across ecosystem boundaries--can affect consumer abundance, there is less information available on how subsidy levels may affect consumer diet, body condition, trophic position, and resource partitioning among consumer species. There is also little information on whether changes in vegetation structure commonly associated with spatial variation in subsidies may play an important role in driving consumer responses to subsidies. To address these knowledge gaps, we studied changes in abundance, diet, trophic position, size, and body condition of two congeneric gecko species (Lepidodactylus spp. that coexist in palm dominated and native (hereafter dicot dominated forests across the Central Pacific. These forests differ strongly both in the amount of marine subsidies that they receive from seabird guano and carcasses, and in the physical structure of the habitat. Contrary to other studies, we found that subsidy level had no impact on the abundance of either gecko species; it also did not have any apparent effects on resource partitioning between species. However, it did affect body size, dietary composition, and trophic position of both species. Geckos in subsidized, dicot forests were larger, had higher body condition and more diverse diets, and occupied a much higher trophic position than geckos found in palm dominated, low subsidy level forests. Both direct variation in subsidy levels and associated changes in habitat structure appear to play a role in driving these responses. These results suggest that variation in subsidy levels may drive important behavioral responses in predators, even when their numerical response is limited. Strong changes in trophic position of consumers also suggest that subsidies may drive increasingly complex food webs, with longer overall food chain length.

  12. Effects of spatial subsidies and habitat structure on the foraging ecology and size of geckos

    Science.gov (United States)

    Briggs, Amy A.; Young, Hillary S.; McCauley, Douglas J.; Hathaway, Stacie A.; Dirzo, Rodolfo; Fisher, Robert N.

    2012-01-01

    While it is well established that ecosystem subsidies—the addition of energy, nutrients, or materials across ecosystem boundaries—can affect consumer abundance, there is less information available on how subsidy levels may affect consumer diet, body condition, trophic position, and resource partitioning among consumer species. There is also little information on whether changes in vegetation structure commonly associated with spatial variation in subsidies may play an important role in driving consumer responses to subsidies. To address these knowledge gaps, we studied changes in abundance, diet, trophic position, size, and body condition of two congeneric gecko species (Lepidodactylus spp.) that coexist in palm dominated and native (hereafter dicot dominated) forests across the Central Pacific. These forests differ trongly both in the amount of marine subsidies that they receive from seabird guano and carcasses, and in the physical structure of the habitat. Contrary to other studies, we found that subsidy level had no impact on the abundance of either gecko species; it also did not have any apparent effects on resource partitioning between species. However, it did affect body size, dietary composition, and trophic position of both species. Geckos in subsidized, dicot forests were larger, had higher body condition and more diverse diets, and occupied a much higher trophic position than geckos found in palm dominated, low subsidy level forests. Both direct variation in subsidy levels and associated changes in habitat structure appear to play a role in driving these responses. These results suggest that variation in subsidy levels may drive important behavioral responses in predators, even when their numerical response is limited. Strong changes in trophic position of consumers also suggest that subsidies may drive increasingly complex food webs, with longer overall food chain length.

  13. Gulf-Wide Information System, Environmental Sensitivity Index Habitats Database, Geographic NAD83, LDWF (2001) [esi_habitats_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains sensitive biological resource data for coastal habitats in Louisiana. Vector polygons represent various habitats, including marsh types, other...

  14. Multiple myoma: current recommendations for imaging; Multiples Myelom: Aktuelle Empfehlungen fuer die Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Hillengass, J. [Medizinische Universitaetsklinik, Abteilung fuer Haematologie, Onkologie und Rheumatologie, Heidelberg (Germany); Deutsches Krebsforschungszentrum, Abteilung Radiologie E010, Heidelberg (Germany); Delorme, S. [Deutsches Krebsforschungszentrum, Abteilung Radiologie E010, Heidelberg (Germany)

    2012-04-15

    Imaging in monoclonal plasma cell disease serves to detect end organ damage, i.e., osteoporosis or bone destruction. Diffuse or circumscribed bone marrow infiltration without damage to mineralized bone is so far not regarded as end organ damage. Skeletal plain x-ray film survey to detect bone destruction, osteoporosis or fractures. Whole body low-dose computed tomography (CT) and whole body magnetic resonance imaging (MRI) allow a more sensitive assessment of both mineralized bone and bone marrow, with greater patient comfort and in the case of MRI without ionizing radiation. According to the literature, cross-sectional imaging is clearly superior to skeletal surveys and MRI is more sensitive than CT. Every locally destructive lesion will be detectable with MRI but for assessing the damage to mineralized bone CT is indispensible. The sensitivities of positron emission tomography (PET)/CT and MRI are comparable. If available whole body MRI and whole body low dose CT should replace conventional skeletal surveys. This has already been implemented in several centers in Germany. For the initial diagnosis of monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma or symptomatic multiple myeloma, a whole-body MRI and a whole body low-dose CT should be performed. For MGUS and asymptomatic myeloma, whole body MRI only should be performed for follow-up until detection of first bone destruction. Patients with symptomatic multiple myeloma and known bone destruction will usually have whole body low-dose CT, supplemented by MRI studies where clinically required. (orig.) [German] Aufgabe der bildgebenden Diagnostik monoklonaler Plasmazellerkrankungen ist der Nachweis der Endorganschaedigung, d. h. der Osteoporose oder der Destruktion des mineralisierten Knochens. Die alleinige umschriebene oder diffuse Markrauminfiltration ohne knoecherne Destruktion gilt nach heutiger Konvention nicht als Endorganschaedigung. Konventioneller Roentgenskelettstatus

  15. Habitat connectivity and fragmented nuthatch populations in agricultural landscapes

    NARCIS (Netherlands)

    Langevelde, van F.

    1999-01-01

    In agricultural landscapes, the habitat of many species is subject to fragmentation. When the habitat of a species is fragmented and the distances between patches of habitat are large relative to the movement distances of the species, it can be expected that the degree of habitat

  16. Habitat connectivity and ecosystem productivity: implications from a simple model.

    Science.gov (United States)

    Cloern, James E

    2007-01-01

    The import of resources (food, nutrients) sustains biological production and food webs in resource-limited habitats. Resource export from donor habitats subsidizes production in recipient habitats, but the ecosystem-scale consequences of resource translocation are generally unknown. Here, I use a nutrient-phytoplankton-zooplankton model to show how dispersive connectivity between a shallow autotrophic habitat and a deep heterotrophic pelagic habitat can amplify overall system production in metazoan food webs. This result derives from the finite capacity of suspension feeders to capture and assimilate food particles: excess primary production in closed autotrophic habitats cannot be assimilated by consumers; however, if excess phytoplankton production is exported to food-limited heterotrophic habitats, it can be assimilated by zooplankton to support additional secondary production. Transport of regenerated nutrients from heterotrophic to autotrophic habitats sustains higher system primary production. These simulation results imply that the ecosystem-scale efficiency of nutrient transformation into metazoan biomass can be constrained by the rate of resource exchange across habitats and that it is optimized when the transport rate matches the growth rate of primary producers. Slower transport (i.e., reduced connectivity) leads to nutrient limitation of primary production in autotrophic habitats and food limitation of secondary production in heterotrophic habitats. Habitat fragmentation can therefore impose energetic constraints on the carrying capacity of aquatic ecosystems. The outcomes of ecosystem restoration through habitat creation will be determined by both functions provided by newly created aquatic habitats and the rates of hydraulic connectivity between them.

  17. Convergent evolution, habitat shifts and variable diversification rates in the ovenbird-woodcreeper family (Furnariidae).

    Science.gov (United States)

    Irestedt, Martin; Fjeldså, Jon; Dalén, Love; Ericson, Per G P

    2009-11-21

    included multiple radiations into more open and bushy environments. The synallaxines were found to have had a particularly high diversification rate, which may be explained by their ability to build exposed vegetative nests and thus to expand into a variety of novel habitats that emerged during a period of cooling and aridification in South America.

  18. Habitat connectivity as a metric for aquatic microhabitat quality: Application to Chinook salmon spawning habitat

    Science.gov (United States)

    Ryan Carnie; Daniele Tonina; Jim McKean; Daniel Isaak

    2016-01-01

    Quality of fish habitat at the scale of a single fish, at the metre resolution, which we defined here as microhabitat, has been primarily evaluated on short reaches, and their results have been extended through long river segments with methods that do not account for connectivity, a measure of the spatial distribution of habitat patches. However, recent...

  19. Fish habitat mitigation measures for hydrotechnical projects

    International Nuclear Information System (INIS)

    McPhail, G.D.; MacMillan, D.B.; Katopodis, C.

    1992-01-01

    In recent years, the identification and mitigation of environmental impacts of hydrotechnical projects, particularly on fish and fish habitats, have become a major component of project planning and design. Potential impacts to fish and fish habitat may include increased fish mortality, decreased species diversity, and loss or decreases in fish production due to loss of habitat or alteration of its suitability. These impacts arise from flooding of riverine habitat, alteration of flow quantity and distribution, changes in morphology, and alteration of water quality, including suspended sediments, temperature, dissolved oxygen, and mercury. The results of a study for the Canadian Federal Department of Fisheries and Oceans Central and Arctic Region, examining fish habitat mitigation techniques for their applicability to hydrotechnical projects in Canada are summarized. The requirements for achievement and verification of the no net loss policy for a project are discussed. 10 refs., 2 tabs

  20. Prisoners in their habitat? Generalist dispersal by habitat specialists: a case study in southern water vole (Arvicola sapidus.

    Directory of Open Access Journals (Sweden)

    Alejandro Centeno-Cuadros

    Full Text Available Habitat specialists inhabiting scarce and scattered habitat patches pose interesting questions related to dispersal such as how specialized terrestrial mammals do to colonize distant patches crossing hostile matrices. We assess dispersal patterns of the southern water vole (Arvicola sapidus, a habitat specialist whose habitat patches are distributed through less than 2% of the study area (overall 600 km² and whose populations form a dynamic metapopulational network. We predict that individuals will require a high ability to move through the inhospitable matrix in order to avoid genetic and demographic isolations. Genotypes (N = 142 for 10 microsatellites and sequences of the whole mitochondrial Control Region (N = 47 from seven localities revealed a weak but significant genetic structure partially explained by geographic distance. None of the landscape models had a significant effect on genetic structure over that of the Euclidean distance alone and no evidence for efficient barriers to dispersal was found. Contemporary gene flow was not severely limited for A. sapidus as shown by high migration rates estimates (>10% between non-neighbouring areas. Sex-biased dispersal tests did not support differences in dispersal rates, as shown by similar average axial parent-offspring distances, in close agreement with capture-mark-recapture estimates. As predicted, our results do not support any preferences of the species for specific landscape attributes on their dispersal pathways. Here, we combine field and molecular data to illustrate how a habitat specialist mammal might disperse like a habitat generalist, acquiring specific long-distance dispersal strategies as an adaptation to patchy, naturally fragmented, heterogeneous and unstable habitats.