WorldWideScience

Sample records for multiple biomarker responses

  1. CSF inflammatory biomarkers responsive to treatment in progressive multiple sclerosis capture residual inflammation associated with axonal damage.

    Science.gov (United States)

    Romme Christensen, Jeppe; Komori, Mika; von Essen, Marina Rode; Ratzer, Rikke; Börnsen, Lars; Bielekova, Bibi; Sellebjerg, Finn

    2018-05-01

    Development of treatments for progressive multiple sclerosis (MS) is challenged by the lack of sensitive and treatment-responsive biomarkers of intrathecal inflammation. To validate the responsiveness of cerebrospinal fluid (CSF) inflammatory biomarkers to treatment with natalizumab and methylprednisolone in progressive MS and to examine the relationship between CSF inflammatory and tissue damage biomarkers. CSF samples from two open-label phase II trials of natalizumab and methylprednisolone in primary and secondary progressive MS. CSF concentrations of 20 inflammatory biomarkers and CSF biomarkers of axonal damage (neurofilament light chain (NFL)) and demyelination were analysed using electrochemiluminescent assay and enzyme-linked immunosorbent assay (ELISA). In all, 17 natalizumab- and 23 methylprednisolone-treated patients had paired CSF samples. CSF sCD27 displayed superior standardised response means and highly significant decreases during both natalizumab and methylprednisolone treatment; however, post-treatment levels remained above healthy donor reference levels. Correlation analyses of CSF inflammatory biomarkers and NFL before, during and after treatment demonstrated that CSF sCD27 consistently correlates with NFL. These findings validate CSF sCD27 as a responsive and sensitive biomarker of intrathecal inflammation in progressive MS, capturing residual inflammation after treatment. Importantly, CSF sCD27 correlates with NFL, consistent with residual inflammation after anti-inflammatory treatment being associated with axonal damage.

  2. Assessment of a mussel as a metal bioindicator of coastal contamination: Relationships between metal bioaccumulation and multiple biomarker responses

    International Nuclear Information System (INIS)

    Chandurvelan, Rathishri; Marsden, Islay D.; Glover, Chris N.; Gaw, Sally

    2015-01-01

    This is the first study to use a multiple biomarker approach on the green-lipped mussel, Perna canaliculus to test its feasibility as a bioindicator of coastal metal contamination in New Zealand (NZ). Mussels were collected from six low intertidal sites varying in terms of anthropogenic impacts, within two regions (West Coast and Nelson) of the South Island of NZ. Trace elements, including arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn), were measured in the gills, digestive gland, foot and mantle, and in the surface sediments from where mussels were collected. Metal levels in the sediment were relatively low and there was only one site (Mapua, Nelson) where a metal (Ni) exceeded the Australian and New Zealand Interim Sediment Quality Guideline values. Metal levels in the digestive gland were generally higher than those from the other tissues. A variety of biomarkers were assessed to ascertain mussel health. Clearance rate, a physiological endpoint, correlated with metal level in the tissues, and along with scope for growth, was reduced in the most contaminated site. Metallothionein-like protein content and catalase activity in the digestive gland, and catalase activity and lipid peroxidation in the gill, were also correlated to metal accumulation. Although there were few regional differences, the sampling sites were clearly distinguishable based on the metal contamination profiles and biomarker responses. P. canaliculus appears to be a useful bioindicator species for coastal habitats subject to metal contamination. In this study tissue and whole organism responses provided insight into the biological stress responses of mussels to metal contaminants, indicating that such measurements could be a useful addition to biomonitoring programmes in NZ. - Highlights: • Multiple biomarker responses were measured in mussels from 6 sites. • Metal content of mussel tissues correlated with specific biomarker responses. • Clearance rate

  3. Assessment of a mussel as a metal bioindicator of coastal contamination: Relationships between metal bioaccumulation and multiple biomarker responses

    Energy Technology Data Exchange (ETDEWEB)

    Chandurvelan, Rathishri, E-mail: rch118@uclive.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Marsden, Islay D., E-mail: islay.marsden@canterbury.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Glover, Chris N., E-mail: chris.glover@canterbury.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Gaw, Sally, E-mail: sally.gaw@canterbury.ac.nz [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)

    2015-04-01

    This is the first study to use a multiple biomarker approach on the green-lipped mussel, Perna canaliculus to test its feasibility as a bioindicator of coastal metal contamination in New Zealand (NZ). Mussels were collected from six low intertidal sites varying in terms of anthropogenic impacts, within two regions (West Coast and Nelson) of the South Island of NZ. Trace elements, including arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn), were measured in the gills, digestive gland, foot and mantle, and in the surface sediments from where mussels were collected. Metal levels in the sediment were relatively low and there was only one site (Mapua, Nelson) where a metal (Ni) exceeded the Australian and New Zealand Interim Sediment Quality Guideline values. Metal levels in the digestive gland were generally higher than those from the other tissues. A variety of biomarkers were assessed to ascertain mussel health. Clearance rate, a physiological endpoint, correlated with metal level in the tissues, and along with scope for growth, was reduced in the most contaminated site. Metallothionein-like protein content and catalase activity in the digestive gland, and catalase activity and lipid peroxidation in the gill, were also correlated to metal accumulation. Although there were few regional differences, the sampling sites were clearly distinguishable based on the metal contamination profiles and biomarker responses. P. canaliculus appears to be a useful bioindicator species for coastal habitats subject to metal contamination. In this study tissue and whole organism responses provided insight into the biological stress responses of mussels to metal contaminants, indicating that such measurements could be a useful addition to biomonitoring programmes in NZ. - Highlights: • Multiple biomarker responses were measured in mussels from 6 sites. • Metal content of mussel tissues correlated with specific biomarker responses. • Clearance rate

  4. Multiple biomarkers responses in Prochilodus lineatus allowed assessing changes in the water quality of Salado River basin (Santa Fe, Argentina)

    Energy Technology Data Exchange (ETDEWEB)

    Cazenave, Jimena, E-mail: jcazenave@inali.unl.edu.a [Laboratorio de Ictiologia, Instituto Nacional de Limnologia (INALI-CONICET-UNL), Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe (Argentina); Bacchetta, Carla; Parma, Maria J.; Scarabotti, Pablo A. [Laboratorio de Ictiologia, Instituto Nacional de Limnologia (INALI-CONICET-UNL), Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe (Argentina); Wunderlin, Daniel A. [Dto. Bioquimica Clinica-CIBICI-CONICET, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre esq Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2009-11-15

    This field study assessed water quality of Salado River basin by using a set of biomarkers in the fish Prochilodus lineatus. Multiple biomarkers were measured, including morphological indexes (condition factor, liver somatic index), hematological (red and white blood cells) and biochemical (glucose, total protein and cholinesterase activity) parameters. Besides, detoxication and oxidative stress markers (antioxidant enzymes, lipid peroxidation) were measured in liver, gills and kidney. Despite water quality assessment did not show marked differences among sites, biomarkers responses indicate that fish are living under stressful environmental conditions. According to multivariate analysis glucose, glutathione S-transferase activity, lipid peroxidation levels and the count of white blood cells are key biomarkers to contribute to discrimination of sites. So, we suggest use those biomarkers in future monitoring of freshwater aquatic systems. - A battery of biomarkers was successfully applied to assess the health of the fish Prochilodus lineatus from Salado River basin.

  5. Multiple biomarkers responses in Prochilodus lineatus allowed assessing changes in the water quality of Salado River basin (Santa Fe, Argentina)

    International Nuclear Information System (INIS)

    Cazenave, Jimena; Bacchetta, Carla; Parma, Maria J.; Scarabotti, Pablo A.; Wunderlin, Daniel A.

    2009-01-01

    This field study assessed water quality of Salado River basin by using a set of biomarkers in the fish Prochilodus lineatus. Multiple biomarkers were measured, including morphological indexes (condition factor, liver somatic index), hematological (red and white blood cells) and biochemical (glucose, total protein and cholinesterase activity) parameters. Besides, detoxication and oxidative stress markers (antioxidant enzymes, lipid peroxidation) were measured in liver, gills and kidney. Despite water quality assessment did not show marked differences among sites, biomarkers responses indicate that fish are living under stressful environmental conditions. According to multivariate analysis glucose, glutathione S-transferase activity, lipid peroxidation levels and the count of white blood cells are key biomarkers to contribute to discrimination of sites. So, we suggest use those biomarkers in future monitoring of freshwater aquatic systems. - A battery of biomarkers was successfully applied to assess the health of the fish Prochilodus lineatus from Salado River basin.

  6. Multiple Sclerosis Cerebrospinal Fluid Biomarkers

    Directory of Open Access Journals (Sweden)

    Gavin Giovannoni

    2006-01-01

    Full Text Available Cerebrospinal fluid (CSF is the body fluid closest to the pathology of multiple sclerosis (MS. For many candidate biomarkers CSF is the only fluid that can be investigated. Several factors need to be standardized when sampling CSF for biomarker research: time/volume of CSF collection, sample processing/storage, and the temporal relationship of sampling to clinical or MRI markers of disease activity. Assays used for biomarker detection must be validated so as to optimize the power of the studies. A formal method for establishing whether or not a particular biomarker can be used as a surrogate end-point needs to be adopted. This process is similar to that used in clinical trials, where the reporting of studies has to be done in a standardized way with sufficient detail to permit a critical review of the study and to enable others to reproduce the study design. A commitment must be made to report negative studies so as to prevent publication bias. Pre-defined consensus criteria need to be developed for MS-related prognostic biomarkers. Currently no candidate biomarker is suitable as a surrogate end-point. Bulk biomarkers of the neurodegenerative process such as glial fibrillary acidic protein (GFAP and neurofilaments (NF have advantages over intermittent inflammatory markers.

  7. Fluid biomarkers in multiple system atrophy

    DEFF Research Database (Denmark)

    Laurens, Brice; Constantinescu, Radu; Freeman, Roy

    2015-01-01

    Despite growing research efforts, no reliable biomarker currently exists for the diagnosis and prognosis of multiple system atrophy (MSA). Such biomarkers are urgently needed to improve diagnostic accuracy, prognostic guidance and also to serve as efficacy measures or surrogates of target...... engagement for future clinical trials. We here review candidate fluid biomarkers for MSA and provide considerations for further developments and harmonization of standard operating procedures. A PubMed search was performed until April 24, 2015 to review the literature with regard to candidate blood...... and cerebrospinal fluid (CSF) biomarkers for MSA. Abstracts of 1760 studies were retrieved and screened for eligibility. The final list included 60 studies assessing fluid biomarkers in patients with MSA. Most studies have focused on alpha-synuclein, markers of axonal degeneration or catecholamines. Their results...

  8. Inflammasome Proteins As Biomarkers of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Robert W. Keane

    2018-03-01

    Full Text Available Multiple sclerosis (MS is an autoimmune disease that affects the brain and spinal cord. The inflammasome is a multiprotein complex that contributes to the innate immune response in animal models of MS as well as in patients with the disease. Important to the care of patients with MS is the need for biomarkers that can predict disease onset, disease exacerbation, as well as response to treatment. In this study, we analyzed serum samples from 32 patients with MS and 120 age-matched controls, and provide receiver operator characteristic (ROC curves with associated confidence intervals following analyses of serum samples from patients with MS, most of which had the relapsing-remitting form of the disease, and from healthy unaffected donors, and determine the sensitivity and specificity of inflammasome proteins as biomarkers of MS. We report that caspase-1 (1.662 ± 0.6024 difference between means, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC (407.5 ± 35.79, and interleukin (IL-18 (78.53 + 17.86 were elevated in the serum of MS patients when compared to controls. Interestingly, the levels of IL-1β (−0.5961 ± 0.265 were lower in the MS cohort. Importantly, the area under the curve (AUC for ASC and caspase-1 were 0.9448 and 0.848, respectively. Taken together, these data suggest that ASC and caspase-1 could be potential candidate biomarkers for MS onset.

  9. Consensus definitions and application guidelines for control groups in cerebrospinal fluid biomarker studies in multiple sclerosis

    DEFF Research Database (Denmark)

    Teunissen, Charlotte; Menge, Til; Altintas, Ayse

    2013-01-01

    The choice of appropriate control group(s) is critical in cerebrospinal fluid (CSF) biomarker research in multiple sclerosis (MS). There is a lack of definitions and nomenclature of different control groups and a rationalized application of different control groups. We here propose consensus......). Furthermore, we discuss the application of these control groups in specific study designs, such as for diagnostic biomarker studies, prognostic biomarker studies and therapeutic response studies. Application of these uniform definitions will lead to better comparability of biomarker studies and optimal use...

  10. Biomarker responses to environmental contamination in estuaries: A comparative multi-taxa approach.

    Science.gov (United States)

    Duarte, Irina A; Reis-Santos, Patrick; França, Susana; Cabral, Henrique; Fonseca, Vanessa F

    2017-08-01

    Estuaries are highly productive ecosystems subjected to numerous anthropogenic pressures with consequent environmental quality degradation. In this study, multiple biomarker responses [superoxide dismutase (SOD), catalase (CAT), ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) activities, as well as lipid peroxidation (LPO) and DNA damage (DNAd)] were determined in two fish (Dicentrarchus labrax and Pomatoschistus microps) and four macroinvertebrate species (Carcinus maenas, Crangon crangon, Hediste diversicolor and Scrobicularia plana) from the Ria de Aveiro and Tejo estuaries over distinct months. Two sites per estuarine system were selected based on anthropogenic pressures and magnitude of environmental contamination. Antioxidant enzyme activities in fish species suggested a ubiquitous response to oxidative stress, while biotransformation and effect biomarkers exhibited higher spatial and temporal variation. In invertebrate species, biotransformation enzyme activity was clearly less variable than in fish evidencing lower xenobiotic transformation capability. Overall, largest biomarker responses were found in the most contaminated sites (Tejo), yet species-specific patterns were evident. These should be factored in multi-taxa approaches, considering that the differential functional traits of species, such as habitat use, life-stage, feeding or physiology can influence exposure routes and biomarker responses. The Integrated Biomarker Response index highlighted patterns in biomarker responses which were not immediately evident when analyzing biomarkers individually. Overall, results provided insights into the complexity of species responses to contamination in naturally varying estuarine environments. Ultimately, multi-taxa and multi-biomarker approaches provide a comprehensive and complementary view of ecosystem health, encompassing diverse forms of biological integration and exposure routes, and allow the validation of results among markers

  11. MULTIPLE BIOMARKER RESPONSE IN THE MUSSEL, PERNA PERNA TO ASSESS THE MARINE QUALITY IN THE BIG CASABLANCA AREA

    Directory of Open Access Journals (Sweden)

    LAILA EL JOURMI

    2014-03-01

    Full Text Available The aim of this study is to assess the marine environment quality in the Big Casablanca area. A number of biochemical markers were measured in the brown mussel, Perna perna, sampled from four sampling sites characterized by a different degree of contamination and human impacts. As biochemical indices; Catalase (CAT, Glutathione S-transferase (GST, Acetylcholinesterase (AChE, as well as Malondialdehyde (MDA and Metallothioneine (MT were evaluated in whole soft tissues of mussels collected from the selected sites. The biomarkers showed statistically significant differences at the polluted sites when compared to the control ones. Our data indicated that CAT and GST activity, MDA and MT concentration in whole mussel bodies, are a higher and significant (p < 0.05 in mussels collected at polluted sites when compared to specimen sampled from control ones. In contrary the response of AChE activity was significantly (p<0.05 inhibited in mussels from polluted sites when compared to control values. The multiple biomarker responses obtained for October 2010 and 2011, clearly demonstrate the potential presence of different contaminants in Site1 and Site2 reflecting the intensity of pollution in these areas.

  12. Biomarker Qualification: Toward a Multiple Stakeholder Framework for Biomarker Development, Regulatory Acceptance, and Utilization.

    Science.gov (United States)

    Amur, S; LaVange, L; Zineh, I; Buckman-Garner, S; Woodcock, J

    2015-07-01

    The discovery, development, and use of biomarkers for a variety of drug development purposes are areas of tremendous interest and need. Biomarkers can become accepted for use through submission of biomarker data during the drug approval process. Another emerging pathway for acceptance of biomarkers is via the biomarker qualification program developed by the Center for Drug Evaluation and Research (CDER, US Food and Drug Administration). Evidentiary standards are needed to develop and evaluate various types of biomarkers for their intended use and multiple stakeholders, including academia, industry, government, and consortia must work together to help develop this evidence. The article describes various types of biomarkers that can be useful in drug development and evidentiary considerations that are important for qualification. A path forward for coordinating efforts to identify and explore needed biomarkers is proposed for consideration. © 2015 American Society for Clinical Pharmacology and Therapeutics.

  13. Addressing small sample size bias in multiple-biomarker trials: Inclusion of biomarker-negative patients and Firth correction.

    Science.gov (United States)

    Habermehl, Christina; Benner, Axel; Kopp-Schneider, Annette

    2018-03-01

    In recent years, numerous approaches for biomarker-based clinical trials have been developed. One of these developments are multiple-biomarker trials, which aim to investigate multiple biomarkers simultaneously in independent subtrials. For low-prevalence biomarkers, small sample sizes within the subtrials have to be expected, as well as many biomarker-negative patients at the screening stage. The small sample sizes may make it unfeasible to analyze the subtrials individually. This imposes the need to develop new approaches for the analysis of such trials. With an expected large group of biomarker-negative patients, it seems reasonable to explore options to benefit from including them in such trials. We consider advantages and disadvantages of the inclusion of biomarker-negative patients in a multiple-biomarker trial with a survival endpoint. We discuss design options that include biomarker-negative patients in the study and address the issue of small sample size bias in such trials. We carry out a simulation study for a design where biomarker-negative patients are kept in the study and are treated with standard of care. We compare three different analysis approaches based on the Cox model to examine if the inclusion of biomarker-negative patients can provide a benefit with respect to bias and variance of the treatment effect estimates. We apply the Firth correction to reduce the small sample size bias. The results of the simulation study suggest that for small sample situations, the Firth correction should be applied to adjust for the small sample size bias. Additional to the Firth penalty, the inclusion of biomarker-negative patients in the analysis can lead to further but small improvements in bias and standard deviation of the estimates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dose-Response for Multiple Biomarkers of Exposure and Genotoxic Effect Following Repeated Treatment of Rats with the Alkylating Agents, MMS and MNU.

    Science.gov (United States)

    Ji, Zhiying; LeBaron, Matthew J; Schisler, Melissa R; Zhang, Fagen; Bartels, Michael J; Gollapudi, B Bhaskar; Pottenger, Lynn H

    2016-05-01

    The nature of the dose-response relationship for various in vivo endpoints of exposure and effect were investigated using the alkylating agents, methyl methanesulfonate (MMS) and methylnitrosourea (MNU). Six male F344 rats/group were dosed orally with 0, 0.5, 1, 5, 25 or 50mg/kg bw/day (mkd) of MMS, or 0, 0.01, 0.1, 1, 5, 10, 25 or 50 mkd of MNU, for 4 consecutive days and sacrificed 24h after the last dose. The dose-responses for multiple biomarkers of exposure and genotoxic effect were investigated. In MMS-treated rats, the hemoglobin adduct level, a systemic exposure biomarker, increased linearly with dose (r (2) = 0.9990, P agents. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Biomarkers in the evolution of multiple sclerosis.

    Science.gov (United States)

    Berger, Thomas

    2017-11-01

    Nonimaging biomarkers can be applied in differential diagnosis, evaluation of disease progression and therapy monitoring of multiple sclerosis (MS). Presence of oligoclonal IgG bands in cerebrospinal fluid is a diagnostic element and a negative predictor of MS evolution. AQP4 antibodies are pathogenic and diagnostic for neuromyelitis optica spectrum disorder. Antibodies to myelin oligodendrocyte glycoprotein develop in about 50% of predominantly pediatric patients with acute disseminated encephalomyelitis, but their possible role in pathogenesis is unknown. Currently, there are no individualized biomarkers suitable to track disease progression. Neutralizing antibodies against IFN-β, natalizumab and daclizumab arise with variable frequency and reduce treatment efficacy. The anti-John Cunningham virus antibody index has potential as a biomarker for risk of progressive multifocal leukoencephalopathy.

  16. Plasma Biomarkers Discriminate Clinical Forms of Multiple Sclerosis

    Science.gov (United States)

    Tejera-Alhambra, Marta; Casrouge, Armanda; de Andrés, Clara; Seyfferth, Ansgar; Ramos-Medina, Rocío; Alonso, Bárbara; Vega, Janet; Fernández-Paredes, Lidia; Albert, Matthew L.; Sánchez-Ramón, Silvia

    2015-01-01

    Multiple sclerosis, the most common cause of neurological disability in young population after trauma, represents a significant public health burden. Current challenges associated with management of multiple sclerosis (MS) patients stem from the lack of biomarkers that might enable stratification of the different clinical forms of MS and thus prompt treatment for those patients with progressive MS, for whom there is currently no therapy available. In the present work we analyzed a set of thirty different plasma cytokines, chemokines and growth factors present in circulation of 129 MS patients with different clinical forms (relapsing remitting, secondary progressive and primary progressive MS) and 53 healthy controls, across two independent cohorts. The set of plasma analytes was quantified with Luminex xMAP technology and their predictive power regarding clinical outcome was evaluated both individually using ROC curves and in combination using logistic regression analysis. Our results from two independent cohorts of MS patients demonstrate that the divergent clinical and histology-based MS forms are associated with distinct profiles of circulating plasma protein biomarkers, with distinct signatures being composed of chemokines and growth/angiogenic factors. With this work, we propose that an evaluation of a set of 4 circulating biomarkers (HGF, Eotaxin/CCL11, EGF and MIP-1β/CCL4) in MS patients might serve as an effective tool in the diagnosis and more personalized therapeutic targeting of MS patients. PMID:26039252

  17. Pharmacogenomic Biomarkers

    Directory of Open Access Journals (Sweden)

    Sandra C. Kirkwood

    2002-01-01

    Full Text Available Pharmacogenomic biomarkers hold great promise for the future of medicine and have been touted as a means to personalize prescriptions. Genetic biomarkers for disease susceptibility including both Mendelian and complex disease promise to result in improved understanding of the pathophysiology of disease, identification of new potential therapeutic targets, and improved molecular classification of disease. However essential to fulfilling the promise of individualized therapeutic intervention is the identification of drug activity biomarkers that stratify individuals based on likely response to a particular therapeutic, both positive response, efficacy, and negative response, development of side effect or toxicity. Prior to the widespread clinical application of a genetic biomarker multiple scientific studies must be completed to identify the genetic variants and delineate their functional significance in the pathophysiology of a carefully defined phenotype. The applicability of the genetic biomarker in the human population must then be verified through both retrospective studies utilizing stored or clinical trial samples, and through clinical trials prospectively stratifying patients based on the biomarker. The risk conferred by the polymorphism and the applicability in the general population must be clearly understood. Thus, the development and widespread application of a pharmacogenomic biomarker is an involved process and for most disease states we are just at the beginning of the journey towards individualized therapy and improved clinical outcome.

  18. CURRENT APPROACHES FOR RESEARCH OF MULTIPLE SCLEROSIS BIOMARKERS

    Directory of Open Access Journals (Sweden)

    Kolyada T.I

    2016-12-01

    Full Text Available Current data concerning features of multiple sclerosis (MS etiology, pathogenesis, clinical course and treatment of disease indicate the necessity of personalized approach to the management of MS patients. These features are the variety of possible etiological factors and mechanisms that trigger the development of MS, different courses of disease, and significant differences in treatment efficiency. Phenotypic and pathogenetic heterogeneity of MS requires, on the one hand, the stratification of patients into groups with different treatment depending on a number of criteria including genetic characteristics, disease course, stage of the pathological process, and forms of the disease. On the other hand, it requires the use of modern methods for assessment of individual risk of developing MS, its early diagnosis, evaluation and prognosis of the disease course and the treatment efficiency. This approach is based on the identification and determination of biomarkers of MS including the use of systems biology technology platforms such as genomics, proteomics, metabolomics and bioinformatics. Research and practical use of biomarkers of MS in clinical and laboratory practice requires the use of a wide range of modern medical and biological, mathematical and physicochemical methods. The group of "classical" methods used to study MS biomarkers includes physicochemical and immunological methods aimed at the selection and identification of single molecular biomarkers, as well as methods of molecular genetic analysis. This group of methods includes ELISA, western blotting, isoelectric focusing, immunohistochemical methods, flow cytometry, spectrophotometric and nephelometric methods. These techniques make it possible to carry out both qualitative and quantitative assay of molecular biomarkers. The group of "classical methods" can also include methods based on polymerase chain reaction (including multiplex and allele-specific PCR and genome sequencing

  19. Integrative assessment of biomarker responses in teleostean fishes exposed to glyphosate-based herbicide (Excel Mera 71

    Directory of Open Access Journals (Sweden)

    Sukhendu Dey

    2016-12-01

    Full Text Available Present study deals with the effects of glyphosate-based herbicide, Excel Mera 71 on Anabas testudineus, Heteropnestes fossilis and Oreochromis niloticus in field conditions (1.85 kg/ha based on anti-oxidative, metabolic and digestive responses. For this study following biomarkers viz., acetylcholinesterase (AChE, lipid peroxidation (LPO, catalase (CAT, glutathione-S-transferase (GST, alkaline phosphatase (ALP, aspartate aminotransferase (AST, alanine aminotransferase (ALT, amylase, lipase and protease were investigated in gill, stomach, intestine, liver, kidney, brain, muscle and spinal cord of the concerned fish species. Enzyme activities were significantly altered by glyphosate exposure after 30 days, these activities were tissue as well as species specific. The results suggested that these biomarkers could be used to assess the ecological risks of glyphosate on fish. Bioaccumulation factor (BAF studied in different aquatic natural macrophytes showed order of Alternanthera philoxeroides > Azolla pinnata > Lemna sp. (Minor > Lemna sp. (Major > Pistia stratiotes, while transfer factor (TF showed the order of Pistia stratiotes > Alternanthera philoxeroides > Lemna sp. Bioconcentration factor (BCF study showed maximum accumulation of glyphosate in liver, kidney or intestine, and minimum either in bone or stomach irrespective of fish species. An integrated biomarker response (IBR, which uses a battery of biomarkers to calculate the standardized scores for each biomarker responses ranging from physiological to biochemical/molecular responses, was evaluated by combining the multiple biomarkers into a single value to evaluate quantitatively the toxicological effects of glyphosate. In general, the multiple indices exhibited variations and A. testudineus was more affected than other fish species; maximum IBR value was observed for LPO and minimum in case of ALT. The order of integrated biomarkers caused by glyphosate treatment was

  20. Search for specific biomarkers of IFNβ bioactivity in patients with multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Sunny Malhotra

    Full Text Available Myxovirus A (MxA, a protein encoded by the MX1 gene with antiviral activity, has proven to be a sensitive measure of IFNβ bioactivity in multiple sclerosis (MS. However, the use of MxA as a biomarker of IFNβ bioactivity has been criticized for the lack of evidence of its role on disease pathogenesis and the clinical response to IFNβ. Here, we aimed to identify specific biomarkers of IFNβ bioactivity in order to compare their gene expression induction by type I IFNs with the MxA, and to investigate their potential role in MS pathogenesis. Gene expression microarrays were performed in PBMC from MS patients who developed neutralizing antibodies (NAB to IFNβ at 12 and/or 24 months of treatment and patients who remained NAB negative. Nine genes followed patterns in gene expression over time similar to the MX1, which was considered the gold standard gene, and were selected for further experiments: IFI6, IFI27, IFI44L, IFIT1, HERC5, LY6E, RSAD2, SIGLEC1, and USP18. In vitro experiments in PBMC from healthy controls revealed specific induction of selected biomarkers by IFNβ but not IFNγ, and several markers, in particular USP18 and HERC5, were shown to be significantly induced at lower IFNβ concentrations and more selective than the MX1 as biomarkers of IFNβ bioactivity. In addition, USP18 expression was deficient in MS patients compared with healthy controls (p = 0.0004. We propose specific biomarkers that may be considered in addition to the MxA to evaluate IFNβ bioactivity, and to further explore their implication in MS pathogenesis.

  1. Anchoring novel molecular biomarker responses to traditional responses in fish exposed to environmental contamination

    International Nuclear Information System (INIS)

    Nogueira, Patricia; Pacheco, Mario; Lourdes Pereira, M.; Mendo, Sonia; Rotchell, Jeanette M.

    2010-01-01

    The responses of Dicentrarchus labrax and Liza aurata to aquatic pollution were assessed in a contaminated coastal lagoon, using both traditional and novel biomarkers combined. DNA damage, assessed by comet assay, was higher in both fish species from the contaminated sites, whereas levels of cytochrome P450 1A1 gene expression were not significantly altered. The liver histopathological analysis also revealed significant lesions in fish from contaminated sites. Alterations in ras and xpf genes were analysed and additional pollutant-responsive genes were identified. While no alterations were found in ras gene, a downregulation of xpf gene was observed in D. labrax from a contaminated site. Suppression subtractive hybridization applied to D. labrax collected at a contaminated site, revealed altered expression in genes involved in energy metabolism, immune system activity and antioxidant response. The approach and results reported herein demonstrate the utility of anchoring traditional biomarker responses alongside novel biomarker responses. - Novel molecular biomarkers of aquatic environmental contamination in fish.

  2. The use of discriminant analysis for evaluation of early-response multiple biomarkers of radiation exposure using non-human primate 6-Gy whole-body radiation model

    Energy Technology Data Exchange (ETDEWEB)

    Ossetrova, N.I. [Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: ossetrova@afrri.usuhs.mil; Farese, A.M.; MacVittie, T.J. [Marlene and Stewart Greenebaum Cancer Center, Bressler Research Building, Room 7-039, University of Maryland-Baltimore, 655 West Baltimore Street, Baltimore, MD 21201 (United States); Manglapus, G.L.; Blakely, W.F. [Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)

    2007-07-15

    The present need to rapidly identify severely irradiated individuals in mass-casualty and population-monitoring scenarios prompted an evaluation of potential protein biomarkers to provide early diagnostic information after exposure. The level of specific proteins measured using immunodiagnostic technologies may be useful as protein biomarkers to provide early diagnostic information for acute radiation exposures. Herein we present results from on-going studies using a non-human primate (NHP) 6-Gy X-rays ( 0.13Gymin{sup -1}) whole-body radiation model. Protein targets were measured by enzyme-linked immunosorbent assay (ELISA) in blood plasma before, 1, and 2 days after exposure. Exposure of 10 NHPs to 6 Gy resulted in the up-regulation of plasma levels of (a) p21 WAF1/CIP1, (b) interleukin 6 (IL-6), (c) tissue enzyme salivary {alpha}-amylase, and (d) C-reactive protein. Data presented show the potential utility of protein biomarkers selected from distinctly different pathways to detect radiation exposure. A correlation analysis demonstrated strong correlations among different combinations of four candidate radiation-responsive blood protein biomarkers. Data analyzed with use of multivariate discriminant analysis established very successful separation of NHP groups: 100% discrimination power for animals with correct classification for separation between groups before and 1 day after irradiation, and 95% discrimination power for separation between groups before and 2 days after irradiation. These results also demonstrate proof-in-concept that multiple protein biomarkers provide early diagnostic information to the medical community, along with classical biodosimetric methodologies, to effectively manage radiation casualty incidents.

  3. Biomarkers and correlative endpoints for immunotherapy trials.

    Science.gov (United States)

    Morse, Michael A; Osada, Takuya; Hobeika, Amy; Patel, Sandip; Lyerly, H Kim

    2013-01-01

    Immunotherapies for lung cancer are reaching phase III clinical trial, but the ultimate success likely will depend on developing biomarkers to guide development and choosing patient populations most likely to benefit. Because the immune response to cancer involves multiple cell types and cytokines, some spatially and temporally separated, it is likely that multiple biomarkers will be required to fully characterize efficacy of the vaccine and predict eventual benefit. Peripheral blood markers of response, such as the ELISPOT assay and cytokine flow cytometry analyses of peripheral blood mononuclear cells following immunotherapy, remain the standard approach, but it is increasingly important to obtain tissue to study the immune response at the site of the tumor. Earlier clinical endpoints such as response rate and progression-free survival do not correlate with overall survival demonstrated for some immunotherapies, suggesting the need to develop other intermediary clinical endpoints. Insofar as all these biomarkers and surrogate endpoints are relevant in multiple malignancies, it may be possible to extrapolate findings to immunotherapy of lung cancer.

  4. Cocktail effects on biomarker responses in fish

    Energy Technology Data Exchange (ETDEWEB)

    Celander, Malin C., E-mail: malin.celander@zool.gu.se [University of Gothenburg, Department of Zoology, Box 463, SE-405 30 Gothenburg (Sweden)

    2011-10-15

    One of today's greatest challenges in environmental toxicology is to understand effects of mixture toxicity, commonly referred to as cocktail effects, in humans and in wildlife. Biomarker responses in fish are routinely used to assess exposure of anthropogenic chemicals in the aquatic environment. However, little is known about how cocktail effects affect these biomarker responses. For this reason, there is an obvious risk for misinterpretation of biomarker-data and this can have profound negative effects on stakeholder's decisions and actions, as well as on legislations and remediation-plans initiated in order to reduce exposure to certain chemicals. Besides, chemical safety-levels are traditionally based on experiences from lab-studies with single chemicals, which is unfortunate as a chemical can be more toxic when it is mixed with other chemicals, because of the cocktail effect. This review focuses on pharmacokinetic interactions between different classes of pollutants on detoxification mechanisms and how that affects two commonly used biomarkers in the aquatic environment: (1) induction of cytochrome P450 1A (CYP1A) that is mediated via activation of the arylhydrocarbon receptor (AhR), used to assess exposure to aromatic hydrocarbons; (2) induction of vitellogenin (VTG) that is mediated via activation of the estrogen receptor (ER), used to assess exposure to estrogenic chemicals. These responses can be either directly or indirectly affected by the presence of other classes of pollutants as a result of cocktail effects. For example, chemicals that inhibit the function of key metabolic enzymes and transporter pumps that are involved in elimination of AhR- and ER agonists, can result in bioaccumulation of aromatic hydrocarbons and estrogenic chemicals resulting in increased biomarker responses. This cocktail effect can lead to overestimation of the actual exposure pressure. On the contrary, induction of expression of key metabolic enzymes and transporter

  5. Searching for neurodegeneration in multiple sclerosis at clinical onset: Diagnostic value of biomarkers.

    Science.gov (United States)

    Novakova, Lenka; Axelsson, Markus; Malmeström, Clas; Imberg, Henrik; Elias, Olle; Zetterberg, Henrik; Nerman, Olle; Lycke, Jan

    2018-01-01

    Neurodegeneration occurs during the early stages of multiple sclerosis. It is an essential, devastating part of the pathophysiology. Tools for measuring the degree of neurodegeneration could improve diagnostics and patient characterization. This study aimed to determine the diagnostic value of biomarkers of degeneration in patients with recent clinical onset of suspected multiple sclerosis, and to evaluate these biomarkers for characterizing disease course. This cross-sectional study included 271 patients with clinical features of suspected multiple sclerosis onset and was the baseline of a prospective study. After diagnostic investigations, the patients were classified into the following disease groups: patients with clinically isolated syndrome (n = 4) or early relapsing remitting multiple sclerosis (early RRMS; n = 93); patients with relapsing remitting multiple sclerosis with disease durations ≥2 years (established RRMS; n = 39); patients without multiple sclerosis, but showing symptoms (symptomatic controls; n = 89); and patients diagnosed with other diseases (n = 46). In addition, we included healthy controls (n = 51) and patients with progressive multiple sclerosis (n = 23). We analyzed six biomarkers of neurodegeneration: cerebrospinal fluid neurofilament light chain levels; cerebral spinal fluid glial fibrillary acidic protein; cerebral spinal fluid tau; retinal nerve fiber layer thickness; macula volume; and the brain parenchymal fraction. Except for increased cerebral spinal fluid neurofilament light chain levels, median 670 ng/L (IQR 400-2110), we could not find signs of early degeneration in the early disease group with recent clinical onset. However, the intrathecal immunoglobin G production and cerebral spinal fluid neurofilament light chain levels showed diagnostic value. Moreover, elevated levels of cerebral spinal fluid glial fibrillary acidic protein, thin retinal nerve fiber layers, and low brain parenchymal fractions were associated with

  6. Biomarkers of sepsis

    Science.gov (United States)

    2013-01-01

    Sepsis is an unusual systemic reaction to what is sometimes an otherwise ordinary infection, and it probably represents a pattern of response by the immune system to injury. A hyper-inflammatory response is followed by an immunosuppressive phase during which multiple organ dysfunction is present and the patient is susceptible to nosocomial infection. Biomarkers to diagnose sepsis may allow early intervention which, although primarily supportive, can reduce the risk of death. Although lactate is currently the most commonly used biomarker to identify sepsis, other biomarkers may help to enhance lactate’s effectiveness; these include markers of the hyper-inflammatory phase of sepsis, such as pro-inflammatory cytokines and chemokines; proteins such as C-reactive protein and procalcitonin which are synthesized in response to infection and inflammation; and markers of neutrophil and monocyte activation. Recently, markers of the immunosuppressive phase of sepsis, such as anti-inflammatory cytokines, and alterations of the cell surface markers of monocytes and lymphocytes have been examined. Combinations of pro- and anti-inflammatory biomarkers in a multi-marker panel may help identify patients who are developing severe sepsis before organ dysfunction has advanced too far. Combined with innovative approaches to treatment that target the immunosuppressive phase, these biomarkers may help to reduce the mortality rate associated with severe sepsis which, despite advances in supportive measures, remains high. PMID:23480440

  7. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers.

    Science.gov (United States)

    Saito, Mak A; McIlvin, Matthew R; Moran, Dawn M; Goepfert, Tyler J; DiTullio, Giacomo R; Post, Anton F; Lamborg, Carl H

    2014-09-05

    Marine primary productivity is strongly influenced by the scarcity of required nutrients, yet our understanding of these nutrient limitations is informed by experimental observations with sparse geographical coverage and methodological limitations. We developed a quantitative proteomic method to directly assess nutrient stress in high-light ecotypes of the abundant cyanobacterium Prochlorococcus across a meridional transect in the central Pacific Ocean. Multiple peptide biomarkers detected widespread and overlapping regions of nutritional stress for nitrogen and phosphorus in the North Pacific Subtropical Gyre and iron in the equatorial Pacific. Quantitative protein analyses demonstrated simultaneous stress for these nutrients at biome interfaces. This application of proteomic biomarkers to diagnose ocean metabolism demonstrated Prochlorococcus actively and simultaneously deploying multiple biochemical strategies for low-nutrient conditions in the oceans. Copyright © 2014, American Association for the Advancement of Science.

  8. COPD Exacerbation Biomarkers Validated Using Multiple Reaction Monitoring Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Janice M Leung

    Full Text Available Acute exacerbations of chronic obstructive pulmonary disease (AECOPD result in considerable morbidity and mortality. However, there are no objective biomarkers to diagnose AECOPD.We used multiple reaction monitoring mass spectrometry to quantify 129 distinct proteins in plasma samples from patients with COPD. This analytical approach was first performed in a biomarker cohort of patients hospitalized with AECOPD (Cohort A, n = 72. Proteins differentially expressed between AECOPD and convalescent states were chosen using a false discovery rate 1.2. Protein selection and classifier building were performed using an elastic net logistic regression model. The performance of the biomarker panel was then tested in two independent AECOPD cohorts (Cohort B, n = 37, and Cohort C, n = 109 using leave-pair-out cross-validation methods.Five proteins were identified distinguishing AECOPD and convalescent states in Cohort A. Biomarker scores derived from this model were significantly higher during AECOPD than in the convalescent state in the discovery cohort (p<0.001. The receiver operating characteristic cross-validation area under the curve (CV-AUC statistic was 0.73 in Cohort A, while in the replication cohorts the CV-AUC was 0.77 for Cohort B and 0.79 for Cohort C.A panel of five biomarkers shows promise in distinguishing AECOPD from convalescence and may provide the basis for a clinical blood test to diagnose AECOPD. Further validation in larger cohorts is necessary for future clinical translation.

  9. Multiple inflammatory biomarker detection in a prospective cohort study: a cross-validation between well-established single-biomarker techniques and an electrochemiluminescense-based multi-array platform.

    Directory of Open Access Journals (Sweden)

    Bas C T van Bussel

    Full Text Available BACKGROUND: In terms of time, effort and quality, multiplex technology is an attractive alternative for well-established single-biomarker measurements in clinical studies. However, limited data comparing these methods are available. METHODS: We measured, in a large ongoing cohort study (n = 574, by means of both a 4-plex multi-array biomarker assay developed by MesoScaleDiscovery (MSD and single-biomarker techniques (ELISA or immunoturbidimetric assay, the following biomarkers of low-grade inflammation: C-reactive protein (CRP, serum amyloid A (SAA, soluble intercellular adhesion molecule 1 (sICAM-1 and soluble vascular cell adhesion molecule 1 (sVCAM-1. These measures were realigned by weighted Deming regression and compared across a wide spectrum of subjects' cardiovascular risk factors by ANOVA. RESULTS: Despite that both methods ranked individuals' levels of biomarkers very similarly (Pearson's r all≥0.755 absolute concentrations of all biomarkers differed significantly between methods. Equations retrieved by the Deming regression enabled proper realignment of the data to overcome these differences, such that intra-class correlation coefficients were then 0.996 (CRP, 0.711 (SAA, 0.895 (sICAM-1 and 0.858 (sVCAM-1. Additionally, individual biomarkers differed across categories of glucose metabolism, weight, metabolic syndrome and smoking status to a similar extent by either method. CONCLUSIONS: Multiple low-grade inflammatory biomarker data obtained by the 4-plex multi-array platform of MSD or by well-established single-biomarker methods are comparable after proper realignment of differences in absolute concentrations, and are equally associated with cardiovascular risk factors, regardless of such differences. Given its greater efficiency, the MSD platform is a potential tool for the quantification of multiple biomarkers of low-grade inflammation in large ongoing and future clinical studies.

  10. Plasma inflammatory biomarkers response to aerobic versus ...

    African Journals Online (AJOL)

    Plasma inflammatory biomarkers response to aerobic versus resisted exercise training for chronic obstructive pulmonary disease patients. ... Recent studies proved that morbidity and mortality of COPD is related to systemic inflammation as it contributes to the pathogenesis of atherosclerosis and cardiovascular disease.

  11. Bayesian modeling and inference for diagnostic accuracy and probability of disease based on multiple diagnostic biomarkers with and without a perfect reference standard.

    Science.gov (United States)

    Jafarzadeh, S Reza; Johnson, Wesley O; Gardner, Ian A

    2016-03-15

    The area under the receiver operating characteristic (ROC) curve (AUC) is used as a performance metric for quantitative tests. Although multiple biomarkers may be available for diagnostic or screening purposes, diagnostic accuracy is often assessed individually rather than in combination. In this paper, we consider the interesting problem of combining multiple biomarkers for use in a single diagnostic criterion with the goal of improving the diagnostic accuracy above that of an individual biomarker. The diagnostic criterion created from multiple biomarkers is based on the predictive probability of disease, conditional on given multiple biomarker outcomes. If the computed predictive probability exceeds a specified cutoff, the corresponding subject is allocated as 'diseased'. This defines a standard diagnostic criterion that has its own ROC curve, namely, the combined ROC (cROC). The AUC metric for cROC, namely, the combined AUC (cAUC), is used to compare the predictive criterion based on multiple biomarkers to one based on fewer biomarkers. A multivariate random-effects model is proposed for modeling multiple normally distributed dependent scores. Bayesian methods for estimating ROC curves and corresponding (marginal) AUCs are developed when a perfect reference standard is not available. In addition, cAUCs are computed to compare the accuracy of different combinations of biomarkers for diagnosis. The methods are evaluated using simulations and are applied to data for Johne's disease (paratuberculosis) in cattle. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Validation study of genetic biomarkers of response to TNF inhibitors in rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Rosario Lopez-Rodriguez

    Full Text Available Genetic biomarkers are sought to personalize treatment of patients with rheumatoid arthritis (RA, given their variable response to TNF inhibitors (TNFi. However, no genetic biomaker is yet sufficiently validated. Here, we report a validation study of 18 previously reported genetic biomarkers, including 11 from GWAS of response to TNFi. The validation was attempted in 581 patients with RA that had not been treated with biologic antirheumatic drugs previously. Their response to TNFi was evaluated at 3, 6 and 12 months in two ways: change in the DAS28 measure of disease activity, and according to the EULAR criteria for response to antirheumatic drugs. Association of these parameters with the genotypes, obtained by PCR amplification followed by single-base extension, was tested with regression analysis. These analyses were adjusted for baseline DAS28, sex, and the specific TNFi. However, none of the proposed biomarkers was validated, as none showed association with response to TNFi in our study, even at the time of assessment and with the outcome that showed the most significant result in previous studies. These negative results are notable because this was the first independent validation study for 12 of the biomarkers, and because they indicate that prudence is needed in the interpretation of the proposed biomarkers of response to TNFi even when they are supported by very low p values. The results also emphasize the requirement of independent replication for validation, and the need to search protocols that could increase reproducibility of the biomarkers of response to TNFi.

  13. Meeting Report--NASA Radiation Biomarker Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Straume, Tore; Amundson, Sally A,; Blakely, William F.; Burns, Frederic J.; Chen, Allen; Dainiak, Nicholas; Franklin, Stephen; Leary, Julie A.; Loftus, David J.; Morgan, William F.; Pellmar, Terry C.; Stolc, Viktor; Turteltaub, Kenneth W.; Vaughan, Andrew T.; Vijayakumar, Srinivasan; Wyrobek, Andrew J.

    2008-05-01

    A summary is provided of presentations and discussions from the NASA Radiation Biomarker Workshop held September 27-28, 2007, at NASA Ames Research Center in Mountain View, California. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including for long-duration space travel. Topics discussed include the space radiation environment, biomarkers of radiation sensitivity and individual susceptibility, molecular signatures of low-dose responses, multivariate analysis of gene expression, biomarkers in biodefense, biomarkers in radiation oncology, biomarkers and triage following large-scale radiological incidents, integrated and multiple biomarker approaches, advances in whole-genome tiling arrays, advances in mass-spectrometry proteomics, radiation biodosimetry for estimation of cancer risk in a rat skin model, and confounding factors. Summary conclusions are provided at the end of the report.

  14. Cellular biomarker responses of bagrid catfish, Chrysichthys ...

    African Journals Online (AJOL)

    An assessment of the pollution status of Agboyi creek, a water body associated with various anthropogenic activities was carried out in order to determine responses induced in Catfishes, Chrysichthys nigrodigitatus inhabiting it. Cellular biomarkers of stress including the antioxidative stress enzyme, catalase (CAT), lipid ...

  15. Multiple biomarker responses in Prochilodus lineatus subjected to short-term in situ exposure to streams from agricultural areas in Southern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Carlos Eduardo Delfino [Laboratório de Ecofisiologia Animal — Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Paraná (Brazil); Costa, Patrícia Gomes [Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia — Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande do Sul (Brazil); Lunardelli, Bruna; Fernandes de Oliveira, Luciana [Laboratório de Ecofisiologia Animal — Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Paraná (Brazil); Costa Cabrera, Liziara da [Laboratório de Análise de Compostos Orgânicos e Metais — Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande do Sul (Brazil); Risso, Wagner Ezequiel [Laboratório de Ecofisiologia Animal — Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Paraná (Brazil); Primel, Ednei Gilberto [Laboratório de Análise de Compostos Orgânicos e Metais — Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande do Sul (Brazil); and others

    2016-01-15

    In order to assess the quality of streams susceptible to contamination by pesticides we apply biochemical and genotoxic biomarkers in the Neotropical fish Prochilodus lineatus submitted to in situ tests. Fish were caged, for 96 h, in two streams located in areas with intensive use of pesticides, the Apertados (AP) and the Jacutinga (JC), and in a small stream (Godoy stream — GD) found inside a forest fragment adjacent to a State Park. Biochemical parameters, such as biotransformation enzymes 7-ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST), non-protein thiols (NPSH), lipoperoxidation (LPO), protein carbonylation (PCO) and acetylcholinesterase (AChE) were evaluated in various fish organs, as well as genotoxic biomarkers (damage to DNA and occurrence of micronuclei and erythrocyte nuclear abnormalities). Samples of water and sediment were collected for analysis of metals (Cu, Cr, Pb, Ni, Mn, Cd and Zn), organochloride pesticides, and triazine and glyphosate herbicides. We observed an increase in liver GST activity in fish at AP and gill GST activity in fish at JC. An increase in liver LPO was also observed in fish exposed to AP and JC. The same animals also exhibited increased DNA damage and erythrocyte nuclear abnormalities (ENAs) compared to the fish kept in GD. A number of compounds showed concentrations higher than the permitted levels, in particular, dichlorodiphenyltrichloroethane (DDT), its metabolites dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD), hexachlorocyclohexanes (HCH), heptachloride, diclofluanid and aldrins. These pesticides were detected at higher concentrations in water and sediment samples from AP, followed by JC and GD. The Integrated Biomarker Response Index (IBR) indicated that AP and JC (AP: 21.7 > JC: 18.5 > GD: 12.6) have the worst environmental quality. Integrated biomarker analysis revealed that the alterations observed related well with the levels of environmental contaminants

  16. Whole-body MRI quantitative biomarkers are associated significantly with treatment response in patients with newly diagnosed symptomatic multiple myeloma following bortezomib induction

    Energy Technology Data Exchange (ETDEWEB)

    Latifoltojar, Arash; Dikaios, Nikolaos [University College London, Centre for Medical Imaging, London (United Kingdom); Hall-Craggs, Margaret; Taylor, Stuart A.; Halligan, Steve; Punwani, Shonit [University College London, Centre for Medical Imaging, London (United Kingdom); University College London Hospital, Department of Radiology, London (United Kingdom); Bainbridge, Alan; Sokolska, Magdalena [University College London Hospital, Department of Medical Physics and Bioengineering, London (United Kingdom); Rabin, Neil; Popat, Rakesh; Rismani, Ali; D' Sa, Shirley; Yong, Kwee [University College London Hospital, Department of Haematology, London (United Kingdom); Antonelli, Michela; Ourselin, Sebastien [University College London, Translational Imaging Group, Centre for Medical Imaging Computing, London (United Kingdom)

    2017-12-15

    To evaluate whole-body MRI (WB-MRI) parameters significantly associated with treatment response in multiple myeloma (MM). Twenty-one MM patients underwent WB-MRI at diagnosis and after two cycles of chemotherapy. Scans acquired at 3.0 T included T2, diffusion-weighted-imaging (DWI) and mDixon pre- and post-contrast. Twenty focal lesions (FLs) matched on DWI and post-contrast mDixon were selected for each time point. Estimated tumour volume (eTV), apparent diffusion coefficient (ADC), enhancement ratio (ER) and signal fat fraction (sFF) were derived. Clinical treatment response to chemotherapy was assessed using conventional criteria. Significance of temporal parameter change was assessed by the paired t test and receiver operating characteristics/area under the curve (AUC) analysis was performed. Parameter repeatability was assessed by interclass correlation (ICC) and Bland-Altman analysis of 10 healthy volunteers scanned at two time points. Fifteen of 21 patients responded to treatment. Of 254 FLs analysed, sFF (p < 0.0001) and ADC (p = 0.001) significantly increased in responders but not non-responders. eTV significantly decreased in 19/21 cases. Focal lesion sFF was the best discriminator of treatment response (AUC 1.0). Bone sFF repeatability was excellent (ICC 0.98) and better than bone ADC (ICC 0.47). WB-MRI derived focal lesion sFF shows promise as an imaging biomarker of treatment response in newly diagnosed MM. (orig.)

  17. DNA Repair Biomarkers Predict Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer

    International Nuclear Information System (INIS)

    Alexander, Brian M.; Wang Xiaozhe; Niemierko, Andrzej; Weaver, David T.; Mak, Raymond H.; Roof, Kevin S.; Fidias, Panagiotis; Wain, John; Choi, Noah C.

    2012-01-01

    Purpose: The addition of neoadjuvant chemoradiotherapy prior to surgical resection for esophageal cancer has improved clinical outcomes in some trials. Pathologic complete response (pCR) following neoadjuvant therapy is associated with better clinical outcome in these patients, but only 22% to 40% of patients achieve pCR. Because both chemotherapy and radiotherapy act by inducing DNA damage, we analyzed proteins selected from multiple DNA repair pathways, using quantitative immunohistochemistry coupled with a digital pathology platform, as possible biomarkers of treatment response and clinical outcome. Methods and Materials: We identified 79 patients diagnosed with esophageal cancer between October 1994 and September 2002, with biopsy tissue available, who underwent neoadjuvant chemoradiotherapy prior to surgery at the Massachusetts General Hospital and used their archived, formalin-fixed, paraffin-embedded biopsy samples to create tissue microarrays (TMA). TMA sections were stained using antibodies against proteins in various DNA repair pathways including XPF, FANCD2, PAR, MLH1, PARP1, and phosphorylated MAPKAP kinase 2 (pMK2). Stained TMA slides were evaluated using machine-based image analysis, and scoring incorporated both the intensity and the quantity of positive tumor nuclei. Biomarker scores and clinical data were assessed for correlations with clinical outcome. Results: Higher scores for MLH1 (p = 0.018) and lower scores for FANCD2 (p = 0.037) were associated with pathologic response to neoadjuvant chemoradiation on multivariable analysis. Staining of MLH1, PARP1, XPF, and PAR was associated with recurrence-free survival, and staining of PARP1 and FANCD2 was associated with overall survival on multivariable analysis. Conclusions: DNA repair proteins analyzed by immunohistochemistry may be useful as predictive markers for response to neoadjuvant chemoradiotherapy in patients with esophageal cancer. These results are hypothesis generating and need

  18. Xenobiotic-induced apoptosis: significance and potential application as a general biomarker of response

    Science.gov (United States)

    Sweet, Leonard I.; Passino-Reader, Dora R.; Meier, Peter G.; Omann, Geneva M.

    1999-01-01

    The process of apoptosis, often coined programmed cell death, involves cell injury induced by a variety of stimuli including xenobiotics and is morphologically, biochemically, and physiologically distinct from necrosis. Apoptotic death is characterized by cellular changes such as cytoplasm shrinkage, chromatin condensation, and plasma membrane asymmetry. This form of cell suicide is appealing as a general biomarker of response in that it is expressed in multiple cell systems (e.g. immune, neuronal, hepatal, intestinal, dermal, reproductive), is conserved phylogenetically (e.g. fish, rodents, birds, sheep, amphibians, roundworms, plants, humans), is modulated by environmentally relevant levels of chemical contaminants, and indicates a state of stress of the organism. Further, apoptosis is useful as a biomarker as it serves as a molecular control point and hence may provide mechanistic information on xenobiotic stress. Studies reviewed here suggest that apoptosis is a sensitive and early indicator of acute and chronic chemical stress, loss of cellular function and structure, and organismal health. Examples are provided of the application of this methodology in studies of health of lake trout (Salvelinus namaycush) in the Laurentian Great Lakes.

  19. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis.

    Science.gov (United States)

    Iparraguirre, Leire; Muñoz-Culla, Maider; Prada-Luengo, Iñigo; Castillo-Triviño, Tamara; Olascoaga, Javier; Otaegui, David

    2017-09-15

    Multiple sclerosis is an autoimmune disease, with higher prevalence in women, in whom the immune system is dysregulated. This dysregulation has been shown to correlate with changes in transcriptome expression as well as in gene-expression regulators, such as non-coding RNAs (e.g. microRNAs). Indeed, some of these have been suggested as biomarkers for multiple sclerosis even though few biomarkers have reached the clinical practice. Recently, a novel family of non-coding RNAs, circular RNAs, has emerged as a new player in the complex network of gene-expression regulation. MicroRNA regulation function through a 'sponge system' and a RNA splicing regulation function have been proposed for the circular RNAs. This regulating role together with their high stability in biofluids makes them seemingly good candidates as biomarkers. Given the dysregulation of both protein-coding and non-coding transcriptome that have been reported in multiple sclerosis patients, we hypothesised that circular RNA expression may also be altered. Therefore, we carried out expression profiling of 13.617 circular RNAs in peripheral blood leucocytes from multiple sclerosis patients and healthy controls finding 406 differentially expressed (P-value  1.5) and demonstrate after validation that, circ_0005402 and circ_0035560 are underexpressed in multiple sclerosis patients and could be used as biomarkers of the disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Diffusion Tensor Imaging as a Biomarker to Differentiate Acute Disseminated Encephalomyelitis From Multiple Sclerosis at First Demyelination.

    Science.gov (United States)

    Aung, Wint Yan; Massoumzadeh, Parinaz; Najmi, Safa; Salter, Amber; Heaps, Jodi; Benzinger, Tammie L S; Mar, Soe

    2018-01-01

    There are no clinical features or biomarkers that can reliably differentiate acute disseminated encephalomyelitis from multiple sclerosis at the first demyelination attack. Consequently, a final diagnosis is sometimes delayed by months and years of follow-up. Early treatment for multiple sclerosis is recommended to reduce long-term disability. Therefore, we intend to explore neuroimaging biomarkers that can reliably distinguish between the two diagnoses. We reviewed prospectively collected clinical, standard MRI and diffusion tensor imaging data from 12 pediatric patients who presented with acute demyelination with and without encephalopathy. Patients were followed for an average of 6.5 years to determine the accuracy of final diagnosis. Final diagnosis was determined using 2013 International Pediatric MS Study Group criteria. Control subjects consisted of four age-matched healthy individuals for each patient. The study population consisted of six patients with central nervous system demyelination with encephalopathy with a presumed diagnosis of acute disseminated encephalomyelitis and six without encephalopathy with a presumed diagnosis of multiple sclerosis or clinically isolated syndrome at high risk for multiple sclerosis. During follow-up, two patients with initial diagnosis of acute disseminated encephalomyelitis were later diagnosed with multiple sclerosis. Diffusion tensor imaging region of interest analysis of baseline scans showed differences between final diagnosis of multiple sclerosis and acute disseminated encephalomyelitis patients, whereby low fractional anisotropy and high radial diffusivity occurred in multiple sclerosis patients compared with acute disseminated encephalomyelitis patients and the age-matched controls. Fractional anisotropy and radial diffusivity measures may have the potential to serve as biomarkers for distinguishing acute disseminated encephalomyelitis from multiple sclerosis at the onset. Copyright © 2017 Elsevier Inc. All

  1. Multiple biomarkers biosensor with just-in-time functionalization: Application to prostate cancer detection.

    Science.gov (United States)

    Parra-Cabrera, C; Samitier, J; Homs-Corbera, A

    2016-03-15

    We present a novel lab-on-a-chip (LOC) device for the simultaneous detection of multiple biomarkers using simple voltage measurements. The biosensor functionalization is performed in-situ, immediately before its use, facilitating reagents storage and massive devices fabrication. Sensitivity, limit of detection (LOD) and limit of quantification (LOQ) are tunable depending on the in-chip flown sample volumes. As a proof-of-concept, the system has been tested and adjusted to quantify two proteins found in blood that are susceptible to be used combined, as a screening tool, to diagnose prostate cancer (PCa): prostate-specific antigen (PSA) and spondin-2 (SPON2). This combination of biomarkers has been reported to be more specific for PCa diagnostics than the currently accepted but rather controversial PSA indicator. The range of detection for PSA and SPON2 could be adjusted to the clinically relevant range of 1 to 10 ng/ml. The system was tested for specificity to the evaluated biomarkers. This multiplex system can be modified and adapted to detect a larger quantity of biomarkers, or different ones, of relevance to other specific diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Identification of potential biomarkers from microarray experiments using multiple criteria optimization

    International Nuclear Information System (INIS)

    Sánchez-Peña, Matilde L; Isaza, Clara E; Pérez-Morales, Jaileene; Rodríguez-Padilla, Cristina; Castro, José M; Cabrera-Ríos, Mauricio

    2013-01-01

    Microarray experiments are capable of determining the relative expression of tens of thousands of genes simultaneously, thus resulting in very large databases. The analysis of these databases and the extraction of biologically relevant knowledge from them are challenging tasks. The identification of potential cancer biomarker genes is one of the most important aims for microarray analysis and, as such, has been widely targeted in the literature. However, identifying a set of these genes consistently across different experiments, researches, microarray platforms, or cancer types is still an elusive endeavor. Besides the inherent difficulty of the large and nonconstant variability in these experiments and the incommensurability between different microarray technologies, there is the issue of the users having to adjust a series of parameters that significantly affect the outcome of the analyses and that do not have a biological or medical meaning. In this study, the identification of potential cancer biomarkers from microarray data is casted as a multiple criteria optimization (MCO) problem. The efficient solutions to this problem, found here through data envelopment analysis (DEA), are associated to genes that are proposed as potential cancer biomarkers. The method does not require any parameter adjustment by the user, and thus fosters repeatability. The approach also allows the analysis of different microarray experiments, microarray platforms, and cancer types simultaneously. The results include the analysis of three publicly available microarray databases related to cervix cancer. This study points to the feasibility of modeling the selection of potential cancer biomarkers from microarray data as an MCO problem and solve it using DEA. Using MCO entails a new optic to the identification of potential cancer biomarkers as it does not require the definition of a threshold value to establish significance for a particular gene and the selection of a normalization

  3. Plasma complement biomarkers distinguish multiple sclerosis and neuromyelitis optica spectrum disorder.

    Science.gov (United States)

    Hakobyan, Svetlana; Luppe, Sebastian; Evans, David Rs; Harding, Katharine; Loveless, Samantha; Robertson, Neil P; Morgan, B Paul

    2017-06-01

    Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are autoimmune inflammatory demyelinating diseases of the central nervous system. Although distinguished by clinicoradiological and demographic features, early manifestations can be similar complicating management. Antibodies against aquaporin-4 support the diagnosis of NMOSD but are negative in some patients. Therefore, there is unmet need for biomarkers that enable early diagnosis and disease-specific intervention. We investigated whether plasma complement proteins are altered in MS and NMOSD and provide biomarkers that distinguish these diseases. Plasma from 54 NMOSD, 40 MS and 69 control donors was tested in multiplex assays measuring complement activation products and proteins. Using logistic regression, we tested whether combinations of complement analytes distinguished NMOSD from controls and MS. All activation products were elevated in NMOSD compared to either control or MS. Four complement proteins (C1inh, C1s, C5 and FH) were higher in NMOSD compared to MS or controls. A model comprising C1inh and terminal complement complex (TCC) distinguished NMOSD from MS (area under the curve (AUC): 0.98), while C1inh and C5 distinguished NMOSD from controls (AUC: 0.94). NMOSD is distinguished from MS by plasma complement biomarkers. Selected complement analytes enable differential diagnosis. Findings support trials of anti-complement therapies in NMOSD.

  4. A multiple biomarker assay for quality assessment of botanical drugs using a versatile microfluidic chip.

    Science.gov (United States)

    Li, Zhen-Hao; Ai, Ni; Yu, Lawrence X; Qian, Zhong-Zhi; Cheng, Yi-Yu

    2017-09-25

    Quality control is critical for ensuring the safety and effectiveness of drugs. Current quality control method for botanical drugs is mainly based on chemical testing. However, chemical testing alone may not be sufficient as it may not capture all constituents of botanical drugs. Therefore, it is necessary to establish a bioassay correlating with the drug's known mechanism of action to ensure its potency and activity. Herein we developed a multiple biomarker assay to assess the quality of botanicals using microfluidics, where enzyme inhibition was employed to indicate the drug's activity and thereby evaluate biological consistency. This approach was exemplified on QiShenYiQi Pills using thrombin and angiotensin converting enzyme as "quality biomarkers". Our results demonstrated that there existed variations in potency across different batches of the intermediates and preparations. Compared with chromatographic fingerprinting, the bioassay provided better discrimination ability for some abnormal samples. Moreover, the chip could function as "affinity chromatography" to identify bioactive phytochemicals bound to the enzymes. This work proposed a multiple-biomarker strategy for quality assessment of botanical drugs, while demonstrating for the first time the feasibility of microfluidics in this field.

  5. Biomarker responses of mussels exposed to earthquake disturbances

    Science.gov (United States)

    Chandurvelan, Rathishri; Marsden, Islay D.; Glover, Chris N.; Gaw, Sally

    2016-12-01

    The green-lipped mussel, Perna canaliculus is recognised as a bioindicator of coastal contamination in New Zealand (NZ). Mussels (shell length 60-80 mm) were collected from three intertidal areas of Canterbury in the South Island of NZ prior to extreme earthquake disturbances on 22nd February 2011, and 9 months later in October 2011. Trace elements, including arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn), were measured in the gills, digestive gland, foot and mantle. Metal levels in tissues were site specific, and mostly unaffected by earthquake disturbances. Physiological biomarkers were negatively affected by earthquake disturbances and mussels from the Port of Lyttelton had higher negative scope for growth post-earthquake. Metallothionein-like protein in the digestive gland correlated with metal content of tissues, as did catalase activity in the gill and lipid peroxidation values for the digestive gland. This research demonstrates that physiological and other biomarkers are effective at detecting the effects of multiple stressors following seismic disturbances.

  6. Chronic exposure of killifish to a highly polluted environment desensitizes estrogen-responsive reproductive and biomarker genes

    International Nuclear Information System (INIS)

    Bugel, Sean M.; Bonventre, Josephine A.; White, Lori A.; Tanguay, Robert L.; Cooper, Keith R.

    2014-01-01

    Highlights: • Reproductive biomarker genes in Newark Bay killifish are desensitized to estrogen. • Gene desensitization indicates pre-transcriptional effects on estrogen signaling. • Desensitization does not have a metabolic or epigenetic basis (gene methylation). • Modulation of vitellogenin and choriogenin genes correlates with reproductive impacts. • Choriogenin L appears less prone to false negatives and may be a sensitive biomarker. - Abstract: Reproductive and endocrine disruption is commonly reported in aquatic species exposed to complex contaminant mixtures. We previously reported that Atlantic killifish (Fundulus heteroclitus) from the chronically contaminated Newark Bay, NJ, exhibit multiple endocrine disrupting effects, including inhibition of vitellogenesis (yolk protein synthesis) in females and false negative vitellogenin biomarker responses in males. Here, we characterized the effects on estrogen signaling and the transcriptional regulation of estrogen-responsive genes in this model population. First, a dose–response study tested the hypothesis that reproductive biomarkers (vtg1, vtg2, chg H, chg Hm, chg L) in Newark Bay killifish are relatively less sensitive to 17β-estradiol at the transcriptional level, relative to a reference (Tuckerton, NJ) population. The second study assessed expression for various metabolism (cyp1a, cyp3a30, mdr) and estrogen receptor (ER α, ER βa, ER βb) genes under basal and estrogen treatment conditions in both populations. Hepatic metabolism of 17β-estradiol was also evaluated in vitro as an integrated endpoint for adverse effects on metabolism. In the third study, gene methylation was evaluated for promoters of vtg1 (8 CpGs) and vtg2 (10 CpGs) in both populations, and vtg1 promoter sequences were examined for single nucleotide polymorphism (SNPs). Overall, these studies show that multi-chemical exposures at Newark Bay have desensitized all reproductive biomarkers tested to estrogen. For example, at 10 ng

  7. Chronic exposure of killifish to a highly polluted environment desensitizes estrogen-responsive reproductive and biomarker genes

    Energy Technology Data Exchange (ETDEWEB)

    Bugel, Sean M., E-mail: Sean.Bugel@oregonstate.edu [Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); Bonventre, Josephine A. [Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); White, Lori A. [Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 (United States); Tanguay, Robert L. [Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); Cooper, Keith R. [Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 (United States)

    2014-07-01

    Highlights: • Reproductive biomarker genes in Newark Bay killifish are desensitized to estrogen. • Gene desensitization indicates pre-transcriptional effects on estrogen signaling. • Desensitization does not have a metabolic or epigenetic basis (gene methylation). • Modulation of vitellogenin and choriogenin genes correlates with reproductive impacts. • Choriogenin L appears less prone to false negatives and may be a sensitive biomarker. - Abstract: Reproductive and endocrine disruption is commonly reported in aquatic species exposed to complex contaminant mixtures. We previously reported that Atlantic killifish (Fundulus heteroclitus) from the chronically contaminated Newark Bay, NJ, exhibit multiple endocrine disrupting effects, including inhibition of vitellogenesis (yolk protein synthesis) in females and false negative vitellogenin biomarker responses in males. Here, we characterized the effects on estrogen signaling and the transcriptional regulation of estrogen-responsive genes in this model population. First, a dose–response study tested the hypothesis that reproductive biomarkers (vtg1, vtg2, chg H, chg Hm, chg L) in Newark Bay killifish are relatively less sensitive to 17β-estradiol at the transcriptional level, relative to a reference (Tuckerton, NJ) population. The second study assessed expression for various metabolism (cyp1a, cyp3a30, mdr) and estrogen receptor (ER α, ER βa, ER βb) genes under basal and estrogen treatment conditions in both populations. Hepatic metabolism of 17β-estradiol was also evaluated in vitro as an integrated endpoint for adverse effects on metabolism. In the third study, gene methylation was evaluated for promoters of vtg1 (8 CpGs) and vtg2 (10 CpGs) in both populations, and vtg1 promoter sequences were examined for single nucleotide polymorphism (SNPs). Overall, these studies show that multi-chemical exposures at Newark Bay have desensitized all reproductive biomarkers tested to estrogen. For example, at 10 ng

  8. MTR-18 Predictive Biomarkers Of Bevacizumab Response In Recurrent Glioblastoma Patients

    DEFF Research Database (Denmark)

    Urup, Thomas; Michaelsen, Signe Regner; Olsen, Lars Rønn

    2015-01-01

    Bevacizumab (BEV) plus chemotherapy has shown activity in recurrent glioblastoma (GBM). However, the prognosis varies and only one third of patients have a durable clinical response to BEV combination therapy. Recent findings from a randomized phase-3 study (AVAglio) indicate that patients...... with the proneural GBM subtype have a survival benefit when treated with BEV in combination with standard treatment. However, no validated biomarkers able to predict BEV response have been identified and the biology reflecting a clinical BEV response is poorly understood. The primary objective of this study...... was to evaluate the predictive and prognostic value of GBM subtypes in recurrent GBM patients treated with BEV therapy. The secondary objective was to identify biomarkers able to predict response to BEV therapy in recurrent GBM patients. METHODS: A total of 90 recurrent GBM patients treated with BEV combination...

  9. Elevation in inflammatory serum biomarkers predicts response to trastuzumab-containing therapy.

    Directory of Open Access Journals (Sweden)

    Ahmed A Alkhateeb

    Full Text Available Approximately half of all HER2/neu-overexpressing breast cancer patients do not respond to trastuzumab-containing therapy. Therefore, there remains an urgent and unmet clinical need for the development of predictive biomarkers for trastuzumab response. Recently, several lines of evidence have demonstrated that the inflammatory tumor microenvironment is a major contributor to therapy resistance in breast cancer. In order to explore the predictive value of inflammation in breast cancer patients, we measured the inflammatory biomarkers serum ferritin and C-reactive protein (CRP in 66 patients immediately before undergoing trastuzumab-containing therapy and evaluated their progression-free and overall survival. The elevation in pre-treatment serum ferritin (>250 ng/ml or CRP (>7.25 mg/l was a significant predictor of reduced progression-free survival and shorter overall survival. When patients were stratified based on their serum ferritin and CRP levels, patients with elevation in both inflammatory biomarkers had a markedly poorer response to trastuzumab-containing therapy. Therefore, the elevation in inflammatory serum biomarkers may reflect a pathological state that decreases the clinical efficacy of this therapy. Anti-inflammatory drugs and life-style changes to decrease inflammation in cancer patients should be explored as possible strategies to sensitize patients to anti-cancer therapeutics.

  10. Simplified response monitoring criteria for multiple myeloma in patients undergoing therapy with novel agents using computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schabel, Christoph; Horger, Marius; Kum, Sara [Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany); Weisel, Katja [Department of Internal Medicine II – Hematology & Oncology, Eberhard-Karls-University Tuebingen, Otfried-Müller-Str. 5, 72076 Tuebingen (Germany); Fritz, Jan [Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 600 N Wolfe St., Baltimore, MD 21287 (United States); Ioanoviciu, Sorin D. [Department of Internal Medicine, Clinical Municipal Hospital Timisoara, Gheorghe Dima Str. 5, 300079 Timisoara (Romania); Bier, Georg, E-mail: georg.bier@med.uni-tuebingen.de [Department of Neuroradiology, Eberhard-Karls-University Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany)

    2016-12-15

    Highlights: • A simplified method for response monitoring of multiple myeloma is proposed. • Medullary bone lesions of all limbs were included and analysed. • Diameters of ≥2 medullary bone lesions are sufficient for therapy monitoring. - Abstract: Introduction: Multiple myeloma is a malignant hematological disorder of the mature B-cell lymphocytes originating in the bone marrow. While therapy monitoring is still mainly based on laboratory biomarkers, the additional use of imaging has been advocated due to inaccuracies of serological biomarkers or in a-secretory myelomas. Non-enhanced CT and MRI have similar sensitivities for lesions in yellow marrow-rich bone marrow cavities with a favourable risk and cost-effectiveness profile of CT. Nevertheless, these methods are still limited by frequently high numbers of medullary lesions and its time consumption for proper evaluation. Objective: To establish simplified response criteria by correlating size and CT attenuation changes of medullary multiple myeloma lesions in the appendicular skeleton with the course of lytic bone lesions in the entire skeleton. Furthermore to evaluate these criteria with respect to established hematological myeloma-specific parameters for the prediction of treatment response to bortezomib or lenalidomide. Materials and methods: Non-enhanced reduced-dose whole-body CT examinations of 78 consecutive patients (43 male, 35 female, mean age 63.69 ± 9.2 years) with stage III multiple myeloma were retrospectively re-evaluated. On per patient basis, size and mean CT attenuation of 2–4 representative lesions in the limbs were measured at baseline and at a follow-up after a mean of 8 months. Results were compared with the course of lytical bone lesions as well with that of specific hematological biomarkers. Myeloma response was assessed according to the International Myeloma Working Group (IMWG) uniform response criteria. Testing for correlation between response of medullary lesions (Resp

  11. Identification of Candidate Biomarkers Associated with Response to Vedolizumab in Inflammatory Bowel Disease.

    Science.gov (United States)

    Boden, Elisa K; Shows, Donna M; Chiorean, Michael V; Lord, James D

    2018-01-25

    Vedolizumab is an anti-α4β7 monoclonal antibody approved for the treatment of inflammatory bowel disease (IBD). This exploratory study aimed to identify biomarkers associated with vedolizumab response. Twenty-six IBD patients (15 with Crohn's, 11 with ulcerative or indeterminate colitis) initiating vedolizumab at a single center between 2014 and 2016 underwent sampling of serum and peripheral blood mononuclear cells (PBMCs) before and during vedolizumab therapy. Response was defined as steroid-free improvement in endoscopic score or Harvey-Bradshaw index/simple clinical colitis activity index (reduction greater than 3 or total less than 3). PBMCs were evaluated for immunophenotype and expression of α4β7 integrin on lymphocytes before and during vedolizumab therapy. Serum vedolizumab levels and α4β7 saturation were measured serially after induction. Fourteen out of 26 (54%) patients treated with vedolizumab responded to therapy. Pretreatment α4β7 expression was higher in responders on multiple subsets of T, B, and NK cells, with terminal effector memory (p = .0009 for CD4 and .0043 for CD8) and NK cells (p = .0047) best discriminating between responders and nonresponders. During therapy, log 10 serum vedolizumab levels at trough were higher in responders than nonresponders (p = .0007). Conversely, the percentage of effector memory T cells with free α4β7 at trough was lower in responders than nonresponders (p < .0001). However, loss of α4β7 saturation with vedolizumab was more sensitive to low serum vedolizumab in nonresponders. Pretreatment α4β7 expression and α4β7 receptor saturation during maintenance therapy were identified as candidate biomarkers for vedolizumab response.

  12. Relating biomarkers to whole-organism effects using species sensitivity distributions : A pilot study for marine species exposed to oil

    NARCIS (Netherlands)

    Smit, M.G.D.; Bechmann, R.K.; Hendriks, A.J.; Skadsheim, A.; Larsen, B.K.; Baussant, T.; Bamber, S.; Sannei, S.

    2009-01-01

    Biomarkers are widely used to measure environmental impacts on marine species. For many biomarkers, it is not clear how the signal levels relate to effects on the whole organism. This paper shows how species sensitivity distributions (SSDs) can be applied to evaluate multiple biomarker responses in

  13. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure

    Energy Technology Data Exchange (ETDEWEB)

    Shannahan, Jonathan H. [Curriculum in Toxicology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 (United States); Alzate, Oscar [Systems Proteomics Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 (United States); Winnik, Witold M.; Andrews, Debora [Proteomics Core, Research Core Unit, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Schladweiler, Mette C. [Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Ghio, Andrew J. [Clinical Research Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC 27599 (United States); Gavett, Stephen H. [Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Kodavanti, Urmila P., E-mail: Kodavanti.Urmila@epa.gov [Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)

    2012-04-15

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases in α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins involved

  14. A Novel Electrochemical Microfluidic Chip Combined with Multiple Biomarkers for Early Diagnosis of Gastric Cancer

    Science.gov (United States)

    Xie, Yao; Zhi, Xiao; Su, Haichuan; Wang, Kan; Yan, Zhen; He, Nongyue; Zhang, Jingpu; Chen, Di; Cui, Daxiang

    2015-12-01

    Early diagnosis is very important to improve the survival rate of patients with gastric cancer and to understand the biology of cancer. In order to meet the clinical demands for early diagnosis of gastric cancer, we developed a disposable easy-to-use electrochemical microfluidic chip combined with multiple antibodies against six kinds of biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), Helicobacter pylori CagA protein (H.P.), P53oncoprotein (P53), pepsinogen I (PG I), and PG-II). The six kinds of biomarkers related to gastric cancer can be detected sensitively and synchronously in a short time. The specially designed three electrodes system enables cross-contamination to be avoided effectively. The linear ranges of detection of the electrochemical microfluidic chip were as follows: 0.37-90 ng mL-1 for CEA, 10.75-172 U mL-1 for CA19-9, 10-160 U L-1 for H.P., 35-560 ng mL-1 for P53, 37.5-600 ng mL-1 for PG I, and 2.5-80 ng mL-1for PG II. This method owns better sensitivity compared with enzyme-linked immunosorbent assay (ELISA) results of 394 specimens of gastric cancer sera. Furthermore, we established a multi-index prediction model based on the six kinds of biomarkers for predicting risk of gastric cancer. In conclusion, the electrochemical microfluidic chip for detecting multiple biomarkers has great potential in applications such as early screening of gastric cancer patients, and therapeutic evaluation, and real-time dynamic monitoring the progress of gastric cancer in near future.

  15. A Promising Approach to Integrally Evaluate the Disease Outcome of Cerebral Ischemic Rats Based on Multiple-Biomarker Crosstalk

    Directory of Open Access Journals (Sweden)

    Guimei Ran

    2017-01-01

    Full Text Available Purpose. The study was designed to evaluate the disease outcome based on multiple biomarkers related to cerebral ischemia. Methods. Rats were randomly divided into sham, permanent middle cerebral artery occlusion, and edaravone-treated groups. Cerebral ischemia was induced by permanent middle cerebral artery occlusion surgery in rats. To form a simplified crosstalk network, the related multiple biomarkers were chosen as S100β, HIF-1α, IL-1β, PGI2, TXA2, and GSH-Px. The levels or activities of these biomarkers in plasma were detected before and after ischemia. Concurrently, neurological deficit scores and cerebral infarct volumes were assessed. Based on a mathematic model, network balance maps and three integral disruption parameters (k, φ, and u of the simplified crosstalk network were achieved. Results. The levels or activities of the related biomarkers and neurological deficit scores were significantly impacted by cerebral ischemia. The balance maps intuitively displayed the network disruption, and the integral disruption parameters quantitatively depicted the disruption state of the simplified network after cerebral ischemia. The integral disruption parameter u values correlated significantly with neurological deficit scores and infarct volumes. Conclusion. Our results indicate that the approach based on crosstalk network may provide a new promising way to integrally evaluate the outcome of cerebral ischemia.

  16. Monocyte/macrophage-derived soluble CD163: A novel biomarker in multiple myeloma

    DEFF Research Database (Denmark)

    Andersen, Morten Nørgaard; Abildgaard, Niels; Maniecki, Maciej B

    2014-01-01

    fluids (soluble CD163, sCD163). In this study, we examined serum sCD163 as a biomarker in patients with newly diagnosed multiple myeloma. METHODS: Peripheral blood (n = 104) and bone marrow (n = 17) levels of sCD163 were measured using an enzyme-linked immunosorbent assay. RESULTS: At diagnosis, high s......CD163 was associated with higher stage according to the International Staging System (ISS) and with other known prognostic factors in multiple myeloma (creatinine, C-reactive protein, and beta-2 microglobulin). Soluble CD163 decreased upon high-dose treatment, and in a multivariate survival analysis...... in bone marrow samples than in the matched blood samples, which indicate a localized production of sCD163 within the bone marrow microenvironment. CONCLUSIONS: Soluble CD163 was found to be a prognostic marker in patients with multiple myeloma. This may indicate that macrophages and/or monocytes have...

  17. Biomarkers for Response to Neoadjuvant Chemoradiation for Rectal Cancer

    International Nuclear Information System (INIS)

    Kuremsky, Jeffrey G.; Tepper, Joel E.; McLeod, Howard L. Phar

    2009-01-01

    Locally advanced rectal cancer (LARC) is currently treated with neoadjuvant chemoradiation. Although approximately 45% of patients respond to neoadjuvant therapy with T-level downstaging, there is no effective method of predicting which patients will respond. Molecular biomarkers have been investigated for their ability to predict outcome in LARC treated with neoadjuvant chemotherapy and radiation. A literature search using PubMed resulted in the initial assessment of 1,204 articles. Articles addressing the ability of a biomarker to predict outcome for LARC treated with neoadjuvant chemotherapy and radiation were included. Six biomarkers met the criteria for review: p53, epidermal growth factor receptor (EGFR), thymidylate synthase, Ki-67, p21, and bcl-2/bax. On the basis of composite data, p53 is unlikely to have utility as a predictor of response. Epidermal growth factor receptor has shown promise as a predictor when quantitatively evaluated in pretreatment biopsies or when EGFR polymorphisms are evaluated in germline DNA. Thymidylate synthase, when evaluated for polymorphisms in germline DNA, is promising as a predictive biomarker. Ki-67 and bcl-2 are not useful in predicting outcome. p21 needs to be further evaluated to determine its usefulness in predicting outcome. Bax requires more investigation to determine its usefulness. Epidermal growth factor receptor, thymidylate synthase, and p21 should be evaluated in larger prospective clinical trials for their ability to guide preoperative therapy choices in LARC.

  18. Predictive Biomarkers for Asthma Therapy.

    Science.gov (United States)

    Medrek, Sarah K; Parulekar, Amit D; Hanania, Nicola A

    2017-09-19

    Asthma is a heterogeneous disease characterized by multiple phenotypes. Treatment of patients with severe disease can be challenging. Predictive biomarkers are measurable characteristics that reflect the underlying pathophysiology of asthma and can identify patients that are likely to respond to a given therapy. This review discusses current knowledge regarding predictive biomarkers in asthma. Recent trials evaluating biologic therapies targeting IgE, IL-5, IL-13, and IL-4 have utilized predictive biomarkers to identify patients who might benefit from treatment. Other work has suggested that using composite biomarkers may offer enhanced predictive capabilities in tailoring asthma therapy. Multiple biomarkers including sputum eosinophil count, blood eosinophil count, fractional concentration of nitric oxide in exhaled breath (FeNO), and serum periostin have been used to identify which patients will respond to targeted asthma medications. Further work is needed to integrate predictive biomarkers into clinical practice.

  19. Effects of triclosan on host response and microbial biomarkers during experimental gingivitis.

    Science.gov (United States)

    Pancer, Brooke A; Kott, Diana; Sugai, James V; Panagakos, Fotinos S; Braun, Thomas M; Teles, Ricardo P; Giannobile, William V; Kinney, Janet S

    2016-05-01

    This exploratory randomized, controlled clinical trial sought to evaluate anti-inflammatory and -microbial effects of triclosan during experimental gingivitis as assessed by host response biomarkers and biofilm microbial pathogens. Thirty participants were randomized to triclosan or control dentifrice groups who ceased homecare for 21 days in an experimental gingivitis (EG) protocol. Plaque and gingival indices and saliva, plaque, and gingival crevicular fluid (GCF) were assessed/collected at days 0, 14, 21 and 35. Levels and proportions of 40 bacterial species from plaque samples were determined using checkerboard DNA-DNA hybridization. Ten biomarkers associated with inflammation, matrix degradation, and host protection were measured from GCF and saliva and analysed using a multiplex array. Participants were stratified as "high" or "low" responders based on gingival index and GCF biomarkers and bacterial biofilm were combined to generate receiver operating characteristic curves and predict gingivitis susceptibility. No differences in mean PI and GI values were observed between groups and non-significant trends of reduction of host response biomarkers with triclosan treatment. Triclosan significantly reduced levels of A. actinomycetemcomitans and P. gingivalis during induction of gingivitis. Triclosan reduced microbial levels during gingivitis development (ClinicalTrials.gov NCT01799226). © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Biomarkers of Necrotising Soft Tissue Infections Aspects of the Innate Immune Response

    DEFF Research Database (Denmark)

    Hansen, Marco Bo

    2017-01-01

    -existent in this group of patients. Instead data regarding biomarkers are extrapolated from the wide and heterogenic group of patients with sepsis, even though the immunological responses are likely to differ because of the large amount of necrotic tissue seen in patients with NSTI. We performed the largest prospective......Necrotising soft tissue infection (NSTI) is a life-threatening and rapidly progressing bacterial infection involving one or more layers of the soft tissue compartments causing necrosis. The amputation and mortality rates remain high despite increased focus on the patients. Timely treatment...... of the innate immune response, which included the investigation of acute-phase proteins, pattern recognition molecules of the lectin complement pathway, and inflammatory cytokines. The objective was to investigate aspects of the innate immune response in patients with NSTI, focusing on biomarkers as prognostic...

  1. Assessing Sources of Stress to Aquatic Ecosystems: Using Biomarkers and Bioindicators to Characterize Exodure-Response Profiles of Anthropogenic Activities

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.

    1999-03-29

    Establishing causal relationships between sources of environmental stressors and aquatic ecosystem health if difficult because of the many biotic and abiotic factors which can influence or modify responses of biological systems to stress, the orders of magnitude involved in extrapolation over both spatial and temporal scales, and compensatory mechanisms such as density-dependent responses that operate in populations. To address the problem of establishing causality between stressors and effects on aquatic systems, a diagnostic approach, based on exposure-response profiles for various anthropogenic activities, was developed to help identify sources of stress responsible for effects on aquatic systems at ecological significant levels of biological organization (individual, population, community). To generate these exposure-effects profiles, biomarkers of exposure were plotted against bioindicators of corresponding effects for several major anthropogenic activities including petrochemical , pulp and paper, domestic sewage, mining operations, land-development activities, and agricultural activities. Biomarkers of exposure to environmental stressors varied depending on the type of anthropogenic activity involved. Bioindicator effects, however, including histopathological lesions, bioenergetic status, individual growth, reproductive impairment, and community-level responses were similar among many of the major anthropogenic activities. This approach is valuable to help identify and diagnose sources of stressors in environments impacted by multiple stressors. By identifying the types and sources of environmental stressors, aquatic ecosystems can be more effectively protected and managed to maintain acceptable levels of environmental quality and ecosystem fitness.

  2. Dynamic Response Genes in CD4+ T Cells Reveal a Network of Interactive Proteins that Classifies Disease Activity in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Sandra Hellberg

    2016-09-01

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory disease of the CNS and has a varying disease course as well as variable response to treatment. Biomarkers may therefore aid personalized treatment. We tested whether in vitro activation of MS patient-derived CD4+ T cells could reveal potential biomarkers. The dynamic gene expression response to activation was dysregulated in patient-derived CD4+ T cells. By integrating our findings with genome-wide association studies, we constructed a highly connected MS gene module, disclosing cell activation and chemotaxis as central components. Changes in several module genes were associated with differences in protein levels, which were measurable in cerebrospinal fluid and were used to classify patients from control individuals. In addition, these measurements could predict disease activity after 2 years and distinguish low and high responders to treatment in two additional, independent cohorts. While further validation is needed in larger cohorts prior to clinical implementation, we have uncovered a set of potentially promising biomarkers.

  3. Pointwise mutual information quantifies intratumor heterogeneity in tissue sections labeled with multiple fluorescent biomarkers

    Directory of Open Access Journals (Sweden)

    Daniel M Spagnolo

    2016-01-01

    Full Text Available Background: Measures of spatial intratumor heterogeneity are potentially important diagnostic biomarkers for cancer progression, proliferation, and response to therapy. Spatial relationships among cells including cancer and stromal cells in the tumor microenvironment (TME are key contributors to heterogeneity. Methods: We demonstrate how to quantify spatial heterogeneity from immunofluorescence pathology samples, using a set of 3 basic breast cancer biomarkers as a test case. We learn a set of dominant biomarker intensity patterns and map the spatial distribution of the biomarker patterns with a network. We then describe the pairwise association statistics for each pattern within the network using pointwise mutual information (PMI and visually represent heterogeneity with a two-dimensional map. Results: We found a salient set of 8 biomarker patterns to describe cellular phenotypes from a tissue microarray cohort containing 4 different breast cancer subtypes. After computing PMI for each pair of biomarker patterns in each patient and tumor replicate, we visualize the interactions that contribute to the resulting association statistics. Then, we demonstrate the potential for using PMI as a diagnostic biomarker, by comparing PMI maps and heterogeneity scores from patients across the 4 different cancer subtypes. Estrogen receptor positive invasive lobular carcinoma patient, AL13-6, exhibited the highest heterogeneity score among those tested, while estrogen receptor negative invasive ductal carcinoma patient, AL13-14, exhibited the lowest heterogeneity score. Conclusions: This paper presents an approach for describing intratumor heterogeneity, in a quantitative fashion (via PMI, which departs from the purely qualitative approaches currently used in the clinic. PMI is generalizable to highly multiplexed/hyperplexed immunofluorescence images, as well as spatial data from complementary in situ methods including FISSEQ and CyTOF, sampling many different

  4. Predicting multi-level drug response with gene expression profile in multiple myeloma using hierarchical ordinal regression.

    Science.gov (United States)

    Zhang, Xinyan; Li, Bingzong; Han, Huiying; Song, Sha; Xu, Hongxia; Hong, Yating; Yi, Nengjun; Zhuang, Wenzhuo

    2018-05-10

    Multiple myeloma (MM), like other cancers, is caused by the accumulation of genetic abnormalities. Heterogeneity exists in the patients' response to treatments, for example, bortezomib. This urges efforts to identify biomarkers from numerous molecular features and build predictive models for identifying patients that can benefit from a certain treatment scheme. However, previous studies treated the multi-level ordinal drug response as a binary response where only responsive and non-responsive groups are considered. It is desirable to directly analyze the multi-level drug response, rather than combining the response to two groups. In this study, we present a novel method to identify significantly associated biomarkers and then develop ordinal genomic classifier using the hierarchical ordinal logistic model. The proposed hierarchical ordinal logistic model employs the heavy-tailed Cauchy prior on the coefficients and is fitted by an efficient quasi-Newton algorithm. We apply our hierarchical ordinal regression approach to analyze two publicly available datasets for MM with five-level drug response and numerous gene expression measures. Our results show that our method is able to identify genes associated with the multi-level drug response and to generate powerful predictive models for predicting the multi-level response. The proposed method allows us to jointly fit numerous correlated predictors and thus build efficient models for predicting the multi-level drug response. The predictive model for the multi-level drug response can be more informative than the previous approaches. Thus, the proposed approach provides a powerful tool for predicting multi-level drug response and has important impact on cancer studies.

  5. Network-based identification of biomarkers coexpressed with multiple pathways.

    Science.gov (United States)

    Guo, Nancy Lan; Wan, Ying-Wooi

    2014-01-01

    Unraveling complex molecular interactions and networks and incorporating clinical information in modeling will present a paradigm shift in molecular medicine. Embedding biological relevance via modeling molecular networks and pathways has become increasingly important for biomarker identification in cancer susceptibility and metastasis studies. Here, we give a comprehensive overview of computational methods used for biomarker identification, and provide a performance comparison of several network models used in studies of cancer susceptibility, disease progression, and prognostication. Specifically, we evaluated implication networks, Boolean networks, Bayesian networks, and Pearson's correlation networks in constructing gene coexpression networks for identifying lung cancer diagnostic and prognostic biomarkers. The results show that implication networks, implemented in Genet package, identified sets of biomarkers that generated an accurate prediction of lung cancer risk and metastases; meanwhile, implication networks revealed more biologically relevant molecular interactions than Boolean networks, Bayesian networks, and Pearson's correlation networks when evaluated with MSigDB database.

  6. Effects of thermal stress and nickel exposure on biomarkers responses in Mytilus galloprovincialis (Lam).

    Science.gov (United States)

    Attig, Hajer; Kamel, Naouel; Sforzini, Susanna; Dagnino, Alessandro; Jamel, Jebali; Boussetta, Hamadi; Viarengo, Aldo; Banni, Mohamed

    2014-03-01

    The present work aimed to assess the Mytilus galloprovincialis digestive gland biomarkers responses to nickel (Ni) exposure along with a heat stress gradient. Mussels were exposed to a sublethal dose of nickel (13 μM) along with a temperature gradient (18 °C, 20 °C, 22 °C, 24 °C and 26 °C) for 4 days. Metallothionein (MTs) content was assessed as specific response to metals. Catalase (CAT), glutathione S-transferase (GST) activities and malondialdehyde (MDA) were measured as biomarkers of oxidative stress and lipid peroxidation. The cholinergic system was monitored using the acetylcholinesterase activity (AChE). Moreover, Ni uptakes along with the exposure temperatures were assessed. A correlation matrix (CM) between the investigated biomarkers and the exposure temperatures and a Principal Component Analysis (PCA) were achieved. Our data showed a negative effect of temperature increase on mussel's antioxidant and detoxification response to Ni exposure being more pronounced in animals exposed to the 24 °C and 26 °C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Exploring the Limitations of Peripheral Blood Transcriptional Biomarkers in Predicting Influenza Vaccine Responsiveness

    Directory of Open Access Journals (Sweden)

    Luca Marchetti

    2017-01-01

    Full Text Available Systems biology has been recently applied to vaccinology to better understand immunological responses to the influenza vaccine. Particular attention has been paid to the identification of early signatures capable of predicting vaccine immunogenicity. Building from previous studies, we employed a recently established algorithm for signature-based clustering of expression profiles, SCUDO, to provide new insights into why blood-derived transcriptome biomarkers often fail to predict the seroresponse to the influenza virus vaccination. Specifically, preexisting immunity against one or more vaccine antigens, which was found to negatively affect the seroresponse, was identified as a confounding factor able to decouple early transcriptome from later antibody responses, resulting in the degradation of a biomarker predictive power. Finally, the broadly accepted definition of seroresponse to influenza virus vaccine, represented by the maximum response across the vaccine-targeted strains, was compared to a composite measure integrating the responses against all strains. This analysis revealed that composite measures provide a more accurate assessment of the seroresponse to multicomponent influenza vaccines.

  8. Sepsis: Multiple Abnormalities, Heterogeneous Responses, and Evolving Understanding

    Science.gov (United States)

    Iskander, Kendra N.; Osuchowski, Marcin F.; Stearns-Kurosawa, Deborah J.; Kurosawa, Shinichiro; Stepien, David; Valentine, Catherine

    2013-01-01

    Sepsis represents the host's systemic inflammatory response to a severe infection. It causes substantial human morbidity resulting in hundreds of thousands of deaths each year. Despite decades of intense research, the basic mechanisms still remain elusive. In either experimental animal models of sepsis or human patients, there are substantial physiological changes, many of which may result in subsequent organ injury. Variations in age, gender, and medical comorbidities including diabetes and renal failure create additional complexity that influence the outcomes in septic patients. Specific system-based alterations, such as the coagulopathy observed in sepsis, offer both potential insight and possible therapeutic targets. Intracellular stress induces changes in the endoplasmic reticulum yielding misfolded proteins that contribute to the underlying pathophysiological changes. With these multiple changes it is difficult to precisely classify an individual's response in sepsis as proinflammatory or immunosuppressed. This heterogeneity also may explain why most therapeutic interventions have not improved survival. Given the complexity of sepsis, biomarkers and mathematical models offer potential guidance once they have been carefully validated. This review discusses each of these important factors to provide a framework for understanding the complex and current challenges of managing the septic patient. Clinical trial failures and the therapeutic interventions that have proven successful are also discussed. PMID:23899564

  9. Discovering biomarkers for antidepressant response: protocol from the Canadian biomarker integration network in depression (CAN-BIND) and clinical characteristics of the first patient cohort.

    Science.gov (United States)

    Lam, Raymond W; Milev, Roumen; Rotzinger, Susan; Andreazza, Ana C; Blier, Pierre; Brenner, Colleen; Daskalakis, Zafiris J; Dharsee, Moyez; Downar, Jonathan; Evans, Kenneth R; Farzan, Faranak; Foster, Jane A; Frey, Benicio N; Geraci, Joseph; Giacobbe, Peter; Feilotter, Harriet E; Hall, Geoffrey B; Harkness, Kate L; Hassel, Stefanie; Ismail, Zahinoor; Leri, Francesco; Liotti, Mario; MacQueen, Glenda M; McAndrews, Mary Pat; Minuzzi, Luciano; Müller, Daniel J; Parikh, Sagar V; Placenza, Franca M; Quilty, Lena C; Ravindran, Arun V; Salomons, Tim V; Soares, Claudio N; Strother, Stephen C; Turecki, Gustavo; Vaccarino, Anthony L; Vila-Rodriguez, Fidel; Kennedy, Sidney H

    2016-04-16

    Major Depressive Disorder (MDD) is among the most prevalent and disabling medical conditions worldwide. Identification of clinical and biological markers ("biomarkers") of treatment response could personalize clinical decisions and lead to better outcomes. This paper describes the aims, design, and methods of a discovery study of biomarkers in antidepressant treatment response, conducted by the Canadian Biomarker Integration Network in Depression (CAN-BIND). The CAN-BIND research program investigates and identifies biomarkers that help to predict outcomes in patients with MDD treated with antidepressant medication. The primary objective of this initial study (known as CAN-BIND-1) is to identify individual and integrated neuroimaging, electrophysiological, molecular, and clinical predictors of response to sequential antidepressant monotherapy and adjunctive therapy in MDD. CAN-BIND-1 is a multisite initiative involving 6 academic health centres working collaboratively with other universities and research centres. In the 16-week protocol, patients with MDD are treated with a first-line antidepressant (escitalopram 10-20 mg/d) that, if clinically warranted after eight weeks, is augmented with an evidence-based, add-on medication (aripiprazole 2-10 mg/d). Comprehensive datasets are obtained using clinical rating scales; behavioural, dimensional, and functioning/quality of life measures; neurocognitive testing; genomic, genetic, and proteomic profiling from blood samples; combined structural and functional magnetic resonance imaging; and electroencephalography. De-identified data from all sites are aggregated within a secure neuroinformatics platform for data integration, management, storage, and analyses. Statistical analyses will include multivariate and machine-learning techniques to identify predictors, moderators, and mediators of treatment response. From June 2013 to February 2015, a cohort of 134 participants (85 outpatients with MDD and 49 healthy participants

  10. Candidate immune biomarkers for radioimmunotherapy.

    Science.gov (United States)

    Levy, Antonin; Nigro, Giulia; Sansonetti, Philippe J; Deutsch, Eric

    2017-08-01

    Newly available immune checkpoint blockers (ICBs), capable to revert tumor immune tolerance, are revolutionizing the anticancer armamentarium. Recent evidence also established that ionizing radiation (IR) could produce antitumor immune responses, and may as well synergize with ICBs. Multiple radioimmunotherapy combinations are thenceforth currently assessed in early clinical trials. Past examples have highlighted the need for treatment personalization, and there is an unmet need to decipher immunological biomarkers that could allow selecting patients who could benefit from these promising but expensive associations. Recent studies have identified potential predictive and prognostic immune assays at the cellular (tumor microenvironment composition), genomic (mutational/neoantigen load), and peripheral blood levels. Within this review, we collected the available evidence regarding potential personalized immune biomarker-directed radiation therapy strategies that might be used for patient selection in the era of radioimmunotherapy. Copyright © 2017. Published by Elsevier B.V.

  11. Circulating MicroRNAs as Potential Biomarkers of Exercise Response

    Directory of Open Access Journals (Sweden)

    Mája Polakovičová

    2016-10-01

    Full Text Available Systematic physical activity increases physical fitness and exercise capacity that lead to the improvement of health status and athletic performance. Considerable effort is devoted to identifying new biomarkers capable of evaluating exercise performance capacity and progress in training, early detection of overtraining, and monitoring health-related adaptation changes. Recent advances in OMICS technologies have opened new opportunities in the detection of genetic, epigenetic and transcriptomic biomarkers. Very promising are mainly small non-coding microRNAs (miRNAs. miRNAs post-transcriptionally regulate gene expression by binding to mRNA and causing its degradation or inhibiting translation. A growing body of evidence suggests that miRNAs affect many processes and play a crucial role not only in cell differentiation, proliferation and apoptosis, but also affect extracellular matrix composition and maintaining processes of homeostasis. A number of studies have shown changes in distribution profiles of circulating miRNAs (c-miRNAs associated with various diseases and disorders as well as in samples taken under physiological conditions such as pregnancy or physical exercise. This overview aims to summarize the current knowledge related to the response of blood c-miRNAs profiles to different modes of exercise and to highlight their potential application as a novel class of biomarkers of physical performance capacity and training adaptation.

  12. 11C-Acetate as a new biomarker for PET/CT in patients with multiple myeloma: initial staging and postinduction response assessment

    International Nuclear Information System (INIS)

    Lin, Chieh; Tsai, Shu-Fan; Yen, Tzu-Chen; Ho, Chi-Lai; Ng, Shu-Hang; Lin, Yu-Chun; Wang, Po-Nan; Tang, Tzung-Chih; Huang, Yenlin; Rahmouni, Alain

    2014-01-01

    We investigated the potential value of 11 C-acetate (ACT) PET/CT in characterizing multiple myeloma (MM) compared with 18 F-FDG PET/CT. Bone marrow histological and whole-body (WB) MRI findings served as the reference standards. In this prospective study, 15 untreated MM patients (10 men and 5 women, age range 48-69 years) underwent dual-tracer 11 C-ACT and 18 F-FDG PET/CT and WB MRI for pretreatment staging, and 13 of them had repeated examinations after induction therapy. Diffuse and focal bone marrow uptake was assessed by visual and quantitative analyses, including measurement of the maximum standardized uptake value (SUV max ). Between-group differences and correlations were assessed with the Mann-Whitney U test and the Pearson test. At staging, all 15 patients had diffuse myeloma involvement upon bone marrow examination with 30-90 % of plasma cell infiltrates. Diffuse infiltration was detected in all of them (100 %) using 11 C-ACT with a positive correlation between bone marrow uptake values and percentages of plasma cell infiltrates (r = +0.63, p = 0.01). In contrast, a diagnosis of diffuse infiltration could be established using 18 F-FDG in only six patients (40 %). Focal lesions were shown in 13 patients on both 11 C-ACT PET/CT and WB MRI, and in 10 patients on 18 F-FDG PET/CT. Focal lesions demonstrated 11 C-ACT uptake with a mean SUV max of 11.4 ± 3.3 (range 4.6-19.6, n = 59), which was significantly higher than the 18 F-FDG uptake (mean SUV max 6.6 ± 3.1, range 2.3-13.7, n = 29; p 11 C-ACT uptake showed a mean SUV max reduction of 66 % in patients with at least a very good partial response versus 34 % in those with at most a partial response only (p = 0.01). PET/CT using 11 C-ACT as a biomarker showed a higher detection rate for both diffuse and focal myeloma lesions at diagnosis than using 18 F-FDG, and may be valuable for response assessment. (orig.)

  13. Dietary and health biomarkers-time for an update

    NARCIS (Netherlands)

    Dragsted, L.O.; Gao Qizian,; Praticò, G.; Manach, Claudine; Wishart, D.S.; Scalbert, A.; Feskens, E.J.M.

    2017-01-01

    In the dietary and health research area, biomarkers are extensively used for multiple purposes. These include biomarkers of dietary intake and nutrient status, biomarkers used to measure the biological effects of specific dietary components, and biomarkers to assess the effects of diet on health.

  14. A biomarker-responsive T2ex MRI contrast agent.

    Science.gov (United States)

    Daryaei, Iman; Randtke, Edward A; Pagel, Mark D

    2017-04-01

    This study investigated a fundamentally new type of responsive MRI contrast agent for molecular imaging that alters T 2 exchange (T 2ex ) properties after interacting with a molecular biomarker. The contrast agent Tm-DO3A-oAA was treated with nitric oxide (NO) and O 2 . The R 1 and R 2 relaxation rates of the reactant and product were measured with respect to concentration, temperature, and pH. Chemical exchange saturation transfer (CEST) spectra of the reactant and product were acquired using a 7 Tesla (T) MRI scanner and analyzed to estimate the chemical exchange rates and r 2ex relaxivities. The reaction of Tm-DO3A-oAA with NO and O 2 caused a 6.4-fold increase in the r 2 relaxivity of the agent, whereas r 1 relaxivity remained unchanged, which demonstrated that Tm-DO3A-oAA is a responsive T 2ex agent. The effects of pH and temperature on the r 2 relaxivities of the reactant and product supported the conclusion that the product's benzimidazole ligand caused the agent to have a fast chemical exchange rate relative to the slow exchange rate of the reactant's ortho-aminoanilide ligand. T 2ex MRI contrast agents are a new type of responsive agent that have good detection sensitivity and specificity for detecting a biomarker, which can serve as a new tool for molecular imaging. Magn Reson Med 77:1665-1670, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage

    Directory of Open Access Journals (Sweden)

    Simon-Shlomo ePoil

    2013-10-01

    Full Text Available Alzheimer's disease (AD is a devastating disorder of increasing prevalence in modern society. Mild cognitive impairment (MCI is considered a transitional stage between normal aging and AD; however, not all subjects with MCI progress to AD. Prediction of conversion to AD at an early stage would enable an earlier, and potentially more effective, treatment of AD. Electroencephalography (EEG biomarkers would provide a non-invasive and relatively cheap screening tool to predict conversion to AD; however, traditional EEG biomarkers have not been considered accurate enough to be useful in clinical practice. Here, we aim to combine the information from multiple EEG biomarkers into a diagnostic classification index in order to improve the accuracy of predicting conversion from MCI to AD within a two-year period. We followed 86 patients initially diagnosed with MCI for two years during which 25 patients converted to AD. We show that multiple EEG biomarkers mainly related to activity in the beta-frequency range (13–30 Hz can predict conversion from MCI to AD. Importantly, by integrating six EEG biomarkers into a diagnostic index using logistic regression the prediction improved compared with the classification using the individual biomarkers, with a sensitivity of 88% and specificity of 82%, compared with a sensitivity of 64% and specificity of 62% of the best individual biomarker in this index. In order to identify this diagnostic index we developed a data mining approach implemented in the Neurophysiological Biomarker Toolbox (http://www.nbtwiki.net/. We suggest that this approach can be used to identify optimal combinations of biomarkers (integrative biomarkers also in other modalities. Potentially, these integrative biomarkers could be more sensitive to disease progression and response to therapeutic intervention.

  16. Biochemical biomarker responses to pollution in selected sentinel organisms across the Eastern Mediterranean and the Black Sea

    KAUST Repository

    Tsangaris, Catherine; Moschino, Vanessa; Strogyloudi, Evangelia; Coatu, Valentina; Ramšak, Andreja; Abu Alhaija, Rana; Carvalho, Susana; Felline, Serena; Kosyan, Alisa; Lazarou, Yiota; Hatzianestis, Ioannis; Oros, Andra; Tiganus, Daniela

    2015-01-01

    Pollution effects were assessed by means of biochemical biomarkers (catalase, glutathione S-transferase and acetylcholinesterase activities, and metallothioneins content) in five species at selected coastal sites across the Eastern Mediterranean and the Black Sea. The mussel Mytilus galloprovincialis, a well-established sentinel species, was investigated in the Adriatic Sea, Aegean Sea, and Black Sea. The mussel Brachidontes pharaonis and the striped red mullet Mullus surmuletus were used in the Levantine Sea where M. galloprovincialis is not present. The white seabream Diplodus sargus sargus and the gastropod Rapana venosa were additionally sampled in the Adriatic and the Black Sea, respectively. Mussels showed catalase, glutathione S-transferase, and acetylcholinesterase responses to pollution in most geographical areas while the response of metallothioneins was restricted to a few sites. R. venosa showed marked responses of catalase and metallothioneins whereas both fish species did not generally exhibit variations in biomarker values among sites. The approach based on the reference deviation concept using the “Integrated Biological Responses version 2” index was useful for the interpretation of overall biomarker responses.

  17. Biochemical biomarker responses to pollution in selected sentinel organisms across the Eastern Mediterranean and the Black Sea

    KAUST Repository

    Tsangaris, Catherine

    2015-09-23

    Pollution effects were assessed by means of biochemical biomarkers (catalase, glutathione S-transferase and acetylcholinesterase activities, and metallothioneins content) in five species at selected coastal sites across the Eastern Mediterranean and the Black Sea. The mussel Mytilus galloprovincialis, a well-established sentinel species, was investigated in the Adriatic Sea, Aegean Sea, and Black Sea. The mussel Brachidontes pharaonis and the striped red mullet Mullus surmuletus were used in the Levantine Sea where M. galloprovincialis is not present. The white seabream Diplodus sargus sargus and the gastropod Rapana venosa were additionally sampled in the Adriatic and the Black Sea, respectively. Mussels showed catalase, glutathione S-transferase, and acetylcholinesterase responses to pollution in most geographical areas while the response of metallothioneins was restricted to a few sites. R. venosa showed marked responses of catalase and metallothioneins whereas both fish species did not generally exhibit variations in biomarker values among sites. The approach based on the reference deviation concept using the “Integrated Biological Responses version 2” index was useful for the interpretation of overall biomarker responses.

  18. Biochemical biomarker responses to pollution in selected sentinel organisms across the Eastern Mediterranean and the Black Sea.

    Science.gov (United States)

    Tsangaris, Catherine; Moschino, Vanessa; Strogyloudi, Evangelia; Coatu, Valentina; Ramšak, Andreja; Alhaija, Rana Abu; Carvalho, Susana; Felline, Serena; Kosyan, Alisa; Lazarou, Yiota; Hatzianestis, Ioannis; Oros, Andra; Tiganus, Daniela

    2016-01-01

    Pollution effects were assessed by means of biochemical biomarkers (catalase, glutathione S-transferase and acetylcholinesterase activities, and metallothioneins content) in five species at selected coastal sites across the Eastern Mediterranean and the Black Sea. The mussel Mytilus galloprovincialis, a well-established sentinel species, was investigated in the Adriatic Sea, Aegean Sea, and Black Sea. The mussel Brachidontes pharaonis and the striped red mullet Mullus surmuletus were used in the Levantine Sea where M. galloprovincialis is not present. The white seabream Diplodus sargus sargus and the gastropod Rapana venosa were additionally sampled in the Adriatic and the Black Sea, respectively. Mussels showed catalase, glutathione S-transferase, and acetylcholinesterase responses to pollution in most geographical areas while the response of metallothioneins was restricted to a few sites. R. venosa showed marked responses of catalase and metallothioneins whereas both fish species did not generally exhibit variations in biomarker values among sites. The approach based on the reference deviation concept using the "Integrated Biological Responses version 2" index was useful for the interpretation of overall biomarker responses.

  19. Volumetry based biomarker speed of growth: Quantifying the change of total tumor volume in whole-body magnetic resonance imaging over time improves risk stratification of smoldering multiple myeloma patients.

    Science.gov (United States)

    Wennmann, Markus; Kintzelé, Laurent; Piraud, Marie; Menze, Bjoern H; Hielscher, Thomas; Hofmanninger, Johannes; Wagner, Barbara; Kauczor, Hans-Ulrich; Merz, Maximilian; Hillengass, Jens; Langs, Georg; Weber, Marc-André

    2018-05-18

    The purpose of this study was to improve risk stratification of smoldering multiple myeloma patients, introducing new 3D-volumetry based imaging biomarkers derived from whole-body MRI. Two-hundred twenty whole-body MRIs from 63 patients with smoldering multiple myeloma were retrospectively analyzed and all focal lesions >5mm were manually segmented for volume quantification. The imaging biomarkers total tumor volume, speed of growth (development of the total tumor volume over time), number of focal lesions, development of the number of focal lesions over time and the recent imaging biomarker '>1 focal lesion' of the International Myeloma Working Group were compared, taking 2-year progression rate, sensitivity and false positive rate into account. Speed of growth, using a cutoff of 114mm 3 /month, was able to isolate a high-risk group with a 2-year progression rate of 82.5%. Additionally, it showed by far the highest sensitivity in this study and in comparison to other biomarkers in the literature, detecting 63.2% of patients who progress within 2 years. Furthermore, its false positive rate (8.7%) was much lower compared to the recent imaging biomarker '>1 focal lesion' of the International Myeloma Working Group. Therefore, speed of growth is the preferable imaging biomarker for risk stratification of smoldering multiple myeloma patients.

  20. Using multiple biomarkers and determinants to obtain a better measurement of oxidative stress: a latent variable structural equation model approach.

    Science.gov (United States)

    Eldridge, Ronald C; Flanders, W Dana; Bostick, Roberd M; Fedirko, Veronika; Gross, Myron; Thyagarajan, Bharat; Goodman, Michael

    2017-09-01

    Since oxidative stress involves a variety of cellular changes, no single biomarker can serve as a complete measure of this complex biological process. The analytic technique of structural equation modeling (SEM) provides a possible solution to this problem by modelling a latent (unobserved) variable constructed from the covariance of multiple biomarkers. Using three pooled datasets, we modelled a latent oxidative stress variable from five biomarkers related to oxidative stress: F 2 -isoprostanes (FIP), fluorescent oxidation products, mitochondrial DNA copy number, γ-tocopherol (Gtoc) and C-reactive protein (CRP, an inflammation marker closely linked to oxidative stress). We validated the latent variable by assessing its relation to pro- and anti-oxidant exposures. FIP, Gtoc and CRP characterized the latent oxidative stress variable. Obesity, smoking, aspirin use and β-carotene were statistically significantly associated with oxidative stress in the theorized directions; the same exposures were weakly and inconsistently associated with the individual biomarkers. Our results suggest that using SEM with latent variables decreases the biomarker-specific variability, and may produce a better measure of oxidative stress than do single variables. This methodology can be applied to similar areas of research in which a single biomarker is not sufficient to fully describe a complex biological phenomenon.

  1. Can the integration of multiple biomarkers and sediment geochemistry aid solving the complexity of sediment risk assessment? A case study with a benthic fish

    International Nuclear Information System (INIS)

    Costa, Pedro M.; Caeiro, Sandra; Vale, Carlos; DelValls, T. Àngel; Costa, Maria H.

    2012-01-01

    Surveying toxicity of complex geochemical media as aquatic sediments often yields results that are either difficult to interpret or even contradictory to acknowledged theory. Multi-level biomarkers were investigated in a benthic fish exposed to estuarine sediments through laboratory and in situ bioassays, to evaluate their employment either in ecological risk assessment or in more mechanistic approaches to assess sediment-bound toxicity. Biomarkers reflecting lesions (such as genotoxicity or histopathology), regardless of their low or absent specificity to contaminants, are efficient in segregating exposure to contaminated from uncontaminated sediments even when classical biomarkers like CYP1A and metallothionein induction are inconclusive. Conversely, proteomics and gene transcription analyses provided information on the mechanics of toxicity and aided explaining response variation as a function of metabolic imbalance and impairment of defences against insult. In situ bioassays, although less expedite and more affected by confounding factors, produced data better correlated to overall sediment contamination. Highlights: ► Sediment-bound contaminant mixtures can yield unexpected biomarker responses in fish. ► Biomarkers reflecting lesions are sturdier predictors of pollution by mixed xenobiotics. ► Proteomics and gene transcription analyses disclosed the existence of complex patterns of response to toxicity. ► Laboratory bioassays are less impacted by noise variables but tend to lose ecological relevance. - Evaluation of multi-level biomarker responses in fish for ecological risk assessment

  2. Cytokine Responses in Gills of Capoeta umbla as Biomarkers of Environmental Pollution.

    Science.gov (United States)

    Danabas, Durali; Yildirim, Nuran Cikcikoglu; Yildirim, Numan; Onal, Ayten Oztufekci; Uslu, Gulsad; Unlu, Erhan; Danabas, Seval; Ergin, Cemil; Tayhan, Nilgun

    2016-03-01

    Immunological biomarkers reflect the effects of exposure to environmental contaminants. In this study, the suitability and sensitivity of cytokine responses, interleukin1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) in gill tissues of Capoeta umbla (Heckel, 1843), collected from different regions, as early warning indices of environmental pollution and ecosystem health was evaluated. Fish and water samples were taken from ten stations in March and September 2011 and 2012. Tumor necrosis factor-α, IL-1β and IL-6 levels were determined in samples of the gill tissues by using an ELISA kit. Significant variations of TNF-α, IL-1β and IL-6 levels observed between stations and seasons. The results of this study show that seasonal variations of cytokine responses in gills of Capoeta umbla are sensitive to the contaminants present in Uzuncayir Dam Lake (Tunceli, Turkey) water and are valuable biomarkers for environmental pollution and ecosystem health.

  3. An epigenetic biomarker of aging for lifespan and healthspan

    Science.gov (United States)

    Levine, Morgan E.; Lu, Ake T.; Quach, Austin; Chen, Brian H.; Assimes, Themistocles L.; Bandinelli, Stefania; Hou, Lifang; Baccarelli, Andrea A.; Stewart, James D.; Li, Yun; Whitsel, Eric A.; Wilson, James G; Reiner, Alex P; Aviv, Abraham; Lohman, Kurt; Liu, Yongmei; Ferrucci, Luigi

    2018-01-01

    Identifying reliable biomarkers of aging is a major goal in geroscience. While the first generation of epigenetic biomarkers of aging were developed using chronological age as a surrogate for biological age, we hypothesized that incorporation of composite clinical measures of phenotypic age that capture differences in lifespan and healthspan may identify novel CpGs and facilitate the development of a more powerful epigenetic biomarker of aging. Using an innovative two-step process, we develop a new epigenetic biomarker of aging, DNAm PhenoAge, that strongly outperforms previous measures in regards to predictions for a variety of aging outcomes, including all-cause mortality, cancers, healthspan, physical functioning, and Alzheimer's disease. While this biomarker was developed using data from whole blood, it correlates strongly with age in every tissue and cell tested. Based on an in-depth transcriptional analysis in sorted cells, we find that increased epigenetic, relative to chronological age, is associated with increased activation of pro-inflammatory and interferon pathways, and decreased activation of transcriptional/translational machinery, DNA damage response, and mitochondrial signatures. Overall, this single epigenetic biomarker of aging is able to capture risks for an array of diverse outcomes across multiple tissues and cells, and provide insight into important pathways in aging. PMID:29676998

  4. Have biomarkers made their mark? A brief review of dental biomarkers

    Directory of Open Access Journals (Sweden)

    Mohammed Kaleem Sultan

    2014-01-01

    Full Text Available Biomarkers are substances that are released into the human body by tumor cells or by other cells in response to tumor. A high level of a tumor marker is considered a sign of certain cancer, which makes biomarker the subject of many testing methods for the diagnosis of cancers. In recent times, these biomarkers have been successfully isolated to diagnose dental-related tumors, benign and malignant conditions. This article is a brief review of literature for various biomarkers used in the field of dentistry.

  5. Multi-biomarker responses as indication of contaminant effects in Gambusia affinis from impacted rivers by municipal effluents.

    Science.gov (United States)

    Huang, Guo-Yong; Liu, You-Sheng; Liang, Yan-Qiu; Shi, Wen-Jun; Hu, Li-Xin; Tian, Fei; Chen, Jun; Ying, Guang-Guo

    2016-09-01

    This study investigated toxic effects in mosquitofish from two urban rivers of South China impacted by municipal effluents by using multiple biomarkers including fish morphology, biochemical indicators and transcriptional responses, and explored potential cause-effect relationship with a list of chemicals (metals, polycyclic aromatic hydrocarbons (PAHs) and pesticides). The results showed significant alterations in metallothionein (MT) protein and mRNA expression in mosquitofish collected from the two rivers and a strong association between MT protein and mRNA expression levels and heavy metals in the river water. Both ethoxyresorufin-O-deethylase (EROD) activity and cytochromes P450 1A (CYP1A) mRNA expression were significantly enhanced in mosquitofish at most sampling sites. There existed a strong correlation between EROD activity and CYP1A mRNA expression levels, but no clear correlations between these responses and PAHs in the river water possibly because of the presence of many other agonists of the aryl hydrocarbon receptor in the two rivers. Significant acetylcholinesterase (AChE) inhibition was observed in mosquitofish brain samples. The pesticides in the two rivers showed an influence on the AChE activity, which was also found to be significantly negatively correlated to fipronil concentrations. Moreover, the result also indicates that metals and pesticides present in the two rivers might cause the observed estrogenic and androgenic effects in mosquitofish. The findings from this study clearly showed morphological, biochemical and transcriptional responses in mosquitofish due to chemical contamination of the two urban rivers. This multi-biomarker approach using mosquitofish can be applied to evaluate contamination of riverine environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. {sup 11}C-Acetate as a new biomarker for PET/CT in patients with multiple myeloma: initial staging and postinduction response assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chieh; Tsai, Shu-Fan; Yen, Tzu-Chen [Chang Gung Memorial Hospital, Department of Nuclear Medicine and Molecular Imaging Center, Gueishan (China); Chang Gung University College of Medicine, Taoyuan (China); Ho, Chi-Lai [Hong Kong Sanatorium and Hospital, Department of Nuclear Medicine and Positron Emission Tomography, Hong Kong (China); Ng, Shu-Hang; Lin, Yu-Chun [Chang Gung University College of Medicine, Taoyuan (China); Chang Gung Memorial Hospital, Department of Diagnostic Radiology, Taoyuan (China); Wang, Po-Nan; Tang, Tzung-Chih [Chang Gung University College of Medicine, Taoyuan (China); Chang Gung Memorial Hospital, Department of Internal Medicine, Division of Hematology-Oncology, Taoyuan (China); Huang, Yenlin [Chang Gung University College of Medicine, Taoyuan (China); Chang Gung Memorial Hospital, Department of Anatomic Pathology, Taoyuan (China); Rahmouni, Alain [AP-HP, Groupe Henri-Mondor Albert-Chenevier, CHU Henri Mondor, Department of Radiology, Creteil (France)

    2014-01-15

    We investigated the potential value of {sup 11}C-acetate (ACT) PET/CT in characterizing multiple myeloma (MM) compared with {sup 18}F-FDG PET/CT. Bone marrow histological and whole-body (WB) MRI findings served as the reference standards. In this prospective study, 15 untreated MM patients (10 men and 5 women, age range 48-69 years) underwent dual-tracer {sup 11}C-ACT and {sup 18}F-FDG PET/CT and WB MRI for pretreatment staging, and 13 of them had repeated examinations after induction therapy. Diffuse and focal bone marrow uptake was assessed by visual and quantitative analyses, including measurement of the maximum standardized uptake value (SUV{sub max}). Between-group differences and correlations were assessed with the Mann-Whitney U test and the Pearson test. At staging, all 15 patients had diffuse myeloma involvement upon bone marrow examination with 30-90 % of plasma cell infiltrates. Diffuse infiltration was detected in all of them (100 %) using {sup 11}C-ACT with a positive correlation between bone marrow uptake values and percentages of plasma cell infiltrates (r = +0.63, p = 0.01). In contrast, a diagnosis of diffuse infiltration could be established using {sup 18}F-FDG in only six patients (40 %). Focal lesions were shown in 13 patients on both {sup 11}C-ACT PET/CT and WB MRI, and in 10 patients on {sup 18}F-FDG PET/CT. Focal lesions demonstrated {sup 11}C-ACT uptake with a mean SUV{sub max} of 11.4 ± 3.3 (range 4.6-19.6, n = 59), which was significantly higher than the {sup 18}F-FDG uptake (mean SUV{sub max} 6.6 ± 3.1, range 2.3-13.7, n = 29; p < 0.0001). After treatment, the diffuse bone marrow {sup 11}C-ACT uptake showed a mean SUV{sub max} reduction of 66 % in patients with at least a very good partial response versus 34 % in those with at most a partial response only (p = 0.01). PET/CT using {sup 11}C-ACT as a biomarker showed a higher detection rate for both diffuse and focal myeloma lesions at diagnosis than using {sup 18}F-FDG, and may be

  7. Neurofilament light antibodies in serum reflect response to natalizumab treatment in multiple sclerosis.

    Science.gov (United States)

    Amor, Sandra; van der Star, Baukje J; Bosca, Isabel; Raffel, Joel; Gnanapavan, Sharmilee; Watchorn, Jonathan; Kuhle, Jens; Giovannoni, Gavin; Baker, David; Malaspina, Andrea; Puentes, Fabiola

    2014-09-01

    Increased levels of antibodies to neurofilament light protein (NF-L) in biological fluids have been found to reflect neuroinflammatory responses and neurodegeneration in multiple sclerosis (MS). To evaluate whether levels of serum antibodies against NF-L correlate with clinical variants and treatment response in MS. The autoantibody reactivity to NF-L protein was tested in serum samples from patients with relapsing-remitting MS (RRMS) (n=22) and secondary progressive MS (SPMS) (n=26). Two other cohorts of RRMS patients under treatment with natalizumab were analysed cross-sectionally (n=16) and longitudinally (n=24). The follow-up samples were taken at 6, 12, 18 and 24 months after treatment, and the NF-L antibody levels were compared against baseline levels. NF-L antibodies were higher in MS clinical groups than healthy controls and in RRMS compared to SPMS patients (ptreatment compared with baseline measurements (p=0.001). Drug efficacy in MS treatment indicates the potential use of monitoring the content of antibodies against the NF-L chain as a predictive biomarker of treatment response in MS. © The Author(s) 2014.

  8. A simple method to combine multiple molecular biomarkers for dichotomous diagnostic classification

    Directory of Open Access Journals (Sweden)

    Amin Manik A

    2006-10-01

    Full Text Available Abstract Background In spite of the recognized diagnostic potential of biomarkers, the quest for squelching noise and wringing in information from a given set of biomarkers continues. Here, we suggest a statistical algorithm that – assuming each molecular biomarker to be a diagnostic test – enriches the diagnostic performance of an optimized set of independent biomarkers employing established statistical techniques. We validated the proposed algorithm using several simulation datasets in addition to four publicly available real datasets that compared i subjects having cancer with those without; ii subjects with two different cancers; iii subjects with two different types of one cancer; and iv subjects with same cancer resulting in differential time to metastasis. Results Our algorithm comprises of three steps: estimating the area under the receiver operating characteristic curve for each biomarker, identifying a subset of biomarkers using linear regression and combining the chosen biomarkers using linear discriminant function analysis. Combining these established statistical methods that are available in most statistical packages, we observed that the diagnostic accuracy of our approach was 100%, 99.94%, 96.67% and 93.92% for the real datasets used in the study. These estimates were comparable to or better than the ones previously reported using alternative methods. In a synthetic dataset, we also observed that all the biomarkers chosen by our algorithm were indeed truly differentially expressed. Conclusion The proposed algorithm can be used for accurate diagnosis in the setting of dichotomous classification of disease states.

  9. A distinct urinary biomarker pattern characteristic of female Fabry patients that mirrors response to enzyme replacement therapy.

    Directory of Open Access Journals (Sweden)

    Andreas D Kistler

    Full Text Available Female patients affected by Fabry disease, an X-linked lysosomal storage disorder, exhibit a wide spectrum of symptoms, which renders diagnosis, and treatment decisions challenging. No diagnostic test, other than sequencing of the alpha-galactosidase A gene, is available and no biomarker has been proven useful to screen for the disease, predict disease course and monitor response to enzyme replacement therapy. Here, we used urine proteomic analysis based on capillary electrophoresis coupled to mass spectrometry and identified a biomarker profile in adult female Fabry patients. Urine samples were taken from 35 treatment-naïve female Fabry patients and were compared to 89 age-matched healthy controls. We found a diagnostic biomarker pattern that exhibited 88.2% sensitivity and 97.8% specificity when tested in an independent validation cohort consisting of 17 treatment-naïve Fabry patients and 45 controls. The model remained highly specific when applied to additional control patients with a variety of other renal, metabolic and cardiovascular diseases. Several of the 64 identified diagnostic biomarkers showed correlations with measures of disease severity. Notably, most biomarkers responded to enzyme replacement therapy, and 8 of 11 treated patients scored negative for Fabry disease in the diagnostic model. In conclusion, we defined a urinary biomarker model that seems to be of diagnostic use for Fabry disease in female patients and may be used to monitor response to enzyme replacement therapy.

  10. Biomarkers of adverse drug reactions.

    Science.gov (United States)

    Carr, Daniel F; Pirmohamed, Munir

    2018-02-01

    Adverse drug reactions can be caused by a wide range of therapeutics. Adverse drug reactions affect many bodily organ systems and vary widely in severity. Milder adverse drug reactions often resolve quickly following withdrawal of the casual drug or sometimes after dose reduction. Some adverse drug reactions are severe and lead to significant organ/tissue injury which can be fatal. Adverse drug reactions also represent a financial burden to both healthcare providers and the pharmaceutical industry. Thus, a number of stakeholders would benefit from development of new, robust biomarkers for the prediction, diagnosis, and prognostication of adverse drug reactions. There has been significant recent progress in identifying predictive genomic biomarkers with the potential to be used in clinical settings to reduce the burden of adverse drug reactions. These have included biomarkers that can be used to alter drug dose (for example, Thiopurine methyltransferase (TPMT) and azathioprine dose) and drug choice. The latter have in particular included human leukocyte antigen (HLA) biomarkers which identify susceptibility to immune-mediated injuries to major organs such as skin, liver, and bone marrow from a variety of drugs. This review covers both the current state of the art with regard to genomic adverse drug reaction biomarkers. We also review circulating biomarkers that have the potential to be used for both diagnosis and prognosis, and have the added advantage of providing mechanistic information. In the future, we will not be relying on single biomarkers (genomic/non-genomic), but on multiple biomarker panels, integrated through the application of different omics technologies, which will provide information on predisposition, early diagnosis, prognosis, and mechanisms. Impact statement • Genetic and circulating biomarkers present significant opportunities to personalize patient therapy to minimize the risk of adverse drug reactions. ADRs are a significant heath issue

  11. Measuring and combining multiple diagnostic and prognostic sepsis biomarkers

    DEFF Research Database (Denmark)

    Kofoed, K.

    This PhD-thesis is based on work performed at Clinical Research Centre and Department of Infectious Diseases at Copenhagen University Hospital, Hvidovre, and includes a review, a method development study, and two clinical studies. The background of the thesis is, that timely and accurate diagnosis...... of sepsis is of great importance for choice of treatment, level of monitoring and prognosis. In this biomarkers could be a significant aid, and thus the search for and application of "new" sepsis biomarkers is of great importance. The thesis reviews the definitions and the epidemiology, and gives...

  12. Biomarkers of therapeutic responses in chronic Chagas disease: state of the art and future perspectives

    Directory of Open Access Journals (Sweden)

    Maria-Jesus Pinazo

    2015-05-01

    Full Text Available The definition of a biomarker provided by the World Health Organization is any substance, structure, or process that can be measured in the body, or its products and influence, or predict the incidence or outcome of disease. Currently, the lack of prognosis and progression markers for chronic Chagas disease has posed limitations for testing new drugs to treat this neglected disease. Several molecules and techniques to detect biomarkers in Trypanosoma cruzi-infected patients have been proposed to assess whether specific treatment with benznidazole or nifurtimox is effective. Isolated proteins or protein groups from different T. cruzi stages and parasite-derived glycoproteins and synthetic neoglycoconjugates have been demonstrated to be useful for this purpose, as have nucleic acid amplification techniques. The amplification of T. cruzi DNA using the real-time polymerase chain reaction method is the leading test for assessing responses to treatment in a short period of time. Biochemical biomarkers have been tested early after specific treatment. Cytokines and surface markers represent promising molecules for the characterisation of host cellular responses, but need to be further assessed.

  13. Prognostic clinical and molecular biomarkers of renal disease in type 2 diabetes

    DEFF Research Database (Denmark)

    Pena, Michelle J; de Zeeuw, Dick; Mischak, Harald

    2015-01-01

    biomarkers address the predictive performance of novel biomarker panels in addition to the classical panel in type 2 diabetes. However, the prospective studies conducted so far have small sample sizes, are insufficiently powered and lack external validation. Adequately sized validation studies of multiple......Diabetic kidney disease occurs in ∼ 25-40% of patients with type 2 diabetes. Given the high risk of progressive renal function loss and end-stage renal disease, early identification of patients with a renal risk is important. Novel biomarkers may aid in improving renal risk stratification...... and metabolomics biomarkers. We focus on multiple biomarker panels since the molecular processes of renal disease progression in type 2 diabetes are heterogeneous, rendering it unlikely that a single biomarker significantly adds to clinical risk prediction. A limited number of prospective studies of multiple...

  14. Multiple reaction monitoring assay based on conventional liquid chromatography and electrospray ionization for simultaneous monitoring of multiple cerebrospinal fluid biomarker candidates for Alzheimer's disease.

    Science.gov (United States)

    Choi, Yong Seok; Lee, Kelvin H

    2016-03-01

    Alzheimer's disease (AD) is the most common type of dementia, but early and accurate diagnosis remains challenging. Previously, a panel of cerebrospinal fluid (CSF) biomarker candidates distinguishing AD and non-AD CSF accurately (>90 %) was reported. Furthermore, a multiple reaction monitoring (MRM) assay based on nano liquid chromatography tandem mass spectrometry (nLC-MS/MS) was developed to help validate putative AD CSF biomarker candidates including proteins from the panel. Despite the good performance of the MRM assay, wide acceptance may be challenging because of limited availability of nLC-MS/MS systems in laboratories. Thus, here, a new MRM assay based on conventional LC-MS/MS is presented. This method monitors 16 peptides representing 16 (of 23) biomarker candidates that belonged to the previous AD CSF panel. A 30-times more concentrated sample than the sample used for the previous study was loaded onto a high capacity trap column, and all 16 MRM transitions showed good linearity (average R(2) = 0.966), intra-day reproducibility (average coefficient of variance (CV) = 4.78 %), and inter-day reproducibility (average CV = 9.85 %). The present method has several advantages such as a shorter analysis time, no possibility of target variability, and no need for an internal standard.

  15. Biomarkers in Airway Diseases

    Directory of Open Access Journals (Sweden)

    Janice M Leung

    2013-01-01

    Full Text Available The inherent limitations of spirometry and clinical history have prompted clinicians and scientists to search for surrogate markers of airway diseases. Although few biomarkers have been widely accepted into the clinical armamentarium, the authors explore three sources of biomarkers that have shown promise as indicators of disease severity and treatment response. In asthma, exhaled nitric oxide measurements can predict steroid responsiveness and sputum eosinophil counts have been used to titrate anti-inflammatory therapies. In chronic obstructive pulmonary disease, inflammatory plasma biomarkers, such as fibrinogen, club cell secretory protein-16 and surfactant protein D, can denote greater severity and predict the risk of exacerbations. While the multitude of disease phenotypes in respiratory medicine make biomarker development especially challenging, these three may soon play key roles in the diagnosis and management of airway diseases.

  16. Reverse-translational biomarker validation of Abnormal Repetitive Behaviors in mice: an illustration of the 4P's modeling approach.

    Science.gov (United States)

    Garner, Joseph P; Thogerson, Collette M; Dufour, Brett D; Würbel, Hanno; Murray, James D; Mench, Joy A

    2011-06-01

    The NIMH's new strategic plan, with its emphasis on the "4P's" (Prediction, Pre-emption, Personalization, and Populations) and biomarker-based medicine requires a radical shift in animal modeling methodology. In particular 4P's models will be non-determinant (i.e. disease severity will depend on secondary environmental and genetic factors); and validated by reverse-translation of animal homologues to human biomarkers. A powerful consequence of the biomarker approach is that different closely related disorders have a unique fingerprint of biomarkers. Animals can be validated as a highly specific model of a single disorder by matching this 'fingerprint'; or as a model of a symptom seen in multiple disorders by matching common biomarkers. Here we illustrate this approach with two Abnormal Repetitive Behaviors (ARBs) in mice: stereotypies and barbering (hair pulling). We developed animal versions of the neuropsychological biomarkers that distinguish human ARBs, and tested the fingerprint of the different mouse ARBs. As predicted, the two mouse ARBs were associated with different biomarkers. Both barbering and stereotypy could be discounted as models of OCD (even though they are widely used as such), due to the absence of limbic biomarkers which are characteristic of OCD and hence are necessary for a valid model. Conversely barbering matched the fingerprint of trichotillomania (i.e. selective deficits in set-shifting), suggesting it may be a highly specific model of this disorder. In contrast stereotypies were correlated only with a biomarker (deficits in response shifting) correlated with stereotypies in multiple disorders, suggesting that animal stereotypies model stereotypies in multiple disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    Science.gov (United States)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  18. Gene transcription and biomarker responses in the clam Ruditapes philippinarum after exposure to ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Milan, Massimo; Pauletto, Marianna; Patarnello, Tomaso; Bargelloni, Luca [Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell' Universita 16, Legnaro (Padova) (Italy); Marin, Maria Gabriella [Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova (Italy); Matozzo, Valerio, E-mail: matozzo@bio.unipd.it [Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova (Italy)

    2013-01-15

    Pharmaceuticals are a class of emerging environmental contaminants that continuously enter aquatic environments. Presently, little information is available about the effects of these substances on non-target organisms, such as bivalves. We investigated the effects of ibuprofen (IBU) on the clam Ruditapes philippinarum. Clams were exposed for 1, 3, 5 and 7 days to 0, 100 and 1000 {mu}g IBU/L, and established biomarker responses (haemolymph lysozyme, gill acetylcholinesterase and digestive gland superoxide dismutase activities) as well as digestive gland transcriptome were evaluated. A two-way ANOVA revealed significant effects of both 'IBU concentration' and 'exposure duration' on biomarker responses. Overall, the enzyme activities were generally lower in IBU-exposed clams than in controls. Although limited knowledge of the mollusc transcriptome makes it difficult to interpret the effects of IBU on clams, the gene transcription analysis using DNA microarrays enabled the identification of the putative molecular mode of action of the IBU. The functional analysis of differentially transcribed genes suggests that IBU can interfere with various signalling pathways in clams, such as arachidonic acid metabolism, apoptosis, peroxisomal proliferator-activated receptors, and nuclear factor-kappa B. In addition, several genes involved in the metabolism of xenobiotics (e.g., glutathione S-transferase, sulfotransferase, cytochrome P450) were also found to be significantly affected by IBU exposure. In summary, the integrated approach of gene transcription analysis and biomarker responses facilitated the elucidation of the putative mechanisms of action of IBU in non-target species.

  19. Gene transcription and biomarker responses in the clam Ruditapes philippinarum after exposure to ibuprofen

    International Nuclear Information System (INIS)

    Milan, Massimo; Pauletto, Marianna; Patarnello, Tomaso; Bargelloni, Luca; Marin, Maria Gabriella; Matozzo, Valerio

    2013-01-01

    Pharmaceuticals are a class of emerging environmental contaminants that continuously enter aquatic environments. Presently, little information is available about the effects of these substances on non-target organisms, such as bivalves. We investigated the effects of ibuprofen (IBU) on the clam Ruditapes philippinarum. Clams were exposed for 1, 3, 5 and 7 days to 0, 100 and 1000 μg IBU/L, and established biomarker responses (haemolymph lysozyme, gill acetylcholinesterase and digestive gland superoxide dismutase activities) as well as digestive gland transcriptome were evaluated. A two-way ANOVA revealed significant effects of both “IBU concentration” and “exposure duration” on biomarker responses. Overall, the enzyme activities were generally lower in IBU-exposed clams than in controls. Although limited knowledge of the mollusc transcriptome makes it difficult to interpret the effects of IBU on clams, the gene transcription analysis using DNA microarrays enabled the identification of the putative molecular mode of action of the IBU. The functional analysis of differentially transcribed genes suggests that IBU can interfere with various signalling pathways in clams, such as arachidonic acid metabolism, apoptosis, peroxisomal proliferator-activated receptors, and nuclear factor-kappa B. In addition, several genes involved in the metabolism of xenobiotics (e.g., glutathione S-transferase, sulfotransferase, cytochrome P450) were also found to be significantly affected by IBU exposure. In summary, the integrated approach of gene transcription analysis and biomarker responses facilitated the elucidation of the putative mechanisms of action of IBU in non-target species.

  20. Multiple Protein Biomarker Assessment for Recombinant Bovine Somatotropin (rbST) Abuse in Cattle

    NARCIS (Netherlands)

    Ludwig, S.K.J.; Smits, N.G.E.; Veer, van der G.; Bremer, M.G.E.G.; Nielen, M.W.F.

    2012-01-01

    Biomarker profiling, as a rapid screening approach for detection of hormone abuse, requires well selected candidate biomarkers and a thorough in vivo biomarker evaluation as previously done for detection of growth hormone doping in athletes. The bovine equivalent of growth hormone, called

  1. Biochemical biomarker responses of green-lipped mussel, Perna canaliculus, to acute and subchronic waterborne cadmium toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Chandurvelan, Rathishri, E-mail: rch118@uclive.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Marsden, Islay D., E-mail: islay.marsden@canterbury.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Gaw, Sally, E-mail: sally.gaw@canterbury.ac.nz [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Glover, Chris N., E-mail: chris.glover@canterbury.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)

    2013-09-15

    the 2000 μg L{sup −1} group at Day 28). Alkaline phosphatase activity decreased significantly with Cd exposure in both tissues. This effect was observed at both tested concentrations in the gill, but only at the highest concentration for digestive gland. A decrease in digestive gland glycogen levels was observed in Cd-exposed mussels (Days 14 and 21 at 2000 μg L{sup −1}), while haemolymph protein levels increased as a result of subchronic Cd exposure. These findings indicated that biochemical responses in Cd-exposed mussels were tissue-specific, dose- and time-dependent, with duration of exposure being the predominant effect. This study shows that biochemical changes in Cd-exposed green-lipped mussels can be linked to tissue metal accumulation and are consistent with previously reported physiological effects. It also suggests that green-lipped mussels are amenable to a multiple biomarker approach and may be of use as a bioindicator species for monitoring coastal metal pollution.

  2. Multicollinearity may lead to artificial interaction: an example from a cross sectional study of biomarkers.

    Science.gov (United States)

    Sithisarankul, P; Weaver, V M; Diener-West, M; Strickland, P T

    1997-06-01

    Collinearity is the situation which arises in multiple regression when some or all of the explanatory variables are so highly correlated with one another that it becomes very difficult, if not impossible, to disentangle their influences and obtain a reasonably precise estimate of their effects. Suppressor variable is one of the extreme situations of collinearity that one variable can substantially increase the multiple correlation when combined with a variable that is only modestly correlated with the response variable. In this study, we describe the process by which we disentangled and discovered multicollinearity and its consequences, namely artificial interaction, using the data from cross-sectional quantification of several biomarkers. We showed how the collinearity between one biomarker (blood lead level) and another (urinary trans, trans-muconic acid) and their interaction (blood lead level* urinary trans, trans-muconic acid) can lead to the observed artificial interaction on the third biomarker (urinary 5-aminolevulinic acid).

  3. Methylated genes as new cancer biomarkers.

    LENUS (Irish Health Repository)

    Duffy, M J

    2012-02-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2 for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene methylation need to be standardised, simplified and evaluated in external quality assurance programmes. It is concluded that methylated genes have the potential to provide a new generation of cancer biomarkers.

  4. Dietary and health biomarkers - time for an update

    DEFF Research Database (Denmark)

    Dragsted, Lars Ove; Gao, Qian; Pratico, Giulia

    2017-01-01

    for these biomarker classes, and no recent systematic review of all proposed biomarkers for food intake. While advanced databases exist for the human and food metabolomes, additional tools are needed to curate and evaluate current data on dietary and health biomarkers. The Food Biomarkers Alliance (FoodBAll) under......In the dietary and health research area, biomarkers are extensively used for multiple purposes. These include biomarkers of dietary intake and nutrient status, biomarkers used to measure the biological effects of specific dietary components, and biomarkers to assess the effects of diet on health...... much mechanistic insight into the effects of food components and diets. Although hundreds of papers in nutrition are published annually, there is no current ontology for the area, no generally accepted classification terminology for biomarkers in nutrition and health, no systematic validation scheme...

  5. Time-response characteristic and potential biomarker identification of heavy metal induced toxicity in zebrafish.

    Science.gov (United States)

    Yin, Jian; Wang, Ai-Ping; Li, Wan-Fang; Shi, Rui; Jin, Hong-Tao; Wei, Jin-Feng

    2018-01-01

    The present work aims to explore the time-response (from 24 h to 96 h) characteristic and identify early potential sensitive biomarkers of copper (Cu) (as copper chloride dihydrate), cadmium (Cd) (as cadmium acetate), lead (Pb) (as lead nitrate) and chromium (Cr) (as potassium dichromate) exposure in adult zebrafish, focusing on reactive oxygen species (ROS), SOD activity, lipid peroxidation and gene expression related to oxidative stress and inflammatory response. Furthermore, the survival rate decreased apparently by a concentration-dependent manner after Cu, Cr, Cd and Pb exposure, and we selected non-lethal concentrations 0.05 mg/L for Cu, 15 mg/L for Cr, 3 mg/L for Cd and 93.75μg/L for Pb to test the effect on the following biological indicators. Under non-lethal concentration, the four heavy metals have no apparent histological change in adult zebrafish gills. Similar trends in ROS production, MDA level and SOD activity were up-regulated by the four heavy metals, while MDA level responded more sensitive to Pb by time-dependent manner than the other three heavy metals. In addition, mRNA levels related to antioxidant system (SOD1, SOD2 and Nrf2) were up-regulated by non-lethal concentration Cu, Cr, Cd and Pb exposure. MDA level and SOD1 gene have a more delayed response to heavy metals. Genes related to immunotoxicity were increased significantly after heavy metals exposure at non-lethal concentrations. TNF-α and IL-1β gene have similar sensibility to the four heavy metals, while IL-8 gene was more responsive to Cr, Cd and Pb exposure at 48 h groups and IFN-γ gene showed more sensitivity to Cu at 48 h groups than the other heavy metals. In conclusion, the present works have suggested that the IFN-γ gene may applied as early sensitive biomarker to identify Cu-induced toxicity, while MDA content and IL-8 gene may use as early sensitive biomarkers for evaluating the risk of Pb exposure. Moreover, IL-8 and IFN-γ gene were more responsive to heavy

  6. Relationship between biomarker responses and contaminant concentration in selected tissues of flounder (Platichthys flesus from the Polish coastal area of the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Magdalena Podolska

    2008-09-01

    Full Text Available Previous studies in the Gulf of Gdańsk discussed the responses of selected enzymatic biomarkers to the contaminant gradient in fish and mussels. In the present study, flounder muscle and liver tissues were analyzed for polychlorinated biphenyls (PCB congeners: 28, 52, 101, 118, 138, 153 and 180, organochlorine pesticides (HCHs, HCB and DDTs, and trace metals (Pb, Cd, Zn, Cu, Hg, Cr. An attempt was made to identify the relationship between the measured enzymatic biomarker responses (cholinesterases, malic enzyme, isocitrate dehydrogenase, glutathione S-transferase and contaminant concentrations in selected flounder tissues. The observed differences in enzymatic biomarker levels suggest that chronic exposure to low-concentration mixtures of contaminants may be occurring in the studied area. However, no conclusive evidence was found of a clear link between the biomarker responses and contaminant concentrations in flounder tissues.

  7. Novel Biomarker for Prognosis, Treatment Response

    Science.gov (United States)

    An NCI Cancer Currents blog about a study of a new type of cancer biomarker that measures the extent of chromosomal instability as a way to potentially predict patient prognosis and help guide cancer treatment choices.

  8. Biomarkers of Pediatric Brain Tumors

    Directory of Open Access Journals (Sweden)

    Mark D Russell

    2013-03-01

    Full Text Available Background and Need for Novel Biomarkers: Brain tumors are the leading cause of death by solid tumors in children. Although improvements have been made in their radiological detection and treatment, our capacity to promptly diagnose pediatric brain tumors in their early stages remains limited. This contrasts several other cancers where serum biomarkers such as CA 19-9 and CA 125 facilitate early diagnosis and treatment. Aim: The aim of this article is to review the latest literature and highlight biomarkers which may be of clinical use in the common types of primary pediatric brain tumor. Methods: A PubMed search was performed to identify studies reporting biomarkers in the bodily fluids of pediatric patients with brain tumors. Details regarding the sample type (serum, cerebrospinal fluid or urine, biomarkers analyzed, methodology, tumor type and statistical significance were recorded. Results: A total of 12 manuscripts reporting 19 biomarkers in 367 patients vs. 397 controls were identified in the literature. Of the 19 biomarkers identified, 12 were isolated from cerebrospinal fluid, 2 from serum, 3 from urine, and 2 from multiple bodily fluids. All but one study reported statistically significant differences in biomarker expression between patient and control groups.Conclusions: This review identifies a panel of novel biomarkers for pediatric brain tumors. It provides a platform for the further studies necessary to validate these biomarkers and, in addition, highlights several techniques through which new biomarkers can be discovered.

  9. Biomarkers as a tool to assess effects of chromium (VI): comparison of responses in zebrafish early life stages and adults.

    Science.gov (United States)

    Domingues, Inês; Oliveira, Rhaul; Lourenço, Joana; Grisolia, Cesar Koppe; Mendo, Sónia; Soares, A M V M

    2010-09-01

    The present work aims to compare the sensitivity of embryos and adult zebrafish to chromium (VI) (as potassium dichromate) focusing on biomarkers (cholinesterase, glutathione S-transferase and lactate dehydrogenase) as endpoints. Zebrafish eggs showed less sensitivity to Cr (VI) (96 h-LC50=145.7 mg/L) than adults (96 h-LC50=39.4 mg/L) probably due to the protective action of the chorion. However, biomarkers were much more responsive in larvae than in adults and gave clear indications about Cr (VI) mode of action: it seems to be neurotoxic (inhibited cholinesterase), to inhibit glutathione S-transferase activity and to interfere with cellular metabolic activity (changes in lactate dehydrogenase activity) in larvae. In adults, only glutathione S-transferase was responsive, showing a clear inhibition. The responsiveness of the analyzed biomarkers in larvae reinforces the idea of the usefulness of early life stage assays in the assessment of chemicals effects. Moreover, early life stage assays also contributed with relevant information regarding anomalies in larvae development and behavior. Further research should focus on the use of biomarkers to assess long term effects which are ecologically more relevant. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  10. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure

    Science.gov (United States)

    Deng, Yongfeng; Zhang, Yan; Lemos, Bernardo; Ren, Hongqiang

    2017-04-01

    Microplastics (MPs) are a significant environmental health issue and increasingly greater source of concern. MPs have been detected in oceans, rivers, sediments, sewages, soil and even table salts. MPs exposure on marine organisms and humans has been documented, but information about the toxicity of MPs in mammal is limited. Here we used fluorescent and pristine polystyrene microplastics (PS-MPs) particles with two diameters (5 μm and 20 μm) to investigate the tissue distribution, accumulation, and tissue-specific health risk of MPs in mice. Results indicated that MPs accumulated in liver, kidney and gut, with a tissue-accumulation kinetics and distribution pattern that was strongly depended on the MPs particle size. In addition, analyses of multiple biochemical biomarkers and metabolomic profiles suggested that MPs exposure induced disturbance of energy and lipid metabolism as well as oxidative stress. Interestingly, blood biomarkers of neurotoxicity were also altered. Our results uncovered the distribution and accumulation of MPs across mice tissues and revealed significant alteration in several biomarkers that indicate potential toxicity from MPs exposure. Collectively, our data provided new evidence for the adverse consequences of MPs.

  11. Mining potential biomarkers associated with space flight in Caenorhabditis elegans experienced Shenzhou-8 mission with multiple feature selection techniques

    International Nuclear Information System (INIS)

    Zhao, Lei; Gao, Ying; Mi, Dong; Sun, Yeqing

    2016-01-01

    Highlights: • A combined algorithm is proposed to mine biomarkers of spaceflight in C. elegans. • This algorithm makes the feature selection more reliable and robust. • Apply this algorithm to predict 17 positive biomarkers to space environment stress. • The strategy can be used as a general method to select important features. - Abstract: To identify the potential biomarkers associated with space flight, a combined algorithm, which integrates the feature selection techniques, was used to deal with the microarray datasets of Caenorhabditis elegans obtained in the Shenzhou-8 mission. Compared with the ground control treatment, a total of 86 differentially expressed (DE) genes in responses to space synthetic environment or space radiation environment were identified by two filter methods. And then the top 30 ranking genes were selected by the random forest algorithm. Gene Ontology annotation and functional enrichment analyses showed that these genes were mainly associated with metabolism process. Furthermore, clustering analysis showed that 17 genes among these are positive, including 9 for space synthetic environment and 8 for space radiation environment only. These genes could be used as the biomarkers to reflect the space environment stresses. In addition, we also found that microgravity is the main stress factor to change the expression patterns of biomarkers for the short-duration spaceflight.

  12. Mining potential biomarkers associated with space flight in Caenorhabditis elegans experienced Shenzhou-8 mission with multiple feature selection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lei [Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China); Gao, Ying [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China); Mi, Dong, E-mail: mid@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Sun, Yeqing, E-mail: yqsun@dlmu.edu.cn [Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China)

    2016-09-15

    Highlights: • A combined algorithm is proposed to mine biomarkers of spaceflight in C. elegans. • This algorithm makes the feature selection more reliable and robust. • Apply this algorithm to predict 17 positive biomarkers to space environment stress. • The strategy can be used as a general method to select important features. - Abstract: To identify the potential biomarkers associated with space flight, a combined algorithm, which integrates the feature selection techniques, was used to deal with the microarray datasets of Caenorhabditis elegans obtained in the Shenzhou-8 mission. Compared with the ground control treatment, a total of 86 differentially expressed (DE) genes in responses to space synthetic environment or space radiation environment were identified by two filter methods. And then the top 30 ranking genes were selected by the random forest algorithm. Gene Ontology annotation and functional enrichment analyses showed that these genes were mainly associated with metabolism process. Furthermore, clustering analysis showed that 17 genes among these are positive, including 9 for space synthetic environment and 8 for space radiation environment only. These genes could be used as the biomarkers to reflect the space environment stresses. In addition, we also found that microgravity is the main stress factor to change the expression patterns of biomarkers for the short-duration spaceflight.

  13. Towards a better understanding of biomarker response in field survey: a case study in eight populations of zebra mussels.

    Science.gov (United States)

    Pain-Devin, S; Cossu-Leguille, C; Geffard, A; Giambérini, L; Jouenne, T; Minguez, L; Naudin, B; Parant, M; Rodius, F; Rousselle, P; Tarnowska, K; Daguin-Thiébaut, C; Viard, F; Devin, S

    2014-10-01

    In order to provide reliable information about responsiveness of biomarkers during environmental monitoring, there is a need to improve the understanding of inter-population differences. The present study focused on eight populations of zebra mussels and aimed to describe how variable are biomarkers in different sampling locations. Biomarkers were investigated and summarised through the Integrated Biomarker Response (IBR index). Inter-site differences in IBR index were analysed through comparisons with morphological data, proteomic profiles and genetic background of the studied populations. We found that the IBR index was a good tool to inform about the status of sites. It revealed higher stress in more polluted sites than in cleaner ones. It was neither correlated to proteomic profiles nor to genetic background, suggesting a stronger influence of environment than genes. Meanwhile, morphological traits were related to both environment and genetic background influence. Together these results attest the benefit of using biological tools to better illustrate the status of a population and highlight the need of consider inter-population difference in their baselines. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Semi-automated literature mining to identify putative biomarkers of disease from multiple biofluids

    Science.gov (United States)

    2014-01-01

    Background Computational methods for mining of biomedical literature can be useful in augmenting manual searches of the literature using keywords for disease-specific biomarker discovery from biofluids. In this work, we develop and apply a semi-automated literature mining method to mine abstracts obtained from PubMed to discover putative biomarkers of breast and lung cancers in specific biofluids. Methodology A positive set of abstracts was defined by the terms ‘breast cancer’ and ‘lung cancer’ in conjunction with 14 separate ‘biofluids’ (bile, blood, breastmilk, cerebrospinal fluid, mucus, plasma, saliva, semen, serum, synovial fluid, stool, sweat, tears, and urine), while a negative set of abstracts was defined by the terms ‘(biofluid) NOT breast cancer’ or ‘(biofluid) NOT lung cancer.’ More than 5.3 million total abstracts were obtained from PubMed and examined for biomarker-disease-biofluid associations (34,296 positive and 2,653,396 negative for breast cancer; 28,355 positive and 2,595,034 negative for lung cancer). Biological entities such as genes and proteins were tagged using ABNER, and processed using Python scripts to produce a list of putative biomarkers. Z-scores were calculated, ranked, and used to determine significance of putative biomarkers found. Manual verification of relevant abstracts was performed to assess our method’s performance. Results Biofluid-specific markers were identified from the literature, assigned relevance scores based on frequency of occurrence, and validated using known biomarker lists and/or databases for lung and breast cancer [NCBI’s On-line Mendelian Inheritance in Man (OMIM), Cancer Gene annotation server for cancer genomics (CAGE), NCBI’s Genes & Disease, NCI’s Early Detection Research Network (EDRN), and others]. The specificity of each marker for a given biofluid was calculated, and the performance of our semi-automated literature mining method assessed for breast and lung cancer

  15. Multiple protein biomarker assessment for recombinant bovine somatotropin (rbST abuse in cattle.

    Directory of Open Access Journals (Sweden)

    Susann K J Ludwig

    Full Text Available Biomarker profiling, as a rapid screening approach for detection of hormone abuse, requires well selected candidate biomarkers and a thorough in vivo biomarker evaluation as previously done for detection of growth hormone doping in athletes. The bovine equivalent of growth hormone, called recombinant bovine somatotropin (rbST is (illegally administered to enhance milk production in dairy cows. In this study, first a generic sample pre-treatment and 4-plex flow cytometric immunoassay (FCIA were developed for simultaneous measurement of four candidate biomarkers selected from literature: insulin-like growth factor 1 (IGF-1, its binding protein 2 (IGFBP2, osteocalcin and endogenously produced antibodies against rbST. Next, bovine serum samples from two extensive controlled rbST animal treatment studies were used for in vivo validation and biomarker evaluation. Finally, advanced statistic tools were tested for the assessment of biomarker combination quality aiming to correctly identify rbST-treated animals. The statistical prediction tool k-nearest neighbours using a combination of the biomarkers osteocalcin and endogenously produced antibodies against rbST proved to be very reliable and correctly predicted 95% of the treated samples starting from the second rbST injection until the end of the treatment period and even thereafter. With the same biomarker combination, only 12% of untreated animals appeared false-positive. This reliability meets the requirements of Commission Decision 2002/657/EC for screening methods in veterinary control. From the results of this multidisciplinary study, it is concluded that the osteocalcin - anti-rbST-antibodies combination represent fit-for-purpose biomarkers for screening of rbST abuse in dairy cattle and can be reliably measured in both the developed 4-plex FCIA as well as in a cost-effective 2-plex microsphere-based binding assay. This screening method can be incorporated in routine veterinary monitoring

  16. Identification of serum biomarkers for aging and anabolic response

    Directory of Open Access Journals (Sweden)

    Urban Randall J

    2011-06-01

    Full Text Available Abstract Objective With the progressive aging of the human population, there is an inexorable decline in muscle mass, strength and function. Anabolic supplementation with testosterone has been shown to effectively restore muscle mass in both young and elderly men. In this study, we were interested in identifying serum factors that change with age in two distinct age groups of healthy men, and whether these factors were affected by testosterone supplementation. Methods We measured the protein levels of a number of serum biomarkers using a combination of banked serum samples from older men (60 to 75 years and younger men (ages 18 to 35, as well as new serum specimens obtained through collaboration. We compared baseline levels of all biomarkers between young and older men. In addition, we evaluated potential changes in these biomarker levels in association with testosterone dose (low dose defined as 125 mg per week or below compared to high dose defined as 300 mg per week or above in our banked specimens. Results We identified nine serum biomarkers that differed between the young and older subjects. These age-associated biomarkers included: insulin-like growth factor (IGF1, N-terminal propeptide of type III collagen (PIIINP, monokine induced by gamma interferon (MIG, epithelial-derived neutrophil-activating peptide 78 (ENA78, interleukin 7 (IL-7, p40 subunit of interleukin 12 (IL-12p40, macrophage inflammatory protein 1β (MIP-1β, platelet derived growth factor β (PDGFβ and interferon-inducible protein 10 (IP-10. We further observed testosterone dose-associated changes in some but not all age related markers: IGF1, PIIINP, leptin, MIG and ENA78. Gains in lean mass were confirmed by dual energy X-ray absorptiometry (DEXA. Conclusions Results from this study suggest that there are potential phenotypic biomarkers in serum that can be associated with healthy aging and that some but not all of these biomarkers reflect gains in muscle mass upon

  17. Can multiple-choice questions simulate free-response questions?

    OpenAIRE

    Lin, Shih-Yin; Singh, Chandralekha

    2016-01-01

    We discuss a study to evaluate the extent to which free-response questions could be approximated by multiple-choice equivalents. Two carefully designed research-based multiple-choice questions were transformed into a free-response format and administered on the final exam in a calculus-based introductory physics course. The original multiple-choice questions were administered in another similar introductory physics course on final exam. Findings suggest that carefully designed multiple-choice...

  18. Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival

    Directory of Open Access Journals (Sweden)

    Southey Bruce R

    2011-06-01

    Full Text Available Abstract Background Glioblastoma is a complex multifactorial disorder that has swift and devastating consequences. Few genes have been consistently identified as prognostic biomarkers of glioblastoma survival. The goal of this study was to identify general and clinical-dependent biomarker genes and biological processes of three complementary events: lifetime, overall and progression-free glioblastoma survival. Methods A novel analytical strategy was developed to identify general associations between the biomarkers and glioblastoma, and associations that depend on cohort groups, such as race, gender, and therapy. Gene network inference, cross-validation and functional analyses further supported the identified biomarkers. Results A total of 61, 47 and 60 gene expression profiles were significantly associated with lifetime, overall, and progression-free survival, respectively. The vast majority of these genes have been previously reported to be associated with glioblastoma (35, 24, and 35 genes, respectively or with other cancers (10, 19, and 15 genes, respectively and the rest (16, 4, and 10 genes, respectively are novel associations. Pik3r1, E2f3, Akr1c3, Csf1, Jag2, Plcg1, Rpl37a, Sod2, Topors, Hras, Mdm2, Camk2g, Fstl1, Il13ra1, Mtap and Tp53 were associated with multiple survival events. Most genes (from 90 to 96% were associated with survival in a general or cohort-independent manner and thus the same trend is observed across all clinical levels studied. The most extreme associations between profiles and survival were observed for Syne1, Pdcd4, Ighg1, Tgfa, Pla2g7, and Paics. Several genes were found to have a cohort-dependent association with survival and these associations are the basis for individualized prognostic and gene-based therapies. C2, Egfr, Prkcb, Igf2bp3, and Gdf10 had gender-dependent associations; Sox10, Rps20, Rab31, and Vav3 had race-dependent associations; Chi3l1, Prkcb, Polr2d, and Apool had therapy-dependent associations

  19. Hemopexin as biomarkers for analyzing the biological responses associated with exposure to silica nanoparticles

    Science.gov (United States)

    Higashisaka, Kazuma; Yoshioka, Yasuo; Yamashita, Kohei; Morishita, Yuki; Pan, Huiyan; Ogura, Toshinobu; Nagano, Takashi; Kunieda, Akiyoshi; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Tsunoda, Shin-ichi; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Tsutsumi, Yasuo

    2012-10-01

    Practical uses of nanomaterials are rapidly spreading to a wide variety of fields. However, potential harmful effects of nanomaterials are raising concerns about their safety. Therefore, it is important that a risk assessment system is developed so that the safety of nanomaterials can be evaluated or predicted. Here, we attempted to identify novel biomarkers of nanomaterial-induced health effects by a comprehensive screen of plasma proteins using two-dimensional differential in gel electrophoresis (2D-DIGE) analysis. Initially, we used 2D-DIGE to analyze changes in the level of plasma proteins in mice after intravenous injection via tail veins of 0.8 mg/mouse silica nanoparticles with diameters of 70 nm (nSP70) or saline as controls. By quantitative image analysis, protein spots representing >2.0-fold alteration in expression were found and identified by mass spectrometry. Among these proteins, we focused on hemopexin as a potential biomarker. The levels of hemopexin in the plasma increased as the silica particle size decreased. In addition, the production of hemopexin depended on the characteristics of the nanomaterials. These results suggested that hemopexin could be an additional biomarker for analyzing the biological responses associated with exposure to silica nanoparticles. We believe that this study will contribute to the development of biomarkers to ensure the safety of silica nanoparticles.

  20. Immunohistochemistry for predictive biomarkers in non-small cell lung cancer.

    Science.gov (United States)

    Mino-Kenudson, Mari

    2017-10-01

    In the era of targeted therapy, predictive biomarker testing has become increasingly important for non-small cell lung cancer. Of multiple predictive biomarker testing methods, immunohistochemistry (IHC) is widely available and technically less challenging, can provide clinically meaningful results with a rapid turn-around-time and is more cost efficient than molecular platforms. In fact, several IHC assays for predictive biomarkers have already been implemented in routine pathology practice. In this review, we will discuss: (I) the details of anaplastic lymphoma kinase (ALK) and proto-oncogene tyrosine-protein kinase ROS (ROS1) IHC assays including the performance of multiple antibody clones, pros and cons of IHC platforms and various scoring systems to design an optimal algorithm for predictive biomarker testing; (II) issues associated with programmed death-ligand 1 (PD-L1) IHC assays; (III) appropriate pre-analytical tissue handling and selection of optimal tissue samples for predictive biomarker IHC.

  1. Inflammatory biomarkers and cancer

    DEFF Research Database (Denmark)

    Rasmussen, Line Jee Hartmann; Schultz, Martin; Gaardsting, Anne

    2017-01-01

    and previous cancer diagnoses compared to patients who were not diagnosed with cancer. Previous cancer, C-reactive protein (CRP) and suPAR were significantly associated with newly diagnosed cancer during follow-up in multiple logistic regression analyses adjusted for age, sex and CRP. Neither any of the PRRs......In Denmark, patients with serious nonspecific symptoms and signs of cancer (NSSC) are referred to the diagnostic outpatient clinics (DOCs) where an accelerated cancer diagnostic program is initiated. Various immunological and inflammatory biomarkers have been associated with cancer, including...... soluble urokinase plasminogen activator receptor (suPAR) and the pattern recognition receptors (PRRs) pentraxin-3, mannose-binding lectin, ficolin-1, ficolin-2 and ficolin-3. We aimed to evaluate these biomarkers and compare their diagnostic ability to classical biomarkers for diagnosing cancer...

  2. Identification of Biomarkers for Defense Response to Plasmopara viticola in a Resistant Grape Variety

    Directory of Open Access Journals (Sweden)

    Giulia Chitarrini

    2017-09-01

    Full Text Available Downy mildew (Plasmopara viticola is one of the most destructive diseases of the cultivated species Vitis vinifera. The use of resistant varieties, originally derived from backcrosses of North American Vitis spp., is a promising solution to reduce disease damage in the vineyards. To shed light on the type and the timing of pathogen-triggered resistance, this work aimed at discovering biomarkers for the defense response in the resistant variety Bianca, using leaf discs after inoculation with a suspension of P. viticola. We investigated primary and secondary metabolism at 12, 24, 48, and 96 h post-inoculation (hpi. We used methods of identification and quantification for lipids (LC-MS/MS, phenols (LC-MS/MS, primary compounds (GC-MS, and semi-quantification for volatile compounds (GC-MS. We were able to identify and quantify or semi-quantify 176 metabolites, among which 53 were modulated in response to pathogen infection. The earliest changes occurred in primary metabolism at 24–48 hpi and involved lipid compounds, specifically unsaturated fatty acid and ceramide; amino acids, in particular proline; and some acids and sugars. At 48 hpi, we also found changes in volatile compounds and accumulation of benzaldehyde, a promoter of salicylic acid-mediated defense. Secondary metabolism was strongly induced only at later stages. The classes of compounds that increased at 96 hpi included phenylpropanoids, flavonols, stilbenes, and stilbenoids. Among stilbenoids we found an accumulation of ampelopsin H + vaticanol C, pallidol, ampelopsin D + quadrangularin A, Z-miyabenol C, and α-viniferin in inoculated samples. Some of these compounds are known as phytoalexins, while others are novel biomarkers for the defense response in Bianca. This work highlighted some important aspects of the host response to P. viticola in a commercial variety under controlled conditions, providing biomarkers for a better understanding of the mechanism of plant defense and a

  3. Optimization of multi-response dynamic systems integrating multiple ...

    African Journals Online (AJOL)

    It also results in better optimization performance than back-propagation neural network-based approach and data mining-based approach reported by the past researchers. Keywords: multiple responses, multiple regression, weighted dynamic signal-to-noise ratio, performance measure modelling, response function ...

  4. Modeling Rabbit Responses to Single and Multiple Aerosol ...

    Science.gov (United States)

    Journal Article Survival models are developed here to predict response and time-to-response for mortality in rabbits following exposures to single or multiple aerosol doses of Bacillus anthracis spores. Hazard function models were developed for a multiple dose dataset to predict the probability of death through specifying dose-response functions and the time between exposure and the time-to-death (TTD). Among the models developed, the best-fitting survival model (baseline model) has an exponential dose-response model with a Weibull TTD distribution. Alternative models assessed employ different underlying dose-response functions and use the assumption that, in a multiple dose scenario, earlier doses affect the hazard functions of each subsequent dose. In addition, published mechanistic models are analyzed and compared with models developed in this paper. None of the alternative models that were assessed provided a statistically significant improvement in fit over the baseline model. The general approach utilizes simple empirical data analysis to develop parsimonious models with limited reliance on mechanistic assumptions. The baseline model predicts TTDs consistent with reported results from three independent high-dose rabbit datasets. More accurate survival models depend upon future development of dose-response datasets specifically designed to assess potential multiple dose effects on response and time-to-response. The process used in this paper to dev

  5. Intracranial pressure-induced optic nerve sheath response as a predictive biomarker for optic disc edema in astronauts.

    Science.gov (United States)

    Wostyn, Peter; De Deyn, Peter Paul

    2017-11-01

    A significant proportion of the astronauts who spend extended periods in microgravity develop ophthalmic abnormalities. Understanding this syndrome, called visual impairment and intracranial pressure (VIIP), has become a high priority for National Aeronautics and Space Administration, especially in view of future long-duration missions (e.g., Mars missions). Moreover, to ensure selection of astronaut candidates who will be able to complete long-duration missions with low risk of the VIIP syndrome, it is imperative to identify biomarkers for VIIP risk prediction. Here, we hypothesize that the optic nerve sheath response to alterations in intracranial pressure may be a potential predictive biomarker for optic disc edema in astronauts. If confirmed, this biomarker could be used for preflight identification of astronauts at risk for developing VIIP-associated optic disc edema.

  6. Biomarkers in psoriasis and psoriatic arthritis.

    Science.gov (United States)

    Villanova, Federica; Di Meglio, Paola; Nestle, Frank O

    2013-04-01

    Psoriasis is a common immune-mediated disease of the skin, which associates in 20-30% of patients with psoriatic arthritis (PsA). The immunopathogenesis of both conditions is not fully understood as it is the result of a complex interaction between genetic, environmental and immunological factors. At present there is no cure for psoriasis and there are no specific markers that can accurately predict disease progression and therapeutic response. Therefore, biomarkers for disease prognosis and response to treatment are urgently needed to help clinicians with objective indications to improve patient management and outcomes. Although many efforts have been made to identify psoriasis/PsA biomarkers none of them has yet been translated into routine clinical practice. In this review we summarise the different classes of possible biomarkers explored in psoriasis and PsA so far and discuss novel strategies for biomarker discovery.

  7. Emerging biomarkers for cancer immunotherapy in melanoma.

    Science.gov (United States)

    Axelrod, Margaret L; Johnson, Douglas B; Balko, Justin M

    2017-09-14

    The treatment and prognosis of metastatic melanoma has changed substantially since the advent of novel immune checkpoint inhibitors (ICI), agents that enhance the anti-tumor immune response. Despite the success of these agents, clinically actionable biomarkers to aid patient and regimen selection are lacking. Herein, we summarize and review the evidence for candidate biomarkers of response to ICIs in melanoma. Many of these candidates can be examined as parts of a known molecular pathway of immune response, while others are clinical in nature. Due to the ability of ICIs to illicit dramatic and durable responses, well-validated biomarkers that can be effectively implemented in the clinic will require strong negative predictive values that do not limit patients with who may benefit from ICI therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Lung Cancer Signature Biomarkers: tissue specific semantic similarity based clustering of Digital Differential Display (DDD data

    Directory of Open Access Journals (Sweden)

    Srivastava Mousami

    2012-11-01

    Full Text Available Abstract Background The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used ‘Gene Ontology semantic similarity score’ to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal and disease (cancer sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Results Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95 identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1–4. Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1, chemotherapy/drug resistance biomarkers (panel 2, hypoxia regulated biomarkers (panel 3 and lung extra cellular matrix biomarkers (panel 4. Conclusions Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3, HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1

  9. In Silico discovery of transcription factors as potential diagnostic biomarkers of ovarian cancer

    KAUST Repository

    Kaur, Mandeep; MacPherson, Cameron R; Schmeier, Sebastian; Narasimhan, Kothandaraman; Choolani, Mahesh; Bajic, Vladimir B.

    2011-01-01

    Background: Our study focuses on identifying potential biomarkers for diagnosis and early detection of ovarian cancer (OC) through the study of transcription regulation of genes affected by estrogen hormone.Results: The results are based on a set of 323 experimentally validated OC-associated genes compiled from several databases, and their subset controlled by estrogen. For these two gene sets we computationally determined transcription factors (TFs) that putatively regulate transcription initiation. We ranked these TFs based on the number of genes they are likely to control. In this way, we selected 17 top-ranked TFs as potential key regulators and thus possible biomarkers for a set of 323 OC-associated genes. For 77 estrogen controlled genes from this set we identified three unique TFs as potential biomarkers.Conclusions: We introduced a new methodology to identify potential diagnostic biomarkers for OC. This report is the first bioinformatics study that explores multiple transcriptional regulators of OC-associated genes as potential diagnostic biomarkers in connection with estrogen responsiveness. We show that 64% of TF biomarkers identified in our study are validated based on real-time data from microarray expression studies. As an illustration, our method could identify CP2 that in combination with CA125 has been reported to be sensitive in diagnosing ovarian tumors. 2011 Kaur et al; licensee BioMed Central Ltd.

  10. In Silico discovery of transcription factors as potential diagnostic biomarkers of ovarian cancer

    KAUST Repository

    Kaur, Mandeep

    2011-09-19

    Background: Our study focuses on identifying potential biomarkers for diagnosis and early detection of ovarian cancer (OC) through the study of transcription regulation of genes affected by estrogen hormone.Results: The results are based on a set of 323 experimentally validated OC-associated genes compiled from several databases, and their subset controlled by estrogen. For these two gene sets we computationally determined transcription factors (TFs) that putatively regulate transcription initiation. We ranked these TFs based on the number of genes they are likely to control. In this way, we selected 17 top-ranked TFs as potential key regulators and thus possible biomarkers for a set of 323 OC-associated genes. For 77 estrogen controlled genes from this set we identified three unique TFs as potential biomarkers.Conclusions: We introduced a new methodology to identify potential diagnostic biomarkers for OC. This report is the first bioinformatics study that explores multiple transcriptional regulators of OC-associated genes as potential diagnostic biomarkers in connection with estrogen responsiveness. We show that 64% of TF biomarkers identified in our study are validated based on real-time data from microarray expression studies. As an illustration, our method could identify CP2 that in combination with CA125 has been reported to be sensitive in diagnosing ovarian tumors. 2011 Kaur et al; licensee BioMed Central Ltd.

  11. Imaging biomarker roadmap for cancer studies

    NARCIS (Netherlands)

    O'Connor, James P. B.; Aboagye, Eric O.; Adams, Judith E.; Aerts, Hugo J. W. L.; Barrington, Sally F.; Beer, Ambros J.; Boellaard, Ronald; Bohndiek, Sarah E.; Brady, Michael; Brown, Gina; Buckley, David L.; Chenevert, Thomas L.; Clarke, Laurence P.; Collette, Sandra; Cook, Gary J.; Desouza, Nandita M.; Dickson, John C.; Dive, Caroline; Evelhoch, Jeffrey L.; Faivre-Finn, Corinne; Gallagher, Ferdia A.; Gilbert, Fiona J.; Gillies, Robert J.; Goh, Vicky; Griffiths, J. R.; Groves, Ashley M.; Halligan, Steve; Harris, Adrian L.; Hawkes, David J.; Hoekstra, Otto S.; Huang, Erich P.; Hutton, Brian F.; Jackson, Edward F.; Jayson, Gordon C.; Jones, Andrew; Koh, Dow-Mu; Lacombe, Denis; Lambin, Philippe; Lassau, Nathalie; Leach, Martin O.; Lee, Ting-Yim; Leen, Edward L.; Lewis, Jason S.; Liu, Yan; Lythgoe, Mark F.; Manoharan, Prakash; Maxwell, Ross J.; Miles, Kenneth A.; Morgan, Bruno; Morris, Steve; Ng, Tony; Padhani, Anwar R.; Parker, Geoff J. M.; Partridge, Mike; Pathak, Arvind P.; Peet, Andrew C.; Punwani, Shonit; Reynolds, Andrew R.; Robinson, Simon P.; Shankar, Lalitha K.; Sharma, Ricky A.; Soloviev, Dmitry; Stroobants, Sigrid G.; Sullivan, Daniel C.; Taylor, Stuart A.; Tofts, Paul S.; Tozer, Gillian M.; van Herk, Marcel B.; Walker-Samuel, Simon; Wason, James; Williams, Kaye J.; Workman, Paul; Yankeelov, Thomas E.; Brindle, Kevin M.; McShane, Lisa M.; Jackson, Alan; Waterton, John C.

    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and

  12. The effects of natalizumab on inflammatory mediators in multiple sclerosis: prospects for treatment-sensitive biomarkers

    DEFF Research Database (Denmark)

    Khademi, M.; Bornsen, L.; Rafatnia, F.

    2009-01-01

    BACKGROUND: Natalizumab affects systemic cytokine expressions and clinical course in relapsing-remitting multiple sclerosis (RRMS). We analyzed levels of inflammatory cytokines in cerebrospinal fluid (CSF) cells and peripheral blood mononuclear cells (PBMCs), levels of matrix metalloproteinase (MMP...... showed the same deviations of mediators as those in relapse after natalizumab treatment. The open label clinical outcome measures were either stable or improved during therapy. CONCLUSIONS: Natalizumab attenuates pro-inflammatory mediators intrathecally and the reduced pro-inflammatory milieu may allow...... increased production of the anti-inflammatory mediator IL-10. The increased systemic cytokines may impede the improvement of certain clinical measures like fatigue. The affected mediators seem to be sensitive to an immune-modifying treatment which could be used as biomarkers for this therapy Udgivelsesdato...

  13. Haemostatic function and biomarkers of endothelial damage before and after platelet transfusion in patients with acute myeloid leukaemia

    DEFF Research Database (Denmark)

    Larsen, A M; Leinøe, E B; Johansson, P I

    2015-01-01

    and after platelet transfusion in patients with acute myeloid leukaemia. MATERIALS AND METHODS: Blood was sampled before, 1 and 24 h after platelet transfusion. Primary and secondary haemostasis was evaluated by whole blood aggregometry (Multiplate) and thromboelastography (TEG). Endothelial biomarkers (s......OBJECTIVES: The beneficial effect of platelet transfusion on haemostasis is well established, but there is emerging evidence that platelet transfusion induces an inflammatory response in vascular endothelial cells. BACKGROUND: We investigated haemostatic function and endothelial biomarkers before......ICAM-1, syndecan-1, sThrombomodulin, sVE-Cadherin) and platelet activation biomarkers (sCD40L, TGF-beta) were investigated along with haematology/biochemistry analyses. RESULTS: Twenty-two patients were included. Despite continued low platelet counts, platelet transfusion normalised the median values...

  14. Systematic review using meta-analyses to estimate dose-response relationships between iodine intake and biomarkers of iodine status in different population groups.

    Science.gov (United States)

    Ristić-Medić, Danijela; Dullemeijer, Carla; Tepsić, Jasna; Petrović-Oggiano, Gordana; Popović, Tamara; Arsić, Aleksandra; Glibetić, Marija; Souverein, Olga W; Collings, Rachel; Cavelaars, Adriënne; de Groot, Lisette; van't Veer, Pieter; Gurinović, Mirjana

    2014-03-01

    The objective of this systematic review was to identify studies investigating iodine intake and biomarkers of iodine status, to assess the data of the selected studies, and to estimate dose-response relationships using meta-analysis. All randomized controlled trials, prospective cohort studies, nested case-control studies, and cross-sectional studies that supplied or measured dietary iodine and measured iodine biomarkers were included. The overall pooled regression coefficient (β) and the standard error of β were calculated by random-effects meta-analysis on a double-log scale, using the calculated intake-status regression coefficient (β) for each individual study. The results of pooled randomized controlled trials indicated that the doubling of dietary iodine intake increased urinary iodine concentrations by 14% in children and adolescents, by 57% in adults and the elderly, and by 81% in pregnant women. The dose-response relationship between iodine intake and biomarkers of iodine status indicated a 12% decrease in thyroid-stimulating hormone and a 31% decrease in thyroglobulin in pregnant women. The model of dose-response quantification used to describe the relationship between iodine intake and biomarkers of iodine status may be useful for providing complementary evidence to support recommendations for iodine intake in different population groups.

  15. Coupled multiple-response versus free-response conceptual assessment: An example from upper-division physics

    Directory of Open Access Journals (Sweden)

    Bethany R. Wilcox

    2014-10-01

    Full Text Available Free-response research-based assessments, like the Colorado Upper-division Electrostatics Diagnostic (CUE, provide rich, fine-grained information about students’ reasoning. However, because of the difficulties inherent in scoring these assessments, the majority of the large-scale conceptual assessments in physics are multiple choice. To increase the scalability and usability of the CUE, we set out to create a new version of the assessment that preserves the insights afforded by a free-response format while exploiting the logistical advantages of a multiple-choice assessment. We used our extensive database of responses to the free-response CUE to construct distractors for a new version where students can select multiple responses and receive partial credit based on the accuracy and consistency of their selections. Here, we describe the development of this modified CUE format, which we call coupled multiple response (CMR, and present data from direct comparisons of both versions. We find that the two formats have the same average score and perform similarly on multiple measures of validity and reliability, suggesting that the new version is a potentially viable alternative to the original CUE for the purpose of large-scale research-based assessment. We also compare the details of student responses on each of the two versions. While the CMR version does not capture the full scope of potential student responses, nearly three-quarters of our students’ responses to the free-response version contained one or more elements that matched options provided on the CMR version.

  16. Pareto Optimization Identifies Diverse Set of Phosphorylation Signatures Predicting Response to Treatment with Dasatinib.

    Science.gov (United States)

    Klammer, Martin; Dybowski, J Nikolaj; Hoffmann, Daniel; Schaab, Christoph

    2015-01-01

    Multivariate biomarkers that can predict the effectiveness of targeted therapy in individual patients are highly desired. Previous biomarker discovery studies have largely focused on the identification of single biomarker signatures, aimed at maximizing prediction accuracy. Here, we present a different approach that identifies multiple biomarkers by simultaneously optimizing their predictive power, number of features, and proximity to the drug target in a protein-protein interaction network. To this end, we incorporated NSGA-II, a fast and elitist multi-objective optimization algorithm that is based on the principle of Pareto optimality, into the biomarker discovery workflow. The method was applied to quantitative phosphoproteome data of 19 non-small cell lung cancer (NSCLC) cell lines from a previous biomarker study. The algorithm successfully identified a total of 77 candidate biomarker signatures predicting response to treatment with dasatinib. Through filtering and similarity clustering, this set was trimmed to four final biomarker signatures, which then were validated on an independent set of breast cancer cell lines. All four candidates reached the same good prediction accuracy (83%) as the originally published biomarker. Although the newly discovered signatures were diverse in their composition and in their size, the central protein of the originally published signature - integrin β4 (ITGB4) - was also present in all four Pareto signatures, confirming its pivotal role in predicting dasatinib response in NSCLC cell lines. In summary, the method presented here allows for a robust and simultaneous identification of multiple multivariate biomarkers that are optimized for prediction performance, size, and relevance.

  17. Metabolomics biomarkers to predict acamprosate treatment response in alcohol-dependent subjects.

    Science.gov (United States)

    Hinton, David J; Vázquez, Marely Santiago; Geske, Jennifer R; Hitschfeld, Mario J; Ho, Ada M C; Karpyak, Victor M; Biernacka, Joanna M; Choi, Doo-Sup

    2017-05-31

    Precision medicine for alcohol use disorder (AUD) allows optimal treatment of the right patient with the right drug at the right time. Here, we generated multivariable models incorporating clinical information and serum metabolite levels to predict acamprosate treatment response. The sample of 120 patients was randomly split into a training set (n = 80) and test set (n = 40) five independent times. Treatment response was defined as complete abstinence (no alcohol consumption during 3 months of acamprosate treatment) while nonresponse was defined as any alcohol consumption during this period. In each of the five training sets, we built a predictive model using a least absolute shrinkage and section operator (LASSO) penalized selection method and then evaluated the predictive performance of each model in the corresponding test set. The models predicted acamprosate treatment response with a mean sensitivity and specificity in the test sets of 0.83 and 0.31, respectively, suggesting our model performed well at predicting responders, but not non-responders (i.e. many non-responders were predicted to respond). Studies with larger sample sizes and additional biomarkers will expand the clinical utility of predictive algorithms for pharmaceutical response in AUD.

  18. Local and Systemic Inflammatory Biomarkers of Diabetic Retinopathy: An Integrative Approach.

    Science.gov (United States)

    Vujosevic, Stela; Simó, Rafael

    2017-05-01

    To review the usefulness of local and systemic inflammatory biomarkers of diabetic retinopathy (DR) to implement a more personalized treatment. An integrated research (from ophthalmologist and diabetologist point of view) of most significant literature on serum, vitreous, and aqueous humor (AH) biochemical biomarkers related to inflammation at early and advanced stages of DR (including diabetic macular edema [DME] and proliferative DR) was performed. Moreover, novel imaging retinal biomarkers of local "inflammatory condition" were described. Multiple inflammatory cytokines and chemokines are increased in DR in both serum as well as in the eye (vitreous and AH). Nevertheless, local rather than systemic production of proinflammatory cytokines seems more relevant in the pathogenesis of both DR and DME. In the eye, retinal glia cells (macroglia and microglia) together with RPE are major sources of proinflammatory and angiogenic modulators. Retinal imaging allows for noninvasive clinical evaluation of retinal inflammatory response induced by diabetes mellitus. Proinflammatory cytokines/chemokines play an essential role in the pathogenesis of DR. Therefore, circulating biomarkers and retinal imaging aimed at assessing inflammation have emerged as useful tools for monitoring the onset and progression of DR. In addition, "liquid biopsy" of AH seems a good option in patients with advanced stages of DR requiring intravitreous injections. This strategy may permit us to implement a more personalized treatment with better visual function outcome. Further evaluation and validation of circulating and local biomarkers, as well as multimodal imaging is needed to gain new insights into this issue.

  19. Biomarker responses and contamination levels in the clam Ruditapes philippinarum for biomonitoring the Lagoon of Venice (Italy).

    Science.gov (United States)

    Matozzo, Valerio; Binelli, Andrea; Parolini, Marco; Locatello, Lisa; Marin, Maria Gabriella

    2010-03-01

    A multibiomarker approach was used to assess effects of environmental contaminants in the clam Ruditapes philippinarum from the Lagoon of Venice. Bivalves were collected in 8 sites of the Lagoon (Campalto, Marghera, Palude del Monte, Valle di Brenta, Cà Roman, San Servolo, Fusina and Canale Dese), differently influenced by both anthropogenic impact and natural conditions. The following biomarkers were chosen: total haemocyte count and lysozyme activity in cell-free haemolymph as immunomarkers, acetylcholinesterase activity in gills as a biomarker of exposure to neurotoxic compounds, vitellogenin-like protein levels in both digestive gland and cell-free haemolymph as a biomarker of exposure to estrogenic compounds, and survival-in-air widely used to evaluate general stress conditions in clams. In addition, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (p,p'-DDT) and its breakdown products (DDE, DDD), hexachlorobenzene (HCB) and hexachlorocyclohexane (HCH) were measured in clams. Results demonstrated that the integrated approach between biomarkers and chemical analyses in R. philippinarum is a useful tool in biomonitoring the Lagoon of Venice. The biomarker responses suggested quite similar contamination levels in the entire Lagoon, although the relative impact of differing classes of pollutants changed among sites according to potential sources, as chemical analyses demonstrated. Overall, among the sampling sites investigated, Palude del Monte can represent an environmental risk area, bearing in mind its peculiar use for clam culture.

  20. Cytoskeletal proteins in the cerebrospinal fluid as biomarker of multiple sclerosis.

    Science.gov (United States)

    Madeddu, Roberto; Farace, Cristiano; Tolu, Paola; Solinas, Giuliana; Asara, Yolande; Sotgiu, Maria Alessandra; Delogu, Lucia Gemma; Prados, Jose Carlos; Sotgiu, Stefano; Montella, Andrea

    2013-02-01

    The axonal cytoskeleton is a finely organized system, essential for maintaining the integrity of the axon. Axonal degeneration is implicated in the pathogenesis of unremitting disability of multiple sclerosis (MS). Purpose of this study is to evaluate levels of cytoskeletal proteins such as neurofilament light protein (NFL), glial fibrillary acidic protein (GFAP), and β-tubulin (β-Tub) isoforms II and III in the cerebrospinal fluid (CSF) of MS patients and their correlation with MS clinical indices. CSF levels of cytoskeletal proteins were determined in 51 patients: 33 with MS and 18 with other neurological diseases (OND). NFL, GFAP and β-Tub II proteins were significantly higher (p 0.05) was found between MS and OND with regard to β-Tub III. Interestingly, levels of β-Tub III and NFL were higher in progressive than in remitting MS forms; on the contrary, higher levels of β-Tub II and GFAP were found in remitting MS forms. However, with the exception of β-Tub III, all proteins tend to decrease their CSF levels concomitantly with the increasing disability (EDSS) score. Overall, our results might indicate β-Tub II as a potential candidate for diagnostic and β-Tub III as a possible prognostic biomarker of MS. Therefore, further analyses are legitimated and desirable.

  1. AUC-based biomarker ensemble with an application on gene scores predicting low bone mineral density.

    Science.gov (United States)

    Zhao, X G; Dai, W; Li, Y; Tian, L

    2011-11-01

    The area under the receiver operating characteristic (ROC) curve (AUC), long regarded as a 'golden' measure for the predictiveness of a continuous score, has propelled the need to develop AUC-based predictors. However, the AUC-based ensemble methods are rather scant, largely due to the fact that the associated objective function is neither continuous nor concave. Indeed, there is no reliable numerical algorithm identifying optimal combination of a set of biomarkers to maximize the AUC, especially when the number of biomarkers is large. We have proposed a novel AUC-based statistical ensemble methods for combining multiple biomarkers to differentiate a binary response of interest. Specifically, we propose to replace the non-continuous and non-convex AUC objective function by a convex surrogate loss function, whose minimizer can be efficiently identified. With the established framework, the lasso and other regularization techniques enable feature selections. Extensive simulations have demonstrated the superiority of the new methods to the existing methods. The proposal has been applied to a gene expression dataset to construct gene expression scores to differentiate elderly women with low bone mineral density (BMD) and those with normal BMD. The AUCs of the resulting scores in the independent test dataset has been satisfactory. Aiming for directly maximizing AUC, the proposed AUC-based ensemble method provides an efficient means of generating a stable combination of multiple biomarkers, which is especially useful under the high-dimensional settings. lutian@stanford.edu. Supplementary data are available at Bioinformatics online.

  2. Novel Biomarkers of Physical Activity Maintenance in Midlife Women: Preliminary Investigation

    Directory of Open Access Journals (Sweden)

    Kelly A. Bosak

    2018-04-01

    Full Text Available The precision health initiative is leading the discovery of novel biomarkers as important indicators of biological processes or responses to behavior, such as physical activity. Neural biomarkers identified by magnetic resonance imaging (MRI hold promise to inform future research, and ultimately, for transfer to the clinical setting to optimize health outcomes. This study investigated resting-state and functional brain biomarkers between midlife women who were maintaining physical activity in accordance with the current national guidelines and previously acquired age-matched sedentary controls. Approval was obtained from the Human Subjects Committee. Participants included nondiabetic, healthy weight to overweight (body mass index 19–29.9 kg/m2 women (n = 12 aged 40–64 years. Control group data were used from participants enrolled in our previous functional MRI study and baseline resting-state MRI data from a subset of sedentary (<500 kcal of physical activity per week midlife women who were enrolled in a 9-month exercise intervention conducted in our imaging center. Differential activation of the inferior frontal gyrus (IFG and greater connectivity with the dorsolateral prefrontal cortex (dlPFC was identified between physically active women and sedentary controls. After correcting for multiple comparisons, these differences in biomarkers of physical activity maintenance did not reach statistical significance. Preliminary evidence in this small sample suggests that neural biomarkers of physical activity maintenance involve activations in the brain region associated with areas involved in implementing goal-directed behavior. Specifically, activation of the IFG and connectivity with the dlPFC is identified as a neural biomarker to explain and predict long-term physical activity maintenance for healthy aging. Future studies should evaluate these biomarker links with relevant clinical correlations.

  3. Use of Galvanic Skin Responses, Salivary Biomarkers, and Self-reports to Assess Undergraduate Student Performance During a Laboratory Exam Activity

    Science.gov (United States)

    Villanueva, Idalis; Valladares, Maria; Goodridge, Wade

    2016-01-01

    Typically, self-reports are used in educational research to assess student response and performance to a classroom activity. Yet, addition of biological and physiological measures such as salivary biomarkers and galvanic skin responses are rarely included, limiting the wealth of information that can be obtained to better understand student performance. A laboratory protocol to study undergraduate students' responses to classroom events (e.g., exams) is presented. Participants were asked to complete a representative exam for their degree. Before and after the laboratory exam session, students completed an academic achievement emotions self-report and an interview that paralleled these questions when participants wore a galvanic skin sensor and salivary biomarkers were collected. Data collected from the three methods resulted in greater depth of information about students' performance when compared to the self-report. The work can expand educational research capabilities through more comprehensive methods for obtaining nearer to real-time student responses to an examination activity. PMID:26891278

  4. Incorporating biomarkers in ecological risk assessment of chemical contaminants of soils

    Directory of Open Access Journals (Sweden)

    A. J. Reinecke

    2007-09-01

    Full Text Available Soil is an important but complex natural resource which is increasingly used as sink for chemicals. The monitoring of soil quality and the assessment of risks posed by contaminants have become crucial. This study deals with the potential use of biomarkers in the monitoring of soils and the assessment of risk resulting from contamination. Apart from an overview of the existing literature on biomarkers, the results of various of our field experiments in South African soils are discussed. Biomarkers may have potential in the assessment of risk because they can indicate at an early stage that exposure has taken place and that a toxic response has been initiated. It is therefore expected that early biomarkers will play an increasing role as diagnostic tools for determining exposure to chemicals and the resulting effects. They may have predictive value that can assist in the prevention or minimising of risks. The aim of this study was to investigate the possibilities of using our results on biomarker responses of soil dwelling organisms to predict changes at higher organisational levels (which may have ecological implications. Our recent experimental results on the evaluation of various biomarkers in both the laboratory and the field are interpreted and placed in perspective within the broader framework of response biology. The aim was further to contribute to the development and application of biomarkers in regulatory risk assessment schemes of soils. This critical review of our own and recent literature on biomarkers in ecotoxicology leads to the conclusion that biomarkers can, under certain conditions, be useful tools in risk assessment. Clear relationships between contamination loads in soil organisms and certain biomarker responses were determined in woodlice, earthworms and terrestrial snails. Clear correlations were also established in field experiments between biomarker responses and changes at the population level. This indicated that, in

  5. Matching metal pollution with bioavailability, bioaccumulation and biomarkers response in fish (Centropomus parallelus) resident in neotropical estuaries

    International Nuclear Information System (INIS)

    Souza, Iara C.; Duarte, Ian D.; Pimentel, Natieli Q.; Rocha, Lívia D.; Morozesk, Mariana; Bonomo, Marina M.; Azevedo, Vinicius C.; Pereira, Camilo D.S.

    2013-01-01

    Two neotropical estuaries affected by different anthropogenic factors were studied. We report levels of metals and metalloids in water and sediment as well as their influence on genetic, biochemical and morphological biomarkers in the native fish Centropomus parallelus. Biomarkers reflected the fish health status. Multivariate statistics indicated both spatial and temporal changes in both water and sediment, which are linked to the elemental composition and health status of inhabitant fish, showing the biggest influence of surface water, followed by sediments and interstitial water. Bioaccumulation in fish muscle was useful to identify elements that were below detection limits in water, pointing out the risk of consuming fish exceeding allowance limits for some elements (As and Hg in this case). Multivariate statistics, including physical, chemical and biological issues, presents a suitable tool, integrating data from different origin allocated in the same estuary, which could be useful for future studies on estuarine systems. -- Highlights: •C. parallelus is a suitable bioindicator for assessing environmental quality in estuaries. •Biomarkers matched water quality pointing out different pollution scenarios. •Chemometrics allows extrapolating results from field and laboratory. •Chemometrics helps integrating biology and chemistry. -- Chemometrics allows matching pollution with bioaccumulation of metals and biomarkers responses in the fish Centropomus parallelus evidencing differences in estuaries quality

  6. Differences in Normal Tissue Response in the Esophagus Between Proton and Photon Radiation Therapy for Non-Small Cell Lung Cancer Using In Vivo Imaging Biomarkers.

    Science.gov (United States)

    Niedzielski, Joshua S; Yang, Jinzhong; Mohan, Radhe; Titt, Uwe; Mirkovic, Dragan; Stingo, Francesco; Liao, Zhongxing; Gomez, Daniel R; Martel, Mary K; Briere, Tina M; Court, Laurence E

    2017-11-15

    To determine whether there exists any significant difference in normal tissue toxicity between intensity modulated radiation therapy (IMRT) or proton therapy for the treatment of non-small cell lung cancer. A total of 134 study patients (n=49 treated with proton therapy, n=85 with IMRT) treated in a randomized trial had a previously validated esophageal toxicity imaging biomarker, esophageal expansion, quantified during radiation therapy, as well as esophagitis grade (Common Terminology Criteria for Adverse Events version 3.0), on a weekly basis during treatment. Differences between the 2 modalities were statically analyzed using the imaging biomarker metric value (Kruskal-Wallis analysis of variance), as well as the incidence and severity of esophagitis grade (χ 2 and Fisher exact tests, respectively). The dose-response of the imaging biomarker was also compared between modalities using esophageal equivalent uniform dose, as well as delivered dose to an isotropic esophageal subvolume. No statistically significant difference in the distribution of esophagitis grade, the incidence of grade ≥3 esophagitis (15 and 11 patients treated with IMRT and proton therapy, respectively), or the esophageal expansion imaging biomarker between cohorts (P>.05) was found. The distribution of imaging biomarker metric values had similar distributions between treatment arms, despite a slightly higher dose volume in the proton arm (P>.05). Imaging biomarker dose-response was similar between modalities for dose quantified as esophageal equivalent uniform dose and delivered esophageal subvolume dose. Regardless of treatment modality, there was high variability in imaging biomarker response, as well as esophagitis grade, for similar esophageal doses between patients. There was no significant difference in esophageal toxicity from either proton- or photon-based radiation therapy as quantified by esophagitis grade or the esophageal expansion imaging biomarker. Copyright © 2017 Elsevier

  7. The application of mass-spectrometry-based protein biomarker discovery to theragnostics

    OpenAIRE

    Street, Jonathan M; Dear, James W

    2010-01-01

    Over the last decade rapid developments in mass spectrometry have allowed the identification of multiple proteins in complex biological samples. This proteomic approach has been applied to biomarker discovery in the context of clinical pharmacology (the combination of biomarker and drug now being termed ‘theragnostics’). In this review we provide a roadmap for early protein biomarker discovery studies, focusing on some key questions that regularly confront researchers.

  8. Concise biomarker for spatial-temporal change in three-dimensional ultrasound measurement of carotid vessel wall and plaque thickness based on a graph-based random walk framework: Towards sensitive evaluation of response to therapy.

    Science.gov (United States)

    Chiu, Bernard; Chen, Weifu; Cheng, Jieyu

    2016-12-01

    Rapid progression in total plaque area and volume measured from ultrasound images has been shown to be associated with an elevated risk of cardiovascular events. Since atherosclerosis is focal and predominantly occurring at the bifurcation, biomarkers that are able to quantify the spatial distribution of vessel-wall-plus-plaque thickness (VWT) change may allow for more sensitive detection of treatment effect. The goal of this paper is to develop simple and sensitive biomarkers to quantify the responsiveness to therapies based on the spatial distribution of VWT-Change on the entire 2D carotid standardized map previously described. Point-wise VWT-Changes computed for each patient were reordered lexicographically to a high-dimensional data node in a graph. A graph-based random walk framework was applied with the novel Weighted Cosine (WCos) similarity function introduced, which was tailored for quantification of responsiveness to therapy. The converging probability of each data node to the VWT regression template in the random walk process served as a scalar descriptor for VWT responsiveness to treatment. The WCos-based biomarker was 14 times more sensitive than the mean VWT-Change in discriminating responsive and unresponsive subjects based on the p-values obtained in T-tests. The proposed framework was extended to quantify where VWT-Change occurred by including multiple VWT-Change distribution templates representing focal changes at different regions. Experimental results show that the framework was effective in classifying carotid arteries with focal VWT-Change at different locations and may facilitate future investigations to correlate risk of cardiovascular events with the location where focal VWT-Change occurs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Can Free-Response Questions Be Approximated by Multiple-Choice Equivalents?

    OpenAIRE

    Lin, Shih-Yin; Singh, Chandralekha

    2016-01-01

    We discuss a study to evaluate the extent to which free-response questions can be approximated by multiple-choice equivalents. Two carefully designed research-based multiple-choice questions were transformed into a free-response format and administered on the final exam in a calculus-based introductory physics course. The original multiple-choice questions were administered in another, similar introductory physics course on the final exam. Our findings suggest that carefully designed multiple...

  10. Biomarkers of Renal Function : Towards Clinical Actionability

    NARCIS (Netherlands)

    Binnenmars, S Heleen; Hijmans, R S; Navis, G; de Borst, M H

    This review provides an overview of the clinical value of themost relevant renal biomarkers, focusing on two main clinical conditions: acute kidney injury and chronic kidney disease. We categorize biomarkers according to their actionability, in terms of a documented response to treatment in relation

  11. Establishing cellular stress response profiles as biomarkers of homeodynamics, health, and hormesis

    DEFF Research Database (Denmark)

    Demirovic, Dino; Rattan, Suresh

    2013-01-01

    strategy, which makes use of SRP for achieving healthy aging and extending the healthspan, is that of strengthening the homeodynamics through repeated mild stress-induced hormesis by physical, biological and nutritional hormetins. Furthermore, SRP can also be the basis for defining health as a state......Aging is the progressive shrinkage of the homeodynamic space. A crucial component of the homeodynamic space is the stress response (SR), by virtue of which a living system senses disturbance and initiates a series of events for maintenance, repair, adaptation, remodeling and survival. Here we...... discuss the main intracellular SR pathways in human cells, and argue for the need to define and establish the immediate and delayed stress response profiles (SRP) during aging. Such SRP are required to be established at several age-points, which can be the molecular biomarkers of homeodynamic space...

  12. Biomarkers kinetics in the assessment of ventilator-associated pneumonia response to antibiotics - results from the BioVAP study

    NARCIS (Netherlands)

    Póvoa, Pedro; Martin-Loeches, Ignacio; Ramirez, Paula; Bos, Lieuwe D.; Esperatti, Mariano; Silvestre, Joana; Gili, Gisela; Goma, Gemma; Berlanga, Eugenio; Espasa, Mateu; Gonçalves, Elsa; Torres, Antoni; Artigas, Antonio

    2017-01-01

    Purpose: Our aim was to evaluate the role of biomarker kinetics in the assessment of ventilator-associated pneumonia (VAP) response to antibiotics. Materials and methods: We performed a prospective, multicenter, observational study to evaluate in 37 microbiologically documented VAP, the kinetics of

  13. The use of biomarkers to assess the health of aquatic ecosystems in Brazil: a review

    Directory of Open Access Journals (Sweden)

    Thaís Dalzochio

    2016-11-01

    Full Text Available Abstract Organisms in polluted environments are typically exposed to a complex mixture of chemical contaminants. The great concern about the health of aquatic ecosystems has led to the increased use of biomarkers over the past years. The aim of this work was to review the papers published from 2000 to 2015, which used biomarkers to assess the health of aquatic ecosystems in Brazil. A research resulted in 99 eligible papers. More than 80% of studies were conducted in the states of São Paulo and Rio Grande do Sul. Approximately 63% of studies used fish as bioindicator, whereas the micronucleus test and biochemical analyses were the most used biomarkers. A multibiomarker approach was used by 60.6% of studies, while 39.4% used one single biomarker. Furthermore, 68% were field studies and more than 75% of these used control animals sampled at reference sites. A relationship between the biomarker responses and pollution was reported by 87% of studies; however, 43.4% of studies analyzed only one sampling period, limiting comparisons and comprehension about possible seasonal variations. This review evidenced some weak points in studies using biomarkers in Brazil, especially related to the lack of studies in two important biomes (the Pantanal and the Amazon Rainforest and experimental designs (small sample size, sampling in one single period, use of one single biomarker. Thus, future studies should consider mainly the use of multiple biomarkers, greater sample size, seasonal sampling and water physicochemical parameters to better diagnose the health of aquatic ecosystems.

  14. Methylated genes as new cancer biomarkers

    DEFF Research Database (Denmark)

    Brunner, Nils; Duffy, M.J; Napieralski, R.

    2009-01-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that meas......Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested...... that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2...... for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene...

  15. Osteopontin (OPN) as a CSF and blood biomarker for multiple sclerosis: A systematic review and meta-analysis.

    Science.gov (United States)

    Agah, Elmira; Zardoui, Arshia; Saghazadeh, Amene; Ahmadi, Mona; Tafakhori, Abbas; Rezaei, Nima

    2018-01-01

    Identifying a reliable biomarker may accelerate diagnosis of multiple sclerosis (MS) and lead to early management of the disease. Accumulating evidence suggest that cerebrospinal fluid (CSF) and peripheral blood concentration of osteopontin (OPN) may have diagnostic and prognostic value in MS. We conducted a systematic review and meta-analysis of studies that measured peripheral blood and CSF levels of OPN in MS patients and controls to evaluate the diagnostic potential of this biomarker better. We searched PubMed, Web of Science and Scopus databases to find articles that measured OPN concentration in peripheral blood and CSF samples from MS patients up to October 19, 2016. Q statistic tests and the I2 index were applied for heterogeneity assessment. If the I2 index was less than 40%, the fixed-effects model was used for meta-analysis. Random-effects meta-analysis was chosen if the I2 value was greater than 40%. After removal of duplicates, 918 articles were identified, and 27 of them fulfilled the inclusion criteria. We included 22 eligible studies in the final meta-analysis. MS patients, in general, had considerably higher levels of OPN in their CSF and blood when compared to all types of controls (pCSF of MS subgroups (pCSF concentrations of OPN between MS patient subtypes. CIS patients had significantly lower levels of OPN both in their peripheral blood and CSF compared to patients with progressive subtypes of MS (pCSF concentration of OPN was significantly higher among RRMS patients compared to the CIS patients and SPMS patients (PCSF compared to patients with stable disease (P = 0.007). The result of this study confirms that increased levels of OPN exist in CSF and peripheral blood of MS patients and strengthens the evidence regarding the clinical utility of OPN as a promising and validated biomarker for MS.

  16. Identification and Validation of Protein Biomarkers of Response to Neoadjuvant Platinum Chemotherapy in Muscle Invasive Urothelial Carcinoma.

    Directory of Open Access Journals (Sweden)

    Alexander S Baras

    Full Text Available The 5-year cancer specific survival (CSS for patients with muscle invasive urothelial carcinoma of the bladder (MIBC treated with cystectomy alone is approximately 50%. Platinum based neoadjuvant chemotherapy (NAC plus cystectomy results in a marginal 5-10% increase in 5-year CSS in MIBC. Interestingly, responders to NAC (biomarkers detectable by immunohistochemistry (IHC. These candidate biomarkers were subsequently tested in tissue microarrays derived from an independent cohort of NAC naive MIBC biopsy specimens from whom the patients were treated with neoadjuvant gemcitabine cisplatin NAC and subsequent cystectomy. The clinical parameters that have been previously associated with NAC response were also examined in our cohort.Our analyses of the available mRNA gene expression data in a discovery cohort (n = 33 and the HPA resulted in 8 candidate protein biomarkers. The combination of GDPD3 and SPRED1 resulted in a multivariate classification tree that was significantly associated with NAC response status (Goodman-Kruskal γ = 0.85 p<0.0001 in our independent NAC treated MIBC cohort. This model was independent of the clinical factors of age and clinical tumor stage, which have been previously associated with NAC response by our group. The combination

  17. Biomarkers in the clinical development of asthma therapies.

    Science.gov (United States)

    Staton, Tracy L; Choy, David F; Arron, Joseph R

    2016-01-01

    Here we review how biomarkers have been used in the design, execution and interpretation of recent clinical studies of therapeutic candidates targeting cytokine-mediated inflammatory pathways in asthma. This review focuses on type 2 inflammation, as there are multiple therapeutics and/or clinical studies that can be compared within that specific pathway. Comparative analyses of data from these clinical studies illustrate the utility of biomarkers to quantify pharmacodynamic effects, clarify mechanism of action and stratify patients, which may facilitate the interpretation of outcomes in the development of molecularly targeted therapies. These case examples provide a basis for biomarker considerations in the design of future studies in the asthma setting.

  18. Biomarkers of Environmental Enteropathy are Positively Associated with Immune Responses to an Oral Cholera Vaccine in Bangladeshi Children.

    Directory of Open Access Journals (Sweden)

    Muhammad Ikhtear Uddin

    2016-11-01

    Full Text Available Environmental enteropathy (EE is a poorly understood condition that refers to chronic alterations in intestinal permeability, absorption, and inflammation, which mainly affects young children in resource-limited settings. Recently, EE has been linked to suboptimal oral vaccine responses in children, although immunological mechanisms are poorly defined. The objective of this study was to determine host factors associated with immune responses to an oral cholera vaccine (OCV. We measured antibody and memory T cell immune responses to cholera antigens, micronutrient markers in blood, and EE markers in blood and stool from 40 Bangladeshi children aged 3-14 years who received two doses of OCV given 14 days apart. EE markers included stool myeloperoxidase (MPO and alpha anti-trypsin (AAT, and plasma endotoxin core antibody (EndoCab, intestinal fatty acid binding protein (i-FABP, and soluble CD14 (sCD14. We used multiple linear regression analysis with LASSO regularization to identify host factors, including EE markers, micronutrient (nutritional status, age, and HAZ score, predictive for each response of interest. We found stool MPO to be positively associated with IgG antibody responses to the B subunit of cholera toxin (P = 0.03 and IgA responses to LPS (P = 0.02; plasma sCD14 to be positively associated with LPS IgG responses (P = 0.07; plasma i-FABP to be positively associated with LPS IgG responses (P = 0.01 and with memory T cell responses specific to cholera toxin (P = 0.01; stool AAT to be negatively associated with IL-10 (regulatory T cell responses specific to cholera toxin (P = 0.02, and plasma EndoCab to be negatively associated with cholera toxin-specific memory T cell responses (P = 0.02. In summary, in a cohort of children 3-14 years old, we demonstrated that the majority of biomarkers of environmental enteropathy were positively associated with immune responses after vaccination with an OCV.

  19. Systematic review genetic biomarkers associated with anti-TNF treatment response in inflammatory bowel diseases

    DEFF Research Database (Denmark)

    Sørensen, Signe Bek; Nielsen, J V; Bo Bojesen, Anders

    2016-01-01

    BACKGROUND: Personalised medicine, including biomarkers for treatment selection, may provide new algorithms for more effective treatment of patients. Genetic variation may impact drug response and genetic markers could help selecting the best treatment strategy for the individual patient. AIM......2430561) [OR = 1.66 (1.05-2.63)], IL6 (rs10499563) [OR = 1.65 (1.04-2.63)] and IL1B (rs4848306) [OR = 1.88 (1.05-3.35)] were significantly associated with response among IBD patients using clinical response criteria. A positive predictive value of 0.96 was achieved by combining five genetic markers...... in an explorative analysis. CONCLUSIONS: There are no genetic markers currently available which are adequately predictive of anti-TNF response for use in the clinic. Genetic markers bear the advantage that they do not change over time. Therefore, hypothesis-free approaches, testing a large number of polymorphisms...

  20. Quantitative multiplex detection of pathogen biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I.; Martinez, Jennifer; Grace, Wynne K.

    2016-02-09

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  1. Quantitative multiplex detection of pathogen biomarkers

    Science.gov (United States)

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I; Martinez, Jennifer; Grace, Wynne K

    2014-10-14

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  2. DNA Methylation Biomarkers: Cancer and Beyond

    Directory of Open Access Journals (Sweden)

    Thomas Mikeska

    2014-09-01

    Full Text Available Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient’s response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease.

  3. Biomarker monitoring in sports doping control.

    Science.gov (United States)

    Pottgiesser, Torben; Schumacher, Yorck Olaf

    2012-06-01

    Biomarker monitoring can be considered a new era in the effort against doping. Opposed to the old concept in doping control of direct detection of a prohibited substance in a biological sample such as urine or blood, the new paradigm allows a personalized longitudinal monitoring of biomarkers that indicate non-physiological responses independently of the used doping technique or substance, and may cause sanctioning of illicit practices. This review presents the development of biomarker monitoring in sports doping control and focuses on the implementation of the Athlete Biological Passport as the current concept of the World Anti Doping Agency for the detection of blood doping (hematological module). The scope of the article extends to the description of novel biomarkers and future concepts of application.

  4. Blood biomarkers are helpful in the prediction of response to chemoradiation in rectal cancer: A prospective, hypothesis driven study on patients with locally advanced rectal cancer

    International Nuclear Information System (INIS)

    Buijsen, Jeroen; Stiphout, Ruud G. van; Menheere, Paul P.C.A.; Lammering, Guido; Lambin, Philippe

    2014-01-01

    Purpose/objective: Chemoradiation (CRT) has been shown to lead to downsizing of an important portion of rectal cancers. In order to tailor treatment at an earlier stage during treatment, predictive models are being developed. Adding blood biomarkers may be attractive for prediction, as they can be collected very easily and determined with excellent reproducibility in clinical practice. The hypothesis of this study was that blood biomarkers related to tumor load, hypoxia and inflammation can help to predict response to CRT in rectal cancer. Material/methods: 295 patients with locally advanced rectal cancer who were planned to undergo CRT were prospectively entered into a biobank protocol ( (NCT01067872)). Blood samples were drawn before start of CRT. Nine biomarkers were selected, based on a previously defined hypothesis, and measured in a standardized way by a certified lab: CEA, CA19-9, LDH, CRP, IL-6, IL-8, CA IX, osteopontin and 25-OH-vitamin D. Outcome was analyzed in two ways: pCR vs. non-pCR and responders (defined as ypT0-2N0) vs. non-responders (all other ypTN stages). Results: 276 patients could be analyzed. 20.7% developed a pCR and 47.1% were classified as responders. In univariate analysis CEA (p = 0.001) and osteopontin (p = 0.012) were significant predictors for pCR. Taking response as outcome CEA (p < 0.001), IL-8 (p < 0.001) and osteopontin (p = 0.004) were significant predictors. In multivariate analysis CEA was the strongest predictor for pCR (OR 0.92, p = 0.019) and CEA and IL-8 predicted for response (OR 0.97, p = 0.029 and OR 0.94, p = 0.036). The model based on biomarkers only had an AUC of 0.65 for pCR and 0.68 for response; the strongest model included clinical data, PET-data and biomarkers and had an AUC of 0.81 for pCR and 0.78 for response. Conclusion: CEA and IL-8 were identified as predictive biomarkers for tumor response and PCR after CRT in rectal cancer. Incorporation of these blood biomarkers leads to an additional accuracy of

  5. Salivary biomarkers associated with gingivitis and response to therapy.

    Science.gov (United States)

    Syndergaard, Ben; Al-Sabbagh, Mohanad; Kryscio, Richard J; Xi, Jing; Ding, Xiuhua; Ebersole, Jeffrey L; Miller, Craig S

    2014-08-01

    Salivary biomarkers are potentially important for determining the presence, risk, and progression of periodontal disease. However, clinical translation of biomarker technology from lab to chairside requires studies that identify biomarkers associated with the transitional phase between health and periodontal disease (i.e., gingivitis). Eighty participants (40 with gingivitis, 40 healthy) provided saliva at baseline and 7 to 30 days later. An additional sample was collected from gingivitis participants 10 to 30 days after dental prophylaxis. Clinical parameters of gingival disease were recorded at baseline and the final visit. Salivary concentrations of interleukin (IL)-1β, IL-6, matrix metalloproteinase (MMP)-8, macrophage inflammatory protein (MIP)-1α, and prostaglandin E2 (PGE2) were measured. Clinical features of health and gingivitis were stable at both baseline visits. Participants with gingivitis demonstrated significantly higher bleeding on probing (BOP), plaque index (PI), and gingival index (GI) (P ≤0.002) and a significant drop in BOP, PI, and GI post-treatment (P ≤0.001). Concentrations of MIP-1α and PGE2 were significantly higher (2.8 times) in the gingivitis group than the healthy group (P ≤0.02). After dental prophylaxis, mean biomarker concentrations did not decrease significantly from baseline in the gingivitis group, although concentrations of IL-1β, IL-6, and MMP-8 approached healthy levels, whereas MIP-1α and PGE2 concentrations remained significantly higher than in the healthy group (P ≤0.04). Odds ratio analyses showed that PGE2 concentrations, alone and in combination with MIP-1α, readily discriminated gingivitis from health. Salivary PGE2 and MIP-1α discriminate gingivitis from health, and patients with gingivitis who return to clinical health continue to produce inflammatory mediators for weeks after dental prophylaxis.

  6. Seismic response analysis of structural system subjected to multiple support excitation

    International Nuclear Information System (INIS)

    Wu, R.W.; Hussain, F.A.; Liu, L.K.

    1978-01-01

    In the seismic analysis of a multiply supported structural system subjected to nonuniform excitations at each support point, the single response spectrum, the time history, and the multiple response spectrum are the three commonly employed methods. In the present paper the three methods are developed, evaluated, and the limitations and advantages of each method assessed. A numerical example has been carried out for a typical piping system. Considerably smaller responses have been predicted by the time history method than that by the single response spectrum method. This is mainly due to the fact that the phase and amplitude relations between the support excitations are faithfully retained in the time history method. The multiple response spectrum prediction has been observed to compare favourably with the time history method prediction. Based on the present evaluation, the multiple response spectrum method is the most efficient method for seismic response analysis of structural systems subjected to multiple support excitation. (Auth.)

  7. Biology and Biomarkers for Wound Healing

    Science.gov (United States)

    Lindley, Linsey E.; Stojadinovic, Olivera; Pastar, Irena; Tomic-Canic, Marjana

    2016-01-01

    Background As the population grows older, the incidence and prevalence of conditions which lead to a predisposition for poor wound healing also increases. Ultimately, this increase in non-healing wounds has led to significant morbidity and mortality with subsequent huge economic ramifications. Therefore, understanding specific molecular mechanisms underlying aberrant wound healing is of great importance. It has, and will continue to be the leading pathway to the discovery of therapeutic targets as well as diagnostic molecular biomarkers. Biomarkers may help identify and stratify subsets of non-healing patients for whom biomarker-guided approaches may aid in healing. Methods A series of literature searches were performed using Medline, PubMed, Cochrane Library, and Internet searches. Results Currently, biomarkers are being identified using biomaterials sourced locally, from human wounds and/or systemically using systematic high-throughput “omics” modalities (genomic, proteomic, lipidomic, metabolomic analysis). In this review we highlight the current status of clinically applicable biomarkers and propose multiple steps in validation and implementation spectrum including those measured in tissue specimens e.g. β-catenin and c-myc, wound fluid e.g. MMP’s and interleukins, swabs e.g. wound microbiota and serum e.g. procalcitonin and MMP’s. Conclusions Identification of numerous potential biomarkers utilizing different avenues of sample collection and molecular approaches is currently underway. A focus on simplicity, and consistent implementation of these biomarkers as well as an emphasis on efficacious follow-up therapeutics is necessary for transition of this technology to clinically feasible point-of-care applications. PMID:27556760

  8. Differential Mobility Spectrometry-Mass Spectrometry (DMS-MS) in Radiation Biodosimetry: Rapid and High-Throughput Quantitation of Multiple Radiation Biomarkers in Nonhuman Primate Urine

    Science.gov (United States)

    Chen, Zhidan; Coy, Stephen L.; Pannkuk, Evan L.; Laiakis, Evagelia C.; Fornace, Albert J.; Vouros, Paul

    2018-05-01

    High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. [Figure not available: see fulltext.

  9. Differential Mobility Spectrometry-Mass Spectrometry (DMS-MS) in Radiation Biodosimetry: Rapid and High-Throughput Quantitation of Multiple Radiation Biomarkers in Nonhuman Primate Urine.

    Science.gov (United States)

    Chen, Zhidan; Coy, Stephen L; Pannkuk, Evan L; Laiakis, Evagelia C; Fornace, Albert J; Vouros, Paul

    2018-05-07

    High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. Graphical Abstract.

  10. Multiple sclerosis: current immunological aspects

    Directory of Open Access Journals (Sweden)

    Carlos Cuevas-García

    2017-02-01

    Full Text Available Multiple sclerosis is the most common inflammatory, chronic and degenerative condition of the central nervous system, and represents the first cause of disability in young adults. In Mexico, 11 to 20 out of every 100 000 people suffer from this disease. The causes of multiple sclerosis remain unknown, but several theories have been proposed on its origin: the interaction of environmental factors, viral infectious factors and genetic and immune susceptibility of each individual patient, which induce an autoimmune response and promote neuronal/axonal degeneration. In this review, the immune reaction main components and neurodegeneration present in multiple sclerosis are analyzed, as well as the inflammatory cascade associated with demyelination. Available treatments’ main purpose is to modulate aspects related to the adaptive immune response (B and T cells. The therapeutic challenge will be antigen-specific immune-tolerance induction, for example, with the use of tolerance protocols with peptides or DNA or nanoparticles vaccines. Future therapies should aim to control innate components (microglia, macrophages, astrocytes and to promote remyelination. To optimize the treatment, a combined therapeutic approach targeting the control of inflammatory and neurodegenerative components of the disease and monitoring of biomarkers will be necessary.

  11. Blood eosinophil levels as a biomarker in COPD.

    Science.gov (United States)

    Brusselle, Guy; Pavord, Ian D; Landis, Sarah; Pascoe, Steven; Lettis, Sally; Morjaria, Nikhil; Barnes, Neil; Hilton, Emma

    2018-05-01

    Chronic obstructive pulmonary disease (COPD) is a heterogeneous disorder and patients respond differently to treatment. Blood eosinophils are a potential biomarker to stratify patient subsets for COPD therapy. We reviewed the value of blood eosinophils in predicting exacerbation risk and response to corticosteroid treatment in the available literature (PubMed articles in English; keywords: "COPD" and "eosinophil"; published prior to May 2017). Overall, clinical data suggest that in patients with a history of COPD exacerbations, a higher blood eosinophil count predicts an increased risk of future exacerbations and is associated with improved response to treatment with inhaled corticosteroids (in combination with long-acting bronchodilator[s]). Blood eosinophils are therefore a promising biomarker for phenotyping patients with COPD, although prospective studies are needed to assess blood eosinophils as a biomarker of corticosteroid response for this. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Neural Dynamics of Multiple Object Processing in Mild Cognitive Impairment and Alzheimer's Disease: Future Early Diagnostic Biomarkers?

    Science.gov (United States)

    Bagattini, Chiara; Mazza, Veronica; Panizza, Laura; Ferrari, Clarissa; Bonomini, Cristina; Brignani, Debora

    2017-01-01

    The aim of this study was to investigate the behavioral and electrophysiological dynamics of multiple object processing (MOP) in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and to test whether its neural signatures may represent reliable diagnostic biomarkers. Behavioral performance and event-related potentials [N2pc and contralateral delay activity (CDA)] were measured in AD, MCI, and healthy controls during a MOP task, which consisted in enumerating a variable number of targets presented among distractors. AD patients showed an overall decline in accuracy for both small and large target quantities, whereas in MCI patients, only enumeration of large quantities was impaired. N2pc, a neural marker of attentive individuation, was spared in both AD and MCI patients. In contrast, CDA, which indexes visual short term memory abilities, was altered in both groups of patients, with a non-linear pattern of amplitude modulation along the continuum of the disease: a reduction in AD and an increase in MCI. These results indicate that AD pathology shows a progressive decline in MOP, which is associated to the decay of visual short-term memory mechanisms. Crucially, CDA may be considered as a useful neural signature both to distinguish between healthy and pathological aging and to characterize the different stages along the AD continuum, possibly becoming a reliable candidate for an early diagnostic biomarker of AD pathology.

  13. Novel biomarkers in primary breast core biopsies to predict poor response to neoadjuvant chemotherapy and appearance of metastases.

    Science.gov (United States)

    Novell, Anna; Morales, Serafin; Valls, Joan; Panadés, Maria José; Salud, Antonieta; Iglesias, Edelmiro; Vilardell, Felip; Matias-Guiu, Xavier; Llombart-Cussac, Antonio

    2017-09-01

    Drug resistance has been one of the major obstacles limiting the success of cancer chemotherapy. In two thirds of breast cancer patients, large (>1cm) residual tumors are present after neoadjuvant chemotherapy (NCT). The residual tumor and involved nodes have been indicators of relapse and survival very important in breast cancer. The goal of this preliminary study was to assess the predictive significance of a panel of molecular biomarkers, related with the response to treatment or drug resistance to NCT, as determined on the diagnostic tumor. The expression of 22 proteins was examined using immunohistochemistry in tissue microarrays (TMA) from 115 patients of stage II-III breast cancer, treated with NCT. Among studied proteins, there are some that are anti-apoptotic, pro-proliferative, cancer stem cell markers and the Vitamin D Receptor. Other proteins are involved in the identification of molecular subtype, cell cycle regulation or DNA repair. Next, a predictive signature of poor response was generated from independent markers of predictive value. Tumors that expressed four or five conditions (biomarkers of chemoresistance with a determinated cutoff) were associated with a 9-fold increase in the chances of these patients of having a poor response to NCT. Additionally, we also found a worse prognostic signature, generated from independent markers of prognostic value. Tumors which expressed two or three conditions of worst prognostic, were associated with a 6-fold reduction in Distant Disease Free Survival. In conclusion, finding biomarkers of chemoresitance (ypTNM II-III) and metastases can become a stepping stone for future studies that will need to be assessed in a bigger scale.

  14. 18F-FDG as an inflammation biomarker for imaging dengue virus infection and treatment response.

    Science.gov (United States)

    Chacko, Ann-Marie; Watanabe, Satoru; Herr, Keira J; Kalimuddin, Shirin; Tham, Jing Yang; Ong, Joanne; Reolo, Marie; Serrano, Raymond M F; Cheung, Yin Bun; Low, Jenny G H; Vasudevan, Subhash G

    2017-05-04

    Development of antiviral therapy against acute viral diseases, such as dengue virus (DENV), suffers from the narrow window of viral load detection in serum during onset and clearance of infection and fever. We explored a biomarker approach using 18F-fluorodeoxyglucose (18F-FDG) PET in established mouse models for primary and antibody-dependent enhancement infection with DENV. 18F-FDG uptake was most prominent in the intestines and correlated with increased virus load and proinflammatory cytokines. Furthermore, a significant temporal trend in 18F-FDG uptake was seen in intestines and selected tissues over the time course of infection. Notably, 18F-FDG uptake and visualization by PET robustly differentiated treatment-naive groups from drug-treated groups as well as nonlethal from lethal infections with a clinical strain of DENV2. Thus, 18F-FDG may serve as a novel DENV infection-associated inflammation biomarker for assessing treatment response during therapeutic intervention trials.

  15. Human cervicovaginal fluid biomarkers to predict term and preterm labor

    Science.gov (United States)

    Heng, Yujing J.; Liong, Stella; Permezel, Michael; Rice, Gregory E.; Di Quinzio, Megan K. W.; Georgiou, Harry M.

    2015-01-01

    Preterm birth (PTB; birth before 37 completed weeks of gestation) remains the major cause of neonatal morbidity and mortality. The current generation of biomarkers predictive of PTB have limited utility. In pregnancy, the human cervicovaginal fluid (CVF) proteome is a reflection of the local biochemical milieu and is influenced by the physical changes occurring in the vagina, cervix and adjacent overlying fetal membranes. Term and preterm labor (PTL) share common pathways of cervical ripening, myometrial activation and fetal membranes rupture leading to birth. We therefore hypothesize that CVF biomarkers predictive of labor may be similar in both the term and preterm labor setting. In this review, we summarize some of the existing published literature as well as our team's breadth of work utilizing the CVF for the discovery and validation of putative CVF biomarkers predictive of human labor. Our team established an efficient method for collecting serial CVF samples for optimal 2-dimensional gel electrophoresis resolution and analysis. We first embarked on CVF biomarker discovery for the prediction of spontaneous onset of term labor using 2D-electrophoresis and solution array multiple analyte profiling. 2D-electrophoretic analyses were subsequently performed on CVF samples associated with PTB. Several proteins have been successfully validated and demonstrate that these biomarkers are associated with term and PTL and may be predictive of both term and PTL. In addition, the measurement of these putative biomarkers was found to be robust to the influences of vaginal microflora and/or semen. The future development of a multiple biomarker bed-side test would help improve the prediction of PTB and the clinical management of patients. PMID:26029118

  16. [Diagnosis of acute heart failure and relevance of biomarkers in elderly patients].

    Science.gov (United States)

    Ruiz Ortega, Raúl Antonio; Manzano, Luis; Montero-Pérez-Barquero, Manuel

    2014-03-01

    Diagnosis of acute heart failure (HF) is difficult in elderly patients with multiple comorbidities. Risk scales and classification criteria based exclusively on clinical manifestations, such as the Framingham scales, lack sufficient specificity. In addition to clinical manifestations, diagnosis should be based on two key factors: natriuretic peptides and echocardiographic study. When there is clinical suspicion of acute HF, a normal natriuretic peptide level will rule out this process. When a consistent clinical suspicion is present, an echocardiographic study should also be performed. Diagnosis of HF with preserved ejection fraction (HF/pEF) requires detection of an enlarged left atrium or the presence of parameters of diastolic dysfunction. Elevation of cardiac biomarkers seems to be due to myocardial injury and the compensatory mechanisms of the body against this injury (hormone and inflammatory response and repair mechanisms). Elevation of markers of cardiac damage (troponins and natriuretic peptides) have been shown to be useful both in the diagnosis of acute HF and in prediction of outcome. MMP-2 could be useful in the diagnosis of HF/pEF. In addition to biomarkers with diagnostic value, other biomarkers are helpful in prognosis in the acute phase of HF, such as biomarkers of renal failure (eGFR, cystatin and urea), inflammation (cytokines and CRP), and the cell regeneration marker, galectin-3. A promising idea that is under investigation is the use of panels of biomarkers, which could allow more accurate diagnosis and prognosis of acute HF. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  17. Detrital floc and surface soil microbial biomarker responses to active management of the nutrient impacted Florida everglades.

    Science.gov (United States)

    Bellinger, Brent J; Hagerthey, Scot E; Newman, Susan; Cook, Mark I

    2012-11-01

    Alterations in microbial community composition, biomass, and function in the Florida Everglades impacted by cultural eutrophication reflect a new physicochemical environment associated with monotypic stands of Typha domingensis. Phospholipid fatty acid (PLFA) biomarkers were used to quantify microbial responses in detritus and surface soils in an active management experiment in the eutrophic Everglades. Creation of open plots through removal of Typha altered the physical and chemical characteristics of the region. Mass of PLFA biomarkers increased in open plots, but magnitude of changes differed among microbial groups. Biomarkers indicative of Gram-negative bacteria and fungi were significantly greater in open plots, reflective of the improved oxic environment. Reduction in the proportion of cyclopropyl lipids and the ratio of Gram-positive to Gram-negative bacteria in open plots further suggested an altered oxygen environment and conditions for the rapid growth of Gram-negative bacteria. Changes in the PLFA composition were greater in floc relative to soils, reflective of rapid inputs of new organic matter and direct interaction with the new physicochemical environment. Created open plot microbial mass and composition were significantly different from the oligotrophic Everglades due to differences in phosphorus availability, plant community structure, and a shift to organic peat from marl-peat soils. PLFA analysis also captured the dynamic inter-annual hydrologic variability, notably in PLFA concentrations, but to a lesser degree content. Recently, use of concentration has been advocated over content in studies of soil biogeochemistry, and our results highlight the differential response of these two quantitative measures to similar pressures.

  18. Biomarkers of Therapeutic Response in the IL-23 Pathway in Inflammatory Bowel Disease

    OpenAIRE

    Cayatte, Corinne; Joyce-Shaikh, Barbara; Vega, Felix; Boniface, Katia; Grein, Jeffrey; Murphy, Erin; Blumenschein, Wendy M; Chen, Smiley; Malinao, Maria-Christina; Basham, Beth; Pierce, Robert H; Bowman, Edward P; McKenzie, Brent S; Elson, Charles O; Faubion, William A

    2012-01-01

    OBJECTIVES: Interleukin-23 (IL-23) has emerged as a new therapeutic target for the treatment of inflammatory bowel disease (IBD). As biomarkers of disease state and treatment efficacy are becoming increasingly important in drug development, we sought to identify efficacy biomarkers for anti-IL-23 therapy in Crohn's disease (CD). METHODS: Candidate IL-23 biomarkers, downstream of IL-23 signaling, were identified using shotgun proteomic analysis of feces and colon lavages obtained from a short-...

  19. CBD: a biomarker database for colorectal cancer.

    Science.gov (United States)

    Zhang, Xueli; Sun, Xiao-Feng; Cao, Yang; Ye, Benchen; Peng, Qiliang; Liu, Xingyun; Shen, Bairong; Zhang, Hong

    2018-01-01

    Colorectal cancer (CRC) biomarker database (CBD) was established based on 870 identified CRC biomarkers and their relevant information from 1115 original articles in PubMed published from 1986 to 2017. In this version of the CBD, CRC biomarker data were collected, sorted, displayed and analysed. The CBD with the credible contents as a powerful and time-saving tool provide more comprehensive and accurate information for further CRC biomarker research. The CBD was constructed under MySQL server. HTML, PHP and JavaScript languages have been used to implement the web interface. The Apache was selected as HTTP server. All of these web operations were implemented under the Windows system. The CBD could provide to users the multiple individual biomarker information and categorized into the biological category, source and application of biomarkers; the experiment methods, results, authors and publication resources; the research region, the average age of cohort, gender, race, the number of tumours, tumour location and stage. We only collect data from the articles with clear and credible results to prove the biomarkers are useful in the diagnosis, treatment or prognosis of CRC. The CBD can also provide a professional platform to researchers who are interested in CRC research to communicate, exchange their research ideas and further design high-quality research in CRC. They can submit their new findings to our database via the submission page and communicate with us in the CBD.Database URL: http://sysbio.suda.edu.cn/CBD/.

  20. Semiautomated volumetric response evaluation as an imaging biomarker in superior sulcus tumors

    International Nuclear Information System (INIS)

    Vos, C.G.; Paul, M.A.; Dahele, M.; Soernsen de Koste, J.R. van; Senan, S.; Bahce, I.; Smit, E.F.; Thunnissen, E.; Hartemink, K.J.

    2014-01-01

    Volumetric response to therapy has been suggested as a biomarker for patient-centered outcomes. The primary aim of this pilot study was to investigate whether the volumetric response to induction chemoradiotherapy was associated with pathological complete response (pCR) or survival in patients with superior sulcus tumors managed with trimodality therapy. The secondary aim was to evaluate a semiautomated method for serial volume assessment. In this retrospective study, treatment outcomes were obtained from a departmental database. The tumor was delineated on the computed tomography (CT) scan used for radiotherapy planning, which was typically performed during the first cycle of chemotherapy. These contours were transferred to the post-chemoradiotherapy diagnostic CT scan using deformable image registration (DIR) with/without manual editing. CT scans from 30 eligible patients were analyzed. Median follow-up was 51 months. Neither absolute nor relative reduction in tumor volume following chemoradiotherapy correlated with pCR or 2-year survival. The tumor volumes determined by DIR alone and DIR + manual editing correlated to a high degree (R 2 = 0.99, P < 0.01). Volumetric response to induction chemoradiotherapy was not correlated with pCR or survival in patients with superior sulcus tumors managed with trimodality therapy. DIR-based contour propagation merits further evaluation as a tool for serial volumetric assessment. (orig.)

  1. Novel biomarker-based model for the prediction of sorafenib response and overall survival in advanced hepatocellular carcinoma: a prospective cohort study.

    Science.gov (United States)

    Kim, Hwi Young; Lee, Dong Hyeon; Lee, Jeong-Hoon; Cho, Young Youn; Cho, Eun Ju; Yu, Su Jong; Kim, Yoon Jun; Yoon, Jung-Hwan

    2018-03-20

    Prediction of the outcome of sorafenib therapy using biomarkers is an unmet clinical need in patients with advanced hepatocellular carcinoma (HCC). The aim was to develop and validate a biomarker-based model for predicting sorafenib response and overall survival (OS). This prospective cohort study included 124 consecutive HCC patients (44 with disease control, 80 with progression) with Child-Pugh class A liver function, who received sorafenib. Potential serum biomarkers (namely, hepatocyte growth factor [HGF], fibroblast growth factor [FGF], vascular endothelial growth factor receptor-1, CD117, and angiopoietin-2) were tested. After identifying independent predictors of tumor response, a risk scoring system for predicting OS was developed and 3-fold internal validation was conducted. A risk scoring system was developed with six covariates: etiology, platelet count, Barcelona Clinic Liver Cancer stage, protein induced by vitamin K absence-II, HGF, and FGF. When patients were stratified into low-risk (score ≤ 5), intermediate-risk (score 6), and high-risk (score ≥ 7) groups, the model provided good discriminant functions on tumor response (concordance [c]-index, 0.884) and 12-month survival (area under the curve [AUC], 0.825). The median OS was 19.0, 11.2, and 6.1 months in the low-, intermediate-, and high-risk group, respectively (P functions on tumor response (c-index, 0.825) and 12-month survival (AUC, 0.803), and good calibration functions (all P > 0.05 between expected and observed values). This new model including serum FGF and HGF showed good performance in predicting the response to sorafenib and survival in patients with advanced HCC.

  2. Biomarker responsiveness in different tissues of caged Ruditapes philippinarum and its use within an integrated sediment quality assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Gomez, Julia, E-mail: julia.ramosgomez@uca.es [UNITWIN/UNESCO/WiCoP, Departamento de Quimica Fisica, Universidad de Cadiz, Facultad de Ciencias del Mar y Ambientales, Campus Universitario de Puerto Real, 11510 Puerto Real, Cadiz (Spain); Coz, Alberto; Viguri, Javier R. [Dpto. Ingenieria Quimica y Quimica Inorganica, ETSIIT, Universidad de Cantabria, Avda. los Castros, s/n 39005 Santander (Spain); Luque, Angel [Departamento de Biologia, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Gran Canaria, The Canary Islands (Spain); Martin-Diaz, M. Laura [UNITWIN/UNESCO/WiCoP, Departamento de Quimica Fisica, Universidad de Cadiz, Facultad de Ciencias del Mar y Ambientales, Campus Universitario de Puerto Real, 11510 Puerto Real, Cadiz (Spain); Centro Andaluz de Ciencia y Tecnologia Marinas (CACYTMAR), Universidad de Cadiz, Campus Universitario de Puerto Real, 11510 Puerto Real, Cadiz (Spain); DelValls, T. Angel [UNITWIN/UNESCO/WiCoP, Departamento de Quimica Fisica, Universidad de Cadiz, Facultad de Ciencias del Mar y Ambientales, Campus Universitario de Puerto Real, 11510 Puerto Real, Cadiz (Spain)

    2011-07-15

    Biomarkers comprising activities of biotransformation enzymes (ethoxyresorufin-O-deethylase -EROD-, dibenzylfluorescein dealkylase -DBF-, glutathione S-transferase -GST), antioxidant enzymes (glutathione reductase -GR- and glutathione peroxidase -GPX), lipid peroxidation -LPO- and DNA strand breaks were analyzed in the clam Ruditapes philippinarum caged at Cadiz Bay, Santander Bay and Las Palmas de Gran Canaria (LPGC) Port (Spain). Sediments were characterized. Digestive gland was the most sensitive tissue to sediment contamination. In Cadiz Bay, changes in LPO regarding day 0 were related with metals. In LPGC Port, DBF, EROD, and GST activity responses suggested the presence of undetermined contaminants which might have led to DNA damage. In Santander Bay, PAHs were related with EROD activity, organic and metal contamination was found to be associated with GR and GST activities and DNA damage presented significant (p < 0.05) induction. R. philippinarum was sensitive to sediment contamination at biochemical level. Biomarkers allowed chemical exposure and sediment quality assessment. - Highlights: > Ruditapes philippinarum is sensitive to sediment contamination at biochemical level. > Digestive gland biomarkers showed the best correlations with sediment contaminants. > Presence of potentially toxic chemicals not analyzed in this research was unmasked. > Multivariate analysis allowed the identification of toxic xenobiotic and possible sources. > Inner area of Santander Bay presented the highest sediment toxicity. - Integration of Ruditapes philippinarum biomarker results and sediment chemistry distinguished xenobiotic exposure and sediment toxicity in coastal areas of Spain.

  3. Seasonal variation in biomarker responses of Donax trunculus from the Gulf of Annaba (Algeria): Implication of metal accumulation in sediments

    Science.gov (United States)

    Amira, Akila; Merad, Isma; Almeida, C. Marisa R.; Guimarães, Laura; Soltani, Nourredine

    2018-05-01

    The aim of the present study was to test biomarker responses in an edible mollusk, Donax trunculus L. (Mollusca, Bivalvia) associated with environmental pollution in the Gulf of Annaba (northeastern Algeria). The biomarkers selected were glutathione S-transferase (GST), acetylcholinesterase (AChE) and metallothioneins (MTs). Samples were collected seasonally (September 2014, and January, April and July 2015) from two sites located over the Gulf of Annaba: El Battah and Sidi Salem. The results obtained reveal that autumn and winter were the two seasons that show an increase in GST activity, an inhibition of AChE activity and a high rate of MT. In addition, a decrease in AChE activity, an increase in both GST activity and MT levels in D. Trunculus collected from Sidi Salem in comparison with those of El Battah were observed. The biomarker responses at the Sidi Salem site reflect the presence of certain pro-oxidative compounds such as metals (Cd, Cu, Pb, Zn, Mn and Fe) determined in sediments in winter (January) 2015. Moreover, metal concentrations, except Fe, were higher at Sidi Salem than at El Battah. Overall, the Gulf of Annaba remains contaminated by heavy metal. However, this metallic contamination is relatively low and the risks for local population via this edible species were also low.

  4. Towards the comparative ecotoxicology of bees: the response-response relationship

    Directory of Open Access Journals (Sweden)

    Cresswell, James E.

    2012-10-01

    Full Text Available Background: When an ecological system is exposed to an anthropogenic toxin, each species has an idiosyncratic sensitivity, but it is reasonable to expect some generality in response, especially among related species such as bees. If two species are similarly sensitive to a toxin their dose-response relationships will be similar. We propose a method to facilitate comparison between dose-response relationships, namely the response-response relationship, which can be applied to any biomarkers whose responses to the same pollutant are measured across a similar range of doses. We apply the method to bumble bees (Bombus terrestris and honey bees (Apis mellifera exposed to a dietary pesticide, imidacloprid, and we investigate both lethal and sublethal biomarkers.Results: We found cross-species similarity in dose-dependent responses, but only in certain sublethal biomarkers. In honey bees, sublethal biomarkers were more sensitive than mortality. In bumble bees, fecundity was the most sensitive biomarker.Conclusion: Our results provisionally suggest the existence of cross-species generalities. The greater sensitivity of sublethal biomarkers than mortality suggests that testing protocols which are overly focussed on mortality may underestimate the ecological impacts of toxic pollutants.

  5. Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge

    Directory of Open Access Journals (Sweden)

    Koichi Fujie

    2012-03-01

    Full Text Available Supercritical fluid extraction (SFE was used in the analysis of bacterial respiratory quinone (RQ, bacterial phospholipid fatty acid (PLFA, and archaeal phospholipid ether lipid (PLEL from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC. Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS. The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile.

  6. Are narcissists hardy or vulnerable? The role of narcissism in the production of stress-related biomarkers in response to emotional distress.

    Science.gov (United States)

    Cheng, Joey T; Tracy, Jessica L; Miller, Gregory E

    2013-12-01

    Does narcissism provide a source of hardiness or vulnerability in the face of adversity? The present research addressed this question by testing whether narcissism is associated with increased physiological reactivity to emotional distress, among women. Drawing on the "fragile-ego" account, we predicted that narcissists would show a heightened physiological stress profile in response to everyday frustrations. Results supported this prediction; across a 3-day period, highly narcissistic individuals showed elevated output of 2 biomarkers of stress--cortisol and alpha--amylase-to the extent that they experienced negative emotions. In contrast, among those low in narcissism there was no association between these biomarkers and emotions. These findings suggest that narcissists' stress-response systems are particularly sensitive to everyday negative emotions, consistent with the notion that narcissism comes with physiological costs.

  7. Multiple Response Regression for Gaussian Mixture Models with Known Labels.

    Science.gov (United States)

    Lee, Wonyul; Du, Ying; Sun, Wei; Hayes, D Neil; Liu, Yufeng

    2012-12-01

    Multiple response regression is a useful regression technique to model multiple response variables using the same set of predictor variables. Most existing methods for multiple response regression are designed for modeling homogeneous data. In many applications, however, one may have heterogeneous data where the samples are divided into multiple groups. Our motivating example is a cancer dataset where the samples belong to multiple cancer subtypes. In this paper, we consider modeling the data coming from a mixture of several Gaussian distributions with known group labels. A naive approach is to split the data into several groups according to the labels and model each group separately. Although it is simple, this approach ignores potential common structures across different groups. We propose new penalized methods to model all groups jointly in which the common and unique structures can be identified. The proposed methods estimate the regression coefficient matrix, as well as the conditional inverse covariance matrix of response variables. Asymptotic properties of the proposed methods are explored. Through numerical examples, we demonstrate that both estimation and prediction can be improved by modeling all groups jointly using the proposed methods. An application to a glioblastoma cancer dataset reveals some interesting common and unique gene relationships across different cancer subtypes.

  8. Novel biomarkers with potential for cardiovascular risk reclassification.

    Science.gov (United States)

    Mallikethi-Reddy, Sagar; Briasoulis, Alexandros; Akintoye, Emmanuel; Afonso, Luis

    Precise estimation of the absolute risk for CVD events is necessary when making treatment recommendations for patients. A number of multivariate risk models have been developed for estimation of cardiovascular risk in asymptomatic individuals based upon assessment of multiple variables. Due to the inherent limitation of risk models, several novel risk markers including serum biomarkers have been studied in an attempt to improve the cardiovascular risk prediction above and beyond the established risk factors. In this review, we discuss the role of underappreciated biomarkers such as red cell distribution width (RDW), cystatin C (cysC), and homocysteine (Hcy) as well as imaging biomarkers in cardiovascular risk reclassification, and highlight their utility as additional source of information in patients with intermediate risk.

  9. Octocorals in a changing environment: Seasonal response of stress biomarkers in natural populations of Veretillum cynomorium

    Science.gov (United States)

    Madeira, Carolina; Madeira, Diana; Vinagre, Catarina; Diniz, Mário

    2015-09-01

    Current concerns about climate change emphasize the need for an accurate monitoring of physiological conditions in wild populations. Therefore, the aims of this work were to a) assess the response of the octocoral Veretillum cynomorium to thermal variation in natural populations during low tide, by quantifying several biochemical indicators of thermal and oxidative stress and b) evaluate the effect of seasonality in the results and the adequacy of the use of biochemical indicators of stress in field monitoring studies in octocorals. Sampling took place during spring (April) and summer (June). Heat shock protein (Hsp70) and ubiquitin (Ub) content, enzyme activities - superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and lipid peroxidation (LPO) were assessed in rachis and peduncle tissues separately. The results showed significant seasonal fluctuations in the set of biomarkers tested. Differences were detected between spring and summer, with significant decreases in biomarker levels from April to June being a major observed trend. These results suggest that V. cynomorium is thermo-tolerant during summer low tide conditions. Seasonal variation seems to reflect a metabolic suppression strategy and/or may also be related to seasonal changes in food availability and reproductive status. Differences in activity between tissue types were also found significant for GST, LPO and Ub. Biomarker levels were correlated with total protein concentration, but not with wet body weight of the specimens. This study suggests that season influences the expression of biomarkers and must be taken into consideration in the preliminary stages of sampling design for climate change biomonitoring studies. In addition, the results suggest that this octocoral species is likely to survive in future challenging thermal conditions.

  10. Biomarkers in spinal cord compression Ethics and perspectives

    Directory of Open Access Journals (Sweden)

    Iencean A.St.

    2016-09-01

    Full Text Available The phosphorylated form of the high-molecular-weight neurofilament subunit NF-H (pNF-H in serum or in cerebro-spinal fluid (CSF is a specific lesional biomarker for spinal cord injury. The lesional biomarkers and the reaction biomarkers are both presented after several hours post-injury. The specific predictive patterns of lesional biomarkers could be used to aid clinicians with making a diagnosis and establishing a prognosis, and evaluating therapeutic interventions. Diagnosis, prognosis, and treatment guidance based on biomarker used as a predictive indicator can determine ethical difficulties by differentiated therapies in patients with spinal cord compression. At this point based on studies until today we cannot take a decision based on biomarker limiting the treatment of neurological recovery in patients with complete spinal cord injury because we do not know the complexity of the biological response to spinal cord compression.

  11. Detection of biomarker MNK expression semi quantitatively and quantitatively in cervical cancer response before chemoradiotherapy

    International Nuclear Information System (INIS)

    Teja Kisnanto; Elisabeth Novianti Simatupang; Budiningsih Siregar; Mellova Amir; Setiawan Soetopo; Irwan Ramli; Tjahya Kurjana; Andrijono; Bethy S Hernowo; Maringan DL Tobing; Devita Tetriana

    2016-01-01

    Cervical cancer is a cancer that common in women caused by HPV (Human Papilova Virus). The purpose of this study is to determine the relationship MNK protein expression (Mitogen-Activated Protein Kinase) in patients with cervical cancer before chemoradiotherapy treatment. Sample used was the preparation of microscopic cancer tissue biopsies from patients with advanced cervical cancer (IIB-IIIB) is 20 samples. The method used is immunohistochemistry using MNK biomarkers in cervical cancer tissue biopsies. MNK positive protein expression marked with dark brown color that is contained in the cell nucleus. Chemoradiotherapy response obtained from RSUPN Dr. Cipto Mangunkusumo and Hasan Sadikin Hospital in Bandung. The results show the value of the IRS (Immuno Reactive Score) MNK protein in response to chemoradiotherapy group either higher than the response to chemoradiotherapy group was bad and did not find any relationship IRS MNK protein with chemoradiotherapy response. While the relationship MNK expression responses show a correlation chemoradiotherapy group differences in chemoradiotherapy response between MNK expression negative and MNK expression positive. (author)

  12. Calling Biomarkers in Milk Using a Protein Microarray on Your Smartphone

    Science.gov (United States)

    Ludwig, Susann K. J.; Tokarski, Christian; Lang, Stefan N.; van Ginkel, Leendert A.; Zhu, Hongying; Ozcan, Aydogan; Nielen, Michel W. F.

    2015-01-01

    Here we present the concept of a protein microarray-based fluorescence immunoassay for multiple biomarker detection in milk extracts by an ordinary smartphone. A multiplex immunoassay was designed on a microarray chip, having built-in positive and negative quality controls. After the immunoassay procedure, the 48 microspots were labelled with Quantum Dots (QD) depending on the protein biomarker levels in the sample. QD-fluorescence was subsequently detected by the smartphone camera under UV light excitation from LEDs embedded in a simple 3D-printed opto-mechanical smartphone attachment. The somewhat aberrant images obtained under such conditions, were corrected by newly developed Android-based software on the same smartphone, and protein biomarker profiles were calculated. The indirect detection of recombinant bovine somatotropin (rbST) in milk extracts based on altered biomarker profile of anti-rbST antibodies was selected as a real-life challenge. RbST-treated and untreated cows clearly showed reproducible treatment-dependent biomarker profiles in milk, in excellent agreement with results from a flow cytometer reference method. In a pilot experiment, anti-rbST antibody detection was multiplexed with the detection of another rbST-dependent biomarker, insulin-like growth factor 1 (IGF-1). Milk extract IGF-1 levels were found to be increased after rbST treatment and correlated with the results obtained from the reference method. These data clearly demonstrate the potential of the portable protein microarray concept towards simultaneous detection of multiple biomarkers. We envisage broad application of this ‘protein microarray on a smartphone’-concept for on-site testing, e.g., in food safety, environment and health monitoring. PMID:26308444

  13. Calling Biomarkers in Milk Using a Protein Microarray on Your Smartphone.

    Directory of Open Access Journals (Sweden)

    Susann K J Ludwig

    Full Text Available Here we present the concept of a protein microarray-based fluorescence immunoassay for multiple biomarker detection in milk extracts by an ordinary smartphone. A multiplex immunoassay was designed on a microarray chip, having built-in positive and negative quality controls. After the immunoassay procedure, the 48 microspots were labelled with Quantum Dots (QD depending on the protein biomarker levels in the sample. QD-fluorescence was subsequently detected by the smartphone camera under UV light excitation from LEDs embedded in a simple 3D-printed opto-mechanical smartphone attachment. The somewhat aberrant images obtained under such conditions, were corrected by newly developed Android-based software on the same smartphone, and protein biomarker profiles were calculated. The indirect detection of recombinant bovine somatotropin (rbST in milk extracts based on altered biomarker profile of anti-rbST antibodies was selected as a real-life challenge. RbST-treated and untreated cows clearly showed reproducible treatment-dependent biomarker profiles in milk, in excellent agreement with results from a flow cytometer reference method. In a pilot experiment, anti-rbST antibody detection was multiplexed with the detection of another rbST-dependent biomarker, insulin-like growth factor 1 (IGF-1. Milk extract IGF-1 levels were found to be increased after rbST treatment and correlated with the results obtained from the reference method. These data clearly demonstrate the potential of the portable protein microarray concept towards simultaneous detection of multiple biomarkers. We envisage broad application of this 'protein microarray on a smartphone'-concept for on-site testing, e.g., in food safety, environment and health monitoring.

  14. Cerebrospinal fluid chitinase-3-like 2 and chitotriosidase are potential prognostic biomarkers in early multiple sclerosis

    DEFF Research Database (Denmark)

    Møllgaard, M; Degn, M; Sellebjerg, F

    2016-01-01

    : In a prospective cohort of 73 patients with ON as a first demyelinating episode and 26 age-matched healthy controls levels of CHI3L2 and chitotriosidase in CSF were explored by enzyme-linked immunosorbent assay. Associations with magnetic resonance imaging white matter lesions, CSF oligoclonal bands......BACKGROUND AND PURPOSE: The role of chitinases and chitinase-like proteins in multiple sclerosis (MS) is currently unknown; however, cerebrospinal fluid (CSF) levels of chitinase 3-like 1 (CHI3L1) predict prognosis in early MS. Whether this applies to other chitinases and chitinase-like proteins...... is yet to be established. Our objective was to investigate the potential of chitinase 3-like 2 (CHI3L2) and chitotriosidase as prognostic biomarkers in optic neuritis (ON) as the first demyelinating episode and to evaluate the ability of CHI3L2 to predict long-term MS risk and disability. METHODS...

  15. Biomarkers that Discriminate Multiple Myeloma Patients with or without Skeletal Involvement Detected Using SELDI-TOF Mass Spectrometry and Statistical and Machine Learning Tools

    Directory of Open Access Journals (Sweden)

    Sudeepa Bhattacharyya

    2006-01-01

    Full Text Available Multiple Myeloma (MM is a severely debilitating neoplastic disease of B cell origin, with the primary source of morbidity and mortality associated with unrestrained bone destruction. Surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS was used to screen for potential biomarkers indicative of skeletal involvement in patients with MM. Serum samples from 48 MM patients, 24 with more than three bone lesions and 24 with no evidence of bone lesions were fractionated and analyzed in duplicate using copper ion loaded immobilized metal affinity SELDI chip arrays. The spectra obtained were compiled, normalized, and mass peaks with mass-to-charge ratios (m/z between 2000 and 20,000 Da identified. Peak information from all fractions was combined together and analyzed using univariate statistics, as well as a linear, partial least squares discriminant analysis (PLS-DA, and a non-linear, random forest (RF, classification algorithm. The PLS-DA model resulted in prediction accuracy between 96–100%, while the RF model was able to achieve a specificity and sensitivity of 87.5% each. Both models as well as multiple comparison adjusted univariate analysis identified a set of four peaks that were the most discriminating between the two groups of patients and hold promise as potential biomarkers for future diagnostic and/or therapeutic purposes.

  16. Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Maass, Anne [Univ. of California, Berkeley, CA (United States); German Center for Neurodegenerative Diseases, Magdeburg (Germany); Landau, Susan [Univ. of California, Berkeley, CA (United States); Baker, Suzanne L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Horng, Andy [Univ. of California, Berkeley, CA (United States); Lockhart, Samuel N. [Univ. of California, Berkeley, CA (United States); La Joie, Renaud [Univ. of California, San Francisco, CA (United States); Rabinovici, Gil D. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, San Francisco, CA (United States); Jagust, William J. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, San Francisco, CA (United States)

    2017-06-03

    The recent development of tau-specific positron emission tomography (PET) tracers enables in vivo quantification of regional tau pathology, one of the key lesions in Alzheimer's disease (AD). Tau PET imaging may become a useful biomarker for clinical diagnosis and tracking of disease progression but there is no consensus yet on how tau PET signal is best quantified. The goal of the current paper was to evaluate multiple whole-brain and region-specific approaches to detect clinically relevant tau PET signal. Two independent cohorts of cognitively normal adults and amyloid-positive (Aβ+) patients with mild cognitive impairment (MCI) or AD-dementia underwent [18F]AV-1451 PET. Methods for tau tracer quantification included: (i) in vivo Braak staging, (ii) regional uptake in Braak composite regions, (iii) several whole-brain measures of tracer uptake, (iv) regional uptake in AD-vulnerable voxels, and (v) uptake in a priori defined regions. Receiver operating curves characterized accuracy in distinguishing Aβ- controls from AD/MCI patients and yielded tau positivity cutoffs. Clinical relevance of tau PET measures was assessed by regressions against cognition and MR imaging measures. Key tracer uptake patterns were identified by a factor analysis and voxel-wise contrasts. Braak staging, global and region-specific tau measures yielded similar diagnostic accuracies, which differed between cohorts. While all tau measures were related to amyloid and global cognition, memory and hippocampal/entorhinal volume/thickness were associated with regional tracer retention in the medial temporal lobe. Key regions of tau accumulation included medial temporal and inferior/middle temporal regions, retrosplenial cortex, and banks of the superior temporal sulcus. Finally, our data indicate that whole-brain tau PET measures might be adequate biomarkers to detect AD-related tau pathology. However, regional measures covering AD-vulnerable regions may

  17. Serotonin Metabolites in the Cerebrospinal Fluid in the Sudden Infant Death Syndrome: In Search of a Biomarker of Risk

    Science.gov (United States)

    Rognum, Ingvar J.; Tran, Hoa; Haas, Elisabeth A.; Hyland, Keith; Paterson, David S.; Haynes, Robin L.; Broadbelt, Kevin G.; Harty, Brian J.; Mena, Othon; Krous, Henry F.; Kinney, Hannah C.

    2015-01-01

    Clinical biomarkers are urgently needed in the sudden infant death syndrome (SIDS) to identify living infants at risk because it because it occurs without occurs without clinical warning. Previously, we reported multiple serotonergic (5-HT) abnormalities in nuclei of the medulla oblongata that help mediate protective responses to homeostatic stressors. Here we test the hypothesis that 5-HT-related measures are abnormal in the cerebrospinal fluid (CSF) of SIDS infants compared to autopsy controls, as a first step towards their assessment as diagnostic biomarkers of medullary pathology. Levels of CSF 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA), the degradative products of 5-HT and dopamine, respectively, were measured by high performance liquid chromatography in 57 SIDS and 29 non-SIDS autopsy cases. Tryptophan (Trp) and tyrosine (Tyr), the substrates of 5-HT and dopamine, respectively, were also measured. There were no significant differences in 5-HIAA, Trp, HVA, or Tyr levels between the SIDS and non-SIDS groups. These data preclude use of 5-HIAA, HVA, Trp or Tyr measurements as CSF biomarkers of 5-HT medullary pathology in infants at risk. They provide, however, important information about monoaminergic measurements in human CSF at autopsy and their developmental profile in infancy that is applicable to multiple pediatric disorders beyond SIDS. PMID:24423636

  18. Assessment of biological effects of pollutants in a hyper eutrophic tropical water body, Lake Beira, Sri Lanka using multiple biomarker responses of resident fish, Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Pathiratne, Asoka; Pathiratne, K A S; De Seram, P K C

    2010-08-01

    Biomarkers measured at the molecular and cellular level in fish have been proposed as sensitive "early warning" tools for biological effect measurements in environmental quality assessments. Lake Beira is a hypertrophic urban water body with a complex mixture of pollutants including polycyclic aromatic hydrocarbons (PAHs) and Microcystins. In this study, a suite of biomarker responses viz. biliary fluorescent aromatic compounds (FACs), hepatic ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST), brain and muscle cholinesterases (ChE), serum sorbitol dehydrogenase (SDH), and liver histology of Oreochromis niloticus, the dominant fish inhabiting this tropical Lake were evaluated to assess the pollution exposure and biological effects. Some fish sampled in the dry periods demonstrated prominent structural abnormalities in the liver and concomitant increase in serum SDH and reduction in hepatic GST activities in comparison to the control fish and the fish sampled in the rainy periods. The resident fish with apparently normal liver demonstrated induction of hepatic EROD and GST activities and increase in biliary FACs irrespective of the sampling period indicating bioavailability of PAHs. Muscle ChE activities of the resident fish were depressed significantly indicating exposure to anticholinesterase substances. The results revealed that fish populations residing in this Lake is under threat due to the pollution stress. Hepatic abnormalities in the fish may be mainly associated with the pollution stress due to recurrent exposure to PAHs and toxigenic Microcystis blooms in the Lake.

  19. Biomarker responsiveness in different tissues of caged Ruditapes philippinarum and its use within an integrated sediment quality assessment

    International Nuclear Information System (INIS)

    Ramos-Gomez, Julia; Coz, Alberto; Viguri, Javier R.; Luque, Angel; Martin-Diaz, M. Laura; DelValls, T. Angel

    2011-01-01

    Biomarkers comprising activities of biotransformation enzymes (ethoxyresorufin-O-deethylase -EROD-, dibenzylfluorescein dealkylase -DBF-, glutathione S-transferase -GST), antioxidant enzymes (glutathione reductase -GR- and glutathione peroxidase -GPX), lipid peroxidation -LPO- and DNA strand breaks were analyzed in the clam Ruditapes philippinarum caged at Cadiz Bay, Santander Bay and Las Palmas de Gran Canaria (LPGC) Port (Spain). Sediments were characterized. Digestive gland was the most sensitive tissue to sediment contamination. In Cadiz Bay, changes in LPO regarding day 0 were related with metals. In LPGC Port, DBF, EROD, and GST activity responses suggested the presence of undetermined contaminants which might have led to DNA damage. In Santander Bay, PAHs were related with EROD activity, organic and metal contamination was found to be associated with GR and GST activities and DNA damage presented significant (p < 0.05) induction. R. philippinarum was sensitive to sediment contamination at biochemical level. Biomarkers allowed chemical exposure and sediment quality assessment. - Highlights: → Ruditapes philippinarum is sensitive to sediment contamination at biochemical level. → Digestive gland biomarkers showed the best correlations with sediment contaminants. → Presence of potentially toxic chemicals not analyzed in this research was unmasked. → Multivariate analysis allowed the identification of toxic xenobiotic and possible sources. → Inner area of Santander Bay presented the highest sediment toxicity. - Integration of Ruditapes philippinarum biomarker results and sediment chemistry distinguished xenobiotic exposure and sediment toxicity in coastal areas of Spain.

  20. Biomarkers in prostate cancer - Current clinical utility and future perspectives.

    Science.gov (United States)

    Kretschmer, Alexander; Tilki, Derya

    2017-12-01

    Current tendencies in the treatment course of prostate cancer patients increase the need for reliable biomarkers that help in decision-making in a challenging clinical setting. Within the last decade, several novel biomarkers have been introduced. In the following comprehensive review article, we focus on diagnostic (PHI ® , 4K score, SelectMDx ® , ConfirmMDx ® , PCA3, MiPS, ExoDX ® , mpMRI) and prognostic (OncotypeDX GPS ® , Prolaris ® , ProMark ® , DNA-ploidy, Decipher ® ) biomarkers that are in widespread clinical use and are supported by evidence. Hereby, we focus on multiple clinical situations in which innovative biomarkers may guide decision-making in prostate cancer therapy. In addition, we describe novel liquid biopsy approaches (circulating tumor cells, cell-free DNA) that have been described as predictive biomarkers in metastatic castration-resistant prostate cancer and might support an individual patient-centred oncological approach in the nearer future. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A brief review and evaluation of earthworm biomarkers in soil pollution assessment.

    Science.gov (United States)

    Shi, Zhiming; Tang, Zhiwen; Wang, Congying

    2017-05-01

    Earthworm biomarker response to pollutants has been widely investigated in the assessment of soil pollution. However, whether and how the earthworm biomarker-approach can be actually applied to soil pollution assessment is still a controversial issue. This review is concerned about the following points: 1. Despite much debate, biomarker is valuable to ecotoxicology and biomarker approach has been properly used in different fields. Earthworm biomarker might be used in different scenarios such as large-scale soil pollution survey and soil pollution risk assessment. Compared with physicochemical analysis, they can provide more comprehensive and straightforward information about soil pollution at low cost. 2. Although many earthworm species from different ecological categories have been tested, Eisenia fetida/andrei is commonly used. Many earthworm biomarkers have been screened from the molecular to the individual level, while only a few biomarkers, such as avoidance behavior and lysosomal membrane stability, have been focused on. Other aspects of the experimental design were critically reviewed. 3. More studies should focus on determining the reliability of various earthworm biomarkers in soil pollution assessment in future research. Besides, establishing a database of a basal level of each biomarker, exploring biomarker response in different region/section/part of earthworm, and other issues are also proposed. 4. A set of research guideline for earthworm biomarker studies was recommended, and the suitability of several earthworm biomarkers was briefly evaluated with respect to their application in soil pollution assessment. This review will help to promote further studies and practical application of earthworm biomarker in soil pollution assessment.

  2. Application of biomarkers to assess the condition of European Marine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hagger, Josephine A., E-mail: j.hagger@exeter.ac.u [School of Biosciences, University of Exeter, Prince of Wales Road, Exeter, Devon EX4 4PS (United Kingdom); Galloway, Tamara S. [School of Biosciences, University of Exeter, Prince of Wales Road, Exeter, Devon EX4 4PS (United Kingdom); Langston, William J. [Marine Biological Association, Citadel Hill, Plymouth PL1 2PB, Devon (United Kingdom); Jones, Malcolm B. [School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, Devon (United Kingdom)

    2009-07-15

    A series of European Marine Sites has been designated as Special Areas of Conservation (SAC) in England. The aim of this study was to develop a practical methodology to assess the condition of SACs by applying a suite of biomarkers. Biomarkers were applied to the blue mussel Mytilus edulis and the shore crab Carcinus maenas from the Fal and Helford SAC (Cornwall). Individual biomarkers provided useful diagnostic information on the activity of certain classes of contaminants and an integrated Biomarker Response Index (BRI) was used to achieve a more holistic understanding of the condition of the SAC. The BRI indicated that the general health of both organisms was impacted in the upper part of the SAC (Fal Estuary) which correlated well with known chemical hotspots and sources of contamination. The BRI allows a pragmatic way to prioritise SAC sites that may require further investigative studies. - A suite of biomarkers was successfully used to create a Biomarker Response Index to assess the health of aquatic organisms from European Marine Sites.

  3. Application of biomarkers to assess the condition of European Marine Sites

    International Nuclear Information System (INIS)

    Hagger, Josephine A.; Galloway, Tamara S.; Langston, William J.; Jones, Malcolm B.

    2009-01-01

    A series of European Marine Sites has been designated as Special Areas of Conservation (SAC) in England. The aim of this study was to develop a practical methodology to assess the condition of SACs by applying a suite of biomarkers. Biomarkers were applied to the blue mussel Mytilus edulis and the shore crab Carcinus maenas from the Fal and Helford SAC (Cornwall). Individual biomarkers provided useful diagnostic information on the activity of certain classes of contaminants and an integrated Biomarker Response Index (BRI) was used to achieve a more holistic understanding of the condition of the SAC. The BRI indicated that the general health of both organisms was impacted in the upper part of the SAC (Fal Estuary) which correlated well with known chemical hotspots and sources of contamination. The BRI allows a pragmatic way to prioritise SAC sites that may require further investigative studies. - A suite of biomarkers was successfully used to create a Biomarker Response Index to assess the health of aquatic organisms from European Marine Sites.

  4. Fusing Data Mining, Machine Learning and Traditional Statistics to Detect Biomarkers Associated with Depression.

    Science.gov (United States)

    Dipnall, Joanna F; Pasco, Julie A; Berk, Michael; Williams, Lana J; Dodd, Seetal; Jacka, Felice N; Meyer, Denny

    2016-01-01

    Atheoretical large-scale data mining techniques using machine learning algorithms have promise in the analysis of large epidemiological datasets. This study illustrates the use of a hybrid methodology for variable selection that took account of missing data and complex survey design to identify key biomarkers associated with depression from a large epidemiological study. The study used a three-step methodology amalgamating multiple imputation, a machine learning boosted regression algorithm and logistic regression, to identify key biomarkers associated with depression in the National Health and Nutrition Examination Study (2009-2010). Depression was measured using the Patient Health Questionnaire-9 and 67 biomarkers were analysed. Covariates in this study included gender, age, race, smoking, food security, Poverty Income Ratio, Body Mass Index, physical activity, alcohol use, medical conditions and medications. The final imputed weighted multiple logistic regression model included possible confounders and moderators. After the creation of 20 imputation data sets from multiple chained regression sequences, machine learning boosted regression initially identified 21 biomarkers associated with depression. Using traditional logistic regression methods, including controlling for possible confounders and moderators, a final set of three biomarkers were selected. The final three biomarkers from the novel hybrid variable selection methodology were red cell distribution width (OR 1.15; 95% CI 1.01, 1.30), serum glucose (OR 1.01; 95% CI 1.00, 1.01) and total bilirubin (OR 0.12; 95% CI 0.05, 0.28). Significant interactions were found between total bilirubin with Mexican American/Hispanic group (p = 0.016), and current smokers (pmachine learning algorithm with traditional statistical modelling, accounted for missing data and complex survey sampling methodology and was demonstrated to be a useful tool for detecting three biomarkers associated with depression for future

  5. New developments and concepts related to biomarker application to vaccines

    Science.gov (United States)

    Ahmed, S. Sohail; Black, Steve; Ulmer, Jeffrey

    2012-01-01

    Summary This minireview will provide a perspective on new developments and concepts related to biomarker applications for vaccines. In the context of preventive vaccines, biomarkers have the potential to predict adverse events in select subjects due to differences in genetic make‐up/underlying medical conditions or to predict effectiveness (good versus poor response). When expanding them to therapeutic vaccines, their utility in identification of patients most likely to respond favourably (or avoid potentially negative effects of treatment) becomes self‐explanatory. Despite the progress made so far on dissection of various pathways of biological significance in humans, there is still plenty to unravel about the mysteries related to the quantitative and qualitative aspects of the human host response. This review will provide a focused overview of new concepts and developments in the field of vaccine biomarkers including (i) vaccine‐dependent signatures predicting subject response and safety, (ii) predicting therapeutic vaccine efficacy in chronic diseases, (iii) exploring the genetic make‐up of the host that may modulate subject‐specific adverse events or affect the quality of immune responses, and (iv) the topic of volunteer stratification as a result of biomarker screening (e.g. for therapeutic vaccines but also potentially for preventive vaccines) or as a reflection of an effort to compare select groups (e.g. vaccinated subjects versus patients recovering from infection) to enable the discovery of clinically relevant biomarkers for preventive vaccines. PMID:21895991

  6. Tissue Biomarkers in Predicting Response to Sunitinib Treatment of Metastatic Renal Cell Carcinoma.

    Science.gov (United States)

    Trávníček, Ivan; Branžovský, Jindřich; Kalusová, Kristýna; Hes, Ondřej; Holubec, Luboš; Pele, Kevin Bauleth; Ürge, Tomáš; Hora, Milan

    2015-10-01

    To identify tissue biomarkers that are predictive of the therapeutic effect of sunitinib in treatment of metastatic clear cell renal cell carcinoma (mCRCC). Our study included 39 patients with mCRCC treated with sunitinib. Patients were stratified into two groups based on their response to sunitinib treatment: non-responders (progression), and responders (stable disease, regression). The effect of treatment was measured by comparing imaging studies before the initiation treatment with those performed at between 3rd and 7th months of treatment, depending on the patient. Histological samples of tumor tissue and healthy renal parenchyma, acquired during surgery of the primary tumor, were examined with immunohistochemistry to detect tissue targets involved in the signaling pathways of tumor growth and neoangiogenesis. We selected mammalian target of rapamycine, p53, vascular endothelial growth factor, hypoxia-inducible factor 1 and 2 and carbonic anhydrase IX. We compared the average levels of biomarker expression in both, tumor tissue, as well as in healthy renal parenchyma. Results were evaluated using the Student's t-test. For responders, statistically significant differences in marker expression in tumor tissue versus healthy parenchyma were found for mTOR (4%/16.7%; p=0.01031), p53 (4%/12.7%; p=0.042019), VEGF (62.7%/45%; p=0.019836) and CAIX (45%/15.33%; p=0.001624). A further significant difference was found in the frequency of high expression (more than 60%) between tumor tissue and healthy parenchyma in VEGF (65%/35%; p=0.026487) and CAIX (42%/8%; p=0.003328). CAIX was expressed at high levels in the tumor tissue in both evaluated groups. A significantly higher expression of VEGF in CRCC in comparison to healthy parenchyma can predict a better response to sunitinib. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Classification for longevity potential: the use of novel biomarkers

    Directory of Open Access Journals (Sweden)

    Marian Beekman

    2016-10-01

    Full Text Available Background: In older people chronological age may not be the best predictor of residual lifespan and mortality, because with age the heterogeneity in health is increasing. Biomarkers for biological age and residual lifespan are being developed to predict disease and mortality better at an individual level than chronological age. In the current paper we aim to classify a group of older people into those with longevity potential or controls.Methods: In the Leiden Longevity Study participated 1671 offspring of nonagenarian siblings, as the group with longevity potential, and 744 similarly aged controls. Using known risk factors for cardiovascular disease, previously reported markers for human longevity and other physiological measures as predictors, classification models for longevity potential were constructed with multiple logistic regression of the offspring-control status.Results: The Framingham Risk Score is predictive for longevity potential (AUC = 64.7. Physiological parameters involved in immune responses and glucose, lipid and energy metabolism further improve the prediction performance for longevity potential (AUCmale = 71.4, AUCfemale = 68.7.Conclusion: Using the Framingham Risk Score, the classification of older people in groups with longevity potential and controls is moderate, but can be improved to a reasonably good classification in combination with markers of immune response, glucose, lipid and energy metabolism. We show that individual classification of older people for longevity potential may be feasible using biomarkers from a wide variety of different biological processes.

  8. Evaluation of interleukin-6 and serotonin as biomarkers to predict response to fluoxetine.

    Science.gov (United States)

    Manoharan, Aarthi; Rajkumar, Ravi Philip; Shewade, Deepak Gopal; Sundaram, Rajan; Muthuramalingam, Avin; Paul, Abialbon

    2016-05-01

    Only 30% of major depressive disorder (MDD) patients achieve complete remission with a serotonergic antidepressant (selective serotonin reuptake inhibitor). We investigated the potential of serotonin (5-HT) and interleukin-6 (IL-6) to serve as functional biomarkers of fluoxetine response. Serum IL-6 and 5-HT were measured in 73 MDD patients (39 responders and 34 non-responders) pre- and 6 weeks post-treatment and in 44 normal controls with ELISA. Fluoxetine and norfluoxetine were measured using LC MS/MS. IL-6 levels were significantly higher in MDD patients when compared with controls (p Fluoxetine and norfluoxetine concentrations were not significantly different in responders and non-responders, and there was no correlation between fluoxetine concentrations and percentage reduction in 5-HT from week 0 to 6. 5-HT and IL-6 may not serve as useful markers of response to fluoxetine because of inconsistent results across different studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Moderator's view: Patient-centered approaches for optimizing AKI management: the role of kidney biomarkers.

    Science.gov (United States)

    Mehta, Ravindra L

    2017-03-01

    Patients with acute kidney injury (AKI) continue to pose challenges for clinicians worldwide. Our understanding of the pathophysiology, epidemiology and course of the disease has improved significantly; however, this has not translated into any significant improvement in outcomes. Multiple new biomarkers have been developed to characterize the course of the disease and have been evaluated in multiple trials. Unfortunately, the adoption of biomarkers into routine clinical care has not been as expected. Several factors contribute to the slow uptake and can be addressed. This article provides a framework for a patient-centered approach to utilize biomarkers to improve patient care and outcomes in AKI. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  10. Novel ageing-biomarker discovery using data-intensive technologies.

    Science.gov (United States)

    Griffiths, H R; Augustyniak, E M; Bennett, S J; Debacq-Chainiaux, F; Dunston, C R; Kristensen, P; Melchjorsen, C J; Navarrete, Santos A; Simm, A; Toussaint, O

    2015-11-01

    Ageing is accompanied by many visible characteristics. Other biological and physiological markers are also well-described e.g. loss of circulating sex hormones and increased inflammatory cytokines. Biomarkers for healthy ageing studies are presently predicated on existing knowledge of ageing traits. The increasing availability of data-intensive methods enables deep-analysis of biological samples for novel biomarkers. We have adopted two discrete approaches in MARK-AGE Work Package 7 for biomarker discovery; (1) microarray analyses and/or proteomics in cell systems e.g. endothelial progenitor cells or T cell ageing including a stress model; and (2) investigation of cellular material and plasma directly from tightly-defined proband subsets of different ages using proteomic, transcriptomic and miR array. The first approach provided longitudinal insight into endothelial progenitor and T cell ageing. This review describes the strategy and use of hypothesis-free, data-intensive approaches to explore cellular proteins, miR, mRNA and plasma proteins as healthy ageing biomarkers, using ageing models and directly within samples from adults of different ages. It considers the challenges associated with integrating multiple models and pilot studies as rational biomarkers for a large cohort study. From this approach, a number of high-throughput methods were developed to evaluate novel, putative biomarkers of ageing in the MARK-AGE cohort. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Monocyte Chemotactic Protein 1 in Plasma from Soluble Leishmania Antigen-Stimulated Whole Blood as a Potential Biomarker of the Cellular Immune Response to Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Ana V. Ibarra-Meneses

    2017-09-01

    Full Text Available New biomarkers are needed to identify asymptomatic Leishmania infection as well as immunity following vaccination or treatment. With the aim of finding a robust biomarker to assess an effective cellular immune response, monocyte chemotactic protein 1 (MCP-1 was examined in plasma from soluble Leishmania antigen (SLA-stimulated whole blood collected from subjects living in a Leishmania infantum-endemic area. MCP-1, expressed 110 times more strongly than IL-2, identified 87.5% of asymptomatic subjects and verified some asymptomatic subjects close to the cutoff. MCP-1 was also significantly elevated in all patients cured of visceral leishmaniasis (VL, unlike IL-2, indicating the specific memory response generated against Leishmania. These results show MCP-1 to be a robust candidate biomarker of immunity that could be used as a marker of cure and to both select and follow the population in vaccine phase I–III human clinical trials with developed rapid, easy-to-use field tools.

  12. Synovial tissue and serum biomarkers of disease activity, therapeutic response and radiographic progression: analysis of a proof-of-concept randomised clinical trial of cytokine blockade.

    LENUS (Irish Health Repository)

    Rooney, Terence

    2012-02-01

    OBJECTIVES: To evaluate synovial tissue and serum biomarkers of disease activity, therapeutic response and radiographic progression during biological therapy for rheumatoid arthritis (RA). METHODS: Patients with active RA entered a randomised study of anakinra 100 mg\\/day, administered as monotherapy or in combination with pegsunercept 800 microg\\/kg twice a week. Arthroscopic synovial tissue biopsies were obtained at baseline and two further time points. Following immunohistochemical staining, selected mediators of RA pathophysiology were quantified using digital image analysis. Selected mediators were also measured in the serum. RESULTS: Twenty-two patients were randomly assigned: 11 received monotherapy and 11 combination therapy. American College of Rheumatology 20, 50 and 70 response rates were 64%, 64% and 46% with combination therapy and 36%, 9% and 0% with monotherapy, respectively. In synovial tissue, T-cell infiltration, vascularity and transforming growth factor beta (TGFbeta) expression demonstrated significant utility as biomarkers of disease activity and therapeutic response. In serum, interleukin 6 (IL-6), matrix metalloproteinase (MMP) 1, MMP-3 and tissue inhibitor of metalloproteinase 1 (TIMP-1) were most useful in this regard. An early decrease in serum levels of TIMP-1 was predictive of the later therapeutic outcome. Pretreatment tissue levels of T-cell infiltration and the growth factors vascular endothelial growth factor\\/TGFbeta, and serum levels of IL-6, IL-8, MMP-1, TIMP-1, soluble tumour necrosis factor receptor types I and II and IL-18 correlated with radiographic progression. CONCLUSIONS: Synovial tissue analysis identified biomarkers of disease activity, therapeutic response and radiographic progression. Biomarker expression in tissue was independent of the levels measured in the serum.

  13. Biomarkers to Stratify Risk Groups among Children with Malnutrition in Resource-Limited Settings and to Monitor Response to Intervention.

    Science.gov (United States)

    McGrath, Christine J; Arndt, Michael B; Walson, Judd L

    2017-01-01

    Despite global efforts to reduce childhood undernutrition, current interventions have had little impact on stunting and wasting, and the mechanisms underlying growth faltering are poorly understood. There is a clear need to distinguish populations of children most likely to benefit from any given intervention and to develop tools to monitor response to therapy prior to the development of morbid sequelae. In resource-limited settings, environmental enteric dysfunction (EED) is common among children, contributing to malnutrition and increasing childhood morbidity and mortality risk. In addition to EED, early alterations in the gut microbiota can adversely affect growth through nutrient malabsorption, altered metabolism, gut inflammation, and dysregulation of the growth hormone axis. We examined the evidence linking EED and the gut microbiome to growth faltering and explored novel biomarkers to identify subgroups of children at risk of malnutrition due to underlying pathology. These and other biomarkers could be used to identify specific groups of children at risk of malnutrition and monitor response to targeted interventions. © 2017 S. Karger AG, Basel.

  14. Proteomics for discovery of candidate colorectal cancer biomarkers

    Science.gov (United States)

    Álvarez-Chaver, Paula; Otero-Estévez, Olalla; Páez de la Cadena, María; Rodríguez-Berrocal, Francisco J; Martínez-Zorzano, Vicenta S

    2014-01-01

    Colorectal cancer (CRC) is the second most common cause of cancer-related deaths in Europe and other Western countries, mainly due to the lack of well-validated clinically useful biomarkers with enough sensitivity and specificity to detect this disease at early stages. Although it is well known that the pathogenesis of CRC is a progressive accumulation of mutations in multiple genes, much less is known at the proteome level. Therefore, in the last years many proteomic studies have been conducted to find new candidate protein biomarkers for diagnosis, prognosis and as therapeutic targets for this malignancy, as well as to elucidate the molecular mechanisms of colorectal carcinogenesis. An important advantage of the proteomic approaches is the capacity to look for multiple differentially expressed proteins in a single study. This review provides an overview of the recent reports describing the different proteomic tools used for the discovery of new protein markers for CRC such as two-dimensional electrophoresis methods, quantitative mass spectrometry-based techniques or protein microarrays. Additionally, we will also focus on the diverse biological samples used for CRC biomarker discovery such as tissue, serum and faeces, besides cell lines and murine models, discussing their advantages and disadvantages, and summarize the most frequently identified candidate CRC markers. PMID:24744574

  15. HCC Biomarkers in China and Taiwan

    Directory of Open Access Journals (Sweden)

    Regina M. Santella

    2007-02-01

    Full Text Available

    A number of different types of biomarkers have been used to understand the etiology and progression of hepatocellular cancer (HCC. Perhaps the most well known are the serum/ plasma markers of HBV or HCV infection. These markers include analysis of viral DNA or proteins or antibodies produced against the viral proteins. HBV surface antigen (HBsAg is most frequently used to determine chronic infection with high or low viral replication, while HBeAg is a measure of chronic infection with high viral replication. Analysis of antibodies includes measurement of anti-HBV core antigen, anti-HBV e antigen and anti-HBsAg. The response to immunization can be monitored by analysis of anti-HBsAg. The other major classes of biomarkers used in studies of HCC are biomarkers of exposure to environmental, lifestyle or dietary carcinogens, biomarkers of oxidative stress and early biologic response. In addition, studies of genetic susceptibility have studied polymorphisms in a number of pathways and their role in HCC risk. The biomarkers of exposure include the measurement of carcinogens in urine and carcinogen-DNA and protein adducts. Examples are measurement of aflatoxin and polycyclic aromatic hydrocarbon metabolites, and DNA and protein adducts.

    Biomarkers of oxidative stress include urinary isoprostanes and 8-oxodeoxyguanosine and oxidized plasma proteins. Most of these assays are immunologic although the use of high performance liquid chromatograph (HPLC as well as gas chromatography/mass spectroscopy (GC/MS have been utilized. In nested case-control studies, many of these markers are associated with elevated risk. For example, elevated aflatoxin and polycyclic aromatic hydrocarbon-albumin adducts, aflatoxin metabolites in urine and urinary isoprostanes were observed in baseline samples from

  16. Is there Progress? An Overview of Selecting Biomarker Candidates for Major Depressive Disorder

    Science.gov (United States)

    Young, Juan Joseph; Silber, Tim; Bruno, Davide; Galatzer-Levy, Isaac Robert; Pomara, Nunzio; Marmar, Charles Raymond

    2016-01-01

    Major depressive disorder (MDD) contributes to a significant worldwide disease burden, expected to be second only to heart disease by 2050. However, accurate diagnosis has been a historical weakness in clinical psychiatry. As a result, there is a demand for diagnostic modalities with greater objectivity that could improve on current psychiatric practice that relies mainly on self-reporting of symptoms and clinical interviews. Over the past two decades, literature on a growing number of putative biomarkers for MDD increasingly suggests that MDD patients have significantly different biological profiles compared to healthy controls. However, difficulty in elucidating their exact relationships within depression pathology renders individual markers inconsistent diagnostic tools. Consequently, further biomarker research could potentially improve our understanding of MDD pathophysiology as well as aid in interpreting response to treatment, narrow differential diagnoses, and help refine current MDD criteria. Representative of this, multiplex assays using multiple sources of biomarkers are reported to be more accurate options in comparison to individual markers that exhibit lower specificity and sensitivity, and are more prone to confounding factors. In the future, more sophisticated multiplex assays may hold promise for use in screening and diagnosing depression and determining clinical severity as an advance over relying solely on current subjective diagnostic criteria. A pervasive limitation in existing research is heterogeneity inherent in MDD studies, which impacts the validity of biomarker data. Additionally, small sample sizes of most studies limit statistical power. Yet, as the RDoC project evolves to decrease these limitations, and stronger studies with more generalizable data are developed, significant advances in the next decade are expected to yield important information in the development of MDD biomarkers for use in clinical settings. PMID:27199779

  17. Response-driven imaging biomarkers for predicting radiation necrosis of the brain

    International Nuclear Information System (INIS)

    Nazem-Zadeh, Mohammad-Reza; Chapman, Christopher H; Lawrence, Theodore S; Ten Haken, Randall K; Tsien, Christina I; Cao, Yue; Chenevert, Thomas

    2014-01-01

    Radiation necrosis is an uncommon but severe adverse effect of brain radiation therapy (RT). Current predictive models based on radiation dose have limited accuracy. We aimed to identify early individual response biomarkers based upon diffusion tensor (DT) imaging and incorporated them into a response model for prediction of radiation necrosis. Twenty-nine patients with glioblastoma received six weeks of intensity modulated RT and concurrent temozolomide. Patients underwent DT-MRI scans before treatment, at three weeks during RT, and one, three, and six months after RT. Cases with radiation necrosis were classified based on generalized equivalent uniform dose (gEUD) of whole brain and DT index early changes in the corpus callosum and its substructures. Significant covariates were used to develop normal tissue complication probability models using binary logistic regression. Seven patients developed radiation necrosis. Percentage changes of radial diffusivity (RD) in the splenium at three weeks during RT and at six months after RT differed significantly between the patients with and without necrosis (p = 0.05 and p = 0.01). Percentage change of RD at three weeks during RT in the 30 Gy dose–volume of the splenium and brain gEUD combined yielded the best-fit logistic regression model. Our findings indicate that early individual response during the course of RT, assessed by radial diffusivity, has the potential to aid the prediction of delayed radiation necrosis, which could provide guidance in dose-escalation trials. (paper)

  18. Single and multiple cardiovascular biomarkers in subjects without a previous cardiovascular event

    DEFF Research Database (Denmark)

    Pareek, Manan; Bhatt, Deepak L; Vaduganathan, Muthiah

    2017-01-01

    Aims To assess the incremental value of biomarkers, including N-terminal prohormone of brain natriuretic peptide (NT-proBNP), high-sensitivity troponin T (hs-TnT), high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), growth differentiation factor 15 (GDF-15), and procollagen type 1...

  19. Vitamin D3 supplementation in multiple sclerosis: Symptoms and biomarkers of depression.

    Science.gov (United States)

    Rolf, Linda; Muris, Anne-Hilde; Bol, Yvonne; Damoiseaux, Jan; Smolders, Joost; Hupperts, Raymond

    2017-07-15

    Depressive symptoms are common in multiple sclerosis (MS), and both depression and MS have been associated with a poor vitamin D status. As cytokine-mediated inflammatory processes play a role in the pathogenesis of both disorders, we hypothesized that vitamin D 3 supplementation reduces depressive symptoms in MS via its immunomodulatory properties. In this randomized pilot study relapsing remitting (RR) MS patients received either vitamin D 3 supplementation (n=20; 14.000IU/day) or placebo (n=20) during 48weeks. Pre- and post-supplementation depression scores, measured using the Hospital Anxiety Depression Scale (HADS) depression subscale (HADS-D), showed a significant decrease within the vitamin D 3 group (median HADS-D 4.0 to 3.0, p=0.02), a trend towards a decrease within the placebo group (median HADS-D 3.0 to 2.0, p=0.06), but no significantly different reductions between groups (p=0.78). Furthermore, no reductions in pro- and anti-inflammatory cytokine balances, secreted by stimulated leukocytes and CD8 + T cells, were found in the vitamin D 3 compared to the placebo arm. Therefore, we found no evidence for a reduction of depressive symptoms or related biomarkers upon vitamin D 3 supplementation in RRMS patients in this exploratory study. Whether vitamin D 3 supplementation is of benefit in manifest depression in MS needs to be assessed by additional studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Myopodin methylation is a prognostic biomarker and predicts antiangiogenic response in advanced kidney cancer.

    Science.gov (United States)

    Pompas-Veganzones, N; Sandonis, V; Perez-Lanzac, Alberto; Beltran, M; Beardo, P; Juárez, A; Vazquez, F; Cozar, J M; Alvarez-Ossorio, J L; Sanchez-Carbayo, Marta

    2016-10-01

    Myopodin is a cytoskeleton protein that shuttles to the nucleus depending on the cellular differentiation and stress. It has shown tumor suppressor functions. Myopodin methylation status was useful for staging bladder and colon tumors and predicting clinical outcome. To our knowledge, myopodin has not been tested in kidney cancer to date. The purpose of this study was to evaluate whether myopodin methylation status could be clinically useful in renal cancer (1) as a prognostic biomarker and 2) as a predictive factor of response to antiangiogenic therapy in patients with metastatic disease. Methylation-specific polymerase chain reactions (MS-PCR) were used to evaluate myopodin methylation in 88 kidney tumors. These belonged to patients with localized disease and no evidence of disease during follow-up (n = 25) (group 1), and 63 patients under antiangiogenic therapy (sunitinib, sorafenib, pazopanib, and temsirolimus), from which group 2 had non-metastatic disease at diagnosis (n = 32), and group 3 showed metastatic disease at diagnosis (n = 31). Univariate and multivariate Cox analyses were utilized to assess outcome and response to antiangiogenic agents taking progression, disease-specific survival, and overall survival as clinical endpoints. Myopodin was methylated in 50 out of the 88 kidney tumors (56.8 %). Among the 88 cases analyzed, 10 of them recurred (11.4 %), 51 progressed (57.9 %), and 40 died of disease (45.4 %). Myopodin methylation status correlated to MSKCC Risk score (p = 0.050) and the presence of distant metastasis (p = 0.039). Taking all patients, an unmethylated myopodin identified patients with shorter progression-free survival, disease-specific survival, and overall survival. Using also in univariate and multivariate models, an unmethylated myopodin predicted response to antiangiogenic therapy (groups 2 and 3) using progression-free survival, disease-specific, and overall survival as clinical endpoints. Myopodin was revealed

  1. Biomarkers in patients treated with BCG: an update.

    Science.gov (United States)

    Klap, Julia; Schmid, Marianne; Loughlin, Kevin R

    2014-08-01

    Bacillus Calmette-Guerin (BCG) instillations are the recommended treatment for non-muscle invasive bladder cancer but high recurrence and progression rates remain after treatment. Despite patients risk stratification, BCG effectiveness remains unpredictable. A close, invasive and expensive follow up is mandatory. To improve or even replace this heavy surveillance in this high risk population, validated biomarkers were developed. To identify the useful tools for the urologist in monitoring bladder cancer patients, we reviewed the literature focusing on plasma and urinary biomarkers of BCG-therapy outcome. Articles dated from 1988 to 2013 including specific keywords (urinary bladder neoplasm, biological markers, intravesical administration, recurrence) were examined and relevant papers were selected. Before treatment initiation, genetic polymorphisms of multiple agents (cytokines, matrix-metalloproteinases) were found to become very useful to tailor therapy and monitoring. Those biomarkers belong to personalized medicine which is a topic of great interest today, but still need to be validated in cohorts from different ethnicities. During instillations, cytokines (IL-2, IL-8, IL-6/IL-10) were reported to be reliable to determine treatment response and efficacy. Further studies are needed to confirm results and standardize thresholds. After treatment, UroVysion, the FDA-approved fluorescence in situ hybridization (FISH), appeared to be the most robust marker of all the clinical parameters reviewed; but is not yet validated for BCG-treated patients. No recommendations for everyday practice can be established today, but a combination of several markers and clinicopathological characteristics may be the future. As bladder cancer diagnosis and management are evolving, practicing urologists should be aware of and utilize bladder cancer markers in clinical practice.

  2. [Biomarkers of radiation-induced DNA repair processes].

    Science.gov (United States)

    Vallard, Alexis; Rancoule, Chloé; Guy, Jean-Baptiste; Espenel, Sophie; Sauvaigo, Sylvie; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2017-11-01

    The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death. The most important DNA repair biomarkers are DNA damage signaling proteins, with ATM, DNA-PKcs, 53BP1 and γ-H2AX. They can be analyzed either using immunostaining, or using lived cell imaging. However, to date, these techniques are still time and money consuming. The development of "omics" technologies should lead the way to new (and usable in daily routine) DNA repair biomarkers. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  3. Characterization of a genotoxicity biomarker in three-spined stickleback (Gasterosteus aculeatus L.): Biotic variability and integration in a battery of biomarkers for environmental monitoring.

    Science.gov (United States)

    Santos, Raphael; Joyeux, Aude; Palluel, Olivier; Palos-Ladeiro, Mélissa; Besnard, Aurélien; Blanchard, Christophe; Porcher, Jean Marc; Bony, Sylvie; Devaux, Alain; Sanchez, Wilfried

    2016-04-01

    As a large array of hazardous substances exhibiting genotoxicity are discharged into surface water, this work aimed at assessing the relevance of adding a genotoxicity biomarker in a battery of biomarkers recently developed in the model fish three-spined stickleback (Gasterosteus aculeatus). First the confounding influence of gender, body length, and season (used as a proxy of age and of the fish reproductive status, respectively) on the level of primary DNA damage in erythrocytes was investigated in wild sticklebacks. Then, the genotoxity biomarker was included in a large battery of biomarkers assessing xenobiotic biotransformation, oxidative stress and neurotoxicity, and implemented in five sites. Gender, age and reproductive status did not influence DNA damage level in fish from the reference site. A significant relationship between the level of primary DNA damage and fish length (as a proxy of age also correlated to the season) was highlighted in the contaminated site. Among all biomarkers investigated in the field, the level of DNA damage was one of the four most discriminating biomarkers with EROD, catalase activity and the level of lipid peroxidation representing together 75.40% of the discriminating power in sampled fish. The level of DNA damage was correlated to the EROD activity and to the level of peroxidation, which mainly discriminated fish from sites under urban pressure. Finally, Integrated Biomarker Response indexes (IBRv2), which were calculated with the whole biomarker response dataset exhibited higher values in the Reveillon (9.62), the Scarpe and Rhonelle contaminated sites (5.11 and 4.90) compared with the two reference sites (2.38 and 2.55). The present work highlights that integration of a genotoxicity biomarker in a multiparametric approach is relevant to assess ecotoxicological risk in freshwater aquatic organisms. © 2014 Wiley Periodicals, Inc.

  4. Diagnosing phenotypes of single-sample individuals by edge biomarkers.

    Science.gov (United States)

    Zhang, Wanwei; Zeng, Tao; Liu, Xiaoping; Chen, Luonan

    2015-06-01

    Network or edge biomarkers are a reliable form to characterize phenotypes or diseases. However, obtaining edges or correlations between molecules for an individual requires measurement of multiple samples of that individual, which are generally unavailable in clinical practice. Thus, it is strongly demanded to diagnose a disease by edge or network biomarkers in one-sample-for-one-individual context. Here, we developed a new computational framework, EdgeBiomarker, to integrate edge and node biomarkers to diagnose phenotype of each single test sample. By applying the method to datasets of lung and breast cancer, it reveals new marker genes/gene-pairs and related sub-networks for distinguishing earlier and advanced cancer stages. Our method shows advantages over traditional methods: (i) edge biomarkers extracted from non-differentially expressed genes achieve better cross-validation accuracy of diagnosis than molecule or node biomarkers from differentially expressed genes, suggesting that certain pathogenic information is only present at the level of network and under-estimated by traditional methods; (ii) edge biomarkers categorize patients into low/high survival rate in a more reliable manner; (iii) edge biomarkers are significantly enriched in relevant biological functions or pathways, implying that the association changes in a network, rather than expression changes in individual molecules, tend to be causally related to cancer development. The new framework of edge biomarkers paves the way for diagnosing diseases and analyzing their molecular mechanisms by edges or networks in one-sample-for-one-individual basis. This also provides a powerful tool for precision medicine or big-data medicine. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  5. Systemic sclerosis biomarkers discovered using mass-spectrometry-based proteomics: a systematic review.

    Science.gov (United States)

    Bălănescu, Paul; Lădaru, Anca; Bălănescu, Eugenia; Băicuş, Cristian; Dan, Gheorghe Andrei

    2014-08-01

    Systemic sclerosis (SSc) is an autoimmune disease with incompletely known physiopathology. There is a great challenge to predict its course and therapeutic response using biomarkers. To critically review proteomic biomarkers discovered from biological specimens from systemic sclerosis patients using mass spectrometry technologies. Medline and Embase databases were searched in February 2014. Out of the 199 records retrieved, a total of 20 records were included, identifying 116 candidate proteomic biomarkers. Research in SSc proteomic biomarkers should focus on biomarker validation, as there are valuable mass-spectrometry proteomics studies in the literature.

  6. Metabolomics Identifies Multiple Candidate Biomarkers to Diagnose and Stage Human African Trypanosomiasis.

    Directory of Open Access Journals (Sweden)

    Isabel M Vincent

    2016-12-01

    Full Text Available Treatment for human African trypanosomiasis is dependent on the species of trypanosome causing the disease and the stage of the disease (stage 1 defined by parasites being present in blood and lymphatics whilst for stage 2, parasites are found beyond the blood-brain barrier in the cerebrospinal fluid (CSF. Currently, staging relies upon detecting the very low number of parasites or elevated white blood cell numbers in CSF. Improved staging is desirable, as is the elimination of the need for lumbar puncture. Here we use metabolomics to probe samples of CSF, plasma and urine from 40 Angolan patients infected with Trypanosoma brucei gambiense, at different disease stages. Urine samples provided no robust markers indicative of infection or stage of infection due to inherent variability in urine concentrations. Biomarkers in CSF were able to distinguish patients at stage 1 or advanced stage 2 with absolute specificity. Eleven metabolites clearly distinguished the stage in most patients and two of these (neopterin and 5-hydroxytryptophan showed 100% specificity and sensitivity between our stage 1 and advanced stage 2 samples. Neopterin is an inflammatory biomarker previously shown in CSF of stage 2 but not stage 1 patients. 5-hydroxytryptophan is an important metabolite in the serotonin synthetic pathway, the key pathway in determining somnolence, thus offering a possible link to the eponymous symptoms of "sleeping sickness". Plasma also yielded several biomarkers clearly indicative of the presence (87% sensitivity and 95% specificity and stage of disease (92% sensitivity and 81% specificity. A logistic regression model including these metabolites showed clear separation of patients being either at stage 1 or advanced stage 2 or indeed diseased (both stages versus control.

  7. Correlation between Circulating Fungal Biomarkers and Clinical Outcome in Invasive Aspergillosis.

    Directory of Open Access Journals (Sweden)

    Dionysios Neofytos

    Full Text Available Objective means are needed to predict and assess clinical response in patients treated for invasive aspergillosis (IA. We examined whether early changes in serum galactomannan (GM and/or β-D-glucan (BDG can predict clinical outcomes. Patients with proven or probable IA were prospectively enrolled, and serial GM and BDG levels and GM optical density indices (GMI were calculated twice weekly for 6 weeks following initiation of standard-of-care antifungal therapy. Changes in these biomarkers during the first 2 and 6 weeks of treatment were analyzed for associations with clinical response and survival at weeks 6 and 12. Among 47 patients with IA, 53.2% (25/47 and 65.9% (27/41 had clinical response by weeks 6 and 12, respectively. Changes in biomarkers during the first 2 weeks were associated with clinical response at 6 weeks (GMI, P = 0.03 and 12 weeks (GM+BDG composite, P = 0.05; GM, P = 0.04; GMI, P = 0.02. Changes in biomarkers during the first 6 weeks were also associated with clinical response at 6 weeks (GM, P = 0.05; GMI, P = 0.03 and 12 weeks (BDG+GM, P = 0.02; GM, P = 0.02; GMI, P = 0.01. Overall survival rates at 6 weeks and 12 weeks were 87.2% (41/47 and 79.1% (34/43, respectively. Decreasing biomarkers in the first 2 weeks were associated with survival at 6 weeks (BDG+GM, P = 0.03; BDG, P = 0.01; GM, P = 0.03 and at 12 weeks (BDG+GM, P = 0.01; BDG, P = 0.03; GM, P = 0.01; GMI, P = 0.007. Similar correlations occurred for biomarkers measured over 6 weeks. Patients with negative baseline GMI and/or persistently negative GMI during the first 2 weeks were more likely to have CR and survival. These results suggest that changes of biomarkers may be informative to predict and/or assess response to therapy and survival in patients treated for IA.

  8. Biomarkers in Diabetic Retinopathy.

    Science.gov (United States)

    Jenkins, Alicia J; Joglekar, Mugdha V; Hardikar, Anandwardhan A; Keech, Anthony C; O'Neal, David N; Januszewski, Andrzej S

    2015-01-01

    There is a global diabetes epidemic correlating with an increase in obesity. This coincidence may lead to a rise in the prevalence of type 2 diabetes. There is also an as yet unexplained increase in the incidence of type 1 diabetes, which is not related to adiposity. Whilst improved diabetes care has substantially improved diabetes outcomes, the disease remains a common cause of working age adult-onset blindness. Diabetic retinopathy is the most frequently occurring complication of diabetes; it is greatly feared by many diabetes patients. There are multiple risk factors and markers for the onset and progression of diabetic retinopathy, yet residual risk remains. Screening for diabetic retinopathy is recommended to facilitate early detection and treatment. Common biomarkers of diabetic retinopathy and its risk in clinical practice today relate to the visualization of the retinal vasculature and measures of glycemia, lipids, blood pressure, body weight, smoking, and pregnancy status. Greater knowledge of novel biomarkers and mediators of diabetic retinopathy, such as those related to inflammation and angiogenesis, has contributed to the development of additional therapeutics, in particular for late-stage retinopathy, including intra-ocular corticosteroids and intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') agents. Unfortunately, in spite of a range of treatments (including laser photocoagulation, intraocular steroids, and anti-VEGF agents, and more recently oral fenofibrate, a PPAR-alpha agonist lipid-lowering drug), many patients with diabetic retinopathy do not respond well to current therapeutics. Therefore, more effective treatments for diabetic retinopathy are necessary. New analytical techniques, in particular those related to molecular markers, are accelerating progress in diabetic retinopathy research. Given the increasing incidence and prevalence of diabetes, and the limited capacity of healthcare systems to screen and treat

  9. Fusion peptides from oncogenic chimeric proteins as putative specific biomarkers of cancer.

    Science.gov (United States)

    Conlon, Kevin P; Basrur, Venkatesha; Rolland, Delphine; Wolfe, Thomas; Nesvizhskii, Alexey I; MacCoss, Michael J; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2013-10-01

    Chromosomal translocations encoding chimeric fusion proteins constitute one of the most common mechanisms underlying oncogenic transformation in human cancer. Fusion peptides resulting from such oncogenic chimeric fusions, though unique to specific cancer subtypes, are unexplored as cancer biomarkers. Here we show, using an approach termed fusion peptide multiple reaction monitoring mass spectrometry, the direct identification of different cancer-specific fusion peptides arising from protein chimeras that are generated from the juxtaposition of heterologous genes fused by recurrent chromosomal translocations. Using fusion peptide multiple reaction monitoring mass spectrometry in a clinically relevant scenario, we demonstrate the specific, sensitive, and unambiguous detection of a specific diagnostic fusion peptide in clinical samples of anaplastic large cell lymphoma, but not in a diverse array of benign lymph nodes or other forms of primary malignant lymphomas and cancer-derived cell lines. Our studies highlight the utility of fusion peptides as cancer biomarkers and carry broad implications for the use of protein biomarkers in cancer detection and monitoring.

  10. Biomarker responses and contamination levels in crabs (Carcinus aestuarii) from the Lagoon of Venice: An integrated approach in biomonitoring estuarine environments.

    Science.gov (United States)

    Ricciardi, Francesco; Matozzo, Valerio; Binelli, Andrea; Marin, Maria Gabriella

    2010-03-01

    An integrated biological-chemical approach is necessary to evaluate correctly the environmental status of bodies of water, as suggested by the EU Water Framework Directive. The shore crab Carcinus aestuarii, sampled in the Lagoon of Venice (NE Italy), was used as a biomonitor species, and the chemical concentrations of 42 organic pollutants (HCHs, PAHs, PCBs, DDTs, PBDEs), biological responses related to neurotoxicity (AChE inhibition), detoxification mechanisms (CYP450 induction) and endocrine alterations (vitellogenin-like protein induction) were measured at the same time. The responsiveness of biomarkers as predictors (or descriptors) of chemical contamination was evaluated by multivariate regression analysis, revealing good predictor potential for the selected biomarkers. Biomonitoring in the Lagoon of Venice revealed a predominance of DDT and PCB compounds, especially near industrial sites or large cities. Endocrine alterations, not always correlated with the presence of measured compounds, were also detected in many areas, suggesting exposure to compounds able to interfere with the crab endocrine system. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Biomarkers of necrotising soft tissue infections

    DEFF Research Database (Denmark)

    Hansen, Marco Bo; Simonsen, Ulf; Garred, Peter

    2015-01-01

    INTRODUCTION: The mortality and amputation rates are still high in patients with necrotising soft tissue infections (NSTIs). It would be ideal to have a set of biomarkers that enables the clinician to identify high-risk patients with NSTI on admission. The objectives of this study are to evaluate...... and mortality in patients with NSTI and that HBOT reduces the inflammatory response. METHODS AND ANALYSIS: This is a prospective, observational study being conducted in a tertiary referral centre. Biomarkers will be measured in 114 patients who have been operatively diagnosed with NSTI. On admission, baseline...

  12. Mass Spectrometry-based Assay for High Throughput and High Sensitivity Biomarker Verification

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xuejiang; Tang, Keqi

    2017-06-14

    Searching for disease specific biomarkers has become a major undertaking in the biomedical research field as the effective diagnosis, prognosis and treatment of many complex human diseases are largely determined by the availability and the quality of the biomarkers. A successful biomarker as an indicator to a specific biological or pathological process is usually selected from a large group of candidates by a strict verification and validation process. To be clinically useful, the validated biomarkers must be detectable and quantifiable by the selected testing techniques in their related tissues or body fluids. Due to its easy accessibility, protein biomarkers would ideally be identified in blood plasma or serum. However, most disease related protein biomarkers in blood exist at very low concentrations (<1ng/mL) and are “masked” by many none significant species at orders of magnitude higher concentrations. The extreme requirements of measurement sensitivity, dynamic range and specificity make the method development extremely challenging. The current clinical protein biomarker measurement primarily relies on antibody based immunoassays, such as ELISA. Although the technique is sensitive and highly specific, the development of high quality protein antibody is both expensive and time consuming. The limited capability of assay multiplexing also makes the measurement an extremely low throughput one rendering it impractical when hundreds to thousands potential biomarkers need to be quantitatively measured across multiple samples. Mass spectrometry (MS)-based assays have recently shown to be a viable alternative for high throughput and quantitative candidate protein biomarker verification. Among them, the triple quadrupole MS based assay is the most promising one. When it is coupled with liquid chromatography (LC) separation and electrospray ionization (ESI) source, a triple quadrupole mass spectrometer operating in a special selected reaction monitoring (SRM) mode

  13. Proteomic candidate biomarkers of drug-induced nephrotoxicity in the rat.

    Directory of Open Access Journals (Sweden)

    Rodney Rouse

    Full Text Available Improved biomarkers of acute nephrotoxicity are coveted by the drug development industry, regulatory agencies, and clinicians. In an effort to identify such biomarkers, urinary peptide profiles of rats treated with two different nephrotoxins were investigated. 493 marker candidates were defined that showed a significant response to cis-platin comparing a cis-platin treated cohort to controls. Next, urine samples from rats that received three consecutive daily doses of 150 or 300 mg/kg gentamicin were examined. 557 potential biomarkers were initially identified; 108 of these gentamicin-response markers showed a clear temporal response to treatment. 39 of the cisplatin-response markers also displayed a clear response to gentamicin. Of the combined 147 peptides, 101 were similarly regulated by gentamicin or cis-platin and 54 could be identified by tandem mass spectrometry. Most were collagen type I and type III fragments up-regulated in response to gentamicin treatment. Based on these peptides, classification models were generated and validated in a longitudinal study. In agreement with histopathology, the observed changes in classification scores were transient, initiated after the first dose, and generally persistent over a period of 10-20 days before returning to control levels. The data support the hypothesis that gentamicin-induced renal toxicity up-regulates protease activity, resulting in an increase in several specific urinary collagen fragments. Urinary proteomic biomarkers identified here, especially those common to both nephrotoxins, may serve as a valuable tool to investigate potential new drug candidates for the risk of nephrotoxicity.

  14. Multiomics Data Triangulation for Asthma Candidate Biomarkers and Precision Medicine.

    Science.gov (United States)

    Pecak, Matija; Korošec, Peter; Kunej, Tanja

    2018-06-01

    Asthma is a common complex disorder and has been subject to intensive omics research for disease susceptibility and therapeutic innovation. Candidate biomarkers of asthma and its precision treatment demand that they stand the test of multiomics data triangulation before they can be prioritized for clinical applications. We classified the biomarkers of asthma after a search of the literature and based on whether or not a given biomarker candidate is reported in multiple omics platforms and methodologies, using PubMed and Web of Science, we identified omics studies of asthma conducted on diverse platforms using keywords, such as asthma, genomics, metabolomics, and epigenomics. We extracted data about asthma candidate biomarkers from 73 articles and developed a catalog of 190 potential asthma biomarkers (167 human, 23 animal data), comprising DNA loci, transcripts, proteins, metabolites, epimutations, and noncoding RNAs. The data were sorted according to 13 omics types: genomics, epigenomics, transcriptomics, proteomics, interactomics, metabolomics, ncRNAomics, glycomics, lipidomics, environmental omics, pharmacogenomics, phenomics, and integrative omics. Importantly, we found that 10 candidate biomarkers were apparent in at least two or more omics levels, thus promising potential for further biomarker research and development and precision medicine applications. This multiomics catalog reported herein for the first time contributes to future decision-making on prioritization of biomarkers and validation efforts for precision medicine in asthma. The findings may also facilitate meta-analyses and integrative omics studies in the future.

  15. Systematic review using meta-analyses to estimate dose-response relationships between iodine intake and biomarkers of iodine status in different population groups

    NARCIS (Netherlands)

    Ristic-Medic, D.; Dullemeijer, C.; Tepsic, J.; Petrovic-Oggiano, G.; Popovic, Z.; Arsic, A.; Glibetic, M.; Souverein, O.W.; Collings, R.; Cavelaars, A.J.E.M.; Groot, de C.P.G.M.; Veer, van 't P.; Gurinovic, M.

    2014-01-01

    The objective of this systematic review was to identify studies investigating iodine intake and biomarkers of iodine status, to assess the data of the selected studies, and to estimate dose-response relationships using meta-analysis. All randomized controlled trials, prospective cohort studies,

  16. Biomarkers of Immunotoxicity for Environmental and Public Health Research

    Directory of Open Access Journals (Sweden)

    Nina T. Holland

    2011-05-01

    Full Text Available The immune response plays an important role in the pathophysiology of numerous diseases including asthma, autoimmunity and cancer. Application of biomarkers of immunotoxicity in epidemiology studies and human clinical trials can improve our understanding of the mechanisms that underlie the associations between environmental exposures and development of these immune-mediated diseases. Immunological biomarkers currently used in environmental health studies include detection of key components of innate and adaptive immunity (e.g., complement, immunoglobulin and cell subsets as well as functional responses and activation of key immune cells. The use of high-throughput assays, including flow cytometry, Luminex, and Multi-spot cytokine detection methods can further provide quantitative analysis of immune effects. Due to the complexity and redundancy of the immune response, an integrated assessment of several components of the immune responses is needed. The rapidly expanding field of immunoinformatics will also aid in the synthesis of the vast amount of data being generated. This review discusses and provides examples of how the identification and development of immunological biomarkers for use in studies of environmental exposures and immune-mediated disorders can be achieved.

  17. Biomarkers of Immunotoxicity for Environmental and Public Health Research

    Science.gov (United States)

    Duramad, Paurene; Holland, Nina T.

    2011-01-01

    The immune response plays an important role in the pathophysiology of numerous diseases including asthma, autoimmunity and cancer. Application of biomarkers of immunotoxicity in epidemiology studies and human clinical trials can improve our understanding of the mechanisms that underlie the associations between environmental exposures and development of these immune-mediated diseases. Immunological biomarkers currently used in environmental health studies include detection of key components of innate and adaptive immunity (e.g., complement, immunoglobulin and cell subsets) as well as functional responses and activation of key immune cells. The use of high-throughput assays, including flow cytometry, Luminex, and Multi-spot cytokine detection methods can further provide quantitative analysis of immune effects. Due to the complexity and redundancy of the immune response, an integrated assessment of several components of the immune responses is needed. The rapidly expanding field of immunoinformatics will also aid in the synthesis of the vast amount of data being generated. This review discusses and provides examples of how the identification and development of immunological biomarkers for use in studies of environmental exposures and immune-mediated disorders can be achieved. PMID:21655126

  18. Fusing Data Mining, Machine Learning and Traditional Statistics to Detect Biomarkers Associated with Depression

    Science.gov (United States)

    Dipnall, Joanna F.

    2016-01-01

    Background Atheoretical large-scale data mining techniques using machine learning algorithms have promise in the analysis of large epidemiological datasets. This study illustrates the use of a hybrid methodology for variable selection that took account of missing data and complex survey design to identify key biomarkers associated with depression from a large epidemiological study. Methods The study used a three-step methodology amalgamating multiple imputation, a machine learning boosted regression algorithm and logistic regression, to identify key biomarkers associated with depression in the National Health and Nutrition Examination Study (2009–2010). Depression was measured using the Patient Health Questionnaire-9 and 67 biomarkers were analysed. Covariates in this study included gender, age, race, smoking, food security, Poverty Income Ratio, Body Mass Index, physical activity, alcohol use, medical conditions and medications. The final imputed weighted multiple logistic regression model included possible confounders and moderators. Results After the creation of 20 imputation data sets from multiple chained regression sequences, machine learning boosted regression initially identified 21 biomarkers associated with depression. Using traditional logistic regression methods, including controlling for possible confounders and moderators, a final set of three biomarkers were selected. The final three biomarkers from the novel hybrid variable selection methodology were red cell distribution width (OR 1.15; 95% CI 1.01, 1.30), serum glucose (OR 1.01; 95% CI 1.00, 1.01) and total bilirubin (OR 0.12; 95% CI 0.05, 0.28). Significant interactions were found between total bilirubin with Mexican American/Hispanic group (p = 0.016), and current smokers (p<0.001). Conclusion The systematic use of a hybrid methodology for variable selection, fusing data mining techniques using a machine learning algorithm with traditional statistical modelling, accounted for missing data and

  19. Fusing Data Mining, Machine Learning and Traditional Statistics to Detect Biomarkers Associated with Depression.

    Directory of Open Access Journals (Sweden)

    Joanna F Dipnall

    Full Text Available Atheoretical large-scale data mining techniques using machine learning algorithms have promise in the analysis of large epidemiological datasets. This study illustrates the use of a hybrid methodology for variable selection that took account of missing data and complex survey design to identify key biomarkers associated with depression from a large epidemiological study.The study used a three-step methodology amalgamating multiple imputation, a machine learning boosted regression algorithm and logistic regression, to identify key biomarkers associated with depression in the National Health and Nutrition Examination Study (2009-2010. Depression was measured using the Patient Health Questionnaire-9 and 67 biomarkers were analysed. Covariates in this study included gender, age, race, smoking, food security, Poverty Income Ratio, Body Mass Index, physical activity, alcohol use, medical conditions and medications. The final imputed weighted multiple logistic regression model included possible confounders and moderators.After the creation of 20 imputation data sets from multiple chained regression sequences, machine learning boosted regression initially identified 21 biomarkers associated with depression. Using traditional logistic regression methods, including controlling for possible confounders and moderators, a final set of three biomarkers were selected. The final three biomarkers from the novel hybrid variable selection methodology were red cell distribution width (OR 1.15; 95% CI 1.01, 1.30, serum glucose (OR 1.01; 95% CI 1.00, 1.01 and total bilirubin (OR 0.12; 95% CI 0.05, 0.28. Significant interactions were found between total bilirubin with Mexican American/Hispanic group (p = 0.016, and current smokers (p<0.001.The systematic use of a hybrid methodology for variable selection, fusing data mining techniques using a machine learning algorithm with traditional statistical modelling, accounted for missing data and complex survey sampling

  20. Use of biomarkers in ALS drug development and clinical trials.

    Science.gov (United States)

    Bakkar, Nadine; Boehringer, Ashley; Bowser, Robert

    2015-05-14

    The past decade has seen a dramatic increase in the discovery of candidate biomarkers for ALS. These biomarkers typically can either differentiate ALS from control subjects or predict disease course (slow versus fast progression). At the same time, late-stage clinical trials for ALS have failed to generate improved drug treatments for ALS patients. Incorporation of biomarkers into the ALS drug development pipeline and the use of biologic and/or imaging biomarkers in early- and late-stage ALS clinical trials have been absent and only recently pursued in early-phase clinical trials. Further clinical research studies are needed to validate biomarkers for disease progression and develop biomarkers that can help determine that a drug has reached its target within the central nervous system. In this review we summarize recent progress in biomarkers across ALS model systems and patient population, and highlight continued research directions for biomarkers that stratify the patient population to enrich for patients that may best respond to a drug candidate, monitor disease progression and track drug responses in clinical trials. It is crucial that we further develop and validate ALS biomarkers and incorporate these biomarkers into the ALS drug development process. This article is part of a Special Issue entitled ALS complex pathogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Circulating microRNAs as Potential Biomarkers of Infectious Disease

    Science.gov (United States)

    Correia, Carolina N.; Nalpas, Nicolas C.; McLoughlin, Kirsten E.; Browne, John A.; Gordon, Stephen V.; MacHugh, David E.; Shaughnessy, Ronan G.

    2017-01-01

    microRNAs (miRNAs) are a class of small non-coding endogenous RNA molecules that regulate a wide range of biological processes by post-transcriptionally regulating gene expression. Thousands of these molecules have been discovered to date, and multiple miRNAs have been shown to coordinately fine-tune cellular processes key to organismal development, homeostasis, neurobiology, immunobiology, and control of infection. The fundamental regulatory role of miRNAs in a variety of biological processes suggests that differential expression of these transcripts may be exploited as a novel source of molecular biomarkers for many different disease pathologies or abnormalities. This has been emphasized by the recent discovery of remarkably stable miRNAs in mammalian biofluids, which may originate from intracellular processes elsewhere in the body. The potential of circulating miRNAs as biomarkers of disease has mainly been demonstrated for various types of cancer. More recently, however, attention has focused on the use of circulating miRNAs as diagnostic/prognostic biomarkers of infectious disease; for example, human tuberculosis caused by infection with Mycobacterium tuberculosis, sepsis caused by multiple infectious agents, and viral hepatitis. Here, we review these developments and discuss prospects and challenges for translating circulating miRNA into novel diagnostics for infectious disease. PMID:28261201

  2. [Collaborative projects with academia for regulatory science studies on biomarkers].

    Science.gov (United States)

    Saito, Yoshiro; Nakamura, Ryosuke; Maekawa, Keiko

    2014-01-01

    Biomarkers are useful tools to be utilized as indicators/predictors of disease severity and drug responsiveness/safety, and thus are expected to promote efficient drug development and to accelerate proper use of approved drugs. Many academic achievements have been reported, but only a small number of biomarkers are used in clinical trials and drug treatments. Regulatory sciences on biomarkers for their secure development and proper qualification are necessary to facilitate their practical application. We started to collaborate with Tohoku University and Nagoya City University for sample quality, biomarker identification, evaluation of their usage, and making guidances. In this short review, scheme and progress of these projects are introduced.

  3. Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham Heart Study.

    Science.gov (United States)

    Wang, Thomas J; Wollert, Kai C; Larson, Martin G; Coglianese, Erin; McCabe, Elizabeth L; Cheng, Susan; Ho, Jennifer E; Fradley, Michael G; Ghorbani, Anahita; Xanthakis, Vanessa; Kempf, Tibor; Benjamin, Emelia J; Levy, Daniel; Vasan, Ramachandran S; Januzzi, James L

    2012-09-25

    Biomarkers for predicting cardiovascular events in community-based populations have not consistently added information to standard risk factors. A limitation of many previously studied biomarkers is their lack of cardiovascular specificity. To determine the prognostic value of 3 novel biomarkers induced by cardiovascular stress, we measured soluble ST2, growth differentiation factor-15, and high-sensitivity troponin I in 3428 participants (mean age, 59 years; 53% women) in the Framingham Heart Study. We performed multivariable-adjusted proportional hazards models to assess the individual and combined ability of the biomarkers to predict adverse outcomes. We also constructed a "multimarker" score composed of the 3 biomarkers in addition to B-type natriuretic peptide and high-sensitivity C-reactive protein. During a mean follow-up of 11.3 years, there were 488 deaths, 336 major cardiovascular events, 162 heart failure events, and 142 coronary events. In multivariable-adjusted models, the 3 new biomarkers were associated with each end point (Pstatistic (P=0.005 or lower) and net reclassification improvement (P=0.001 or lower). Multiple biomarkers of cardiovascular stress are detectable in ambulatory individuals and add prognostic value to standard risk factors for predicting death, overall cardiovascular events, and heart failure.

  4. Pavlovian conditioning of multiple opioid-like responses in mice.

    Science.gov (United States)

    Bryant, Camron D; Roberts, Kristofer W; Culbertson, Christopher S; Le, Alan; Evans, Christopher J; Fanselow, Michael S

    2009-07-01

    Conditional responses in rodents such as locomotion have been reported for drugs of abuse and similar to the placebo response in humans, may be associated with the expectation of reward. We examined several conditional opioid-like responses and the influence of drug expectation on conditioned place preference and concomitant conditional locomotion. Male C57BL/6J mice were conditioned with the selective mu opioid receptor agonist fentanyl (0.2mg/kg, i.p.) in a novel context and subsequently given a vehicle injection. In separate experiments, locomotor activity, Straub tail, hot plate sensitivity, and conditioned place preference (CPP) were measured. Mice exhibited multiple conditional opioid-like responses including conditional hyperlocomotion, a conditional pattern of opioid-like locomotion, Straub tail, analgesia, and place preference. Modulating drug expectation via administration of fentanyl to "demonstrator" mice in the home cage did not affect the expression of conditioned place preference or the concomitant locomotor activity in "observer" mice. In summary, Pavlovian conditioning of an opioid in a novel context induced multiple conditional opioid-like behaviors and provides a model for studying the neurobiological mechanisms of the placebo response in mice.

  5. The Biomarker-Surrogacy Evaluation Schema: a review of the biomarker-surrogate literature and a proposal for a criterion-based, quantitative, multidimensional hierarchical levels of evidence schema for evaluating the status of biomarkers as surrogate endpoints.

    Science.gov (United States)

    Lassere, Marissa N

    2008-06-01

    There are clear advantages to using biomarkers and surrogate endpoints, but concerns about clinical and statistical validity and systematic methods to evaluate these aspects hinder their efficient application. Section 2 is a systematic, historical review of the biomarker-surrogate endpoint literature with special reference to the nomenclature, the systems of classification and statistical methods developed for their evaluation. In Section 3 an explicit, criterion-based, quantitative, multidimensional hierarchical levels of evidence schema - Biomarker-Surrogacy Evaluation Schema - is proposed to evaluate and co-ordinate the multiple dimensions (biological, epidemiological, statistical, clinical trial and risk-benefit evidence) of the biomarker clinical endpoint relationships. The schema systematically evaluates and ranks the surrogacy status of biomarkers and surrogate endpoints using defined levels of evidence. The schema incorporates the three independent domains: Study Design, Target Outcome and Statistical Evaluation. Each domain has items ranked from zero to five. An additional category called Penalties incorporates additional considerations of biological plausibility, risk-benefit and generalizability. The total score (0-15) determines the level of evidence, with Level 1 the strongest and Level 5 the weakest. The term ;surrogate' is restricted to markers attaining Levels 1 or 2 only. Surrogacy status of markers can then be directly compared within and across different areas of medicine to guide individual, trial-based or drug-development decisions. This schema would facilitate communication between clinical, researcher, regulatory, industry and consumer participants necessary for evaluation of the biomarker-surrogate-clinical endpoint relationship in their different settings.

  6. Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis

    DEFF Research Database (Denmark)

    Rocca, Maria A; Amato, Maria P; De Stefano, Nicola

    2015-01-01

    In patients with multiple sclerosis (MS), grey matter damage is widespread and might underlie many of the clinical symptoms, especially cognitive impairment. This relation between grey matter damage and cognitive impairment has been lent support by findings from clinical and MRI studies. However...... that causes clinical symptoms to trigger. Findings on cortical reorganisation support the contribution of brain plasticity and cognitive reserve in limiting cognitive deficits. The development of clinical and imaging biomarkers that can monitor disease development and treatment response is crucial to allow...

  7. Immune biomarker differences and changes comparing HCV mono-infected, HIV/HCV co-infected, and HCV spontaneously cleared patients.

    Directory of Open Access Journals (Sweden)

    Lauren E Kushner

    Full Text Available Immune biomarkers are implicated in HCV treatment response, fibrosis, and accelerated pathogenesis of comorbidities, though only D-dimer and C-reactive protein have been consistently studied. Few studies have evaluated HIV/HCV co-infection, and little longitudinal data exists describing a broader antiviral cytokine response.Fifty immune biomarkers were analyzed at baseline (BL and HCV end of treatment follow-up(FU time point using the Luminex 50-plex assay in plasma samples from 15 HCV-cleared, 24 HCV mono- and 49 HIV/HCV co-infected patients receiving antiretroviral treatment, who either did or did not receive pegylated-interferon/ribavirin HCV treatment. Biomarker levels were compared among spontaneous clearance patients, mono- and co-infected, untreated and HCV-treated, and sustained virologic responders (SVR and non-responders (NR at BL and FU using nonparametric analyses. A Bonferroni correction, adjusting for tests of 50 biomarkers, was used to reduce Type I error.Compared to HCV patients at BL, HIV/HCV patients had 22 significantly higher and 4 significantly lower biomarker levels, following correction for multiple testing. There were no significantly different BL levels when comparing SVR and NR in mono- or co-infected patients; however, FU levels changed considerably in co-infected patients, with seven becoming significantly higher and eight becoming significantly lower in SVR patients. Longitudinally between BL and FU, 13 markers significantly changed in co-infected SVR patients, while none significantly changed in co-infected NR patients. There were also no significant changes in longitudinal analyses of mono-infected patients achieving SVR or mono-infected and co-infected groups deferring treatment.Clear differences exist in pattern and quantity of plasma immune biomarkers among HCV mono-infected, HIV/HCV co-infected, and HCV-cleared patients; and with SVR in co-infected patients treated for HCV. Though >90% of patients were male and

  8. Deciphering metabonomics biomarkers-targets interactions for psoriasis vulgaris by network pharmacology.

    Science.gov (United States)

    Gu, Jiangyong; Li, Li; Wang, Dongmei; Zhu, Wei; Han, Ling; Zhao, Ruizhi; Xu, Xiaojie; Lu, Chuanjian

    2018-06-01

    Psoriasis vulgaris is a chronic inflammatory and immune-mediated skin disease. 44 metabonomics biomarkers were identified by high-throughput liquid chromatography coupled to mass spectrometry in our previous work, but the roles of metabonomics biomarkers in the pathogenesis of psoriasis is unclear. The metabonomics biomarker-enzyme network was constructed. The key metabonomics biomarkers and enzymes were screened out by network analysis. The binding affinity between each metabonomics biomarker and target was calculated by molecular docking. A binding energy-weighted polypharmacological index was introduced to evaluate the importance of target-related pathways. Long-chain fatty acids, phospholipids, Estradiol and NADH were the most important metabonomics biomarkers. Most key enzymes belonged hydrolase, thioesterase and acyltransferase. Six proteins (TNF-alpha, MAPK3, iNOS, eNOS, COX2 and mTOR) were extensively involved in inflammatory reaction, immune response and cell proliferation, and might be drug targets for psoriasis. PI3K-Akt signaling pathway and five other pathways had close correlation with the pathogenesis of psoriasis and could deserve further research. The inflammatory reaction, immune response and cell proliferation are mainly involved in psoriasis. Network pharmacology provide a new insight into the relationships between metabonomics biomarkers and the pathogenesis of psoriasis. KEY MESSAGES   • Network pharmacology was adopted to identify key metabonomics biomarkers and enzymes.   • Six proteins were screened out as important drug targets for psoriasis.   • A binding energy-weighted polypharmacological index was introduced to evaluate the importance of target-related pathways.

  9. Multi-dimensional discovery of biomarker and phenotype complexes

    Directory of Open Access Journals (Sweden)

    Huang Kun

    2010-10-01

    Full Text Available Abstract Background Given the rapid growth of translational research and personalized healthcare paradigms, the ability to relate and reason upon networks of bio-molecular and phenotypic variables at various levels of granularity in order to diagnose, stage and plan treatments for disease states is highly desirable. Numerous techniques exist that can be used to develop networks of co-expressed or otherwise related genes and clinical features. Such techniques can also be used to create formalized knowledge collections based upon the information incumbent to ontologies and domain literature. However, reports of integrative approaches that bridge such networks to create systems-level models of disease or wellness are notably lacking in the contemporary literature. Results In response to the preceding gap in knowledge and practice, we report upon a prototypical series of experiments that utilize multi-modal approaches to network induction. These experiments are intended to elicit meaningful and significant biomarker-phenotype complexes spanning multiple levels of granularity. This work has been performed in the experimental context of a large-scale clinical and basic science data repository maintained by the National Cancer Institute (NCI funded Chronic Lymphocytic Leukemia Research Consortium. Conclusions Our results indicate that it is computationally tractable to link orthogonal networks of genes, clinical features, and conceptual knowledge to create multi-dimensional models of interrelated biomarkers and phenotypes. Further, our results indicate that such systems-level models contain interrelated bio-molecular and clinical markers capable of supporting hypothesis discovery and testing. Based on such findings, we propose a conceptual model intended to inform the cross-linkage of the results of such methods. This model has as its aim the identification of novel and knowledge-anchored biomarker-phenotype complexes.

  10. The serotonin system in autism spectrum disorder: from biomarker to animal models

    OpenAIRE

    Muller, Christopher L.; Anacker, Allison M.J.; Veenstra-VanderWeele, Jeremy

    2015-01-01

    Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophy...

  11. On the Equivalence of Constructed-Response and Multiple-Choice Tests.

    Science.gov (United States)

    Traub, Ross E.; Fisher, Charles W.

    Two sets of mathematical reasoning and two sets of verbal comprehension items were cast into each of three formats--constructed response, standard multiple-choice, and Coombs multiple-choice--in order to assess whether tests with indentical content but different formats measure the same attribute, except for possible differences in error variance…

  12. Enhancing the 'real world' prediction of cardiovascular events and major bleeding with the CHA2DS2-VASc and HAS-BLED scores using multiple biomarkers.

    Science.gov (United States)

    Roldán, Vanessa; Rivera-Caravaca, José Miguel; Shantsila, Alena; García-Fernández, Amaya; Esteve-Pastor, María Asunción; Vilchez, Juan Antonio; Romera, Marta; Valdés, Mariano; Vicente, Vicente; Marín, Francisco; Lip, Gregory Y H

    2018-02-01

    Atrial fibrillation (AF)-European guidelines suggest the use of biomarkers to stratify patients for stroke and bleeding risks. We investigated if a multibiomarker strategy improved the predictive performance of CHA 2 DS 2 -VASc and HAS-BLED in anticoagulated AF patients. We included consecutive patients stabilized for six months on vitamin K antagonists (INRs 2.0-3.0). High sensitivity troponin T, NT-proBNP, interleukin-6, von Willebrand factor concentrations and glomerular filtration rate (eGFR; using MDRD-4 formula) were quantified at baseline. Time in therapeutic range (TTR) was recorded at six months after inclusion. Patients were follow-up during a median of 2375 (IQR 1564-2887) days and all adverse events were recorded. In 1361 patients, adding four blood biomarkers, TTR and MDRD-eGFR, the predictive value of CHA 2 DS 2 -VASc increased significantly by c-index (0.63 vs. 0.65; p = .030) and IDI (0.85%; p originals scores. Addition of biomarkers enhanced the predictive value of CHA 2 DS 2 -VASc and HAS-BLED, although the overall improvement was modest and the added predictive advantage over original scores was marginal. Key Messages Recent atrial fibrillation (AF)-European guidelines for the first time suggest the use of biomarkers to stratify patients for stroke and bleeding risks, but their usefulness in real world for risk stratification is still questionable. In this cohort study involving 1361 AF patients optimally anticoagulated with vitamin K antagonists, adding high sensitivity troponin T, N-terminal pro-B-type natriuretic peptide, interleukin 6, von Willebrand factor, glomerular filtration rate (by the MDRD-4 formula) and time in therapeutic range, increased the predictive value of CHA 2 DS 2 -VASc for cardiovascular events, but not the predictive value of HAS-BLED for major bleeding. Reclassification analyses did not show improvement adding multiple biomarkers. Despite the improvement observed, the added predictive advantage is marginal and

  13. Effects of metal pollution on earthworm communities in a contaminated floodplain area: Linking biomarker, community and functional responses

    International Nuclear Information System (INIS)

    Gestel, Cornelis A.M. van; Koolhaas, Josee E.; Hamers, Timo; Hoppe, Maarten van; Roovert, Martijn van; Korsman, Cora; Reinecke, Sophie A.

    2009-01-01

    Effects on earthworms in the contaminated floodplain area the Biesbosch, the Netherlands, were determined at different levels of organization using a combination of field and laboratory tests. The species Lumbricus rubellus, collected from different polluted sites in the Biesbosch, showed reduced values for the biomarker neutral red retention time (NRRT), mainly explained by high metal concentrations in the soil and the resulting high internal copper concentrations in the earthworms. Organic pollutant levels in earthworms were low and did not explain reduced NRRTs. Earthworm abundance and biomass were not correlated with pollutant levels in the soil. Litterbag decomposition and bait-lamina feeding activity, measures of the functional role of earthworms, were not affected by metal pollution and did not show any correlation with metal concentrations in soil or earthworms nor with NRRT. Effects at the biochemical level therefore did not result in a reduced functioning of earthworm communities. - Metal pollution in floodplain soils does affect earthworm biomarker response but not their activity in decomposition processes

  14. Liver proteome response of largemouth bass (Micropterus salmoides) exposed to several environmental contaminants: Potential insights into biomarker development

    International Nuclear Information System (INIS)

    Sanchez, Brian C.; Ralston-Hooper, Kimberly J.; Kowalski, Kevin A.; Dorota Inerowicz, H.; Adamec, Jiri; Sepulveda, Maria S.

    2009-01-01

    Liver proteome response of largemouth bass (Micropterus salmoides) exposed to environmental contaminants was analyzed to identify novel biomarkers of exposure. Adult male bass were exposed to cadmium chloride (CdCl 2 ), atrazine, PCB 126, phenanthrene, or toxaphene via intraperitoneal injection with target body burdens of 0.00067, 3.0, 2.5, 50, and 100 μg/g, respectively. After a 96 h exposure, hepatic proteins were separated with two-dimensional gel electrophoresis and differentially expressed proteins (vs. controls) recognized and identified with MALDI-TOF/TOF mass spectrometry. We identified, 30, 18, eight, 19, and five proteins as differentially expressed within the CdCl 2 , atrazine, PCB 126, phenanthrene, and toxaphene treatments, respectively. Alterations were observed in the expression of proteins associated with cellular ion homeostasis (toxaphene), oxidative stress (phenanthrene, PCB 126), and energy production including glycolysis (CdCl 2 , atrazine) and ATP synthesis (atrazine). This work supports the further evaluation of several of these proteins as biomarkers of contaminant exposure in fish.

  15. Effects of metal pollution on earthworm communities in a contaminated floodplain area: Linking biomarker, community and functional responses

    Energy Technology Data Exchange (ETDEWEB)

    Gestel, Cornelis A.M. van [Institute of Ecological Science, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)], E-mail: kees.van.gestel@falw.vu.nl; Koolhaas, Josee E. [Institute of Ecological Science, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Hamers, Timo [Institute of Environmental Studies, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Hoppe, Maarten van; Roovert, Martijn van; Korsman, Cora [Institute of Ecological Science, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Reinecke, Sophie A. [Department of Botany and Zoology, University of Stellenbosch, Private bag X1, Matieland 7602 (South Africa)

    2009-03-15

    Effects on earthworms in the contaminated floodplain area the Biesbosch, the Netherlands, were determined at different levels of organization using a combination of field and laboratory tests. The species Lumbricus rubellus, collected from different polluted sites in the Biesbosch, showed reduced values for the biomarker neutral red retention time (NRRT), mainly explained by high metal concentrations in the soil and the resulting high internal copper concentrations in the earthworms. Organic pollutant levels in earthworms were low and did not explain reduced NRRTs. Earthworm abundance and biomass were not correlated with pollutant levels in the soil. Litterbag decomposition and bait-lamina feeding activity, measures of the functional role of earthworms, were not affected by metal pollution and did not show any correlation with metal concentrations in soil or earthworms nor with NRRT. Effects at the biochemical level therefore did not result in a reduced functioning of earthworm communities. - Metal pollution in floodplain soils does affect earthworm biomarker response but not their activity in decomposition processes.

  16. LABORATORY BIOMARKERS FOR ANKYLOSING SPONDYLITIS

    Directory of Open Access Journals (Sweden)

    E. N. Aleksandrova

    2017-01-01

    Full Text Available Ankylosing spondylitis (AS is a chronic inflammatory disease from a group of spondyloarthritis (SpA, which is characterized by lesions of the sacroiliac joints and spine with the common involvement of entheses and peripheral joints in the pathological process. Advances in modern laboratory medicine have contributed to a substantial expansion of the range of pathogenetic, diagnostic, and prognostic biomarkers of AS. As of now, there are key pathogenetic biomarkers of AS (therapeutic targets, which include tumor necrosis factor-α (TNF-α, interleukin 17 (IL-17, and IL-23. Among the laboratory diagnostic and prognostic biomarkers, HLA-B27 and C-reactive protein are of the greatest value in clinical practice; the former for the early diagnosis of the disease and the latter for the assessment of disease activity, the risk of radiographic progression and the efficiency of therapy. Anti-CD74 antibodies are a new biomarker that has high sensitivity and specificity values in diagnosing axial SpA at an early stage. A number of laboratory biomarkers, including calprotectin, matrix metalloproteinase-3 (MMP-3, vascular endothelial growth factor, Dickkopf-1 (Dkk-1, and C-terminal telopeptide of type II collagen (CTX II do not well reflect disease activity, but may predict progressive structural changes in the spine and sacroiliac joints in AS. Blood calprotectin level monitoring allows the effective prediction of a response to therapy with TNF inhibitors and anti-IL-17А monoclonal antibodies. The prospects for the laboratory diagnosis of AS are associated with the clinical validation of candidate biomarkers during large-scale prospective cohort studies and with a search for new proteomic, transcriptomic and genomic markers, by using innovative molecular and cellular technologies.

  17. Clinical, functional, behavioural and epigenomic biomarkers of obesity.

    Science.gov (United States)

    Lafortuna, Claudio L; Tovar, Armando R; Rastelli, Fabio; Tabozzi, Sarah A; Caramenti, Martina; Orozco-Ruiz, Ximena; Aguilar-Lopez, Miriam; Guevara-Cruz, Martha; Avila-Nava, Azalia; Torres, Nimbe; Bertoli, Gloria

    2017-06-01

    Overweight and obesity are highly prevalent conditions worldwide, linked to an increased risk for death, disability and disease due to metabolic and biochemical abnormalities affecting the biological human system throughout different domains. Biomarkers, defined as indicators of biological processes in health and disease, relevant for body mass excess management have been identified according to different criteria, including anthropometric and molecular indexes, as well as physiological and behavioural aspects. Analysing these different biomarkers, we identified their potential role in diagnosis, prognosis and treatment. Epigenetic biomarkers, cellular mediators of inflammation and factors related to microbiota-host interactions may be considered to have a theranostic value. Though, the molecular processes responsible for the biological phenomenology detected by the other analysed markers, is not clear yet. Nevertheless, these biomarkers possess valuable diagnostic and prognostic power. A new frontier for theranostic biomarkers can be foreseen in the exploitation of parameters defining behaviours and lifestyles linked to the risk of obesity, capable to describe the effects of interventions for obesity prevention and treatment which include also behaviour change strategies.

  18. Response to Therapy and Outcomes in Oropharyngeal Cancer Are Associated With Biomarkers Including Human Papillomavirus, Epidermal Growth Factor Receptor, Gender, and Smoking

    International Nuclear Information System (INIS)

    Kumar, Bhavna; Cordell, Kitrina G.; Lee, Julia S.; Prince, Mark E.; Tran, Huong H.; Wolf, Gregory T.; Urba, Susan G.; Worden, Francis P.; Chepeha, Douglas B.; Teknos, Theodoros N.; Eisbruch, Avraham; Tsien, Christina I.; Taylor, Jeremy; D'Silva, Nisha J.; Yang, Kun; Kurnit, David M.; Bradford, Carol R.

    2007-01-01

    Induction chemotherapy and concurrent chemoradiation for responders or immediate surgery for non-responders is an effective treatment strategy head and neck squamous cell carcinoma (HNSCC) of the larynx and oropharynx. Biomarkers that predict outcome would be valuable in selecting patients for therapy. In this study, the presence and titer of high risk human papilloma virus (HPV) and expression of epidermal growth factor receptor (EGFR) in pre-treatment biopsies, as well as smoking and gender were examined in oropharynx cancer patients enrolled in an organ sparing trial. HPV16 copy number was positively associated with response to therapy and with overall and disease specific survival, whereas EGFR expression, current or former smoking behavior, and female gender (in this cohort) were associated with poor response and poor survival in multivariate analysis. Smoking cessation and strategies to target EGFR may be useful adjuncts for therapy to improve outcome in the cases with the poorest biomarker profile

  19. Bio-monitoring of mycotoxin exposure in Cameroon using a urinary multi-biomarker approach.

    Science.gov (United States)

    Abia, Wilfred A; Warth, Benedikt; Sulyok, Michael; Krska, Rudolf; Tchana, Angele; Njobeh, Patrick B; Turner, Paul C; Kouanfack, Charles; Eyongetah, Mbu; Dutton, Mike; Moundipa, Paul F

    2013-12-01

    Bio-monitoring of human exposure to mycotoxin has mostly been limited to a few individually measured mycotoxin biomarkers. This study aimed to determine the frequency and level of exposure to multiple mycotoxins in human urine from Cameroonian adults. 175 Urine samples (83% from HIV-positive individuals) and food frequency questionnaire responses were collected from consenting Cameroonians, and analyzed for 15 mycotoxins and relevant metabolites using LC-ESI-MS/MS. In total, eleven analytes were detected individually or in combinations in 110/175 (63%) samples including the biomarkers aflatoxin M1, fumonisin B1, ochratoxin A and total deoxynivalenol. Additionally, important mycotoxins and metabolites thereof, such as fumonisin B2, nivalenol and zearalenone, were determined, some for the first time in urine following dietary exposures. Multi-mycotoxin contamination was common with one HIV-positive individual exposed to five mycotoxins, a severe case of co-exposure that has never been reported in adults before. For the first time in Africa or elsewhere, this study quantified eleven mycotoxin biomarkers and bio-measures in urine from adults. For several mycotoxins estimates indicate that the tolerable daily intake is being exceeded in this study population. Given that many mycotoxins adversely affect the immune system, future studies will examine whether combinations of mycotoxins negatively impact Cameroonian population particularly immune-suppressed individuals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Biomarkers of drug-induced vascular injury

    International Nuclear Information System (INIS)

    Brott, D.; Gould, S.; Jones, H.; Schofield, J.; Prior, H.; Valentin, J.P; Bjurstrom, S.; Kenne, K.; Schuppe-Koistinen, I.; Katein, A.; Foster-Brown, L.; Betton, G.; Richardson, R.; Evans, G.; Louden, C.

    2005-01-01

    In pre-clinical safety studies, drug-induced vascular injury is an issue of concern because there are no obvious diagnostic markers for pre-clinical or clinical monitoring and there is an intellectual gap in our understanding of the pathogenesis of this lesion. While vasodilatation and increased shear stress appear to play a role, the exact mechanism(s) of injury to the primary targets, smooth muscle and endothelial cells are unknown. However, evaluation of novel markers for potential clinical monitoring with a mechanistic underpinning would add value in risk assessment and management. This mini review focuses on the progress to identify diagnostic markers of drug-induced vascular injury. Von Willebrand factor (vWF), released upon perturbation of endothelial cells, is transiently increased in plasma prior to morphological evidence of damage in dogs or rats treated with vascular toxicants. Therefore, vWF might be a predictive biomarker of vascular injury. However, vWF is not an appropriate biomarker of lesion progression or severity since levels return to baseline values when there is morphological evidence of injury. A potential mechanistically linked biomarker of vascular injury is caveolin-1. Expression of this protein, localized primarily to smooth muscle and endothelial cells, decreases with the onset of vascular damage. Since vascular injury involves multiple mediators and cell types, evaluation of a panel rather than a single biomarker may be more useful in monitoring early and severe progressive vascular injury

  1. IP-10 measured by Dry Plasma Spots as biomarker for therapy responses in Mycobacterium Tuberculosis infection.

    Science.gov (United States)

    Tonby, Kristian; Ruhwald, Morten; Kvale, Dag; Dyrhol-Riise, Anne Ma

    2015-03-18

    Tuberculosis (TB) has huge impact on human morbidity and mortality and biomarkers to support rapid TB diagnosis and ensure treatment initiation and cure are needed, especially in regions with high prevalence of multi-drug resistant TB. Soluble interferon gamma inducible protein 10 (IP-10) analyzed from dry plasma spots (DPS) has potential as an immunodiagnostic marker in TB infection. We analyzed IP-10 levels in plasma directly and extracted from DPS in parallel by ELISA from 34 clinically well characterized patients with TB disease before and throughout 24 weeks of effective anti-TB chemotherapy. We detected a significant decline of IP-10 levels in both plasma and DPS already after two weeks of therapy with good correlation between the tests. This was observed both in pulmonary and extrapulmonary TB. In conclusion, plasma IP-10 may serve as an early biomarker for anti-TB chemotherapy responses and the IP-10 DPS method has potential to be developed into a point-of care test for use in resource-limited settings. Further studies must be performed to validate the use of IP-10 DPS in TB high endemic countries.

  2. Candidate biomarker discovery and selection for ‘Granny Smith' superficial scald risk management and diagnosis, poster board

    Science.gov (United States)

    Discovery of candidate biomarkers for superficial scald, a peel disorder that develops during storage of susceptible apple cultivars, is part of a larger project aimed at developing biomarker-based risk-management and diagnostic tools for multiple apple postharvest disorders (http://www.tfrec.wsu.ed...

  3. Development of protein biomarkers in cerebrospinal fluid for secondary progressive multiple sclerosis using selected reaction monitoring mass spectrometry (SRM-MS

    Directory of Open Access Journals (Sweden)

    Jia Yan

    2012-07-01

    Full Text Available Abstract Background Multiple sclerosis (MS is a chronic inflammatory disorder of the central nervous system (CNS. It involves damage to the myelin sheath surrounding axons and to the axons themselves. MS most often presents with a series of relapses and remissions but then evolves over a variable period of time into a slowly progressive form of neurological dysfunction termed secondary progressive MS (SPMS. The reasons for this change in clinical presentation are unclear. The absence of a diagnostic marker means that there is a lag time of several years before the diagnosis of SPMS can be established. At the same time, understanding the mechanisms that underlie SPMS is critical to the development of rational therapies for this untreatable stage of the disease. Results Using high performance liquid chromatography-coupled mass spectrometry (HPLC; we have established a highly specific and sensitive selected reaction monitoring (SRM assay. Our multiplexed SRM assay has facilitated the simultaneous detection of surrogate peptides originating from 26 proteins present in cerebrospinal fluid (CSF. Protein levels in CSF were generally ~200-fold lower than that in human sera. A limit of detection (LOD was determined to be as low as one femtomol. We processed and analysed CSF samples from a total of 22 patients with SPMS, 7 patients with SPMS treated with lamotrigine, 12 patients with non-inflammatory neurological disorders (NIND and 10 healthy controls (HC for the levels of these 26 selected potential protein biomarkers. Our SRM data found one protein showing significant difference between SPMS and HC, three proteins differing between SPMS and NIND, two proteins between NIND and HC, and 11 protein biomarkers showing significant difference between a lamotrigine-treated and untreated SPMS group. Principal component analysis (PCA revealed that these 26 proteins were correlated, and could be represented by four principal components. Overall, we established an

  4. Biomarkers in Diabetic Retinopathy

    Science.gov (United States)

    Jenkins, Alicia J.; Joglekar, Mugdha V.; Hardikar, Anandwardhan A.; Keech, Anthony C.; O'Neal, David N.; Januszewski, Andrzej S.

    2015-01-01

    There is a global diabetes epidemic correlating with an increase in obesity. This coincidence may lead to a rise in the prevalence of type 2 diabetes. There is also an as yet unexplained increase in the incidence of type 1 diabetes, which is not related to adiposity. Whilst improved diabetes care has substantially improved diabetes outcomes, the disease remains a common cause of working age adult-onset blindness. Diabetic retinopathy is the most frequently occurring complication of diabetes; it is greatly feared by many diabetes patients. There are multiple risk factors and markers for the onset and progression of diabetic retinopathy, yet residual risk remains. Screening for diabetic retinopathy is recommended to facilitate early detection and treatment. Common biomarkers of diabetic retinopathy and its risk in clinical practice today relate to the visualization of the retinal vasculature and measures of glycemia, lipids, blood pressure, body weight, smoking, and pregnancy status. Greater knowledge of novel biomarkers and mediators of diabetic retinopathy, such as those related to inflammation and angiogenesis, has contributed to the development of additional therapeutics, in particular for late-stage retinopathy, including intra-ocular corticosteroids and intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') agents. Unfortunately, in spite of a range of treatments (including laser photocoagulation, intraocular steroids, and anti-VEGF agents, and more recently oral fenofibrate, a PPAR-alpha agonist lipid-lowering drug), many patients with diabetic retinopathy do not respond well to current therapeutics. Therefore, more effective treatments for diabetic retinopathy are necessary. New analytical techniques, in particular those related to molecular markers, are accelerating progress in diabetic retinopathy research. Given the increasing incidence and prevalence of diabetes, and the limited capacity of healthcare systems to screen and treat

  5. Cellular Models for Environmental Toxicant Biomarker Discovery

    National Research Council Canada - National Science Library

    Halverson, Kelly M; Lewsis, John A; Jackson, David A; Dennis, William; Brennan, Linda; Krakaner, Teresa

    2006-01-01

    ...) is the development of biomarkers of exposure, effect, and susceptibility. As exposure monitoring using environmental sampling equipment can be impractical and doesn't account for differences in individual responses, new methodologies must be sought...

  6. Comparison of lipid peroxidation and catalase response in invasive dreissenid mussels exposed to single and multiple stressors.

    Science.gov (United States)

    Nowicki, Carly J; Kashian, Donna R

    2018-02-14

    Dreissenid mussels Dreissena bugensis (quagga mussel) and Dreissena polymorpha (zebra mussel) are prolific invasive species to the freshwaters of the United States and Western Europe. In the Great Lakes, D. polymorpha has initially dominated the system since its invasion in the mid-1980s; however, recently D. bugensis has displaced D. polymorpha as the dominant species. Dreissena bugensis has several competitive advantages over D. polymorpha, including greater tolerances to deeper and colder waters and lower respiration rates. Nevertheless, physiological differences between the species remain largely unknown. The oxidative stress response is a mechanism used by all organisms to mitigate environmental stress by reducing oxygen radicals in the body, and comparing this mechanism between similar species can be useful for understanding how different species compete in aquatic environments. We compared oxidative stress biomarkers (lipid peroxidation [LPO] and catalase [CAT] activity) in mussels after exposure to 4 stressors (i.e., high densities, temperature, hypoxia, and polychlorinated biphenyls [PCBs]) independently and in combinations of 2 stressors. Overall, D. bugensis had lower LPO and CAT activity than D. polymorpha when exposed to single stressors; however, in multiple stressor treatments D. bugensis had increased LPO, especially with high temperatures and PCBs. The lower lipid damage in D. bugensis compared with D. polymorpha under single stressor conditions may come at the cost of the ability to respond to multiple stressors. Environ Toxicol Chem 2018;9999:1-12. © 2018 SETAC. © 2018 SETAC.

  7. Polyamine Metabolites Profiling for Characterization of Lung and Liver Cancer Using an LC-Tandem MS Method with Multiple Statistical Data Mining Strategies: Discovering Potential Cancer Biomarkers in Human Plasma and Urine

    Directory of Open Access Journals (Sweden)

    Huarong Xu

    2016-08-01

    Full Text Available Polyamines, one of the most important kind of biomarkers in cancer research, were investigated in order to characterize different cancer types. An integrative approach which combined ultra-high performance liquid chromatography—tandem mass spectrometry detection and multiple statistical data processing strategies including outlier elimination, binary logistic regression analysis and cluster analysis had been developed to discover the characteristic biomarkers of lung and liver cancer. The concentrations of 14 polyamine metabolites in biosamples from lung (n = 50 and liver cancer patients (n = 50 were detected by a validated UHPLC-MS/MS method. Then the concentrations were converted into independent variables to characterize patients of lung and liver cancer by binary logic regression analysis. Significant independent variables were regarded as the potential biomarkers. Cluster analysis was engaged for further verifying. As a result, two values was discovered to identify lung and liver cancer, which were the product of the plasma concentration of putrescine and spermidine; and the ratio of the urine concentration of S-adenosyl-l-methionine and N-acetylspermidine. Results indicated that the established advanced method could be successfully applied to characterize lung and liver cancer, and may also enable a new way of discovering cancer biomarkers and characterizing other types of cancer.

  8. Differential blood-based biomarkers of psychopathological dimensions of schizophrenia.

    Science.gov (United States)

    Garcia-Alvarez, Leticia; Garcia-Portilla, Maria Paz; Gonzalez-Blanco, Leticia; Saiz Martinez, Pilar Alejandra; de la Fuente-Tomas, Lorena; Menendez-Miranda, Isabel; Iglesias, Celso; Bobes, Julio

    Symptomatology of schizophrenia is heterogeneous, there is not any pathognomonic symptom. Moreover, the diagnosis is difficult, since it is based on subjective information, instead of markers. The purpose of this study is to provide a review of the current status of blood-based biomarkers of psychopathological dimensions of schizophrenia. Inflammatory, hormonal or metabolic dysfunctions have been identified in patients with schizophrenia and it has attempted to establish biomarkers responsible for these dysfunctions. The identification of these biomarkers could contribute to the diagnosis and treatment of schizophrenia. Copyright © 2016 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Biomarkers in Cardiology – Part 1 – In Heart Failure and Specific Cardiomyopathies

    Directory of Open Access Journals (Sweden)

    2014-12-01

    Full Text Available Cardiovascular diseases are the leading causes of mortality and morbidity in Brazil. The primary and secondary preventions of those diseases are a priority for the health system and require multiple approaches to increase their effectiveness. Biomarkers are tools used to more accurately identify high-risk individuals, to speed the diagnosis, and to aid in treatment and prognosis determination. This review aims to highlight the importance of biomarkers in clinical cardiology practice, and to raise relevant points of their use and the promises for the coming years. This document was divided into two parts, and this first one discusses the use of biomarkers in specific cardiomyopathies and heart failure.

  10. Omalizumab for severe asthma: toward personalized treatment based on biomarker profile and clinical history

    Directory of Open Access Journals (Sweden)

    Tabatabaian F

    2018-04-01

    Full Text Available Farnaz Tabatabaian, Dennis K Ledford Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA Abstract: Asthma is a heterogeneous syndrome with numerous underlining molecular and inflammatory mechanisms contributing to the wide spectrum of clinical phenotypes. Multiple therapies targeting severe asthma with type 2 (T2 high inflammation are or soon will be available. T2 high inflammation is defined as inflammation associated with atopy or eosinophilia or an increase in cytokines associated with T-helper 2 lymphocytes. Omalizumab is a humanized anti-IgE monoclonal antibody and the first biologic therapy approved for moderate–severe allergic asthma. Despite the specificity of biologic therapies like omalizumab, clinical response is variable, with approximately 50% of treated patients achieving the primary outcome. A prior identification of the ideal candidate for therapy would improve patient outcomes and optimize the use of health care resources. As the number of biologic therapies for asthma increases, the goal is identification of biomarkers or clinical phenotypes likely to respond to a specific therapy. This review focuses on potential biomarkers and clinical history that may identify responders to omalizumab therapy for asthma. Keywords: severe persistent asthma, asthma phenotype and endotype, T2 high inflammation, omalizumab, asthma biomarkers, eosinophils, fractional exhaled nitric oxide, IgE

  11. Defining active progressive multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, Finn; Börnsen, Lars; Ammitzbøll, Cecilie

    2017-01-01

    BACKGROUND: It is unknown whether disease activity according to consensus criteria (magnetic resonance imaging activity or clinical relapses) associate with cerebrospinal fluid (CSF) changes in progressive multiple sclerosis (MS). OBJECTIVE: To compare CSF biomarkers in active and inactive...

  12. Pollution biomarkers in estuarine animals: critical review and new perspectives.

    Science.gov (United States)

    Monserrat, José M; Martínez, Pablo E; Geracitano, Laura A; Amado, Lílian Lund; Martins, Camila Martinez Gaspar; Pinho, Grasiela Lopes Leães; Chaves, Isabel Soares; Ferreira-Cravo, Marlize; Ventura-Lima, Juliane; Bianchini, Adalto

    2007-01-01

    In this review, recent developments in monitoring toxicological responses in estuarine animals are analyzed, considering the biomarker responses to different classes of pollutants. The estuarine environment imposes stressful conditions to the organisms that inhabit it, and this situation can alter their sensitivity to many pollutants. The specificity of some biomarkers like metallothionein tissue concentration is discussed in virtue of its dependence on salinity, which is highly variable in estuaries. Examples of cholinesterase activity measurements are also provided and criteria to select sensitive enzymes to detect pesticides and toxins are discussed. Regarding non-specific biomarkers, toxic responses in terms of antioxidant defenses and/or oxidative damage are also considered in this review, focusing on invertebrate species. In addition, the presence of an antioxidant gradient along the body of the estuarine polychaete Laeonereis acuta (Nereididae) and its relationship to different strategies, which deal with the generation of oxidative stress, is reviewed. Also, unusual antioxidant defenses against environmental pro-oxidants are discussed, including the mucus secreted by L. acuta. Disruption of osmoregulation by pollutants is of paramount importance in several estuarine species. In some cases such as in the estuarine crab Chasmagnathus granulatus, there is a trade off between bioavailability of toxicants (e.g. metals) and their interaction with key enzymes such as Na(+)-K(+)-ATPase and carbonic anhydrase. Thus, the metal effect on osmoregulation is also discussed in the present review. Finally, field case studies with fish species like the croaker Micropogonias furnieri (Scianidae) are used to illustrate the application of DNA damage and immunosuppressive responses as potential biomarkers of complex mixture of pollutants.

  13. Ovarian response to 150 µg corifollitropin alfa in a GnRH-antagonist multiple-dose protocol: a prospective cohort study.

    Science.gov (United States)

    Lerman, Tamara; Depenbusch, Marion; Schultze-Mosgau, Askan; von Otte, Soeren; Scheinhardt, Markus; Koenig, Inke; Kamischke, Axel; Macek, Milan; Schwennicke, Arne; Segerer, Sabine; Griesinger, Georg

    2017-05-01

    The incidence of low (18 oocytes) ovarian response to 150 µg corifollitropin alfa in relation to anti-Müllerian hormone (AMH) and other biomarkers was studied in a multi-centre (n = 5), multi-national, prospective, investigator-initiated, observational cohort study. Infertile women (n = 212), body weight >60 kg, underwent controlled ovarian stimulation in a gonadotrophin-releasing hormone-antagonist multiple-dose protocol. Demographic, sonographic and endocrine parameters were prospectively assessed on cycle day 2 or 3 of a spontaneous menstruation before the administration of 150 µg corifollitropin alfa. Serum AMH showed the best correlation with the number of oocytes obtained among all predictor variables. In receiver-operating characteristic analysis, AMH at a threshold of 0.91 ng/ml showed a sensitivity of 82.4%, specificity of 82.4%, positive predictive value 52.9%and negative predictive value 95.1% for predicting low response (area under the curve [AUC], 95% CI; P-value: 0.853, 0.769-0.936; <0.0001). For predicting high response, the optimal threshold for AMH was 2.58 ng/ml, relating to a sensitivity of 80.0%, specificity 82.1%, positive predictive value 42.5% and negative predictive value 96.1% (AUC, 95% CI; P-value: 0.871, 0.787-0.955; <0.0001). In conclusion, patients with serum AMH concentrations between approximately 0.9 and 2.6 ng/ml were unlikely to show extremes of response. Copyright © 2017. Published by Elsevier Ltd.

  14. Quality improvement through multiple response optimization

    International Nuclear Information System (INIS)

    Noorossana, R.; Alemzad, H.

    2003-01-01

    The performance of a product is often evaluated by several quality characteristics. Optimizing the manufacturing process with respect to only one quality characteristic will not always lead to the optimum values for other characteristics. Hence, it would be desirable to improve the overall quality of a product by improving quality characteristics, which are considered to be important. The problem consists of optimizing several responses using multiple objective decision making approach and design of experiments. A case study will be discussed to show the application of the proposal method

  15. MR Imaging Biomarkers to Monitor Early Response to Hypoxia-Activated Prodrug TH-302 in Pancreatic Cancer Xenografts.

    Directory of Open Access Journals (Sweden)

    Xiaomeng Zhang

    Full Text Available TH-302 is a hypoxia-activated prodrug known to activate selectively under the hypoxic conditions commonly found in solid tumors. It is currently being evaluated in clinical trials, including two trials in Pancreatic Ductal Adenocarcinomas (PDAC. The current study was undertaken to evaluate imaging biomarkers for prediction and response monitoring of TH-302 efficacy in xenograft models of PDAC. Dynamic contrast-enhanced (DCE and diffusion weighted (DW magnetic resonance imaging (MRI were used to monitor acute effects on tumor vasculature and cellularity, respectively. Three human PDAC xenografts with known differential responses to TH-302 were imaged prior to, and at 24 h and 48 hours following a single dose of TH-302 or vehicle to determine if imaging changes presaged changes in tumor volumes. DW-MRI was performed at five b-values to generate apparent diffusion coefficient of water (ADC maps. For DCE-MRI, a standard clinically available contrast reagent, Gd-DTPA, was used to determine blood flow into the tumor region of interest. TH-302 induced a dramatic decrease in the DCE transfer constant (Ktrans within 48 hours after treatment in the sensitive tumors, Hs766t and Mia PaCa-2, whereas TH-302 had no effect on the perfusion behavior of resistant SU.86.86 tumors. Tumor cellularity, estimated from ADC, was significantly increased 24 and 48 hours after treatment in Hs766t, but was not observed in the Mia PaCa-2 and SU.86.86 groups. Notably, growth inhibition of Hs766t was observed immediately (day 3 following initiation of treatment, but was not observed in MiaPaCa-2 tumors until 8 days after initiation of treatment. Based on these preclinical findings, DCE-MRI measures of vascular perfusion dynamics and ADC measures of cell density are suggested as potential TH-302 response biomarkers in clinical trials.

  16. MR Imaging Biomarkers to Monitor Early Response to Hypoxia-Activated Prodrug TH-302 in Pancreatic Cancer Xenografts.

    Science.gov (United States)

    Zhang, Xiaomeng; Wojtkowiak, Jonathan W; Martinez, Gary V; Cornnell, Heather H; Hart, Charles P; Baker, Amanda F; Gillies, Robert

    2016-01-01

    TH-302 is a hypoxia-activated prodrug known to activate selectively under the hypoxic conditions commonly found in solid tumors. It is currently being evaluated in clinical trials, including two trials in Pancreatic Ductal Adenocarcinomas (PDAC). The current study was undertaken to evaluate imaging biomarkers for prediction and response monitoring of TH-302 efficacy in xenograft models of PDAC. Dynamic contrast-enhanced (DCE) and diffusion weighted (DW) magnetic resonance imaging (MRI) were used to monitor acute effects on tumor vasculature and cellularity, respectively. Three human PDAC xenografts with known differential responses to TH-302 were imaged prior to, and at 24 h and 48 hours following a single dose of TH-302 or vehicle to determine if imaging changes presaged changes in tumor volumes. DW-MRI was performed at five b-values to generate apparent diffusion coefficient of water (ADC) maps. For DCE-MRI, a standard clinically available contrast reagent, Gd-DTPA, was used to determine blood flow into the tumor region of interest. TH-302 induced a dramatic decrease in the DCE transfer constant (Ktrans) within 48 hours after treatment in the sensitive tumors, Hs766t and Mia PaCa-2, whereas TH-302 had no effect on the perfusion behavior of resistant SU.86.86 tumors. Tumor cellularity, estimated from ADC, was significantly increased 24 and 48 hours after treatment in Hs766t, but was not observed in the Mia PaCa-2 and SU.86.86 groups. Notably, growth inhibition of Hs766t was observed immediately (day 3) following initiation of treatment, but was not observed in MiaPaCa-2 tumors until 8 days after initiation of treatment. Based on these preclinical findings, DCE-MRI measures of vascular perfusion dynamics and ADC measures of cell density are suggested as potential TH-302 response biomarkers in clinical trials.

  17. Effects of terrestrial and marine organic matters on deposition of dechlorane plus (DP) in marine sediments from the Southern Yellow Sea, China: Evidence from multiple biomarkers

    International Nuclear Information System (INIS)

    Wang, Guoguang; Peng, Jialin; Hao, Ting; Feng, Lijuan; Liu, Qiaoling; Li, Xianguo

    2017-01-01

    As an emerging halogenated organic contaminant, Dechlorane Plus (DP) was scarcely reported in marine environments, especially in China. In this work, 35 surface sediments and a sediment core were collected across the Southern Yellow Sea (SYS) to comprehensively explore the spatio-temporal distribution and possible migration pathway of DP. DP concentrations ranged from 14.3 to 245.5 pg/g dry weight in the surface sediments, displaying a seaward increasing trend with the high levels in the central mud zone. This spatial distribution pattern was ascribed to that fine particles with the elevated DP levels were preferentially transported to the central mud zone under hydrodynamic forcing and/or via long-range atmospheric transportation and deposition. DP concentrations in sediment core gradually increased from the mid-1950s to present, which corresponded well with the historical production and usage of DP, as well as the economic development in China. Significantly positive correlation between DP and total organic carbon (TOC) in both surface sediments and sediment core indicated TOC-dependent natural deposition of DP in the SYS. We used multiple biomarkers, for the first time, to explore the potential effects of terrestrial and marine organic matters (TOM and MOM) on DP deposition. The results showed that competition may occur between TOM and MOM for DP adsorption, and MOM was the predominant contributor in controlling DP deposition in the marine sediments from the SYS. - Highlights: • Effects of TOM and MOM on DP deposition were first explored by multi-biomarkers. • Hydrodynamic forcing and atmospheric deposition were responsible for DP in the SYS. • MOM was the predominant contributor in controlling DP deposition to sediments in the SYS. • Competition may occur between TOM and MOM for DP adsorption. - This study was the first attempt to comprehensively explore the effects of TOM and MOM on DP deposition in marine sediments from the SYS.

  18. A SIMPLE AND RAPID MATRIX-ASSISTED LASER DESORPTION/IONIZATION TIME OF FLIGHT MASS SPECTROMETRY METHOD TO SCREEN FISH PLASMA SAMPLES FOR ESTROGEN-RESPONSIVE BIOMARKERS

    Science.gov (United States)

    In this study, we describe and evaluate the performance of a simple and rapid mass spectral method for screening fish plasma for estrogen-responsive biomarkers using matrix assisted laster desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) couopled with a short...

  19. Integrating multiple fish biomarkers and risk assessment as indicators of metal pollution along the Red Sea coast of Hodeida, Yemen Republic.

    Science.gov (United States)

    Omar, Wael A; Saleh, Yousef S; Marie, Mohamed-Assem S

    2014-12-01

    The marine environment of the Red Sea coast of Yemen Republic is subjected to increasing anthropogenic activities. The present field study assesses the impacts of metal pollutants on two common marine fish species; Pomadasys hasta and Lutjanus russellii collected from a reference site in comparison to two polluted sites along the Red Sea coast of Hodeida, Yemen Republic. Concentrations of heavy metals (Fe, Cu, Zn, Cd and Pb) in fish vital organs, metal pollution index (MPI), indicative biochemical parameters of liver functions (alanine aminotransferase [ALT] and aspartate aminotransferase [AST]) and kidney functions (urea and creatinine) as well as histopathological changes in gills, liver and kidney of both fish species are integrated as biomarkers of metal pollution. These biomarkers showed species-specific and/or site-specific response. The hazard index (HI) was used as an indicator of human health risks associated with fish consumption. The detected low HI values in most cases doesn't neglect the fact that the cumulative risk effects for metals together give an alarming sign and that the health of fish consumers is endangered around polluted sites. The levels of ALT, AST and urea in plasma of both fish species collected from the polluted sites showed significant increase in comparison to those of reference site. Histopathological alterations and evident damage were observed in tissues of fish collected from the polluted sites. The investigated set of biomarkers proved to be efficient and reliable in biomonitoring the pollution status along different pollution gradients. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Biomarker responses and PAH ratios in fish inhabiting an estuarine urban waterway.

    Science.gov (United States)

    Duarte, Rafael Mendonça; Sadauskas-Henrique, Helen; de Almeida-Val, Vera Maria Fonseca; Val, Adalberto Luis; Nice, Helen Elizabeth; Gagnon, Marthe Monique

    2017-10-01

    Many cities worldwide are established adjacent to estuaries and their catchments resulting in estuarine contamination due to intense anthropogenic activities. The aim of this study was to evaluate if fish living in an estuarine urban waterway were affected by contamination, via the measurement of a suite of biomarkers of fish health. Black bream (Acanthopagrus butcheri) were sampled in a small urban embayment and a suite of biomarkers of fish health measured. These were condition factor (CF), liver somatic index (LSI), gonadosomatic index (GSI), hepatic EROD activity, polycyclic aromatic hydrocarbon (PAH) biliary metabolites, serum sorbitol dehydrogenase (s-SDH) and branchial enzymes cytochrome C oxidase (CCO), and lactate dehydrogenase (LDH) activities. The biomarkers of exposure EROD activity, and pyrene- and B(a)P-type biliary metabolites confirmed current or recent exposure of the fish and that fish were metabolizing contaminants. Relative to a reference site, LSI was higher in fish collected in the urban inlet as was the metabolic enzyme LDH activity. CF, GSI, s-SDH, CCO, and naphthalene-type metabolites were at similar levels in the urban inlet relative to the reference site. PAH biliary metabolite ratios of high-molecular-weight to low-molecular-weight suggest that fish from the urban inlet were exposed to pyrogenic PAHs, likely from legacy contamination and road runoff entering the embayment. Similarly, the sediment PAH ratios and the freshness indices suggested legacy contamination of a pyrogenic source, likely originating from the adjacent historic gasworks site and a degree of contamination of petrogenic nature entering the inlet via storm water discharge. Biomarkers of exposure and effect confirmed that black bream collected in the Claisebrook Cove inlet, Western Australia, are currently exposed to contamination and are experiencing metabolic perturbations not observed in fish collected at a nearby reference site. © 2017 Wiley Periodicals, Inc.

  1. Combination of biomarkers

    DEFF Research Database (Denmark)

    Thurfjell, Lennart; Lötjönen, Jyrki; Lundqvist, Roger

    2012-01-01

    The New National Institute on Aging-Alzheimer's Association diagnostic guidelines for Alzheimer's disease (AD) incorporate biomarkers in the diagnostic criteria and suggest division of biomarkers into two categories: Aβ accumulation and neuronal degeneration or injury.......The New National Institute on Aging-Alzheimer's Association diagnostic guidelines for Alzheimer's disease (AD) incorporate biomarkers in the diagnostic criteria and suggest division of biomarkers into two categories: Aβ accumulation and neuronal degeneration or injury....

  2. Molecular alterations and biomarkers in colorectal cancer

    Science.gov (United States)

    Grady, William M.; Pritchard, Colin C.

    2013-01-01

    The promise of precision medicine is now a clinical reality. Advances in our understanding of the molecular genetics of colorectal cancer genetics is leading to the development of a variety of biomarkers that are being used as early detection markers, prognostic markers, and markers for predicting treatment responses. This is no more evident than in the recent advances in testing colorectal cancers for specific molecular alterations in order to guide treatment with the monoclonal antibody therapies cetuximab and panitumumab, which target the epidermal growth factor receptor (EGFR). In this review, we update a prior review published in 2010 and describe our current understanding of the molecular pathogenesis of colorectal cancer and how these alterations relate to emerging biomarkers for early detection and risk stratification (diagnostic markers), prognosis (prognostic markers), and the prediction of treatment responses (predictive markers). PMID:24178577

  3. Imaging biomarkers in primary brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lopci, Egesta; Chiti, Arturo [Humanitas Clinical and Research Center, Nuclear Medicine Department, Rozzano, MI (Italy); Franzese, Ciro; Navarria, Pierina; Scorsetti, Marta [Humanitas Clinical and Research Center, Radiosurgery and Radiotherapy, Rozzano, MI (Italy); Grimaldi, Marco [Humanitas Clinical and Research Center, Radiology, Rozzano, MI (Italy); Zucali, Paolo Andrea; Simonelli, Matteo [Humanitas Clinical and Research Center, Medical Oncology, Rozzano, MI (Italy); Bello, Lorenzo [Humanitas Clinical and Research Center, Neurosurgery, Rozzano, MI (Italy)

    2015-04-01

    We are getting used to referring to instrumentally detectable biological features in medical language as ''imaging biomarkers''. These two terms combined reflect the evolution of medical imaging during recent decades, and conceptually comprise the principle of noninvasive detection of internal processes that can become targets for supplementary therapeutic strategies. These targets in oncology include those biological pathways that are associated with several tumour features including independence from growth and growth-inhibitory signals, avoidance of apoptosis and immune system control, unlimited potential for replication, self-sufficiency in vascular supply and neoangiogenesis, acquired tissue invasiveness and metastatic diffusion. Concerning brain tumours, there have been major improvements in neurosurgical techniques and radiotherapy planning, and developments of novel target drugs, thus increasing the need for reproducible, noninvasive, quantitative imaging biomarkers. However, in this context, conventional radiological criteria may be inappropriate to determine the best therapeutic option and subsequently to assess response to therapy. Integration of molecular imaging for the evaluation of brain tumours has for this reason become necessary, and an important role in this setting is played by imaging biomarkers in PET and MRI. In the current review, we describe most relevant techniques and biomarkers used for imaging primary brain tumours in clinical practice, and discuss potential future developments from the experimental context. (orig.)

  4. Seasonal changes in stress biomarkers of an exotic coastal species - Chaetopleura angulata (Polyplacophora) - Implications for biomonitoring.

    Science.gov (United States)

    Madeira, Diana; Vinagre, Catarina; Mendonça, Vanessa; Diniz, Mário Sousa

    2017-07-15

    Knowledge on baseline values of stress biomarkers in natural conditions is urgent due to the need of reference values for monitoring purposes. Here we assessed the cellular stress response of the chiton Chaetopleura angulata in situ. Biomarkers commonly used in environmental monitoring (heat shock protein 70kDa, total ubiquitin, catalase, glutathione-S-transferase, superoxide-dismutase, lipid peroxidation) were analyzed in the digestive system, gills and muscle of C. angulata, under spring and summer conditions in order to assess seasonal tissue-specific responses. Season had an effect on all targeted organs, especially affecting the digestive system which displayed clear seasonal clusters. The respective Integrated Biomarker Response (IBR) showed a 7.2-fold seasonal difference. Muscle and gills showed similar IBRs between seasons making them appropriate organs to monitor chemical pollution as they were less responsive to seasonal variation. The most stable biomarkers in these organs were ubiquitin and superoxide-dismutase thus being reliable for monitoring purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. MAGIC biomarkers predict long term outcomes for steroid-resistant acute GVHD.

    Science.gov (United States)

    Major-Monfried, Hannah; Renteria, Anne S; Pawarode, Attaphol; Reddy, Pavan; Ayuk, Francis; Holler, Ernst; Efebera, Yvonne A; Hogan, William J; Wölfl, Matthias; Qayed, Muna; Hexner, Elizabeth O; Wudhikarn, Kitsada; Ordemann, Rainer; Young, Rachel; Shah, Jay; Hartwell, Matthew J; Chaudhry, Mohammed; Aziz, Mina; Etra, Aaron; Yanik, Gregory A; Kröger, Nicolaus; Weber, Daniela; Chen, Yi-Bin; Nakamura, Ryotaro; Rösler, Wolf; Kitko, Carrie L; Harris, Andrew C; Pulsipher, Michael; Reshef, Ran; Kowalyk, Steven; Morales, George; Torres, Ivan; Özbek, Umut; Ferrara, James L M; Levine, John E

    2018-03-15

    Acute graft versus host disease (GVHD) is treated with systemic corticosteroid immunosuppression. Clinical response after one week of therapy often guides further treatment decisions, but long term outcomes vary widely between centers and more accurate predictive tests are urgently needed. We analyzed clinical data and blood samples taken after one week of systemic treatment for GVHD from 507 patients from 17 centers of the Mount Sinai Acute GVHD International Consortium (MAGIC), dividing them into test (n=236) and two validation cohorts separated in time (n = 142 and 129, respectively). Initial response to systemic steroids correlated with response at four weeks, one-year non-relapse mortality (NRM) and overall survival (OS). A previously validated algorithm of two MAGIC biomarkers (ST2 and REG3α) consistently separated steroid resistant patients into two groups with dramatically different NRM and OS (p<0.001 for all three cohorts). High biomarker probability, resistance to steroids and GVHD severity (Minnesota risk) were all significant predictors of NRM in multivariate analysis. A direct comparison of receiver operating curves showed the area under the curve for biomarker probability (0.82) was significantly greater than that for steroid response (0.68, p=0.004) and for Minnesota risk (0.72, p=0.005). In conclusion, MAGIC biomarker probabilities generated after one week of systemic treatment for GVHD predict long term outcomes in steroid resistant GVHD better than clinical criteria and should prove useful in developing better treatment strategies. Copyright © 2018 American Society of Hematology.

  6. Is the auditory evoked P2 response a biomarker of learning?

    Directory of Open Access Journals (Sweden)

    Kelly eTremblay

    2014-02-01

    Full Text Available Even though auditory training exercises for humans have been shown to improve certain perceptual skills of individuals with and without hearing loss, there is a lack of knowledge pertaining to which aspects of training are responsible for the perceptual gains, and which aspects of perception are changed. To better define how auditory training impacts brain and behavior, electroencephalography and magnetoencephalography have been used to determine the time course and coincidence of cortical modulations associated with different types of training. Here we focus on P1-N1-P2 auditory evoked responses (AEP, as there are consistent reports of gains in P2 amplitude following various types of auditory training experiences; including music and speech-sound training. The purpose of this experiment was to determine if the auditory evoked P2 response is a biomarker of learning. To do this, we taught native English speakers to identify a new pre-voiced temporal cue that is not used phonemically in the English language so that coinciding changes in evoked neural activity could be characterized. To differentiate possible effects of repeated stimulus exposure and a button-pushing task from learning itself, we examined modulations in brain activity in a group of participants who learned to identify the pre-voicing contrast and compared it to participants, matched in time, and stimulus exposure, that did not. The main finding was that the amplitude of the P2 auditory evoked response increased across repeated EEG sessions for all groups, regardless of any change in perceptual performance. What’s more, these effects were retained for months. Changes in P2 amplitude were attributed to changes in neural activity associated with the acquisition process and not the learned outcome itself. A further finding was the expression of a late negativity (LN wave 600-900 ms post-stimulus onset, post-training, exclusively for the group that learned to identify the pre

  7. Comparing and combining biomarkers as principle surrogates for time-to-event clinical endpoints.

    Science.gov (United States)

    Gabriel, Erin E; Sachs, Michael C; Gilbert, Peter B

    2015-02-10

    Principal surrogate endpoints are useful as targets for phase I and II trials. In many recent trials, multiple post-randomization biomarkers are measured. However, few statistical methods exist for comparison of or combination of biomarkers as principal surrogates, and none of these methods to our knowledge utilize time-to-event clinical endpoint information. We propose a Weibull model extension of the semi-parametric estimated maximum likelihood method that allows for the inclusion of multiple biomarkers in the same risk model as multivariate candidate principal surrogates. We propose several methods for comparing candidate principal surrogates and evaluating multivariate principal surrogates. These include the time-dependent and surrogate-dependent true and false positive fraction, the time-dependent and the integrated standardized total gain, and the cumulative distribution function of the risk difference. We illustrate the operating characteristics of our proposed methods in simulations and outline how these statistics can be used to evaluate and compare candidate principal surrogates. We use these methods to investigate candidate surrogates in the Diabetes Control and Complications Trial. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Identification of imaging biomarkers for the assessment of tumour response to different treatments in a preclinical glioma model

    International Nuclear Information System (INIS)

    Lo Dico, A.; Martelli, C.; Valtorta, S.; Belloli, S.; Raccagni, I.; Moresco, R.M.; Diceglie, C.; Gianelli, U.; Bosari, S.; Vaira, V.; Politi, L.S.; Lucignani, G.; Ottobrini, L.

    2015-01-01

    Hypoxia-inducible factor 1α (HIF-1α) activity is one of the major players in hypoxia-mediated glioma progression and resistance to therapies, and therefore the focus of this study was the evaluation of HIF-1α modulation in relation to tumour response with the purpose of identifying imaging biomarkers able to document tumour response to treatment in a murine glioma model. U251-HRE-mCherry cells expressing Luciferase under the control of a hypoxia responsive element (HRE) and mCherry under the control of a constitutive promoter were used to assess HIF-1α activity and cell survival after treatment, both in vitro and in vivo, by optical, MRI and positron emission tomography imaging. This cell model can be used to monitor HIF-1α activity after treatment with different drugs modulating transduction pathways involved in its regulation. After temozolomide (TMZ) treatment, HIF-1α activity is early reduced, preceding cell cytotoxicity. Optical imaging allowed monitoring of this process in vivo, and carbonic anhydrase IX (CAIX) expression was identified as a translatable non-invasive biomarker with potential clinical significance. A preliminary in vitro evaluation showed that reduction of HIF-1α activity after TMZ treatment was comparable to the effect of an Hsp90 inhibitor, opening the way for further elucidation of its mechanism of action. The results of this study suggest that the U251-HRE-mCherry cell model can be used for the monitoring of HIF-1α activity through luciferase and CAIX expression. These cells can become a useful tool for the assessment and improvement of new targeted tracers for potential theranostic procedures. (orig.)

  9. Identification of imaging biomarkers for the assessment of tumour response to different treatments in a preclinical glioma model

    Energy Technology Data Exchange (ETDEWEB)

    Lo Dico, A.; Martelli, C. [University of Milan, Department of Pathophysiology and Transplantation, Milan (Italy); University of Milan, Centre of Molecular and Cellular Imaging-IMAGO, Milan (Italy); Valtorta, S.; Belloli, S. [National Researches Council (CNR), Institute of Molecular Bioimaging and Physiology (IBFM), Segrate, MI (Italy); IRCCS San Raffaele Scientific Institute, Experimental Imaging Center, Milan (Italy); Raccagni, I.; Moresco, R.M. [IRCCS San Raffaele Scientific Institute, Experimental Imaging Center, Milan (Italy); University of Milano-Bicocca, Department of Health Sciences, Monza (Italy); Diceglie, C. [University of Milan, Department of Pathophysiology and Transplantation, Milan (Italy); University of Milan, Doctorate School of Molecular Medicine, Milan (Italy); Gianelli, U.; Bosari, S. [University of Milan, Department of Pathophysiology and Transplantation, Milan (Italy); Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Division of Pathology, Milan (Italy); Vaira, V. [Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Division of Pathology, Milan (Italy); Istituto Nazionale Genetica Molecolare ' ' Romeo ed Enrica Invernizzi' ' (INGM), Milan (Italy); Politi, L.S. [IRCCS San Raffaele Scientific Institute, Neuroradiology Department and Neuroradiology Research Group, Milan (Italy); Lucignani, G. [University of Milan, Centre of Molecular and Cellular Imaging-IMAGO, Milan (Italy); University of Milan, Department of Health Sciences, Milan (Italy); San Paolo Hospital, Department of Diagnostic Services, Unit of Nuclear Medicine, Milan (Italy); Ottobrini, L. [University of Milan, Department of Pathophysiology and Transplantation, Milan (Italy); University of Milan, Centre of Molecular and Cellular Imaging-IMAGO, Milan (Italy); National Researches Council (CNR), Institute of Molecular Bioimaging and Physiology (IBFM), Segrate, MI (Italy)

    2015-03-27

    Hypoxia-inducible factor 1α (HIF-1α) activity is one of the major players in hypoxia-mediated glioma progression and resistance to therapies, and therefore the focus of this study was the evaluation of HIF-1α modulation in relation to tumour response with the purpose of identifying imaging biomarkers able to document tumour response to treatment in a murine glioma model. U251-HRE-mCherry cells expressing Luciferase under the control of a hypoxia responsive element (HRE) and mCherry under the control of a constitutive promoter were used to assess HIF-1α activity and cell survival after treatment, both in vitro and in vivo, by optical, MRI and positron emission tomography imaging. This cell model can be used to monitor HIF-1α activity after treatment with different drugs modulating transduction pathways involved in its regulation. After temozolomide (TMZ) treatment, HIF-1α activity is early reduced, preceding cell cytotoxicity. Optical imaging allowed monitoring of this process in vivo, and carbonic anhydrase IX (CAIX) expression was identified as a translatable non-invasive biomarker with potential clinical significance. A preliminary in vitro evaluation showed that reduction of HIF-1α activity after TMZ treatment was comparable to the effect of an Hsp90 inhibitor, opening the way for further elucidation of its mechanism of action. The results of this study suggest that the U251-HRE-mCherry cell model can be used for the monitoring of HIF-1α activity through luciferase and CAIX expression. These cells can become a useful tool for the assessment and improvement of new targeted tracers for potential theranostic procedures. (orig.)

  10. Serum metabolomics reveals betaine and phosphatidylcholine as potential biomarkers for the toxic responses of processed Aconitum carmichaelii Debx.

    Science.gov (United States)

    Tan, Yong; Ko, Joshua; Liu, Xinru; Lu, Cheng; Li, Jian; Xiao, Cheng; Li, Li; Niu, Xuyan; Jiang, Miao; He, Xiaojuan; Zhao, Hongyan; Zhang, Zhongxiao; Bian, Zhaoxiang; Yang, Zhijun; Zhang, Ge; Zhang, Weidong; Lu, Aiping

    2014-07-29

    We recently reported that processed Aconitum carmichaelii Debx (Bai-Fu-Pian in Chinese, BFP) elicits differential toxic responses in rats under various health conditions. The present study aimed to determine the graded toxicity of BFP so as to derive a safe therapeutic rationale in clinical practice. Sensitive and reliable biomarkers of toxicity were also identified, with the corresponding metabolic pathways being unveiled. Thirty male Sprague-Dawley rats were divided into five groups (n = 6) and received oral administration of BFP extract (0.32, 0.64, 1.28 or 2.56 g kg(-1) per day) or an equal volume of drinking water (control) for 15 days. The metabolomic profiles of rat serum were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry (LC-Q-TOF-MS). Linear regression analysis and Ingenuity Pathway Analysis (IPA) were used to elucidate the differentiated altered metabolites and associated network relationships. Results from biochemical and histopathological examinations revealed that BFP could induce prominent toxicity in the heart, liver and kidneys at a dose of 2.56 g kg(-1) per day. Betaine up-regulation and phosphatidylcholine down-regulation were detected in the serum samples of drug-treated groups in a dose-dependent manner. In summary, betaine and phosphatidylcholine could be regarded as sensitive biomarkers for the toxic responses of BFP. Perturbations of RhoA signaling, choline metabolism and free radical scavenging were found to be partly responsible for the toxic effects of the herbal drug. Based on the metabolomics findings, we could establish a safe therapeutic range in the clinical use of BFP, with promising predictions of possible drug toxicity.

  11. NANOG Expression as a Responsive Biomarker during Treatment with Hedgehog Signal Inhibitor in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Seiji Kakiuchi

    2017-02-01

    Full Text Available Aberrant activation of the Hedgehog (Hh signaling pathway is involved in the maintenance of leukemic stem cell (LSCs populations. PF-0444913 (PF-913 is a novel inhibitor that selectively targets Smoothened (SMO, which regulates the Hh pathway. Treatment with PF-913 has shown promising results in an early phase study of acute myeloid leukemia (AML. However, a detailed mode of action for PF-913 and relevant biomarkers remain to be elucidated. In this study, we examined bone marrow samples derived from AML patients under PF-913 monotherapy. Gene set enrichment analysis (GSEA revealed that PF-913 treatment affected the self-renewal signature and cell-cycle regulation associated with LSC-like properties. We then focused on the expression of a pluripotency factor, NANOG, because previous reports showed that a downstream effector in the Hh pathway, GLI, directly binds to the NANOG promoter and that the GLI-NANOG axis promotes stemness and growth in several cancers. In this study, we found that a change in NANOG transcripts was closely associated with GLI-target genes and NANOG transcripts can be a responsive biomarker during PF-913 therapy. Additionally, the treatment of AML with PF-913 holds promise, possibly through inducing quiescent leukemia stem cells toward cell cycling.

  12. Metabolomics approach for discovering disease biomarkers and understanding metabolic pathway

    Directory of Open Access Journals (Sweden)

    Jeeyoun Jung

    2011-12-01

    Full Text Available Metabolomics, the multi-targeted analysis of endogenous metabolites from biological samples, can be efficiently applied to screen disease biomarkers and investigate pathophysiological processes. Metabolites change rapidly in response to physiological perturbations, making them the closest link to disease phenotypes. This study explored the role of metabolomics in gaining mechanistic insight into disease processes and in searching for novel biomarkers of human diseases

  13. III: Use of biomarkers as Risk Indicators in Environmental Risk Assessment of oil based discharges offshore.

    Science.gov (United States)

    Sanni, Steinar; Lyng, Emily; Pampanin, Daniela M

    2017-06-01

    Offshore oil and gas activities are required not to cause adverse environmental effects, and risk based management has been established to meet environmental standards. In some risk assessment schemes, Risk Indicators (RIs) are parameters to monitor the development of risk affecting factors. RIs have not yet been established in the Environmental Risk Assessment procedures for management of oil based discharges offshore. This paper evaluates the usefulness of biomarkers as RIs, based on their properties, existing laboratory biomarker data and assessment methods. Data shows several correlations between oil concentrations and biomarker responses, and assessment principles exist that qualify biomarkers for integration into risk procedures. Different ways that these existing biomarkers and methods can be applied as RIs in a probabilistic risk assessment system when linked with whole organism responses are discussed. This can be a useful approach to integrate biomarkers into probabilistic risk assessment related to oil based discharges, representing a potential supplement to information that biomarkers already provide about environmental impact and risk related to these kind of discharges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Resonance Raman Spectroscopic Evaluation of Skin Carotenoids as a Biomarker of Carotenoid Status for Human Studies

    Science.gov (United States)

    Mayne, Susan T.; Cartmel, Brenda; Scarmo, Stephanie; Jahns, Lisa; Ermakov, Igor V.; Gellermann, Werner

    2013-01-01

    Resonance Raman Spectroscopy (RRS) is a non-invasive method that has been developed to assess carotenoid status in human tissues including human skin in vivo. Skin carotenoid status has been suggested as a promising biomarker for human studies. This manuscript describes research done relevant to the development of this biomarker, including its reproducibility, validity, feasibility for use in field settings, and factors that affect the biomarker such as diet, smoking, and adiposity. Recent studies have evaluated the response of the biomarker to controlled carotenoid interventions, both supplement-based and dietary [e.g., provision of a high-carotenoid fruit and vegetable (F/V)-enriched diet], demonstrating consistent response to intervention. The totality of evidence supports the use of skin carotenoid status as an objective biomarker of F/V intake, although in the cross-sectional setting, diet explains only some of the variation in this biomarker. However, this limitation is also a strength in that skin carotenoids may effectively serve as an integrated biomarker of health, with higher status reflecting greater F/V intake, lack of smoking, and lack of adiposity. Thus, this biomarker holds promise as both a health biomarker and an objective indicator of F/V intake, supporting its further development and utilization for medical and public health purposes. PMID:23823930

  15. The inflammatory cytokines: molecular biomarkers for major depressive disorder?

    Science.gov (United States)

    Martin, Charlotte; Tansey, Katherine E; Schalkwyk, Leonard C; Powell, Timothy R

    2015-01-01

    Cytokines are pleotropic cell signaling proteins that, in addition to their role as inflammatory mediators, also affect neurotransmitter systems, brain functionality and mood. Here we explore the potential utility of cytokine biomarkers for major depressive disorder. Specifically, we explore how genetic, transcriptomic and proteomic information relating to the cytokines might act as biomarkers, aiding clinical diagnosis and treatment selection processes. We advise future studies to investigate whether cytokine biomarkers might differentiate major depressive disorder patients from other patient groups with overlapping clinical characteristics. Furthermore, we invite future pharmacogenetic studies to investigate whether early antidepressant-induced changes to cytokine mRNA or protein levels precede behavioral changes and act as longer-term predictors of clinical antidepressant response.

  16. Sensitivity of MRI tumor biomarkers to VEGFR inhibitor therapy in an orthotopic mouse glioma model.

    Directory of Open Access Journals (Sweden)

    Christian T Farrar

    Full Text Available MRI biomarkers of tumor edema, vascular permeability, blood volume, and average vessel caliber are increasingly being employed to assess the efficacy of tumor therapies. However, the dependence of these biomarkers on a number of physiological factors can compromise their sensitivity and complicate the assessment of therapeutic efficacy. Here we examine the response of these MRI tumor biomarkers to cediranib, a potent vascular endothelial growth factor receptor (VEGFR inhibitor, in an orthotopic mouse glioma model. A significant increase in the tumor volume and relative vessel caliber index (rVCI and a slight decrease in the water apparent diffusion coefficient (ADC were observed for both control and cediranib treated animals. This contrasts with a clinical study that observed a significant decrease in tumor rVCI, ADC and volume with cediranib therapy. While the lack of a difference between control and cediranib treated animals in these biomarker responses might suggest that cediranib has no therapeutic benefit, cediranib treated mice had a significantly increased survival. The increased survival benefit of cediranib treated animals is consistent with the significant decrease observed for cediranib treated animals in the relative cerebral blood volume (rCBV, relative microvascular blood volume (rMBV, transverse relaxation time (T2, blood vessel permeability (K(trans, and extravascular-extracellular space (ν(e. The differential response of pre-clinical and clinical tumors to cediranib therapy, along with the lack of a positive response for some biomarkers, indicates the importance of evaluating the whole spectrum of different tumor biomarkers to properly assess the therapeutic response and identify and interpret the therapy-induced changes in the tumor physiology.

  17. Evaluation of a Serum Lung Cancer Biomarker Panel.

    Science.gov (United States)

    Mazzone, Peter J; Wang, Xiao-Feng; Han, Xiaozhen; Choi, Humberto; Seeley, Meredith; Scherer, Richard; Doseeva, Victoria

    2018-01-01

    A panel of 3 serum proteins and 1 autoantibody has been developed to assist with the detection of lung cancer. We aimed to validate the accuracy of the biomarker panel in an independent test set and explore the impact of adding a fourth serum protein to the panel, as well as the impact of combining molecular and clinical variables. The training set of serum samples was purchased from commercially available biorepositories. The testing set was from a biorepository at the Cleveland Clinic. All lung cancer and control subjects were >50 years old and had smoked a minimum of 20 pack-years. A panel of biomarkers including CEA (carcinoembryonic antigen), CYFRA21-1 (cytokeratin-19 fragment 21-1), CA125 (carbohydrate antigen 125), HGF (hepatocyte growth factor), and NY-ESO-1 (New York esophageal cancer-1 antibody) was measured using immunoassay techniques. The multiple of the median method, multivariate logistic regression, and random forest modeling was used to analyze the results. The training set consisted of 604 patient samples (268 with lung cancer and 336 controls) and the testing set of 400 patient samples (155 with lung cancer and 245 controls). With a threshold established from the training set, the sensitivity and specificity of both the 4- and 5-biomarker panels on the testing set was 49% and 96%, respectively. Models built on the testing set using only clinical variables had an area under the receiver operating characteristic curve of 0.68, using the biomarker panel 0.81 and by combining clinical and biomarker variables 0.86. This study validates the accuracy of a panel of proteins and an autoantibody in a population relevant to lung cancer detection and suggests a benefit to combining clinical features with the biomarker results.

  18. mRNA expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure in the soil collembolan Folsomia candida

    International Nuclear Information System (INIS)

    Nakamori, Taizo; Fujimori, Akira; Kinoshita, Keiji; Ban-nai, Tadaaki; Kubota, Yoshihisa; Yoshida, Satoshi

    2010-01-01

    The gene expression of environmental organisms is useful as a biomarker of environmental pollution. One of its advantages is high sensitivity. We identified the cDNA of a novel cadmium-responsive gene in the soil collembolan Folsomia candida. The deduced protein, designated 'metallothionein-like motif containing protein' (MTC), was cysteine-rich and contained a metallothionein-like motif with similarity to metallothionein, but had a much longer sequence than metallothionein and contained repeated sequences of amino acids. Expression of MTC mRNA was sensitively induced by cadmium exposure at 0.3 mg/kg of dry food, a concentration at which toxic effects are not observed, but expression was not affected by γ-ray exposure (an inducer of oxidative stress). These findings suggest that MTC is involved in cadmium-binding processes rather than in oxidative-stress responses. In conclusion, we suggest that gene expression of MTC may be a candidate biomarker for detecting low levels of cadmium contamination in soil. - The mRNA expression of a gene potentially encoding a metallothionein-like motif containing protein is sensitively induced by cadmium exposure in the soil collembolan Folsomia candida.

  19. mRNA expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure in the soil collembolan Folsomia candida

    Energy Technology Data Exchange (ETDEWEB)

    Nakamori, Taizo, E-mail: taizo@ynu.ac.j [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Fujimori, Akira [Heavy-Ion Radiobiology Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kinoshita, Keiji [Nagoya University Avian Bioscience Research Centre, Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Ban-nai, Tadaaki; Kubota, Yoshihisa; Yoshida, Satoshi [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2010-05-15

    The gene expression of environmental organisms is useful as a biomarker of environmental pollution. One of its advantages is high sensitivity. We identified the cDNA of a novel cadmium-responsive gene in the soil collembolan Folsomia candida. The deduced protein, designated 'metallothionein-like motif containing protein' (MTC), was cysteine-rich and contained a metallothionein-like motif with similarity to metallothionein, but had a much longer sequence than metallothionein and contained repeated sequences of amino acids. Expression of MTC mRNA was sensitively induced by cadmium exposure at 0.3 mg/kg of dry food, a concentration at which toxic effects are not observed, but expression was not affected by gamma-ray exposure (an inducer of oxidative stress). These findings suggest that MTC is involved in cadmium-binding processes rather than in oxidative-stress responses. In conclusion, we suggest that gene expression of MTC may be a candidate biomarker for detecting low levels of cadmium contamination in soil. - The mRNA expression of a gene potentially encoding a metallothionein-like motif containing protein is sensitively induced by cadmium exposure in the soil collembolan Folsomia candida.

  20. Managing hypertension: relevant biomarkers and combating bioactive compounds

    Directory of Open Access Journals (Sweden)

    Bryan Singharaj

    2017-06-01

    Full Text Available Hypertension is one of the most common chronic diseases which affects many people who belong to a higher age range. The standard definition that is offered to the general public has a minimum age of 18 years to be diagnosed with hypertension. Many studies have been conducted in the hopes of finding consistent data that provides information on the biomarkers of hypertension and effective forms of treatment. However, there is a tendency for skewed data due to the ineffectiveness of diagnosing hypertension, due to variability in technique or even negligence. Interestingly, research has indicated that there are connections to certain biomarkers of hypertension. However,the results have been deemed inconclusive. Moreover, the results provide promising data for future studies that have an emphasis on biomarkers. The biomarkers that have been consistently brought to researchers’ attention include the following: circulating C-reactive protein (CRP, plasminogen activator inhibitor-1 (PAI-1, urinary albumin:creatinine ratio (UACR, and aldosterone:renin ratio (ARR. These four biomarkers have become the foundation of multiple hypertension studies, even though the only formal conclusion drawn from these studies is that there is a wide range of variables that have some kind of influence on hypertension. More recently, treatment options for hypertension have increasingly become an emphasis for studies, with research predicting that nutrition plays a key role in the managing of diseases. Furthermore, the role of bioactive compounds has gained traction in hypertension research, being loosely correlated to managing specific biomarkers. Ultimately, these correlations to bioactive compounds like antioxidants would demonstrate that certain functional foods have the capacity to help treat hypertension. The modality is to find an alternative option for managing or treating hypertension through natural sources of food or food products fortified with ingredients to

  1. Biomarkers of Tumour Radiosensitivity and Predicting Benefit from Radiotherapy.

    Science.gov (United States)

    Forker, L J; Choudhury, A; Kiltie, A E

    2015-10-01

    Radiotherapy is an essential component of treatment for more than half of newly diagnosed cancer patients. The response to radiotherapy varies widely between individuals and although advances in technology have allowed the adaptation of radiotherapy fields to tumour anatomy, it is still not possible to tailor radiotherapy based on tumour biology. A biomarker of intrinsic radiosensitivity would be extremely valuable for individual dosing, aiding decision making between radical treatment options and avoiding toxicity of neoadjuvant or adjuvant radiotherapy in those unlikely to benefit. This systematic review summarises the current evidence for biomarkers under investigation as predictors of radiotherapy benefit. Only 10 biomarkers were identified as having been evaluated for their radiotherapy-specific predictive value in over 100 patients in a clinical setting, highlighting that despite a rich literature there were few high-quality studies for inclusion. The most extensively studied radiotherapy predictive biomarkers were the radiosensitivity index and MRE11; however, neither has been evaluated in a randomised controlled trial. Although these biomarkers show promise, there is not enough evidence to justify their use in routine practice. Further validation is needed before biomarkers can fulfil their potential and predict treatment outcomes for large numbers of patients. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  2. Functional MRI and CT biomarkers in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Winfield, J.M. [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, CRUK Imaging Centre at the Institute of Cancer Research, Sutton (United Kingdom); Institute of Cancer Research and Royal Marsden Hospital, MRI Unit, Sutton (United Kingdom); Payne, G.S.; DeSouza, N.M. [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, CRUK Imaging Centre at the Institute of Cancer Research, Sutton (United Kingdom)

    2015-04-01

    Imaging biomarkers derived from MRI or CT describe functional properties of tumours and normal tissues. They are finding increasing numbers of applications in diagnosis, monitoring of response to treatment and assessment of progression or recurrence. Imaging biomarkers also provide scope for assessment of heterogeneity within and between lesions. A wide variety of functional parameters have been investigated for use as biomarkers in oncology. Some imaging techniques are used routinely in clinical applications while others are currently restricted to clinical trials or preclinical studies. Apparent diffusion coefficient, magnetization transfer ratio and native T{sub 1} relaxation time provide information about structure and organization of tissues. Vascular properties may be described using parameters derived from dynamic contrast-enhanced MRI, dynamic contrast-enhanced CT, transverse relaxation rate (R{sub 2}*), vessel size index and relative blood volume, while magnetic resonance spectroscopy may be used to probe the metabolic profile of tumours. This review describes the mechanisms of contrast underpinning each technique and the technical requirements for robust and reproducible imaging. The current status of each biomarker is described in terms of its validation, qualification and clinical applications, followed by a discussion of the current limitations and future perspectives. (orig.)

  3. Dimethyl sulfoxide is a potent modulator of estrogen receptor isoforms and xenoestrogen biomarker responses in primary culture of salmon hepatocytes

    International Nuclear Information System (INIS)

    Mortensen, Anne S.; Arukwe, Augustine

    2006-01-01

    Dimethyl sulfoxide (DMSO) has been frequently used as carrier solvent in toxicological experiments where the most compelling DMSO attributes are its exceptionally low toxicity and environmental impact. We were inspired by recent and consistent observations that ethanol and DMSO modulate endocrine-disruptor biomarker responses in both in vitro and in vivo studies in our laboratory, to take a critical evaluation of these effects. Quantitative (real-time) polymerase chain reaction (PCR) method with specific primer pairs was used in this study to measure DMSO-induced time-dependent modulation of estrogen receptor (ER) isoforms, vitellogenin (Vtg) and zona radiata-protein (Zr-protein) gene expression patterns in primary culture of salmon hepatocytes. In addition, immunochemical analysis, using indirect enzyme linked immunosorbent assay (ELISA) with monoclonal (Vtg) and polyclonal (Zr-proteins) antibodies was used to detect and measure Vtg and Zr-proteins secreted in culture media. Salmon hepatocytes were isolated by a two-step collagenase perfusion method and exposed to 0.1% or 10 μL/L of DMSO after 48 h pre-culture. Cells were harvested at 12, 24, 48 and 72 h after exposure and analysed for ERα, ERβ, Vtg and Zr-protein gene expression using real-time PCR method. Media samples were collected at similar time-intervals for protein analysis. Our data show that DMSO-induced significant increase in ERα, ERβ, Vtg and Zr-protein genes in a time-dependent manner. Indirect ELISA analysis showed a time-specific effect of DMSO. The use of DMSO as carrier solvent in fish endocrine disruption studies should be re-evaluated. We recommend more investigation, using other endocrine-disruptor biomarkers in order to validate the suitability of common carrier solvents used in toxicology with the aim of setting new maximum allowable concentrations. In particular, given the high sensitivity of genomic approaches in toxicology, these results may have serious consequences for the

  4. Imaging biomarkers to predict response to anti-HER2 (ErbB2) therapy in preclinical models of breast cancer

    Science.gov (United States)

    Shah, Chirayu; Miller, Todd W.; Wyatt, Shelby K.; McKinley, Eliot T.; Olivares, Maria Graciela; Sanchez, Violeta; Nolting, Donald D.; Buck, Jason R.; Zhao, Ping; Ansari, M. Sib; Baldwin, Ronald M.; Gore, John C.; Schiff, Rachel; Arteaga, Carlos L.; Manning, H. Charles

    2010-01-01

    Purpose To evaluate non-invasive imaging methods as predictive biomarkers of response to trastuzumab in mouse models of HER2-overexpressing breast cancer. The correlation between tumor regression and molecular imaging of apoptosis, glucose metabolism, and cellular proliferation was evaluated longitudinally in responding and non-responding tumor-bearing cohorts. Experimental Design Mammary tumors from MMTV/HER2 transgenic female mice were transplanted into syngeneic female mice. BT474 human breast carcinoma cell line xenografts were grown in athymic nude mice. Tumor cell apoptosis (NIR700-Annexin-V accumulation), glucose metabolism ([18F]FDG-PET), and proliferation ([18F]FLT-PET) were evaluated throughout a bi-weekly trastuzumab regimen. Imaging metrics were validated by direct measurement of tumor size and immunohistochemical (IHC) analysis of cleaved caspase-3, phosphorylated AKT (p-AKT) and Ki67. Results NIR700-Annexin-V accumulated significantly in trastuzumab-treated MMTV/HER2 and BT474 tumors that ultimately regressed, but not in non-responding or vehicle-treated tumors. Uptake of [18F]FDG was not affected by trastuzumab treatment in MMTV/HER2 or BT474 tumors. [18F]FLT PET imaging predicted trastuzumab response in BT474 tumors but not in MMTV/HER2 tumors, which exhibited modest uptake of [18F]FLT. Close agreement was observed between imaging metrics and IHC analysis. Conclusions Molecular imaging of apoptosis accurately predicts trastuzumab-induced regression of HER2(+) tumors and may warrant clinical exploration to predict early response to neoadjuvant trastuzumab. Trastuzumab does not appear to alter glucose metabolism substantially enough to afford [18F]FDG-PET significant predictive value in this setting. Although promising in one preclinical model, further studies are required to determine the overall value of [18F]FLT-PET as a biomarker of response to trastuzumab in HER2+ breast cancer. PMID:19584166

  5. Quantitative Tyrosine Phosphoproteomics of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor-treated Lung Adenocarcinoma Cells Reveals Potential Novel Biomarkers of Therapeutic Response.

    Science.gov (United States)

    Zhang, Xu; Maity, Tapan; Kashyap, Manoj K; Bansal, Mukesh; Venugopalan, Abhilash; Singh, Sahib; Awasthi, Shivangi; Marimuthu, Arivusudar; Charles Jacob, Harrys Kishore; Belkina, Natalya; Pitts, Stephanie; Cultraro, Constance M; Gao, Shaojian; Kirkali, Guldal; Biswas, Romi; Chaerkady, Raghothama; Califano, Andrea; Pandey, Akhilesh; Guha, Udayan

    2017-05-01

    Mutations in the Epidermal growth factor receptor (EGFR) kinase domain, such as the L858R missense mutation and deletions spanning the conserved sequence 747 LREA 750 , are sensitive to tyrosine kinase inhibitors (TKIs). The gatekeeper site residue mutation, T790M accounts for around 60% of acquired resistance to EGFR TKIs. The first generation EGFR TKIs, erlotinib and gefitinib, and the second generation inhibitor, afatinib are FDA approved for initial treatment of EGFR mutated lung adenocarcinoma. The predominant biomarker of EGFR TKI responsiveness is the presence of EGFR TKI-sensitizing mutations. However, 30-40% of patients with EGFR mutations exhibit primary resistance to these TKIs, underscoring the unmet need of identifying additional biomarkers of treatment response. Here, we sought to characterize the dynamics of tyrosine phosphorylation upon EGFR TKI treatment of mutant EGFR-driven human lung adenocarcinoma cell lines with varying sensitivity to EGFR TKIs, erlotinib and afatinib. We employed stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative mass spectrometry to identify and quantify tyrosine phosphorylated peptides. The proportion of tyrosine phosphorylated sites that had reduced phosphorylation upon erlotinib or afatinib treatment correlated with the degree of TKI-sensitivity. Afatinib, an irreversible EGFR TKI, more effectively inhibited tyrosine phosphorylation of a majority of the substrates. The phosphosites with phosphorylation SILAC ratios that correlated with the TKI-sensitivity of the cell lines include sites on kinases, such as EGFR-Y1197 and MAPK7-Y221, and adaptor proteins, such as SHC1-Y349/350, ERRFI1-Y394, GAB1-Y689, STAT5A-Y694, DLG3-Y705, and DAPP1-Y139, suggesting these are potential biomarkers of TKI sensitivity. DAPP1, is a novel target of mutant EGFR signaling and Y-139 is the major site of DAPP1 tyrosine phosphorylation. We also uncovered several off-target effects of these TKIs, such as MST1R-Y1238

  6. Active biomonitoring in freshwater environments: early warning signals from biomarkers in assessing biological effects of diffuse sources of pollutants

    Science.gov (United States)

    Wepener, V.; van Vuren, J. H. J.; Chatiza, F. P.; Mbizi, Z.; Slabbert, L.; Masola, B.

    Effluents are a main source of direct and continuous input of pollutants in aquatic ecosystems. Relating observed effects to specific pollutants or even classes of pollutants remains a very difficult task due to the usually unknown, complex and often highly variable composition of effluents. It is recognized that toxicants interfere with organism integrity at the biochemical level and give rise to effects at the individual level and is manifested in reduced ecologically relevant characteristics such as growth, reproduction and survival, and ultimately at the ecosystem level. By integrating multiple endpoints at different ecologically relevant levels of organization within one test organism, it should be possible to gain understanding in how different levels of organization within this organism respond to toxic exposure and how responses at these different levels are interrelated. This paper presents results from a field study in the Rietvlei Wetland system, Gauteng, South Africa using the freshwater mollusk ( Melanoides tuberculata) and freshwater fish ( Oreochromis mossambicus) as bioindicator organisms. Active biomonitoring (ABM) exposures were conducted where organisms were exposed for 28 days in an effluent dominated river during high flow conditions in April 2003. The river receives effluent from a wastewater treatment plant and an industrial complex, so that up to 75% of the total flow of the river is effluent-based. Effects of field exposure were determined using cellular biomarkers e.g. DNA damage, HSP 70, metallothionein, acetylcholine esterase, lactate dehydrogenase and ethoxyresorufin-o-deethylase activity. The results clearly indicate that although the traditional mortality-based whole effluent toxicity testing did not indicate any toxicity, the in situ exposed organisms were stressed. A multivariate statistical approach was particularly useful for integrating the biomarker responses and highlighting sites at which more detailed analysis of chemical

  7. Subject-based steroid profiling and the determination of novel biomarkers for DHT and DHEA misuse in sports.

    Science.gov (United States)

    Van Renterghem, Pieter; Van Eenoo, Peter; Sottas, Pierre-Edouard; Saugy, Martial; Delbeke, Frans

    2010-01-01

    Doping with natural steroids can be detected by evaluating the urinary concentrations and ratios of several endogenous steroids. Since these biomarkers of steroid doping are known to present large inter-individual variations, monitoring of individual steroid profiles over time allows switching from population-based towards subject-based reference ranges for improved detection. In an Athlete Biological Passport (ABP), biomarkers data are collated throughout the athlete's sporting career and individual thresholds defined adaptively. For now, this approach has been validated on a limited number of markers of steroid doping, such as the testosterone (T) over epitestosterone (E) ratio to detect T misuse in athletes. Additional markers are required for other endogenous steroids like dihydrotestosterone (DHT) and dehydroepiandrosterone (DHEA). By combining comprehensive steroid profiles composed of 24 steroid concentrations with Bayesian inference techniques for longitudinal profiling, a selection was made for the detection of DHT and DHEA misuse. The biomarkers found were rated according to relative response, parameter stability, discriminative power, and maximal detection time. This analysis revealed DHT/E, DHT/5β-androstane-3α,17β-diol and 5α-androstane-3α,17β-diol/5β-androstane-3α,17β-diol as best biomarkers for DHT administration and DHEA/E, 16α-hydroxydehydroepiandrosterone/E, 7β-hydroxydehydroepiandrosterone/E and 5β-androstane-3α,17β-diol/5α-androstane-3α,17β-diol for DHEA. The selected biomarkers were found suitable for individual referencing. A drastic overall increase in sensitivity was obtained. The use of multiple markers as formalized in an Athlete Steroidal Passport (ASP) can provide firm evidence of doping with endogenous steroids. Copyright © 2010 John Wiley & Sons, Ltd.

  8. The potential biomarkers of drug addiction: proteomic and metabolomics challenges.

    Science.gov (United States)

    Wang, Lv; Wu, Ning; Zhao, Tai-Yun; Li, Jin

    2016-07-28

    Drug addiction places a significant burden on society and individuals. Proteomics and metabolomics approaches pave the road for searching potential biomarkers to assist the diagnosis and treatment. This review summarized putative drug addiction-related biomarkers in proteomics and metabolomics studies and discussed challenges and prospects in future studies. Alterations of several hundred proteins and metabolites were reported when exposure to abused drug, which enriched in energy metabolism, oxidative stress response, protein modification and degradation, synaptic function and neurotrasmission, etc. Hsp70, peroxiredoxin-6 and α- and β-synuclein, as well as n-methylserotonin and purine metabolites, were promising as potential biomarker for drug addiction.

  9. Application of a repeat-measure biomarker measurement error model to 2 validation studies: examination of the effect of within-person variation in biomarker measurements.

    Science.gov (United States)

    Preis, Sarah Rosner; Spiegelman, Donna; Zhao, Barbara Bojuan; Moshfegh, Alanna; Baer, David J; Willett, Walter C

    2011-03-15

    Repeat-biomarker measurement error models accounting for systematic correlated within-person error can be used to estimate the correlation coefficient (ρ) and deattenuation factor (λ), used in measurement error correction. These models account for correlated errors in the food frequency questionnaire (FFQ) and the 24-hour diet recall and random within-person variation in the biomarkers. Failure to account for within-person variation in biomarkers can exaggerate correlated errors between FFQs and 24-hour diet recalls. For 2 validation studies, ρ and λ were calculated for total energy and protein density. In the Automated Multiple-Pass Method Validation Study (n=471), doubly labeled water (DLW) and urinary nitrogen (UN) were measured twice in 52 adults approximately 16 months apart (2002-2003), yielding intraclass correlation coefficients of 0.43 for energy (DLW) and 0.54 for protein density (UN/DLW). The deattenuated correlation coefficient for protein density was 0.51 for correlation between the FFQ and the 24-hour diet recall and 0.49 for correlation between the FFQ and the biomarker. Use of repeat-biomarker measurement error models resulted in a ρ of 0.42. These models were similarly applied to the Observing Protein and Energy Nutrition Study (1999-2000). In conclusion, within-person variation in biomarkers can be substantial, and to adequately assess the impact of correlated subject-specific error, this variation should be assessed in validation studies of FFQs. © The Author 2011. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved.

  10. Prespecified candidate biomarkers identify follicular lymphoma patients who achieved longer progression-free survival with bortezomib-rituximab versus rituximab.

    Science.gov (United States)

    Coiffier, Bertrand; Li, Weimin; Henitz, Erin D; Karkera, Jayaprakash D; Favis, Reyna; Gaffney, Dana; Shapiro, Alice; Theocharous, Panteli; Elsayed, Yusri A; van de Velde, Helgi; Schaffer, Michael E; Osmanov, Evgenii A; Hong, Xiaonan; Scheliga, Adriana; Mayer, Jiri; Offner, Fritz; Rule, Simon; Teixeira, Adriana; Romejko-Jarosinska, Joanna; de Vos, Sven; Crump, Michael; Shpilberg, Ofer; Zinzani, Pier Luigi; Cakana, Andrew; Esseltine, Dixie-Lee; Mulligan, George; Ricci, Deborah

    2013-05-01

    Identify subgroups of patients with relapsed/refractory follicular lymphoma deriving substantial progression-free survival (PFS) benefit with bortezomib-rituximab versus rituximab in the phase III LYM-3001 study. A total of 676 patients were randomized to five 5-week cycles of bortezomib-rituximab or rituximab. The primary end point was PFS; this prespecified analysis of candidate protein biomarkers and genes was an exploratory objective. Archived tumor tissue and whole blood samples were collected at baseline. Immunohistochemistry and genetic analyses were completed for 4 proteins and 8 genes. In initial pairwise analyses, using individual single-nucleotide polymorphism genotypes, one biomarker pair (PSMB1 P11A C/G heterozygote, low CD68 expression) was associated with a significant PFS benefit with bortezomib-rituximab versus rituximab, controlling for multiple comparison corrections. The pair was analyzed under dominant, recessive, and additive genetic models, with significant association with PFS seen under the dominant model (G/G+C/G). In patients carrying this biomarker pair [PSMB1 P11A G allele, low CD68 expression (≤50 CD68-positive cells), population frequency: 43.6%], median PFS was 14.2 months with bortezomib-rituximab versus 9.1 months with rituximab (HR 0.47, P < 0.0001), and there was a significant overall survival benefit (HR 0.49, P = 0.0461). Response rates were higher and time to next antilymphoma therapy was longer in the bortezomib-rituximab group. In biomarker-negative patients, no significant efficacy differences were seen between treatment groups. Similar proportions of patients had high-risk features in the biomarker-positive and biomarker-negative subsets. Patients with PSMB1 P11A (G allele) and low CD68 expression seemed to have significantly longer PFS and greater clinical benefit with bortezomib-rituximab versus rituximab. ©2013 AACR.

  11. Validation of New Cancer Biomarkers

    DEFF Research Database (Denmark)

    Duffy, Michael J; Sturgeon, Catherine M; Söletormos, Georg

    2015-01-01

    BACKGROUND: Biomarkers are playing increasingly important roles in the detection and management of patients with cancer. Despite an enormous number of publications on cancer biomarkers, few of these biomarkers are in widespread clinical use. CONTENT: In this review, we discuss the key steps...... in advancing a newly discovered cancer candidate biomarker from pilot studies to clinical application. Four main steps are necessary for a biomarker to reach the clinic: analytical validation of the biomarker assay, clinical validation of the biomarker test, demonstration of clinical value from performance...... of the biomarker test, and regulatory approval. In addition to these 4 steps, all biomarker studies should be reported in a detailed and transparent manner, using previously published checklists and guidelines. Finally, all biomarker studies relating to demonstration of clinical value should be registered before...

  12. Metabolomics for Biomarker Discovery: Moving to the Clinic

    Science.gov (United States)

    Zhang, Aihua; Sun, Hui; Yan, Guangli; Wang, Ping; Wang, Xijun

    2015-01-01

    To improve the clinical course of diseases, more accurate diagnostic and assessment methods are required as early as possible. In order to achieve this, metabolomics offers new opportunities for biomarker discovery in complex diseases and may provide pathological understanding of diseases beyond traditional technologies. It is the systematic analysis of low-molecular-weight metabolites in biological samples and has become an important tool in clinical research and the diagnosis of human disease and has been applied to discovery and identification of the perturbed pathways. It provides a powerful approach to discover biomarkers in biological systems and offers a holistic approach with the promise to clinically enhance diagnostics. When carried out properly, it could provide insight into the understanding of the underlying mechanisms of diseases, help to identify patients at risk of disease, and predict the response to specific treatments. Currently, metabolomics has become an important tool in clinical research and the diagnosis of human disease and becomes a hot topic. This review will highlight the importance and benefit of metabolomics for identifying biomarkers that accurately screen potential biomarkers of diseases. PMID:26090402

  13. Biomarkers of World Trade Center Particulate Matter Exposure: Physiology of distal airway and blood biomarkers that predict FEV1 decline

    Science.gov (United States)

    Weiden, Michael D.; Kwon, Sophia; Caraher, Erin; Berger, Kenneth I.; Reibman, Joan; Rom, William N.; Prezant, David J.; Nolan, Anna

    2016-01-01

    Biomarkers can be important predictors of disease severity and progression. The intense exposure to particulates and other toxins from the destruction of the World Trade Center (WTC) overwhelmed the lung’s normal protective barriers. The Fire Department of New York (FDNY) cohort not only had baseline pre-exposure lung function measures but also had serum samples banked soon after their WTC exposure. This well phenotyped group of highly exposed first responders is an ideal cohort for biomarker discovery and eventual validation. Disease progression was heterogeneous in this group in that some individuals subsequently developed abnormal lung function while others recovered. Airflow obstruction predominated in WTC exposed patients who were symptomatic. Multiple independent disease pathways may cause this abnormal FEV1 after irritant exposure. WTC exposure activates one or more of these pathways causing abnormal FEV1 in an individual. Our hypothesis was that serum biomarkers expressed within 6 months after World Trade Center (WTC) exposure reflect active disease pathways and predict subsequent development or protection from abnormal FEV1biomarkers of WTC-LI. We have identified biomarkers of Inflammation, metabolic derangement, protease/antiprotease balance and vascular injury expressed in serum within 6 months of WTC exposure that were predictive of their FEV1 up to 7 years after their WTC exposure. Predicting future risk of airway injury after particulate exposures can focus monitoring and early treatment on a subset of patients in greatest need of these services. PMID:26024341

  14. The role of toxicology to characterize biomarkers for agrochemicals with potential endocrine activities.

    Science.gov (United States)

    Mantovani, Alberto; Maranghi, Francesca; La Rocca, Cinzia; Tiboni, Gian Mario; Clementi, Maurizio

    2008-09-01

    The paper discusses current knowledge and possible research priorities on biomarkers of exposure, effect and susceptibility for potential endocrine activities of agrochemicals (dicarboximides, ethylene bisdithiocarbammates, triazoles, etc.). Possible widespread, multiple-pathway exposure to agrochemicals highlights the need to assess internal exposure of animals or humans, which is the most relevant exposure measure for hazard and risk estimation; however, exposure data should be integrated by early indicators predictive of possible health effects, particularly for vulnerable groups such as mother-child pairs. Research need include: non-invasive biomarkers for children biomonitoring; novel biomarkers of total exposure to measure whole endocrine disrupter-related burden; characterization of biomarkers of susceptibility, including the role of markers of nutritional status; anchoring early molecular markers to established toxicological endpoints to support their predictivity; integrating "omics"-based approaches in a system-toxicology framework. As biomonitoring becomes increasingly important in the environment-and-health scenario, toxicologists can substantially contribute both to the characterization of new biomarkers and to the predictivity assessment and improvement of the existing ones.

  15. Biomarkers in Autism

    Directory of Open Access Journals (Sweden)

    Robert eHendren

    2014-08-01

    Full Text Available Autism spectrum disorders (ASD are complex, heterogeneous disorders caused by an interaction between genetic vulnerability and environmental factors. In an effort to better target the underlying roots of ASD for diagnosis and treatment, efforts to identify reliable biomarkers in genetics, neuroimaging, gene expression and measures of the body’s metabolism are growing. For this article, we review the published studies of potential biomarkers in autism and conclude that while there is increasing promise of finding biomarkers that can help us target treatment, there are none with enough evidence to support routine clinical use unless medical illness is suspected. Promising biomarkers include those for mitochondrial function, oxidative stress, and immune function. Genetic clusters are also suggesting the potential for useful biomarkers.

  16. Combining large number of weak biomarkers based on AUC.

    Science.gov (United States)

    Yan, Li; Tian, Lili; Liu, Song

    2015-12-20

    Combining multiple biomarkers to improve diagnosis and/or prognosis accuracy is a common practice in clinical medicine. Both parametric and non-parametric methods have been developed for finding the optimal linear combination of biomarkers to maximize the area under the receiver operating characteristic curve (AUC), primarily focusing on the setting with a small number of well-defined biomarkers. This problem becomes more challenging when the number of observations is not order of magnitude greater than the number of variables, especially when the involved biomarkers are relatively weak. Such settings are not uncommon in certain applied fields. The first aim of this paper is to empirically evaluate the performance of existing linear combination methods under such settings. The second aim is to propose a new combination method, namely, the pairwise approach, to maximize AUC. Our simulation studies demonstrated that the performance of several existing methods can become unsatisfactory as the number of markers becomes large, while the newly proposed pairwise method performs reasonably well. Furthermore, we apply all the combination methods to real datasets used for the development and validation of MammaPrint. The implication of our study for the design of optimal linear combination methods is discussed. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Calling biomarkers in milk using a protein microarray on your smartphone

    NARCIS (Netherlands)

    Ludwig, S.K.J.; Tokarski, Christian; Lang, Stefan N.; Ginkel, Van L.A.; Zhu, Hongying; Ozcan, Aydogan; Nielen, M.W.F.

    2015-01-01

    Here we present the concept of a protein microarray-based fluorescence immunoassay for multiple biomarker detection in milk extracts by an ordinary smartphone. A multiplex immunoassay was designed on a microarray chip, having built-in positive and negative quality controls. After the immunoassay

  18. Responses of stream microbes to multiple anthropogenic stressors in a mesocosm study.

    Science.gov (United States)

    Nuy, Julia K; Lange, Anja; Beermann, Arne J; Jensen, Manfred; Elbrecht, Vasco; Röhl, Oliver; Peršoh, Derek; Begerow, Dominik; Leese, Florian; Boenigk, Jens

    2018-08-15

    Stream ecosystems are affected by multiple anthropogenic stressors worldwide. Even though effects of many single stressors are comparatively well studied, the effects of multiple stressors are difficult to predict. In particular bacteria and protists, which are responsible for the majority of ecosystem respiration and element flows, are infrequently studied with respect to multiple stressors responses. We conducted a stream mesocosm experiment to characterize the responses of single and multiple stressors on microbiota. Two functionally important stream habitats, leaf litter and benthic phototrophic rock biofilms, were exposed to three stressors in a full factorial design: fine sediment deposition, increased chloride concentration (salinization) and reduced flow velocity. We analyzed the microbial composition in the two habitat types of the mesocosms using an amplicon sequencing approach. Community analysis on different taxonomic levels as well as principle component analyses (PCoAs) based on realtive abundances of operational taxonomic units (OTUs) showed treatment specific shifts in the eukaryotic biofilm community. Analysis of variance (ANOVA) revealed that Bacillariophyta responded positively salinity and sediment increase, while the relative read abundance of chlorophyte taxa decreased. The combined effects of multiple stressors were mainly antagonistic. Therefore, the community composition in multiply stressed environments resembled the composition of the unstressed control community in terms of OTU occurrence and relative abundances. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Integrated response of antioxidant biomarkers in the liver and white muscle of European hake (Merluccius merluccius L. females from the Adriatic sea with respect to environmental influences

    Directory of Open Access Journals (Sweden)

    Pavlović Slađan Z.

    2018-01-01

    Full Text Available We investigated the integrated response of antioxidant defense enzymes (total superoxide dismutase (TotSOD, manganese-containing superoxide dismutase (MnSOD, copper-zinc-containing superoxide dismutase (CuZnSOD, catalase (CAT, glutathione peroxidase (GSH-Px, glutathione reductase (GR and phase II biotransformation enzyme, glutathione- S-transferase (GST in the liver and white muscle of females of European hake (Merluccius merluccius L. from the Adriatic Sea (Montenegro in winter and spring. The activity of GSH-Px in the liver was significantly increased, while GST activity was decreased in spring compared to the winter. In white muscle, the activities of TotSOD and CuZnSOD were increased, while the activities of MnSOD, CAT, GSH-Px, GR and GST were decreased in spring when compared to the matching values in winter. The activities of TotSOD and CuZnSOD in winter were markedly lower in the muscle than in the liver, while the activity of MnSOD in the muscle was higher when compared to the liver. Principal component analysis (PCA revealed clear separation of the investigated antioxidant biomarkers between tissues and seasons, while the integrated biomarker response (IBR showed that the most intensive antioxidant biomarker response was in the liver in spring. Star plots of IBR showed a dominant contribution of glutathione-dependent biomarkers (GSH-Px, GR and GST and CAT in both tissues and seasons with respect to SOD isoenzymes. All enzyme activities (except MnSOD were greater in the liver in comparison to the white muscle. Our results show that the liver possesses a greater capacity to establish and maintain homeostasis under changing environmental conditions in winter and spring. At the same time, seasonal effects are more pronounced in muscle tissue. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 173041

  20. Conceptual strategy for design, implementation, and validation of a biomarker-based biomonitoring capability

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, J.F.; Halbrook, R.S.; Shugart, L.R.

    1991-12-01

    This document describes a strategy for defining specific objectives for biomarker studies and for designing and implementing a biomonitoring study that focuses on these objectives. In researching this subject, it became clear to the authors that the subject of biomarkers created a great deal of interest among scientists and regulators but that general acceptance of biomarkers as a tool for environmental protection was hampered by lack of a clear notion of how to develop and apply this approach. We intend this document to be a user's guide'' that lays out a logical scheme for applying biomarkers in environmental monitoring. In addition, laboratory and field research components needed to develop and validate fundamental understanding and interpretation of biomarker responses are also described, as is a strategy for evolution of a biomarker-based biomonitoring capability. The document is divided into sections intended to lead the reader to an understanding of how biomarkers can be developed and applied.

  1. Conceptual strategy for design, implementation, and validation of a biomarker-based biomonitoring capability

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, J.F.; Halbrook, R.S.; Shugart, L.R.

    1991-12-01

    This document describes a strategy for defining specific objectives for biomarker studies and for designing and implementing a biomonitoring study that focuses on these objectives. In researching this subject, it became clear to the authors that the subject of biomarkers created a great deal of interest among scientists and regulators but that general acceptance of biomarkers as a tool for environmental protection was hampered by lack of a clear notion of how to develop and apply this approach. We intend this document to be a ``user`s guide`` that lays out a logical scheme for applying biomarkers in environmental monitoring. In addition, laboratory and field research components needed to develop and validate fundamental understanding and interpretation of biomarker responses are also described, as is a strategy for evolution of a biomarker-based biomonitoring capability. The document is divided into sections intended to lead the reader to an understanding of how biomarkers can be developed and applied.

  2. Validated biomarkers: The key to precision treatment in patients with breast cancer.

    Science.gov (United States)

    Duffy, Michael J; O'Donovan, Norma; McDermott, Enda; Crown, John

    2016-10-01

    Recent DNA sequencing and gene expression studies have shown that at a molecular level, almost every case of breast cancer is unique and different from other breast cancers. For optimum management therefore, every patient should receive treatment that is guided by the molecular composition of their tumor, i.e., precision treatment. While such a scenario is still some distance into the future, biomarkers are beginning to play an important role in preparing the way for precision treatment. In particular, biomarkers are increasingly being used for predicting patient outcome and informing as to the most appropriate type of systemic therapy to be administered. Mandatory biomarkers for every newly diagnosed case of breast cancer are estrogen receptors and progesterone receptors in selecting patients for endocrine treatment and HER2 for identifying patients likely to benefit from anti-HER2 therapy. Amongst the best validated prognostic biomarker tests are uPA/PAI-1, MammaPrint and Oncotype DX. Although currently, there are no biomarkers available for predicting response to specific forms of chemotherapy, uPA/PAI-1 and Oncotype DX can aid the identification of lymph node-negative patients that are most likely to benefit from adjuvant chemotherapy, in general. In order to accelerate progress towards precision treatment for women with breast cancer, we need additional predictive biomarkers, especially for enhancing the positive predictive value for endocrine and anti-HER2 therapies, as well as biomarkers for predicting response to specific forms of chemotherapy. The ultimate biomarker test for achieving the goal of precision treatment for patients with breast cancer will likely require a combination of gene sequencing and transcriptomic analysis of every patient's tumor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Toxicity of dispersant application: Biomarkers responses in gills of juvenile golden grey mullet (Liza aurata)

    International Nuclear Information System (INIS)

    Milinkovitch, Thomas; Godefroy, Joachim; Theron, Michael; Thomas-Guyon, Helene

    2011-01-01

    Dispersant use in nearshore areas is likely to increase the exposure of aquatic organisms to petroleum. To measure the toxicity of this controversial response technique, golden grey mullets (Liza aurata) were exposed to mechanically dispersed oil, chemically dispersed oil, dispersant alone in seawater, water-soluble fraction of oil and to seawater as a control treatment. Several biomarkers were assessed in the gills (enzymatic antioxidant activities, glutathione content, lipid peroxidation) and in the gallbladder (polycylic aromatic hydrocarbons metabolites). The significant differences between chemically dispersed oil and water soluble fraction of oil highlight the environmental risk to disperse an oil slick when containment and recovery can be conducted. The lack of significance between chemically and mechanically dispersed oil suggests that dispersant application is no more toxic than the natural dispersion of the oil slick. The results of this study are of interest in order to establish dispersant use policies in nearshore areas. - Highlights: → This study simulates and evaluates the toxicity of dispersant use in nearshore area. → Dispersant use toxicity is assessed through biomarkers measurement in a fish species. → Chemical dispersion of an oil slick increases the petroleum toxicity. → Dispersant use does not enhance the toxicity of a mechanically dispersed oil slick. → This work leads to conclusions concerning dispersant use policies in nearshore area. - When the meteorological conditions induce the dispersion of the oil slick (e.g. wave), the application of dispersant does not increase the toxicity of petroleum.

  4. Biomarkers for immunotherapy in bladder cancer: a moving target.

    Science.gov (United States)

    Aggen, David H; Drake, Charles G

    2017-11-21

    Treatment options for metastatic urothelial carcinoma (mUC) remained relative unchanged over the last 30 years with combination chemotherapy as the mainstay of treatment. Within the last year the landscape for mUC has seismically shifted following the approval of five therapies targeting the programmed cell death protein (PD-1)/programmed cell death ligand 1 (PD-L1) axis. Notably, the anti-PD-1 antibody pembrolizumab demonstrated improved OS relative to chemotherapy in a randomized phase III study for second line treatment of mUC; this level 1 evidence led to approval from the U.S. Food and Drug Administration (FDA). The PD-1 antibody nivolumab also demonstrated an overall survival benefit, in this case in comparison to historical controls. Similarly, antibodies targeting PD-L1 including atezolizumab, durvalumab, and avelumab have now received accelerated approval from the FDA as second line treatments for mUC, with durable response lasting more than 1 year in some patients. Some of these agents are approved in the first line setting as well - based on single-arm phase II studies atezolizumab and pembrolizumab received accelerated approval for first-line treatment of cisplatin ineligible patients. Despite these multiple approvals, the development of clinically useful biomarkers to determine the optimal treatment for patients remains somewhat elusive. In this review, we examine key clinical trial results with anti-PD1/PD-L1 antibodies and discuss progress towards developing novel biomarkers beyond PD-L1 expression.

  5. Traumatic brain injury produced by exposure to blasts, a critical problem in current wars: biomarkers, clinical studies, and animal models

    Science.gov (United States)

    Dixon, C. Edward

    2011-06-01

    Traumatic brain injury (TBI) resulting from exposure to blast energy released by Improvised Explosive Devices (IEDs) has been recognized as the "signature injury" of Operation Iraqi Freedom and Operation Enduring Freedom. Repeated exposure to mild blasts may produce subtle deficits that are difficult to detect and quantify. Several techniques have been used to detect subtle brain dysfunction including neuropsychological assessments, computerized function testing and neuroimaging. Another approach is based on measurement of biologic substances (e.g. proteins) that are released into the body after a TBI. Recent studies measuring biomarkers in CSF and serum from patients with severe TBI have demonstrated the diagnostic, prognostic, and monitoring potential. Advancement of the field will require 1) biochemical mining for new biomarker candidates, 2) clinical validation of utility, 3) technical advances for more sensitive, portable detectors, 4) novel statistical approach to evaluate multiple biomarkers, and 5) commercialization. Animal models have been developed to simulate elements of blast-relevant TBI including gas-driven shock tubes to generate pressure waves similar to those produced by explosives. These models can reproduce hallmark clinical neuropathological responses such as neuronal degeneration and inflammation, as well as behavioral impairments. An important application of these models is to screen novel therapies and conduct proteomic, genomic, and lipodomic studies to mine for new biomarker candidates specific to blast relevant TBI.

  6. Chronic Obstructive Pulmonary Disease Biomarkers

    Directory of Open Access Journals (Sweden)

    Tatsiana Beiko

    2016-04-01

    Full Text Available Despite significant decreases in morbidity and mortality of cardiovascular diseases (CVD and cancers, morbidity and cost associated with chronic obstructive pulmonary disease (COPD continue to be increasing. Failure to improve disease outcomes has been related to the paucity of interventions improving survival. Insidious onset and slow progression halter research successes in developing disease-modifying therapies. In part, the difficulty in finding new therapies is because of the extreme heterogeneity within recognized COPD phenotypes. Novel biomarkers are necessary to help understand the natural history and pathogenesis of the different COPD subtypes. A more accurate phenotyping and the ability to assess the therapeutic response to new interventions and pharmaceutical agents may improve the statistical power of longitudinal clinical studies. In this study, we will review known candidate biomarkers for COPD, proposed pathways of pathogenesis, and future directions in the field.

  7. Serological inflammatory factors as biomarkers for anatomic response in diabetic macular edema treated with anti-VEGF.

    Science.gov (United States)

    Brito, Pedro; Costa, Jorge; Gomes, Nuno; Costa, Sandra; Correia-Pinto, Jorge; Silva, Rufino

    2018-05-11

    To study the relationship between systemic pro-inflammatory factors and macular structural response to intravitreal bevacizumab for diabetic macular edema (DME). Prospective study including 30 cases with DME, treated with bevacizumab and a minimum follow-up of 6 months. All cases underwent baseline laboratory testing for cardiovascular risk (high sensitivity C-reactive protein (hsCRP), homocystein), dyslipidemia, renal dysfunction and glucose control. Serum levels of VEGF, soluble ICAM-1, MCP-1 and TNF-α were assessed by enzyme-linked immunosorbent assay kits. Significant associations between systemic factors and quantitative and qualitative spectral-domain optical coherence macular features were analyzed. A mean of 4.82 ± 0.56 intravitreal injections was performed, resulting in significant improvement of central foveal thickness (CFT) (p anatomic response (area under the curve (AUC) = 0.807, p = 0.009 for hsCRP; AUC = 0.788, p = 0.014 for ICAM1). ROC curve analysis revealed hsCRP as a significant biomarker for 6th month CFT decrease anatomic response to anti-VEGF treatment. Cases with higher serum levels of such factors had increased CFT values, despite treatment, suggesting inner blood-retinal barrier breakdown that is not adequately responsive to anti-VEGF monotherapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Coupled Multiple-Response versus Free-Response Conceptual Assessment: An Example from Upper-Division Physics

    Science.gov (United States)

    Wilcox, Bethany R.; Pollock, Steven J.

    2014-01-01

    Free-response research-based assessments, like the Colorado Upper-division Electrostatics Diagnostic (CUE), provide rich, fine-grained information about students' reasoning. However, because of the difficulties inherent in scoring these assessments, the majority of the large-scale conceptual assessments in physics are multiple choice. To increase…

  9. African Burkitt lymphoma: age-specific risk and correlations with malaria biomarkers.

    Science.gov (United States)

    Emmanuel, Benjamin; Kawira, Esther; Ogwang, Martin D; Wabinga, Henry; Magatti, Josiah; Nkrumah, Francis; Neequaye, Janet; Bhatia, Kishor; Brubaker, Glen; Biggar, Robert J; Mbulaiteye, Sam M

    2011-03-01

    African Burkitt lymphoma is an aggressive B-cell, non-Hodgkin lymphoma linked to Plasmodium falciparum malaria. Malaria biomarkers related to onset of African Burkitt lymphoma are unknown. We correlated age-specific patterns of 2,602 cases of African Burkitt lymphoma (60% male, mean ± SD age = 7.1 ± 2.9 years) from Uganda, Ghana, and Tanzania with malaria biomarkers published from these countries. Age-specific patterns of this disease and mean multiplicity of P. falciparum malaria parasites, defined as the average number of distinct genotypes per positive blood sample based on the merozoite surface protein-2 assessed by polymerase chain reaction, were correlated and both peaked between 5 and 9 years. This pattern, which was strong and consistent across regions, contrasted parasite prevalence, which peaked at 2 years and decreased slightly, and geometric mean parasite density, which peaked between 2 and 3 years and decreased sharply. Our findings suggest that concurrent infection with multiple malaria genotypes may be related to onset of African Burkitt lymphoma.

  10. Effects of Positive Psychology Interventions on Risk Biomarkers in Coronary Patients: A Randomized, Wait-List Controlled Pilot Trial.

    Science.gov (United States)

    Nikrahan, Gholam Reza; Laferton, Johannes A C; Asgari, Karim; Kalantari, Mehrdad; Abedi, Mohammad Reza; Etesampour, Ali; Rezaei, Abbas; Suarez, Laura; Huffman, Jeff C

    2016-01-01

    Among cardiac patients, positive psychologic factors are consistently linked with superior clinical outcomes and improvement in key markers of inflammation and hypothalamic-pituitary-adrenal axis functioning. Further, positive psychology interventions (PPI) have effectively increased psychologic well-being in a wide variety of populations. However, there has been minimal study of PPIs in cardiac patients, and no prior study has evaluated their effect on key prognostic biomarkers of cardiac outcome. Accordingly, we investigated the effect of 3 distinct PPIs on risk biomarkers in cardiac patients. In an exploratory trial, 69 patients with recent coronary artery bypass graft surgery or percutaneous intervention were randomized to (1) one of three 6-week in-person PPIs (based on the work of Seligman, Lyubomirsky, or Fordyce) or (2) a wait-list control group. Risk biomarkers were assessed at baseline, postintervention (7 weeks), and at 15-week follow-up. Between-group differences in change from baseline biomarker levels were examined via random effects models. Compared with the control group, participants randomized to the Seligman (B = -2.06; p = 0.02) and Fordyce PPI (B = -1.54; p = 0.04) had significantly lower high-sensitivity C-reactive protein levels at 7 weeks. Further, the Lyubomirsky PPI (B = -245.86; p = 0.04) was associated with a significantly lower cortisol awakening response at 7 weeks when compared with control participants. There were no other significant between-group differences. Despite being an exploratory pilot study with multiple between-group comparisons, this initial trial offers the first suggestion that PPIs might be effective in reducing risk biomarkers in high-risk cardiac patients. Copyright © 2016 The Academy of Psychosomatic Medicine. All rights reserved.

  11. Multiple inflammatory biomarker detection in a prospective cohort study: a cross-validation between well-established single-biomarker techniques and electrochemiluminescense-based multi-array platform

    NARCIS (Netherlands)

    Bussel, van B.C.T.; Ferreira, I.; Waarenburg, M.P.H.; Greevenbroek, van M.M.J.; Kallen, van der C.J.H.; Henry, R.M.A.; Feskens, E.J.M.; Stehouwer, C.D.A.; Schalkwijk, C.G.

    2013-01-01

    Background - In terms of time, effort and quality, multiplex technology is an attractive alternative for well-established single-biomarker measurements in clinical studies. However, limited data comparing these methods are available. Methods - We measured, in a large ongoing cohort study (n = 574),

  12. Porcine humoral immune responses to multiple injections of murine monoclonal antibodies

    DEFF Research Database (Denmark)

    Lohse, Louise; Nielsen, Jens; Kamstrup, Søren

    2005-01-01

    In humans and cattle, multiple injections of murine monoclonal antibodies (m-mAbs) induce anti-mouse antibody responses. The objectives of the present. study were to investigate whether a similar response could be seen when pigs were subjected to m-mAb therapy, and to study the kinetics of such a...

  13. An Evidence-Based Approach to the Use of Predictive Biomarkers in the Treatment of Non- Small Cell Lung Cancer (NSCLC)

    International Nuclear Information System (INIS)

    Quinton, Cindy; Ellis, Peter M.

    2011-01-01

    Recent advances in the treatment of non-small cell lung cancer (NSCLC) have led to improvements in patient survival and quality of life. It is unclear whether molecular abnormalities associated with NSCLC cell survival, growth and proliferation are useful in predicting treatment benefit. We conducted a systematic review to establish which biomarkers contribute meaningfully to the management of NSCLC. A team of researchers searched PubMed and conference proceedings (ASCO, ESMO, IASLC, USCAP) using MESH terms for NSCLC and randomized trials (RCT), plus keywords for variables of interest. Evidence from multiple RCTs confirmed that histologic subtype is prognostic for survival and predictive of treatment efficacy and/or toxicity in NSCLC. Likewise, activating mutations of the epidermal growth factor receptor (EGFR) are associated with benefit from EGFR tyrosine kinase inhibitors in patients with advanced non-squamous NSCLC and should be assessed routinely. No biomarkers to date reliably predict response to anti-Vascular Endothelial Growth Factor (VEGF) therapies. There are inconsistent data on the role of ERCC1, BRCA, Beta tubulin III, RRM1, K-RAS, or TP-53 in treatment decisions. These tests should not be routinely used in selecting treatment at this time, whereas EML4/ALK translocations predict responses to specific targeted agents, the optimal assessment of this molecular abnormality has yet to be established. Personalized care of patients with NSCLC based on biomarkers is increasingly important to both clinical practice and research

  14. Increased multiaxial lumbar motion responses during multiple-impulse mechanical force manually assisted spinal manipulation

    Directory of Open Access Journals (Sweden)

    Gunzburg Robert

    2006-04-01

    Full Text Available Abstract Background Spinal manipulation has been found to create demonstrable segmental and intersegmental spinal motions thought to be biomechanically related to its mechanisms. In the case of impulsive-type instrument device comparisons, significant differences in the force-time characteristics and concomitant motion responses of spinal manipulative instruments have been reported, but studies investigating the response to multiple thrusts (multiple impulse trains have not been conducted. The purpose of this study was to determine multi-axial segmental and intersegmental motion responses of ovine lumbar vertebrae to single impulse and multiple impulse spinal manipulative thrusts (SMTs. Methods Fifteen adolescent Merino sheep were examined. Tri-axial accelerometers were attached to intraosseous pins rigidly fixed to the L1 and L2 lumbar spinous processes under fluoroscopic guidance while the animals were anesthetized. A hand-held electromechanical chiropractic adjusting instrument (Impulse was used to apply single and repeated force impulses (13 total over a 2.5 second time interval at three different force settings (low, medium, and high along the posteroanterior axis of the T12 spinous process. Axial (AX, posteroanterior (PA, and medial-lateral (ML acceleration responses in adjacent segments (L1, L2 were recorded at a rate of 5000 samples per second. Peak-peak segmental accelerations (L1, L2 and intersegmental acceleration transfer (L1–L2 for each axis and each force setting were computed from the acceleration-time recordings. The initial acceleration response for a single thrust and the maximum acceleration response observed during the 12 multiple impulse trains were compared using a paired observations t-test (POTT, alpha = .05. Results Segmental and intersegmental acceleration responses mirrored the peak force magnitude produced by the Impulse Adjusting Instrument. Accelerations were greatest for AX and PA measurement axes. Compared to

  15. Factors that contribute to biomarker responses in humans including a study in individuals taking Vitamin C supplementation.

    Science.gov (United States)

    Anderson, D

    2001-09-01

    It is possible in many situations to identify humans exposed to potentially toxic materials in the workplace and in the environment. As in most human studies, there tends to be a high degree of interindividual variability in response to chemical insults. Some non-exposed control individuals exhibit as high a level of damage as some exposed individuals and some of these have levels of damage as low as many of the controls. Thus, it is only the mean values of the groups that can substantiate an exposure-related problem; the data on an individual basis are still of limited use. While human lymphocytes remain the most popular cell type for monitoring purposes, sperm, buccal, nasal, epithelial and placental cells are also used. However, for interpretation of responses, the issue of confounding factors must be addressed. There are endogenous confounding factors, such as age, gender, and genetic make-up and exogenous ones, including lifestyle habits (smoking, drinking, etc.) There are biomarkers of exposure, effect/response and susceptibility and the last may be influenced by the genotype and polymorphism genes existing in a population. From our own studies, confounding effects on cytogenetic damage and ras oncoproteins will be considered in relation to workers exposed to vinyl chloride and petroleum emissions and to volunteers taking Vitamin C supplementation. Smoking history, exposure and duration of employment affected the worker studies. For petroleum emissions, so did gender and season of exposure. For the non-smoking volunteer Vitamin C supplementation study, cholesterol levels, plasma Vitamin C levels, lipid peroxidation products and DNA damage in the Comet assay were also measured. Gender affected differences in Vitamin C levels, antioxidant capacity and the number of chromosome aberrations induced by bleomycin challenge in vitro. The results were the same for both high and low cholesterol subjects. The relationship between biomarkers and the various factors which

  16. Study on IL-2 and CA 15-3 level as combined biomarkers in monitoring chemotherapeutic response among invasive breast cancer patients

    Science.gov (United States)

    Hameed, Ahmed Muthanna Abdul; Hamid, Auni Fatin Abdul; Shahfiza Noor, Nurul; Appalanaido, Gokula Kumar; Bariyah Sahul Hamid, Shahrul

    2017-05-01

    In Malaysia, breast cancer is the most frequent type of disease among women. This study was designed to determine the clinical usefulness of carbohydrate antigen (CA 15-3) and interleukin 2 (IL-2) levels as combined biomarkers in monitoring breast cancer patient’s response to chemotherapy. Ethical approval was obtained to recruit patients with histologically confirmed invasive ductal carcinoma (IDC) attending Oncology Clinic at Advanced Medical and Dental Institute. Whole blood was collected from 10 IDC breast cancer patients’ pre and post primary chemotherapy. Plasma was separated from the whole blood to determine the CA 15-3 level and IL-2 level using enzyme-linked immunosorbent assay (ELISA) pre and post-treatment. In addition, the histological findings, tumour stage and other patients’ data were obtained from the medical record. Findings showed that IL-2 had borderline significant changes between pre- and post-chemotherapy (p = 0.074) whereas for CA 15-3, there was insignificant differences of CA 15-3 level between pre and post-chemotherapy (p > 0.05). It was noted that only CA 15-3 level had significant correlation with tumour size. This study demonstrates that IL-2 level requires further investigation in a larger sample size to correlate its potential use as combined biomarker with CA 15-3 in monitoring response to chemotherapy.

  17. Serum prognostic biomarkers in head and neck cancer patients.

    Science.gov (United States)

    Lin, Ho-Sheng; Siddiq, Fauzia; Talwar, Harvinder S; Chen, Wei; Voichita, Calin; Draghici, Sorin; Jeyapalan, Gerald; Chatterjee, Madhumita; Fribley, Andrew; Yoo, George H; Sethi, Seema; Kim, Harold; Sukari, Ammar; Folbe, Adam J; Tainsky, Michael A

    2014-08-01

    A reliable estimate of survival is important as it may impact treatment choice. The objective of this study is to identify serum autoantibody biomarkers that can be used to improve prognostication for patients affected with head and neck squamous cell carcinoma (HNSCC). Prospective cohort study. A panel of 130 serum biomarkers, previously selected for cancer detection using microarray-based serological profiling and specialized bioinformatics, were evaluated for their potential as prognostic biomarkers in a cohort of 119 HNSCC patients followed for up to 12.7 years. A biomarker was considered positive if its reactivity to the particular patient's serum was greater than one standard deviation above the mean reactivity to sera from the other 118 patients, using a leave-one-out cross-validation model. Survival curves were estimated according to the Kaplan-Meier method, and statistically significant differences in survival were examined using the log rank test. Independent prognostic biomarkers were identified following analysis using multivariate Cox proportional hazards models. Poor overall survival was associated with African Americans (hazard ratio [HR] for death = 2.61; 95% confidence interval [CI]: 1.58-4.33; P = .000), advanced stage (HR = 2.79; 95% CI: 1.40-5.57; P = .004), and recurrent disease (HR = 6.66; 95% CI: 2.54-17.44; P = .000). On multivariable Cox analysis adjusted for covariates (race and stage), six of the 130 markers evaluated were found to be independent prognosticators of overall survival. The results shown here are promising and demonstrate the potential use of serum biomarkers for prognostication in HNSCC patients. Further clinical trials to include larger samples of patients across multiple centers may be warranted. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Biomarkers and asthma management: analysis and potential applications

    NARCIS (Netherlands)

    Richards, Levi B.; Neerincx, Anne H.; van Bragt, Job J. M. H.; Sterk, Peter J.; Bel, Elisabeth H. D.; Maitland-van der Zee, Anke H.

    2018-01-01

    Asthma features a high degree of heterogeneity in both pathophysiology and therapeutic response, resulting in many asthma patients being treated inadequately. Biomarkers indicative of underlying pathological processes could be used to identify disease subtypes, determine prognosis and to predict or

  19. Heterogeneity as Biomarker in Tumour Imaging (abstract only)

    NARCIS (Netherlands)

    Alić, L.; Veenland, J.F.

    2013-01-01

    PURPOSE: Tumour heterogeneity could be a valuable biomarker for differentiation, grading, response monitoring and outcome prediction. Many quantification techniques have been described, however in clinical practice these methods are scarcely used. The aim of this study is to evaluate the performance

  20. Molecules in the mud: Combining ancient DNA and lipid biomarkers to reconstruct vegetation response to climate variability during the Last Interglacial and the Holocene on Baffin Island, Arctic Canada

    Science.gov (United States)

    Crump, S. E.; Sepúlveda, J.; Bunce, M.; Miller, G. H.

    2017-12-01

    Modern ecological studies are revealing that the "greening" of the Arctic, resulting from a poleward shift in woody vegetation ranges, is already underway. The increasing abundance of shrubs in tundra ecosystems plays an important role in the global climate system through multiple positive feedbacks, yet uncertainty in future predictions of terrestrial vegetation means that climate models are likely not capturing these feedbacks accurately. Recently developed molecular techniques for reconstructing past vegetation and climate allow for a closer look at the paleo-record in order to improve our understanding of tundra community responses to climate variability; our current research focus is to apply these tools to both Last Interglacial and Holocene warm times. Here we present initial results from a small lake on southern Baffin Island spanning the last 7.2 ka. We reconstruct climate with both bulk geochemical and biomarker proxies, primarily using biogenic silica and branched glycerol dialkyl glycerol tetraethers (brGDGTs) as temperature indicators. We assess shifts in plant community using multivariate analysis of sedimentary ancient DNA (sedaDNA) metabarcoding data. This combination of approaches reveals that the vegetation community has responded sensitively to early Holocene warmth, Neoglacial cooling, and possibly modern anthropogenic warming. To our knowledge, this represents the first combination of a quantitative, biomarker-based climate reconstruction with a sedaDNA-based paleoecological reconstruction, and offers a glimpse at the potential of these molecular techniques used in tandem.

  1. Biomarkers and Environmental Stress: Relevance of Cellular Responses in Determining Adverse Outcomes

    Science.gov (United States)

    Biomarkers are measurable changes in a biological system indicative of an interaction with a chemical, physical, or biological agent. Such changes can be molecular, biochemical, physiological, or histological and can be reflective of either xenobiotic exposures or effects. Molecu...

  2. Biomarkers of Host Response Predict Primary End-Point Radiological Pneumonia in Tanzanian Children with Clinical Pneumonia: A Prospective Cohort Study.

    Directory of Open Access Journals (Sweden)

    Laura K Erdman

    Full Text Available Diagnosing pediatric pneumonia is challenging in low-resource settings. The World Health Organization (WHO has defined primary end-point radiological pneumonia for use in epidemiological and vaccine studies. However, radiography requires expertise and is often inaccessible. We hypothesized that plasma biomarkers of inflammation and endothelial activation may be useful surrogates for end-point pneumonia, and may provide insight into its biological significance.We studied children with WHO-defined clinical pneumonia (n = 155 within a prospective cohort of 1,005 consecutive febrile children presenting to Tanzanian outpatient clinics. Based on x-ray findings, participants were categorized as primary end-point pneumonia (n = 30, other infiltrates (n = 31, or normal chest x-ray (n = 94. Plasma levels of 7 host response biomarkers at presentation were measured by ELISA. Associations between biomarker levels and radiological findings were assessed by Kruskal-Wallis test and multivariable logistic regression. Biomarker ability to predict radiological findings was evaluated using receiver operating characteristic curve analysis and Classification and Regression Tree analysis.Compared to children with normal x-ray, children with end-point pneumonia had significantly higher C-reactive protein, procalcitonin and Chitinase 3-like-1, while those with other infiltrates had elevated procalcitonin and von Willebrand Factor and decreased soluble Tie-2 and endoglin. Clinical variables were not predictive of radiological findings. Classification and Regression Tree analysis generated multi-marker models with improved performance over single markers for discriminating between groups. A model based on C-reactive protein and Chitinase 3-like-1 discriminated between end-point pneumonia and non-end-point pneumonia with 93.3% sensitivity (95% confidence interval 76.5-98.8, 80.8% specificity (72.6-87.1, positive likelihood ratio 4.9 (3.4-7.1, negative likelihood ratio 0

  3. Biomarkers of Host Response Predict Primary End-Point Radiological Pneumonia in Tanzanian Children with Clinical Pneumonia: A Prospective Cohort Study

    Science.gov (United States)

    Erdman, Laura K.; D’Acremont, Valérie; Hayford, Kyla; Kilowoko, Mary; Kyungu, Esther; Hongoa, Philipina; Alamo, Leonor; Streiner, David L.; Genton, Blaise; Kain, Kevin C.

    2015-01-01

    Background Diagnosing pediatric pneumonia is challenging in low-resource settings. The World Health Organization (WHO) has defined primary end-point radiological pneumonia for use in epidemiological and vaccine studies. However, radiography requires expertise and is often inaccessible. We hypothesized that plasma biomarkers of inflammation and endothelial activation may be useful surrogates for end-point pneumonia, and may provide insight into its biological significance. Methods We studied children with WHO-defined clinical pneumonia (n = 155) within a prospective cohort of 1,005 consecutive febrile children presenting to Tanzanian outpatient clinics. Based on x-ray findings, participants were categorized as primary end-point pneumonia (n = 30), other infiltrates (n = 31), or normal chest x-ray (n = 94). Plasma levels of 7 host response biomarkers at presentation were measured by ELISA. Associations between biomarker levels and radiological findings were assessed by Kruskal-Wallis test and multivariable logistic regression. Biomarker ability to predict radiological findings was evaluated using receiver operating characteristic curve analysis and Classification and Regression Tree analysis. Results Compared to children with normal x-ray, children with end-point pneumonia had significantly higher C-reactive protein, procalcitonin and Chitinase 3-like-1, while those with other infiltrates had elevated procalcitonin and von Willebrand Factor and decreased soluble Tie-2 and endoglin. Clinical variables were not predictive of radiological findings. Classification and Regression Tree analysis generated multi-marker models with improved performance over single markers for discriminating between groups. A model based on C-reactive protein and Chitinase 3-like-1 discriminated between end-point pneumonia and non-end-point pneumonia with 93.3% sensitivity (95% confidence interval 76.5–98.8), 80.8% specificity (72.6–87.1), positive likelihood ratio 4.9 (3.4–7

  4. Intense inflammation and nerve damage in early multiple sclerosis subsides at older age: a reflection by cerebrospinal fluid biomarkers.

    Directory of Open Access Journals (Sweden)

    Mohsen Khademi

    Full Text Available Inflammatory mediators have crucial roles in leukocyte recruitment and subsequent central nervous system (CNS neuroinflammation. The extent of neuronal injury and axonal loss are associated with the degree of CNS inflammation and determine physical disability in multiple sclerosis (MS. The aim of this study was to explore possible associations between a panel of selected cerebrospinal fluid biomarkers and robust clinical and demographic parameters in a large cohort of patients with MS and controls (n = 1066 using data-driven multivariate analysis. Levels of matrix metalloproteinase 9 (MMP9, chemokine (C-X-C motif ligand 13 (CXCL13, osteopontin (OPN and neurofilament-light chain (NFL were measured by ELISA in 548 subjects comprising different MS subtypes (relapsing-remitting, secondary progressive and primary progressive, clinically isolated syndrome and persons with other neurological diseases with or without signs of inflammation/infection. Principal component analyses and orthogonal partial least squares methods were used for unsupervised and supervised interrogation of the data. Models were validated using data from a further 518 subjects in which one or more of the four selected markers were measured. There was a significant association between increased patient age and lower levels of CXCL13, MMP9 and NFL. CXCL13 levels correlated well with MMP9 in the younger age groups, but less so in older patients, and after approximately 54 years of age the levels of CXCL13 and MMP9 were consistently low. CXCL13 and MMP9 levels also correlated well with both NFL and OPN in younger patients. We demonstrate a strong effect of age on both inflammatory and neurodegenerative biomarkers in a large cohort of MS patients. The findings support an early use of adequate immunomodulatory disease modifying drugs, especially in younger patients, and may provide a biological explanation for the relative inefficacy of such treatments in older patients at later

  5. Immune activation in multiple sclerosis and interferon-beta therapy

    DEFF Research Database (Denmark)

    Krakauer, Martin

    2007-01-01

    The PhD dissertation emanated from the Danish MS Research Centre, Rigshosptalet, Copenhagen. Multiple sclerosis (MS) is an inflammatory disease of the CNS. Inflammatory responses by T helper (Th)-lymphocytes are characterised by distinct cytokine expression profiles. In MS, activated Th1...... of inflammation or secondary lymphatic organs. Chemokine receptors are differentially expressed in T cells in blood and cerebrospinal fluid, indicating their role for in T-cell-recruitment to the CNS. Interferon (IFN)-beta is a first-line treatment for MS. The mechanism of action is unclear, but probably includes...... changes in lymphocyte activation, cytokine secretion, and trafficking. The aim of the studies was to shed more light on T-cell immunology in MS and IFN-beta treatment, as well as identifying putative biomarkers of treatment response and/or disease activity. In one study we identified a Th-cell subset...

  6. Biomarkers of nanomaterial exposure and effect: current status

    Science.gov (United States)

    Iavicoli, Ivo; Leso, Veruscka; Manno, Maurizio; Schulte, Paul A.

    2014-03-01

    Recent advances in nanotechnology have induced a widespread production and application of nanomaterials. As a consequence, an increasing number of workers are expected to undergo exposure to these xenobiotics, while the possible hazards to their health remain not being completely understood. In this context, biological monitoring may play a key role not only to identify potential hazards from and to evaluate occupational exposure to nanomaterials, but also to detect their early biological effects to better assess and manage risks of exposure in respect of the health of workers. Therefore, the aim of this review is to provide a critical evaluation of potential biomarkers of nanomaterial exposure and effect investigated in human and animal studies. Concerning exposure biomarkers, internal dose of metallic or metal oxide nanoparticle exposure may be assessed measuring the elemental metallic content in blood or urine or other biological materials, whereas specific molecules may be carefully evaluated in target tissues as possible biomarkers of biologically effective dose. Oxidative stress biomarkers, such as 8-hydroxy-deoxy-guanosine, genotoxicity biomarkers, and inflammatory response indicators may also be useful, although not specific, as biomarkers of nanomaterial early adverse health effects. Finally, potential biomarkers from "omic" technologies appear to be quite innovative and greatly relevant, although mechanistic, ethical, and practical issues should all be resolved before their routine application in occupational settings could be implemented. Although all these findings are interesting, they point out the need for further research to identify and possibly validate sensitive and specific biomarkers of exposure and effect, suitable for future use in occupational biomonitoring programs. A valuable contribution may derive from the studies investigating the biological behavior of nanomaterials and the factors influencing their toxicokinetics and reactivity. In

  7. Using Module Analysis for Multiple Choice Responses: A New Method Applied to Force Concept Inventory Data

    Science.gov (United States)

    Brewe, Eric; Bruun, Jesper; Bearden, Ian G.

    2016-01-01

    We describe "Module Analysis for Multiple Choice Responses" (MAMCR), a new methodology for carrying out network analysis on responses to multiple choice assessments. This method is used to identify modules of non-normative responses which can then be interpreted as an alternative to factor analysis. MAMCR allows us to identify conceptual…

  8. Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment.

    Science.gov (United States)

    Raunig, David L; McShane, Lisa M; Pennello, Gene; Gatsonis, Constantine; Carson, Paul L; Voyvodic, James T; Wahl, Richard L; Kurland, Brenda F; Schwarz, Adam J; Gönen, Mithat; Zahlmann, Gudrun; Kondratovich, Marina V; O'Donnell, Kevin; Petrick, Nicholas; Cole, Patricia E; Garra, Brian; Sullivan, Daniel C

    2015-02-01

    Technological developments and greater rigor in the quantitative measurement of biological features in medical images have given rise to an increased interest in using quantitative imaging biomarkers to measure changes in these features. Critical to the performance of a quantitative imaging biomarker in preclinical or clinical settings are three primary metrology areas of interest: measurement linearity and bias, repeatability, and the ability to consistently reproduce equivalent results when conditions change, as would be expected in any clinical trial. Unfortunately, performance studies to date differ greatly in designs, analysis method, and metrics used to assess a quantitative imaging biomarker for clinical use. It is therefore difficult or not possible to integrate results from different studies or to use reported results to design studies. The Radiological Society of North America and the Quantitative Imaging Biomarker Alliance with technical, radiological, and statistical experts developed a set of technical performance analysis methods, metrics, and study designs that provide terminology, metrics, and methods consistent with widely accepted metrological standards. This document provides a consistent framework for the conduct and evaluation of quantitative imaging biomarker performance studies so that results from multiple studies can be compared, contrasted, or combined. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Mass spectrometry for biomarker development

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  10. Mass spectrometry imaging enriches biomarker discovery approaches with candidate mapping.

    Science.gov (United States)

    Scott, Alison J; Jones, Jace W; Orschell, Christie M; MacVittie, Thomas J; Kane, Maureen A; Ernst, Robert K

    2014-01-01

    Integral to the characterization of radiation-induced tissue damage is the identification of unique biomarkers. Biomarker discovery is a challenging and complex endeavor requiring both sophisticated experimental design and accessible technology. The resources within the National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Consortium, Medical Countermeasures Against Radiological Threats (MCART), allow for leveraging robust animal models with novel molecular imaging techniques. One such imaging technique, MALDI (matrix-assisted laser desorption ionization) mass spectrometry imaging (MSI), allows for the direct spatial visualization of lipids, proteins, small molecules, and drugs/drug metabolites-or biomarkers-in an unbiased manner. MALDI-MSI acquires mass spectra directly from an intact tissue slice in discrete locations across an x, y grid that are then rendered into a spatial distribution map composed of ion mass and intensity. The unique mass signals can be plotted to generate a spatial map of biomarkers that reflects pathology and molecular events. The crucial unanswered questions that can be addressed with MALDI-MSI include identification of biomarkers for radiation damage that reflect the response to radiation dose over time and the efficacy of therapeutic interventions. Techniques in MALDI-MSI also enable integration of biomarker identification among diverse animal models. Analysis of early, sublethally irradiated tissue injury samples from diverse mouse tissues (lung and ileum) shows membrane phospholipid signatures correlated with histological features of these unique tissues. This paper will discuss the application of MALDI-MSI for use in a larger biomarker discovery pipeline.

  11. Multiple-Choice versus Constructed-Response Tests in the Assessment of Mathematics Computation Skills.

    Science.gov (United States)

    Gadalla, Tahany M.

    The equivalence of multiple-choice (MC) and constructed response (discrete) (CR-D) response formats as applied to mathematics computation at grade levels two to six was tested. The difference between total scores from the two response formats was tested for statistical significance, and the factor structure of items in both response formats was…

  12. Biomarkers of acute respiratory allergen exposure: Screening for sensitization potential

    International Nuclear Information System (INIS)

    Pucheu-Haston, Cherie M.; Copeland, Lisa B.; Vallanat, Beena; Boykin, Elizabeth; Ward, Marsha D.W.

    2010-01-01

    Effective hazard screening will require the development of high-throughput or in vitro assays for the identification of potential sensitizers. The goal of this preliminary study was to identify potential biomarkers that differentiate the response to allergens vs non-allergens following an acute exposure in naive individuals. Female BALB/c mice received a single intratracheal aspiration exposure to Metarhizium anisopliae crude antigen (MACA) or bovine serum albumin (BSA) in Hank's Balanced Salt Solution (HBSS) or HBSS alone. Mice were terminated after 1, 3, 6, 12, 18 and 24 h. Bronchoalveolar lavage fluid (BALF) was evaluated to determine total and differential cellularity, total protein concentration and LDH activity. RNA was isolated from lung tissue for microarray analysis and qRT-PCR. MACA administration induced a rapid increase in BALF neutrophils, lymphocytes, eosinophils and total protein compared to BSA or HBSS. Microarray analysis demonstrated differential expression of genes involved in cytokine production, signaling, inflammatory cell recruitment, adhesion and activation in 3 and 12 h MACA-treated samples compared to BSA or HBSS. Further analyses allowed identification of ∼ 100 candidate biomarker genes. Eleven genes were selected for further assessment by qRT-PCR. Of these, 6 demonstrated persistently increased expression (Ccl17, Ccl22, Ccl7, Cxcl10, Cxcl2, Saa1), while C3ar1 increased from 6-24 h. In conclusion, a single respiratory exposure of mice to an allergenic mold extract induces an inflammatory response which is distinct in phenotype and gene transcription from the response to a control protein. Further validation of these biomarkers with additional allergens and irritants is needed. These biomarkers may facilitate improvements in screening methods.

  13. RNA Biomarkers: Frontier of Precision Medicine for Cancer

    Directory of Open Access Journals (Sweden)

    Xiaochen Xi

    2017-02-01

    Full Text Available As an essential part of central dogma, RNA delivers genetic and regulatory information and reflects cellular states. Based on high‐throughput sequencing technologies, cumulating data show that various RNA molecules are able to serve as biomarkers for the diagnosis and prognosis of various diseases, for instance, cancer. In particular, detectable in various bio‐fluids, such as serum, saliva and urine, extracellular RNAs (exRNAs are emerging as non‐invasive biomarkers for earlier cancer diagnosis, tumor progression monitor, and prediction of therapy response. In this review, we summarize the latest studies on various types of RNA biomarkers, especially extracellular RNAs, in cancer diagnosis and prognosis, and illustrate several well‐known RNA biomarkers of clinical utility. In addition, we describe and discuss general procedures and issues in investigating exRNA biomarkers, and perspectives on utility of exRNAs in precision medicine.

  14. Electromagnetic velocity gauge: use of multiple gauges, time response, and flow perturbations

    International Nuclear Information System (INIS)

    Erickson, L.M.; Johnson, C.B.; Parker, N.L.; Vantine, H.C.; Weingart, R.C.; Lee, R.S.

    1981-01-01

    We have developed an in-situ electromagnetic velocity (EMV) gauge system for use in multiple-gauge studies of initiating and detonating explosives. We have also investigated the risetime of the gauge and the manner in which it perturbs a reactive flow. We report on the special precautions that are necessary in multiple gauge experiments to reduce lead spreading, simplify target fabrication problems and minimize cross talk through the conducting explosive. Agreement between measured stress records and calculations from multiple velocity gauge data give us confidence that our velocity gauges are recording properly. We have used laser velocity interferometry to measure the gauge risetime in polymethyl methacrylate (PMMA). To resolve the difference in the two methods, we have examined hydrodynamic and material rate effects. In addition, we considered the effects of shock tilt, electronic response and magntic diffusion on the gauge's response time

  15. ASDAS, BASDAI and different treatment responses and their relation to biomarkers of inflammation, cartilage and bone turnover in patients with axial spondyloarthritis treated with TNFα inhibitors

    DEFF Research Database (Denmark)

    Pedersen, Susanne Juhl; Sørensen, Inge Juul; Garnero, Patrick

    2011-01-01

    To investigate the relation between ankylosing spondylitis disease activity score (ASDAS), Bath ankylosing spondylitis disease activity index (BASDAI) and treatment response and biomarkers of inflammation (C-reactive protein (CRP), interleukin-6 (IL-6), YKL-40), angiogenesis (vascular endothelial...... spondyloarthritis initiating tumour necrosis factor alpha (TNFa) inhibitor therapy....

  16. Biomarkers for Wilms Tumor: a Systematic Review

    Science.gov (United States)

    Cone, Eugene B.; Dalton, Stewart S.; Van Noord, Megan; Tracy, Elizabeth T.; Rice, Henry E.; Routh, Jonathan C.

    2016-01-01

    Purpose Wilms tumor is the most common childhood renal malignancy and the fourth most common childhood cancer. Many biomarkers have been studied but there has been no comprehensive summary. We systematically reviewed the literature on biomarkers in Wilms Tumor with the objective of quantifying the prognostic implication of the presence of individual tumor markers. Methods We searched for English language studies from 1980–2015 performed on children with Wilms Tumor under 18 years old with prognostic data. The protocol was conducted as per PRISMA guidelines. Two reviewers abstracted data in duplicate using a standard evaluation form. We performed descriptive statistics, then calculated relative risks and 95% confidence intervals for markers appearing in multiple level 2 or 3 studies. Results 40 studies were included examining 32 biomarkers in 7381 Wilms patients. Studies had a median of 61 patients with 24 biomarker positive patients per study, and a median follow-up of 68.4 months. Median percent of patients in Stage 1, 2, 3, 4, and 5 were 28.5%, 26.4%, 24.5%, 14.1%, and 1.7%, with 10.2% anaplasia. The strongest negative prognostic association was loss of heterozygosity on 11p15, with a risk of recurrence of 5.00, although loss of heterozygosity on 1p and gain of function on 1q were also strongly linked to increased recurrence (2.93 and 2.86 respectively). Conclusions Several tumor markers are associated with an increased risk of recurrence or a decreased risk of overall survival in Wilms Tumor. These data suggest targets for development of diagnostic tests and potential therapies. PMID:27259655

  17. One-year monitoring of core biomarker and digestive enzyme responses in transplanted zebra mussels (Dreissena polymorpha).

    Science.gov (United States)

    Palais, F; Dedourge-Geffard, O; Beaudon, A; Pain-Devin, S; Trapp, J; Geffard, O; Noury, P; Gourlay-Francé, C; Uher, E; Mouneyrac, C; Biagianti-Risbourg, S; Geffard, A

    2012-04-01

    A 12-month active biomonitoring study was performed in 2008-2009 on the Vesle river basin (Champagne-Ardenne, France) using the freshwater mussel Dreissena polymorpha as a sentinel species; allochthonous mussels originating from a reference site (Commercy) were exposed at four sites (Bouy, Sept-Saulx, Fismes, Ardre) within the Vesle river basin. Selected core biomarkers (acetylcholinesterase (AChE) activity, glutathione-S transferase (GST) activity, metallothionein concentration), along with digestive enzyme activities (amylase, endocellulase) and energy reserve concentrations (glycogen, lipids), were monitored throughout the study in exposed mussels. At the Fismes and Ardre sites (downstream basin), metallic and organic contamination levels were low but still high enough to elicit AChE and GST activity induction in exposed mussels (chemical stress); besides, chemical pollutants had no apparent deleterious effects on mussel condition. At the Bouy and Sept-Saulx sites (upstream basin), mussels obviously suffered from adverse food conditions which seriously impaired individual physiological state and survival (nutritional stress); food scarcity had however no apparent effects on core biomarker responses. Digestive enzyme activities responded to both chemical and nutritional stresses, the increase in energy outputs (general adaptation syndrome-downstream sites) or the decrease in energy inputs (food scarcity-upstream sites) leading to mid- or long-term induction of digestive carbohydrase activities in exposed mussels (energy optimizing strategy). Complex regulation patterns of these activities require nevertheless the use of a multi-marker approach to allow data interpretation. Besides, their sensitivity to natural confounding environmental factors remains to be precised.

  18. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia.

    Directory of Open Access Journals (Sweden)

    David G Covell

    Full Text Available Developing reliable biomarkers of tumor cell drug sensitivity and resistance can guide hypothesis-driven basic science research and influence pre-therapy clinical decisions. A popular strategy for developing biomarkers uses characterizations of human tumor samples against a range of cancer drug responses that correlate with genomic change; developed largely from the efforts of the Cancer Cell Line Encyclopedia (CCLE and Sanger Cancer Genome Project (CGP. The purpose of this study is to provide an independent analysis of this data that aims to vet existing and add novel perspectives to biomarker discoveries and applications. Existing and alternative data mining and statistical methods will be used to a evaluate drug responses of compounds with similar mechanism of action (MOA, b examine measures of gene expression (GE, copy number (CN and mutation status (MUT biomarkers, combined with gene set enrichment analysis (GSEA, for hypothesizing biological processes important for drug response, c conduct global comparisons of GE, CN and MUT as biomarkers across all drugs screened in the CGP dataset, and d assess the positive predictive power of CGP-derived GE biomarkers as predictors of drug response in CCLE tumor cells. The perspectives derived from individual and global examinations of GEs, MUTs and CNs confirm existing and reveal unique and shared roles for these biomarkers in tumor cell drug sensitivity and resistance. Applications of CGP-derived genomic biomarkers to predict the drug response of CCLE tumor cells finds a highly significant ROC, with a positive predictive power of 0.78. The results of this study expand the available data mining and analysis methods for genomic biomarker development and provide additional support for using biomarkers to guide hypothesis-driven basic science research and pre-therapy clinical decisions.

  19. Biomarkers and Genetics in Peripheral Artery Disease.

    Science.gov (United States)

    Hazarika, Surovi; Annex, Brian H

    2017-01-01

    Peripheral artery disease (PAD) is highly prevalent and there is considerable diversity in the initial clinical manifestation and disease progression among individuals. Currently, there is no ideal biomarker to screen for PAD, to risk stratify patients with PAD, or to monitor therapeutic response to revascularization procedures. Advances in human genetics have markedly enhanced the ability to develop novel diagnostic and therapeutic approaches across a host of human diseases, but such developments in the field of PAD are lagging. In this article, we will discuss the epidemiology, traditional risk factors for, and clinical presentations of PAD. We will discuss the possible role of genetic factors and gene-environment interactions in the development and/or progression of PAD. We will further explore future avenues through which genetic advances can be used to better our understanding of the pathophysiology of PAD and potentially find newer therapeutic targets. We will discuss the potential role of biomarkers in identifying patients at risk for PAD and for risk stratifying patients with PAD, and novel approaches to identification of reliable biomarkers in PAD. The exponential growth of genetic tools and newer technologies provides opportunities to investigate and identify newer pathways in the development and progression of PAD, and thereby in the identification of newer biomarkers and therapies. © 2016 American Association for Clinical Chemistry.

  20. Evaluation of Complete Blood Count Indices (NLR, PLR, MPV/PLT, and PLCRi) in Healthy Dogs, Dogs With Periodontitis, and Dogs With Oropharyngeal Tumors as Potential Biomarkers of Systemic Inflammatory Response.

    Science.gov (United States)

    Rejec, Ana; Butinar, Janos; Gawor, Jerzy; Petelin, Milan

    2017-12-01

    The aim of the study was to retrospectively assess complete blood count (CBC) indices of dogs with periodontitis (PD; n = 73) and dogs with oropharyngeal tumors (OT; n = 92) in comparison to CBC indices of healthy dogs (HD; n = 71). Neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio, mean platelet volume to platelet ratio, and platelet large cell ratio index (PLCRi) were evaluated as biomarkers of systemic inflammatory response provoked by PD and OT. Results of multivariable polytomous logistic regression analysis indicated no significant associations between CBC indices and PD. Both NLR and PLCRi were significantly higher in dogs with OT when compared to HD and dogs with PD and could, therefore, indicate a tumor-associated systemic inflammatory response. Additional studies of CBC indices, along with other biomarkers of systemic inflammatory response, are recommended to validate them as reliable indicators of clinical disease activity.

  1. Calcium-deficiency assessment and biomarker identification by an integrated urinary metabonomics analysis

    Science.gov (United States)

    2013-01-01

    Background Calcium deficiency is a global public-health problem. Although the initial stage of calcium deficiency can lead to metabolic alterations or potential pathological changes, calcium deficiency is difficult to diagnose accurately. Moreover, the details of the molecular mechanism of calcium deficiency remain somewhat elusive. To accurately assess and provide appropriate nutritional intervention, we carried out a global analysis of metabolic alterations in response to calcium deficiency. Methods The metabolic alterations associated with calcium deficiency were first investigated in a rat model, using urinary metabonomics based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and multivariate statistical analysis. Correlations between dietary calcium intake and the biomarkers identified from the rat model were further analyzed to confirm the potential application of these biomarkers in humans. Results Urinary metabolic-profiling analysis could preliminarily distinguish between calcium-deficient and non-deficient rats after a 2-week low-calcium diet. We established an integrated metabonomics strategy for identifying reliable biomarkers of calcium deficiency using a time-course analysis of discriminating metabolites in a low-calcium diet experiment, repeating the low-calcium diet experiment and performing a calcium-supplement experiment. In total, 27 biomarkers were identified, including glycine, oxoglutaric acid, pyrophosphoric acid, sebacic acid, pseudouridine, indoxyl sulfate, taurine, and phenylacetylglycine. The integrated urinary metabonomics analysis, which combined biomarkers with regular trends of change (types A, B, and C), could accurately assess calcium-deficient rats at different stages and clarify the dynamic pathophysiological changes and molecular mechanism of calcium deficiency in detail. Significant correlations between calcium intake and two biomarkers, pseudouridine (Pearson

  2. Removal of pharmaceuticals and unspecified contaminants in sewage treatment effluents by activated carbon filtration and ozonation: Evaluation using biomarker responses and chemical analysis.

    Science.gov (United States)

    Beijer, Kristina; Björlenius, Berndt; Shaik, Siraz; Lindberg, Richard H; Brunström, Björn; Brandt, Ingvar

    2017-06-01

    Traces of active pharmaceutical ingredients (APIs) and other chemicals are demonstrated in effluents from sewage treatment plants (STPs) and they may affect quality of surface water and eventually drinking water. Treatment of effluents with granular activated carbon (GAC) or ozone to improve removal of APIs and other contaminants was evaluated at two Swedish STPs, Käppala and Uppsala (88 and 103 APIs analyzed). Biomarker responses in rainbow trout exposed to regular and additionally treated effluents were determined. GAC and ozone treatment removed 87-95% of the total concentrations of APIs detected. In Käppala, GAC removed 20 and ozonation (7 g O 3 /m 3 ) 21 of 24 APIs detected in regular effluent. In Uppsala, GAC removed 25 and ozonation (5.4 g O 3 /m 3 ) 15 of 25 APIs detected in effluent. GAC and ozonation also reduced biomarker responses caused by unidentified pollutants in STP effluent water. Elevated ethoxyresorufin-O-deethylase (EROD) activity in gills was observed in fish exposed to effluent in both STPs. Gene expression analysis carried out in Käppala showed increased concentrations of cytochrome P450 (CYP1As and CYP1C3) transcripts in gills and of CYP1As in liver of fish exposed to effluent. In fish exposed to GAC- or ozone-treated effluent water, gill EROD activity and expression of CYP1As and CYP1C3 in gills and liver were generally equal to or below levels in fish held in tap water. The joint application of chemical analysis and sensitive biomarkers proved useful for evaluating contaminant removal in STPs with new technologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The discovery and development of proteomic safety biomarkers for the detection of drug-induced liver toxicity

    International Nuclear Information System (INIS)

    Amacher, David E.

    2010-01-01

    Biomarkers are biometric measurements that provide critical quantitative information about the biological condition of the animal or individual being tested. In drug safety studies, established toxicity biomarkers are used along with other conventional study data to determine dose-limiting organ toxicity, and to define species sensitivity for new chemical entities intended for possible use as human medicines. A continuing goal of drug safety scientists in the pharmaceutical industry is to discover and develop better trans-species biomarkers that can be used to determine target organ toxicities for preclinical species in short-term studies at dose levels that are some multiple of the intended human dose and again later in full development for monitoring clinical trials at lower therapeutic doses. Of particular value are early, predictive, noninvasive biomarkers that have in vitro, in vivo, and clinical transferability. Such translational biomarkers bridge animal testing used in preclinical science and human studies that are part of subsequent clinical testing. Although suitable for in vivo preclinical regulatory studies, conventional hepatic safety biomarkers are basically confirmatory markers because they signal organ toxicity after some pathological damage has occurred, and are therefore not well-suited for short-term, predictive screening assays early in the discovery-to-development progression of new chemical entities (NCEs) available in limited quantities. Efforts between regulatory agencies and the pharmaceutical industry are underway for the coordinated discovery, qualification, verification and validation of early predictive toxicity biomarkers. Early predictive safety biomarkers are those that are detectable and quantifiable prior to the onset of irreversible tissue injury and which are associated with a mechanism of action relevant to a specific type of potential hepatic injury. Potential drug toxicity biomarkers are typically endogenous macromolecules in

  4. Efficacy of multiple anticancer therapies may depend on host immune response

    Directory of Open Access Journals (Sweden)

    Kritika Karri

    2017-06-01

    Full Text Available The host immune system is a key player in anticancer therapy response and resistance. Although the impact of host immune response in the ‘war against cancer’ has been studied and it has been the basis for immunotherapy, understanding of its role in attenuating the action of conventional anticancer therapies is an area that has not been fully explored. In spite of advances in systemic therapy, the 5-year survival rate for adenocarcinoma is still a mere 13% and the primary reason for treatment failure is believed to be due to acquired resistance to therapy. Hence, there is a need for identifying reliable biomarkers for guided treatment of lung and colon adenocarcinoma and to better predict the outcomes of specific anticancer therapies. In this work, gene expression data were analyzed using public resources and this study shows how host immune competence underscores the efficacy of various anticancer therapies. Additionally, the result provides insight on the regulation of certain biochemical pathways relating to the immune system, and suggests that smart chemotherapeutic intervention strategies could be based on a patient’s immune profile.

  5. Multiplexed homogeneous proximity ligation assays for high throughput protein biomarker research in serological material

    DEFF Research Database (Denmark)

    Lundberg, Martin; Thorsen, Stine Buch; Assarsson, Erika

    2011-01-01

    A high throughput protein biomarker discovery tool has been developed based on multiplexed proximity ligation assays (PLA) in a homogeneous format in the sense of no washing steps. The platform consists of four 24-plex panels profiling 74 putative biomarkers with sub pM sensitivity each consuming...... sequences are united by DNA ligation upon simultaneous target binding forming a PCR amplicon. Multiplex PLA thereby converts multiple target analytes into real-time PCR amplicons that are individually quantificatied using microfluidic high capacity qPCR in nano liter volumes. The assay shows excellent...

  6. A Selective Biomarker Panel Increases the Reproducibility and the Accuracy in Endometrial Biopsy Diagnosis

    DEFF Research Database (Denmark)

    Nastic, Denis; Shanwell, Emma; Wallin, Keng-Ling

    2017-01-01

    Grading and histologic typing of endometrial cancer in biopsy material has a direct impact on the decision to perform lymphadenectomy and/or omentectomy in many cancer centers. Endometrial biopsies are among the most common general surgical pathology specimens. Multiple studies have shown...... that biopsy diagnosis suffers from a lack of reproducibility. Although many biomarkers have been proposed, none have been demonstrated to improve the diagnosis in the biopsy setting. In this study, 70 biopsies with endometrial carcinoma were supplemented with a biomarker panel consisting of ER, PR, P53...

  7. Bio-mining for biomarkers with a multi-resolution block chain

    Science.gov (United States)

    Jenkins, Jeffrey; Kopf, Jarad; Tran, Binh Q.; Frenchi, Christopher; Szu, Harold

    2015-05-01

    In this paper, we discuss a framework for bridging the gap between security and medical Large Data Analysis (LDA) with functional- biomarkers. Unsupervised Learning for individual e-IQ & IQ relying on memory eliciting (i.e. scent, grandmother images) and IQ baseline profiles could further enhance the ability to uniquely identify and properly diagnose individuals. Sub-threshold changes in a common/probable biomedical biomarker (disorders) means that an individual remains healthy, while a martingale would require further investigation and more measurements taken to determine credibility. Empirical measurements of human actions can discover anomalies hidden in data, which point to biomarkers revealed through stimulus response. We review the approach for forming a single-user baseline having 1-d devices and a scale-invariant representation for N users each (i) having N*d(i) total devices. Such a fractal representation of human-centric data provides self-similar levels information and relationships which are useful for diagnosis and identification causality anywhere from a mental disorder to a DNA match. Biomarkers from biomedical devices offer a robust way to collect data. Biometrics could be envisioned as enhanced and personalized biomedical devices (e.g. typing fist), but used for security. As long as the devices have a shared context origin, useful information can be found by coupling the sensors. In the case of the electroencephalogram (EEG), known patterns have emerged in low frequency Delta Theta Alpha Beta-Gamma (DTAB-G) waves when an individual views a familiar picture in the visual cortex which is shown on EEGs as a sharp peak. Using brainwaves as a functional biomarker for security can lead the industry to create more secure sessions by allowing not only passwords but also visual stimuli and/or keystrokes coupled with EEG to capture and stay informed about real time user e-IQ/IQ data changes. This holistic Computer Science (CS) Knowledge Discovery in

  8. Sleep electroencephalography as a biomarker in depression

    Directory of Open Access Journals (Sweden)

    Steiger A

    2015-04-01

    Full Text Available Axel Steiger, Marcel Pawlowski, Mayumi Kimura Max Planck Institute of Psychiatry, Munich, Germany Abstract: The sleep electroencephalogram (EEG provides biomarkers of depression, which may help with diagnosis, prediction of therapy response, and prognosis in the treatment of depression. In patients with depression, characteristic sleep EEG changes include impaired sleep continuity, disinhibition of rapid-eye-movement (REM sleep, and impaired non-REM sleep. Most antidepressants suppress REM sleep in depressed patients, healthy volunteers, and in animal models. REM suppression appears to be an important, but not an absolute requirement, for antidepressive effects of a substance. Enhanced REM density, a measure for frequency of REM, characterizes high-risk probands for affective disorders. REM-sleep changes were also found in animal models of depression. Sleep-EEG variables were shown to predict the response to treatment with antidepressants. Furthermore, certain clusters of sleep EEG variables predicted the course of the disorder for several years. Some of the predicted sleep EEG markers appear to be related to hypothalamic–pituitary–adrenal system activity. Keywords: biomarkers, depression, sleep EEG, antidepressants, prediction, animal models

  9. Validation of beverage intake methods vs. hydration biomarker: a short review

    OpenAIRE

    Nissensohn, Mariela; Ruano, Cristina; Serra-Majem, Lluis

    2013-01-01

    Introduction: Fluid intake is difficult to monitor. Biomarkers of beverage intake are able to assess dietary intake / hydration status without the bias of self-reported dietary intake errors and also the intra-individual variability. Various markers have been proposed to assess hydration, however, to date; there is a lack of universally accepted biomarker that reflects changes of hydration status in response to changes in beverage intake. Aim: We conduct a review to find out the questionnaire...

  10. Breast Cancer Biomarkers Based on Nipple and Fine Needle Aspirates

    National Research Council Canada - National Science Library

    Russo, Irma H

    2005-01-01

    ... of the cytological normal breast epithelium of women at high risk for breast cancer. This signature will serve as an intermediate biomarker for evaluating the response of the breast to novel chemopreventive agents...

  11. MIP-Based Sensors: Promising New Tools for Cancer Biomarker Determination

    Directory of Open Access Journals (Sweden)

    Giulia Selvolini

    2017-03-01

    Full Text Available Detecting cancer disease at an early stage is one of the most important issues for increasing the survival rate of patients. Cancer biomarker detection helps to provide a diagnosis before the disease becomes incurable in later stages. Biomarkers can also be used to evaluate the progression of therapies and surgery treatments. In recent years, molecularly imprinted polymer (MIP based sensors have been intensely investigated as promising analytical devices in several fields, including clinical analysis, offering desired portability, fast response, specificity, and low cost. The aim of this review is to provide readers with an overview on recent important achievements in MIP-based sensors coupled to various transducers (e.g., electrochemical, optical, and piezoelectric for the determination of cancer biomarkers by selected publications from 2012 to 2016.

  12. Prognostic biomarkers in osteoarthritis

    Science.gov (United States)

    Attur, Mukundan; Krasnokutsky-Samuels, Svetlana; Samuels, Jonathan; Abramson, Steven B.

    2013-01-01

    Purpose of review Identification of patients at risk for incident disease or disease progression in osteoarthritis remains challenging, as radiography is an insensitive reflection of molecular changes that presage cartilage and bone abnormalities. Thus there is a widely appreciated need for biochemical and imaging biomarkers. We describe recent developments with such biomarkers to identify osteoarthritis patients who are at risk for disease progression. Recent findings The biochemical markers currently under evaluation include anabolic, catabolic, and inflammatory molecules representing diverse biological pathways. A few promising cartilage and bone degradation and synthesis biomarkers are in various stages of development, awaiting further validation in larger populations. A number of studies have shown elevated expression levels of inflammatory biomarkers, both locally (synovial fluid) and systemically (serum and plasma). These chemical biomarkers are under evaluation in combination with imaging biomarkers to predict early onset and the burden of disease. Summary Prognostic biomarkers may be used in clinical knee osteoarthritis to identify subgroups in whom the disease progresses at different rates. This could facilitate our understanding of the pathogenesis and allow us to differentiate phenotypes within a heterogeneous knee osteoarthritis population. Ultimately, such findings may help facilitate the development of disease-modifying osteoarthritis drugs (DMOADs). PMID:23169101

  13. Evaluation of miR-122 as a Serum Biomarker for Hepatotoxicity in Investigative Rat Toxicology Studies.

    Science.gov (United States)

    Sharapova, T; Devanarayan, V; LeRoy, B; Liguori, M J; Blomme, E; Buck, W; Maher, J

    2016-01-01

    MicroRNAs are short noncoding RNAs involved in regulation of gene expression. Certain microRNAs, including miR-122, seem to have ideal properties as biomarkers due to good stability, high tissue specificity, and ease of detection across multiple species. Recent reports have indicated that miR-122 is a highly liver-specific marker detectable in serum after liver injury. The purpose of the current study was to assess the performance of miR-122 as a serum biomarker for hepatotoxicity in short-term (5-28 days) repeat-dose rat toxicology studies when benchmarked against routine clinical chemistry and histopathology. A total of 23 studies with multiple dose levels of experimental compounds were examined, and they included animals with or without liver injury and with various hepatic histopathologic changes. Serum miR-122 levels were quantified by reverse transcription quantitative polymerase chain reaction. Increases in circulating miR-122 levels highly correlated with serum elevations of liver enzymes, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and glutamate dehydrogenase (GLDH). Statistical analysis showed that miR-122 outperformed ALT as a biomarker for histopathologically confirmed liver toxicity and was equivalent in performance to AST and GLDH. Additionally, an increase of 4% in predictive accuracy was obtained using a multiparameter approach incorporating miR-122 with ALT, AST, and GLDH. In conclusion, serum miR-122 levels can be utilized as a biomarker of hepatotoxicity in acute and subacute rat toxicology studies, and its performance can rival or exceed those of standard enzyme biomarkers such as the liver transaminases. © The Author(s) 2015.

  14. Long-term Stability of Urinary Biomarkers of Acute Kidney Injury in Children.

    Science.gov (United States)

    Schuh, Meredith P; Nehus, Edward; Ma, Qing; Haffner, Christopher; Bennett, Michael; Krawczeski, Catherine D; Devarajan, Prasad

    2016-01-01

    Recent meta-analyses support the utility of urinary biomarkers for the diagnosis and prognosis of acute kidney injury. It is critical to establish optimal sample handling conditions for short-term processing and long-term urinary storage prior to widespread clinical deployment and meaningful use in prospective clinical trials. Prospective study. 80 children (median age, 1.1 [IQR, 0.5-4.2] years) undergoing cardiac surgery with cardiopulmonary bypass at our center. 50% of patients had acute kidney injury (defined as ≥50% increase in serum creatinine from baseline). We tested the effect on biomarker concentrations of short-term urine storage in ambient, refrigerator, and freezer conditions. We also tested the effects of multiple freeze-thaw cycles, as well as prolonged storage for 5 years. Urine concentrations of neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (KIM-1), and interleukin 18 (IL-18). All biomarkers were measured using commercially available kits. All 3 biomarkers were stable in urine stored at 4°C for 24 hours, but showed significant degradation (5.6%-10.1% from baseline) when stored at 25°C. All 3 biomarkers showed only a small although significant decrease in concentration (0.77%-2.9% from baseline) after 3 freeze-thaw cycles. Similarly, all 3 biomarkers displayed only a small but significant decrease in concentration (0.84%-3.2%) after storage for 5 years. Only the 3 most widely studied biomarkers were tested. Protease inhibitors were not evaluated. Short-term storage of urine samples for measurement of NGAL, KIM-1, and IL-18 may be performed at 4°C for up to 24 hours, but not at room temperature. These urinary biomarkers are stable at -80°C for up to 5 years of storage. Our results are reassuring for the deployment of these assays as biomarkers in clinical practice, as well as in prospective clinical studies requiring long-term urine storage. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier

  15. Making assessments while taking repeated risks: a pattern of multiple response pathways.

    Science.gov (United States)

    Pleskac, Timothy J; Wershbale, Avishai

    2014-02-01

    Beyond simply a decision process, repeated risky decisions also require a number of cognitive processes including learning, search and exploration, and attention. In this article, we examine how multiple response pathways develop over repeated risky decisions. Using the Balloon Analogue Risk Task (BART) as a case study, we show that 2 different response pathways emerge over the course of the task. The assessment pathway is a slower, more controlled pathway where participants deliberate over taking a risk. The 2nd pathway is a faster, more automatic process where no deliberation occurs. Results imply the slower assessment pathway is taken as choice conflict increases and that the faster automatic response is a learned response. Based on these results, we modify an existing formal cognitive model of decision making during the BART to account for these dual response pathways. The slower more deliberative response process is modeled with a sequential sampling process where evidence is accumulated to a threshold, while the other response is given automatically. We show that adolescents with conduct disorder and substance use disorder symptoms not only evaluate risks differently during the BART but also differ in the rate at which they develop the more automatic response. More broadly, our results suggest cognitive models of judgment decision making need to transition from treating observed decisions as the result of a single response pathway to the result of multiple response pathways that change and develop over time.

  16. Reliability of psychophysiological responses across multiple motion sickness stimulation tests

    Science.gov (United States)

    Stout, C. S.; Toscano, W. B.; Cowings, P. S.

    1995-01-01

    Although there is general agreement that a high degree of variability exists between subjects in their autonomic nervous system responses to motion sickness stimulation, very little evidence exists that examines the reproducibility of autonomic responses within subjects during motion sickness stimulation. Our objectives were to examine the reliability of autonomic responses and symptom levels across five testing occasions using the (1) final minute of testing, (2) change in autonomic response and the change in symptom level, and (3) strength of the relationship between the change in symptom level and the change in autonomic responses across the entire motion sickness test. The results indicate that, based on the final minute of testing, the autonomic responses of heart rate, blood volume pulse, and respiration rate are moderately stable across multiple tests. Changes in heart rate, blood volume pulse, respiration rate, and symptoms throughout the test duration are less stable across the tests. Finally, autonomic responses and symptom levels are significantly related across the entire motion sickness test.

  17. Analysis of Brassica oleracea early stage abiotic stress responses reveals tolerance in multiple crop types and for multiple sources of stress.

    Science.gov (United States)

    Beacham, Andrew M; Hand, Paul; Pink, David Ac; Monaghan, James M

    2017-12-01

    Brassica oleracea includes a number of important crop types such as cabbage, cauliflower, broccoli and kale. Current climate conditions and weather patterns are causing significant losses in these crops, meaning that new cultivars with improved tolerance of one or more abiotic stress types must be sought. In this study, genetically fixed B. oleracea lines belonging to a Diversity Fixed Foundation Set (DFFS) were assayed for their response to seedling stage-imposed drought, flood, salinity, heat and cold stress. Significant (P ≤ 0.05) variation in stress tolerance response was found for each stress, for each of four measured variables (relative fresh weight, relative dry weight, relative leaf number and relative plant height). Lines tolerant to multiple stresses were found to belong to several different crop types. There was no overall correlation between the responses to the different stresses. Abiotic stress tolerance was identified in multiple B. oleracea crop types, with some lines exhibiting resistance to multiple stresses. For each stress, no one crop type appeared significantly more or less tolerant than others. The results are promising for the development of more environmentally robust lines of different B. oleracea crops by identifying tolerant material and highlighting the relationship between responses to different stresses. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Identification of Biomarkers of Impaired Sensory Profiles among Autistic Patients

    Science.gov (United States)

    El-Ansary, Afaf; Hassan, Wail M.; Qasem, Hanan; Das, Undurti N.

    2016-01-01

    Background Autism is a neurodevelopmental disorder that displays significant heterogeneity. Comparison of subgroups within autism, and analyses of selected biomarkers as measure of the variation of the severity of autistic features such as cognitive dysfunction, social interaction impairment, and sensory abnormalities might help in understanding the pathophysiology of autism. Methods and Participants In this study, two sets of biomarkers were selected. The first included 7, while the second included 6 biomarkers. For set 1, data were collected from 35 autistic and 38 healthy control participants, while for set 2, data were collected from 29 out of the same 35 autistic and 16 additional healthy subjects. These markers were subjected to a principal components analysis using either covariance or correlation matrices. Moreover, libraries composed of participants categorized into units were constructed. The biomarkers used include, PE (phosphatidyl ethanolamine), PS (phosphatidyl serine), PC (phosphatidyl choline), MAP2K1 (Dual specificity mitogen-activated protein kinase kinase 1), IL-10 (interleukin-10), IL-12, NFκB (nuclear factor-κappa B); PGE2 (prostaglandin E2), PGE2-EP2, mPGES-1 (microsomal prostaglandin synthase E-1), cPLA2 (cytosolic phospholipase A2), 8-isoprostane, and COX-2 (cyclo-oxygenase-2). Results While none of the studied markers correlated with CARS and SRS as measure of cognitive and social impairments, six markers significantly correlated with sensory profiles of autistic patients. Multiple regression analysis identifies a combination of PGES, mPGES-1, and PE as best predictors of the degree of sensory profile impairment. Library identification resulted in 100% correct assignments of both autistic and control participants based on either set 1 or 2 biomarkers together with a satisfactory rate of assignments in case of sensory profile impairment using different sets of biomarkers. Conclusion The two selected sets of biomarkers were effective to

  19. Biomarkers for monitoring intestinal health in poultry: present status and future perspectives.

    Science.gov (United States)

    Ducatelle, Richard; Goossens, Evy; De Meyer, Fien; Eeckhaut, Venessa; Antonissen, Gunther; Haesebrouck, Freddy; Van Immerseel, Filip

    2018-05-08

    Intestinal health is determined by host (immunity, mucosal barrier), nutritional, microbial and environmental factors. Deficiencies in intestinal health are associated with shifts in the composition of the intestinal microbiome (dysbiosis), leakage of the mucosal barrier and/or inflammation. Since the ban on growth promoting antimicrobials in animal feed, these dysbiosis-related problems have become a major issue, especially in intensive animal farming. The economical and animal welfare consequences are considerable. Consequently, there is a need for continuous monitoring of the intestinal health status, particularly in intensively reared animals, where the intestinal function is often pushed to the limit. In the current review, the recent advances in the field of intestinal health biomarkers, both in human and veterinary medicine are discussed, trying to identify present and future markers of intestinal health in poultry. The most promising new biomarkers will be stable molecules ending up in the feces and litter that can be quantified, preferably using rapid and simple pen-side tests. It is unlikely, however, that a single biomarker will be sufficient to follow up all aspects of intestinal health. Combinations of multiple biomarkers and/or metabarcoding, metagenomic, metatranscriptomic, metaproteomic and metabolomic approaches will be the way to go in the future. Candidate biomarkers currently are being investigated by many research groups, but the validation will be a major challenge, due to the complexity of intestinal health in the field.

  20. ASDAS, BASDAI and different treatment responses and their relation to biomarkers of inflammation, cartilage and bone turnover in patients with axial spondyloarthritis treated with TNF{alpha} inhibitors

    DEFF Research Database (Denmark)

    Pedersen, Susanne Juhl; Sørensen, Inge Juul; Garnero, Patrick

    2011-01-01

    To investigate the relation between ankylosing spondylitis disease activity score (ASDAS), Bath ankylosing spondylitis disease activity index (BASDAI) and treatment response and biomarkers of inflammation (C-reactive protein (CRP), interleukin-6 (IL-6), YKL-40), angiogenesis (vascular endothelial...... spondyloarthritis initiating tumour necrosis factor alpha (TNFα) inhibitor therapy....

  1. Profiling biomarkers of traumatic axonal injury: From mouse to man.

    Science.gov (United States)

    Manivannan, Susruta; Makwana, Milan; Ahmed, Aminul Islam; Zaben, Malik

    2018-05-18

    Traumatic brain injury (TBI) poses a major public health problem on a global scale. Its burden results from high mortality and significant morbidity in survivors. This stems, in part, from an ongoing inadequacy in diagnostic and prognostic indicators despite significant technological advances. Traumatic axonal injury (TAI) is a key driver of the ongoing pathological process following TBI, causing chronic neurological deficits and disability. The science underpinning biomarkers of TAI has been a subject of many reviews in recent literature. However, in this review we provide a comprehensive account of biomarkers from animal models to clinical studies, bridging the gap between experimental science and clinical medicine. We have discussed pathogenesis, temporal kinetics, relationships to neuro-imaging, and, most importantly, clinical applicability in order to provide a holistic perspective of how this could improve TBI diagnosis and predict clinical outcome in a real-life setting. We conclude that early and reliable identification of axonal injury post-TBI with the help of body fluid biomarkers could enhance current care of TBI patients by (i) increasing speed and accuracy of diagnosis, (ii) providing invaluable prognostic information, (iii) allow efficient allocation of rehabilitation services, and (iv) provide potential therapeutic targets. The optimal model for assessing TAI is likely to involve multiple components, including several blood biomarkers and neuro-imaging modalities, at different time points. Copyright © 2018. Published by Elsevier B.V.

  2. Some aspects of cancer biomarkers and their clinical application in solid tumors – revisited

    Directory of Open Access Journals (Sweden)

    Isaac D

    2017-07-01

    Full Text Available Cancer biomarkers can be used for a variety of purposes related to screening, prediction, stratification, detection, diagnosis, prognosis, treatment design, and monitoring of a therapeutic response. One of the most important characteristics of a given biomarker includes ease of collection allowing for a non-invasive approach and frequent sampling. Such samples may be obtained from serum or plasma, sputum, bronchoalveolar lavage, saliva, nipple discharge, pleural, or peritoneal effusions. Validation of different biomarkers is considered a mandatory method for useful evaluation. In this review, we highlight the clinical applicability of some cancer biomarkers, as well as future approaches for their development and collection, which may help guide clinicians and researchers. The role of liquid biopsies will also be summarized. Further studies using liquid biopsies are needed to elucidate the significance of various sources of biomarkers suitable for clinical application.

  3. Biomarkers for bladder cancer management: present and future

    Science.gov (United States)

    Ye, Fei; Wang, Li; Castillo-Martin, Mireia; McBride, Russell; Galsky, Matthew D; Zhu, Jun; Boffetta, Paolo; Zhang, David Y; Cordon-Cardo, Carlos

    2014-01-01

    Accurate and sensitive detection of bladder cancer is critical to diagnose this deadly disease at an early stage, estimate prognosis, predict response to treatment, and monitor recurrence. In past years, laboratory diagnosis and surveillance of urinary bladder cancer have improved significantly. Although urine cytology remains the gold standard test, many new urinary biomarkers have been identified. Furthermore, recent advances in genomic studies of bladder cancer have helped to refine our understanding of the pathogenesis of the disease, the biological basis for outcome disparities, and to inform more efficient treatment and surveillance strategies. In this article, the established diagnostic tests, newly identified biomarkers and genomic landscape of bladder cancer will be reviewed. PMID:25374904

  4. Highly sensitive covalently functionalized light-addressable potentiometric sensor for determination of biomarker

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jintao [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Guan, Mingyuan; Huang, Guoyin; Qiu, Hengming; Chen, Zhengcheng [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Li, Guiyin, E-mail: liguiyin01@163.com [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Huang, Yong, E-mail: huangyong503@126.com [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China)

    2016-06-01

    A biomarker is related to the biological status of a living organism and shows great promise for the early prediction of a related disease. Herein we presented a novel structured light-addressable potentiometric sensor (LAPS) for the determination of a model biomarker, human immunoglobulin G (hIgG). In this system, the goat anti-human immunoglobulin G antibody was used as recognition element and covalently immobilized on the surface of light-addressable potentiometric sensor chip to capture human immunoglobulin G. Due to the light addressable capability of light-addressable potentiometric sensor, human immunoglobulin G dissolved in the supporting electrolyte solution can be detected by monitoring the potential shifts of the sensor. In order to produce a stable photocurrent, the laser diode controlled by field-programmable gate array was used as the light emitter to drive the light-addressable potentiometric sensor. A linear correlation between the potential shift response and the concentration of human immunoglobulin G was achieved and the corresponding regression equation was ΔV (V) = 0.00714C{sub hIgG} (μg/mL)–0.0147 with a correlation coefficient of 0.9968 over a range 0–150 μg/mL. Moreover, the light-addressable potentiometric sensor system also showed acceptable stability and reproducibility. All the results demonstrated that the system was more applicable to detection of disease biomarkers with simple operation, multiple-sample format and might hold great promise in various environmental, food, and clinical applications. - Highlights: • A novel structured light-addressable potentiometric sensor (LAPS) based on covalently functionalized membrane was designed. • The composition of the surface of LAPS chip was investigated by X-ray photoelectron spectroscopy (XPS). • hIgG dissolved in the supporting electrolyte solution can be detected by monitoring the potential shifts of LAPS.

  5. Validation and analysis of the coupled multiple response Colorado upper-division electrostatics diagnostic

    Directory of Open Access Journals (Sweden)

    Bethany R. Wilcox

    2015-11-01

    Full Text Available Standardized conceptual assessment represents a widely used tool for educational researchers interested in student learning within the standard undergraduate physics curriculum. For example, these assessments are often used to measure student learning across educational contexts and instructional strategies. However, to support the large-scale implementation often required for cross-institutional testing, it is necessary for these instruments to have question formats that facilitate easy grading. Previously, we created a multiple-response version of an existing, validated, upper-division electrostatics diagnostic with the goal of increasing the instrument’s potential for large-scale implementation. Here, we report on the validity and reliability of this new version as an independent instrument. These findings establish the validity of the multiple-response version as measured by multiple test statistics including item difficulty, item discrimination, and internal consistency. Moreover, we demonstrate that the majority of student responses to the new version are internally consistent even when they are incorrect and provide an example of how the new format can be used to gain insight into student difficulties with specific content in electrostatics.

  6. Biomarkers in Prostate Cancer Epidemiology

    Directory of Open Access Journals (Sweden)

    Mudit Verma

    2011-09-01

    Full Text Available Understanding the etiology of a disease such as prostate cancer may help in identifying populations at high risk, timely intervention of the disease, and proper treatment. Biomarkers, along with exposure history and clinical data, are useful tools to achieve these goals. Individual risk and population incidence of prostate cancer result from the intervention of genetic susceptibility and exposure. Biochemical, epigenetic, genetic, and imaging biomarkers are used to identify people at high risk for developing prostate cancer. In cancer epidemiology, epigenetic biomarkers offer advantages over other types of biomarkers because they are expressed against a person’s genetic background and environmental exposure, and because abnormal events occur early in cancer development, which includes several epigenetic alterations in cancer cells. This article describes different biomarkers that have potential use in studying the epidemiology of prostate cancer. We also discuss the characteristics of an ideal biomarker for prostate cancer, and technologies utilized for biomarker assays. Among epigenetic biomarkers, most reports indicate GSTP1 hypermethylation as the diagnostic marker for prostate cancer; however, NKX2-5, CLSTN1, SPOCK2, SLC16A12, DPYS, and NSE1 also have been reported to be regulated by methylation mechanisms in prostate cancer. Current challenges in utilization of biomarkers in prostate cancer diagnosis and epidemiologic studies and potential solutions also are discussed.

  7. Associations between Urinary Excretion of Cadmium and Renal Biomarkers in Nonsmoking Females: A Cross-Sectional Study in Rural Areas of South China

    Directory of Open Access Journals (Sweden)

    Yun-rui Zhang

    2015-09-01

    Full Text Available Objectives: The aim of this study was to systematically evaluate the relationship between urinary excretion of cadmium (U-Cd and biomarkers of renal dysfunction. Methods: One hundred eighty five non-smoking female farmers (aged from 44 to 71 years were recruited from two rural areas with different cadmium levels of exposure in southern China. Morning spot urine samples were collected for detecting U-Cd, urinary creatinine (U-cre, β2-microglobulin (β2-MG, α1-microglobulin (α1-MG, metallothionein (MT, retinol binding protein (RBP, albumin (AB, N-acetyl-β-D-glucosaminidase (NAG, alkaline phosphatase (ALP, γ-glutamyl transpeptidase (GGT and kidney injury molecule-1 (KIM-1. Spearman’s rank correlation was carried out to assess pairwise bivariate associations between continuous variables. Three different models of multiple linear regression (the cre-corrected, un-corrected and cre-adjusted model were used to model the dose-response relationships between U-Cd and nine urine markers. Results: Spearman’s rank correlation showed that NAG, ALP, RBP, β2-MG and MT were significantly associated with U-Cd for both cre-corrected and observed data. Generally, NAG correlated best with U-Cd among the nine biomarkers studied, followed by ALP and MT. In the un-corrected model and cre-adjusted model, the regression coefficients and R2 of nine biomarkers were larger than the corresponding values in the cre-corrected model, indicating that the use of observed data was better for investigating the relationship between biomarkers and U-Cd than cre-corrected data. Conclusions: Our results suggest that NAG, MT and ALP in urine were better biomarkers for long-term environmental cadmium exposure assessment among the nine biomarkers studied. Further, data without normalization with creatinine show better relationships between cadmium exposure and renal dysfunction.

  8. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine.

    Science.gov (United States)

    Eckersall, P D; Bell, R

    2010-07-01

    Acute phase proteins (APPs) have been used as biomarkers of inflammation, infection and trauma for decades in human medicine but have been relatively under-utilised in the context of veterinary medicine. However, significant progress has been made in the detection, measurement and application of APPs as biomarkers in both companion and farm animal medicine over recent years. In the dog, C-reactive protein, haptoglobin and serum amyloid A have been identified as significant diagnostic 'markers' of steroid-responsive meningitis-arteritis, while in cats and cattle haptoglobin and alpha(1) acid glycoprotein and haptoglobin and serum amyloid A have proved valuable biomarkers of disease, respectively. In dairy cattle, haptoglobin and a mammary-associated serum amyloid A3 isoform, produced by the inflamed mammary gland during episodes of mastitis, have great potential as biomarkers of this economically important disease. Understanding the use of APP as biomarkers of inflammatory conditions of domestic animals has expanded significantly over recent years, and, with the insights provided by ongoing research, it is likely that these compounds will be increasingly used in the future in the diagnosis and prognosis of both companion and farm animal disease. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Consensus Guidelines for CSF and Blood Biobanking for CNS Biomarker Studies

    Directory of Open Access Journals (Sweden)

    Charlotte E. Teunissen

    2011-01-01

    Full Text Available There is a long history of research into body fluid biomarkers in neurodegenerative and neuroinflammatory diseases. However, only a few biomarkers in cerebrospinal fluid (CSF are being used in clinical practice. Anti-aquaporin-4 antibodies in serum are currently useful for the diagnosis of neuromyelitis optica (NMO, but we could expect novel CSF biomarkers that help define prognosis and response to treatment for this disease. One of the most critical factors in biomarker research is the inadequate powering of studies performed by single centers. Collaboration between investigators is needed to establish large biobanks of well-defined samples. A key issue in collaboration is to establish standardized protocols for biobanking to ensure that the statistical power gained by increasing the numbers of CSF samples is not compromised by pre-analytical factors. Here, consensus guidelines for CSF collection and biobanking are presented, based on the guidelines that have been published by the BioMS-eu network for CSF biomarker research. We focussed on CSF collection procedures, pre-analytical factors and high quality clinical and paraclinical information. Importantly, the biobanking protocols are applicable for CSF biobanks for research targeting any neurological disease.

  10. Developing biomarkers in mood disorders research through the use of rapid-acting antidepressants.

    Science.gov (United States)

    Niciu, Mark J; Mathews, Daniel C; Nugent, Allison C; Ionescu, Dawn F; Furey, Maura L; Richards, Erica M; Machado-Vieira, Rodrigo; Zarate, Carlos A

    2014-04-01

    An impediment to progress in mood disorders research is the lack of analytically valid and qualified diagnostic and treatment biomarkers. Consistent with the National Institute of Mental Health (NIMH)'s Research Domain Criteria (RDoC) initiative, the lack of diagnostic biomarkers has precluded us from moving away from a purely subjective (symptom-based) toward a more objective diagnostic system. In addition, treatment response biomarkers in mood disorders would facilitate drug development and move beyond trial-and-error toward more personalized treatments. As such, biomarkers identified early in the pathophysiological process are proximal biomarkers (target engagement), while those occurring later in the disease process are distal (disease pathway components). One strategy to achieve this goal in biomarker development is to increase efforts at the initial phases of biomarker development (i.e. exploration and validation) at single sites with the capability of integrating multimodal approaches across a biological systems level. Subsequently, resultant putative biomarkers could then undergo characterization and surrogacy as these latter phases require multisite collaborative efforts. We have used multimodal approaches - genetics, proteomics/metabolomics, peripheral measures, multimodal neuroimaging, neuropsychopharmacological challenge paradigms and clinical predictors - to explore potential predictor and mediator/moderator biomarkers of the rapid-acting antidepressants ketamine and scopolamine. These exploratory biomarkers may then be used for a priori stratification in larger multisite controlled studies during the validation and characterization phases with the ultimate goal of surrogacy. In sum, the combination of target engagement and well-qualified disease-related measures are crucial to improve our pathophysiological understanding, personalize treatment selection, and expand our armamentarium of novel therapeutics. © 2013 Wiley Periodicals, Inc.

  11. Urinary microRNAs as potential biomarkers of pesticide exposure

    International Nuclear Information System (INIS)

    Weldon, Brittany A.; Shubin, Sara Pacheco; Smith, Marissa N.; Workman, Tomomi; Artemenko, Alexander; Griffith, William C.; Thompson, Beti; Faustman, Elaine M.

    2016-01-01

    MicroRNAs (miRNAs) are post-transcriptional regulators that silence messenger RNAs. Because miRNAs are stable at room temperature and long-lived, they have been proposed as molecular biomarkers to monitor disease and exposure status. While urinary miRNAs have been used clinically as potential diagnostic markers for kidney and bladder cancers and other diseases, their utility in non-clinical settings has yet to be fully developed. Our goal was to investigate the potential for urinary miRNAs to act as biomarkers of pesticide exposure and early biological response by identifying the miRNAs present in urine from 27 parent/child, farmworker/non-farmworker pairs (16FW/11NFW) collected during two agricultural seasons (thinning and post-harvest) and characterizing the between- and within-individual variability of these miRNA epigenetic regulators. MiRNAs were isolated from archived urine samples and identified using PCR arrays. Comparisons were made between age, households, season, and occupation. Of 384 miRNAs investigated, 297 (77%) were detectable in at least one sample. Seven miRNAs were detected in at least 50% of the samples, and one miRNA was present in 96% of the samples. Principal components and hierarchical clustering analyses indicate significant differences in miRNA profiles between farmworker and non-farmworker adults as well as between seasons. Six miRNAs were observed to be positively associated with farmworkers status during the post-harvest season. Expression of five of these miRNA trended towards a positive dose response relationship with organophosphate pesticide metabolites in farmworkers. These results suggest that miRNAs may be novel biomarkers of pesticide exposure and early biological response. - Highlights: • A novel method to identify microRNA biomarkers in urinary samples is proposed. • Six miRNAs have been identified as associated with occupational farm work and pesticide exposure. • An observed seasonal difference suggests transient

  12. Urinary microRNAs as potential biomarkers of pesticide exposure

    Energy Technology Data Exchange (ETDEWEB)

    Weldon, Brittany A.; Shubin, Sara Pacheco; Smith, Marissa N.; Workman, Tomomi; Artemenko, Alexander; Griffith, William C. [Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA (United States); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Thompson, Beti [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Faustman, Elaine M., E-mail: faustman@uw.edu [Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA (United States); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States)

    2016-12-01

    MicroRNAs (miRNAs) are post-transcriptional regulators that silence messenger RNAs. Because miRNAs are stable at room temperature and long-lived, they have been proposed as molecular biomarkers to monitor disease and exposure status. While urinary miRNAs have been used clinically as potential diagnostic markers for kidney and bladder cancers and other diseases, their utility in non-clinical settings has yet to be fully developed. Our goal was to investigate the potential for urinary miRNAs to act as biomarkers of pesticide exposure and early biological response by identifying the miRNAs present in urine from 27 parent/child, farmworker/non-farmworker pairs (16FW/11NFW) collected during two agricultural seasons (thinning and post-harvest) and characterizing the between- and within-individual variability of these miRNA epigenetic regulators. MiRNAs were isolated from archived urine samples and identified using PCR arrays. Comparisons were made between age, households, season, and occupation. Of 384 miRNAs investigated, 297 (77%) were detectable in at least one sample. Seven miRNAs were detected in at least 50% of the samples, and one miRNA was present in 96% of the samples. Principal components and hierarchical clustering analyses indicate significant differences in miRNA profiles between farmworker and non-farmworker adults as well as between seasons. Six miRNAs were observed to be positively associated with farmworkers status during the post-harvest season. Expression of five of these miRNA trended towards a positive dose response relationship with organophosphate pesticide metabolites in farmworkers. These results suggest that miRNAs may be novel biomarkers of pesticide exposure and early biological response. - Highlights: • A novel method to identify microRNA biomarkers in urinary samples is proposed. • Six miRNAs have been identified as associated with occupational farm work and pesticide exposure. • An observed seasonal difference suggests transient

  13. Polychlorinated biphenyls pattern analysis: Potential nondestructive biomarker in vertebrates for exposure to cytochrome P450-inducing organochlorines

    Energy Technology Data Exchange (ETDEWEB)

    Brink, N.W. van den; Ruiter-Dijkman, E.M. De; Broekhuizen, S.; Reijnders, P.J.H.; Bosveld, A.T.C.

    2000-03-01

    Biomarkers are valuable instruments to assess the risks from exposure of organisms to organochlorines. In general, however, these biomarkers are either destructive to the animal of interest or extremely difficult to obtain otherwise. In this paper, the authors present a nondestructive biomarker for exposure to cytochrome P450-inducing organochlorines. This marker is based on a pattern analysis of metabolizable and nonmetabolizable polychlorinated biphenyl (PCB) congeners, which occur in several kinds of tissues (and even blood) that can be obtained without serious effects on the organism involved. The fraction of metabolizable PCB congeners is negatively correlated with exposure to PCBs, which are known to induce specific P450 isoenzymes. This relation can be modeled by a logistic curve, which can be used to define critical levels of exposure. In addition, this method creates an opportunity to analyze biomarker responses in archived tissues stored at standard freezing temperatures ({minus}20 C), at which responses to established biomarkers deteriorate. Furthermore, this method facilitates attribution of the enzyme induction to certain classes of compounds.

  14. Extracellular RNAs: development as biomarkers of human disease

    Directory of Open Access Journals (Sweden)

    Joseph F. Quinn

    2015-08-01

    Full Text Available Ten ongoing studies designed to test the possibility that extracellular RNAs may serve as biomarkers in human disease are described. These studies, funded by the NIH Common Fund Extracellular RNA Communication Program, examine diverse extracellular body fluids, including plasma, serum, urine and cerebrospinal fluid. The disorders studied include hepatic and gastric cancer, cardiovascular disease, chronic kidney disease, neurodegenerative disease, brain tumours, intracranial haemorrhage, multiple sclerosis and placental disorders. Progress to date and the plans for future studies are outlined.

  15. Ultra-sensitive, stable isotope assisted quantification of multiple urinary mycotoxin exposure biomarkers.

    Science.gov (United States)

    Šarkanj, Bojan; Ezekiel, Chibundu N; Turner, Paul C; Abia, Wilfred A; Rychlik, Michael; Krska, Rudolf; Sulyok, Michael; Warth, Benedikt

    2018-08-17

    There is a critical need to better understand the patterns, levels and combinatory effects of exposures we are facing through our diet and environment. Mycotoxin mixtures are of particular concern due to chronic low dose exposures caused by naturally contaminated food. To facilitate new insights into their role in chronic disease, mycotoxins and their metabolites are quantified in bio-fluids as biomarkers of exposure. Here, we describe a highly sensitive urinary assay based on ultra-high performance liquid chromatography - tandem mass spectrometer (UHPLC-MS/MS) and 13 C-labelled or deuterated internal standards covering the most relevant regulated and emerging mycotoxins. Utilizing enzymatic pre-treatment, solid phase extraction and UHPLC separation, the sensitivity of the method was significantly higher (10-160x lower LODs) than in a previously described method used for comparison purpose, and stable isotopes provided compensation for challenging matrix effects. This method was in-house validated and applied to re-assess mycotoxin exposure in urine samples obtained from Nigerian children, adolescent and adults, naturally exposed through their regular diet. Owing to the methods high sensitivity, biomarkers were detected in all samples. The mycoestrogen zearalenone was the most frequently detected contaminant (82%) but also ochratoxin A (76%), aflatoxin M 1 (73%) and fumonisin B 1 (71%) were quantified in a large share of urines. Overall, 57% of 120 urines were contaminated with both, aflatoxin M 1 and fumonisin B 1 , and other co-exposures were frequent. These results clearly demonstrate the advanced performance of the method to assess lowest background exposures (pg mL -1 range) using a single, highly robust assay that will allow for the systematic investigation of low dose effects on human health. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Biomarkers and Mechanisms of FANCD2 Function

    Directory of Open Access Journals (Sweden)

    Henning Willers

    2008-01-01

    Full Text Available Genetic or epigenetic inactivation of the pathway formed by the Fanconi anemia (FA and BRCA1 proteins occurs in several cancer types, making the affected tumors potentially hypersensitive to DNA cross-linkers and other chemotherapeutic agents. It has been proposed that the inability of FA/BRCA-defective cells to form subnuclear foci of effector proteins, such as FANCD2, can be used as a biomarker to aid individualization of chemotherapy. We show that FANCD2 inactivation not only renders cells sensitive to cross-links, but also oxidative stress, a common effect of cancer therapeutics. Oxidative stress sensitivity does not correlate with FANCD2 or RAD51 foci formation, but associates with increased γH2AX foci levels and apoptosis. Therefore, FANCD2 may protect cells against cross-links and oxidative stress through distinct mechanisms, consistent with the growing notion that the pathway is not linear. Our data emphasize the need for multiple biomarkers, such as γH2AX, FANCD2, and RAD51, to capture all pathway activities.

  17. Chemical contaminants, health indicators, and reproductive biomarker responses in fish from the Colorado River and its tributaries.

    Science.gov (United States)

    Hinck, Jo Ellen; Blazer, Vicki S; Denslow, Nancy D; Echols, Kathy R; Gross, Timothy S; May, Tom W; Anderson, Patrick J; Coyle, James J; Tillitt, Donald E

    2007-06-01

    showed evidence of contaminant exposure as indicated by fish health indicators and reproductive biomarker results. Multiple health indicators including altered body and organ weights and high health assessment index scores may be associated with elevated Se concentrations in fish from the Colorado River at Loma, Colorado and Needles. Although grossly visible external or internal lesions were found on most fish from some sites, histopathological analysis determined many of these to be inflammatory responses associated with parasites. Edema, exophthalmos, and cataracts were noted in fish from sites with elevated Se concentrations. Intersex fish were found at seven of 14 sites and included smallmouth bass (M. dolomieu), largemouth bass (M. salmoides), catfish, and carp and may indicate exposure to endocrine disrupting compounds. A high proportion of smallmouth bass from the Yampa River at Lay (70%) was intersex but the cause of this condition is unknown. Male carp, bass, and catfish with low concentrations of vitellogenin were common in the CRB. Comparatively high vitellogenin concentrations (>0.2 mg/mL) were measured in male bass from the Green River at Ouray NWR and the Colorado River at Imperial Dam and indicate exposure to estrogenic or anti-androgenic chemicals. Anomalous reproductive biomarkers including low GSI and gonadal abnormalities (calcifications, edema, and parasites) observed in fish downstream of Phoenix are likely related to the poor water-quality of the Gila River in this area.

  18. Brain oscillations as biomarkers in neuropsychiatric disorders: following an interactive panel discussion and synopsis.

    Science.gov (United States)

    Yener, Görsev G; Başar, Erol

    2013-01-01

    This survey covers the potential use of neurophysiological changes as a biomarker in four neuropsychiatric diseases (attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), bipolar disorder (BD), and schizophrenia (SZ)). Great developments have been made in the search of biomarkers in these disorders, especially in AD. Nevertheless, there is a tremendous need to develop an efficient, low-cost, potentially portable, non-invasive biomarker in the diagnosis, course, or treatment of the above-mentioned disorders. Electrophysiological methods would provide a tool that would reflect functional brain dynamic changes within milliseconds and also may be used as an ensemble of biomarkers that is greatly needed in the evaluation of cognitive changes seen in these disorders. The strategies for measuring cognitive changes include spontaneous electroencephalography (EEG), sensory evoked oscillation (SEO), and event-related oscillations (ERO). Further selective connectivity deficit in sensory or cognitive networks is reflected by coherence measurements. Possible candidate biomarkers discussed in an interactive panel can be summarized as follows: for ADHD: (a) elevation of delta and theta, (b) diminished alpha and beta responses in spontaneous EEG; for SZ: (a) decrease of ERO gamma responses, (b) decreased ERO in all other frequency ranges, (c) invariant ERO gamma response in relation to working memory demand; for euthymic BD: (a) decreased event-related gamma coherence, (b) decreased alpha in ERO and in spontaneous EEG; for manic BD: (a) lower alpha and higher beta in ERO, (b) decreased event-related gamma coherence, (c) lower alpha and beta in ERO after valproate; and for AD: (a) decreased alpha and beta, and increased theta and delta in spontaneous EEG, (b) hyperexcitability of motor cortices as shown by transcortical magnetic stimulation, (c) hyperexcitability of visual sensory cortex as indicated by increased SEO theta responses, (d) lower delta ERO, (e

  19. The serotonin system in autism spectrum disorder: from biomarker to animal models

    Science.gov (United States)

    Muller, Christopher L.; Anacker, Allison M.J.; Veenstra-VanderWeele, Jeremy

    2015-01-01

    Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophysiology remains incompletely understood. Studies of whole blood serotonin levels in ASD and in a large founder population indicate greater heritability than for the disorder itself and suggest an association with recurrence risk. Emerging data from both neuroimaging and postmortem samples also indicate changes in the brain serotonin system in ASD. Genetic linkage and association studies of both whole blood serotonin levels and of ASD risk point to the chromosomal region containing the serotonin transporter (SERT) gene in males but not in females. In ASD families with evidence of linkage to this region, multiple rare SERT amino acid variants lead to a convergent increase in serotonin uptake in cell models. A knock-in mouse model of one of these variants, SERT Gly56Ala, recapitulates the hyperserotonemia biomarker and shows increased brain serotonin clearance, increased serotonin receptor sensitivity, and altered social, communication, and repetitive behaviors. Data from other rodent models also suggest an important role for the serotonin system in social behavior, in cognitive flexibility, and in sensory development. Recent work indicates that reciprocal interactions between serotonin and other systems, such as oxytocin, may be particularly important for social behavior. Collectively, these data point to the serotonin system as a prime candidate for treatment development in a subgroup of children defined by a robust, heritable biomarker. PMID:26577932

  20. Proteomic Approaches in Biomarker Discovery: New Perspectives in Cancer Diagnostics

    Science.gov (United States)

    Kocevar, Nina; Komel, Radovan

    2014-01-01

    Despite remarkable progress in proteomic methods, including improved detection limits and sensitivity, these methods have not yet been established in routine clinical practice. The main limitations, which prevent their integration into clinics, are high cost of equipment, the need for highly trained personnel, and last, but not least, the establishment of reliable and accurate protein biomarkers or panels of protein biomarkers for detection of neoplasms. Furthermore, the complexity and heterogeneity of most solid tumours present obstacles in the discovery of specific protein signatures, which could be used for early detection of cancers, for prediction of disease outcome, and for determining the response to specific therapies. However, cancer proteome, as the end-point of pathological processes that underlie cancer development and progression, could represent an important source for the discovery of new biomarkers and molecular targets for tailored therapies. PMID:24550697

  1. Experimental design and multiple response optimization. Using the desirability function in analytical methods development.

    Science.gov (United States)

    Candioti, Luciana Vera; De Zan, María M; Cámara, María S; Goicoechea, Héctor C

    2014-06-01

    A review about the application of response surface methodology (RSM) when several responses have to be simultaneously optimized in the field of analytical methods development is presented. Several critical issues like response transformation, multiple response optimization and modeling with least squares and artificial neural networks are discussed. Most recent analytical applications are presented in the context of analytLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, ArgentinaLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, Argentinaical methods development, especially in multiple response optimization procedures using the desirability function. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Protein biomarker enrichment by biomarker antibody complex elution for immunoassay biosensing

    NARCIS (Netherlands)

    Sabatté, G.S.; Feitsma, H.; Evers, T.H.; Prins, M.W.J.

    2011-01-01

    It is very challenging to perform sample enrichment for protein biomarkers because proteins can easily change conformation and denature. In this paper we demonstrate protein enrichment suited for high-sensitivity integrated immuno-biosensing. The method enhances the concentration of the biomarkers

  3. Biomarkers for IgA nephropathy on the basis of multi-hit pathogenesis.

    Science.gov (United States)

    Suzuki, Hitoshi

    2018-05-08

    IgA nephropathy (IgAN) is the most prevalent glomerular disease worldwide and is associated with a poor prognosis. Development of curative treatment strategies and approaches for early diagnosis is necessary. Renal biopsy is the gold standard for the diagnosis and assessment of disease activity. However, reliable biomarkers are needed for the noninvasive diagnosis of this disease and to more fully delineate the risk of progression. With regard to the pathogenesis of IgAN, the multi-hit hypothesis, including production of galactose-deficient IgA1 (Gd-IgA1; Hit 1), IgG or IgA autoantibodies that recognize Gd-IgA1 (Hit 2), and their subsequent immune complexes formation (Hit 3) and glomerular deposition (Hit 4), has been widely supported by many studies. Although the prognostic values of several biomarkers have been discussed, we recently developed a highly sensitive and specific diagnostic method by measuring serum levels of Gd-IgA1 and Gd-IgA1-containing immune complexes. In addition, urinary Gd-IgA1 may represent a disease-specific biomarker for IgAN. We also confirmed that there is a significant correlation between serum levels of these effector molecules and disease activity, suggesting that each can be considered a practical surrogate marker of therapeutic response. Thus, these disease-oriented specific serum and urine biomarkers may be useful for screening of potential IgAN with isolated hematuria, earlier diagnosis, disease activity, and eventually, response to treatment. In this review, we discuss these concepts, with a focus on potential clinical applications of these biomarkers.

  4. Oxidative stress biomarkers in West African Dwarf goats reared ...

    African Journals Online (AJOL)

    Oxidative stress biomarkers in West African Dwarf goats reared under intensive and semi-intensive production systems. ... Animals raised intensively were fed Megathyrsus maximus hay ad libitum, while those reared semi-intensively were allowed to graze freely in a fenced ... Keywords: bucks, immune response, season ...

  5. Biomarker responses of Peromyscus leucopus exposed to lead and cadmium in the Southeast Missouri Lead Mining District.

    Science.gov (United States)

    Beyer, W Nelson; Casteel, Stan W; Friedrichs, Kristen R; Gramlich, Eric; Houseright, Ruth A; Nichols, John R; Karouna-Renier, Natalie K; Kim, Dae Young; Rangen, Kathleen L; Rattner, Barnett A; Schultz, Sandra L

    2018-01-29

    Biomarker responses and histopathological lesions have been documented in laboratory mammals exposed to elevated concentrations of lead and cadmium. The exposure of white-footed mice (Peromyscus leucopus) to these metals and the potential associated toxic effects were examined at three contaminated sites in the Southeast Missouri Lead Mining District and at a reference site in MO, USA. Mice from the contaminated sites showed evidence of oxidative stress and reduced activity of red blood cell δ-aminolevulinic acid dehydratase (ALAD). Histological examinations of the liver and kidney, cytologic examination of blood smears, and biomarkers of lipid peroxidation and DNA damage failed to show indications of toxic effects from lead. The biomagnification factor of cadmium (hepatic concentration/soil concentration) at a site with a strongly acid soil was 44 times the average of the biomagnification factors at two sites with slightly alkaline soils. The elevated concentrations of cadmium in the mice did not cause observable toxicity, but were associated with about a 50% decrease in expected tissue lead concentrations and greater ALAD activity compared to the activity at the reference site. Lead was associated with a decrease in concentrations of hepatic glutathione and thiols, whereas cadmium was associated with an increase. In addition, to support risk assessment efforts, we developed linear regression models relating both tissue lead dosages (based on a previously published a laboratory study) and tissue lead concentrations in Peromyscus to soil lead concentrations.

  6. Biomarker responses of Peromyscus leucopus exposed to lead and cadmium in the Southeast Missouri Lead Mining District

    Science.gov (United States)

    Beyer, W. Nelson; Casteel, Stan W.; Friedrichs, Kristen R.; Gramlich, Eric; Houseright, Ruth A.; Nichols, John W.; Karouna-Renier, Natalie; Kim, Dae Young; Rangen, Kathleen; Rattner, Barnett A.; Schultz, Sandra

    2018-01-01

    Biomarker responses and histopathological lesions have been documented in laboratory mammals exposed to elevated concentrations of lead and cadmium. The exposure of white-footed mice (Peromyscus leucopus) to these metals and the potential associated toxic effects were examined at three contaminated sites in the Southeast Missouri Lead Mining District and at a reference site in MO, USA. Mice from the contaminated sites showed evidence of oxidative stress and reduced activity of red blood cell δ-aminolevulinic acid dehydratase (ALAD). Histological examinations of the liver and kidney, cytologic examination of blood smears, and biomarkers of lipid peroxidation and DNA damage failed to show indications of toxic effects from lead. The biomagnification factor of cadmium (hepatic concentration/soil concentration) at a site with a strongly acid soil was 44 times the average of the biomagnification factors at two sites with slightly alkaline soils. The elevated concentrations of cadmium in the mice did not cause observable toxicity, but were associated with about a 50% decrease in expected tissue lead concentrations and greater ALAD activity compared to the activity at the reference site. Lead was associated with a decrease in concentrations of hepatic glutathione and thiols, whereas cadmium was associated with an increase. In addition, to support risk assessment efforts, we developed linear regression models relating both tissue lead dosages (based on a previously published a laboratory study) and tissue lead concentrations in Peromyscus to soil lead concentrations.

  7. Transient response of the 'multiple water-bag' plasma

    International Nuclear Information System (INIS)

    Lim Cheeseng

    1989-01-01

    A charge activates impulsively and then decays temporally within a MWB (multiple water-bag)-modelled warm plasma. The transient problem is formulated and asymptotically resolved for large time. The response potential comprises two characteristically distinct quantities W and W N : W is a superposition of spherically expanding, moderately attenuated Kelvin waves contributed by certain points on a subset of dispersion curves; W N is a superposition, associated with two other dispersion curves, of three spherical wavefunctions, one of which incorporates the Fresnel integrals. A transient state feature of the MWB discretization is the partitioning of the response field by growing (fast) fronts, (trailing) slow caustics and a j -surfaces, the fastest among these being an a N- surface (thermal front) which pushes back a quasi-static exterior. Contrary to expectations, there is no response jump across any of those growing partitions. Wavefunctions near the slow caustics possess Airy factors. A rest state ultimately develops behind the slowest slow caustic. An application is made to the fluid plasma. (author)

  8. A Delphic consensus assessment: imaging and biomarkers in gastroenteropancreatic neuroendocrine tumor disease management

    Directory of Open Access Journals (Sweden)

    Kjell Oberg

    2016-09-01

    Full Text Available The complexity of the clinical management of neuroendocrine neoplasia (NEN is exacerbated by limitations in imaging modalities and a paucity of clinically useful biomarkers. Limitations in currently available imaging modalities reflect difficulties in measuring an intrinsically indolent disease, resolution inadequacies and inter-/intra-facility device variability and that RECIST (Response Evaluation Criteria in Solid Tumors criteria are not optimal for NEN. Limitations of currently used biomarkers are that they are secretory biomarkers (chromogranin A, serotonin, neuron-specific enolase and pancreastatin; monoanalyte measurements; and lack sensitivity, specificity and predictive capacity. None of them meet the NIH metrics for clinical usage. A multinational, multidisciplinary Delphi consensus meeting of NEN experts (n = 33 assessed current imaging strategies and biomarkers in NEN management. Consensus (>75% was achieved for 78% of the 142 questions. The panel concluded that morphological imaging has a diagnostic value. However, both imaging and current single-analyte biomarkers exhibit substantial limitations in measuring the disease status and predicting the therapeutic efficacy. RECIST remains suboptimal as a metric. A critical unmet need is the development of a clinico-biological tool to provide enhanced information regarding precise disease status and treatment response. The group considered that circulating RNA was better than current general NEN biomarkers and preliminary clinical data were considered promising. It was resolved that circulating multianalyte mRNA (NETest had clinical utility in both diagnosis and monitoring disease status and therapeutic efficacy. Overall, it was concluded that a combination of tumor spatial and functional imaging with circulating transcripts (mRNA would represent the future strategy for real-time monitoring of disease progress and therapeutic efficacy.

  9. Cellular and Molecular Biological Approaches to Interpreting Ancient Biomarkers

    Science.gov (United States)

    Newman, Dianne K.; Neubauer, Cajetan; Ricci, Jessica N.; Wu, Chia-Hung; Pearson, Ann

    2016-06-01

    Our ability to read the molecular fossil record has advanced significantly in the past decade. Improvements in biomarker sampling and quantification methods, expansion of molecular sequence databases, and the application of genetic and cellular biological tools to problems in biomarker research have enabled much of this progress. By way of example, we review how attempts to understand the biological function of 2-methylhopanoids in modern bacteria have changed our interpretation of what their molecular fossils tell us about the early history of life. They were once thought to be biomarkers of cyanobacteria and hence the evolution of oxygenic photosynthesis, but we now believe that 2-methylhopanoid biosynthetic capacity originated in the Alphaproteobacteria, that 2-methylhopanoids are regulated in response to stress, and that hopanoid 2-methylation enhances membrane rigidity. We present a new interpretation of 2-methylhopanes that bridges the gap between studies of the functions of 2-methylhopanoids and their patterns of occurrence in the rock record.

  10. Seasonal and size-related variation of subcellular biomarkers in quagga mussels (Dreissena bugensis) inhabiting sites affected by moderate contamination with complex mixtures of pollutants.

    Science.gov (United States)

    Ács, A; Vehovszky, Á; Győri, J; Farkas, A

    2016-07-01

    The size-related differences in subcellular biomarker responses were assessed in Dreissena bugensis mussels inhabiting harbours moderately affected by pollution with complex mixtures of heavy metals and polycyclic aromatic hydrocarbons (PAHs). Adult D. bugensis samples were collected from three harbours of Lake Balaton (Hungary) characterized by moderate shipping activity, and as reference site, from a highly protected remote area of the lake. Biomarkers of exposure (metallothioneins (MTs), ethoxyresorufin-o-deethylase (EROD)), oxidative stress (lipid peroxidation (LPO), DNA strand breaks (DNAsb)) and possible endocrine disruption (vitellogenin-like proteins (VTG)) were analysed in whole-tissue homogenates of differently sized groups of mussels in relation to environmental parameters and priority pollutants (heavy metals and polycyclic aromatic hydrocarbons). Integrated biomarker response (IBR) indices were calculated for biomarker responses gained through in situ measurements to signalize critical sites and to better distinguish natural tendencies from biological effects of contaminants. Biomarker responses showed close positive correlation in case of MT, EROD, LPO, and DNAsb and negative correlation with VTG levels with mussel shell length in autumn, when higher levels of biomarkers appeared, possibly due to natural lifecycle changes of animals.

  11. Epithelial membrane protein-1 is a biomarker of gefitinib resistance.

    Science.gov (United States)

    Jain, Anjali; Tindell, Charles A; Laux, Isett; Hunter, Jacob B; Curran, John; Galkin, Anna; Afar, Daniel E; Aronson, Nina; Shak, Steven; Natale, Ronald B; Agus, David B

    2005-08-16

    We describe a molecular resistance biomarker to gefitinib, epithelial membrane protein-1 (EMP-1). Gefitinib is a small-molecule inhibitor that competes for the ATP-binding site on EGF receptor (EGFR) and has been approved for patients with advanced lung cancers. Treatment with gefitinib has resulted in clinical benefit in patients, and, recently, heterozygous somatic mutations within the EGFR catalytic domain have been identified as a clinical correlate to objective response to gefitinib. However, clinical resistance to gefitinib limits the utility of this therapeutic to a fraction of patients, and objective clinical responses are rare. We aimed to assess the molecular phenotype and mechanism of in vivo gefitinib resistance in xenograft models and in patient samples. We generated in vivo gefitinib-resistance models in an adenocarcinoma xenograft model by serially passaging tumors in nude mice in presence of gefitinib until resistance was acquired. EMP-1 was identified as a surface biomarker whose expression correlated with acquisition of gefitinib resistance. EMP-1 expression was further correlated with lack of complete or partial response to gefitinib in lung cancer patient samples as well as clinical progression to secondary gefitinib resistance. EMP-1 expression and acquisition of gefitinib clinical resistance was independent of gefitinib-sensitizing EGFR somatic mutations. This report suggests the role of the adhesion molecule, EMP-1, as a biomarker of gefitinib clinical resistance, and further suggests a probable cross-talk between this molecule and the EGFR signaling pathway.

  12. Visualization-based analysis of multiple response survey data

    Science.gov (United States)

    Timofeeva, Anastasiia

    2017-11-01

    During the survey, the respondents are often allowed to tick more than one answer option for a question. Analysis and visualization of such data have difficulties because of the need for processing multiple response variables. With standard representation such as pie and bar charts, information about the association between different answer options is lost. The author proposes a visualization approach for multiple response variables based on Venn diagrams. For a more informative representation with a large number of overlapping groups it is suggested to use similarity and association matrices. Some aggregate indicators of dissimilarity (similarity) are proposed based on the determinant of the similarity matrix and the maximum eigenvalue of association matrix. The application of the proposed approaches is well illustrated by the example of the analysis of advertising sources. Intersection of sets indicates that the same consumer audience is covered by several advertising sources. This information is very important for the allocation of the advertising budget. The differences between target groups in advertising sources are of interest. To identify such differences the hypothesis of homogeneity and independence are tested. Recent approach to the problem are briefly reviewed and compared. An alternative procedure is suggested. It is based on partition of a consumer audience into pairwise disjoint subsets and includes hypothesis testing of the difference between the population proportions. It turned out to be more suitable for the real problem being solved.

  13. Protein Biomarkers of Periodontitis in Saliva

    Science.gov (United States)

    Taylor, John J.

    2014-01-01

    Periodontitis is a chronic inflammatory condition of the tissues that surround and support the teeth and is initiated by inappropriate and excessive immune responses to bacteria in subgingival dental plaque leading to loss of the integrity of the periodontium, compromised tooth function, and eventually tooth loss. Periodontitis is an economically important disease as it is time-consuming and expensive to treat. Periodontitis has a worldwide prevalence of 5–15% and the prevalence of severe disease in western populations has increased in recent decades. Furthermore, periodontitis is more common in smokers, in obesity, in people with diabetes, and in heart disease patients although the pathogenic processes underpinning these links are, as yet, poorly understood. Diagnosis and monitoring of periodontitis rely on traditional clinical examinations which are inadequate to predict patient susceptibility, disease activity, and response to treatment. Studies of the immunopathogenesis of periodontitis and analysis of mediators in saliva have allowed the identification of many potentially useful biomarkers. Convenient measurement of these biomarkers using chairside analytical devices could form the basis for diagnostic tests which will aid the clinician and the patient in periodontitis management; this review will summarise this field and will identify the experimental, technical, and clinical issues that remain to be addressed before such tests can be implemented. PMID:24944840

  14. Challenges in clinical studies with multiple imaging probes

    International Nuclear Information System (INIS)

    Krohn, Kenneth A.; O'Sullivan, Finbarr; Crowley, John; Eary, Janet F.; Linden, Hannah M.; Link, Jeanne M.; Mankoff, David A.; Muzi, Mark; Rajendran, Joseph G.; Spence, Alexander M.; Swanson, Kristin R.

    2007-01-01

    This article addresses two related issues: (a) When a new imaging agent is proposed, how does the imager integrate it with other biomarkers, either sampled or imaged? (b) When we have multiple imaging agents, is the information additive or duplicative and how is this objectively determined? Molecular biology is leading to new treatment options with reduced normal tissue toxicity, and imaging should have a role in objectively evaluating new treatments. There are two roles for molecular characterization of disease. Molecular imaging measurements before therapy help predict the aggressiveness of disease and identify therapeutic targets and, therefore, help choose the optimal therapy for an individual. Measurements of specific biochemical processes made during or after therapy should be sensitive measures of tumor response. The rules of evidence are not fully developed for the prognostic role of imaging biomarkers, but the potential of molecular imaging provides compelling motivation to push forward with convincing validation studies. New imaging procedures need to be characterized for their effectiveness under realistic clinical conditions to improve the management of patients and achieve a better outcome. The purpose of this article is to promote a critical discussion within the molecular imaging community because our future value to the overall biomedical community will be in supporting better treatment outcomes rather than in detection

  15. The MiRNA Journey from Theory to Practice as a CNS Biomarker

    Directory of Open Access Journals (Sweden)

    Nicoleta eStoicea

    2016-02-01

    Full Text Available MicroRNAs (miRNAs, small nucleotide sequences that control gene transcription, have the potential to serve an expanded function as indicators in the diagnosis and progression of neurological disorders. Studies involving debilitating neurological diseases such as, Alzheimer’s disease, multiple sclerosis, traumatic brain injuries, Parkinson’s disease and CNS tumors, already provide validation for their clinical diagnostic use. These small nucleotide sequences have several features, making them favorable candidates as biomarkers, including function in multiple tissues, stability in bodily fluids, a role in pathogenesis, and the ability to be detected early in the disease course. Cerebrospinal fluid, with its cell-free environment, collection process that minimizes tissue damage, and direct contact with the brain and spinal cord, is a promising source of miRNA in the diagnosis of many neurological disorders. Despite the advantages of miRNA analysis, current analytic technology is not yet affordable as a clinically viable diagnostic tool and requires standardization. The goal of this review is to explore the prospective use of CSF miRNA as a reliable and affordable biomarker for different neurological disorders.

  16. The MiRNA Journey from Theory to Practice as a CNS Biomarker

    Science.gov (United States)

    Stoicea, Nicoleta; Du, Amy; Lakis, D. Christie; Tipton, Courtney; Arias-Morales, Carlos E.; Bergese, Sergio D.

    2016-01-01

    MicroRNAs (miRNAs), small nucleotide sequences that control gene transcription, have the potential to serve an expanded function as indicators in the diagnosis and progression of neurological disorders. Studies involving debilitating neurological diseases such as, Alzheimer's disease, multiple sclerosis, traumatic brain injuries, Parkinson's disease and CNS tumors, already provide validation for their clinical diagnostic use. These small nucleotide sequences have several features, making them favorable candidates as biomarkers, including function in multiple tissues, stability in bodily fluids, a role in pathogenesis, and the ability to be detected early in the disease course. Cerebrospinal fluid, with its cell-free environment, collection process that minimizes tissue damage, and direct contact with the brain and spinal cord, is a promising source of miRNA in the diagnosis of many neurological disorders. Despite the advantages of miRNA analysis, current analytic technology is not yet affordable as a clinically viable diagnostic tool and requires standardization. The goal of this review is to explore the prospective use of CSF miRNA as a reliable and affordable biomarker for different neurological disorders. PMID:26904099

  17. Data from a targeted proteomics approach to discover biomarkers in saliva for the clinical diagnosis of periodontitis

    Directory of Open Access Journals (Sweden)

    V. Orti

    2018-06-01

    Full Text Available This study focused on the search for new biomarkers based on liquid chromatography-multiple reaction monitoring (LC-MRM proteomics profiling of whole saliva from patients with periodontitis compared to healthy subjects. The LC-MRM profiling approach is a new and innovative method that has already been validated for the absolute and multiplexed quantification of biomarkers in several diseases. The dataset for this study was produced using LC-MRM to monitor protein levels in a multiplex assay, it provides clinical information on salivary biomarkers of periodontitis. The data presented here is an extension of our recently published research article (Mertens et al., 2017 [1]. Keywords: Clinical chemistry, Mass spectrometry, Proteomics, Saliva biochemistry, Oral disease, Periodontitis

  18. Response of atmospheric biomarkers to NO(x)-induced photochemistry generated by stellar cosmic rays for earth-like planets in the habitable zone of M dwarf stars.

    Science.gov (United States)

    Grenfell, John Lee; Grießmeier, Jean-Mathias; von Paris, Philip; Patzer, A Beate C; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-12-01

    Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N(2)), which leads to production of nitrogen oxides (NO(x)) in the planetary atmosphere, hence affecting biomarkers such as ozone (O(3)). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NO(x) production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O(3) formation proceeds via the reaction O+O(2)+M→O(3)+M. At high NO(x) abundances, the O atoms arise mainly from NO(2) photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O(2)). For the flaring case, O(3) is mainly destroyed via direct titration, NO+O(3)→NO(2)+O(2), and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O(3), Rayleigh scattering by the main atmospheric gases (O(2), N(2), and CO(2)) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O(3) survived all the stellar-activity scenarios considered except for the strong

  19. Identifying Urinary and Serum Exosome Biomarkers for Radiation Exposure Using a Data Dependent Acquisition and SWATH-MS Combined Workflow

    International Nuclear Information System (INIS)

    Kulkarni, Shilpa; Koller, Antonius; Mani, Kartik M.; Wen, Ruofeng; Alfieri, Alan; Saha, Subhrajit; Wang, Jian; Patel, Purvi; Bandeira, Nuno; Guha, Chandan

    2016-01-01

    Purpose: Early and accurate assessment of radiation injury by radiation-responsive biomarkers is critical for triage and early intervention. Biofluids such as urine and serum are convenient for such analysis. Recent research has also suggested that exosomes are a reliable source of biomarkers in disease progression. In the present study, we analyzed total urine proteome and exosomes isolated from urine or serum for potential biomarkers of acute and persistent radiation injury in mice exposed to lethal whole body irradiation (WBI). Methods and Materials: For feasibility studies, the mice were irradiated at 10.4 Gy WBI, and urine and serum samples were collected 24 and 72 hours after irradiation. Exosomes were isolated and analyzed using liquid chromatography mass spectrometry/mass spectrometry-based workflow for radiation exposure signatures. A data dependent acquisition and SWATH-MS combined workflow approach was used to identify significantly exosome biomarkers indicative of acute or persistent radiation-induced responses. For the validation studies, mice were exposed to 3, 6, 8, or 10 Gy WBI, and samples were analyzed for comparison. Results: A comparison between total urine proteomics and urine exosome proteomics demonstrated that exosome proteomic analysis was superior in identifying radiation signatures. Feasibility studies identified 23 biomarkers from urine and 24 biomarkers from serum exosomes after WBI. Urinary exosome signatures identified different physiological parameters than the ones obtained in serum exosomes. Exosome signatures from urine indicated injury to the liver, gastrointestinal, and genitourinary tracts. In contrast, serum showed vascular injuries and acute inflammation in response to radiation. Selected urinary exosomal biomarkers also showed changes at lower radiation doses in validation studies. Conclusions: Exosome proteomics revealed radiation- and time-dependent protein signatures after WBI. A total of 47 differentially secreted

  20. Identifying Urinary and Serum Exosome Biomarkers for Radiation Exposure Using a Data Dependent Acquisition and SWATH-MS Combined Workflow

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Shilpa [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Koller, Antonius [Proteomics Center, Stony Brook University School of Medicine, Stony Brook, New York (United States); Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, New York (United States); Mani, Kartik M. [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Wen, Ruofeng [Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York (United States); Alfieri, Alan; Saha, Subhrajit [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Wang, Jian [Center for Computational Mass Spectrometry, University of California, San Diego, California (United States); Department of Computer Science and Engineering, University of California, San Diego, California (United States); Patel, Purvi [Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, New York (United States); Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York (United States); Bandeira, Nuno [Center for Computational Mass Spectrometry, University of California, San Diego, California (United States); Department of Computer Science and Engineering, University of California, San Diego, California (United States); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California (United States); Guha, Chandan, E-mail: cguha@montefiore.org [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); and others

    2016-11-01

    Purpose: Early and accurate assessment of radiation injury by radiation-responsive biomarkers is critical for triage and early intervention. Biofluids such as urine and serum are convenient for such analysis. Recent research has also suggested that exosomes are a reliable source of biomarkers in disease progression. In the present study, we analyzed total urine proteome and exosomes isolated from urine or serum for potential biomarkers of acute and persistent radiation injury in mice exposed to lethal whole body irradiation (WBI). Methods and Materials: For feasibility studies, the mice were irradiated at 10.4 Gy WBI, and urine and serum samples were collected 24 and 72 hours after irradiation. Exosomes were isolated and analyzed using liquid chromatography mass spectrometry/mass spectrometry-based workflow for radiation exposure signatures. A data dependent acquisition and SWATH-MS combined workflow approach was used to identify significantly exosome biomarkers indicative of acute or persistent radiation-induced responses. For the validation studies, mice were exposed to 3, 6, 8, or 10 Gy WBI, and samples were analyzed for comparison. Results: A comparison between total urine proteomics and urine exosome proteomics demonstrated that exosome proteomic analysis was superior in identifying radiation signatures. Feasibility studies identified 23 biomarkers from urine and 24 biomarkers from serum exosomes after WBI. Urinary exosome signatures identified different physiological parameters than the ones obtained in serum exosomes. Exosome signatures from urine indicated injury to the liver, gastrointestinal, and genitourinary tracts. In contrast, serum showed vascular injuries and acute inflammation in response to radiation. Selected urinary exosomal biomarkers also showed changes at lower radiation doses in validation studies. Conclusions: Exosome proteomics revealed radiation- and time-dependent protein signatures after WBI. A total of 47 differentially secreted

  1. Effects of extinction in multiple contexts on renewal of instrumental responses.

    Science.gov (United States)

    Bernal-Gamboa, Rodolfo; Nieto, Javier; Uengoer, Metin

    2017-09-01

    In two experiments with rats, we investigated the effects of using multiple contexts during extinction on renewal of lever-pressing behavior. During the first phase of both experiments, rats were reinforced to press a lever for food in Context A. Then, responses underwent extinction. For half of the animals, extinction sessions were conducted in a single context, whereas the other half received extinction in three different contexts. In Experiment 1, we observed that extinction in multiple contexts eliminated ABC renewal, but had no detectable impact on ABA renewal. Experiment 2 revealed that conducting extended extinction training in multiple contexts attenuated ABA renewal. Theoretical and clinical implications of the present findings are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cardiac biomarkers in Neonatology

    OpenAIRE

    Vijlbrief, D.C.

    2015-01-01

    In this thesis, the role for cardiac biomarkers in neonatology was investigated. Several clinically relevant results were reported. In term and preterm infants, hypoxia and subsequent adaptation play an important role in cardiac biomarker elevation. The elevated natriuretic peptides are indicative of abnormal function; elevated troponins are suggestive for cardiomyocyte damage. This methodology makes these biomarkers of additional value in the treatment of newborn infants, separate or as a co...

  3. Accounting for control mislabeling in case-control biomarker studies.

    Science.gov (United States)

    Rantalainen, Mattias; Holmes, Chris C

    2011-12-02

    In biomarker discovery studies, uncertainty associated with case and control labels is often overlooked. By omitting to take into account label uncertainty, model parameters and the predictive risk can become biased, sometimes severely. The most common situation is when the control set contains an unknown number of undiagnosed, or future, cases. This has a marked impact in situations where the model needs to be well-calibrated, e.g., when the prediction performance of a biomarker panel is evaluated. Failing to account for class label uncertainty may lead to underestimation of classification performance and bias in parameter estimates. This can further impact on meta-analysis for combining evidence from multiple studies. Using a simulation study, we outline how conventional statistical models can be modified to address class label uncertainty leading to well-calibrated prediction performance estimates and reduced bias in meta-analysis. We focus on the problem of mislabeled control subjects in case-control studies, i.e., when some of the control subjects are undiagnosed cases, although the procedures we report are generic. The uncertainty in control status is a particular situation common in biomarker discovery studies in the context of genomic and molecular epidemiology, where control subjects are commonly sampled from the general population with an established expected disease incidence rate.

  4. Prostate Cancer Imaging and Biomarkers Guiding Safe Selection of Active Surveillance

    Directory of Open Access Journals (Sweden)

    Zachary A. Glaser

    2017-10-01

    Full Text Available BackgroundActive surveillance (AS is a widely adopted strategy to monitor men with low-risk, localized prostate cancer (PCa. Current AS inclusion criteria may misclassify as many as one in four patients. The advent of multiparametric magnetic resonance imaging (mpMRI and novel PCa biomarkers may offer improved risk stratification. We performed a review of recently published literature to characterize emerging evidence in support of these novel modalities.MethodsAn English literature search was conducted on PubMed for available original investigations on localized PCa, AS, imaging, and biomarkers published within the past 3 years. Our Boolean criteria included the following terms: PCa, AS, imaging, biomarker, genetic, genomic, prospective, retrospective, and comparative. The bibliographies and diagnostic modalities of the identified studies were used to expand our search.ResultsOur review identified 222 original studies. Our expanded search yielded 244 studies. Among these, 70 met our inclusion criteria. Evidence suggests mpMRI offers improved detection of clinically significant PCa, and MRI-fusion technology enhances the sensitivity of surveillance biopsies. Multiple studies demonstrate the promise of commercially available screening assays for prediction of AS failure, and several novel biomarkers show promise in this setting.ConclusionIn the era of AS for men with low-risk PCa, improved strategies for proper stratification are needed. mpMRI has dramatically enhanced the detection of clinically significant PCa. The advent of novel biomarkers for prediction of aggressive disease and AS failure has shown some initial promise, but further validation is warranted.

  5. Toxicity of dispersant application: Biomarkers responses in gills of juvenile golden grey mullet (Liza aurata).

    Science.gov (United States)

    Milinkovitch, Thomas; Godefroy, Joachim; Théron, Michaël; Thomas-Guyon, Hélène

    2011-10-01

    Dispersant use in nearshore areas is likely to increase the exposure of aquatic organisms to petroleum. To measure the toxicity of this controversial response technique, golden grey mullets (Liza aurata) were exposed to mechanically dispersed oil, chemically dispersed oil, dispersant alone in seawater, water-soluble fraction of oil and to seawater as a control treatment. Several biomarkers were assessed in the gills (enzymatic antioxidant activities, glutathione content, lipid peroxidation) and in the gallbladder (polycylic aromatic hydrocarbons metabolites). The significant differences between chemically dispersed oil and water soluble fraction of oil highlight the environmental risk to disperse an oil slick when containment and recovery can be conducted. The lack of significance between chemically and mechanically dispersed oil suggests that dispersant application is no more toxic than the natural dispersion of the oil slick. The results of this study are of interest in order to establish dispersant use policies in nearshore areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Generation of synthetic time histories compatible with multiple-damping design response spectra

    International Nuclear Information System (INIS)

    Lilhanand, K.; Tseng, W.S.

    1987-01-01

    Seismic design of nuclear power plants as currently practiced requires time history analyses be performed to generate floor response spectra for seismic qualification of piping, equipment, and components. Since design response spectra are normally prescribed in the form of smooth spectra, the generation of synthetic time histories whose response spectra closely match the ''target'' design spectra of multiple damping values, is often required for the seismic time history analysis purpose. Various methods of generation of synthetic time histories compatible with target response spectra have been proposed in the literature. Since the mathematical problem of determining a time history from a given set of response spectral values is not unique, an exact solution is not possible, and all the proposed methods resort to some forms of approximate solutions. In this paper, a new iteration scheme, is described which effectively removes the difficulties encountered by the existing methods. This new iteration scheme can not only improve the accuracy of spectrum matching for a single-damping target spectrum, but also automate the spectrum matching for multiple-damping target spectra. The applicability and limitations as well as the method adopted to improve the numerical stability of this new iteration scheme are presented. The effectiveness of this new iteration scheme is illustrated by two example applications

  7. Protecting Malaysia's aquatic resources: biomarkers of exposure and effect in resident fishes

    International Nuclear Information System (INIS)

    Swee Joo Teh; Hinton, D.E.

    1998-01-01

    Environmental regulators are increasingly looking for better, more cost-effective ways to protect biological resources from harmful consequences of pollution, and to restore the formerly contaminated watersheds. Where financial restraints are a reality, prioritization of efforts becomes necessary. Detection of harmful contaminant effects by direct analysis of fishes residing in streams and coastal waters of varying quality can yield information necessary to prioritize future efforts and to verify whether remediation has been achieved. Responses of tissues, body fluids, and cells signal exposure and these B iomarkers , on the other hand, reflect the bioavailability of contaminants, provide a rapid and inexpensive means for toxicity assessment, may serve as fingerprints of specific classes of chemicals, and serve as an early warning of population and community stress. Furthermore, biomarkers can identify early stages of disease and serve as a powerful integrator between contaminant exposure and biologic responses to xenobiotics found in the environment. This report will focus on the application of biomarkers as an indicator of xenobiotic exposure and deleterious effect and to evaluate progress of remediation efforts. Various levels of biomarker approaches, from biochemical to morphologic, which have been shown to be powerful tools for assessing environmental contamination and health, will be presented and their application for field validation will be discussed. When integrated with chemical analysis, biomarker approaches provide unique information on infaunal organisms and on the health of their ecosystems. (Author)

  8. Novel biomarkers of changes in muscle mass or muscle pathology

    DEFF Research Database (Denmark)

    Arvanitidis, Athanasios

    healthy individuals and patients with different myopathy diseases, describe the underlying mechanisms of muscle conditions and possibly putative response to an intervention. There were three different studies where biomarkers were applied in this thesis. Study I involved 51 myositis patients (28...

  9. Biomarkers in Vasculitis

    Science.gov (United States)

    Monach, Paul A.

    2014-01-01

    Purpose of review Better biomarkers are needed for guiding management of patients with vasculitis. Large cohorts and technological advances had led to an increase in pre-clinical studies of potential biomarkers. Recent findings The most interesting markers described recently include a gene expression signature in CD8+ T cells that predicts tendency to relapse or remain relapse-free in ANCA-associated vasculitis, and a pair of urinary proteins that are elevated in Kawasaki disease but not other febrile illnesses. Both of these studies used “omics” technologies to generate and then test hypotheses. More conventional hypothesis-based studies have indicated that the following circulating proteins have potential to improve upon clinically available tests: pentraxin-3 in giant cell arteritis and Takayasu’s arteritis; von Willebrand factor antigen in childhood central nervous system vasculitis; eotaxin-3 and other markers related to eosinophils or Th2 immune responses in eosinophilic granulomatosis with polyangiitis (Churg-Strauss syndrome); and MMP-3, TIMP-1, and CXCL13 in ANCA-associated vasculitis. Summary New markers testable in blood and urine have the potential to assist with diagnosis, staging, assessment of current disease activity, and prognosis. However, the standards for clinical usefulness, in particular the demonstration of either very high sensitivity or very high specificity, have yet to be met for clinically relevant outcomes. PMID:24257367

  10. Early Pregnancy Biomarkers in Pre-Eclampsia: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Pensée Wu

    2015-09-01

    Full Text Available Pre-eclampsia (PE complicates 2%–8% of all pregnancies and is an important cause of perinatal morbidity and mortality worldwide. In order to reduce these complications and to develop possible treatment modalities, it is important to identify women at risk of developing PE. The use of biomarkers in early pregnancy would allow appropriate stratification into high and low risk pregnancies for the purpose of defining surveillance in pregnancy and to administer interventions. We used formal methods for a systematic review and meta-analyses to assess the accuracy of all biomarkers that have been evaluated so far during the first and early second trimester of pregnancy to predict PE. We found low predictive values using individual biomarkers which included a disintegrin and metalloprotease 12 (ADAM-12, inhibin-A, pregnancy associated plasma protein A (PAPP-A, placental growth factor (PlGF and placental protein 13 (PP-13. The pooled sensitivity of all single biomarkers was 0.40 (95% CI 0.39–0.41 at a false positive rate of 10%. The area under the Summary of Receiver Operating Characteristics Curve (SROC was 0.786 (SE 0.02. When a combination model was used, the predictive value improved to an area under the SROC of 0.893 (SE 0.03. In conclusion, although there are multiple potential biomarkers for PE their efficacy has been inconsistent and comparisons are difficult because of heterogeneity between different studies. Therefore, there is an urgent need for high quality, large-scale multicentre research in biomarkers for PE so that the best predictive marker(s can be identified in order to improve the management of women destined to develop PE.

  11. Systems approach for the selection of micro-RNAs as therapeutic biomarkers of anti-EGFR monoclonal antibody treatment in colorectal cancer

    Science.gov (United States)

    Deyati, Avisek; Bagewadi, Shweta; Senger, Philipp; Hofmann-Apitius, Martin; Novac, Natalia

    2015-01-01

    miRNA plays an important role in tumourgenesis by regulating expression of oncogenes and tumour suppressors. Thus affects cell proliferation and differentiation, apoptosis, invasion and angiogenesis. miRNAs are potential biomarkers for diagnosis, prognosis and therapies of different forms of cancer. However, relationship between response of cancer patients towards targeted therapy and the resulting modifications of the miRNA transcriptome in the context of pathway regulation is poorly understood. With ever-increasing pathways and miRNA-mRNA interaction databases, freely available mRNA and miRNA expression data in multiple cancer therapy have produced an unprecedented opportunity to decipher the role of miRNAs in early prediction of therapeutic efficacy in diseases. Efficient translation of -omics data and accumulated knowledge to clinical decision-making are of paramount scientific and public health interest. Well-structured translational algorithms are needed to bridge the gap from databases to decisions. Herein, we present a novel SMARTmiR algorithm to prospectively predict the role of miRNA as therapeutic biomarker for an anti-EGFR monoclonal antibody i.e. cetuximab treatment in colorectal cancer.

  12. Imaging biomarkers in Parkinson's disease and Parkinsonian syndromes: current and emerging concepts.

    Science.gov (United States)

    Saeed, Usman; Compagnone, Jordana; Aviv, Richard I; Strafella, Antonio P; Black, Sandra E; Lang, Anthony E; Masellis, Mario

    2017-01-01

    Two centuries ago in 1817, James Parkinson provided the first medical description of Parkinson's disease, later refined by Jean-Martin Charcot in the mid-to-late 19th century to include the atypical parkinsonian variants (also termed, Parkinson-plus syndromes). Today, Parkinson's disease represents the second most common neurodegenerative disorder with an estimated global prevalence of over 10 million. Conversely, atypical parkinsonian syndromes encompass a group of relatively heterogeneous disorders that may share some clinical features with Parkinson's disease, but are uncommon distinct clinicopathological diseases. Decades of scientific advancements have vastly improved our understanding of these disorders, including improvements in in vivo imaging for biomarker identification. Multimodal imaging for the visualization of structural and functional brain changes is especially important, as it allows a 'window' into the underlying pathophysiological abnormalities. In this article, we first present an overview of the cardinal clinical and neuropathological features of, 1) synucleinopathies: Parkinson's disease and other Lewy body spectrum disorders, as well as multiple system atrophy, and 2) tauopathies: progressive supranuclear palsy, and corticobasal degeneration. A comprehensive presentation of well-established and emerging imaging biomarkers for each disorder are then discussed. Biomarkers for the following imaging modalities are reviewed: 1) structural magnetic resonance imaging (MRI) using T1, T2, and susceptibility-weighted sequences for volumetric and voxel-based morphometric analyses, as well as MRI derived visual signatures, 2) diffusion tensor MRI for the assessment of white matter tract injury and microstructural integrity, 3) proton magnetic resonance spectroscopy for quantifying proton-containing brain metabolites, 4) single photon emission computed tomography for the evaluation of nigrostriatal integrity (as assessed by presynaptic dopamine

  13. Oxidative stress and antioxidant biomarker responses after a moderate-intensity soccer training session.

    Science.gov (United States)

    Mello, Rodrigo; Mello, Ricardo; Gomes, Diego; Paz, Gabriel Andrade; Nasser, Igor; Miranda, Humberto; Salerno, Verônica P

    2017-01-01

    The present study investigated the effects of a moderate-intensity soccer training session on the production of reactive oxygen species (ROS) and the antioxidant capacity in athletes along with the biomarkers creatine kinase and transaminases for lesions in muscle and liver cells. Twenty-two male soccer players participated in this study. Blood samples were collected 5 min before and after a moderate-intensity game simulation. The results showed a decrease in the concentration of reduced glutathione (GSH) from an elevation in the production of ROS that maintained the redox homeostasis. Although the session promoted an elevated energy demand, observed by an increase in lactate and glucose levels, damage to muscle and/or liver cells was only suggested by a significant elevation in the levels of alanine transaminase (ALT). Of the two biomarkers analysed, the results suggest that measurements of the ALT levels could be adopted as a method to monitor recovery in athletes.

  14. Biomarkers for redox-active genotoxins in contaminated sediments: A mechanistic approach

    International Nuclear Information System (INIS)

    Eufemia, N.A.; Beaty, B.B.; Reichert, P.; Watson, D.E.; Burns, T.A.

    1993-04-01

    Feral brown bullhead catfish and environmental sediments were collected from three sites in the Niagara River system in northern New York state. The sites were Black Creek, a relatively uncontaminated reference site; the Love Canal-102nd Street dump site which was principally contaminated with chlorinated hydrocarbons (CHs) and chlorinated pesticides; and a site in the Buffalo River which was principally contaminated with polycyclic aromatic hydrocarbons (PAHs). A variety of putative biomarkers of genotoxicity and/or oxidative stress were measured in hepatic tissues of these fish. The results indicate that metabolic indices of benthic animals can successfully be used as biomarkers of exposure to environmental contaminants, especially when a suite of responses is evaluated, and that strong associations between specific responses and classes of chemicals suggest that a further refinement of this approach is feasible

  15. Response of Atmospheric Biomarkers to NOx-Induced Photochemistry Generated by Stellar Cosmic Rays for Earth-like Planets in the Habitable Zone of M Dwarf Stars

    Science.gov (United States)

    Grießmeier, Jean-Mathias; von Paris, Philip; Patzer, A. Beate C.; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-01-01

    Abstract Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N2), which leads to production of nitrogen oxides (NOx) in the planetary atmosphere, hence affecting biomarkers such as ozone (O3). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NOx production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O3 formation proceeds via the reaction O+O2+M→O3+M. At high NOx abundances, the O atoms arise mainly from NO2 photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O2). For the flaring case, O3 is mainly destroyed via direct titration, NO+O3→NO2+O2, and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O3, Rayleigh scattering by the main atmospheric gases (O2, N2, and CO2) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O3 survived all the stellar-activity scenarios considered except for the strong case, whereas the biomarker

  16. Assessing Coral Response to a Severe Bleaching Event Using Mulimolecular Biomarkers

    Science.gov (United States)

    Babcock-Adams, L.; Minarro, S.; Fitt, W. K.; Medeiros, P. M.

    2016-02-01

    Coral bleaching events occur primarily due to increased seawater temperatures that results in the expulsion and/or reduction of endosymbiotic zooxanthellae. The Adaptive Bleaching Hypothesis suggests that bleaching events allow a different symbiont to populate the host. Specifically, the Symbiodinium clade D has been shown to increase in abundance following a bleaching event. Approximately 40 coral tissue samples (Orbicella annularis and Orbicella faveolata) were collected in the Florida Keys in March, May, August, and November of 2000, and analyzed using GC-MS for molecular biomarkers to determine if a different suite of compounds is produced at different times following the severe bleaching events in 1997 and 1998, and to relate the biomarker composition and levels to the symbiont(s) that were present in the corals. Our preliminary results show a predominant presence of saccharides (e.g., glucose, sucrose) and sterols (e.g., cholesterol, campesterol, brassicasterol), and to a lesser degree saturated (C16:0, C18:0, C20:0) and unsaturated fatty acids (C16:1; C18:1; C18:2; C20:4). The corals with the bleaching resistant clade D symbiont have higher levels of sterols as compared to corals with other non-resistant symbionts that were collected at the same time point. Concentrations of both sterols and saccharides increased throughout time, especially from March to May, which may indicate a recovery of the corals.

  17. Analysis of the Multiple-Solution Response of a Flexible Rotor Supported on Non-Linear Squeeze Film Dampers

    Science.gov (United States)

    ZHU, C. S.; ROBB, D. A.; EWINS, D. J.

    2002-05-01

    The multiple-solution response of rotors supported on squeeze film dampers is a typical non-linear phenomenon. The behaviour of the multiple-solution response in a flexible rotor supported on two identical squeeze film dampers with centralizing springs is studied by three methods: synchronous circular centred-orbit motion solution, numerical integration method and slow acceleration method using the assumption of a short bearing and cavitated oil film; the differences of computational results obtained by the three different methods are compared in this paper. It is shown that there are three basic forms for the multiple-solution response in the flexible rotor system supported on the squeeze film dampers, which are the resonant, isolated bifurcation and swallowtail bifurcation multiple solutions. In the multiple-solution speed regions, the rotor motion may be subsynchronous, super-subsynchronous, almost-periodic and even chaotic, besides synchronous circular centred, even if the gravity effect is not considered. The assumption of synchronous circular centred-orbit motion for the journal and rotor around the static deflection line can be used only in some special cases; the steady state numerical integration method is very useful, but time consuming. Using the slow acceleration method, not only can the multiple-solution speed regions be detected, but also the non-synchronous response regions.

  18. The Present and Future of Biomarkers in Prostate Cancer: Proteomics, Genomics, and Immunology Advancements

    Directory of Open Access Journals (Sweden)

    Pierre-Olivier Gaudreau

    2016-01-01

    Full Text Available Prostate cancer (PC is the second most common form of cancer in men worldwide. Biomarkers have emerged as essential tools for treatment and assessment since the variability of disease behavior, the cost and diversity of treatments, and the related impairment of quality of life have given rise to a need for a personalized approach. High-throughput technology platforms in proteomics and genomics have accelerated the development of biomarkers. Furthermore, recent successes of several new agents in PC, including immunotherapy, have stimulated the search for predictors of response and resistance and have improved the understanding of the biological mechanisms at work. This review provides an overview of currently established biomarkers in PC, as well as a selection of the most promising biomarkers within these particular fields of development.

  19. A GMM-IG framework for selecting genes as expression panel biomarkers.

    Science.gov (United States)

    Wang, Mingyi; Chen, Jake Y

    2010-01-01

    The limitation of small sample size of functional genomics experiments has made it necessary to integrate DNA microarray experimental data from different sources. However, experimentation noises and biases of different microarray platforms have made integrated data analysis challenging. In this work, we propose an integrative computational framework to identify candidate biomarker genes from publicly available functional genomics studies. We developed a new framework, Gaussian Mixture Modeling-Coupled Information Gain (GMM-IG). In this framework, we first apply a two-component Gaussian mixture model (GMM) to estimate the conditional probability distributions of gene expression data between two different types of samples, for example, normal versus cancer. An expectation-maximization algorithm is then used to estimate the maximum likelihood parameters of a mixture of two Gaussian models in the feature space and determine the underlying expression levels of genes. Gene expression results from different studies are discretized, based on GMM estimations and then unified. Significantly differentially-expressed genes are filtered and assessed with information gain (IG) measures. DNA microarray experimental data for lung cancers from three different prior studies was processed using the new GMM-IG method. Target gene markers from a gene expression panel were selected and compared with several conventional computational biomarker data analysis methods. GMM-IG showed consistently high accuracy for several classification assessments. A high reproducibility of gene selection results was also determined from statistical validations. Our study shows that the GMM-IG framework can overcome poor reliability issues from single-study DNA microarray experiment while maintaining high accuracies by combining true signals from multiple studies. We present a conceptually simple framework that enables reliable integration of true differential gene expression signals from multiple

  20. Biomarkers in systemic lupus erythematosus: challenges and prospects for the future

    Science.gov (United States)

    Kao, Amy H.; Manzi, Susan; Ahearn, Joseph M.

    2013-01-01

    The search for lupus biomarkers to diagnose, monitor, stratify, and predict individual response to therapy is currently more intense than ever before. This effort is essential for several reasons. First, epidemic overdiagnosis and underdiagnosis of lupus, even by certified rheumatologists, leads to errors in therapy with concomitant side effects which may be more serious than the disease itself. Second, identification of lupus flares remains as much an art as it is a science. Third, the capacity to stratify patients so as to predict those who will develop specific patterns of organ involvement is not currently possible but would potentially lead to preventive therapeutic strategies. Fourth, only one new drug for the treatment of lupus has been approved by the US Food and Drug Administration in over 50 years. A major obstacle in this pipeline is the dearth of biomarkers available to prove a patient has responded to an experimental therapeutic intervention. This review will summarize the challenges faced in the discovery and validation of lupus biomarkers, the most promising lupus biomarkers identified to date, and the promise of future directions. PMID:23904865

  1. Molecular Imaging and Precision Medicine: PET/Computed Tomography and Therapy Response Assessment in Oncology.

    Science.gov (United States)

    Sheikhbahaei, Sara; Mena, Esther; Pattanayak, Puskar; Taghipour, Mehdi; Solnes, Lilja B; Subramaniam, Rathan M

    2017-01-01

    A variety of methods have been developed to assess tumor response to therapy. Standardized qualitative criteria based on 18F-fluoro-deoxyglucose PET/computed tomography have been proposed to evaluate the treatment effectiveness in specific cancers and these allow more accurate therapy response assessment and survival prognostication. Multiple studies have addressed the utility of the volumetric PET biomarkers as prognostic indicators but there is no consensus about the preferred segmentation methodology for these metrics. Heterogeneous intratumoral uptake was proposed as a novel PET metric for therapy response assessment. PET imaging techniques will be used to study the biological behavior of cancers during therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Biomarkers for Detecting Mitochondrial Disorders

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2018-01-01

    Full Text Available (1 Objectives: Mitochondrial disorders (MIDs are a genetically and phenotypically heterogeneous group of slowly or rapidly progressive disorders with onset from birth to senescence. Because of their variegated clinical presentation, MIDs are difficult to diagnose and are frequently missed in their early and late stages. This is why there is a need to provide biomarkers, which can be easily obtained in the case of suspecting a MID to initiate the further diagnostic work-up. (2 Methods: Literature review. (3 Results: Biomarkers for diagnostic purposes are used to confirm a suspected diagnosis and to facilitate and speed up the diagnostic work-up. For diagnosing MIDs, a number of dry and wet biomarkers have been proposed. Dry biomarkers for MIDs include the history and clinical neurological exam and structural and functional imaging studies of the brain, muscle, or myocardium by ultrasound, computed tomography (CT, magnetic resonance imaging (MRI, MR-spectroscopy (MRS, positron emission tomography (PET, or functional MRI. Wet biomarkers from blood, urine, saliva, or cerebrospinal fluid (CSF for diagnosing MIDs include lactate, creatine-kinase, pyruvate, organic acids, amino acids, carnitines, oxidative stress markers, and circulating cytokines. The role of microRNAs, cutaneous respirometry, biopsy, exercise tests, and small molecule reporters as possible biomarkers is unsolved. (4 Conclusions: The disadvantages of most putative biomarkers for MIDs are that they hardly meet the criteria for being acceptable as a biomarker (missing longitudinal studies, not validated, not easily feasible, not cheap, not ubiquitously available and that not all MIDs manifest in the brain, muscle, or myocardium. There is currently a lack of validated biomarkers for diagnosing MIDs.

  3. Uptake of 17β-estradiol and biomarker responses in brown trout (Salmo trutta) exposed to pulses

    International Nuclear Information System (INIS)

    Knudsen, Jacob J.G.; Holbech, Henrik; Madsen, Steffen S.; Bjerregaard, Poul

    2011-01-01

    In streams, chemicals such as 17β-estradiol (E2) are likely to occur in pulses. We investigated uptake and biomarker responses in juvenile brown trout (Salmo trutta) of 3- or 6-h pulses of concentrations up to 370 ng E2 L -1 . Uptake by the fish was estimated from disappearance of E2 from tank water. A single 6-h pulse of 370 ng E2 L -1 increased the plasma vitellogenin concentration, liver Erα- and vitellogenin-mRNA. Exposure to 150-160 ng E2 L -1 for 6 h increased vitellogenin in one experiment but not in another. Two 6-h pulses had a larger effect one pulse. Brown trout in the size range 24-74 g took up E2 linearly with time and exposure concentration with a concentration ratio rate of 20.2 h -1 . In conclusion, the threshold for induction of estrogenic effects in juvenile brown trout at short term pulse exposure appears to be in the range 150-200 ng E2 L -1 . - Highlights: → We investigated estrogenic effects of pulse exposure of 17β-estradiol in brown trout. → We used induction of vitellogenin and gene expression as biomarkers. → The threshold for effects after 6 h pulses ranges between 150 and 200 ng E2 L -1 . → E2 is taken up in ∼50 g fish linearly with time and concentration at 20 h -1 . - The threshold concentration for induction of estrogenic effects in brown trout upon short term (6 h) exposure is in the range 150-200 ng E2 L -1 .

  4. Uptake of 17{beta}-estradiol and biomarker responses in brown trout (Salmo trutta) exposed to pulses

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Jacob J.G.; Holbech, Henrik; Madsen, Steffen S. [Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense (Denmark); Bjerregaard, Poul, E-mail: poul@biology.sdu.dk [Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense (Denmark)

    2011-12-15

    In streams, chemicals such as 17{beta}-estradiol (E2) are likely to occur in pulses. We investigated uptake and biomarker responses in juvenile brown trout (Salmo trutta) of 3- or 6-h pulses of concentrations up to 370 ng E2 L{sup -1}. Uptake by the fish was estimated from disappearance of E2 from tank water. A single 6-h pulse of 370 ng E2 L{sup -1} increased the plasma vitellogenin concentration, liver Er{alpha}- and vitellogenin-mRNA. Exposure to 150-160 ng E2 L{sup -1} for 6 h increased vitellogenin in one experiment but not in another. Two 6-h pulses had a larger effect one pulse. Brown trout in the size range 24-74 g took up E2 linearly with time and exposure concentration with a concentration ratio rate of 20.2 h{sup -1}. In conclusion, the threshold for induction of estrogenic effects in juvenile brown trout at short term pulse exposure appears to be in the range 150-200 ng E2 L{sup -1}. - Highlights: > We investigated estrogenic effects of pulse exposure of 17{beta}-estradiol in brown trout. > We used induction of vitellogenin and gene expression as biomarkers. > The threshold for effects after 6 h pulses ranges between 150 and 200 ng E2 L{sup -1}. > E2 is taken up in {approx}50 g fish linearly with time and concentration at 20 h{sup -1}. - The threshold concentration for induction of estrogenic effects in brown trout upon short term (6 h) exposure is in the range 150-200 ng E2 L{sup -1}.

  5. Relationships between metal compartmentalization and biomarkers in earthworms exposed to field-contaminated soils.

    Science.gov (United States)

    Beaumelle, Léa; Hedde, Mickaël; Vandenbulcke, Franck; Lamy, Isabelle

    2017-05-01

    Partitioning tissue metal concentration into subcellular compartments reflecting toxicologically available pools may provide good descriptors of the toxicological effects of metals on organisms. Here we investigated the relationships between internal compartmentalization of Cd, Pb and Zn and biomarker responses in a model soil organism: the earthworm. The aim of this study was to identify metal fractions reflecting the toxic pressure in an endogeic, naturally occurring earthworm species (Aporrectodea caliginosa) exposed to realistic field-contaminated soils. After a 21 days exposure experiment to 31 field-contaminated soils, Cd, Pb and Zn concentrations in earthworms and in three subcellular fractions (cytosol, debris and granules) were quantified. Different biomarkers were measured: the expression of a metallothionein gene (mt), the activity of catalase (CAT) and of glutathione-s-transferase (GST), and the protein, lipid and glycogen reserves. Biomarkers were further combined into an integrated biomarker index (IBR). The subcellular fractionation provided better predictors of biomarkers than the total internal contents hence supporting its use when assessing toxicological bioavailability of metals to earthworms. The most soluble internal pools of metals were not always the best predictors of biomarker responses. metallothionein expression responded to increasing concentrations of Cd in the insoluble fraction (debris + granules). Protein and glycogen contents were also mainly related to Cd and Pb in the insoluble fraction. On the other hand, GST activity was better explained by Pb in the cytosolic fraction. CAT activity and lipid contents variations were not related to metal subcellular distribution. The IBR was best explained by both soluble and insoluble fractions of Pb and Cd. This study further extends the scope of mt expression as a robust and specific biomarker in an ecologically representative earthworm species exposed to field-contaminated soils. The

  6. Biomarkers-a potential route for improved diagnosis and management of ongoing renal damage.

    Science.gov (United States)

    Oberbauer, R

    2008-12-01

    Currently, the identification and validation of biomarkers of kidney injury is among the top priorities of many diagnostic biotechnology companies as well as academic research institutes. Specifically, in renal transplantation, validated biomarkers of tissue injury with good discriminatory power between the various renal compartments and the underlying pathophysiology are desired, because sequential allograft biopsies are limited in number and cannot be used as a screening tool. Given the high demands on these markers, it is not surprising that none of those currently under evaluation has been thoroughly validated for a specific entity. Published biomarker candidates for early tubular damage include neutrophil gelatinase-associated lipocalin (NGAL), interleukin (IL)-18, soluble CD30, perforin, and granzyme B. Recently, C4d flow panel reactive antibodies were evaluated as biomarkers for humoral alloimmune responses. Additional biomarkers such as FOXP3 and kidney injury molecule 1 have been studied in the maintenance phase of renal transplantation. Given the complex prerequisites, it is not surprising that no biomarker panel has been sufficiently validated for clinical use. However, in the near future a biomarker for use as an indicator of renal tubule cell injury will be available. Troponin T or transaminase of the kidney may then at least be used to differentiate between functional renal failure (equivalent to a rise in creatinine) and intrinsic kidney injury.

  7. Non-Small Cell Carcinoma Biomarker Testing: The Pathologist's Perspective.

    Directory of Open Access Journals (Sweden)

    Elisa eBrega

    2014-07-01

    Full Text Available Biomarker testing has become standard of care for patients diagnosed with non-small cell lung cancer. Although it can be successfully performed in circulating tu-mor cells, at present, the vast majority of investigations are carried out using di-rect tumor sampling, either through aspiration methods, which render most often isolated cells, or tissue sampling, that could range from minute biopsies to large resections. Consequently, pathologists play a central role in this process. Recent evidence suggests that refining NSCLC diagnosis might be clinically signifi-cant, particularly in cases of lung adenocarcinomas (ADC, which in turn, has prompted a new proposal for the histologic classification of such pulmonary neo-plasms. These changes, in conjunction with the mandatory incorporation of biomarker testing in routine NSCLC tissue processing, have directly affected the pathologist’s role in lung cancer work-up. This new role pathologists must play is complex and demanding, and requires a close interaction with surgeons, oncologists, radiologists and molecular pathologists. Pathologists often find themselves as the central figure in the coordination of a process, that involves assuring that the tumor samples are properly fixed, but without disruption of the DNA structure, obtaining the proper diagnosis with a minimum of tissue waste, providing pre-analytical evaluation of tumor samples selected for biomarker testing, which includes assessment of the proportion of tumor to normal tissues, as well as cell viability, and assuring that this entire pro-cess happens in a timely fashion. Therefore, it is part of the pathologist’s respon-sibilities to assure that the samples received in their laboratories, be processed in a manner that allows for optimal biomarker testing. This article goal is to discuss the essential role pathologists must play NSCLC bi-omarker testing, as well as to provide a summarized review of the main NSCLC bi-omarkers of

  8. Can the Growth/Differentiation Factor-15 Be a Surrogate Target in Chronic Heart Failure Biomarker-Guided Therapy?

    Directory of Open Access Journals (Sweden)

    Alexander E. Berezin

    2017-03-01

    Full Text Available Heart failure (HF biomarker-guided therapy is a promising method, which directs to the improvement of clinical status, attenuation of admission/readmission to the hospital and reduction in mortality rate. Many biological markers, like inflammatory cytokines, are under consideration as a surrogate target for HF treatment, while there are known biomarkers with established predictive value, such as natriuretic peptides. However, discovery of new biomarkers reflecting various underlying mechanisms of HF and appearing to be surrogate targets for biomarker-guided therapy is fairly promising. Nowadays, growth/differentiation factor 15 (GDF-15 is suggested a target biomarker for HF treatment. Although elevated level of GDF-15 is associated with HF development, progression, and prognosis, there is no represented evidence regarding the direct comparison of this biomarker with other clinical risk predictors and biomarkers. Moreover, GDF-15 might serve as a contributor to endothelial progenitor cells (EPC dysfunction by inducing EPC death/autophagy and limiting their response to angiopoetic and reparative effects. The short communication was discussed whether GDF-15 is good molecular target for HF biomarker-guided therapy.

  9. Clinical evaluation of chemokine and enzymatic biomarkers of Gaucher disease

    NARCIS (Netherlands)

    Deegan, Patrick B.; Moran, Mary Teresa; McFarlane, Ian; Schofield, J. Paul; Boot, Rolf G.; Aerts, Johannes M. F. G.; Cox, Timothy M.

    2005-01-01

    Purpose: Gaucher disease is an exemplary orphan disorder. Enzyme replacement therapy with imiglucerase is effective, but very expensive. To improve the assessment of severity of disease and responses to this costly treatment, we have evaluated several enzymatic biomarkers and a newly-described

  10. Population-Sequencing as a Biomarker of Burkholderia mallei and Burkholderia pseudomallei Evolution through Microbial Forensic Analysis

    Directory of Open Access Journals (Sweden)

    John P. Jakupciak

    2013-01-01

    Full Text Available Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations.

  11. Biomarker Identification Using Text Mining

    Directory of Open Access Journals (Sweden)

    Hui Li

    2012-01-01

    Full Text Available Identifying molecular biomarkers has become one of the important tasks for scientists to assess the different phenotypic states of cells or organisms correlated to the genotypes of diseases from large-scale biological data. In this paper, we proposed a text-mining-based method to discover biomarkers from PubMed. First, we construct a database based on a dictionary, and then we used a finite state machine to identify the biomarkers. Our method of text mining provides a highly reliable approach to discover the biomarkers in the PubMed database.

  12. Slowed Prosaccades and Increased Antisaccade Errors As a Potential Behavioral Biomarker of Multiple System Atrophy

    Directory of Open Access Journals (Sweden)

    Sarah H. Brooks

    2017-06-01

    Full Text Available Current clinical diagnostic tools are limited in their ability to accurately differentiate idiopathic Parkinson’s disease (PD from multiple system atrophy (MSA and other parkinsonian disorders early in the disease course, but eye movements may stand as objective and sensitive markers of disease differentiation and progression. To assess the use of eye movement performance for uniquely characterizing PD and MSA, subjects diagnosed with PD (N = 21, MSA (N = 11, and age-matched controls (C, N = 20 were tested on the prosaccade and antisaccade tasks using an infrared eye tracker. Twenty of these subjects were retested ~7 months later. Saccade latencies, error rates, and longitudinal changes in saccade latencies were measured. Both PD and MSA patients had greater antisaccade error rates than C subjects, but MSA patients exhibited longer prosaccade latencies than both PD and C patients. With repeated testing, antisaccade latencies improved over time, with benefits in C and PD but not MSA patients. In the prosaccade task, the normal latencies of the PD group show that basic sensorimotor oculomotor function remain intact in mid-stage PD, whereas the impaired latencies of the MSA group suggest additional degeneration earlier in the disease course. Changes in antisaccade latency appeared most sensitive to differences between MSA and PD across short time intervals. Therefore, in these mid-stage patients, increased antisaccade errors combined with slowed prosaccade latencies might serve as a useful marker for early differentiation between PD and MSA, and, antisaccade performance, a measure of MSA progression. Together, our findings suggest that eye movements are promising biomarkers for early differentiation and progression of parkinsonian disorders.

  13. Seismic structural response analysis for multiple support excitation

    International Nuclear Information System (INIS)

    Shaw, D.E.

    1975-01-01

    In the seismic analysis of nuclear power plant equipment such as piping systems situations often arise in which piping systems span between adjacent structures or between different elevations in the same structure. Owing to the differences in the seismic time history response of different structures or different elevations of the same structure, the input support motion will differ for different supports. The concept of a frequency dependent participation factor and rotational response spectra accounting for phase differences between support excitations is developed by using classical equations of motion to formulate the seismic response of a structure subjected to multiple support excitation. The essence of the method lies in describing the seismic excitation of a multiply excited structure in terms of translational and rotational spectra used at every support and a frequency dependent spatial distribution function derived from the phase relationships of the different support time histories. In this manner it is shown that frequency dependent participation factors can be derived from the frequency dependent distribution functions. Examples are shown and discussed relative to closed form solutions and the state-of-the-art techniques presently being used for the solution of problems of multiply excited structures

  14. Predictive Biomarkers of Radiation Sensitivity in Rectal Cancer

    Science.gov (United States)

    Tut, Thein Ga

    Colorectal cancer (CRC) is the third most common cancer in the world. Australia, New Zealand, Canada, the United States, and parts of Europe have the highest incidence rates of CRC. China, India, South America and parts of Africa have the lowest risk of CRC. CRC is the second most common cancer in both sexes in Australia. Even though the death rates from CRC involving the colon have diminished, those arising from the rectum have revealed no improvement. The greatest obstacle in attaining a complete surgical resection of large rectal cancers is the close anatomical relation to surrounding structures, as opposed to the free serosal surfaces enfolding the colon. To assist complete resection, pre-operative radiotherapy (DXT) can be applied, but the efficacy of ionising radiation (IR) is extremely variable between individual tumours. Reliable predictive marker/s that enable patient stratification in the application of this otherwise toxic therapy is still not available. Current therapeutic management of rectal cancer can be improved with the availability of better predictive and prognostic biomarkers. Proteins such as Plk1, gammaH2AX and MMR proteins (MSH2, MSH6, MLH1 and PMS2), involved in DNA damage response (DDR) pathway may be possible biomarkers for radiation response prediction and prognostication of rectal cancer. Serine/threonine protein kinase Plk1 is overexpressed in most of cancers including CRC. Plk1 functional activity is essential in the restoration of DNA damage following IR, which causes DNA double strand break (DSB). The earliest manifestation of this reparative process is histone H2AX phosphorylation at serine 139, leading to gammaH2AX. Colorectal normal mucosa showed the lowest level of gammaH2AX with gradually increasing levels in early adenoma and then in advanced malignant colorectal tissues, leading to the possibility that gammaH2AX may be a prospective biomarker in rectal cancer management. There are numerous publications regarding DNA mismatch

  15. Field validation of a battery of biomarkers to assess sediment quality in Spanish ports

    International Nuclear Information System (INIS)

    Martin-Diaz, M.L.; Blasco, J.; Sales, D.; DelValls, T.A.

    2008-01-01

    Two marine invertebrates, the crab Carcinus maenas and the clam Ruditapes philippinarum, were used as bioindicator species to assess contamination when exposed in situ to sediment from different sites from four Spanish ports Cadiz (SW Spain), Huelva (SW Spain), Bilbao (NE Spain) and Pasajes (NE Spain). In an attempt to determine sediments toxicity, a combination of exposure biomarkers was analyzed in both species: metallothionein-like-proteins (MTLPs), ethoxyresorufin O-deethylase (EROD), glutathione S-transferase activity (GST), glutathione peroxidase (GPX) and glutathione reductase (GR). In parallel, physical and chemical characterization of the different sediments was performed and biological responses related to the contaminants. Significant induction of MTLPs was observed when organisms were exposed to metal contaminated sediments (port of Huelva), and EROD and GPX activities after exposure to sediments containing organic compounds (port of Bilbao and Pasajes). No significant interspecies differences were observed in biomarker responses except for the GST and GR. - A battery of biomarkers shows exposure to metals and organic compounds

  16. Field validation of a battery of biomarkers to assess sediment quality in Spanish ports

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Diaz, M.L. [Departamento de Quimica Fisica, Facultad de Ciencias del Mar y Ambientales, Poligono Rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain); Consejo Superior de Investigaciones Cientificas, Instituto de Ciencias Marinas de Andalucia, Poligono Rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain)], E-mail: laura.martin@uca.es; Blasco, J. [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencias Marinas de Andalucia, Poligono Rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain); Sales, D. [Departamento Ciencias Ambientales y Tecnologia de los Alimentos, Facultad de Ciencias del Mar y Ambientales, Poligono Rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain); DelValls, T.A. [Departamento de Quimica Fisica, Facultad de Ciencias del Mar y Ambientales, Poligono Rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain)

    2008-02-15

    Two marine invertebrates, the crab Carcinus maenas and the clam Ruditapes philippinarum, were used as bioindicator species to assess contamination when exposed in situ to sediment from different sites from four Spanish ports Cadiz (SW Spain), Huelva (SW Spain), Bilbao (NE Spain) and Pasajes (NE Spain). In an attempt to determine sediments toxicity, a combination of exposure biomarkers was analyzed in both species: metallothionein-like-proteins (MTLPs), ethoxyresorufin O-deethylase (EROD), glutathione S-transferase activity (GST), glutathione peroxidase (GPX) and glutathione reductase (GR). In parallel, physical and chemical characterization of the different sediments was performed and biological responses related to the contaminants. Significant induction of MTLPs was observed when organisms were exposed to metal contaminated sediments (port of Huelva), and EROD and GPX activities after exposure to sediments containing organic compounds (port of Bilbao and Pasajes). No significant interspecies differences were observed in biomarker responses except for the GST and GR. - A battery of biomarkers shows exposure to metals and organic compounds.

  17. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes

    Directory of Open Access Journals (Sweden)

    Sanchez-Alberola Neus

    2012-02-01

    Full Text Available Abstract Background The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Results Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Conclusions Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an

  18. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes.

    Science.gov (United States)

    Sanchez-Alberola, Neus; Campoy, Susana; Barbé, Jordi; Erill, Ivan

    2012-02-03

    The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae) that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an essential role in these organisms and sheds light into the

  19. The potential biomarkers in predicting pathologic response of breast cancer to three different chemotherapy regimens: a case control study

    Directory of Open Access Journals (Sweden)

    Xu Chaoyang

    2009-07-01

    Full Text Available Abstract Background Preoperative chemotherapy (PCT has become the standard of care in locally advanced breast cancer. The identification of patient-specific tumor characteristics that can improve the ability to predict response to therapy would help optimize treatment, improve treatment outcomes, and avoid unnecessary exposure to potential toxicities. This study is to determine whether selected biomarkers could predict pathologic response (PR of breast tumors to three different PCT regimens, and to identify a subset of patients who would benefit from a given type of treatment. Methods 118 patients with primary breast tumor were identified and three PCT regimens including DEC (docetaxel+epirubicin+cyclophosphamide, VFC (vinorelbine/vincristine+5-fluorouracil+cyclophosphamide and EFC (epirubicin+5-fluorouracil+cyclophosphamide were investigated. Expression of steroid receptors, HER2, P-gp, MRP, GST-pi and Topo-II was evaluated by immunohistochemical scoring on tumor tissues obtained before and after PCT. The PR of breast carcinoma was graded according to Sataloff's classification. Chi square test, logistic regression and Cochran-Mantel-Haenszel assay were performed to determine the association between biomarkers and PR, as well as the effectiveness of each regimen on induction of PR. Results There was a clear-cut correlation between the expression of ER and decreased PR to PCT in all three different regimens (p p Conclusion ER is an independent predictive factor for PR to PCT regimens including DEC, VFC and EFC in primary breast tumors, while HER2 is only predictive for DEC regimen. Expression of PgR, Topo-II, P-gp, MRP and GST-pi are not predictive for PR to any PCT regimens investigated. Results obtained in this clinical study may be helpful for the selection of appropriate treatments for breast cancer patients.

  20. Differential neurotoxic effects of silver nanoparticles: A review with special emphasis on potential biomarkers

    Directory of Open Access Journals (Sweden)

    M. Safari

    2016-04-01

    Full Text Available Silver Nanoparticles (AgNPs have gained considerable interests during the last decade due to their excellent antimicrobial activities. Despite their extensive use, the potential toxicity of these nanoparticles and possible mechanisms by which they may induce adverse reactions have not received sufficient attention and no specific biomarker exist to describe and quantify their toxic effects. Nanoparticles, depending on their physicochemical characteristics and compositions, can interact with vital organs such as the brain and induce toxic effects. A specific concern is that any contact with AgNPs independent of the route of administration is thought to result in significant systemic uptake, internal exposure of sensitive organs, especially in the central nervous system (CNS and different toxic responses. There are considerable evidences that AgNPs can disrupt the Blood-Brain Barrier (BBB and induce subsequent brain edema formation. Therefore, it is essential to understand the differential effects of AgNPs on brain cell with especial emphasis on the possible mechanisms of action. Recently, biomarkers are increasingly used as surrogate indicators of toxic responses in biological monitoring due to the inaccessibility of target organs. Moreover, as the most nanoscale contaminants occur at low concentrations, physiological biomarkers may be better indicators of potential impact of nanomaterials than traditional toxicity testing. This review aims to investigate the effects of AgNPs on CNS targets of toxicity and clarify the role of existing biomarkers especially the role of dopamine levels as a potential biomarker of Ag-NPs neurotoxicity.

  1. PET imaging-based phenotyping as a predictive biomarker of response to tyrosine kinase inhibitor therapy in non-small cell lung cancer: Are we there yet?

    Energy Technology Data Exchange (ETDEWEB)

    Gerbaudo, Victor H.; Kim, Chun K. [Div. of Nuclear Medicine and Molecular Imaging, Dept. of Radiology,Brigham and Women' s Hospital and Harvard Medical School, Boston (United States)

    2017-03-15

    The increased understanding of the molecular pathology of different malignancies, especially lung cancer, has directed investigational efforts to center on the identification of different molecular targets and on the development of targeted therapies against these targets. A good representative is the epidermal growth factor receptor (EGFR); a major driver of non-small cell lung cancer tumorigenesis. Today, tumor growth inhibition is possible after treating lung tumors expressing somatic mutations of the EGFR gene with tyrosine kinase inhibitors (TKI). This opened the doors to biomarker-directed precision or personalized treatments for lung cancer patients. The success of these targeted anticancer therapies depends in part on being able to identify biomarkers and their patho-molecular make-up in order to select patients that could respond to specific therapeutic agents. While the identification of reliable biomarkers is crucial to predict response to treatment before it begins, it is also essential to be able to monitor treatment early during therapy to avoid the toxicity and morbidity of futile treatment in non-responding patients. In this context, we share our perspective on the role of PET imaging-based phenotyping in the personalized care of lung cancer patients to non-invasively direct and monitor the treatment efficacy of TKIs in clinical practice.

  2. Validation of biomarkers of food intake − critical assessment of candidate biomarkers

    DEFF Research Database (Denmark)

    Dragsted, Lars Ove; Gao, Qian; Scalbert, Augustin

    2018-01-01

    Biomarkers of food intake (BFIs) are a promising tool for limiting misclassification in nutrition research where more subjective dietary assessment instruments are used. They may also be used to assess compliance to dietary guidelines or to a dietary intervention. Biomarkers therefore hold promis...

  3. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    Science.gov (United States)

    Jahnke, Linda L.; Embaye, Tsege; Turk, Kendra A.

    2003-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments where microorganisms had virtually no competition apart from the harsh conditions of hypersalinity, desiccation and intense light. Today, the modern counterparts of these microbial ecosystems find appropriate niches in only a few places where extremes eliminate eukaryotic grazers. Answers to many outstanding questions about the evolution of microorganisms and their environments on early Earth are best answered through study of these extant analogs. Lipids associated with various groups of bacteria can be valuable biomarkers for identification of specific groups of microorganisms both in ancient organic-rich sedimentary rocks (geolipids) and contemporary microbial communities (membrane lipids). Use of compound specific isotope analysis adds additional refinement to the identification of biomarker source, so that it is possible to take advantage of the 3C-depletions associated with various functional groups of organisms (i.e. autotrophs, heterotrophs, methanotrophs, methanogens) responsible for the cycling of carbon within a microbial community. Our recent work has focused on a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico which support the abundant growth of Microcoleus-dominated microbial mats. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface.

  4. The long persistence of pyrrolizidine alkaloid-derived DNA adducts in vivo: kinetic study following single and multiple exposures in male ICR mice.

    Science.gov (United States)

    Zhu, Lin; Xue, Junyi; Xia, Qingsu; Fu, Peter P; Lin, Ge

    2017-02-01

    Pyrrolizidine alkaloid (PA)-containing plants are widespread in the world and the most common poisonous plants affecting livestock, wildlife, and humans. Our previous studies demonstrated that PA-derived DNA adducts can potentially be a common biological biomarker of PA-induced liver tumor formation. In order to validate the use of these PA-derived DNA adducts as a biomarker, it is necessary to understand the basic kinetics of the PA-derived DNA adducts formed in vivo. In this study, we studied the dose-dependent response and kinetics of PA-derived DNA adduct formation and removal in male ICR mice orally administered with a single dose (40 mg/kg) or multiple doses (10 mg/kg/day) of retrorsine, a representative carcinogenic PA. In the single-dose exposure, the PA-derived DNA adducts exhibited dose-dependent linearity and persisted for up to 4 weeks. The removal of the adducts following a single-dose exposure to retrorsine was biphasic with half-lives of 9 h (t 1/2α ) and 301 h (~12.5 days, t 1/2β ). In the 8-week multiple exposure study, a marked accumulation of PA-derived DNA adducts without attaining a steady state was observed. The removal of adducts after the multiple exposure also demonstrated a biphasic pattern but with much extended half-lives of 176 h (~7.33 days, t 1/2α ) and 1736 h (~72.3 days, t 1/2β ). The lifetime of PA-derived DNA adducts was more than 8 weeks following the multiple-dose treatment. The significant persistence of PA-derived DNA adducts in vivo supports their role in serving as a biomarker of PA exposure.

  5. Circular RNAs as Promising Biomarkers: A mini-review

    Directory of Open Access Journals (Sweden)

    Nadiah Abu

    2016-08-01

    Full Text Available The interest in circular RNAs has resurfaced in the past few years. What was considered as junk for nearly two decades is now one of the most interesting molecules. Circular RNAs are non-coding RNAs that are formed by back-splicing events and have covalently closed loops with no poly-adenylated tails. The regulation of circular RNAs is distinctive and they are selectively abundant in different types of tissues. Based on the current knowledge of circular RNAs, these molecules have the potential to be the next big thing especially as biomarkers for different diseases. This mini-review attempts to concisely look at the biology of circular RNAs, the putative functional activities, the prevalence of circular RNAs, and the possible role of circular RNA as biomarkers for diagnosis or measuring drug response.

  6. Computational and Experimental Approaches to Cancer Biomarker Discovery

    DEFF Research Database (Denmark)

    Krzystanek, Marcin

    of a patient’s response to a particular treatment, thus helping to avoid unnecessary treatment and unwanted side effects in non-responding individuals.Currently biomarker discovery is facilitated by recent advances in high-throughput technologies when association between a given biological phenotype...... and the state or level of a large number of molecular entities is investigated. Such associative analysis could be confounded by several factors, leading to false discoveries. For example, it is assumed that with the exception of the true biomarkers most molecular entities such as gene expression levels show...... random distribution in a given cohort. However, gene expression levels may also be affected by technical bias when the actual measurement technology or sample handling may introduce a systematic error. If the distribution of systematic errors correlates with the biological phenotype then the risk...

  7. Early-Phase Studies of Biomarkers

    DEFF Research Database (Denmark)

    Pepe, Margaret S.; Janes, Holly; Li, Christopher I.

    2016-01-01

    of a positive biomarker test in cases (true positive) to cost associated with a positive biomarker test in controls (false positive). Guidance is offered on soliciting the cost/benefit ratio. The calculations are based on the longstanding decision theory concept of providing a net benefit on average...... impact on patient outcomes of using the biomarker to make clinical decisions....

  8. An integrated biomarker response index for the mussel Mytilus edulis based on laboratory exposure to anthracene and field transplantation experiments

    Science.gov (United States)

    Yuan, Mengqi; Wang, You; Zhou, Bin; Jian, Xiaoyang; Dong, Wenlong; Tang, Xuexi

    2017-09-01

    Organic pollution is a serious environmental problem in coastal areas and it is important to establish quantitative methods for monitoring this pollution. This study screened a series of sensitive biomarkers to construct an integrated biomarker response (IBR) index using Mytilus edulis. Mussels were exposed to the polycyclic aromatic hydrocarbon anthracene under controlled laboratory conditions and the activities of components of the glutathione antioxidant system, and the concentrations of oxidative-damage markers, were measured in the gills and digestive glands. Anthracene exposure resulted in increased levels of malondialdehyde (MDA) and superoxide radicals (O 2 • ), indicating that oxidative damage had occurred. Correspondingly, anthracene exposure induced increased activities of glutathione S-transferase (GST), glutathione peroxidase (GPx) and reduced glutathione (GSH) in digestive glands, and GPx and glutathione reductase (GR) in gills, consistent with stimulation of the antioxidant system. A field experiment was set up, in which mussels from a relatively clean area were transplanted to a contaminated site. One month later, the activities of GST, GPx and GR had increased in several tissues, particularly in the digestive glands. Based on the laboratory experiment, an IBR, which showed a positive relationship with anthracene exposure, was constructed. The IBR is suggested to be a potentially useful tool for assessing anthracene pollution.

  9. Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses.

    Science.gov (United States)

    Ramachandran, Sowmya R; Yin, Chuntao; Kud, Joanna; Tanaka, Kiwamu; Mahoney, Aaron K; Xiao, Fangming; Hulbert, Scot H

    2017-01-01

    Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.

  10. Liver melanomacrophage centres and CYP1A expression as response biomarkers to environmental pollution in European anchovy (Engraulis encrasicolus) from the western Mediterranean Sea.

    Science.gov (United States)

    Basilone, Gualtiero; Gargano, Antonella; Corriero, Aldo; Zupa, Rosa; Santamaria, Nicoletta; Mangano, Salvatore; Ferreri, Rosalia; Pulizzi, Maurizio; Mazzola, Salvatore; Bonanno, Angelo; Passantino, Letizia

    2018-06-01

    The goal of the present study was to verify the suitability of using melanomacrophage centres (MMCs) as response biomarkers of marine pollution in European anchovy, which are short-lived, migratory, small pelagic fish. This suitability was verified by analysing the MMC density and cytochrome P450 monooxygenase 1A (CYP1A) expression in livers of anchovies from four areas of southern Italy. Age 2 anchovies sampled from three areas exposed to pollutants of industrial/agricultural origin (Gulf of Gela, Mazara del Vallo and Gulf of Naples) showed liver areas occupied by MMCs and numbers of MMCs that were significantly higher than those in the anchovies from Pozzallo, which is a marine area not subjected to any source of pollution. Anti-CYP1A immunoreactivity was observed in the hepatocytes of all specimens sampled from the Gulf of Gela. These findings suggest the utility of liver MMCs as biomarkers of exposure to pollutants in this small pelagic fish. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Hair-Normalized Cortisol Waking Response as a Novel Biomarker of Hypothalamic-Pituitary-Adrenal Axis Activity following Acute Trauma: A Proof-of-Concept Study with Pilot Results

    Directory of Open Access Journals (Sweden)

    David M. Walton

    2013-01-01

    Full Text Available The mechanisms underlying the development of persistent posttraumatic pain and disability remain elusive. Recent evidence suggests that disordered stress-system pathway (hypothalamic-pituitary-adrenal axis activity may be responsible for the genesis and maintenance of long-term sensory and emotional problems. However, confidence in current evidence is limited by the necessarily retrospective collection of data. Hair cortisol can serve as a calendar of HPA axis activity going back several months prior to injury. The purposes of this pilot study were to determine the feasibility of using hair cortisol and hair-normalized salivary cortisol as biomarkers of distress following traumatic injuries of whiplash or distal radius fracture. Ten subjects provided complete data within 3 weeks of injury. Hair cortisol, cortisol waking response (CWR, and mean daily cortisol (MDC were captured at inception, as were self-report indicators of pain, disability, and pain catastrophizing. Pain and disability were also captured 3 months after injury. Results indicate that cortisol waking response may be a useful biomarker of current distress as measured using the pain catastrophizing scale, especially when normalized to 3-month hair cortisol (r=0.77 raw, 0.93 normalized. Hair-normalized CWR may also have predictive capacity, correlating with 3-month self-reported disability at r=0.70. While promising, the results must be viewed in light of the small sample.

  12. Epidemiological and Clinical Baseline Characteristics as Predictive Biomarkers of Response to Anti-VEGF Treatment in Patients with Neovascular AMD

    Directory of Open Access Journals (Sweden)

    Miltiadis K. Tsilimbaris

    2016-01-01

    Full Text Available Purpose. To review the current literature investigating patient response to antivascular endothelial growth factor-A (VEGF therapy in the treatment of neovascular age-related macular degeneration (nAMD and to identify baseline characteristics that might predict response. Method. A literature search of the PubMed database was performed, using the keywords: AMD, anti-VEGF, biomarker, optical coherence tomography, treatment outcome, and predictor. The search was limited to articles published from 2006 to date. Exclusion criteria included phase 1 trials, case reports, studies focusing on indications other than nAMD, and oncology. Results. A total of 1467 articles were identified, of which 845 were excluded. Of the 622 remaining references, 47 met all the search criteria and were included in this review. Conclusion. Several baseline characteristics correlated with anti-VEGF treatment response, including best-corrected visual acuity, age, lesion size, and retinal thickness. The majority of factors were associated with disease duration, suggesting that longer disease duration before treatment results in worse treatment outcomes. This highlights the need for early treatment for patients with nAMD to gain optimal treatment outcomes. Many of the identified baseline characteristics are interconnected and cannot be evaluated in isolation; therefore multivariate analyses will be required to determine any specific relationship with treatment response.

  13. The Landscape of Protein Biomarkers Proposed for Periodontal Disease: Markers with Functional Meaning

    Directory of Open Access Journals (Sweden)

    Nuno Rosa

    2014-01-01

    Full Text Available Periodontal disease (PD is characterized by a deregulated inflammatory response which fails to resolve, activating bone resorption. The identification of the proteomes associated with PD has fuelled biomarker proposals; nevertheless, many questions remain. Biomarker selection should favour molecules representing an event which occurs throughout the disease progress. The analysis of proteome results and the information available for each protein, including its functional role, was accomplished using the OralOme database. The integrated analysis of this information ascertains if the suggested proteins reflect the cell and/or molecular mechanisms underlying the different forms of periodontal disease. The evaluation of the proteins present/absent or with very different concentrations in the proteome of each disease state was used for the identification of the mechanisms shared by different PD variants or specific to such state. The information presented is relevant for the adequate design of biomarker panels for PD. Furthermore, it will open new perspectives and help envisage future studies targeted to unveil the functional role of specific proteins and help clarify the deregulation process in the PD inflammatory response.

  14. Schizophrenia genomics and proteomics: are we any closer to biomarker discovery?

    Directory of Open Access Journals (Sweden)

    Kramer Alon

    2009-01-01

    Full Text Available Abstract The field of proteomics has made leaps and bounds in the last 10 years particularly in the fields of oncology and cardiovascular medicine. In comparison, neuroproteomics is still playing catch up mainly due to the relative complexity of neurological disorders. Schizophrenia is one such disorder, believed to be the results of multiple factors both genetic and environmental. Affecting over 2 million people in the US alone, it has become a major clinical and public health concern worldwide. This paper gives an update of schizophrenia biomarker research as reviewed by Lakhan in 2006 and gives us a rundown of the progress made during the last two years. Several studies demonstrate the potential of cerebrospinal fluid as a source of neuro-specific biomarkers. Genetic association studies are making headway in identifying candidate genes for schizophrenia. In addition, metabonomics, bioinformatics, and neuroimaging techniques are aiming to complete the picture by filling in knowledge gaps. International cooperation in the form of genomics and protein databases and brain banks is facilitating research efforts. While none of the recent developments described here in qualifies as biomarker discovery, many are likely to be stepping stones towards that goal.

  15. Amyotrophic lateral sclerosis multiprotein biomarkers in peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Giovanni Nardo

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal progressive motor neuron disease, for which there are still no diagnostic/prognostic test and therapy. Specific molecular biomarkers are urgently needed to facilitate clinical studies and speed up the development of effective treatments.We used a two-dimensional difference in gel electrophoresis approach to identify in easily accessible clinical samples, peripheral blood mononuclear cells (PBMC, a panel of protein biomarkers that are closely associated with ALS. Validations and a longitudinal study were performed by immunoassays on a selected number of proteins. The same proteins were also measured in PBMC and spinal cord of a G93A SOD1 transgenic rat model. We identified combinations of protein biomarkers that can distinguish, with high discriminatory power, ALS patients from healthy controls (98%, and from patients with neurological disorders that may resemble ALS (91%, between two levels of disease severity (90%, and a number of translational biomarkers, that link responses between human and animal model. We demonstrated that TDP-43, cyclophilin A and ERp57 associate with disease progression in a longitudinal study. Moreover, the protein profile changes detected in peripheral blood mononuclear cells of ALS patients are suggestive of possible intracellular pathogenic mechanisms such as endoplasmic reticulum stress, nitrative stress, disturbances in redox regulation and RNA processing.Our results indicate that PBMC multiprotein biomarkers could contribute to determine amyotrophic lateral sclerosis diagnosis, differential diagnosis, disease severity and progression, and may help to elucidate pathogenic mechanisms.

  16. Cohort profile of BIOMArCS: the BIOMarker study to identify the Acute risk of a Coronary Syndrome-a prospective multicentre biomarker study conducted in the Netherlands.

    Science.gov (United States)

    Oemrawsingh, Rohit M; Akkerhuis, K Martijn; Umans, Victor A; Kietselaer, Bas; Schotborgh, Carl; Ronner, Eelko; Lenderink, Timo; Liem, Anho; Haitsma, David; van der Harst, Pim; Asselbergs, Folkert W; Maas, Arthur; Oude Ophuis, Anton J; Ilmer, Ben; Dijkgraaf, Rene; de Winter, Robbert-Jan; The, S Hong Kie; Wardeh, Alexander J; Hermans, Walter; Cramer, Etienne; van Schaik, Ron H; Hoefer, Imo E; Doevendans, Pieter A; Simoons, Maarten L; Boersma, Eric

    2016-12-23

    Progression of stable coronary artery disease (CAD) towards acute coronary syndrome (ACS) is a dynamic and heterogeneous process with many intertwined constituents, in which a plaque destabilising sequence could lead to ACS within short time frames. Current CAD risk assessment models, however, are not designed to identify increased vulnerability for the occurrence of coronary events within a precise, short time frame at the individual patient level. The BIOMarker study to identify the Acute risk of a Coronary Syndrome (BIOMArCS) was designed to evaluate whether repeated measurements of multiple biomarkers can predict such 'vulnerable periods'. BIOMArCS is a multicentre, prospective, observational study of 844 patients presenting with ACS, either with or without ST-elevation and at least one additional cardiovascular risk factor. We hypothesised that patterns of circulating biomarkers that reflect the various pathophysiological components of CAD, such as distorted lipid metabolism, vascular inflammation, endothelial dysfunction, increased thrombogenicity and ischaemia, diverge in the days to weeks before a coronary event. Divergent biomarker patterns, identified by serial biomarker measurements during 1-year follow-up might then indicate 'vulnerable periods' during which patients with CAD are at high short-term risk of developing an ACS. Venepuncture was performed every fortnight during the first half-year and monthly thereafter. As prespecified, patient enrolment was terminated after the primary end point of cardiovascular death or hospital admission for non-fatal ACS had occurred in 50 patients. A case-cohort design will explore differences in temporal patterns of circulating biomarkers prior to the repeat ACS. Follow-up and event adjudication have been completed. Prespecified biomarker analyses are currently being performed and dissemination through peer-reviewed publications and conference presentations is expected from the third quarter of 2016. Should

  17. Human Antibody Response to Aedes aegypti Saliva in an Urban Population in Bolivia: A New Biomarker of Exposure to Dengue Vector Bites

    Science.gov (United States)

    Doucoure, Souleymane; Mouchet, François; Cournil, Amandine; Le Goff, Gilbert; Cornelie, Sylvie; Roca, Yelin; Giraldez, Mabel Guerra; Simon, Zaira Barja; Loayza, Roxanna; Misse, Dorothée; Flores, Jorge Vargas; Walter, Annie; Rogier, Christophe; Herve, Jean Pierre; Remoue, Franck

    2012-01-01

    Aedes mosquitoes are important vectors of re-emerging diseases in developing countries, and increasing exposure to Aedes in the developed world is currently a source of concern. Given the limitations of current entomologic methods, there is a need for a new effective way for evaluating Aedes exposure. Our objective was to evaluate specific antibody responses to Aedes aegypti saliva as a biomarker for vector exposure in a dengue-endemic urban area. IgG responses to saliva were strong in young children and steadily waned with age. Specific IgG levels were significantly higher in persons living in sites with higher Ae. aegypti density, as measured by using entomologic parameters. Logistic regression showed a significant correlation between IgG to saliva and exposure level, independently of either age or sex. These results suggest that antibody responses to saliva could be used to monitor human exposure to Aedes bites. PMID:22848099

  18. Identification of predictive biomarkers of disease state in transition dairy cows.

    Science.gov (United States)

    Hailemariam, D; Mandal, R; Saleem, F; Dunn, S M; Wishart, D S; Ametaj, B N

    2014-05-01

    In dairy cows, periparturient disease states, such as metritis, mastitis, and laminitis, are leading to increasingly significant economic losses for the dairy industry. Treatments for these pathologies are often expensive, ineffective, or not cost-efficient, leading to production losses, high veterinary bills, or early culling of the cows. Early diagnosis or detection of these conditions before they manifest themselves could lower their incidence, level of morbidity, and the associated economic losses. In an effort to identify predictive biomarkers for postpartum or periparturient disease states in dairy cows, we undertook a cross-sectional and longitudinal metabolomics study to look at plasma metabolite levels of dairy cows during the transition period, before and after becoming ill with postpartum diseases. Specifically we employed a targeted quantitative metabolomics approach that uses direct flow injection mass spectrometry to track the metabolite changes in 120 different plasma metabolites. Blood plasma samples were collected from 12 dairy cows at 4 time points during the transition period (-4 and -1 wk before and 1 and 4 wk after parturition). Out of the 12 cows studied, 6 developed multiple periparturient disorders in the postcalving period, whereas the other 6 remained healthy during the entire experimental period. Multivariate data analysis (principal component analysis and partial least squares discriminant analysis) revealed a clear separation between healthy controls and diseased cows at all 4 time points. This analysis allowed us to identify several metabolites most responsible for separating the 2 groups, especially before parturition and the start of any postpartum disease. Three metabolites, carnitine, propionyl carnitine, and lysophosphatidylcholine acyl C14:0, were significantly elevated in diseased cows as compared with healthy controls as early as 4 wk before parturition, whereas 2 metabolites, phosphatidylcholine acyl-alkyl C42:4 and

  19. Biomarkører ved diagnostik af Alzheimers sygdom i tidlig fase

    DEFF Research Database (Denmark)

    Frederiksen, Kristian S; Hasselbalch, Steen; Law, Ian

    2015-01-01

    Alzheimer's disease is responsible for 40-50% of dementia cases. Future treatment may include disease-modifying compounds unlikely to be efficient if administered late in the course, thus necessitating early diagnosis. Furthermore, revised diagnostic research criteria that include biomarkers...

  20. Novel TIA biomarkers identified by mass spectrometry-based proteomics.

    Science.gov (United States)

    George, Paul M; Mlynash, Michael; Adams, Christopher M; Kuo, Calvin J; Albers, Gregory W; Olivot, Jean-Marc

    2015-12-01

    Transient ischemic attacks remain a clinical diagnosis with significant variability between physicians. Finding reliable biomarkers to identify transient ischemic attacks would improve patient care and optimize treatment. Our aim is to identify novel serum TIA biomarkers through the use of mass spectroscopy-based proteomics. Patients with transient neurologic symptoms were prospectively enrolled. Mass spectrometry-based proteomics, an unbiased method to identify candidate proteins, was used to test the serum of the patients for biomarkers of cerebral ischemia. Three candidate proteins were found, and serum concentrations of these proteins were measured by enzyme-linked immunosorbent assay in a second cohort of prospectively enrolled patients. The Student's t-test was used for comparison. The Benjamini-Hochberg false discovery rate controlling procedure for multiple comparison adjustments determined significance for the proteomic screen. Patients with transient ischemic attacks (n = 20), minor strokes (n = 15), and controls (i.e. migraine, seizure, n = 12) were enrolled in the first cohort. Ceruloplasmin, complement component C8 gamma (C8γ), and platelet basic protein were significantly different between the ischemic group (transient ischemic attack and minor stroke) and the controls (P = 0·0001, P = 0·00027, P = 0·00105, respectively). A second cohort of patients with transient ischemic attack (n = 22), minor stroke (n = 20), and controls' (n = 12) serum was enrolled. Platelet basic protein serum concentrations were increased in the ischemic samples compared with control (for transient ischemic attack alone, P = 0·019, for the ischemic group, P = 0·046). Ceruloplasmin trended towards increased concentrations in the ischemic group (P = 0·127); no significant difference in C8γ (P = 0·44) was found. Utilizing mass spectrometry-based proteomics, platelet basic protein has been identified as a candidate serum

  1. Candidate Gene Study of TRAIL and TRAIL Receptors: Association with Response to Interferon Beta Therapy in Multiple Sclerosis Patients

    Science.gov (United States)

    Órpez-Zafra, Teresa; Pinto-Medel, María Jesús; Oliver-Martos, Begoña; Ortega-Pinazo, Jesús; Arnáiz, Carlos; Guijarro-Castro, Cristina; Varadé, Jezabel; Álvarez-Lafuente, Roberto; Urcelay, Elena; Sánchez-Jiménez, Francisca

    2013-01-01

    TRAIL and TRAIL Receptor genes have been implicated in Multiple Sclerosis pathology as well as in the response to IFN beta therapy. The objective of our study was to evaluate the association of these genes in relation to the age at disease onset (AAO) and to the clinical response upon IFN beta treatment in Spanish MS patients. We carried out a candidate gene study of TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 genes. A total of 54 SNPs were analysed in 509 MS patients under IFN beta treatment, and an additional cohort of 226 MS patients was used to validate the results. Associations of rs1047275 in TRAILR-2 and rs7011559 in TRAILR-4 genes with AAO under an additive model did not withstand Bonferroni correction. In contrast, patients with the TRAILR-1 rs20576-CC genotype showed a better clinical response to IFN beta therapy compared with patients carrying the A-allele (recessive model: p = 8.88×10−4, pc = 0.048, OR = 0.30). This SNP resulted in a non synonymous substitution of Glutamic acid to Alanine in position 228 (E228A), a change previously associated with susceptibility to different cancer types and risk of metastases, suggesting a lack of functionality of TRAILR-1. In order to unravel how this amino acid change in TRAILR-1 would affect to death signal, we performed a molecular modelling with both alleles. Neither TRAIL binding sites in the receptor nor the expression levels of TRAILR-1 in peripheral blood mononuclear cell subsets (monocytes, CD4+ and CD8+ T cells) were modified, suggesting that this SNP may be altering the death signal by some other mechanism. These findings show a role for TRAILR-1 gene variations in the clinical outcome of IFN beta therapy that might have relevance as a biomarker to predict the response to IFN beta in MS. PMID:23658636

  2. Candidate gene study of TRAIL and TRAIL receptors: association with response to interferon beta therapy in multiple sclerosis patients.

    Directory of Open Access Journals (Sweden)

    Carlos López-Gómez

    Full Text Available TRAIL and TRAIL Receptor genes have been implicated in Multiple Sclerosis pathology as well as in the response to IFN beta therapy. The objective of our study was to evaluate the association of these genes in relation to the age at disease onset (AAO and to the clinical response upon IFN beta treatment in Spanish MS patients. We carried out a candidate gene study of TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 genes. A total of 54 SNPs were analysed in 509 MS patients under IFN beta treatment, and an additional cohort of 226 MS patients was used to validate the results. Associations of rs1047275 in TRAILR-2 and rs7011559 in TRAILR-4 genes with AAO under an additive model did not withstand Bonferroni correction. In contrast, patients with the TRAILR-1 rs20576-CC genotype showed a better clinical response to IFN beta therapy compared with patients carrying the A-allele (recessive model: p = 8.88×10(-4, pc = 0.048, OR = 0.30. This SNP resulted in a non synonymous substitution of Glutamic acid to Alanine in position 228 (E228A, a change previously associated with susceptibility to different cancer types and risk of metastases, suggesting a lack of functionality of TRAILR-1. In order to unravel how this amino acid change in TRAILR-1 would affect to death signal, we performed a molecular modelling with both alleles. Neither TRAIL binding sites in the receptor nor the expression levels of TRAILR-1 in peripheral blood mononuclear cell subsets (monocytes, CD4+ and CD8+ T cells were modified, suggesting that this SNP may be altering the death signal by some other mechanism. These findings show a role for TRAILR-1 gene variations in the clinical outcome of IFN beta therapy that might have relevance as a biomarker to predict the response to IFN beta in MS.

  3. Addressing the Challenge of Defining Valid Proteomic Biomarkers and Classifiers

    LENUS (Irish Health Repository)

    Dakna, Mohammed

    2010-12-10

    Abstract Background The purpose of this manuscript is to provide, based on an extensive analysis of a proteomic data set, suggestions for proper statistical analysis for the discovery of sets of clinically relevant biomarkers. As tractable example we define the measurable proteomic differences between apparently healthy adult males and females. We choose urine as body-fluid of interest and CE-MS, a thoroughly validated platform technology, allowing for routine analysis of a large number of samples. The second urine of the morning was collected from apparently healthy male and female volunteers (aged 21-40) in the course of the routine medical check-up before recruitment at the Hannover Medical School. Results We found that the Wilcoxon-test is best suited for the definition of potential biomarkers. Adjustment for multiple testing is necessary. Sample size estimation can be performed based on a small number of observations via resampling from pilot data. Machine learning algorithms appear ideally suited to generate classifiers. Assessment of any results in an independent test-set is essential. Conclusions Valid proteomic biomarkers for diagnosis and prognosis only can be defined by applying proper statistical data mining procedures. In particular, a justification of the sample size should be part of the study design.

  4. Immunohistochemistry of colorectal cancer biomarker phosphorylation requires controlled tissue fixation.

    Directory of Open Access Journals (Sweden)

    Abbey P Theiss

    Full Text Available Phosphorylated signaling molecules are biomarkers of cancer pathophysiology and resistance to therapy, but because phosphoprotein analytes are often labile, poorly controlled clinical laboratory practices could prevent translation of research findings in this area from the bench to the bedside. We therefore compared multiple biomarker and phosphoprotein immunohistochemistry (IHC results in 23 clinical colorectal carcinoma samples after either a novel, rapid tissue fixation protocol or a standard tissue fixation protocol employed by clinical laboratories, and we also investigated the effect of a defined post-operative "cold" ischemia period on these IHC results. We found that a one-hour cold ischemia interval, allowed by ASCO/CAP guidelines for certain cancer biomarker assays, is highly deleterious to certain phosphoprotein analytes, specifically the phosphorylated epidermal growth factor receptor (pEGFR, but shorter ischemic intervals (less than 17 minutes facilitate preservation of phosphoproteins. Second, we found that a rapid 4-hour, two temperature, formalin fixation yielded superior staining in several cases with select markers (pEGFR, pBAD, pAKT compared to a standard overnight room temperature fixation protocol, despite taking less time. These findings indicate that the future research and clinical utilities of phosphoprotein IHC for assessing colorectal carcinoma pathophysiology absolutely depend upon attention to preanalytical factors and rigorously controlled tissue fixation protocols.

  5. Using gene co-expression network analysis to predict biomarkers for chronic lymphocytic leukemia

    Directory of Open Access Journals (Sweden)

    Borlawsky Tara B

    2010-10-01

    Full Text Available Abstract Background Chronic lymphocytic leukemia (CLL is the most common adult leukemia. It is a highly heterogeneous disease, and can be divided roughly into indolent and progressive stages based on classic clinical markers. Immunoglobin heavy chain variable region (IgVH mutational status was found to be associated with patient survival outcome, and biomarkers linked to the IgVH status has been a focus in the CLL prognosis research field. However, biomarkers highly correlated with IgVH mutational status which can accurately predict the survival outcome are yet to be discovered. Results In this paper, we investigate the use of gene co-expression network analysis to identify potential biomarkers for CLL. Specifically we focused on the co-expression network involving ZAP70, a well characterized biomarker for CLL. We selected 23 microarray datasets corresponding to multiple types of cancer from the Gene Expression Omnibus (GEO and used the frequent network mining algorithm CODENSE to identify highly connected gene co-expression networks spanning the entire genome, then evaluated the genes in the co-expression network in which ZAP70 is involved. We then applied a set of feature selection methods to further select genes which are capable of predicting IgVH mutation status from the ZAP70 co-expression network. Conclusions We have identified a set of genes that are potential CLL prognostic biomarkers IL2RB, CD8A, CD247, LAG3 and KLRK1, which can predict CLL patient IgVH mutational status with high accuracies. Their prognostic capabilities were cross-validated by applying these biomarker candidates to classify patients into different outcome groups using a CLL microarray datasets with clinical information.

  6. Plasma Biomarkers Differentiate Parkinson’s Disease From Atypical Parkinsonism Syndromes

    Directory of Open Access Journals (Sweden)

    Chin-Hsien Lin

    2018-04-01

    Full Text Available Objective: Parkinson’s disease (PD has significant clinical overlaps with atypical parkinsonism syndromes (APS, which have a poorer treatment response and a more aggressive course than PD. We aimed to identify plasma biomarkers to differentiate PD from APS.Methods: Plasma samples (n = 204 were obtained from healthy controls and from patients with PD, dementia with Lewy bodies (DLB, multiple system atrophy, progressive supranuclear palsy (PSP, corticobasal degeneration (CBD, or frontotemporal dementia (FTD with parkinsonism (FTD-P or without parkinsonism. We measured plasma levels of α-synuclein, total tau, p-Tau181, and amyloid beta 42 (Aβ42 by immunomagnetic reduction-based immunoassay.Results: Plasma α-synuclein level was significantly increased in patients with PD and APS when compared with controls and FTD without parkinsonism (p < 0.01. Total tau and p-Tau181 were significantly increased in all disease groups compared to controls, especially in patients with FTD (p < 0.01. A multivariate and receiver operating characteristic curve analysis revealed that a cut-off value for Aβ42 multiplied by p-Tau181 for discriminating patients with FTD from patients with PD and APS was 92.66 (pg/ml2, with an area under the curve (AUC of 0.932. An α-synuclein cut-off of 0.1977 pg/ml could separate FTD-P from FTD without parkinsonism (AUC 0.947. In patients with predominant parkinsonism, an α-synuclein cut-off of 1.388 pg/ml differentiated patients with PD from those with APS (AUC 0.87.Conclusion: Our results suggest that integrated plasma biomarkers improve the differential diagnosis of PD from APS (PSP, CBD, DLB, and FTD-P.

  7. Towards personalized therapy for multiple sclerosis: prediction of individual treatment response.

    Science.gov (United States)

    Kalincik, Tomas; Manouchehrinia, Ali; Sobisek, Lukas; Jokubaitis, Vilija; Spelman, Tim; Horakova, Dana; Havrdova, Eva; Trojano, Maria; Izquierdo, Guillermo; Lugaresi, Alessandra; Girard, Marc; Prat, Alexandre; Duquette, Pierre; Grammond, Pierre; Sola, Patrizia; Hupperts, Raymond; Grand'Maison, Francois; Pucci, Eugenio; Boz, Cavit; Alroughani, Raed; Van Pesch, Vincent; Lechner-Scott, Jeannette; Terzi, Murat; Bergamaschi, Roberto; Iuliano, Gerardo; Granella, Franco; Spitaleri, Daniele; Shaygannejad, Vahid; Oreja-Guevara, Celia; Slee, Mark; Ampapa, Radek; Verheul, Freek; McCombe, Pamela; Olascoaga, Javier; Amato, Maria Pia; Vucic, Steve; Hodgkinson, Suzanne; Ramo-Tello, Cristina; Flechter, Shlomo; Cristiano, Edgardo; Rozsa, Csilla; Moore, Fraser; Luis Sanchez-Menoyo, Jose; Laura Saladino, Maria; Barnett, Michael; Hillert, Jan; Butzkueven, Helmut

    2017-09-01

    Timely initiation of effective therapy is crucial for preventing disability in multiple sclerosis; however, treatment response varies greatly among patients. Comprehensive predictive models of individual treatment response are lacking. Our aims were: (i) to develop predictive algorithms for individual treatment response using demographic, clinical and paraclinical predictors in patients with multiple sclerosis; and (ii) to evaluate accuracy, and internal and external validity of these algorithms. This study evaluated 27 demographic, clinical and paraclinical predictors of individual response to seven disease-modifying therapies in MSBase, a large global cohort study. Treatment response was analysed separately for disability progression, disability regression, relapse frequency, conversion to secondary progressive disease, change in the cumulative disease burden, and the probability of treatment discontinuation. Multivariable survival and generalized linear models were used, together with the principal component analysis to reduce model dimensionality and prevent overparameterization. Accuracy of the individual prediction was tested and its internal validity was evaluated in a separate, non-overlapping cohort. External validity was evaluated in a geographically distinct cohort, the Swedish Multiple Sclerosis Registry. In the training cohort (n = 8513), the most prominent modifiers of treatment response comprised age, disease duration, disease course, previous relapse activity, disability, predominant relapse phenotype and previous therapy. Importantly, the magnitude and direction of the associations varied among therapies and disease outcomes. Higher probability of disability progression during treatment with injectable therapies was predominantly associated with a greater disability at treatment start and the previous therapy. For fingolimod, natalizumab or mitoxantrone, it was mainly associated with lower pretreatment relapse activity. The probability of

  8. Innovative biomarkers in psychiatric disorders: a major clinical challenge in psychiatry.

    Science.gov (United States)

    Lozupone, Madia; Seripa, Davide; Stella, Eleonora; La Montagna, Maddalena; Solfrizzi, Vincenzo; Quaranta, Nicola; Veneziani, Federica; Cester, Alberto; Sardone, Rodolfo; Bonfiglio, Caterina; Giannelli, Gianluigi; Bisceglia, Paola; Bringiotti, Roberto; Daniele, Antonio; Greco, Antonio; Bellomo, Antonello; Logroscino, Giancarlo; Panza, Francesco

    2017-09-01

    Currently, the diagnosis of psychiatric illnesses is based upon DSM-5 criteria. Although endophenotype-specificity for a particular disorder is discussed, the identification of objective biomarkers is ongoing for aiding diagnosis, prognosis, or clinical response to treatment. We need to improve the understanding of the biological abnormalities in psychiatric illnesses across conventional diagnostic boundaries. The present review investigates the innovative post-genomic knowledge used for psychiatric illness diagnostics and treatment response, with a particular focus on proteomics. Areas covered: This review underlines the contribution that psychiatric innovative biomarkers have reached in relation to diagnosis and theragnosis of psychiatric illnesses. Furthermore, it encompasses a reliable representation of their involvement in disease through proteomics, metabolomics/pharmacometabolomics and lipidomics techniques, including the possible role that gut microbiota and CYP2D6 polimorphisms may play in psychiatric illnesses. Expert opinion: Etiologic heterogeneity, variable expressivity, and epigenetics may impact clinical manifestations, making it difficult for a single measurement to be pathognomonic for multifaceted psychiatric disorders. Academic, industry, or government's partnerships may successfully identify and validate new biomarkers so that unfailing clinical tests can be developed. Proteomics, metabolomics, and lipidomics techniques are considered to be helpful tools beyond neuroimaging and neuropsychology for the phenotypic characterization of brain diseases.

  9. Biomarkers of PTSD: military applications and considerations.

    Science.gov (United States)

    Lehrner, Amy; Yehuda, Rachel

    2014-01-01

    Although there are no established biomarkers for posttraumatic stress disorder (PTSD) as yet, biological investigations of PTSD have made progress identifying the pathophysiology of PTSD. Given the biological and clinical complexity of PTSD, it is increasingly unlikely that a single biomarker of disease will be identified. Rather, investigations will more likely identify different biomarkers that indicate the presence of clinically significant PTSD symptoms, associate with risk for PTSD following trauma exposure, and predict or identify recovery. While there has been much interest in PTSD biomarkers, there has been less discussion of their potential clinical applications, and of the social, legal, and ethical implications of such biomarkers. This article will discuss possible applications of PTSD biomarkers, including the social, legal, and ethical implications of such biomarkers, with an emphasis on military applications. Literature on applications of PTSD biomarkers and on potential ethical and legal implications will be reviewed. Biologically informed research findings hold promise for prevention, assessment, treatment planning, and the development of prophylactic and treatment interventions. As with any biological indicator of disorder, there are potentially positive and negative clinical, social, legal, and ethical consequences of using such biomarkers. Potential clinical applications of PTSD biomarkers hold promise for clinicians, patients, and employers. The search for biomarkers of PTSD should occur in tandem with an interdisciplinary discussion regarding the potential implications of applying biological findings in clinical and employment settings.

  10. Implementation of proteomic biomarkers: making it work

    Science.gov (United States)

    Mischak, Harald; Ioannidis, John PA; Argiles, Angel; Attwood, Teresa K; Bongcam-Rudloff, Erik; Broenstrup, Mark; Charonis, Aristidis; Chrousos, George P; Delles, Christian; Dominiczak, Anna; Dylag, Tomasz; Ehrich, Jochen; Egido, Jesus; Findeisen, Peter; Jankowski, Joachim; Johnson, Robert W; Julien, Bruce A; Lankisch, Tim; Leung, Hing Y; Maahs, David; Magni, Fulvio; Manns, Michael P; Manolis, Efthymios; Mayer, Gert; Navis, Gerjan; Novak, Jan; Ortiz, Alberto; Persson, Frederik; Peter, Karlheinz; Riese, Hans H; Rossing, Peter; Sattar, Naveed; Spasovski, Goce; Thongboonkerd, Visith; Vanholder, Raymond; Schanstra, Joost P; Vlahou, Antonia

    2012-01-01

    While large numbers of proteomic biomarkers have been described, they are generally not implemented in medical practice. We have investigated the reasons for this shortcoming, focusing on hurdles downstream of biomarker verification, and describe major obstacles and possible solutions to ease valid biomarker implementation. Some of the problems lie in suboptimal biomarker discovery and validation, especially lack of validated platforms with well-described performance characteristics to support biomarker qualification. These issues have been acknowledged and are being addressed, raising the hope that valid biomarkers may start accumulating in the foreseeable future. However, successful biomarker discovery and qualification alone does not suffice for successful implementation. Additional challenges include, among others, limited access to appropriate specimens and insufficient funding, the need to validate new biomarker utility in interventional trials, and large communication gaps between the parties involved in implementation. To address this problem, we propose an implementation roadmap. The implementation effort needs to involve a wide variety of stakeholders (clinicians, statisticians, health economists, and representatives of patient groups, health insurance, pharmaceutical companies, biobanks, and regulatory agencies). Knowledgeable panels with adequate representation of all these stakeholders may facilitate biomarker evaluation and guide implementation for the specific context of use. This approach may avoid unwarranted delays or failure to implement potentially useful biomarkers, and may expedite meaningful contributions of the biomarker community to healthcare. PMID:22519700

  11. Biomarkers for Anti-Angiogenic Therapy in Cancer

    Directory of Open Access Journals (Sweden)

    Markus Wehland

    2013-04-01

    Full Text Available Angiogenesis, the development of new vessels from existing vasculature, plays a central role in tumor growth, survival, and progression. On the molecular level it is controlled by a number of pro- and anti-angiogenic cytokines, among which the vascular endothelial growth factors (VEGFs, together with their related VEGF-receptors, have an exceptional position. Therefore, the blockade of VEGF signaling in order to inhibit angiogenesis was deemed an attractive approach for cancer therapy and drugs interfering with the VEGF-ligands, the VEGF receptors, and the intracellular VEGF-mediated signal transduction were developed. Although promising in pre-clinical trials, VEGF-inhibition proved to be problematic in the clinical context. One major drawback was the generally high variability in patient response to anti-angiogenic drugs and the rapid development of therapy resistance, so that, in total, only moderate effects on progression-free and overall survival were observed. Biomarkers predicting the response to VEGF-inhibition might attenuate this problem and help to further individualize drug and dosage determination. Although up to now no definitive biomarker has been identified for this purpose, several candidates are currently under investigation. This review aims to give an overview of the recent developments in this field, focusing on the most prevalent tumor species.

  12. Promising molecular targets and biomarkers for male BPH and LUTS.

    Science.gov (United States)

    Gharaee-Kermani, Mehrnaz; Macoska, Jill A

    2013-12-01

    Benign prostatic hyperplasia (BPH) is a major health concern for aging men. BPH is associated with urinary voiding dysfunction and lower urinary tract symptoms (LUTS), which negatively affects quality of life. Surgical resection and medical approaches have proven effective for improving urinary flow and relieving LUTS but are not effective for all men and can produce adverse effects that require termination of the therapeutic regimen. Thus, there is a need to explore other therapeutic targets to treat BPH/LUTS. Complicating the treatment of BPH/LUTS is the lack of biomarkers to effectively identify pathobiologies contributing to BPH/LUTS or to gauge successful response to therapy. This review will briefly discuss current knowledge and will highlight new studies that illuminate the pathobiologies contributing to BPH/LUTS, potential new therapeutic strategies for successfully treating BPH/LUTS, and new approaches for better defining these pathobiologies and response to therapeutics through the development of biomarkers and phenotyping strategies.

  13. Extinction produces context inhibition and multiple-context extinction reduces response recovery in human predictive learning.

    Science.gov (United States)

    Glautier, Steven; Elgueta, Tito; Nelson, James Byron

    2013-12-01

    Two experiments with human participants were used to investigate recovery of an extinguished learned response after a context change using ABC designs. In an ABC design, the context changes over the three successive stages of acquisition (context A), extinction (context B), and test (context C). In both experiments, we found reduced recovery in groups that had extinction in multiple contexts, and that the extinction contexts acquired inhibitory strength. These results confirm those of previous investigations, that multiple-context extinction can produce less response recovery than single-context extinction, and they also provide new evidence for the involvement of contextual inhibitory processes in extinction in humans. The foregoing results are broadly in line with a protection-from-extinction account of response recovery. Yet, despite the fact that we detected contextual inhibition, predictions based on protection-from-extinction were not fully reliable for the single- and multiple-context group differences that we observed in (1) rates of extinction and (2) the strength of context inhibition. Thus, although evidence was obtained for a protection-from-extinction account of response recovery, this account can not explain all of the data.

  14. Biomarkers of physiological responses of Octopus vulgaris to different coastal environments in the western Mediterranean Sea.

    Science.gov (United States)

    Sillero-Ríos, J; Sureda, A; Capó, X; Oliver-Codorniú, M; Arechavala-Lopez, P

    2018-03-01

    The increase of pollutants in coastal seawater could produce several harmful biological effects on marine organisms related to the production of reactive oxygen species (ROS) causing cellular and tissue damages through oxidative stress mechanisms. Common octopuses (Octopus vulgaris) inhabiting coastal areas under high anthropogenic activity of Mallorca (W-Mediterranean Sea) have the ability to control oxidative damage by triggering antioxidant enzyme responses. Analyzing the digestive glands, octopuses from human-altered coastal areas showed higher activity of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) compared to octopuses from non-influenced coastal waters (i.e. marine reserve area). Higher metallothionein (MT) concentrations and lack of malondialdehyde (MDA) variations also reflect adaptations of O. vulgaris to polluted areas. This is the first study assessing the levels of the oxidative stress biomarkers on O. vulgaris in the Mediterranean Sea, revealing their usefulness to assess diverse environmental pollution effects on this relevant ecological and commercial species.

  15. Cognitive patterns in relation to biomarkers of cerebrovascular disease and vascular risk factors.

    Science.gov (United States)

    Miralbell, Júlia; López-Cancio, Elena; López-Oloriz, Jorge; Arenillas, Juan Francisco; Barrios, Maite; Soriano-Raya, Juan José; Galán, Amparo; Cáceres, Cynthia; Alzamora, Maite; Pera, Guillem; Toran, Pere; Dávalos, Antoni; Mataró, Maria

    2013-01-01

    Risk factors for vascular cognitive impairment (VCI) are the same as traditional risk factors for cerebrovascular disease (CVD). Early identification of subjects at higher risk of VCI is important for the development of effective preventive strategies. In addition to traditional vascular risk factors (VRF), circulating biomarkers have emerged as potential tools for early diagnoses, as they could provide in vivo measures of the underlying pathophysiology. While VRF have been consistently linked to a VCI profile (i.e., deficits in executive functions and processing speed), the cognitive correlates of CVD biomarkers remain unclear. In this population-based study, the aim was to study and compare cognitive patterns in relation to VRF and circulating biomarkers of CVD. The Barcelona-AsIA Neuropsychology Study included 747 subjects older than 50, without a prior history of stroke or coronary disease and with a moderate to high vascular risk (mean age, 66 years; 34.1% women). Three cognitive domains were derived from factoral analysis: visuospatial skills/speed, verbal memory and verbal fluency. Multiple linear regression was used to assess relationships between cognitive performance (multiple domains) and a panel of circulating biomarkers, including indicators of inflammation, C-reactive protein (CRP) and resistin, endothelial dysfunction, asymmetric dimethylarginine (ADMA), thrombosis, plasminogen activator inhibitor 1 (PAI-1), as well as traditional VRF, metabolic syndrome and insulin resistance (homeostatic model assessment for insulin resistance index). Analyses were adjusted for age, gender, years of education and depressive symptoms. Traditional VRF were related to lower performance in verbal fluency, insulin resistance accounted for lower performance in visuospatial skills/speed and the metabolic syndrome predicted lower performance in both cognitive domains. From the biomarkers of CVD, CRP was negatively related to verbal fluency performance and increasing ADMA

  16. Influence of Mining Pollution on Metal Bioaccumulation and Biomarker Responses in Cave Dwelling Fish, Clarias gariepinus.

    Science.gov (United States)

    du Preez, Gerhard; Wepener, Victor

    2016-07-01

    Cave ecosystems remain largely unstudied and risk being severely degraded as a result of anthropogenic activities. The Wonderfontein Cave, situated in the extensive gold mining region of the Witwatersrand Basin, is one such system that hosts a population of Clarias gariepinus, which is exposed to the influx of polluted mine water from the Wonderfontein Spruit River. The aim of this study was to investigate the bioaccumulation of metals, as well as relevant biomarkers, in C. gariepinus specimens sampled from the Wonderfontein Cave during high (April 2013) and low (September 2013) flow surveys. Results were also compared to a surface population associated with the Wonderfontein Spruit River. There were temporal differences in metal bioaccumulation patterns and this was attributed to the lack of dilution during the low flow period. Metals associated with acid mine drainage, i.e. Co, Mn and Zn were significantly higher in the Wonderfontein Cave population and were reflected in an increase in oxidative stress biomarkers (catalase, protein carbonyls and superoxide dismutase) and the induction of metallothionein, a biomarker of metal exposure. The surface population was exposed to metals associated with geological weathering processes, i.e. Fe and Al.

  17. Item difficulty of multiple choice tests dependant on different item response formats – An experiment in fundamental research on psychological assessment

    Directory of Open Access Journals (Sweden)

    KLAUS D. KUBINGER

    2007-12-01

    Full Text Available Multiple choice response formats are problematical as an item is often scored as solved simply because the test-taker is a lucky guesser. Instead of applying pertinent IRT models which take guessing effects into account, a pragmatic approach of re-conceptualizing multiple choice response formats to reduce the chance of lucky guessing is considered. This paper compares the free response format with two different multiple choice formats. A common multiple choice format with a single correct response option and five distractors (“1 of 6” is used, as well as a multiple choice format with five response options, of which any number of the five is correct and the item is only scored as mastered if all the correct response options and none of the wrong ones are marked (“x of 5”. An experiment was designed, using pairs of items with exactly the same content but different response formats. 173 test-takers were randomly assigned to two test booklets of 150 items altogether. Rasch model analyses adduced a fitting item pool, after the deletion of 39 items. The resulting item difficulty parameters were used for the comparison of the different formats. The multiple choice format “1 of 6” differs significantly from “x of 5”, with a relative effect of 1.63, while the multiple choice format “x of 5” does not significantly differ from the free response format. Therefore, the lower degree of difficulty of items with the “1 of 6” multiple choice format is an indicator of relevant guessing effects. In contrast the “x of 5” multiple choice format can be seen as an appropriate substitute for free response format.

  18. Relationship between biomarkers of inflammation, oxidative stress and endothelial/microcirculatory function in successful aging versus healthy youth: a transversal study.

    Science.gov (United States)

    Bottino, Daniel Alexandre; Lopes, Flávia Gomes; de Oliveira, Francisco José; Mecenas, Anete de Souza; Clapauch, Ruth; Bouskela, Eliete

    2015-04-08

    There is a functional decline of endothelial- dependent vasodilatation in the aging process. The aims of this study were to investigate if various microcirculatory parameters could correlate to anthropometrical variables, oxidative stress and inflammatory biomarkers in successful aging and compare the results to young healthy controls. Healthy elderly women (HE, 74.0 ± 8.7 years, n = 11) and young controls (YC, 23.1 ± 3.6 years, n = 24) were evaluated through nailfold videocapillaroscopy (NVC), venous occlusion plethysmography (VOP) and laboratorial analysis. Functional capillary density (FCD) and diameters, maximum red blood cell velocity (RBCVmax) during the reactive hyperemia response/RBCVbaseline after 1 min arterial occlusion at the finger base, time to reach RBCVmax were determined by NVC, peak increment of forearm blood flow (FBF) during the reactive hyperemia response (%Hyper) and after 0.4 mg sublingual nitroglycerin (%Nitro) by VOP and lipidogram, fibrinogen, fasting and postload glucose, oxidized LDL-cholesterol (oxLDL), sICAM, sVCAM, sE-Selectin, interleukines 1 and 6 and TNF-α by laboratorial analysis. Correlations and linear multiple regression (LMR) between %Hyper, %Nitro, microcirculatory parameters, oxidative stress and inflammatory biomarkers were investigated. sVCAM, sE-Selectin and oxLDL were higher and RBCVmax/RBCVbaseline and %Hyper lower in HE, while %Nitro and FCD remained unchanged. Fibrinogen, LDL-cholesterol, oxLDL correlated negatively to %Hyper while sVCAM correlated negatively to %Hyper and RBCVmax/RBCVbaseline. Healthy aged women presented dilated capillaries with sustained perfusion and endothelial dysfunction with preserved vascular smooth muscle reactivity. Fibrinogen, LDL-cholesterol, oxidized-LDL and sVCAM correlated negatively to endothelial function but not to microcirculatory parameters. Oxidized-LDL and sVCAM could determine %Hyper through LMR. Oxidized-LDL and sVCAM might be used as endothelial

  19. Smoldering multiple myeloma: prevalence and current evidence guiding treatment decisions

    Directory of Open Access Journals (Sweden)

    Blum A

    2018-04-01

    Full Text Available Agnieszka Blum, Despina Bazou, Peter O’Gorman Department of Hematology, Mater Misericordiae University Hospital, Dublin, UK Abstract: Smoldering multiple myeloma (SMM is an asymptomatic plasma cell proliferative disorder associated with risk of progression to symptomatic multiple myeloma (MM or amyloidosis. In comparison to monoclonal gammopathy of undetermined significance (MGUS, SMM has a much higher risk of progression to MM. Thanks to advances in our understanding of the risk factors, the subset of patients with ultra-high risk of progression to MM (80%–90% at 2 years has been identified. The revision of the diagnostic criteria resulted in changes in the management of this cohort of patients. In contrast to the management guidelines for MGUS patients, SMM patients need to be studied more intensively in order to identify biomarkers necessary for accurate risk stratification. In this review, we focus on the risk of progression from SMM to MM, as well as the influence of early treatment on overall survival, time to progression and quality of life. Keywords: smoldering multiple myeloma, risk factor, biomarker, genomic aberrations, glycan analysis

  20. Subtype and regional regulation of prion biomarkers in sporadic Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Llorens, Franc; Zafar, Saima; Ansoleaga, Belén; Shafiq, Mohsin; Blanco, Rosi; Carmona, Marga; Grau-Rivera, Oriol; Nos, Carlos; Gelpí, Ellen; Del Río, José Antonio; Zerr, Inga; Ferrer, Isidre

    2015-08-01

    Creutzfeldt-Jakob disease (CJD) is a rapid progressive neurological disease leading to dementia and death. Prion biomarkers are altered in the cerebrospinal fluid (CSF) of CJD patients, but the pathogenic mechanisms underlying these alterations are still unknown. The present study examined prion biomarker levels in the brain and CSF of sporadic CJD (sCJD) cases and their correlation with neuropathological lesion profiles. The expression levels of 14-3-3, Tau, phospho-Tau and α-synuclein were measured in the CSF and brain of sCJD cases in a subtype- and region-specific manner. In addition, the activity of prion biomarker kinases, the expression levels of CJD hallmarks and the most frequent neuropathological sCJD findings were analysed. Prion biomarkers levels were increased in the CSF of sCJD patients; however, correlations between mRNA, total protein and their phosphorylated forms in brain were different. The observed downregulation of the main Tau kinase, GSK3, in sCJD brain samples may help to explain the differential phospho-Tau/Tau ratios between sCJD and other dementias in the CSF. Importantly, CSF biomarkers levels do not necessarily correlate with sCJD neuropathological findings. Present findings indicate that prion biomarkers levels in sCJD tissues and their release into the CSF are differentially regulated following specific modulated responses, and suggest a functional role for these proteins in sCJD pathogenesis. © 2014 British Neuropathological Society.