WorldWideScience

Sample records for multiple biological control

  1. Multiple levels of epigenetic control for bone biology and pathology.

    Montecino, Martin; Stein, Gary; Stein, Janet; Zaidi, Kaleem; Aguilar, Rodrigo

    2015-12-01

    Multiple dimensions of epigenetic control contribute to regulation of gene expression that governs bone biology and pathology. Once confined to DNA methylation and a limited number of post-translational modifications of histone proteins, the definition of epigenetic mechanisms is expanding to include contributions of non-coding RNAs and mitotic bookmarking, a mechanism for retaining phenotype identity during cell proliferation. Together these different levels of epigenetic control of physiological processes and their perturbations that are associated with compromised gene expression during the onset and progression of disease, have contributed to an unprecedented understanding of the activities (operation) of the genomic landscape. Here, we address general concepts that explain the contribution of epigenetic control to the dynamic regulation of gene expression during eukaryotic transcription. This article is part of a Special Issue entitled Epigenetics and Bone. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Single versus multiple enemies and the impact on biological control of spider mites in cassava fields in West-Africa

    Onzo, A.; Sabelis, M.W.; Hanna, R.

    2014-01-01

    To determine whether to use single or multiple predator species for biological pest control requires manipulative field experiments. We performed such tests in Benin (West Africa) in cassava fields infested by the cassava green mite Mononychellus tanajoa, and the cotton red mite Oligonychus

  3. Multiple Realizability and Biological Laws

    Raerinne, Jani P.; Eronen, Markus I.

    2012-01-01

    We critically analyze Alexander Rosenberg's argument based on the multiple realizability of biological properties that there are no biological laws. The argument is intuitive and suggestive. Nevertheless, a closer analysis reveals that the argument rests on dubious assumptions about the nature of

  4. Integrated Biological Control

    JOHNSON, A.R.

    2002-01-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  5. Exotic biological control agents

    Hajek, Ann E.; Hurley, Brett P.; Kenis, Marc; Garnas, Jeffrey R.; Bush, Samantha J.; Wingfield, Michael J.; Lenteren, van Joop C.; Cock, Matthew J.W.

    2016-01-01

    Biological control is a valuable and effective strategy for controlling arthropod pests and has been used extensively against invasive arthropods. As one approach for control of invasives, exotic natural enemies from the native range of a pest are introduced to areas where control is needed.

  6. Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants.

    Guo, Shengye; Li, Xingyu; He, Pengfei; Ho, Honhing; Wu, Yixin; He, Yueqiu

    2015-06-01

    Bacillus subtilis XF-1 is a gram-positive, plant-associated bacterium that stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. In particular, it is especially highly efficient at controlling the clubroot disease of cruciferous crops. Its 4,061,186-bp genome contains an estimated 3853 protein-coding sequences and the 1155 genes of XF-1 are present in most genome-sequenced Bacillus strains: 3757 genes in B. subtilis 168, and 1164 in B. amyloliquefaciens FZB42. Analysis using the Cluster of Orthologous Groups database of proteins shows that 60 genes control bacterial mobility, 221 genes are related to cell wall and membrane biosynthesis, and more than 112 are genes associated with secondary metabolites. In addition, the genes contributed to the strain's plant colonization, bio-control and stimulation of plant growth. Sequencing of the genome is a fundamental step for developing a desired strain to serve as an efficient biological control agent and plant growth stimulator. Similar to other members of the taxon, XF-1 has a genome that contains giant gene clusters for the non-ribosomal synthesis of antifungal lipopeptides (surfactin and fengycin), the polyketides (macrolactin and bacillaene), the siderophore bacillibactin, and the dipeptide bacilysin. There are two synthesis pathways for volatile growth-promoting compounds. The expression of biosynthesized antibiotic peptides in XF-1 was revealed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry.

  7. Insecticides and Biological Control

    Furness, G. O.

    1972-01-01

    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  8. [Biological treatment of multiple sclerosis

    Sorensen, P.S.; Sellebjerg, F.

    2008-01-01

    In 1996 interferon (IFN)beta was the first biopharmaceutical product to be approved for the treatment of relapsing-remitting multiple sclerosis (MS). In 2006 the more potent monoclonal antibody natalizumab was approved. Presently, a number of monoclonal antibodies are being studied, including ale...

  9. Mass rearing and augmentative biological control evaluation of Rhynocoris fuscipes (Hemiptera: Reduviidae) against multiple pests of cotton.

    Tomson, Majesh; Sahayaraj, Kitherian; Kumar, Vivek; Avery, Pasco B; McKenzie, Cindy L; Osborne, Lance S

    2017-08-01

    Rhynocoris fuscipes (Fab.) (Hemiptera: Reduviidae) is a generalist predator of cotton pests and is commonly found inhabiting cotton-growing regions in southern India. With the goal of integrating this predator in standard management practices used against cotton pests on a commercial scale, (1) we developed a protocol for adult group rearing of this predator inside micro-environmental cages (MECs), and (2) we evaluated the biocontrol potential of mass-produced predators against cotton pests under potted and field conditions. Higher fecundity and adult longevity of R. fuscipes was recorded in the MECs than under natural growing conditions. The reduviid predator preferred stones and fallen leaves as hiding places in the MECs. The predator showed a higher biocontrol potential during the night hours against two pests, Phenacoccus solenopsis Tinsley and Dysdercus cingulatus (Fab.), than during the day under potted conditions. Under field conditions, R. fuscipes significantly reduced the population of Aphis gossypii Glover, P. solenopsis, D. cingulatus and Helicoverpa armigera (Hübner) by 28, 70, 29 and 50%, respectively. No negative impact of R. fuscipes was reported on other natural enemies present in the cotton agroecosystem. Significantly higher crop yield and cost benefit ratio were observed in R. fuscipes-released plots than in the control plots. The results suggest that R. fuscipes can be mass produced efficiently under controlled conditions in MECs, and used in an integrated management program for multiple cotton pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Chemistry and biology by new multiple choice

    Seo, Hyeong Seok; Kim, Seong Hwan

    2003-02-01

    This book is divided into two parts, the first part is about chemistry, which deals with science of material, atom structure and periodic law, chemical combination and power between molecule, state of material and solution, chemical reaction and an organic compound. The second part give description of biology with molecule and cell, energy in cells and chemical synthesis, molecular biology and heredity, function on animal, function on plant and evolution and ecology. This book has explanation of chemistry and biology with new multiple choice.

  11. Biological control of ticks

    Samish, M.; Ginsberg, H.; Glazer, I.; Bowman, A.S.; Nuttall, P.

    2004-01-01

    Ticks have numerous natural enemies, but only a few species have been evaluated as tick biocontrol agents (BCAs). Some laboratory results suggest that several bacteria are pathogenic to ticks, but their mode of action and their potential value as biocontrol agents remain to be determined. The most promising entomopathogenic fungi appear to be Metarhizium anisopliae and Beauveria bassiana, strains of which are already commercially available for the control of some pests. Development of effective formulations is critical for tick management. Entomopathogenic nematodes that are pathogenic to ticks can potentially control ticks, but improved formulations and selection of novel nematode strains are needed. Parasitoid wasps of the genus Ixodiphagus do not typically control ticks under natural conditions, but inundative releases show potential value. Most predators of ticks are generalists, with a limited potential for tick management (one possible exception is oxpeckers in Africa). Biological control is likely to play a substantial role in future IPM programmes for ticks because of the diversity of taxa that show high potential as tick BCAs. Considerable research is required to select appropriate strains, develop them as BCAs, establish their effectiveness, and devise production strategies to bring them to practical use.

  12. Multiple Hierarchies and Organizational Control

    Evans, Peter B.

    1975-01-01

    Uses a control-loss model to explore the effects of multiple channels in formal organizations, and presents an argument for the superior control properties of dual hierarchies. Two variant forms of multiple hierarchies are considered. (Author)

  13. Biological control of toxic cyanobacteria

    Ndlela, L

    2016-04-01

    Full Text Available harmful algal blooms and their impacts in over 30 countries. Biological control is a method of introducing natural enemies to control an organism and has been more successful using microorganisms....

  14. Multiple nuclear ADC controller

    Lovett, A; Rapaport, M S [Center for Nuclear Research, Soreq (Israel)

    1980-12-01

    A controller for an on-line three parameter coincidence and multispectra scaling system has been developed. It has been designed to control, event-by-event, the outputs of three nuclear analog-to-digital converters used at the SOLIS facility. The system utilizes an HP minicomputer with a 32k-word core memory, a disc drive and magnetic tape units.

  15. Birth Control - Multiple Languages

    ... Methods - English PDF How to Switch Birth Control Methods - 简体中文 (Chinese, Simplified (Mandarin dialect)) ... Reproductive Health Access Project Non-Contraceptive Indications for Hormonal Contraceptive Products - English PDF Non- ...

  16. MULTIPLE ECH LAUNCHER CONTROL SYSTEM

    GREEN, M.T.; PONCE, D.; GRUNLOH, H.J.; ELLIS, R.A.; GROSNICKLE, W.H.; HUMPHREY, R.L.

    2004-03-01

    OAK-B135 The addition of new, high power gyrotrons to the heating and current drive arsenal at DIII-D, required a system upgrade for control of fully steerable ECH Launchers. Each launcher contains two pointing mirrors with two degrees of mechanical freedom. The two flavors of motion are called facet and tilt. Therefore up to four channels of motion per launcher need to be controlled. The system utilizes absolute encoders to indicate mirror position and therefore direction of the microwave beam. The launcher movement is primarily controlled by PLC, but future iterations of design, may require this control to be accomplished by a CPU on fast bus such as Compact PCI. This will be necessary to accomplish real time position control. Safety of equipment and personnel is of primary importance when controlling a system of moving parts. Therefore multiple interlocks and fault status enunciators have been implemented. This paper addresses the design of a Multiple ECH Launcher Control System, and characterizes the flexibility needed to upgrade to a real time position control system in the future

  17. Control theory meets synthetic biology.

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. © 2016 The Author(s).

  18. Microbiome studies in the biological control of plant pathogens

    Biological control of plant pathogens, although it has been a successful alternative that has allowed to select microorganisms for the generation of bioproducts and to understand multiple biological mechanisms, cannot be considered as a strategy defined only from the selection of a range of cultiva...

  19. "Protected biological control"- Biological pest management in the greenhouse industry

    Pilkington, L.J.; Messelink, G.J.; Lenteren, van J.C.; Mottee, Le K.

    2010-01-01

    This paper briefly describes the foundations and characteristics of biological control in protected cropping and what drivers are behind adoption of this management system within this industry. Examining a brief history of biological control in greenhouses and what makes it a successful management

  20. The Multiple Control of Verbal Behavior

    Michael, Jack; Palmer, David C.; Sundberg, Mark L.

    2011-01-01

    Amid the novel terms and original analyses in Skinner's "Verbal Behavior", the importance of his discussion of multiple control is easily missed, but multiple control of verbal responses is the rule rather than the exception. In this paper we summarize and illustrate Skinner's analysis of multiple control and introduce the terms "convergent…

  1. Biological control and sustainable food production

    Bale, J.S.; Lenteren, van J.C.; Bigler, F.

    2008-01-01

    The use of biological control for the management of pest insects pre-dates the modern pesticide era. The first major successes in biological control occurred with exotic pests controlled by natural enemy species collected from the country or area of origin of the pest (classical control).

  2. Biology and Water Pollution Control.

    Warren, Charles E.

    Within this text, the reader is attuned to the role biology can and should play in combating the alarming increase in water pollution. Both the urgency of the problem and the biological techniques that are being developed to cope with the water pollution crisis are scrutinized; what is and is not known about the problem is explained; past,…

  3. Towards Integration of Biological and Physiological Functions at Multiple Levels

    Taishin eNomura

    2010-12-01

    Full Text Available An aim of systems physiology today can be stated as to establish logical and quantitative bridges between phenomenological attributes of physiological entities such as cells and organs and physical attributes of biological entities, i.e., biological molecules, allowing us to describe and better understand physiological functions in terms of underlying biological functions. This article illustrates possible schema that can be used for promoting systems physiology by integrating quantitative knowledge of biological and physiological functions at multiple levels of time and space with the use of information technology infrastructure. Emphasis will be made for systematic, modular, hierarchical, and standardized descriptions of mathematical models of the functions and advantages for the use of them.

  4. Biological Control in Brazil: an overview

    Parra,José Roberto Postali

    2014-01-01

    The use of Biological Control methods is on the increase, mainly as a result of the mobilization of human resources in entomology studies since the establishment of graduate programs in this country in the 1960s. This review approaches the retrospective of Biological Control in Brazil in recent decades, with an emphasis on the "culture of applying agrochemicals" adopted by Brazilian growers, which constrains progress in this area. Successful cases of Biological Control have been reported on i...

  5. Review of Pasteuria penetrans: Biology, Ecology, and Biological Control Potential.

    Chen, Z X; Dickson, D W

    1998-09-01

    Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other Pasteuria members. Pasteuria spp. are distributed worldwide and have been reported from 323 nematode species belonging to 116 genera of free-living, predatory, plant-parasitic, and entomopathogenic nematodes. Artificial cultivation of P. penetrans has met with limited success; large-scale production of endospores depends on in vivo cultivation. Temperature affects endospore attachment, germination, pathogenesis, and completion of the life cycle in the nematode pseudocoelom. The biological control potential of Pasteuria spp. have been demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus, Heterodera spp., Meloidogyne spp., and Xiphinema diversicaudatum. Pasteuria penetrans plays an important role in some suppressive soils. The efficacy of the bacterium as a biological control agent has been examined. Approximately 100,000 endospores/g of soil provided immediate control of the peanut root-knot nematode, whereas 1,000 and 5,000 endospores/g of soil each amplified in the host nematode and became suppressive after 3 years.

  6. Biological Systems Thinking for Control Engineering Design

    D. J. Murray-Smith

    2004-01-01

    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control

  7. Conserving and enhancing biological control of nematodes.

    Timper, Patricia

    2014-06-01

    Conservation biological control is the modification of the environment or existing practices to protect and enhance antagonistic organisms to reduce damage from pests. This approach to biological control has received insufficient attention compared with inundative applications of microbial antagonists to control nematodes. This review provides examples of how production practices can enhance or diminish biological control of plant-parasitic nematodes and other soilborne pests. Antagonists of nematodes can be enhanced by providing supplementary food sources such as occurs when organic amendments are applied to soil. However, some organic amendments (e.g., manures and plants containing allelopathic compounds) can also be detrimental to nematode antagonists. Plant species and genotype can strongly influence the outcome of biological control. For instance, the susceptibility of the plant to the nematode can determine the effectiveness of control; good hosts will require greater levels of suppression than poor hosts. Plant genotype can also influence the degree of rhizosphere colonization and antibiotic production by antagonists, as well the expression of induced resistance by plants. Production practices such as crop rotation, fallow periods, tillage, and pesticide applications can directly disrupt populations of antagonistic organisms. These practices can also indirectly affect antagonists by reducing their primary nematode host. One of the challenges of conservation biological control is that practices intended to protect or enhance suppression of nematodes may not be effective in all field sites because they are dependent on indigenous antagonists. Ultimately, indicators will need to be identified, such as the presence of particular antagonists, which can guide decisions on where it is practical to use conservation biological control. Antagonists can also be applied to field sites in conjunction with conservation practices to improve the consistency, efficacy, and

  8. The role of epigenetics in the biology of multiple myeloma

    Dimopoulos, K; Gimsing, P; Grønbæk, K

    2014-01-01

    Several recent studies have highlighted the biological complexity of multiple myeloma (MM) that arises as a result of several disrupted cancer pathways. Apart from the central role of genetic abnormalities, epigenetic aberrations have also been shown to be important players in the development of MM......, and a lot of research during the past decades has focused on the ways DNA methylation, histone modifications and noncoding RNAs contribute to the pathobiology of MM. This has led to, apart from better understanding of the disease biology, the development of epigenetic drugs, such as histone deacetylase...... inhibitors that are already used in clinical trials in MM with promising results. This review will present the role of epigenetic abnormalities in MM and how these can affect specific pathways, and focus on the potential of novel 'epidrugs' as future treatment modalities for MM....

  9. Opportunities for biological weed control in Europe

    Scheepens, P.C.; Müller-Schärer, H.; Kempenaar, C.

    2001-01-01

    The development and application of biological weed control offer greatopportunities not only for farmers, nature conservationists and othervegetation managers but also for institutions and companies that wish tosell plant protection services and products, and for the general publicthat demands safe

  10. Multiplicity Control in Structural Equation Modeling

    Cribbie, Robert A.

    2007-01-01

    Researchers conducting structural equation modeling analyses rarely, if ever, control for the inflated probability of Type I errors when evaluating the statistical significance of multiple parameters in a model. In this study, the Type I error control, power and true model rates of famsilywise and false discovery rate controlling procedures were…

  11. Use of nuclear techniques in biological control

    Greany, Patrick D.; Carpenter, James E.

    2000-01-01

    As pointed out by Benbrook (1996), pest management is at a crossroads, and there is a great need for new, biointensive pest management strategies. Among these approaches, biological control is a keystone. However, because of increasing concerns about the introduction of exotic natural enemies of insect pests and weeds (Howarth 1991, Delfosse 1997), the overall thrust of biological control has moved toward augmentative biological control, involving releases of established natural enemy species (Knipling 1992). This in turn has created a need to develop more cost-effective mass rearing technologies for beneficial insects. Nuclear techniques could play an especially important role in augmentative biological control, not only in facilitating mass rearing, but in several other ways, as indicated below. Recognising the potential value for use of nuclear techniques in biological control, the Insect and Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, sponsored a Consultants' Group Meeting on this subject in April 1997. The Group produced a document entitled Use of Nuclear Techniques in Biological Control: Managing Pests, Facilitating Trade and Protecting the Environment. The consultants included the authors of this paper as well as Ernest Delfosse (at that time, with the USDA-APHIS National Biological Control Institute), Garry Hill (Intl. Institute for Biological Control), Sinthya Penn (Beneficial Insectary), and Felipe Jeronimo (USDA-APHIS PPQ, Guatemala). The remarks presented in this paper reflect the thoughts presented by these consultants and other participants at the IAEA-sponsored meeting. Several potential uses for nuclear techniques were identified by the Consultants' Group, including: 1) improvements in rearing media (either artificial diets or natural hosts/prey), 2) provision of sterilised natural prey to be used as food during shipment, to ameliorate concerns relating to the

  12. Biological control component [Management of water hyacinth

    Harley, K.L.S.

    1981-01-01

    Both chemical and biological control have been used with limited success for the management of water hyacinth in Fiji. In some cases heavy application of chemicals have been successful in completely killing limited areas of water hyacinth, but have resulted in the destruction of biological agents introduced to control the water hyacinth and high contamination of natural water supplies. It is proposed that under the direction of Mr S R Singh, the Senior Research Scientist (Entomology) of the Koronivia Research Station, Suva, Fiji, a collaborative programme with Dr Harley of Australia on chemical and biological control of water hyacinth be initiated. This programme would be fundamentally short-term with the prime objective being an investigation of levels of insect population following varying levels of application of chemical sprays. By comparison with control areas, observations would be made of both chemical damage and insect damage within the limited time span of the period

  13. Synthetic biology expands chemical control of microorganisms.

    Ford, Tyler J; Silver, Pamela A

    2015-10-01

    The tools of synthetic biology allow researchers to change the ways engineered organisms respond to chemical stimuli. Decades of basic biology research and new efforts in computational protein and RNA design have led to the development of small molecule sensors that can be used to alter organism function. These new functions leap beyond the natural propensities of the engineered organisms. They can range from simple fluorescence or growth reporting to pathogen killing, and can involve metabolic coordination among multiple cells or organisms. Herein, we discuss how synthetic biology alters microorganisms' responses to chemical stimuli resulting in the development of microbes as toxicity sensors, disease treatments, and chemical factories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Capitalization of multiple intelligence types during the biology disciplines

    Mariana DUMITRU

    2010-05-01

    Full Text Available The study was conducted on a sample of children at the Lăpuş School with classes I-VIII, using the teaching/learning process of the biology disciplines. A key element in applying the theory of Multiple Intelligence in a classroom is knowing the intelligence profile of children. Differentiated teaching approach was designed based on the predominant types of intelligences. For this purpose we used various methods: questionnaire, observation of children as they are given various tasks, interview, development of projects, role play, the biographical method-personal history of child, analysis of activities' results (compositions, drawings, collages, portfolios, debates in pair-groups, and case studies. In child’s profile, (types of intelligences become qualities that we capitalize in training, designing different teaching approach depending on predominant types of intelligences. The results appeared without delay. After a school's year that we worked differently with the children, they have improved school performance and became more interested in the study of biological disciplines thus arousing their curiosity and respect towards life.

  15. Control of multiple robots using vision sensors

    Aranda, Miguel; Sagüés, Carlos

    2017-01-01

    This monograph introduces novel methods for the control and navigation of mobile robots using multiple-1-d-view models obtained from omni-directional cameras. This approach overcomes field-of-view and robustness limitations, simultaneously enhancing accuracy and simplifying application on real platforms. The authors also address coordinated motion tasks for multiple robots, exploring different system architectures, particularly the use of multiple aerial cameras in driving robot formations on the ground. Again, this has benefits of simplicity, scalability and flexibility. Coverage includes details of: a method for visual robot homing based on a memory of omni-directional images a novel vision-based pose stabilization methodology for non-holonomic ground robots based on sinusoidal-varying control inputs an algorithm to recover a generic motion between two 1-d views and which does not require a third view a novel multi-robot setup where multiple camera-carrying unmanned aerial vehicles are used to observe and c...

  16. Conceptual design of multiple parallel switching controller

    Ugolini, D.; Yoshikawa, S.; Ozawa, K.

    1996-01-01

    This paper discusses the conceptual design and the development of a preliminary model of a multiple parallel switching (MPS) controller. The introduction of several advanced controllers has widened and improved the control capability of nonlinear dynamical systems. However, it is not possible to uniquely define a controller that always outperforms the others, and, in many situations, the controller providing the best control action depends on the operating conditions and on the intrinsic properties and behavior of the controlled dynamical system. The desire to combine the control action of several controllers with the purpose to continuously attain the best control action has motivated the development of the MPS controller. The MPS controller consists of a number of single controllers acting in parallel and of an artificial intelligence (AI) based selecting mechanism. The AI selecting mechanism analyzes the output of each controller and implements the one providing the best control performance. An inherent property of the MPS controller is the possibility to discard unreliable controllers while still being able to perform the control action. To demonstrate the feasibility and the capability of the MPS controller the simulation of the on-line operation control of a fast breeder reactor (FBR) evaporator is presented. (author)

  17. Delegation control of multiple unmanned systems

    Flaherty, Susan R.; Shively, Robert J.

    2010-04-01

    Maturing technologies and complex payloads coupled with a future objective to reduce the logistics burden of current unmanned aerial systems (UAS) operations require a change to the 2-crew employment paradigm. Increased automation and operator supervisory control of unmanned systems have been advocated to meet the objective of reducing the crew requirements, while managing future technologies. Specifically, a delegation control employment strategy has resulted in reduced workload and higher situation awareness for single operators controlling multiple unmanned systems in empirical studies1,2. Delegation control is characterized by the ability for an operator to call a single "play" that initiates prescribed default actions for each vehicle and associated sensor related to a common mission goal. Based upon the effectiveness of delegation control in simulation, the U.S. Army Aeroflightdynamics Directorate (AFDD) developed a Delegation Control (DelCon) operator interface with voice recognition implementation for play selection, real-time play modification, and play status with automation transparency to enable single operator control of multiple unmanned systems in flight. AFDD successfully demonstrated delegation control in a Troops-in-Contact mission scenario at Ft. Ord in 2009. This summary showcases the effort as a beneficial advance in single operator control of multiple UAS.

  18. A functional overview of conservation biological control

    Begg, Graham S; Cook, Samantha M; Dye, Richard

    2017-01-01

    Conservation biological control (CBC) is a sustainable approach to pest management that can contribute to a reduction in pesticide use as part of an Integrated Pest Management (IPM) strategy. CBC is based on the premise that countering habitat loss and environmental disturbance associated...... CBC prescriptions have proved elusive. To tackle this, we consolidate existing knowledge of CBC using a simple conceptual model that organises the functional elements of CBC into a common, unifying framework. We identify and integrate the key biological processes affecting natural enemies...... and their biological control function across local and regional scales, and consider the interactions, interdependencies and constraints that determine the outcome of CBC strategies. Conservation measures are often effective in supporting natural enemy populations but their success cannot be guaranteed; the greatest...

  19. Characterization and Control of Biological Microrobots

    Khalil, I.S.M.; Pichel, Marc Philippe; Pichel, M.P.; Zondervan, L.; Abelmann, Leon; Misra, Sarthak

    2012-01-01

    This work addresses the characterization and control of Magnetotactic Bacterium (MTB) which can be considered as a biological microrobot. Magnetic dipole moment of the MTB and response to a field-with-alternating-direction are characterized. First, the magnetic dipole moment is characterized using

  20. Characterization and control of biological microrobots

    Khalil, I.S.M.; Pichel, Marc Philippe; Zondervan, L.; Abelmann, Leon; Misra, Sarthak; Desai, Jaydev P.; Dudek, Gregory; Khatib, Oussama; Kumar, Vijay

    2013-01-01

    This work addresses the characterization and control of Magnetotactic Bacterium (MTB) which can be considered as a biological microrobot. Magnetic dipole moment of the MTB and response to a field-with-alternating-direction are characterized. First, the magnetic dipole moment is characterized using

  1. Incorporating biological control into IPM decision making

    Of the many ways biological control can be incorporated into Integrated Pest Management (IPM) programs, natural enemy thresholds are arguably most easily adopted by stakeholders. Integration of natural enemy thresholds into IPM programs requires ecological and cost/benefit crop production data, thr...

  2. Selection of Trichogramma for inundative biological control

    Pak, G.A.

    1988-01-01

    This thesis presents a study of the potential for biological control of lepidopterous pests on cabbage crops in the Netherlands, by means of inundative releases of the egg parasite Trichogramma (Hymenoptera, Trichogrammatidae). The objective of this study is to investigate the

  3. Biological control of Meloidogyne incognita by Trichoderma ...

    Biological control against the root-knot nematode, Meloidogyne incognita was proven to occur in tomato, Solanum lycopersicom, soil-drenched with different isolates of Trichoderma harzianum and a commercial suspension of Serratia marcescens (Nemaless). The potential of such biocontrol agents to trigger plant defense ...

  4. Exploring lipids with nonlinear optical microscopy in multiple biological systems

    Alfonso-Garcia, Alba

    Lipids are crucial biomolecules for the well being of humans. Altered lipid metabolism may give rise to a variety of diseases that affect organs from the cardiovascular to the central nervous system. A deeper understanding of lipid metabolic processes would spur medical research towards developing precise diagnostic tools, treatment methods, and preventive strategies for reducing the impact of lipid diseases. Lipid visualization remains a complex task because of the perturbative effect exerted by traditional biochemical assays and most fluorescence markers. Coherent Raman scattering (CRS) microscopy enables interrogation of biological samples with minimum disturbance, and is particularly well suited for label-free visualization of lipids, providing chemical specificity without compromising on spatial resolution. Hyperspectral imaging yields large datasets that benefit from tailored multivariate analysis. In this thesis, CRS microscopy was combined with Raman spectroscopy and other label-free nonlinear optical techniques to analyze lipid metabolism in multiple biological systems. We used nonlinear Raman techniques to characterize Meibum secretions in the progression of dry eye disease, where the lipid and protein contributions change in ratio and phase segregation. We employed similar tools to examine lipid droplets in mice livers aboard a spaceflight mission, which lose their retinol content contributing to the onset of nonalcoholic fatty-liver disease. We also focused on atherosclerosis, a disease that revolves around lipid-rich plaques in arterial walls. We examined the lipid content of macrophages, whose variable phenotype gives rise to contrasting healing and inflammatory activities. We also proposed new label-free markers, based on lifetime imaging, for macrophage phenotype, and to detect products of lipid oxidation. Cholesterol was also detected in hepatitis C virus infected cells, and in specific strains of age-related macular degeneration diseased cells by

  5. Multiple model adaptive control with mixing

    Kuipers, Matthew

    Despite the remarkable theoretical accomplishments and successful applications of adaptive control, the field is not sufficiently mature to solve challenging control problems requiring strict performance and safety guarantees. Towards addressing these issues, a novel deterministic multiple-model adaptive control approach called adaptive mixing control is proposed. In this approach, adaptation comes from a high-level system called the supervisor that mixes into feedback a number of candidate controllers, each finely-tuned to a subset of the parameter space. The mixing signal, the supervisor's output, is generated by estimating the unknown parameters and, at every instant of time, calculating the contribution level of each candidate controller based on certainty equivalence. The proposed architecture provides two characteristics relevant to solving stringent, performance-driven applications. First, the full-suite of linear time invariant control tools is available. A disadvantage of conventional adaptive control is its restriction to utilizing only those control laws whose solutions can be feasibly computed in real-time, such as model reference and pole-placement type controllers. Because its candidate controllers are computed off line, the proposed approach suffers no such restriction. Second, the supervisor's output is smooth and does not necessarily depend on explicit a priori knowledge of the disturbance model. These characteristics can lead to improved performance by avoiding the unnecessary switching and chattering behaviors associated with some other multiple adaptive control approaches. The stability and robustness properties of the adaptive scheme are analyzed. It is shown that the mean-square regulation error is of the order of the modeling error. And when the parameter estimate converges to its true value, which is guaranteed if a persistence of excitation condition is satisfied, the adaptive closed-loop system converges exponentially fast to a closed

  6. ASSISTments Dataset from Multiple Randomized Controlled Experiments

    Selent, Douglas; Patikorn, Thanaporn; Heffernan, Neil

    2016-01-01

    In this paper, we present a dataset consisting of data generated from 22 previously and currently running randomized controlled experiments inside the ASSISTments online learning platform. This dataset provides data mining opportunities for researchers to analyze ASSISTments data in a convenient format across multiple experiments at the same time.…

  7. Cooperative Control of Multiple Unmanned Autonomous Vehicles

    2005-06-03

    I I Final Report 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Cooperative Control of Multiple Unmanned Autonomous Vehicles F49620-01-1-0337 6. AUTHOR(S... Autonomous Vehicles Final Report Kendall E. Nygard Department of Computer Science and Operations Research North Dakota State University Fargo, ND 58105-5164

  8. Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

    McCamish, Shawn B

    2007-01-01

    This research contributes to multiple spacecraft control by developing an autonomous distributed control algorithm for close proximity operations of multiple spacecraft systems, including rendezvous...

  9. Decentralized fuzzy control of multiple nonholonomic vehicles

    Driessen, B.J.; Feddema, J.T.; Kwok, K.S.

    1997-09-01

    This work considers the problem of controlling multiple nonholonomic vehicles so that they converge to a scent source without colliding with each other. Since the control is to be implemented on simple 8-bit microcontrollers, fuzzy control rules are used to simplify a linear quadratic regulator control design. The inputs to the fuzzy controllers for each vehicle are the (noisy) direction to the source, the distance to the closest neighbor vehicle, and the direction to the closest vehicle. These directions are discretized into four values: Forward, Behind, Left, and Right, and the distance into three values: Near, Far, Gone. The values of the control at these discrete values are obtained based on the collision-avoidance repulsive forces and the change of variables that reduces the motion control problem of each nonholonomic vehicle to a nonsingular one with two degrees of freedom, instead of three. A fuzzy inference system is used to obtain control values for inputs between the small number of discrete input values. Simulation results are provided which demonstrate that the fuzzy control law performs well compared to the exact controller. In fact, the fuzzy controller demonstrates improved robustness to noise.

  10. Onchocerciasis control: biological research is still needed

    Boussinesq M.

    2008-09-01

    Full Text Available Achievements obtained by the onchocerciasis control programmes should not lead to a relaxation in the biological research on Onchocerca volvulus. Issues such as the Loa loa-related postivermectin serious adverse events, the uncertainties as to whether onchocerciasis can be eliminated by ivermectin treatments, and the possible emergence of ivermectin-resistant O. volvulus populations should be addressed proactively. Doxycycline, moxidectin and emodepside appear to be promising as alternative drugs against onchocerciasis but support to researches in immunology and genomics should also be increased to develop new control tools, including both vaccines and macrofilaricidal drugs.

  11. BIOLOGICAL CONTROL OF WEEDS BY MEANS OF PLANT PATHOGENS

    Marija Ravlić; Renata Baličević

    2014-01-01

    Biological control is the use of live beneficial organisms and products of their metabolism in the pests control. Plant pathogens can be used for weed control in three different ways: as classical, conservation and augmentative (inoculative and inundated) biological control. Inundated biological control involves the use of bioherbicides (mycoherbicides) or artificial breeding of pathogens and application in specific stages of crops and weeds. Biological control of weeds can be used where chem...

  12. Multiple descriptions for packetized predictive control

    Østergaard, Jan; Quevedo, Daniel

    2016-01-01

    be reliably reconstructed at the plant side. For the particular case of LTI plant models and i.i.d. channels, we show that the overall system forms a Markov jump linear system. We provide conditions for mean square stability and derive upper bounds on the operational bit rate of the quantizer to guarantee......In this paper, we propose to use multiple descriptions (MDs) to achieve a high degree of robustness towards random packet delays and erasures in networked control systems. In particular, we consider the scenario, where a data-rate limited channel is located between the controller and the plant...

  13. Biological control of Fusarium moniliforme in maize.

    Bacon, C W; Yates, I E; Hinton, D M; Meredith, F

    2001-05-01

    Fusarium moniliforme Sheldon, a biological species of the mating populations within the (italic)Gibberella fujikuroi species complex, i.e., population A [= G. moniliformis (Sheld.) Wineland], is an example of a facultative fungal endophyte. During the biotrophic endophytic association with maize, as well as during saprophytic growth, F. moniliforme produces the fumonisins. The fungus is transmitted vertically and horizontally to the next generation of plants via clonal infection of seeds and plant debris. Horizontal infection is the manner by which this fungus is spread contagiously and through which infection occurs from the outside that can be reduced by application of certain fungicides. The endophytic phase is vertically transmitted. This type infection is important because it is not controlled by seed applications of fungicides, and it remains the reservoir from which infection and toxin biosynthesis takes place in each generation of plants. Thus, vertical transmission of this fungus is just as important as horizontal transmission. A biological control system using an endophytic bacterium, Bacillus subtilis, has been developed that shows great promise for reducing mycotoxin accumulation during the endophytic (vertical transmission) growth phase. Because this bacterium occupies the identical ecological niche within the plant, it is considered an ecological homologue to F. moniliforme, and the inhibitory mechanism, regardless of the mode of action, operates on the competitive exclusion principle. In addition to this bacterium, an isolate of a species of the fungus Trichoderma shows promise in the postharvest control of the growth and toxin accumulation from F. moniliforme on corn in storage.

  14. An Integrated Biological Control System At Hanford

    Johnson, A.R.; Caudill, J.G.; Giddings, R.F.; Rodriguez, J.M.; Roos, R.C.; Wilde, J.W.

    2010-01-01

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimate spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  15. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  16. Biological control of corky root in tomato.

    Fiume, G; Fiume, F

    2008-01-01

    Corky root caused by Pyrenochaeta lycopersici (Schneider et Gerlach) is one of the most important soil borne fungal pathogens which develops in the soils, causing diseases in different crops. The research was carried out to evaluate the effectiveness of the biological control of corky root on tomato. Biological control was performed by using Trichoderma viride Pers. 18/17 SS, Streptomyces spp. AtB42 and Bacillus subtilis M51 PI. According to present and future regulations on the use of chemical fungicides and considering that treatments must avoids environmental pollution, the main object of this research was to find alternative strategies by using biocontrol agents against P. lycopersici that affect tomato plants. In laboratory, the effectiveness of T. viride 18/17 SS, Streptomyces spp. AtB42 and B. subtilis M51 PI to control P. lycopersici were studied. In greenhouse, the research was carried out comparing the following treatments: 1) untreated control; 2) T. viride 18/17 SS; 3) Streptomyces spp. AtB42; 4) B. subtilis M51 PI. Roots of plants of tomato H3028 Hazera were treated with the antagonist suspensions just prior of transplant. Treatments were repeated about 2 months after, with the same suspensions sprayed on the soil to the plant collar. In dual culture, the inhibition of P. lycopersici ranged up to 81.2% (caused from T. viride 18/17 SS), 75.6% (from Streptomyces spp. AtB42) and 66.8% (from B. subtilis M51 PI). In greenhouse trials, with regard to corky root symptoms, all treated plots showed signifycative differences compared to untreated. T. viride gave the better results followed by Streptomyces spp. and then by B. subtilis. The fungus antagonist showed good root surface competence such as demonstrated its persistence on the roots surface of the tomato plants whose roots were treated with T. viride 18/17 SS up to 2 months before.

  17. Biological control agents elevate hantavirus by subsidizing deer mouse populations

    Dean E. Pearson; Ragan M. Callaway

    2006-01-01

    Biological control of exotic invasive plants using exotic insects is practiced under the assumption that biological control agents are safe if they do not directly attack non-target species. We tested this assumption by evaluating the potential for two host-specific biological control agents (Urophora spp.), widely established in North America for spotted...

  18. Controllability of partial differential equations governed by multiplicative controls

    Khapalov, Alexander Y

    2010-01-01

    The goal of this monograph is to address the issue of the global controllability of partial differential equations in the context of multiplicative (or bilinear) controls, which enter the model equations as coefficients. The mathematical models we examine include the linear and nonlinear parabolic and hyperbolic PDE's, the Schrödinger equation, and coupled hybrid nonlinear distributed parameter systems modeling the swimming phenomenon. The book offers a new, high-quality and intrinsically nonlinear methodology to approach the aforementioned highly nonlinear controllability problems.

  19. Biological interactions and cooperative management of multiple species.

    Jiang, Jinwei; Min, Yong; Chang, Jie; Ge, Ying

    2017-01-01

    Coordinated decision making and actions have become the primary solution for the overexploitation of interacting resources within ecosystems. However, the success of coordinated management is highly sensitive to biological, economic, and social conditions. Here, using a game theoretic framework and a 2-species model that considers various biological relationships (competition, predation, and mutualism), we compute cooperative (or joint) and non-cooperative (or separate) management equilibrium outcomes of the model and investigate the effects of the type and strength of the relationships. We find that cooperation does not always show superiority to non-cooperation in all biological interactions: (1) if and only if resources are involved in high-intensity predation relationships, cooperation can achieve a win-win scenario for ecosystem services and resource diversity; (2) for competitive resources, cooperation realizes higher ecosystem services by sacrificing resource diversity; and (3) for mutual resources, cooperation has no obvious advantage for either ecosystem services or resource evenness but can slightly improve resource abundance. Furthermore, by using a fishery model of the North California Current Marine Ecosystem with 63 species and seven fleets, we demonstrate that the theoretical results can be reproduced in real ecosystems. Therefore, effective ecosystem management should consider the interconnection between stakeholders' social relationship and resources' biological relationships.

  20. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton

    Aaron J. Young

    2017-06-01

    Full Text Available BackgroundDespite a large increase in robotic exoskeleton research, there are few studies that have examined human performance with different control strategies on the same exoskeleton device. Direct comparison studies are needed to determine how users respond to different types of control. The purpose of this study was to compare user performance using a robotic hip exoskeleton with two different controllers: a controller that targeted a biological hip torque profile and a proportional myoelectric controller.MethodsWe tested both control approaches on 10 able-bodied subjects using a pneumatically powered hip exoskeleton. The state machine controller targeted a biological hip torque profile. The myoelectric controller used electromyography (EMG of lower limb muscles to produce a proportional control signal for the hip exoskeleton. Each subject performed two 30-min exoskeleton walking trials (1.0 m/s using each controller and a 10-min trial with the exoskeleton unpowered. During each trial, we measured subjects’ metabolic cost of walking, lower limb EMG profiles, and joint kinematics and kinetics (torques and powers using a force treadmill and motion capture.ResultsCompared to unassisted walking in the exoskeleton, myoelectric control significantly reduced metabolic cost by 13% (p = 0.005 and biological hip torque control reduced metabolic cost by 7% (p = 0.261. Subjects reduced muscle activity relative to the unpowered condition for a greater number of lower limb muscles using myoelectric control compared to the biological hip torque control. More subjects subjectively preferred the myoelectric controller to the biological hip torque control.ConclusionMyoelectric control had more advantages (metabolic cost and muscle activity reduction compared to a controller that targeted a biological torque profile for walking with a robotic hip exoskeleton. However, these results were obtained with a single exoskeleton device with specific

  1. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton.

    Young, Aaron J; Gannon, Hannah; Ferris, Daniel P

    2017-01-01

    Despite a large increase in robotic exoskeleton research, there are few studies that have examined human performance with different control strategies on the same exoskeleton device. Direct comparison studies are needed to determine how users respond to different types of control. The purpose of this study was to compare user performance using a robotic hip exoskeleton with two different controllers: a controller that targeted a biological hip torque profile and a proportional myoelectric controller. We tested both control approaches on 10 able-bodied subjects using a pneumatically powered hip exoskeleton. The state machine controller targeted a biological hip torque profile. The myoelectric controller used electromyography (EMG) of lower limb muscles to produce a proportional control signal for the hip exoskeleton. Each subject performed two 30-min exoskeleton walking trials (1.0 m/s) using each controller and a 10-min trial with the exoskeleton unpowered. During each trial, we measured subjects' metabolic cost of walking, lower limb EMG profiles, and joint kinematics and kinetics (torques and powers) using a force treadmill and motion capture. Compared to unassisted walking in the exoskeleton, myoelectric control significantly reduced metabolic cost by 13% ( p  = 0.005) and biological hip torque control reduced metabolic cost by 7% ( p  = 0.261). Subjects reduced muscle activity relative to the unpowered condition for a greater number of lower limb muscles using myoelectric control compared to the biological hip torque control. More subjects subjectively preferred the myoelectric controller to the biological hip torque control. Myoelectric control had more advantages (metabolic cost and muscle activity reduction) compared to a controller that targeted a biological torque profile for walking with a robotic hip exoskeleton. However, these results were obtained with a single exoskeleton device with specific control configurations while level walking at a

  2. Multiple sclerosis in the Faroe Islands. 7. Results of a case control questionnaire with multiple controls

    Kurtzke, J F; Hyllested, K; Arbuckle, J D

    1997-01-01

    Detailed questionnaires were completed in 1978-79 by 23 of the 28 then known resident Faroese multiple sclerosis (MS) patients and 127 controls. These controls were divided into 69 Group A (patient sibs and other relatives), 37 Group B (matched neighbor controls, their spouses and sibs, plus...... facilities, and nature of house construction or heating. Detailed dietary histories, available for half the subjects, revealed no differences, cases versus controls, for four age periods between age 0 and 30 years, and for 16 specified foodstuffs. Animal exposures showed overall no consistent differences...

  3. Active control of multiple resistive wall modes

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Bolzonella, T.; Cecconello, M.; Drake, J. R.; Kuldkepp, M.; Manduchi, G.; Marchiori, G.; Marrelli, L.; Partin, P.; Menmuir, S.; Ortolani, S.; Rachlew, E.; Spizzo, S.; Zanca, P.

    2005-01-01

    Active magnetic feedback suppression of resistive wall modes is of common interest for several fusion concepts relying on close conducting walls for stabilization of ideal magnetohydrodynamic (MHD) modes. In the advanced tokamak without plasma rotation the kink mode is not completely stabilized, but rather converted into an unstable resistive wall mode (RWM) with a growth time comparable to the wall magnetic flux penetration time. The reversed field pinch (RFP) is similar to the advanced tokamak in the sense that it uses a conducting wall for kink mode stabilization. Also both configurations are susceptible to resonant field error amplification of marginally stable modes. However, the RFP has a different RWM spectrum and, in general, a range of modes is unstable. Hence, the requirement for simultaneous feedback stabilization of multiple independent RWMs arises for the RFP configuration. Recent experiments on RWM feedback stabilization, performed in the RFP device EXTRAP T2R [1], are presented. The experimental results obtained are the first demonstration of simultaneous feedback control of multiple independent RWMs [2]. Using an array of active magnetic coils, a reproducible suppression of several RWMs is achieved for the duration of the discharge, 3-5 wall times, through feedback action. An array with 64 active saddle coils at 4 poloidal times 16 toroidal positions is used. The important issues of side band generation by the active coil array and the accompanying coupling of different unstable modes through the feedback action are addressed in this study. Open loop control experiments have been carried out to quantitatively study resonant field error amplification. (Author)

  4. Herbs and spices: characterization and quantitation of biologically-active markers for routine quality control by multiple headspace solid-phase microextraction combined with separative or non-separative analysis.

    Sgorbini, Barbara; Bicchi, Carlo; Cagliero, Cecilia; Cordero, Chiara; Liberto, Erica; Rubiolo, Patrizia

    2015-01-09

    Herbs and spices are used worldwide as food flavoring, thus determination of their identity, origin, and quality is mandatory for safe human consumption. An analysis strategy based on separative (HS-SPME-GC-MS) and non-separative (HS-SPME-MS) approaches is proposed for the volatile fraction of herbs and spices, for quality control and to quantify the aromatic markers with a single analysis directly on the plant material as such. Eight-to-ten lots of each of the following herbs/spices were considered: cloves (Syzygium aromaticum (L.) Merr. & Perry), American peppertree (Schinus molle L.), black pepper and white pepper (Piper nigrum L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.). Homogeneity, origin, and chemotypes of the investigated lots of each herb/spice were defined by fingerprinting, through statistical elaboration with principal component analysis (PCA). Characterizing aromatic markers were directly quantified on the solid matrix through multiple headspace extraction-HS-SPME (MHS-SPME). Reliable results were obtained with both separative and non-separative methods (where the latter were applicable); the two were in full agreement, RSD% ranging from 1.8 to 7.7% for eugenol in cloves, 2.2-18.4% for carvacrol+thymol in thyme, and 3.1-16.8% for thujones in sage. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Entomopatogenic fungi as an alternative for biological pest control

    Pablo Andrés Motta Delgado

    2011-08-01

    Full Text Available The entomopatogenic fungi are a diverse group of microorganisms that provide multiple services to agroecological systems. Among those the capacity to regulate the pests to keep them in suitable levels stands out. The present paper shows a description of the entomopatogenic fungi of most extensively used for the biological control of pests, their mechanism of action on their host, and also investigations about the in vitro and in situ behavior of the mostly used fungi for the control of some insects. Also, the formulations that are used for the development of this biotechnology in the field are described. In the development of bioinsecticides the entomopatogenic fungi are a viable option to minimize environmental damage.

  6. BIOLOGICAL CONTROL OF WEEDS BY MEANS OF PLANT PATHOGENS

    Marija Ravlić

    2014-06-01

    Full Text Available Biological control is the use of live beneficial organisms and products of their metabolism in the pests control. Plant pathogens can be used for weed control in three different ways: as classical, conservation and augmentative (inoculative and inundated biological control. Inundated biological control involves the use of bioherbicides (mycoherbicides or artificial breeding of pathogens and application in specific stages of crops and weeds. Biological control of weeds can be used where chemical herbicides are not allowed, if resistant weed species are present or in the integrated pest management against weeds with reduced herbicides doses and other non-chemical measures, but it has certain limitations and disadvantages.

  7. Lysophosphatidic acid as a lipid mediator with multiple biological actions.

    Aikawa, Shizu; Hashimoto, Takafumi; Kano, Kuniyuki; Aoki, Junken

    2015-02-01

    Lysophosphatidic acid (LPA) is one of the simplest glycerophospholipids with one fatty acid chain and a phosphate group as a polar head. Although LPA had been viewed just as a metabolic intermediate in de novo lipid synthetic pathways, it has recently been paid much attention as a lipid mediator. LPA exerts many kinds of cellular processes, such as cell proliferation and smooth muscle contraction, through cognate G protein-coupled receptors. Because lipids are not coded by the genome directly, it is difficult to know their patho- and physiological roles. However, recent studies have identified several key factors mediating the biological roles of LPA, such as receptors and producing enzymes. In addition, studies of transgenic and gene knockout animals for these LPA-related genes, have revealed the biological significance of LPA. In this review we will summarize recent advances in the studies of LPA production and its roles in both physiological and pathological conditions. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  8. Biological Control of Bacterial Wilt in South East Asia

    Arwiyanto, Triwidodo

    2014-01-01

    Bacterial wilt disease caused by Ralstonia solanacearum destroys many crops of different plant families in South East Asia despite many researches about the disease, and the availability of developed control method in other parts of the world. There is no chemical available for the bacterial wilt pathogen and biological control is then chosen as an alternative to save the crops. Most of the biological control studies were based on antagonism between biological control agent and the pathogen. ...

  9. Complexity, Analysis and Control of Singular Biological Systems

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  10. Maternal feeding controls fetal biological clock.

    Hidenobu Ohta

    Full Text Available BACKGROUND: It is widely accepted that circadian physiological rhythms of the fetus are affected by oscillators in the maternal brain that are coupled to the environmental light-dark (LD cycle. METHODOLOGY/PRINCIPAL FINDINGS: To study the link between fetal and maternal biological clocks, we investigated the effects of cycles of maternal food availability on the rhythms of Per1 gene expression in the fetal suprachiasmatic nucleus (SCN and liver using a transgenic rat model whose tissues express luciferase in vitro. Although the maternal SCN remained phase-locked to the LD cycle, maternal restricted feeding phase-advanced the fetal SCN and liver by 5 and 7 hours respectively within the 22-day pregnancy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that maternal feeding entrains the fetal SCN and liver independently of both the maternal SCN and the LD cycle. This indicates that maternal-feeding signals can be more influential for the fetal SCN and particular organ oscillators than hormonal signals controlled by the maternal SCN, suggesting the importance of a regular maternal feeding schedule for appropriate fetal molecular clockwork during pregnancy.

  11. Will the Convention on Biological Diversity put an end to biological control?

    Lenteren, van J.C.; Cock, M.J.W.; Brodeur, J.; Barratt, B.I.P.; Bigler, F.; Bolckmans, K.; Haas, F.; Mason, P.G.; Parra, J.R.P.

    2011-01-01

    Will the Convention on Biological Diversity put an end to biological control? Under the Convention on Biological Diversity countries have sovereign rights over their genetic resources. Agreements governing the access to these resources and the sharing of the benefits arising from their use need to

  12. Effectiveness of a biological control agent Palexorista gilvoides in ...

    ACSS

    Effectiveness of a biological control agent Palexorista gilvoides in controlling Gonometa podorcarpi in conifer ... gilvoides as a potential biological control agent for G. podocarpi. Field and laboratory studies further established that P. .... version for windows (SPSS, 2002). Results. Gonometa podocarpi was present in.

  13. Status of biological control in vegetation management in forestry

    George P. Markin; Donald E. Gardner

    1993-01-01

    Biological control traditionally depends upon importing the natural enemies of introduced weeds. Since vegetation management in forestry has primarily been aimed at protecting economic species of trees from competition from other native plants, biological control has been of little use in forestry. An alternative approach to controlling unwanted native plants,...

  14. Relative null controllability of linear systems with multiple delays in ...

    varying multiple delays in state and control are developed. If the uncontrolled system is uniformly asymptotically stable, and if the linear system is controllable, then the linear system is null controllable. Journal of the Nigerian Association of ...

  15. Optimization of Inventories for Multiple Companies by Fuzzy Control Method

    Kawase, Koichi; Konishi, Masami; Imai, Jun

    2008-01-01

    In this research, Fuzzy control theory is applied to the inventory control of the supply chain between multiple companies. The proposed control method deals with the amountof inventories expressing supply chain between multiple companies. Referring past demand and tardiness, inventory amounts of raw materials are determined by Fuzzy inference. The method that an appropriate inventory control becomes possible optimizing fuzzy control gain by using SA method for Fuzzy control. The variation of ...

  16. Biological control of the terrestrial carbon sink

    Schulze, E.-D.

    2006-03-01

    This lecture reviews the past (since 1964 when the International Biological Program began) and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production) and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in plant growth has

  17. Biological control of the terrestrial carbon sink

    E.-D. Schulze

    2006-01-01

    Full Text Available This lecture reviews the past (since 1964 when the International Biological Program began and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in

  18. Understanding Federal regulations as guidelines for classical biological control programs

    Michael E. Montgomery

    2011-01-01

    This chapter reviews the legislation and rules that provide the foundation for federal regulation of the introduction of natural enemies of insects as biological control agents. It also outlines the steps for complying with regulatory requirements, using biological control of Adelges tsugae Annand, the hemlock woolly adelgid (HWA), as an example. The...

  19. Efficiency of using green algae as biological controllers against toxic ...

    Efficiency of using green algae as biological controllers against toxic algal taxa in cultured ... of two green algal species as biological control of the growth of toxic blue-green algae. ... African Journal of Aquatic Science 2014, 39(4): 443–450 ...

  20. The Control of Chemical and Biological Weapons.

    Alexander, Archibald S.; And Others

    This book is composed of four papers prepared to illuminate the problem areas which might arise if the policies of the 1925 Geneva Protocol and other measures to limit chemical and biological weapons are ratified by the United States Senate. The papers included are: Legal Aspects of the Geneva Protocol of 1925; The Use of Herbicides in War: A…

  1. Biological control of livestock pests: Pathogens

    Interest in biological methods for livestock and poultry pest management is largely motivated by the development of resistance to most of the available synthetic pesticides by the major pests. There also has been a marked increase in organic systems, and those that promote animal welfare by reducing...

  2. Biological Control Strategies for Mosquito Vectors of Arboviruses.

    Huang, Yan-Jang S; Higgs, Stephen; Vanlandingham, Dana L

    2017-02-10

    Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses.

  3. Biological Control Strategies for Mosquito Vectors of Arboviruses

    Yan-Jang S. Huang

    2017-02-01

    Full Text Available Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses.

  4. Biology and control of Varroa destructor.

    Rosenkranz, Peter; Aumeier, Pia; Ziegelmann, Bettina

    2010-01-01

    The ectoparasitic honey bee mite Varroa destructor was originally confined to the Eastern honey bee Apis cerana. After a shift to the new host Apis mellifera during the first half of the last century, the parasite dispersed world wide and is currently considered the major threat for apiculture. The damage caused by Varroosis is thought to be a crucial driver for the periodical colony losses in Europe and the USA and regular Varroa treatments are essential in these countries. Therefore, Varroa research not only deals with a fascinating host-parasite relationship but also has a responsibility to find sustainable solutions for the beekeeping. This review provides a survey of the current knowledge in the main fields of Varroa research including the biology of the mite, damage to the host, host tolerance, tolerance breeding and Varroa treatment. We first present a general view on the functional morphology and on the biology of the Varroa mite with special emphasis on host-parasite interactions during reproduction of the female mite. The pathology section describes host damage at the individual and colony level including the problem of transmission of secondary infections by the mite. Knowledge of both the biology and the pathology of Varroa mites is essential for understanding possible tolerance mechanisms in the honey bee host. We comment on the few examples of natural tolerance in A. mellifera and evaluate recent approaches to the selection of Varroa tolerant honey bees. Finally, an extensive listing and critical evaluation of chemical and biological methods of Varroa treatments is given. This compilation of present-day knowledge on Varroa honey bee interactions emphasizes that we are still far from a solution for Varroa infestation and that, therefore, further research on mite biology, tolerance breeding, and Varroa treatment is urgently needed. Copyright 2009 Elsevier Inc. All rights reserved.

  5. Inventory control with multiple setup costs

    Alp, O.; Huh, W.T.; Tan, T.

    2014-01-01

    We consider an infinite-horizon, periodic-review, single-item production/inventory system with random demand and backordering, where multiple setups are allowed in any period and a separate fixed cost is associated for each setup. Contrary to the majority of the literature on this topic, we do not

  6. Biologically inspired rate control of chaos.

    Olde Scheper, Tjeerd V

    2017-10-01

    The overall intention of chaotic control is to eliminate chaos and to force the system to become stable in the classical sense. In this paper, I demonstrate a more subtle method that does not eliminate all traces of chaotic behaviour; yet it consistently, and reliably, can provide control as intended. The Rate Control of Chaos (RCC) method is derived from metabolic control processes and has several remarkable properties. RCC can control complex systems continuously, and unsupervised, it can also maintain control across bifurcations, and in the presence of significant systemic noise. Specifically, I show that RCC can control a typical set of chaotic models, including the 3 and 4 dimensional chaotic Lorenz systems, in all modes. Furthermore, it is capable of controlling spatiotemporal chaos without supervision and maintains control of the system across bifurcations. This property of RCC allows a dynamic system to operate in parameter spaces that are difficult to control otherwise. This may be particularly interesting for the control of forced systems or dynamic systems that are chaotically perturbed. These control properties of RCC are applicable to a range of dynamic systems, thereby appearing to have far-reaching effects beyond just controlling chaos. RCC may also point to the existence of a biochemical control function of an enzyme, to stabilise the dynamics of the reaction cascade.

  7. Effective landscape scale management of Cirsium arvense (Canada thistle) utilizing biological control

    G. P. Markin; D. Larson

    2013-01-01

    The stem mining weevil, Ceutorhynchus litura Fabricius, the gall forming fly, Urophora cardui L., and the seedhead weevil, Larinus planus Fabricius, were established as biological control agents on an 1800 hectare multiple-habitat wildlife refuge in northwestern Oregon in the mid-1990s. At the time, Canada thistle was the most wide spread, aggressive, and difficult...

  8. Biology of Leptoypha hospita (Hemiptera: Tingidae), a Potential Biological Control Agent of Chinese Privet

    Yanzhuo Zhang; James L. Hanula; Scott Horn; Kristine Braman; Jianghua Sun

    2011-01-01

    The biology of Leptoypha hospita Drake et Poor (Hemiptera: Tingidae), a potential biological control agent from China for Chinese privet, Ligustrum sinense Lour., was studied in quarantine in the United States. Both nymphs and adults feed on Chinese privet mesophyll cells that lead to a bleached appearance of leaves and dieback of branch tips. L. hospita has five...

  9. Hierarchical Control for Multiple DC Microgrids Clusters

    Shafiee, Qobad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    This paper presents a distributed hierarchical control framework to ensure reliable operation of dc Microgrid (MG) clusters. In this hierarchy, primary control is used to regulate the common bus voltage inside each MG locally. An adaptive droop method is proposed for this level which determines...

  10. Biological Control of Plant Disease Caused by Bacteria

    Triwidodo Arwiyanto

    2014-07-01

    Full Text Available Bacterial diseases in plants are difficult to control. The emphasis is on preventing the spread of the bacteria rather than curing the diseased plant. Integrated management measures for bacterial plant pathogens should be applied for successfull control. Biological control is one of the control measures viz. through the use of microorganisms to suppress the growth and development of bacterial plant pathogen and ultimately reduce the possibility of disease onset. The study of biological control of bacterial plant pathogen was just began compared with of fungal plant pathogen. The ecological nature of diverse bacterial plant pathogens has led scientists to apply different approach in the investigation of its biological control. The complex process of entrance to its host plant for certain soil-borne bacterial plant pathogens need special techniques and combination of more than one biological control agent. Problem and progress in controlling bacterial plant pathogens biologically will be discussed in more detail in the paper and some commercial products of biological control agents (biopesticides will be introduced.     Penyakit tumbuhan karena bakteri sulit dikendalikan. Penekanan pengendalian adalah pada pencegahan penyebaran bakteri patogen dan bukan pada penyembuhan tanaman yang sudah sakit. Untuk suksesnya pengendalian bakteri patogen tumbuhan diperlukan cara pengelolaan yang terpadu. Pengendalian secara biologi merupakan salah satu cara pengendalian dengan menggunakan mikroorganisme untuk menekan pertumbuhan dan perkembangan bakteri patogen tumbuhan dengan tujuan akhir menurunkan kemungkinan timbulnya penyakit. Sifat ekologi bakteri patogen tumbuhan yang berbeda-beda mengharuskan pendekatan yang berbeda pula dalam pengendaliannya secara biologi. Masalah dan perkembangan dalam pengendalian bakteri patogen tumbuhan secara biologi didiskusikan secara detail dalam makalah ini.

  11. Biological Control of Bacterial Wilt in South East Asia

    Triwidodo Arwiyanto

    2014-12-01

    Full Text Available Bacterial wilt disease caused by Ralstonia solanacearum destroys many crops of different plant families in South East Asia despite many researches about the disease, and the availability of developed control method in other parts of the world. There is no chemical available for the bacterial wilt pathogen and biological control is then chosen as an alternative to save the crops. Most of the biological control studies were based on antagonism between biological control agent and the pathogen. The biological control agents were intended to reduce the initial inoculum of the pathogen. The effort to minimize the initial inoculum of the pathogen by baiting with the use of hypersensitive host-plant was only reliable when conducted in the greenhouse experiments. Various microorganisms have been searched as possible biological control agents, for instance avirulent form of the pathogen, soil or rhizosphere bacteria (Bacillus spp. and fluorescent pseudomonads, actinomycetes (Streptomyces spp., yeast (Pichia uillermondii, Candida ethanolica, and a consortium of microorganisms known as effective microorganisms (EM. None of these biological control agents has been used in field application and they need further investigation in order to effectively control bacterial wilt. Opportunities and challenges in developing biological control to combat bacterial wilt are discussed in the paper. Penyakit layu bakteri yang disebabkan oleh Ralstonia solanacearum menghancurkan banyak tanaman dalam famili yang berbeda di Asia Tenggara meskipun telah banyak penelitian tentang metode pengendaliannya. Penyakit ini sulit dikendalikan karena banyaknya variabilitas patogen dan belum tersedianya sumber ketahanan yang mapan. Di samping itu, sampai saat ini belum ada bahan kimia yang tersedia untuk patogen layu bakteri ini sehingga pengendalian biologi kemudian dipilih sebagai cara alternatif untuk menyelamatkan tanaman. Sebagian besar penelitian pengendalian biologi didasarkan

  12. Multiple Property Cross Direction Control of Paper Machines

    Markku Ohenoja

    2011-07-01

    Full Text Available Cross direction (CD control in sheet-forming process forms a challenging problem with high dimensions. Accounting the interactions between different properties and actuators, the dimensionality increases further and also computational issues arise. We present a multiple property controller feasible to be used especially with imaging measurements that provide high sampling frequency and therefore enable short control interval. The simulation results state the benefits of multiple property CD control over single property control and single property control using full feedforward compensation. The controller presented may also be tuned in automated manner and the results demonstrate the effect of tuning on input saturation.

  13. Supporting multiple control systems at Fermilab

    Nicklaus, Dennis J.; /Fermilab

    2009-10-01

    The Fermilab control system, ACNET, is used for controlling the Tevatron and all of its pre-accelerators. However, other smaller experiments at Fermilab have been using different controls systems, in particular DOOCS and EPICS. This paper reports some of the steps taken at Fermilab to integrate support for these outside systems. We will describe specific tools that we have built or adapted to facilitate interaction between the architectures. We also examine some of the difficulties that arise from managing this heterogeneous environment. Incompatibilities as well as common elements will be described.

  14. Explaining Biological Functionality: Is Control Theory Enough ...

    I argue that the etiological approach, as understood in terms of control theory, suffers from a problem of symmetry, by which function can equally well be placed in the environment as in the organism. Focusing on the autonomy view, I note that it can be understood to some degree in terms of control theory in its version called ...

  15. Managers’ Use of Multiple Management Control Systems

    Willert, Jeanette

    This dissertation addresses the topic Management Control Systems (MCS) as a Package. Many research studies investigate management and control systems individually, whereas fewer research studies take a holistic view and include a larger part of all the MCS managers use to guide and direct...... subordinates behaviour in the best interest of their companies. In the MCS literature, it is stressed that knowledge is particularly lacking about how managers design and use MCS as a package, and the effectiveness of using the MCS. This dissertation responds to this call by carrying out a large survey among...... executive managers in large companies, a survey that investigates the subject: Effective Management and Control Systems. The focus in the survey is to explore how executive management in large companies design and use their management control systems package. Further, this study is supplemented...

  16. Flight mission control for multiple spacecraft

    Ryan, Robert E.

    1990-10-01

    A plan developed by the Jet Propulsion Laboratory for mission control of unmanned spacecraft is outlined. A technical matrix organization from which, in the past, project teams were formed to uniquely support a mission is replaced in this new plan. A cost effective approach was needed to make best use of limited resources. Mission control is a focal point operations and a good place to start a multimission concept. Co-location and sharing common functions are the keys to obtaining efficiencies at minimum additional risk. For the projects, the major changes are sharing a common operations area and having indirect control of personnel. The plan identifies the still direct link for the mission control functions. Training is a major element in this plan. Personnel are qualified for a position and certified for a mission. This concept is more easily accepted by new missions than the ongoing missions.

  17. Simultaneous Multiple-Location Separation Control

    Greenblatt, David (Inventor)

    2009-01-01

    A method of controlling a shear layer for a fluid dynamic body introduces first periodic disturbances into the fluid medium at a first flow separation location. Simultaneously, second periodic disturbances are introduced into the fluid medium at a second flow separation location. A phase difference between the first and second periodic disturbances is adjusted to control flow separation of the shear layer as the fluid medium moves over the fluid dynamic body.

  18. Least squares reverse time migration of controlled order multiples

    Liu, Y.

    2016-12-01

    Imaging using the reverse time migration of multiples generates inherent crosstalk artifacts due to the interference among different order multiples. Traditionally, least-square fitting has been used to address this issue by seeking the best objective function to measure the amplitude differences between the predicted and observed data. We have developed an alternative objective function by decomposing multiples into different orders to minimize the difference between Born modeling predicted multiples and specific-order multiples from observational data in order to attenuate the crosstalk. This method is denoted as the least-squares reverse time migration of controlled order multiples (LSRTM-CM). Our numerical examples demonstrated that the LSRTM-CM can significantly improve image quality compared with reverse time migration of multiples and least-square reverse time migration of multiples. Acknowledgments This research was funded by the National Nature Science Foundation of China (Grant Nos. 41430321 and 41374138).

  19. Glyphosate accumulation, translocation, and biological effects in Coffea arabica after single and multiple exposures

    Schrübbers, Lars Christoph; Valverde, Bernal E.; Strobel, Bjarne W.

    2016-01-01

    In perennial crops like coffee, glyphosate drift exposure can occur multiple times during its commercial life span. Due to limited glyphosate degradation in higher plants, a potential accumulation of glyphosate could lead to increased biological effects with increased exposure frequency....... In this study, we investigated glyphosate translocation over time, and its concentration and biological effects after single and multiple simulated spray-drift exposures. Additionally, shikimic acid/glyphosate ratios were used as biomarkers for glyphosate binding to its target enzyme.Four weeks after...... the exposure, glyphosate was continuously translocated. Shikimic acid levels were lin-ear correlated with glyphosate levels. After two months, however, glyphosate appeared to have reduced activity. In the greenhouse, multiple applications resulted in higher internal glyphosate concentrations.The time...

  20. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-A review.

    Boyd, Philip W; Collins, Sinead; Dupont, Sam; Fabricius, Katharina; Gattuso, Jean-Pierre; Havenhand, Jonathan; Hutchins, David A; Riebesell, Ulf; Rintoul, Max S; Vichi, Marcello; Biswas, Haimanti; Ciotti, Aurea; Gao, Kunshan; Gehlen, Marion; Hurd, Catriona L; Kurihara, Haruko; McGraw, Christina M; Navarro, Jorge M; Nilsson, Göran E; Passow, Uta; Pörtner, Hans-Otto

    2018-06-01

    Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process-oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science-based policy formulation. © 2018 John Wiley & Sons Ltd.

  1. Arms Control: US and International efforts to ban biological weapons

    1992-12-01

    The Bacteriological (Biological) and Toxin Weapons Convention, the treaty that bans the development, production, and stockpiling and acquisition of biological weapons was opened for signature in 1972 and came into force in 1975 after being ratified by 22 governments, including the depository nations of the USA, the United Kingdom, and the former Soviet Union. In support of the Convention, the USA later established export controls on items used to make biological weapons. Further, in accordance with the 1990 President`s Enhanced Proliferation Control Initiative, actions were taken to redefine and expand US export controls, as well as to encourage multilateral controls through the Australia Group. Thus far, the Convention has not been effective in stopping the development of biological weapons. The principal findings as to the reasons of the failures of the Convention are found to be: the Convention lacks universality, compliance measures are effective, advantage of verification may outweigh disadvantages. Recommendations for mitigating these failures are outlined in this report.

  2. Biological control of tortricids and aphids in strawberries

    Sigsgaard, Lene; Enkegaard, Annie; Eilenberg, Jørgen

    Cropping practice and biological control can contribute to reduced pesticide use in strawberries. Organic strawberries are less attacked by strawberry tortricid and buckwheat flower strips can augment its natural enemies. Against shallot aphid the two-spot ladybird is promising....

  3. Isolation of microorganisms for biological control the moniliophthora roreri

    suarez contreras, liliana yanet; Rangel Riaño, Alba Luz

    2014-01-01

    Moniliophlhora roreri is the causal agent of cocoa Moniliasis, which produces losses of up to 60% of the crop, as it affects only its commercial product, the cob. Biological control appears as an alternative management, using endophytic microorganisms. The reason because of this research came up was that it was aimed to isolate microorganisms with antagonist potential for biological control towards the phytopathogen M. roreri in Norte de Santander. This is done through isolation and identifica...

  4. Control of multiple filamentation in air

    Fibich, Gadi; Eisenmann, Shmuel; Ilan, Boaz; Zigler, Arie

    2004-08-01

    In this Letter we provide what is believed to be the first experimental evidence of suppression of the number of filaments for high-intensity laser pulses propagating in air by beam astigmatism. We also show that the number, pattern, and spatial stability of the filaments can be controlled by varying the angle that a focusing lens makes with the axial direction of propagation. This new methodology can be useful for applications involving atmospheric propagation, such as remote sensing.

  5. Biology and control of hemlock woolly adelgid

    Nathan P. Havill; Ligia C. Vieira; Scott M. Salom

    2014-01-01

    This publication is a substantial revision of FHTET 2001-03, Hemlock Woolly Adelgid, which was published in 2001. This publication contains information on the native range of hemlock and range of hemlock woolly adelgid, the importance of hemlocks in eastern forest ecosystems, and on hosts, life cycle, control, and population trends of the hemlock woolly adelgid.

  6. Controllability and observability of Boolean networks arising from biology

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  7. Stator for a rotating electrical machine having multiple control windings

    Shah, Manoj R.; Lewandowski, Chad R.

    2001-07-17

    A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the bias field.

  8. Control of Multiple Robotic Sentry Vehicles

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  9. Biological effect of penetration controlled irradiation with ion beams

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  10. Implications of Plasmodium vivax Biology for Control, Elimination, and Research

    Olliaro, Piero L.; Barnwell, John W.; Barry, Alyssa; Mendis, Kamini; Mueller, Ivo; Reeder, John C.; Shanks, G. Dennis; Snounou, Georges; Wongsrichanalai, Chansuda

    2016-01-01

    This paper summarizes our current understanding of the biology of Plasmodium vivax, how it differs from Plasmodium falciparum, and how these differences explain the need for P. vivax-tailored interventions. The article further pinpoints knowledge gaps where investments in research are needed to help identify and develop such specific interventions. The principal obstacles to reduce and eventually eliminate P. vivax reside in 1) its higher vectorial capacity compared with P. falciparum due to its ability to develop at lower temperature and over a shorter sporogonic cycle in the vector, allowing transmission in temperate zones and making it less sensitive to vector control measures that are otherwise effective on P. falciparum; 2) the presence of dormant liver forms (hypnozoites), sustaining multiple relapsing episodes from a single infectious bite that cannot be diagnosed and are not susceptible to any available antimalarial except primaquine, with routine deployment restricted by toxicity; 3) low parasite densities, which are difficult to detect with current diagnostics leading to missed diagnoses and delayed treatments (and protracted transmission), coupled with 4) transmission stages (gametocytes) occurring early in acute infections, before infection is diagnosed. PMID:27799636

  11. Implications of Plasmodium vivax Biology for Control, Elimination, and Research.

    Olliaro, Piero L; Barnwell, John W; Barry, Alyssa; Mendis, Kamini; Mueller, Ivo; Reeder, John C; Shanks, G Dennis; Snounou, Georges; Wongsrichanalai, Chansuda

    2016-12-28

    This paper summarizes our current understanding of the biology of Plasmodium vivax, how it differs from Plasmodium falciparum, and how these differences explain the need for P. vivax-tailored interventions. The article further pinpoints knowledge gaps where investments in research are needed to help identify and develop such specific interventions. The principal obstacles to reduce and eventually eliminate P. vivax reside in 1) its higher vectorial capacity compared with P. falciparum due to its ability to develop at lower temperature and over a shorter sporogonic cycle in the vector, allowing transmission in temperate zones and making it less sensitive to vector control measures that are otherwise effective on P. falciparum; 2) the presence of dormant liver forms (hypnozoites), sustaining multiple relapsing episodes from a single infectious bite that cannot be diagnosed and are not susceptible to any available antimalarial except primaquine, with routine deployment restricted by toxicity; 3) low parasite densities, which are difficult to detect with current diagnostics leading to missed diagnoses and delayed treatments (and protracted transmission), coupled with 4) transmission stages (gametocytes) occurring early in acute infections, before infection is diagnosed. © The American Society of Tropical Medicine and Hygiene.

  12. Multiple Model Approaches to Modelling and Control,

    on the ease with which prior knowledge can be incorporated. It is interesting to note that researchers in Control Theory, Neural Networks,Statistics, Artificial Intelligence and Fuzzy Logic have more or less independently developed very similar modelling methods, calling them Local ModelNetworks, Operating......, and allows direct incorporation of high-level and qualitative plant knowledge into themodel. These advantages have proven to be very appealing for industrial applications, and the practical, intuitively appealing nature of the framework isdemonstrated in chapters describing applications of local methods...... to problems in the process industries, biomedical applications and autonomoussystems. The successful application of the ideas to demanding problems is already encouraging, but creative development of the basic framework isneeded to better allow the integration of human knowledge with automated learning...

  13. Local and global control of ecological and biological networks

    Alessandro Ferrarini

    2014-01-01

    Recently, I introduced a methodological framework so that ecological and biological networks can be controlled both from inside and outside by coupling network dynamics and evolutionary modelling. The endogenous control requires the network to be optimized at the beginning of its dynamics (by acting upon nodes, edges or both) so that it will then go inertially to the desired state. Instead, the exogenous control requires that exogenous controllers act upon the network at each time step. By th...

  14. Biological control by ( Coccinella algerica , Kovar 1977) against the ...

    Inputs from chemicals, particularly pesticides, to control crop pests have adverse effects on soil and the environment, among others. To reduce pest attacks, biological control with indigenous predators is the alternative and the cleanest, most environmentally friendly and ecologically balanced way. In order to achieve this ...

  15. Augmentative biological control of arthropods in Latin America

    Lenteren, van J.C.; Bueno, V.H.P.

    2003-01-01

    Augmentative forms of biological control, where natural enemies are periodically introduced, are applied over large areas in various cropping systems in Latin America. About 25% of the world area under augmentative control is situated in this region. Well-known examples are the use of species of the

  16. Nematodes for the biological control of the woodwasp, Sirex noctilio

    Robin A. Bedding

    2007-01-01

    The tylenchid nematode Beddingia (Deladenus) siricidicola (Bedding) is by far the most important control agent of Sirex noctilio F., a major pest of pine plantations. It sterilizes female sirex, is density dependent, can achieve nearly 100 percent parasitism and, as a result of its complicated biology can be readily manipulated for sirex control. Bedding and Iede (2005...

  17. On the possibility of multiple utilization of Bowen's Kale for neutron activation analysis of biological materials

    Marinov, V.M.; Lazarova, M.S.; Mihajlov, M.I.; Apostolov, D.

    1977-01-01

    The results of investigations related to the multiple utilization of Bowen's Kale in developing neutron-activation methods for determining microelements in biological materials carried out in recent years are presented. Bowen's Kale might be used as: (1) experimental material in the development of a method and its verification, i.e. as a test for biological materials; (2) a material where experimental conditions might be optimized; (3) a material for investigating the accuracy, reproducibility and the limit of proof at experimental conditions already defined; (4) a monitor; (5) a multielement volume reference standard for a number of microelements during their simultaneous determination and (6) a standard for verifying the authenticity of the results obtained. In this manner, a reliable criterion for comparison of the potentialities, the accuracy, reproducibility, the limits of proof and the authenticity of the neutron-activation methods of determining microelements in biological materials is introduced. (author)

  18. Insect pathogens as biological control agents: Back to the future.

    Lacey, L A; Grzywacz, D; Shapiro-Ilan, D I; Frutos, R; Brownbridge, M; Goettel, M S

    2015-11-01

    entomopathogenic taxa in the Phylum Ascomycota. Although these fungi have been traditionally regarded exclusively as pathogens of arthropods, recent studies have demonstrated that they occupy a great diversity of ecological niches. Entomopathogenic fungi are now known to be plant endophytes, plant disease antagonists, rhizosphere colonizers, and plant growth promoters. These newly understood attributes provide possibilities to use fungi in multiple roles. In addition to arthropod pest control, some fungal species could simultaneously suppress plant pathogens and plant parasitic nematodes as well as promote plant growth. A greater understanding of fungal ecology is needed to define their roles in nature and evaluate their limitations in biological control. More efficient mass production, formulation and delivery systems must be devised to supply an ever increasing market. More testing under field conditions is required to identify effects of biotic and abiotic factors on efficacy and persistence. Lastly, greater attention must be paid to their use within integrated pest management programs; in particular, strategies that incorporate fungi in combination with arthropod predators and parasitoids need to be defined to ensure compatibility and maximize efficacy. Entomopathogenic nematodes (EPNs) in the genera Steinernema and Heterorhabditis are potent MCAs. Substantial progress in research and application of EPNs has been made in the past decade. The number of target pests shown to be susceptible to EPNs has continued to increase. Advancements in this regard primarily have been made in soil habitats where EPNs are shielded from environmental extremes, but progress has also been made in use of nematodes in above-ground habitats owing to the development of improved protective formulations. Progress has also resulted from advancements in nematode production technology using both in vivo and in vitro systems; novel application methods such as distribution of infected host cadavers; and

  19. Biological control of Mycosphaerella fragariae in strawberry culture

    Anderson Luis Heling

    2015-12-01

    Full Text Available The Mycosphaerella spot is one of the main foliar diseases of strawberry, degrating great leaf regions and reducing the photosynthetic area. Its control is mainly by the use of chemical fungicides, but, due the increasing demand for food free of pesticide, alternative control methods have been researched, such as biological control. This work aimed to evaluate the effect on strawberry plants, treated with the biological control agents Bacillus cereus, Saccharomyces boulardii and Saccharomyces cerevisiae, in the severity of Mycosphaerella fragariae, productivity and in the activity of β-1.3 glucanases, peroxidases and chitinases enzymes. It was verified that S. cerevisiae and B. cereus treatments were similar to fungicide for disease control. However, even reducing the severity of the disease, there was no increase in productivity, and the different control agents do not cause changes in the evaluated defense mechanisms.

  20. The potential of TaqMan Array Cards for detection of multiple biological agents by real-time PCR.

    Phillip A Rachwal

    Full Text Available The TaqMan Array Card architecture, normally used for gene expression studies, was evaluated for its potential to detect multiple bacterial agents by real-time PCR. Ten PCR assays targeting five biological agents (Bacillus anthracis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis, and Yersinia pestis were incorporated onto Array Cards. A comparison of PCR performance of each PCR in Array Card and singleplex format was conducted using DNA extracted from pure bacterial cultures. When 100 fg of agent DNA was added to Array Card channels the following levels of agent detection (where at least one agent PCR replicate returned a positive result were observed: Y. pestis 100%, B. mallei & F. tularensis 93%; B. anthracis 71%; B. pseudomallei 43%. For B. mallei & pseudomallei detection the BPM2 PCR, which detects both species, outperformed PCR assays specific to each organism indicating identification of the respective species would not be reproducible at the 100 fg level. Near 100% levels of detection were observed when 100 fg of DNA was added to each PCR in singleplex format with singleplex PCRs also returning sporadic positives at the 10 fg per PCR level. Before evaluating the use of Array Cards for the testing of environmental and clinical sample types, with potential levels of background DNA and PCR inhibitors, users would therefore have to accept a 10-fold reduction in sensitivity of PCR assays on the Array Card format, in order to benefit for the capacity to test multiple samples for multiple agents. A two PCR per agent strategy would allow the testing of 7 samples for the presence of 11 biological agents or 3 samples for 23 biological agents per card (with negative control channels.

  1. Multilateral Telecoordinated Control of Multiple Robots With Uncertain Kinematics.

    Zhai, Di-Hua; Xia, Yuanqing

    2017-06-06

    This paper addresses the telecoordinated control of multiple robots in the simultaneous presence of asymmetric time-varying delays, nonpassive external forces, and uncertain kinematics/dynamics. To achieve the control objective, a neuroadaptive controller with utilizing prescribed performance control and switching control technique is developed, where the basic idea is to employ the concept of motion synchronization in each pair of master-slave robots and among all slave robots. By using the multiple Lyapunov-Krasovskii functionals method, the state-independent input-to-output practical stability of the closed-loop system is established. Compared with the previous approaches, the new design is straightforward and easier to implement and is applicable to a wider area. Simulation results on three pairs of three degrees-of-freedom robots confirm the theoretical findings.

  2. Performance effect of multiple control forms in a Lean organization

    Kristensen, Thomas Borup; Israelsen, Poul

    2012-01-01

    Over the last decades Lean has developed into a prominent management philosophy reaching beyond shop floor tools. However, substantial support of performance effects from Lean is still scarce and at best with mixed results. Recently, research has turned its focus towards perceiving Lean...... as a control package. In this paper we present statistical support for enhanced performance coming from Lean. Furthermore, our results strongly support the perception of Lean as a set of multiple control forms (output, behavioral, and social controls) that complement each other. Therefore, performance...... is increased if the average level of control forms is increased, and performance is further increased if the control forms are balanced at the same level representing a complementary effect between them. Our data are archival data spanning multiple years in a strong Lean organization. The dependent performance...

  3. Transcription control engineering and applications in synthetic biology

    Michael D. Engstrom

    2017-09-01

    Full Text Available In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein, a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors, giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  4. Transcription control engineering and applications in synthetic biology.

    Engstrom, Michael D; Pfleger, Brian F

    2017-09-01

    In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators ( cis -factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators ( trans- factors), giving examples of how cis- and trans -acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli , we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  5. Conservation biological control and enemy diversity on a landscape scale

    Tscharntke, T.; Bommarco, R.; Clough, Y.; Crist, T.O.; Kleijn, D.; Rand, T.A.; Tylianakis, J.M.; Nouhuys, S.; Vidal, S.

    2007-01-01

    Conservation biological control in agroecosystems requires a landscape management perspective, because most arthropod species experience their habitat at spatial scales beyond the plot level, and there is spillover of natural enemies across the crop–noncrop interface. The species pool in the

  6. Methylene Diphosphonate Chemical and Biological control of MDP complex

    Aungurarat, Angkanan; Ngamprayad, Tippanan

    2000-01-01

    Technetium-9 9m MDP easy prepared from MDP kits which different sources such as OAP (In house), SIGMA. The resulting Tc 9 9m -MDP preparations were controlled in chemical and biological tests to compare the different results in these cases: radiochemical purity, the quantity of starting material and biodistribution result

  7. Biological control agent for mosquito larvae: Review on the killifish ...

    This review attempts to give an account on the recent advances on the killifish Aphanius dispar dispar as a biological control agent for mosquito larvae. Thirty six (36) articles of literature (scientific papers, technical and workshop reports) on this subject covering the period between 1980 and 2009 were reviewed.

  8. Studies on bacterial flora and biological control agent of Cydia ...

    In the present study, in order to find a more effective and safe biological control agent against Cydia pomonella, we investigated the bacterial flora and tested them for insecticidal effects on this insect. According to morphological, physiological and biochemical tests, bacterial flora were identified as Proteus rettgeri (Cp1), ...

  9. Stakeholder perceptions: Biological control of Russian olive (Elaeagnus angustifolia)

    Sharlene E. Sing; Kevin J. Delaney

    2016-01-01

    An online survey was distributed through email lists provided by various stakeholder groups on behalf of the International Consortium for Biological Control of Russian Olive in spring of 2012. A total of 392 respondents replied from 24 U.S. states and 1 Canadian province. Questions posed in the survey were designed to identify and categorize 1) stakeholders by...

  10. The perception of corn farmers about biological control of Caradrina ...

    The purpose of this study was to analyze the perception of corn farmers about biological control of Caradrina by Braconid in Dezful Township, Khouzestan Province, Iran. The method used in this study was correlative descriptive and causal relation. A random sample of Dezful township corn farmers of Khouzestan Province, ...

  11. Funding needed for assessments of weed biological control

    John L. Maron; Dean E. Pearson; Stephen M. Hovick; Walter P. Carson

    2010-01-01

    Invasive non-native plants are a serious economic and ecological problem worldwide, and major efforts are therefore devoted to reducing weed abundance in agricultural and natural settings. Effective options for reducing invasive abundance and spread are few, although one common approach is biological control - the introduction of specialist herbivores or pathogens from...

  12. Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment.

    Prevost, Luanna B; Lemons, Paula P

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. © 2016 L. B. Prevost and P. P. Lemons. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Biologically controlled minerals as potential indicators of life

    Schwartz, D. E.; Mancinelli, R. L.; Kaneshiro, E.

    1991-01-01

    Minerals can be produced and deposited either by abiotic or biologic means. Regardless of their origin, mineral crystals reflect the environment conditions (e.g., temperature, pressure, chemical composition, and redox potential) present during crystal formation. Biologically-produced mineral crystals are grown or reworked under the control of their host organism and reflect an environment different from the abiotic environment. In addition, minerals of either biologic or abiotic origin have great longevities. For these reasons, biologically produced minerals have been proposed as biomarkers. Biomarkers are key morphological, chemical, and isotopic signatures of living systems that can be used to determine if life processes have occurred. Studies of biologically controlled minerals produced by the protist, Paramecium tetraurelia, were initiated since techniques have already been developed to culture them and isolate their crystalline material, and methods are already in place to analyze this material. Two direct crystalline phases were identified. One phase, whose chemical composition is high in Mg, was identified as struvite. The second phase, whose chemical composition is high in Ca, has not been previously found occurring naturally and may be considered a newly discovered material. Analyses are underway to determine the characteristics of these minerals in order to compare them with characteristics of these minerals in order to compare them with characteristics of minerals formed abiotically, but with the same chemical composition.

  14. Clinical and biological features of multiple myeloma involving the gastrointestinal system.

    Talamo, Giampaolo; Cavallo, Federica; Zangari, Maurizio; Barlogie, Bart; Lee, Choon-Kee; Pineda-Roman, Mauricio; Kiwan, Elias; Krishna, Somashekar; Tricot, Guido

    2006-07-01

    We report 24 cases of multiple myeloma (MM) with involvement of the gastrointestinal (GI) system. We found a strong association with high A lactate dehydrogenase levels, plasmablastic morphology, and A unfavorable karyotype. GI involvement at the time of initial diagnosis was much rarer than later in the course of the disease. The A median survival after diagnosis of GI involvement was 7 months. Among 13 patients treated with stem cell transplantation, the response rate was 92%, and median progression-free survival was 4 months. We conclude that MM involving the GI system is associated with adverse biological features and with short-lasting remissions, even after A high-dose chemotherapy.

  15. Multiple daily fractionation in radiotherapy: biological rationale and preliminary clinical experiences

    Arcangeli, G [Instituto Medico Scientifico, Rome (Italy). Dept. of Oncology; Mauro, F; Morelli, D; Nervi, C

    1979-09-01

    The biological bases of radiation dose fractionation are reviewed and discussed with special emphasis on reassortment. Experimental data on animal model systems are presented to clarify that reassortment has to be added to sublethal damage repair and reoxygenation in the rationale for an optimized radiotherapy course according to tumor cell kinetics. Clinical results on several human tumors treated with twice or thrice daily fractions are described. These results show that some clinically radioresistant tumors (especially if not characterized by a relatively long clinical doubling line) can be satisfactorily dealt with using multiple daily fractionation. Clinical observations indicate that a relatively high cumulative daily dose (200 + 150 + 150 rad) can be safely administered.

  16. Economic Benefit for Cuban Laurel Thrips Biological Control.

    Shogren, C; Paine, T D

    2016-02-01

    The Cuban laurel thrips, Gynaikothrips ficorum Marchal (Thysanoptera: Phlaeothripidae), is a critical insect pest of Ficus microcarpa in California urban landscapes and production nurseries. Female thrips feed and oviposit on young Ficus leaves, causing the expanding leaves to fold or curl into a discolored leaf gall. There have been attempts to establish specialist predator natural enemies of the thrips, but no success has been reported. We resampled the same areas in 2013-2014 where we had released Montandoniola confusa (= morguesi) Streito and Matocq (Hemiptera: Anthocoridae) in southern California in 1995 but had been unable to recover individuals in 1997-1998. Thrips galls were significantly reduced in all three of the locations in the recent samples compared with the earlier samples. M. confusa was present in all locations and appears to be providing successful biological control. The value of the biological control, the difference between street trees in good foliage condition and trees with poor foliage, was $58,766,166. If thrips damage reduced the foliage to very poor condition, the value of biological control was $73,402,683. Total cost for the project was $61,830. The benefit accrued for every dollar spent on the biological control of the thrips ranged from $950, if the foliage was in poor condition, to $1,187, if the foliage was in very poor condition. The value of urban forest is often underappreciated. Economic analyses that clearly demonstrate the very substantial rates of return on investment in successful biological control in urban forests provide compelling arguments for supporting future efforts. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Evaluation of Orius species for biological control of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae)

    Tommasini, M.G.

    2003-01-01

    Key words: Thysanoptera, Frankliniella occidentalis, Heteroptera, Orius leavigatu, Orius majusculu, Orius niger, Orius insidiosus, Biology, Diapause, Biological control.The overall aim of this research was to develop a biological control programme for F. occidentalis through the selection of

  18. Excessive biologic response to IFNβ is associated with poor treatment response in patients with multiple sclerosis.

    Richard A Rudick

    Full Text Available BACKGROUND: Interferon-beta (IFNβ is used to inhibit disease activity in multiple sclerosis (MS, but its mechanisms of action are incompletely understood, individual treatment response varies, and biological markers predicting response to treatment have yet to be identified. METHODS: The relationship between the molecular response to IFNβ and treatment response was determined in 85 patients using a longitudinal design in which treatment effect was categorized by brain magnetic resonance imaging as good (n = 70 or poor response (n = 15. Molecular response was quantified using a customized cDNA macroarray assay for 166 IFN-regulated genes (IRGs. RESULTS: The molecular response to IFNβ differed significantly between patients in the pattern and number of regulated genes. The molecular response was strikingly stable for individuals for as long as 24 months, however, suggesting an individual 'IFN response fingerprint'. Unexpectedly, patients with poor response showed an exaggerated molecular response. IRG induction ratios demonstrated an exaggerated molecular response at both the first and 6-month IFNβ injections. CONCLUSION: MS patients exhibit individually unique but temporally stable biological responses to IFNβ. Poor treatment response is not explained by the duration of biological effects or the specific genes induced. Rather, individuals with poor treatment response have a generally exaggerated biological response to type 1 IFN injections. We hypothesize that the molecular response to type I IFN identifies a pathogenetically distinct subset of MS patients whose disease is driven in part by innate immunity. The findings suggest a strategy for biologically based, rational use of IFNβ for individual MS patients.

  19. Epigenetics and Why Biological Networks are More Controllable than Expected

    Motter, Adilson

    2013-03-01

    A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behavior or fail. In this talk, I will show that it is possible to exploit this same principle to control network behavior. This approach takes advantage of the nonlinear dynamics inherent to real networks, and allows bringing the system to a desired target state even when this state is not directly accessible or the linear counterpart is not controllable. Applications show that this framework permits both reprogramming a network to a desired task as well as rescuing networks from the brink of failure, which I will illustrate through various biological problems. I will also briefly review the progress our group has made over the past 5 years on related control of complex networks in non-biological domains.

  20. Accelerated spike resampling for accurate multiple testing controls.

    Harrison, Matthew T

    2013-02-01

    Controlling for multiple hypothesis tests using standard spike resampling techniques often requires prohibitive amounts of computation. Importance sampling techniques can be used to accelerate the computation. The general theory is presented, along with specific examples for testing differences across conditions using permutation tests and for testing pairwise synchrony and precise lagged-correlation between many simultaneously recorded spike trains using interval jitter.

  1. Chance Events in Career Development: Influence, Control and Multiplicity

    Bright, Jim E. H.; Pryor, Robert G. L.; Chan, Eva Wing Man; Rijanto, Jeniyanti

    2009-01-01

    This article reports three studies on the nature and impact of chance events. The first study investigated chance events in terms of the dimensions of influence and control. The second and third studies investigated the effects of multiplicity of chance events on career development are in terms of respondents' own careers and then in terms of…

  2. Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021

  3. Multivariate two-part statistics for analysis of correlated mass spectrometry data from multiple biological specimens.

    Taylor, Sandra L; Ruhaak, L Renee; Weiss, Robert H; Kelly, Karen; Kim, Kyoungmi

    2017-01-01

    High through-put mass spectrometry (MS) is now being used to profile small molecular compounds across multiple biological sample types from the same subjects with the goal of leveraging information across biospecimens. Multivariate statistical methods that combine information from all biospecimens could be more powerful than the usual univariate analyses. However, missing values are common in MS data and imputation can impact between-biospecimen correlation and multivariate analysis results. We propose two multivariate two-part statistics that accommodate missing values and combine data from all biospecimens to identify differentially regulated compounds. Statistical significance is determined using a multivariate permutation null distribution. Relative to univariate tests, the multivariate procedures detected more significant compounds in three biological datasets. In a simulation study, we showed that multi-biospecimen testing procedures were more powerful than single-biospecimen methods when compounds are differentially regulated in multiple biospecimens but univariate methods can be more powerful if compounds are differentially regulated in only one biospecimen. We provide R functions to implement and illustrate our method as supplementary information CONTACT: sltaylor@ucdavis.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. A theoretical approach on controlling agricultural pest by biological controls.

    Mondal, Prasanta Kumar; Jana, Soovoojeet; Kar, T K

    2014-03-01

    In this paper we propose and analyze a prey-predator type dynamical system for pest control where prey population is treated as the pest. We consider two classes for the pest namely susceptible pest and infected pest and the predator population is the natural enemy of the pest. We also consider average delay for both the predation rate i.e. predation to the susceptible pest and infected pest. Considering a subsystem of original system in the absence of infection, we analyze the existence of all possible non-negative equilibria and their stability criteria for both the subsystem as well as the original system. We present the conditions for transcritical bifurcation and Hopf bifurcation in the disease free system. The theoretical evaluations are demonstrated through numerical simulations.

  5. Thresholds for HLB vector control in infected commercial citrus and compatibility with biological control

    Monzo, C.; Hendricks, K.; Roberts, P.; Stansly, P. A.

    2014-01-01

    Control of the HLB vector, Diaphorina citri Kuwayama, is considered a basic component for management this disease, even in a high HLB incidence scenario. Such control is mostly chemically oriented. However, over use of insecticides would increase costs and be incompatible with biological control. Establishment of economic thresholds for psyllid control under different price scenarios could optimize returns on investment.

  6. Quality control of X-ray irradiator by biological markers

    Miura, Miwa; Lukmanul Hakkim, F.; Yoshida, Masahiro; Matsuda, Naoki; Morita, Naoko

    2011-01-01

    The exposure of animals or cultured cells to radiation is the essential and common step in experimental researches to elucidate biological effects of radiation. When an X-ray generator is used as a radiation source, physical parameters including dose, dose rate, and the energy spectrum of X-ray play crucial roles in biological outcome. Therefore, those parameters are the important points to be checked in quality control and to be carefully considered in advance to the irradiation to obtain the accurate and reproductive results. Here we measured radiation dose emitted from the X-ray irradiator for research purposes by using clonogenic survival of cultured mammalian cells as a biological marker in parallel with physical dosimetry. The results drawn from both methods exhibited good consistency in the dose distribution on the irradiation stage. Furthermore, the close relationship was observed between cell survival and the photon energy spectrum by using different filter components. These results suggest that biological dosimetry is applicable to quality control of X-ray irradiator in adjunct to physical dosimetry and that it possibly helps better understanding of the optimal irradiating condition by X-ray users in life-science field. (author)

  7. Dynamic coordinated control laws in multiple agent models

    Morgan, David S.; Schwartz, Ira B.

    2005-01-01

    We present an active control scheme of a kinetic model of swarming. It has been shown previously that the global control scheme for the model, presented in [Systems Control Lett. 52 (2004) 25], gives rise to spontaneous collective organization of agents into a unified coherent swarm, via steering controls and utilizing long-range attractive and short-range repulsive interactions. We extend these results by presenting control laws whereby a single swarm is broken into independently functioning subswarm clusters. The transition between one coordinated swarm and multiple clustered subswarms is managed simply with a homotopy parameter. Additionally, we present as an alternate formulation, a local control law for the same model, which implements dynamic barrier avoidance behavior, and in which swarm coherence emerges spontaneously

  8. Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity

    Waseem, Muhammad; Irfan, Muhammad; Qamar, Shahid

    2015-06-01

    We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch-Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme.

  9. The Multiplicity of Controls and the Making of Innovation

    Revellino, Silvana; Mouritsen, Jan

    2009-01-01

    are mediated by unique sets of technologies of control. In this process the innovation changes and adapts. This thesis is drawn from the case of Italian Autostrade's innovation Telepass which was an automatic toll collection devise developed to make traffic fast, safe and fluid. Throughout its development...... satisfaction, productivity and highly pointed achievement targets. This multiplicity of controls changed and adapted to the innovation as the innovation unfolds. The controls were part of the innovation more likely than an external device to make it transparent. They engaged the individual trials and changed...

  10. Biological control and invading freshwater snails. A case study.

    Pointier, J P; Augustin, D

    1999-12-01

    Introductions of four species of freshwater snails occurred between 1972 and 1996 onto Guadeloupe Island. Two of them, Melanoides tuberculata and Marisa cornuarietis, were subsequently used as biological control agents against Biomphalaria glabrata, the snail intermediate host of intestinal schistosomiasis. In 1996, a general survey was carried out in 134 sites which had already been investigated in 1972. The total number of mollusc species had increased from 19 to 21. Site numbers housing B. glabrata and two other species had strongly declined. This decline may be mainly attributed to a competitive displacement by M. tuberculata and M. cornuarietis as illustrated by several biological control programmes. There were no changes in the remainder of the malacological fauna.

  11. Design control considerations for biologic-device combination products.

    Anderson, Dave; Liu, Roger; Anand Subramony, J; Cammack, Jon

    2017-03-01

    Combination products are therapeutic and diagnostic medical products that combine drugs, devices, and/or biological products with one another. Historically, biologics development involved identifying efficacious doses administered to patients intravenously or perhaps by a syringe. Until fairly recently, there has been limited focus on developing an accompanying medical device, such as a prefilled syringe or auto-injector, to enable easy and more efficient delivery. For the last several years, and looking forward, where there may be little to distinguish biologics medicines with relatively similar efficacy profiles, the biotechnology market is beginning to differentiate products by patient-focused, biologic-device based combination products. As innovative as biologic-device combination products are, they can pose considerable development, regulatory, and commercialization challenges due to unique physicochemical properties and special clinical considerations (e.g., dosing volumes, frequency, co-medications, etc.) of the biologic medicine. A biologic-device combination product is a marriage between two partners with "cultural differences," so to speak. There are clear differences in the development, review, and commercialization processes of the biologic and the device. When these two cultures come together in a combination product, developers and reviewers must find ways to address the design controls and risk management processes of both the biologic and device, and knit them into a single entity with supporting product approval documentation. Moreover, digital medicine and connected health trends are pushing the boundaries of combination product development and regulations even further. Despite an admirable cooperation between industry and FDA in recent years, unique product configurations and design features have resulted in review challenges. These challenges have prompted agency reviewers to modernize consultation processes, while at the same time, promoting

  12. Controlled polymer synthesis--from biomimicry towards synthetic biology.

    Pasparakis, George; Krasnogor, Natalio; Cronin, Leroy; Davis, Benjamin G; Alexander, Cameron

    2010-01-01

    The controlled assembly of synthetic polymer structures is now possible with an unprecedented range of functional groups and molecular architectures. In this critical review we consider how the ability to create artificial materials over lengthscales ranging from a few nm to several microns is generating systems that not only begin to mimic those in nature but also may lead to exciting applications in synthetic biology (139 references).

  13. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions

    Kaufman, Leyla V.; Wright, Mark G.

    2017-01-01

    The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in H...

  14. Nonresonant Multiple-Pulse Control of Molecular Motions in Liquid

    Nikiforov V.G.

    2015-01-01

    Full Text Available We propose the implementation of the multiple-pulse excitation for manipulation of the molecular contributions to the optically-heterodyne-detected optical-Kerr-effect. The key parameters controlling the specificity of the multiple-pulse excitation scenarios are the pulses durations, the delays between pulses, the relation between the pump pulses amplitudes and the pulses polarizations. We model the high-order optical responses and consider some principles of the scenarios construction. We show that it is possible to adjust the excitation scenario in such a way that the some responses can be removed from detected signal along with the enhancement of the interested response amplitude. The theoretical analysis and first experimental data reveal that the multiple-pulse excitation technique can be useful for the selective spectroscopy of the molecular vibrations and rotations in liquid.

  15. Biologically-Inspired Control Architecture for Musical Performance Robots

    Jorge Solis

    2014-10-01

    Full Text Available At Waseda University, since 1990, the authors have been developing anthropomorphic musical performance robots as a means for understanding human control, introducing novel ways of interaction between musical partners and robots, and proposing applications for humanoid robots. In this paper, the design of a biologically-inspired control architecture for both an anthropomorphic flutist robot and a saxophone playing robot are described. As for the flutist robot, the authors have focused on implementing an auditory feedback system to improve the calibration procedure for the robot in order to play all the notes correctly during a performance. In particular, the proposed auditory feedback system is composed of three main modules: an Expressive Music Generator, a Feed Forward Air Pressure Control System and a Pitch Evaluation System. As for the saxophone-playing robot, a pressure-pitch controller (based on the feedback error learning to improve the sound produced by the robot during a musical performance was proposed and implemented. In both cases studied, a set of experiments are described to verify the improvements achieved while considering biologically-inspired control approaches.

  16. Self-Organized Biological Dynamics and Nonlinear Control

    Walleczek, Jan

    2006-04-01

    The frontiers and challenges of biodynamics research Jan Walleczek; Part I. Nonlinear Dynamics in Biology and Response to Stimuli: 1. External signals and internal oscillation dynamics - principal aspects and response of stimulated rhythmic processes Friedemann Kaiser; 2. Nonlinear dynamics in biochemical and biophysical systems: from enzyme kinetics to epilepsy Raima Larter, Robert Worth and Brent Speelman; 3. Fractal mechanisms in neural control: human heartbeat and gait dynamics in health and disease Chung-Kang Peng, Jeffrey M. Hausdorff and Ary L. Goldberger; 4. Self-organising dynamics in human coordination and perception Mingzhou Ding, Yanqing Chen, J. A. Scott Kelso and Betty Tuller; 5. Signal processing in biochemical reaction networks Adam P. Arkin; Part II. Nonlinear Sensitivity of Biological Systems to Electromagnetic Stimuli: 6. Electrical signal detection and noise in systems with long-range coherence Paul C. Gailey; 7. Oscillatory signals in migrating neutrophils: effects of time-varying chemical and electrical fields Howard R. Petty; 8. Enzyme kinetics and nonlinear biochemical amplification in response to static and oscillating magnetic fields Jan Walleczek and Clemens F. Eichwald; 9. Magnetic field sensitivity in the hippocampus Stefan Engström, Suzanne Bawin and W. Ross Adey; Part III. Stochastic Noise-Induced Dynamics and Transport in Biological Systems: 10. Stochastic resonance: looking forward Frank Moss; 11. Stochastic resonance and small-amplitude signal transduction in voltage-gated ion channels Sergey M. Bezrukov and Igor Vodyanoy; 12. Ratchets, rectifiers and demons: the constructive role of noise in free energy and signal transduction R. Dean Astumian; 13. Cellular transduction of periodic and stochastic energy signals by electroconformational coupling Tian Y. Tsong; Part IV. Nonlinear Control of Biological and Other Excitable Systems: 14. Controlling chaos in dynamical systems Kenneth Showalter; 15. Electromagnetic fields and biological

  17. Adaptive Fuzzy-Lyapunov Controller Using Biologically Inspired Swarm Intelligence

    Alejandro Carrasco Elizalde

    2008-01-01

    Full Text Available The collective behaviour of swarms produces smarter actions than those achieved by a single individual. Colonies of ants, flocks of birds and fish schools are examples of swarms interacting with their environment to achieve a common goal. This cooperative biological intelligence is the inspiration for an adaptive fuzzy controller developed in this paper. Swarm intelligence is used to adjust the parameters of the membership functions used in the adaptive fuzzy controller. The rules of the controller are designed using a computing-with-words approach called Fuzzy-Lyapunov synthesis to improve the stability and robustness of an adaptive fuzzy controller. Computing-with-words provides a powerful tool to manipulate numbers and symbols, like words in a natural language.

  18. Memory-guided attention: Control from multiple memory systems

    Hutchinson, J. Benjamin; Turk-Browne, Nicholas B.

    2012-01-01

    Attention is strongly influenced by both external stimuli and internal goals. However, this useful dichotomy does not readily capture the ubiquitous and often automatic contribution of past experience stored in memory. We review recent evidence about how multiple memory systems control attention, consider how such interactions are manifested in the brain, and highlight how this framework for ‘memory-guided attention’ might help systematize previous findings and guide future research.

  19. Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

    2007-12-01

    Neubauer [54][55]. 87 VII. LQR/APF CONTROL ALGORITHM APPROACH The LQR approach can be recursively applied to the multiple spacecraft close... Neubauer and Swartwout’s research [55]. It is generally possible to select a closed map over which the algorithm is stable and robust. For these...can be easily edited and transferred into video format for presentations. Modifications of camera key frames ( camera position and angle) and

  20. Stability analysis of multiple-robot control systems

    Wen, John T.; Kreutz, Kenneth

    1989-01-01

    In a space telerobotic service scenario, cooperative motion and force control of multiple robot arms are of fundamental importance. Three paradigms to study this problem are proposed. They are distinguished by the set of variables used for control design. They are joint torques, arm tip force vectors, and an accelerated generalized coordinate set. Control issues related to each case are discussed. The latter two choices require complete model information, which presents practical modeling, computational, and robustness problems. Therefore, focus is on the joint torque control case to develop relatively model independent motion and internal force control laws. The rigid body assumption allows the motion and force control problems to be independently addressed. By using an energy motivated Lyapunov function, a simple proportional derivative plus gravity compensation type of motion control law is always shown to be stabilizing. The asymptotic convergence of the tracing error to zero requires the use of a generalized coordinate with the contact constraints taken into account. If a non-generalized coordinate is used, only convergence to a steady state manifold can be concluded. For the force control, both feedforward and feedback schemes are analyzed. The feedback control, if proper care has been taken, exhibits better robustness and transient performance.

  1. Biopesticides: An option for the biological pest control

    Eusebio Nava Pérez

    2012-09-01

    Full Text Available The indiscriminate use of synthetic pesticides and the problems that its cause to human health, agriculture and the environment is comment, this paper also present general aspects about of biopesticides, and their uses in the biological pest control. By the nature these can be safely used in a sustainable agriculture. An example is the use of botanical pesticides whose active ingredient are the terpenes, alkaloids and phenolics, these have insecticide effects for many agriculture pests; also its are less expensive, are biodegradable and safe for humans and the environment, however havelittle residuality. Microbial pesticides are being introduced successfully to pests control in important crops such as; coffee, sugar cane, beans and corn. These products contain bacteria, fungi, viruses or nematodes. However, few entomopathogenic agents have been developed as effective biocontrol agents, one of them is the bacterium Bacillus thuringiensis (Berlinier for control of armyworm Spodoptera frugiperda (J.E Smith covering about 74% of the market,fungus 10% , viruses 5% and 11% others. Other upstanding case is the use of the fungus Beauveria bassiana (Balsamoagainst bean weevil Acanthoscelides obtectus (Say. Biopesticides have shown that when are used properly in the biological pest control its favor the practice of a sustainable agriculture, with less dependence of chemical insecticides.

  2. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. © 2016 The Author(s).

  3. Biological stability of drinking water: controlling factors, methods and challenges

    Emmanuelle ePrest

    2016-02-01

    Full Text Available Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g. development of opportunistic pathogens, aesthetic (e.g. deterioration of taste, odour, colour or operational (e.g. fouling or biocorrosion of pipes problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors such as (i type and concentration of available organic and inorganic nutrients, (ii type and concentration of residual disinfectant, (iii presence of predators such as protozoa and invertebrates, (iv environmental conditions such as water temperature, and (v spatial location of microorganisms (bulk water, sediment or biofilm. Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i existing knowledge on biological stability controlling factors and (ii how these factors are affected by drinking water production and distribution conditions. In addition, (iii the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discuss how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to

  4. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  5. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    Prest, Emmanuelle I.

    2016-02-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  6. Phase transitions in distributed control systems with multiplicative noise

    Allegra, Nicolas; Bamieh, Bassam; Mitra, Partha; Sire, Clément

    2018-01-01

    Contemporary technological challenges often involve many degrees of freedom in a distributed or networked setting. Three aspects are notable: the variables are usually associated with the nodes of a graph with limited communication resources, hindering centralized control; the communication is subject to noise; and the number of variables can be very large. These three aspects make tools and techniques from statistical physics particularly suitable for the performance analysis of such networked systems in the limit of many variables (analogous to the thermodynamic limit in statistical physics). Perhaps not surprisingly, phase-transition like phenomena appear in these systems, where a sharp change in performance can be observed with a smooth parameter variation, with the change becoming discontinuous or singular in the limit of infinite system size. In this paper, we analyze the so called network consensus problem, prototypical of the above considerations, that has previously been analyzed mostly in the context of additive noise. We show that qualitatively new phase-transition like phenomena appear for this problem in the presence of multiplicative noise. Depending on dimensions, and on the presence or absence of a conservation law, the system performance shows a discontinuous change at a threshold value of the multiplicative noise strength. In the absence of the conservation law, and for graph spectral dimension less than two, the multiplicative noise threshold (the stability margin of the control problem) is zero. This is reminiscent of the absence of robust controllers for certain classes of centralized control problems. Although our study involves a ‘toy’ model, we believe that the qualitative features are generic, with implications for the robust stability of distributed control systems, as well as the effect of roundoff errors and communication noise on distributed algorithms.

  7. Multiple-Vehicle Longitudinal Collision Mitigation by Coordinated Brake Control

    Xiao-Yun Lu

    2014-01-01

    Full Text Available Rear-end collision often leads to serious casualties and traffic congestion. The consequences are even worse for multiple-vehicle collision. Many previous works focused on collision warning and avoidance strategies of two consecutive vehicles based on onboard sensor detection only. This paper proposes a centralized control strategy for multiple vehicles to minimize the impact of multiple-vehicle collision based on vehicle-to-vehicle communication technique. The system is defined as a coupled group of vehicles with wireless communication capability and short following distances. The safety relationship can be represented as lower bound limit on deceleration of the first vehicle and upper bound on maximum deceleration of the last vehicle. The objective is to determine the desired deceleration for each vehicle such that the total impact energy is minimized at each time step. The impact energy is defined as the relative kinetic energy between a consecutive pair of vehicles (approaching only. Model predictive control (MPC framework is used to formulate the problem to be constrained quadratic programming. Simulations show its effectiveness on collision mitigation. The developed algorithm has the potential to be used for progressive market penetration of connected vehicles in practice.

  8. Biological Efficacy of Herbicides for Weed Control in Noncropped Areas

    Tsvetanka Dimitrova

    2009-01-01

    Full Text Available An increasing problem facing agricultural producers is the invasion of weeds, perennial in particular, so that implementation of industrial technologies is impossible without their highly efficient and rational control. For the purpose of studying efficient herbicides for weed control in noncropped areas (stubbles, a biological study of five total systemic herbicides was conducted in areas under natural weed infestation and pressure from othersurrounding weeds at the Institute of Forage Crops in Pleven in 2005-2007. The trials were carried out in field conditions using the block method with plot size of 20 m². Treatment was conducted at the predominant stage of budding of perennial dicotyledonous weeds and earing of monocotyledonous weeds. Herbicidal efficacy was recorded on the EWRS 9-score scale (0-100% killed weeds = score 9-1. It was found that treatment of noncropped areas (stubbles with the total systemic herbicides Touchdown System 4 (360 g/l glyphosate; Cosmic (360 g/l glyphosate; Roundup Plus (441 g/l glyphosate potassium salt; Leon 36 SL (360 g/l glyphosate and Glyphos Super 45 SL (450 g/l glyphosate was highly efficient, so that it was a successful element of a strategy for controlling weeds of different biological groups, and was especially effective against perennial weeds.

  9. Control of the cassava mealybug in Africa: lessons from a biological ...

    Control of the cassava mealybug in Africa: lessons from a biological control project. ... Such studies are needed in order to attribute the observed effects to various causes and to advance the science of biological control. ( 4) It is concluded that biological control is the basis ofiPM but cannot usually be manipulated by the ...

  10. 75 FR 64984 - Availability of an Environmental Assessment for a Biological Control Agent for Hawkweeds

    2010-10-21

    ... hawkweed gall wasp, Aulacidea subterminalis, into the continental United States as a biological control... United States for the biological control of hawkweeds (Hieracium pilosella, H. aurantiacum, H... control, and the use of biological control organisms. The use of herbicides, while effective, is limited...

  11. Reliability Analysis Multiple Redundancy Controller for Nuclear Safety Systems

    Son, Gwangseop; Kim, Donghoon; Son, Choulwoong

    2013-01-01

    This controller is configured for multiple modular redundancy (MMR) composed of dual modular redundancy (DMR) and triple modular redundancy (TMR). The architecture of MRC is briefly described, and the Markov model is developed. Based on the model, the reliability and Mean Time To Failure (MTTF) are analyzed. In this paper, the architecture of MRC for nuclear safety systems is described. The MRC is configured for multiple modular redundancy (MMR) composed of dual modular redundancy (DMR) and triple modular redundancy (TMR). Markov models for MRC architecture was developed, and then the reliability was analyzed by using the model. From the reliability analyses for the MRC, it is obtained that the failure rate of each module in the MRC should be less than 2 Χ 10 -4 /hour and the MTTF average increase rate depending on FCF increment, i. e. ΔMTTF/ΔFCF, is 4 months/0.1

  12. Using biological control research in the classroom to promote scientific inquiry and literacy

    Many scientists who research biological control also teach at universities or more informally through cooperative outreach. The purpose of this paper is to review biological control activities for the classroom in four refereed journals, The American Biology Teacher, Journal of Biological Education...

  13. Asymmetric positive feedback loops reliably control biological responses.

    Ratushny, Alexander V; Saleem, Ramsey A; Sitko, Katherine; Ramsey, Stephen A; Aitchison, John D

    2012-04-24

    Positive feedback is a common mechanism enabling biological systems to respond to stimuli in a switch-like manner. Such systems are often characterized by the requisite formation of a heterodimer where only one of the pair is subject to feedback. This ASymmetric Self-UpREgulation (ASSURE) motif is central to many biological systems, including cholesterol homeostasis (LXRα/RXRα), adipocyte differentiation (PPARγ/RXRα), development and differentiation (RAR/RXR), myogenesis (MyoD/E12) and cellular antiviral defense (IRF3/IRF7). To understand why this motif is so prevalent, we examined its properties in an evolutionarily conserved transcriptional regulatory network in yeast (Oaf1p/Pip2p). We demonstrate that the asymmetry in positive feedback confers a competitive advantage and allows the system to robustly increase its responsiveness while precisely tuning the response to a consistent level in the presence of varying stimuli. This study reveals evolutionary advantages for the ASSURE motif, and mechanisms for control, that are relevant to pharmacologic intervention and synthetic biology applications.

  14. Biologically inspired autonomous structural materials with controlled toughening and healing

    Garcia, Michael E.; Sodano, Henry A.

    2010-04-01

    The field of structural health monitoring (SHM) has made significant contributions in the field of prognosis and damage detection in the past decade. The advantageous use of this technology has not been integrated into operational structures to prevent damage from propagating or to heal injured regions under real time loading conditions. Rather, current systems relay this information to a central processor or human operator, who then determines a course of action such as altering the mission or scheduling repair maintenance. Biological systems exhibit advanced sensory and healing traits that can be applied to the design of material systems. For instance, bone is the major structural component in vertebrates; however, unlike modern structural materials, bone has many properties that make it effective for arresting the propagation of cracks and subsequent healing of the fractured area. The foremost goal for the development of future adaptive structures is to mimic biological systems, similar to bone, such that the material system can detect damage and deploy defensive traits to impede damage from propagating, thus preventing catastrophic failure while in operation. After sensing and stalling the propagation of damage, the structure must then be repaired autonomously using self healing mechanisms motivated by biological systems. Here a novel autonomous system is developed using shape memory polymers (SMPs), that employs an optical fiber network as both a damage detection sensor and a network to deliver stimulus to the damage site initiating adaptation and healing. In the presence of damage the fiber optic fractures allowing a high power laser diode to deposit a controlled level of thermal energy at the fractured sight locally reducing the modulus and blunting the crack tip, which significantly slows the crack growth rate. By applying a pre-induced strain field and utilizing the shape memory recovery effect, thermal energy can be deployed to close the crack and return

  15. Biological forcing controls the chemistry of the coral exoskeleton

    Meibom, A.; Mostefaoui, S.; Cuif, J.; Yurimoto, H.; Dauphin, Y.; Houlbreque, F.; Dunbar, R.; Constantz, B.

    2006-12-01

    A multitude of marine organisms produce calcium carbonate skeletons that are used extensively to reconstruct water temperature variability of the tropical and subtropical oceans - a key parameter in global climate-change models. Such paleo-climate reconstructions are based on the notion that skeletal oxygen isotopic composition and certain trace-element abundances (e.g., Sr/Ca and Mg/Ca ratios) vary in response to changes in the water temperature. However, it is a fundamental problem that poorly understood biological processes introduce large compositional deviations from thermodynamic equilibrium and hinder precise calibrations of many paleo-climate proxies. Indeed, the role of water temperature in controlling the composition of the skeleton is far from understood. We have studied trace-element abundances as well as oxygen and carbon isotopic compositions of individual skeletal components in the zooxanthellate and non-zooxanthellate corals at ultra-structural, i.e. micrometer to sub-micrometer length scales. From this body of work we draw the following, generalized conclusions: 1) Centers of calcification (COC) are not in equilibrium with seawater. Notably, the Sr/Ca ratio is higher than expected for aragonite equilibrium with seawater at the temperature at which the skeleton was formed. Furthermore, the COC are further away from equilibrium with seawater than fibrous skeleton in terms of stable isotope composition. 2) COC are dramatically different from the fibrous aragonite skeleton in terms of trace element composition. 3) Neither trace element nor stable isotope variations in the fibrous (bulk) part of the skeleton are directly related to changes in SST. In fact, changes in SST can have very little to do with the observed compositional variations. 4) Trace element variations in the fibrous (bulk) part of the skeleton are not related to the activity of zooxanthellae. These observations are directly relevant to the issue of biological versus non-biological

  16. An Overview on SDN Architectures with Multiple Controllers

    Othmane Blial

    2016-01-01

    Full Text Available Software-defined networking offers several benefits for networking by separating the control plane from the data plane. However, networks’ scalability, reliability, and availability remain as a big issue. Accordingly, multicontroller architectures are important for SDN-enabled networks. This paper gives a comprehensive overview of SDN multicontroller architectures. It presents SDN and its main instantiation OpenFlow. Then, it explains in detail the differences between multiple types of multicontroller architectures, like the distribution method and the communication system. Furthermore, it provides already implemented and under research examples of multicontroller architectures by describing their design, their communication process, and their performance results.

  17. Biological Characteristics and Control of Orobanche Crenata Forsk., a Review

    Alessia Restuccia

    2009-03-01

    Full Text Available Orobanche crenata is a holoparasitic phanerogam which is particularly noxious to legumes, such as faba bean (Vicia faba L., pea (Pisum sativum L., chickpea (Cicer arietinum L., lentil (Lens culinaris Medik., etc., and commonly considered one of the major causes which has contributed to re-rizing the area designed to their cultivation. After a few brief references on the origin and diffusion of O. crenata, in this work summarises the results of research into biological aspects and control of this species. The information obtained especially concerns seed production, seed viability, seed longevity and dormancy, seed conditioning and germination, parasitism phases, the effects of parasite attacks on host plants and the means of control.

  18. Biological Characteristics and Control of Orobanche Crenata Forsk., a Review

    Giuseppe Restuccia

    2011-02-01

    Full Text Available Orobanche crenata is a holoparasitic phanerogam which is particularly noxious to legumes, such as faba bean (Vicia faba L., pea (Pisum sativum L., chickpea (Cicer arietinum L., lentil (Lens culinaris Medik., etc., and commonly considered one of the major causes which has contributed to re-rizing the area designed to their cultivation. After a few brief references on the origin and diffusion of O. crenata, in this work summarises the results of research into biological aspects and control of this species. The information obtained especially concerns seed production, seed viability, seed longevity and dormancy, seed conditioning and germination, parasitism phases, the effects of parasite attacks on host plants and the means of control.

  19. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions.

    Kaufman, Leyla V; Wright, Mark G

    2017-07-07

    The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA) procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments.

  20. INTEGRATED MANAGEMENT OF CHROMOLAENA ODORATA EMPHASIZING THE CLASSICAL BIOLOGICAL CONTROL

    SOEKISMAN TJITROSEMITO

    1998-01-01

    Full Text Available Chromolaena odorata, Siam weed, a very important weed of Java Island (Indonesia is native to Central and South America. In the laboratory it showed rapid growth (1.15 g/g/week in the first 8 weeks of its growth. The biomass was mainly as leaves (LAR : 317.50 cm'/g total weight. It slowed down in the following month as the biomass was utilized for stem and branch formation. This behavior supported the growth of C. odorata into a very dense stand. It flowered, fruited during the dry season, and senesced following maturation of seeds from inflorescence branches. These branches dried out, but soon the stem resumed aggressive growth following the wet season. Leaf biomass was affected by the size of the stem in its early phase of regrowth, but later on it was more affected by the number of branches. The introduction of Pareuchaetes pseudoinsulata to Indonesia, was successful only in North Sumatera. In Java it has not been reported to establish succesfully. The introduction of another biological control agent, Procecidochares conneca to Indonesia was shown to be sp ecific and upon release in West Java it established immediately. It spread exponentia lly in the first 6 months of its release. Field monitoring continues to eval uate the impact of the agents. Other biocontrol agents (Actmole anteas and Conotrachelus wilt be introduced to Indonesia in 1997 through ACIAR Project on the Biological Control of Chromolaena odorata in Indonesia and Papua New Guinea.

  1. Reevaluation of the value of autoparasitoids in biological control.

    Lian-Sheng Zang

    Full Text Available Autoparasitoids with the capacity of consuming primary parasitoids that share the same hosts to produce males are analogous to intraguild predators. The use of autoparasitoids in biological control programs is a controversial matter because there is little evidence to support the view that autoparasitoids do not disrupt and at times may promote suppression of insect pests in combination with primary parasitoids. We found that Encarsia sophia, a facultative autoparasitoid, preferred to use heterospecific hosts as secondary hosts for producing males. The autoparasitoids mated with males originated from heterospecifics may parasitize more hosts than those mated with males from conspecifics. Provided with an adequate number of males, the autoparasitoids killed more hosts than En. formosa, a commonly used parasitoid for biological control of whiteflies. This study supports the view that autoparasitoids in combination with primary parasitoids do not disrupt pest management and may enhance such programs. The demonstrated preference of an autoparasitoid for heterospecifics and improved performance of males from heterospecifics observed in this study suggests these criteria should be considered in strategies that endeavor to mass-produce and utilize autoparasitoids in the future.

  2. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions

    Leyla V. Kaufman

    2017-07-01

    Full Text Available The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments.

  3. Augmenting Plant Immune Responses and Biological Control by Microbial Determinants

    Sang Moo Lee

    2015-09-01

    Full Text Available Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

  4. The Effects of Urban Sprawl on Birds at Multiple Levels of Biological Organization

    Robert Blair

    2004-12-01

    Full Text Available Urban sprawl affects the environment in myriad ways and at multiple levels of biological organization. In this paper I explore the effects of sprawl on native bird communities by comparing the occurrence of birds along gradients of urban land use in southwestern Ohio and northern California and by examining patterns at the individual, species, community, landscape, and continental levels. I do this by assessing the distribution and abundance of all bird species occupying sites of differing land-use intensity in Ohio and California. Additionally, I conducted predation experiments using artificial nests, tracked the nest fate of American Robins and Northern Cardinals, and assessed land cover in these sites. At the individual level, predation on artificial nests decreased with urbanization; however, this trend was not reflected in the nesting success of robins and cardinals, which did not increase with urbanization. At the species level, sprawl affected local patterns of extinction and invasion; the density of different species peaked at different levels of urbanization. At the community level, species richness and diversity peaked at moderate levels of urbanization, and the number of low-nesting species and of species with multiple broods increased with urbanization. The community-level results may reflect both the species-level patterns of local extinction and invasion as well as broader landscape-level patterns. At the landscape level, a linear combination of spatial heterogeneity and density of woody patches accurately predicted both species richness and Shannon Diversity. At the continental level, local extinction of endemic species, followed by the invasion of ubiquitous weedy species, leads to faunal homogenization between ecoregions.

  5. Optically controlled multiple switching operations of DNA biopolymer devices

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu; Fruk, Ljiljana; Hung, Yu-Chueh

    2015-01-01

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices

  6. Optically controlled multiple switching operations of DNA biopolymer devices

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Fruk, Ljiljana [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Hung, Yu-Chueh, E-mail: ychung@ee.nthu.edu.tw [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2015-12-21

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices.

  7. Social and economic factors for the adoption of biological control of ...

    The results also showed that the decision on the application of biological control is determined by the educational level, income, mechanization level, extension activities, biological control awareness, social participation, attitude toward biological control and access to information sources which have significant influence.

  8. 77 FR 46373 - Availability of an Environmental Assessment for a Biological Control Agent for Hemlock Woolly...

    2012-08-03

    ...] Availability of an Environmental Assessment for a Biological Control Agent for Hemlock Woolly Adelgid AGENCY... States for use as a biological control agent to reduce the severity of hemlock woolly adelgid... beetle from the western United States, into the eastern United States for use as a biological control...

  9. 75 FR 28232 - Availability of an Environmental Assessment for a Biological Control Agent for Hemlock Woolly...

    2010-05-20

    ...] Availability of an Environmental Assessment for a Biological Control Agent for Hemlock Woolly Adelgid AGENCY..., into the continental United States for use as a biological control agent to reduce the severity of... biological control agent to reduce the severity of hemlock woolly adelgid (HWA) infestations. HWA, an...

  10. 75 FR 69396 - Availability of an Environmental Assessment for a Biological Control Agent for Arundo donax

    2010-11-12

    ... Biological Control Agent for Arundo donax AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION... alternatives to, the release of Arundo scale into the continental United States for use as a biological control... a biological control agent to reduce the severity of Arundo donax infestations. A. donax is a highly...

  11. BIOMASS PRODUCTION AND FORMULATION OF Bacillus subtilis FOR BIOLOGICAL CONTROL

    Amran Muis

    2016-10-01

    Full Text Available Bacillus subtilis is a widespread bacterium found in soil, water, and air. It controls the growth of certain harmful bacteria and fungi, presumably by competing for nutrients, growth sites on plants, and by directly colonizing and attaching to fungal pathogens. When applied to seeds, it colonizes the developing root system of the plants and continues to live on the root system and provides protection throughout the growing season. The study on biomass production and formulation of B. subtilis for biological control was conducted in the laboratory of Department of Plant Pathology, College of Agriculture, University of the Philippines Los Baños (UPLB-CA, College, Laguna from May to July 2005. The objective of the study was to determine the optimum pH and a good carbon source for biomass production of B. subtilis and to develop a seed treatment formulation of B. subtilis as biological control agent. Results showed that the optimum pH for growth of B. subtilis was pH 6 (1.85 x 109 cfu/ml. In laboratory tests for biomass production using cassava flour, corn flour, rice flour, and brown sugar as carbon sources, it grew best in brown sugar plus yeast extract medium (6.8 x 108 cfu ml-1 in sterile distilled water and 7.8 x 108 cfu ml-1 in coconut water. In test for bacterial biomass carriers, talc proved to be the best in terms of number of bacteria recovered from the seeds (3.98 x 105 cfu seed-1.

  12. Models for integrated pest control and their biological implications.

    Tang, Sanyi; Cheke, Robert A

    2008-09-01

    Successful integrated pest management (IPM) control programmes depend on many factors which include host-parasitoid ratios, starting densities, timings of parasitoid releases, dosages and timings of insecticide applications and levels of host-feeding and parasitism. Mathematical models can help us to clarify and predict the effects of such factors on the stability of host-parasitoid systems, which we illustrate here by extending the classical continuous and discrete host-parasitoid models to include an IPM control programme. The results indicate that one of three control methods can maintain the host level below the economic threshold (ET) in relation to different ET levels, initial densities of host and parasitoid populations and host-parasitoid ratios. The effects of host intrinsic growth rate and parasitoid searching efficiency on host mean outbreak period can be calculated numerically from the models presented. The instantaneous pest killing rate of an insecticide application is also estimated from the models. The results imply that the modelling methods described can help in the design of appropriate control strategies and assist management decision-making. The results also indicate that a high initial density of parasitoids (such as in inundative releases) and high parasitoid inter-generational survival rates will lead to more frequent host outbreaks and, therefore, greater economic damage. The biological implications of this counter intuitive result are discussed.

  13. Biology and life history of Argopistes tsekooni (Coleoptera: Chrysomelidae) in China, a promising biological control agent of Chinese privet.

    Y-Z Zhang; J. Sun; J.L. Hanula

    2009-01-01

    The biology and life history of Argopistes tsekooni Chen (Coleoptera: Chrysomelidae), a potential biological control agent of Chinese privet, Ligustrum sinense Lour., was studied under laboratory and outdoor conditions in Huangshan City of Anhui Province, China, in 2006. A. tsekooni larvae are leafminers that...

  14. Rearing and Release of Megamelus scutellaris Berg (Hemiptera: Delphacidae) for Biological Control of Water hyacinth in 2015

    2017-06-01

    Hemiptera: Delphacidae) for Biological Control of Waterhyacinth in 2015 by Jan Freedman and Nathan Harms PURPOSE: Waterhyacinth biological control ... control agents. Three insects were released in the United States for biological control of waterhyacinth during the 1970s; two weevils, Neochetina...content) and competitive interactions with other biological control agents (e.g., Neochetina spp.), though their consideration in other biological

  15. COMPLEMENTARY SEX DETERMINATION IN HYMENOPTERAN PARASITOIDS AND ITS IMPLICATIONS FOR BIOLOGICAL CONTROL

    WUZhishan; KeithR.Hopper; PaulJ.Ode; RogerW.Fuester; CHENJia-hua; GeorgeE.Heimpel

    2003-01-01

    In haplodiploid Hymenoptera, unfertilized eggs produce haploid males while fertilized eggs lead to diploid females under most circumstances. Diploid males can also be produced from fertilization under a system of sex determination known as complementary sex determination (CSD). Under single-locus CSD, sex is determined by multiple alleles at a single sex locus. Individuals heterozygous at the sex locus are female while hemizygous and homozygous individuals develop as haploid and diploid males, respectively. In multiple-locus CSD, two or more loci, each with two or more alleles, determine sex. Diploid individuals are female if one or more sex loci are het-erozygous, while a diploid is male only if homozygous at all sex loci. Diploid males are known to occur in 43 hym-enopteran species and single-locus CSD has been demonstrated in 22 of these species. Diploid males are either developmentally inviable or sterile, so their production constitutes a genetic load. Because diploid male production is more likely under inbreeding, CSD is a form of inbreeding depression. It is crucial to preserve the diversity of sex alleles and reduce the loss of genetic variation in biological control. In the parasitoid species with single-locus CSD, certain precautionary procedures can prevent negative effects of single-locus CSD on biological control.

  16. Quagga and zebra mussels: biology, impacts, and control

    Nalepa, Thomas F.; Schloesser, Don W.; Nalepa, Thomas F.; Schloesser, Don W.

    2013-01-01

    Quagga and Zebra Mussels: Biology, Impacts, and Control, Second Edition provides a broad view of the zebra/quagga mussel issue, offering a historic perspective and up-to-date information on mussel research. Comprising 48 chapters, this second edition includes reviews of mussel morphology, physiology, and behavior. It details mussel distribution and spread in Europe and across North America, and examines policy and regulatory responses, management strategies, and mitigation efforts. In addition, this book provides extensive coverage of the impact of invasive mussel species on freshwater ecosystems, including effects on water clarity, phytoplankton, water quality, food web changes, and consequences to other aquatic fauna. It also reviews and offers new insights on how zebra and quagga mussels respond and adapt to varying environmental conditions. This new edition includes seven video clips that complement chapter text and, through visual documentation, provide a greater understanding of mussel behavior and distribution.

  17. Biological control of biofilms on membranes by metazoans.

    Klein, Theresa; Zihlmann, David; Derlon, Nicolas; Isaacson, Carl; Szivak, Ilona; Weissbrodt, David G; Pronk, Wouter

    2016-01-01

    Traditionally, chemical and physical methods have been used to control biofouling on membranes by inactivating and removing the biofouling layer. Alternatively, the permeability can be increased using biological methods while accepting the presence of the biofouling layer. We have investigated two different types of metazoans for this purpose, the oligochaete Aelosoma hemprichi and the nematode Plectus aquatilis. The addition of these grazing metazoans in biofilm-controlled membrane systems resulted in a flux increase of 50% in presence of the oligochaetes (Aelosoma hemprichi), and a flux increase of 119-164% in presence of the nematodes (Plectus aquatilis) in comparison to the control system operated without metazoans. The change in flux resulted from (1) a change in the biofilm structure, from a homogeneous, cake-like biofilm to a more heterogeneous, porous structure and (2) a significant reduction in the thickness of the basal layer. Pyrosequencing data showed that due to the addition of the predators, also the community composition of the biofilm in terms of protists and bacteria was strongly affected. The results have implications for a range of membrane processes, including ultrafiltration for potable water production, membrane bioreactors and reverse osmosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Mission control of multiple unmanned aerial vehicles: a workload analysis.

    Dixon, Stephen R; Wickens, Christopher D; Chang, Dervon

    2005-01-01

    With unmanned aerial vehicles (UAVs), 36 licensed pilots flew both single-UAV and dual-UAV simulated military missions. Pilots were required to navigate each UAV through a series of mission legs in one of the following three conditions: a baseline condition, an auditory autoalert condition, and an autopilot condition. Pilots were responsible for (a) mission completion, (b) target search, and (c) systems monitoring. Results revealed that both the autoalert and the autopilot automation improved overall performance by reducing task interference and alleviating workload. The autoalert system benefited performance both in the automated task and mission completion task, whereas the autopilot system benefited performance in the automated task, the mission completion task, and the target search task. Practical implications for the study include the suggestion that reliable automation can help alleviate task interference and reduce workload, thereby allowing pilots to better handle concurrent tasks during single- and multiple-UAV flight control.

  19. Economic value of biological control in integrated pest management of managed plant systems.

    Naranjo, Steven E; Ellsworth, Peter C; Frisvold, George B

    2015-01-07

    Biological control is an underlying pillar of integrated pest management, yet little focus has been placed on assigning economic value to this key ecosystem service. Setting biological control on a firm economic foundation would help to broaden its utility and adoption for sustainable crop protection. Here we discuss approaches and methods available for valuation of biological control of arthropod pests by arthropod natural enemies and summarize economic evaluations in classical, augmentative, and conservation biological control. Emphasis is placed on valuation of conservation biological control, which has received little attention. We identify some of the challenges of and opportunities for applying economics to biological control to advance integrated pest management. Interaction among diverse scientists and stakeholders will be required to measure the direct and indirect costs and benefits of biological control that will allow farmers and others to internalize the benefits that incentivize and accelerate adoption for private and public good.

  20. Decentralized Formation Flying Control in a Multiple-Team Hierarchy

    Mueller, Joseph .; Thomas, Stephanie J.

    2005-01-01

    This paper presents the prototype of a system that addresses these objectives-a decentralized guidance and control system that is distributed across spacecraft using a multiple-team framework. The objective is to divide large clusters into teams of manageable size, so that the communication and computational demands driven by N decentralized units are related to the number of satellites in a team rather than the entire cluster. The system is designed to provide a high-level of autonomy, to support clusters with large numbers of satellites, to enable the number of spacecraft in the cluster to change post-launch, and to provide for on-orbit software modification. The distributed guidance and control system will be implemented in an object-oriented style using MANTA (Messaging Architecture for Networking and Threaded Applications). In this architecture, tasks may be remotely added, removed or replaced post-launch to increase mission flexibility and robustness. This built-in adaptability will allow software modifications to be made on-orbit in a robust manner. The prototype system, which is implemented in MATLAB, emulates the object-oriented and message-passing features of the MANTA software. In this paper, the multiple-team organization of the cluster is described, and the modular software architecture is presented. The relative dynamics in eccentric reference orbits is reviewed, and families of periodic, relative trajectories are identified, expressed as sets of static geometric parameters. The guidance law design is presented, and an example reconfiguration scenario is used to illustrate the distributed process of assigning geometric goals to the cluster. Next, a decentralized maneuver planning approach is presented that utilizes linear-programming methods to enact reconfiguration and coarse formation keeping maneuvers. Finally, a method for performing online collision avoidance is discussed, and an example is provided to gauge its performance.

  1. Recent progress in the biology of multiple myeloma and future directions in the treatment.

    Pico, J L; Castagna, L; Bourhis, J H

    1998-04-01

    A great amount of scientific information, accumulated over recent years on the biology of Multiple Myeloma (MM), has fuelled speculation about the origin of malignant plasma cells, about a purported critical role played by the bone marrow stroma, and further still, on cytokine interactions and in particular that of IL-6 and its relationship with the immune system. Among the growth factors secreted by stroma cells, IL-6 is a potent stimulator of myeloma cells in vitro but does not induce a malignant phenotype in normal plasma cells. Many efforts have been produced to identify the stem cell in MM and probably memory B lymphocytes are the best candidates. The demonstration of a Graft vs Myeloma effect in the allogeneic setting strongly supports the immunotherapy in MM. Recent data also suggest that a virus (Kaposi-associated herpes virus, HHV-8) may be significantly associated with the development of MM. In parallel, progress has been achieved in the treatment of this incurable disease with well defined prognostic factors, more efficient supportive care and its corollary, improved quality of life and dose-intensified chemo-radiotherapy followed by autologous hematopoietic stem cell support. Improving the quality of grafts with the selection of CD34 positive cells is another approach aimed at reducing plasma cell contamination without impairing haematological recovery. An EBMT randomized study assessing the role of CD34 selection has been initiated by our group Increasingly efficient first-line therapy, better quality autografts and improved post-remission treatment with, for example, anti-idiopathic vaccination are the most promising future directions.

  2. Use of rhizobacteria and endophytes for biological control of weeds

    Trognitz, Friederike

    2014-02-01

    Full Text Available Weeds cause severe yield losses in agriculture, with a maximum estimate of 34% of yield loss worldwide due to competition between the crops and the weeds for nutrition, light and humidity (OERKE, 2006. Invasive plants contribute partially to other problems. The pollen of common ragweed, Ambrosia artemisiifolia L., for example, is five times more allergenic than grass pollen; already ten pollen grains per m3 air can trigger allergy in sensitized patients, including rhinitis, conjunctivitis and asthma. This neophyte from America has extended the season of allergy in European patients to October. Common ragweed is currently most frequent in Hungary, France and Italy. In Austria, ragweed populations along roads have increased dramatically since 2000. The effective means to control this weed of the Asteraceae family are limited; a single plant can produce up to 6000 seeds which stay in the soil for 40 years. Control using selective herbicides is not possible within stands of the Asteraceae member sunflower. Efforts to use herbivore insects as biological control agents also failed due to the unavailability of insects specializing on this ragweed. The use of plant-associated rhizobacteria and endophytes as bio-herbicides offers a novel alternative to conventional methods. By analogy to experiences from other plant-microbe systems, the chances to find microbes of the desired characteristics are highest when isolating and testing specimens directly from ragweed plants. These organisms often have an extremely narrow host range that permits their use for the control of among several even closely related plant species growing together in a field.

  3. Thyrotropin-releasing hormone controls mitochondrial biology in human epidermis.

    Knuever, Jana; Poeggeler, Burkhard; Gáspár, Erzsébet; Klinger, Matthias; Hellwig-Burgel, Thomas; Hardenbicker, Celine; Tóth, Balázs I; Bíró, Tamás; Paus, Ralf

    2012-03-01

    Mitochondrial capacity and metabolic potential are under the control of hormones, such as thyroid hormones. The most proximal regulator of the hypothalamic-pituitary-thyroid (HPT) axis, TRH, is the key hypothalamic integrator of energy metabolism via its impact on thyroid hormone secretion. Here, we asked whether TRH directly modulates mitochondrial functions in normal, TRH-receptor-positive human epidermis. Organ-cultured human skin was treated with TRH (5-100 ng/ml) for 12-48 h. TRH significantly increased epidermal immunoreactivity for the mitochondria-selective subunit I of respiratory chain complex IV (MTCO1). This resulted from an increased MTCO1 transcription and protein synthesis and a stimulation of mitochondrial biogenesis as demonstrated by transmission electron microscopy and TRH-enhanced mitochondrial DNA synthesis. TRH also significantly stimulated the transcription of several other mitochondrial key genes (TFAM, HSP60, and BMAL1), including the master regulator of mitochondrial biogenesis (PGC-1α). TRH significantly enhanced mitochondrial complex I and IV enzyme activity and enhanced the oxygen consumption of human skin samples, which shows that the stimulated mitochondria are fully vital because the main source for cellular oxygen consumption is mitochondrial endoxidation. These findings identify TRH as a potent, novel neuroendocrine stimulator of mitochondrial activity and biogenesis in human epidermal keratinocytes in situ. Thus, human epidermis offers an excellent model for dissecting neuroendocrine controls of human mitochondrial biology under physiologically relevant conditions and for exploring corresponding clinical applications.

  4. Using Biological-Control Research in the Classroom to Promote Scientific Inquiry & Literacy

    Richardson, Matthew L.; Richardson, Scott L.; Hall, David G.

    2012-01-01

    Scientists researching biological control should engage in education because translating research programs into classroom activities is a pathway to increase scientific literacy among students. Classroom activities focused on biological control target all levels of biological organization and can be cross-disciplinary by drawing from subject areas…

  5. BIOLOGICAL CONTROL - AS A MEANS TO CONTROL INSECT PESTS IN AZERBAIJAN

    Z. M. Mamedov

    2013-01-01

    Full Text Available Two hundreds and twenty species parasites and predators of pests of various agricultures are revealed in Azerbaijan. The complex of entomophages of certain pests of agricultures is studied: 48 species of parasites and predators of Chloridea obsoleta 21 species of entomophages of Pectinophora malvella Hb., over 160 species of entomophages of pests of ozehards and vegetables, 34 species of entomophages of pests of forests. The hundreds species of entomophages and some entomophogenous microbes and antagonists are revealed. Biology and ecology of over 60 species of entomophages and useful microorganisims which are prospective as biological control agents are studied.

  6. Comparing Effects of Biologic Agents in Treating Patients with Rheumatoid Arthritis: A Multiple Treatment Comparison Regression Analysis.

    Ingunn Fride Tvete

    Full Text Available Rheumatoid arthritis patients have been treated with disease modifying anti-rheumatic drugs (DMARDs and the newer biologic drugs. We sought to compare and rank the biologics with respect to efficacy. We performed a literature search identifying 54 publications encompassing 9 biologics. We conducted a multiple treatment comparison regression analysis letting the number experiencing a 50% improvement on the ACR score be dependent upon dose level and disease duration for assessing the comparable relative effect between biologics and placebo or DMARD. The analysis embraced all treatment and comparator arms over all publications. Hence, all measured effects of any biologic agent contributed to the comparison of all biologic agents relative to each other either given alone or combined with DMARD. We found the drug effect to be dependent on dose level, but not on disease duration, and the impact of a high versus low dose level was the same for all drugs (higher doses indicated a higher frequency of ACR50 scores. The ranking of the drugs when given without DMARD was certolizumab (ranked highest, etanercept, tocilizumab/ abatacept and adalimumab. The ranking of the drugs when given with DMARD was certolizumab (ranked highest, tocilizumab, anakinra/rituximab, golimumab/ infliximab/ abatacept, adalimumab/ etanercept [corrected]. Still, all drugs were effective. All biologic agents were effective compared to placebo, with certolizumab the most effective and adalimumab (without DMARD treatment and adalimumab/ etanercept (combined with DMARD treatment the least effective. The drugs were in general more effective, except for etanercept, when given together with DMARDs.

  7. Controlling energy transfer between multiple dopants within a single nanoparticle

    DiMaio, Jeffrey R.; Sabatier, Clément; Kokuoz, Baris; Ballato, John

    2008-01-01

    Complex core-shell architectures are implemented within LaF3 nanoparticles to allow for a tailored degree of energy transfer (ET) between different rare earth dopants. By constraining specific dopants to individual shells, their relative distance to one another can be carefully controlled. Core-shell LaF3 nanoparticles doped with Tb3+ and Eu3+ and consisting of up to four layers were synthesized with an outer diameter of ≈10 nm. It is found that by varying the thicknesses of an undoped layer between a Tb3+-doped layer and a Eu3+-doped layer, the degree of ET can be engineered to allow for zero, partial, or total ET from a donor ion to an acceptor ion. More specifically, the ratio of the intensities of the 541-nm Tb3+ and 590 nm Eu3+ peaks was tailored from core-shell configuration that restricts ET is used. Beyond simply controlling ET, which can be limiting when designing materials for optical applications, this approach can be used to obtain truly engineered spectral features from nanoparticles and composites made from them. Further, it allows for a single excitation source to yield multiple discrete emissions from numerous lanthanide dopants that heretofore would have been quenched in a more conventional active optical material. PMID:18250307

  8. Towards building hybrid biological/in silico neural networks for motor neuroprosthetic control

    Mehmet eKocaturk

    2015-08-01

    Full Text Available In this article, we introduce the Bioinspired Neuroprosthetic Design Environment (BNDE as a practical platform for the development of novel brain machine interface (BMI controllers which are based on spiking model neurons. We built the BNDE around a hard real-time system so that it is capable of creating simulated synapses from extracellularly recorded neurons to model neurons. In order to evaluate the practicality of the BNDE for neuroprosthetic control experiments, a novel, adaptive BMI controller was developed and tested using real-time closed-loop simulations. The present controller consists of two in silico medium spiny neurons which receive simulated synaptic inputs from recorded motor cortical neurons. In the closed-loop simulations, the recordings from the cortical neurons were imitated using an external, hardware-based neural signal synthesizer. By implementing a reward-modulated spike timing-dependent plasticity rule, the controller achieved perfect target reach accuracy for a two target reaching task in one dimensional space. The BNDE combines the flexibility of software-based spiking neural network (SNN simulations with powerful online data visualization tools and is a low-cost, PC-based and all-in-one solution for developing neurally-inspired BMI controllers. We believe the BNDE is the first implementation which is capable of creating hybrid biological/in silico neural networks for motor neuroprosthetic control and utilizes multiple CPU cores for computationally intensive real-time SNN simulations.

  9. Can Flowering Greencover Crops Promote Biological Control in German Vineyards?

    Christoph Hoffmann

    2017-11-01

    Full Text Available Greencover crops are widely recommended to provide predators and parasitoids with floral resources for improved pest control. We studied parasitism and predation of European grapevine moth (Lobesia botrana eggs and pupae as well as predatory mite abundances in an experimental vineyard with either one or two sowings of greencover crops compared to spontaneous vegetation. The co-occurrence between greencover flowering time and parasitoid activity differed greatly between the two study years. Parasitism was much higher when flowering and parasitoid activity coincided. While egg predation was enhanced by greencover crops, there were no significant benefits of greencover crops on parasitism of L. botrana eggs or pupae. Predatory mites did not show an as strong increase on grapevines in greencover crop plots as egg predation. Overall, our study demonstrates only limited pest control benefits of greencover crops. Given the strong within- and between year variation in natural enemy activity, studies across multiple years will be necessary to adequately describe the role of greencover crops for pest management and to identify the main predators of L. botrana eggs.

  10. Anopheline Reproductive Biology: Impacts on Vectorial Capacity and Potential Avenues for Malaria Control.

    Mitchell, Sara N; Catteruccia, Flaminia

    2017-12-01

    Vectorial capacity is a mathematical approximation of the efficiency of vector-borne disease transmission, measured as the number of new infections disseminated per case per day by an insect vector. Multiple elements of mosquito biology govern their vectorial capacity, including survival, population densities, feeding preferences, and vector competence. Intriguingly, biological pathways essential to mosquito reproductive fitness directly or indirectly influence a number of these elements. Here, we explore this complex interaction, focusing on how the interplay between mating and blood feeding in female Anopheles not only shapes their reproductive success but also influences their ability to sustain Plasmodium parasite development. Central to malaria transmission, mosquito reproductive biology has recently become the focus of research strategies aimed at malaria control, and we discuss promising new methods based on the manipulation of key reproductive steps. In light of widespread resistance to all public health-approved insecticides targeting mosquito reproduction may prove crucial to the success of malaria-eradication campaigns. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. Biological control of alien and invasive species in agriculture

    Calvitti, Maurizio; Moretti Riccardo; Lampazzi, Elena

    2015-01-01

    Agricultural production in Europe faces many challenges including limited availability of water, nitrogen input and fossil fuels. It is necessary, therefore, to identify methods of production and new technologies to increase the efficiency of the primary systems, guaranteeing amount of food, quality, safety and eco-sustainability . One of the most important aspects, though often undervalued in relation to the food chain, is the adversity of biological management of agricultural crops due to pests, pathogens or fitomizi with potential invasive already present in the territory or of recent origin alien. In this context, two main objectives should be implemented at the same time reduce production losses and protect the agro-ecosystem. To meet these expectations, as of January 1, 2015 all farms in the European Union countries are bound to the application of the Integrated Defense principles, as indicated by the Directive on the sustainable use of plant protection products (128/09 / EC) .In response to this and other new entomological emergencies plant health and medical-veterinary entomologist researchers of the Laboratory sustainable management of Agro-Ecosystems in ENEA, have directed their research towards the development of innovative systems for the sustainable control of invasive species of insects is in the agricultural sector that health. [it

  12. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    Jiyeong Park

    2014-09-01

    Full Text Available We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN Meloidogyne hapla in carrot (Daucus carota subsp. sativus and tomato (Solanum lycopersicum. Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

  13. Synthesis, chemical and biological quality control of radioiodinated peptides

    Rafii, H.; Khalaj, A.; Beiki, D.; Motameidi, F.; Maloobi, M.; Karimian-dehghan, M.; Keshavarrzi, F.

    2002-01-01

    Iodinated compounds with I-131, 125 and 123 have been widely used for biochemical function studies. In conjunction with SPECT, [I-123] labelled proteins have various diagnostic and therapeutic applications in nuclear medicine. Preparation of some radioiodinated peptides with tyrosine and/or lysine groups on their main chain molecules can be carried out with both direct and indirect methods, but lack of these groups in molecule cause the molecule dose not lend itself for direct radioiodination. In this study, human IgG and Formyl-Methyl-Leucyl-Phenylalanine, FMLF, have been chosen as a model compounds for direct and indirect radioiodination respectively. Here, we will describe the labelling procedure of [I-125] IgG using chloramine-T as a suitable oxidant agent and [I-125 and I-131] FMLF by indirect method using ATE/SIB as a prosthetic group in multi-step reactions. The obtained results for chemical quality control of intermediate radioiodinated SIB by HPLC and two labelled IgG and FMLF will be also discussed. Biological results, biodistribution studies and SPECT scans on mice per-injected labelled FMLF show a low uptake of thyroid but a high at urine and bladder, perhaps because of low molecular weight of FMLF. In this case, it seems to be better to separate the reaction mixture of labelled FMLF by BPLC than Sephadex-G50 gel filtration. (Author)

  14. An Inverse Optimal Control Approach to Explain Human Arm Reaching Control Based on Multiple Internal Models.

    Oguz, Ozgur S; Zhou, Zhehua; Glasauer, Stefan; Wollherr, Dirk

    2018-04-03

    Human motor control is highly efficient in generating accurate and appropriate motor behavior for a multitude of tasks. This paper examines how kinematic and dynamic properties of the musculoskeletal system are controlled to achieve such efficiency. Even though recent studies have shown that the human motor control relies on multiple models, how the central nervous system (CNS) controls this combination is not fully addressed. In this study, we utilize an Inverse Optimal Control (IOC) framework in order to find the combination of those internal models and how this combination changes for different reaching tasks. We conducted an experiment where participants executed a comprehensive set of free-space reaching motions. The results show that there is a trade-off between kinematics and dynamics based controllers depending on the reaching task. In addition, this trade-off depends on the initial and final arm configurations, which in turn affect the musculoskeletal load to be controlled. Given this insight, we further provide a discomfort metric to demonstrate its influence on the contribution of different inverse internal models. This formulation together with our analysis not only support the multiple internal models (MIMs) hypothesis but also suggest a hierarchical framework for the control of human reaching motions by the CNS.

  15. A retrospective likelihood approach for efficient integration of multiple omics factors in case-control association studies.

    Balliu, Brunilda; Tsonaka, Roula; Boehringer, Stefan; Houwing-Duistermaat, Jeanine

    2015-03-01

    Integrative omics, the joint analysis of outcome and multiple types of omics data, such as genomics, epigenomics, and transcriptomics data, constitute a promising approach for powerful and biologically relevant association studies. These studies often employ a case-control design, and often include nonomics covariates, such as age and gender, that may modify the underlying omics risk factors. An open question is how to best integrate multiple omics and nonomics information to maximize statistical power in case-control studies that ascertain individuals based on the phenotype. Recent work on integrative omics have used prospective approaches, modeling case-control status conditional on omics, and nonomics risk factors. Compared to univariate approaches, jointly analyzing multiple risk factors with a prospective approach increases power in nonascertained cohorts. However, these prospective approaches often lose power in case-control studies. In this article, we propose a novel statistical method for integrating multiple omics and nonomics factors in case-control association studies. Our method is based on a retrospective likelihood function that models the joint distribution of omics and nonomics factors conditional on case-control status. The new method provides accurate control of Type I error rate and has increased efficiency over prospective approaches in both simulated and real data. © 2015 Wiley Periodicals, Inc.

  16. Multiple-Swarm Ensembles: Improving the Predictive Power and Robustness of Predictive Models and Its Use in Computational Biology.

    Alves, Pedro; Liu, Shuang; Wang, Daifeng; Gerstein, Mark

    2018-01-01

    Machine learning is an integral part of computational biology, and has already shown its use in various applications, such as prognostic tests. In the last few years in the non-biological machine learning community, ensembling techniques have shown their power in data mining competitions such as the Netflix challenge; however, such methods have not found wide use in computational biology. In this work, we endeavor to show how ensembling techniques can be applied to practical problems, including problems in the field of bioinformatics, and how they often outperform other machine learning techniques in both predictive power and robustness. Furthermore, we develop a methodology of ensembling, Multi-Swarm Ensemble (MSWE) by using multiple particle swarm optimizations and demonstrate its ability to further enhance the performance of ensembles.

  17. Zika virus: History, emergence, biology, and prospects for control.

    Weaver, Scott C; Costa, Federico; Garcia-Blanco, Mariano A; Ko, Albert I; Ribeiro, Guilherme S; Saade, George; Shi, Pei-Yong; Vasilakis, Nikos

    2016-06-01

    Zika virus (ZIKV), a previously obscure flavivirus closely related to dengue, West Nile, Japanese encephalitis and yellow fever viruses, has emerged explosively since 2007 to cause a series of epidemics in Micronesia, the South Pacific, and most recently the Americas. After its putative evolution in sub-Saharan Africa, ZIKV spread in the distant past to Asia and has probably emerged on multiple occasions into urban transmission cycles involving Aedes (Stegomyia) spp. mosquitoes and human amplification hosts, accompanied by a relatively mild dengue-like illness. The unprecedented numbers of people infected during recent outbreaks in the South Pacific and the Americas may have resulted in enough ZIKV infections to notice relatively rare congenital microcephaly and Guillain-Barré syndromes. Another hypothesis is that phenotypic changes in Asian lineage ZIKV strains led to these disease outcomes. Here, we review potential strategies to control the ongoing outbreak through vector-centric approaches as well as the prospects for the development of vaccines and therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    He, F.; Murabito, E.; Westerhoff, H.V.

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out throughin silicotheoretical studies with the aim to guide and complement furtherin vitroandin vivoexperimental

  19. Pythium species and isolate diversity influence inhibition by the biological control agent Streptomyces lydicus

    Disease control of soilborne pathogens by biological control agents has often been inconsistent under field conditions. One factor that may contribute to this inconsistency is the variability in response among pathogen populations and/or communities to the selected biological control agent. One hund...

  20. 76 FR 3076 - Availability of an Environmental Assessment for a Biological Control Agent for Air Potato

    2011-01-19

    ...] Availability of an Environmental Assessment for a Biological Control Agent for Air Potato AGENCY: Animal and... environmental assessment (EA) relative to the control of air potato (Dioscorea bulbifera). The EA considers the... States for use as a biological control agent to reduce the severity of air potato infestations. We are...

  1. Augmentative biological control in the Mexican national fruit fly campaign

    Montoya, P [Campana Nacional Moscas de la Fruta, DGSV-SAGARPA (Mexico); Cancino, J; Gutierrez, J M; Santiago, G [Campana Nacional Moscas de la Fruta, DGSV-SAGARPA (Mexico)

    2005-07-01

    Full text: Tephritid fruit flies are some of the most economically important species of insects worldwide. In Mexico, the native Anastrepha ludens, A. obliqua, A. serpentina and A. striata, are among the most important problems because of the great number of commercial fruits they attack. In an attempt to solve the Anastrepha fruit flies problems, the Mexican Government created the National Campaign against Fruit Flies in 1992. Using an area-wide approach and an integrated pest management framework, that included the use of environment-friendly strategies to suppress/eradicate fruit flies, the Mexican Campaign has integrated different technologies such as the application of specific toxic bait, the use of the Sterile Insect Technique (SIT), and the release of the endoparasitoid Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae), which attacks preferably third instar larvae of fruit flies. Since 1995, the Moscafrut mass-rearing facility has the capacity to produce an average of 50 millions of parasitised pupae per week, with 65-70% of parasitoid emergence using irradiated A. ludens larvae as host. The mass-rearing procedures of D. longicaudata have been fully described by Cancino. Parasitised pupae are sent via commercial flights to several states of the country (i.e. Michoacan, Sinaloa, Nayarit, Tamaulipas), according to a yearly national plan. This plan derives from industry requirements and/or availability of biological material. In the target zones, parasitoids are released in specific periods and specific areas where the environmental, biological and social conditions are considered as adequate. Packing and release procedures of parasitoids follow those that Montoya et al used. The releases are focused on Anastrepha spp. host trees located in marginal areas (i.e backyard orchards), with the objective to prevent the migration of fruit fly populations into commercial orchards. The impact of parasitoids on fruit fly populations is evaluated through

  2. Patterns and controls on nitrogen cycling of biological soil crusts

    Barger, Nichole N.; Zaady, Eli; Weber, Bettina; Garcia-Pichel, Ferran; Belnap, Jayne

    2016-01-01

    Biocrusts play a significant role in the nitrogen [N ] cycle within arid and semi-arid ecosystems, as they contribute major N inputs via biological fixation and dust capture, harbor internal N transformation processes, and direct N losses via N dissolved, gaseous and erosional loss processes (Fig. 1). Because soil N availability in arid and semi-arid ecosystems is generally low and may limit net primary production (NPP), especially during periods when adequate water is available, understanding the mechanisms and controls of N input and loss pathways in biocrusts is critically important to our broader understanding of N cycling in dryland environments. In particular, N cycling by biocrusts likely regulates short-term soil N availability to support vascular plant growth, as well as long-term N accumulation and maintenance of soil fertility. In this chapter, we review the influence of biocrust nutrient input, internal cycling, and loss pathways across a range of biomes. We examine linkages between N fixation capabilities of biocrust organisms and spatio-temporal patterns of soil N availability that may influence the longer-term productivity of dryland ecosystems. Lastly, biocrust influence on N loss pathways such as N gas loss, leakage of N compounds from biocrusts, and transfer in wind and water erosion are important to understand the maintenance of dryland soil fertility over longer time scales. Although great strides have been made in understanding the influence of biocrusts on ecosystem N cycling, there are important knowledge gaps in our understanding of the influence of biocrusts on ecosystem N cycling that should be the focus of future studies. Because work on the interaction of N cycling and biocrusts was reviewed in Belnap and Lange (2003), this chapter will focus primarily on research findings that have emerged over the last 15 years (2000-2015).

  3. Towards a More Biologically-meaningful Climate Characterization: Variability in Space and Time at Multiple Scales

    Christianson, D. S.; Kaufman, C. G.; Kueppers, L. M.; Harte, J.

    2013-12-01

    Sampling limitations and current modeling capacity justify the common use of mean temperature values in summaries of historical climate and future projections. However, a monthly mean temperature representing a 1-km2 area on the landscape is often unable to capture the climate complexity driving organismal and ecological processes. Estimates of variability in addition to mean values are more biologically meaningful and have been shown to improve projections of range shifts for certain species. Historical analyses of variance and extreme events at coarse spatial scales, as well as coarse-scale projections, show increasing temporal variability in temperature with warmer means. Few studies have considered how spatial variance changes with warming, and analysis for both temporal and spatial variability across scales is lacking. It is unclear how the spatial variability of fine-scale conditions relevant to plant and animal individuals may change given warmer coarse-scale mean values. A change in spatial variability will affect the availability of suitable habitat on the landscape and thus, will influence future species ranges. By characterizing variability across both temporal and spatial scales, we can account for potential bias in species range projections that use coarse climate data and enable improvements to current models. In this study, we use temperature data at multiple spatial and temporal scales to characterize spatial and temporal variability under a warmer climate, i.e., increased mean temperatures. Observational data from the Sierra Nevada (California, USA), experimental climate manipulation data from the eastern and western slopes of the Rocky Mountains (Colorado, USA), projected CMIP5 data for California (USA) and observed PRISM data (USA) allow us to compare characteristics of a mean-variance relationship across spatial scales ranging from sub-meter2 to 10,000 km2 and across temporal scales ranging from hours to decades. Preliminary spatial analysis at

  4. Biological control of Aspergillus flavus growth and subsequent ...

    ONOS

    2010-07-05

    Jul 5, 2010 ... 1School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia,. 2Department of Botany, Osmania University, Hyderabad, India. ... the biocontrol agents tested, culture filtrate of Rhodococcus ...

  5. Gender gaps in achievement and participation in multiple introductory biology classrooms.

    Eddy, Sarah L; Brownell, Sara E; Wenderoth, Mary Pat

    2014-01-01

    Although gender gaps have been a major concern in male-dominated science, technology, engineering, and mathematics disciplines such as physics and engineering, the numerical dominance of female students in biology has supported the assumption that gender disparities do not exist at the undergraduate level in life sciences. Using data from 23 large introductory biology classes for majors, we examine two measures of gender disparity in biology: academic achievement and participation in whole-class discussions. We found that females consistently underperform on exams compared with males with similar overall college grade point averages. In addition, although females on average represent 60% of the students in these courses, their voices make up less than 40% of those heard responding to instructor-posed questions to the class, one of the most common ways of engaging students in large lectures. Based on these data, we propose that, despite numerical dominance of females, gender disparities remain an issue in introductory biology classrooms. For student retention and achievement in biology to be truly merit based, we need to develop strategies to equalize the opportunities for students of different genders to practice the skills they need to excel. © 2014 S. L. Eddy et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. WILD PIGS: BIOLOGY, DAMAGE, CONTROL TECHINQUES AND MANAGEMENT

    Mayer, John; Brisbin, I. Lehr

    2009-12-31

    about anything; and, they can live just about anywhere. On top of that, wild pigs are both very difficult to control and, with the possible exception of island ecosystems, almost impossible to eradicate (Dickson et al. 2001, Sweeney et al. 2003). The solution to the wild pig problem has not been readily apparent. The ultimate answer as to how to control these animals has not been found to date. In many ways, wild pigs are America's most successful large invasive species. All of which means that wild pigs are a veritable nightmare for land and resource managers trying to keep the numbers of these animals and the damage that they do under control. Since the more that one knows about an invasive species, the easier it is to deal with and hopefully control. For wild pigs then, it is better to 'know thy enemy' than to not, especially if one expects to be able to successfully control them. In an effort to better 'know thy enemy,' a two-day symposium was held in Augusta, Georgia, on April 21-22, 2004. This symposium was organized and sponsored by U.S.D.A. Forest Service-Savannah River (USFS-SR), U. S. Department of Energy-Savannah River Operations Office (DOE-SR), the Westinghouse Savannah River Company (WSRC), the South Carolina Chapter of the Soil & Water Conservation Society, and the Savannah River Ecology Laboratory (SREL). The goal of this symposium was to assemble researchers and land managers to first address various aspects of the biology and damage of wild pigs, and then review the control techniques and management of this invasive species. The result would then be a collected synopsis of what is known about wild pigs in the United States. Although the focus of the symposium was primarily directed toward federal agencies, presenters also included professionals from academic institutions, and private-sector control contractors and land managers. Most of the organizations associated with implementing this symposium were affiliated with the

  7. Gender Gaps in Achievement and Participation in Multiple Introductory Biology Classrooms

    Brownell, Sara E.; Wenderoth, Mary Pat

    2014-01-01

    Although gender gaps have been a major concern in male-dominated science, technology, engineering, and mathematics disciplines such as physics and engineering, the numerical dominance of female students in biology has supported the assumption that gender disparities do not exist at the undergraduate level in life sciences. Using data from 23 large introductory biology classes for majors, we examine two measures of gender disparity in biology: academic achievement and participation in whole-class discussions. We found that females consistently underperform on exams compared with males with similar overall college grade point averages. In addition, although females on average represent 60% of the students in these courses, their voices make up less than 40% of those heard responding to instructor-posed questions to the class, one of the most common ways of engaging students in large lectures. Based on these data, we propose that, despite numerical dominance of females, gender disparities remain an issue in introductory biology classrooms. For student retention and achievement in biology to be truly merit based, we need to develop strategies to equalize the opportunities for students of different genders to practice the skills they need to excel. PMID:25185231

  8. Gender Gaps in Achievement and Participation in Multiple Introductory Biology Classrooms

    Eddy, Sarah L.; Brownell, Sara E.; Wenderoth, Mary Pat

    2014-01-01

    Although gender gaps have been a major concern in male-dominated science, technology, engineering, and mathematics disciplines such as physics and engineering, the numerical dominance of female students in biology has supported the assumption that gender disparities do not exist at the undergraduate level in life sciences. Using data from 23 large…

  9. KeyPathwayMiner - De-novo network enrichment by combining multiple OMICS data and biological networks

    Baumbach, Jan; Alcaraz, Nicolas; Pauling, Josch K.

    We tackle the problem of de-novo pathway extraction. Given a biological network and a set of case-control studies, KeyPathwayMiner efficiently extracts and visualizes all maximal connected sub-networks that contain mainly genes that are dysregulated, e.g., differentially expressed, in most cases ...

  10. The role of ionizing radiation in biological control of agricultural pests

    Mansour, M.

    2011-01-01

    Although the commercial biological control industry is growing, it still represents only a small portion of the international market of pest control sales (about 3%). This low ratio is due to several factors including high cost of production of biological control agents and technical and regulatory difficulties that complicate the shipping procedures and create trade barriers. This article summarizes the role of ionizing radiation in supporting the use of biological control agents in insect pest control and concentrates on its role in the production, transport, distribution, and release of parasites and predators and the advantages that ionizing radiation can offer, in comparison with traditional techniques. (author)

  11. Radiochemical and biological control of metaiodobenzyl-guanidine (MIBG) labeled with 131I

    Barboza, M.R.F.F. de; Muramoto, E.; Colturato, M.T.; Silva Valente Goncalves, R. da; Pereira, N.P.S. de; Almeida, M.A.T.M. de; Silva, C.P.G. da.

    1988-07-01

    This study shows the standardization of the radiochemical control of MIBG - 131 I in eletrophoretic system and also the biological control in Wistar rat for a period of time, not longer than 60 minutes after tracer administration. (author) [pt

  12. Biological control of fusarium wilt of tomato by antagonist fungi and ...

    Yomi

    2012-01-16

    Jan 16, 2012 ... Key words: Biological control, fusarium wilt, tomato, antagonist fungi, cyanobacteria. INTRODUCTION ... severely affected by wilt disease caused by F. oxysporum f. sp. ..... Changing options for the control of deciduous fruit.

  13. The status of biological control and recommendations for improving uptake for the future

    Barratt, B.I.P.; Moran, V.C.; Bigler, F.; Lenteren, van J.C.

    2018-01-01

    Classical and augmentative biological control of insect pests and weeds has enjoyed a long history of successes. However, biocontrol practices have not been as universally accepted or optimally utilised as they could be. An International Organisation for Biological Control (IOBC) initiative brought

  14. 21 CFR 310.4 - Biologics; products subject to license control.

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Biologics; products subject to license control... to license control. (a) If a drug has an approved license under section 351 of the Public Health.... (b) To obtain marketing approval for radioactive biological products for human use, as defined in...

  15. Managing conflict over biological control: the case of strawberry guava in Hawaii

    Tracy Johnson

    2016-01-01

    Biological control researchers commonly avoid targets with potential for high conflict, but for certain highly damaging invaders with no viable management alternatives, it may be necessary to consider biological control even when it is likely to generate conflict. Discussed here is a case study, strawberry guava (Psidium cattleianum Sabine...

  16. Multiple-source multiple-harmonic active vibration control of variable section cylindrical structures: A numerical study

    Liu, Jinxin; Chen, Xuefeng; Gao, Jiawei; Zhang, Xingwu

    2016-12-01

    Air vehicles, space vehicles and underwater vehicles, the cabins of which can be viewed as variable section cylindrical structures, have multiple rotational vibration sources (e.g., engines, propellers, compressors and motors), making the spectrum of noise multiple-harmonic. The suppression of such noise has been a focus of interests in the field of active vibration control (AVC). In this paper, a multiple-source multiple-harmonic (MSMH) active vibration suppression algorithm with feed-forward structure is proposed based on reference amplitude rectification and conjugate gradient method (CGM). An AVC simulation scheme called finite element model in-loop simulation (FEMILS) is also proposed for rapid algorithm verification. Numerical studies of AVC are conducted on a variable section cylindrical structure based on the proposed MSMH algorithm and FEMILS scheme. It can be seen from the numerical studies that: (1) the proposed MSMH algorithm can individually suppress each component of the multiple-harmonic noise with an unified and improved convergence rate; (2) the FEMILS scheme is convenient and straightforward for multiple-source simulations with an acceptable loop time. Moreover, the simulations have similar procedure to real-life control and can be easily extended to physical model platform.

  17. Resilience of Urban Smart Grids Involving Multiple Control Loops

    Madsen, Jacob Theilgaard; Pillai, Jayakrishnan Radhakrishna; Schwefel, Hans-Peter

    2016-01-01

    Intelligent control of energy distribution grids is implemented via a hierarchy of control loops with different input values and different control targets, which also work on different time-scales. This control is enabled by a bi-directional communication flow, which can be interrupted due to ICT...

  18. Biological stability of drinking water : Controlling factors, methods, and challenges

    Prest, E.I.E.D.; Hammes, F.; Van Loosdrecht, M.C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and

  19. Meaning Making through Multiple Modalities in a Biology Classroom: A Multimodal Semiotics Discourse Analysis

    Jaipal, Kamini

    2010-01-01

    The teaching of science is a complex process, involving the use of multiple modalities. This paper illustrates the potential of a multimodal semiotics discourse analysis framework to illuminate meaning-making possibilities during the teaching of a science concept. A multimodal semiotics analytical framework is developed and used to (1) analyze the…

  20. The biological clock modulates the human cortisol response in a multiplicative fashion

    van de Werken, Maan; Booij, Sanne H.; van der Zwan, J Esi; Simons, Mirre J. P.; Gordijn, Marijke C. M.; Beersma, Domien G. M.

    Human cortisol levels follow a clear circadian rhythm. We investigated the contribution of alternation of sleep and wakefulness and the circadian clock, using forced desynchrony. Cortisol levels were best described by a multiplication of a circadian and a wake-time component. The human cortisol

  1. Integrated analysis of multiple data sources reveals modular structure of biological networks

    Lu Hongchao; Shi Baochen; Wu Gaowei; Zhang Yong; Zhu Xiaopeng; Zhang Zhihua; Liu Changning; Zhao, Yi; Wu Tao; Wang Jie; Chen Runsheng

    2006-01-01

    It has been a challenging task to integrate high-throughput data into investigations of the systematic and dynamic organization of biological networks. Here, we presented a simple hierarchical clustering algorithm that goes a long way to achieve this aim. Our method effectively reveals the modular structure of the yeast protein-protein interaction network and distinguishes protein complexes from functional modules by integrating high-throughput protein-protein interaction data with the added subcellular localization and expression profile data. Furthermore, we take advantage of the detected modules to provide a reliably functional context for the uncharacterized components within modules. On the other hand, the integration of various protein-protein association information makes our method robust to false-positives, especially for derived protein complexes. More importantly, this simple method can be extended naturally to other types of data fusion and provides a framework for the study of more comprehensive properties of the biological network and other forms of complex networks

  2. Finite Control Set Model Predictive Control for Multiple Distributed Generators Microgrids

    Babqi, Abdulrahman Jamal

    This dissertation proposes two control strategies for AC microgrids that consist of multiple distributed generators (DGs). The control strategies are valid for both grid-connected and islanded modes of operation. In general, microgrid can operate as a stand-alone system (i.e., islanded mode) or while it is connected to the utility grid (i.e., grid connected mode). To enhance the performance of a micrgorid, a sophisticated control scheme should be employed. The control strategies of microgrids can be divided into primary and secondary controls. The primary control regulates the output active and reactive powers of each DG in grid-connected mode as well as the output voltage and frequency of each DG in islanded mode. The secondary control is responsible for regulating the microgrid voltage and frequency in the islanded mode. Moreover, it provides power sharing schemes among the DGs. In other words, the secondary control specifies the set points (i.e. reference values) for the primary controllers. In this dissertation, Finite Control Set Model Predictive Control (FCS-MPC) was proposed for controlling microgrids. FCS-MPC was used as the primary controller to regulate the output power of each DG (in the grid-connected mode) or the voltage of the point of DG coupling (in the islanded mode of operation). In the grid-connected mode, Direct Power Model Predictive Control (DPMPC) was implemented to manage the power flow between each DG and the utility grid. In the islanded mode, Voltage Model Predictive Control (VMPC), as the primary control, and droop control, as the secondary control, were employed to control the output voltage of each DG and system frequency. The controller was equipped with a supplementary current limiting technique in order to limit the output current of each DG in abnormal incidents. The control approach also enabled smooth transition between the two modes. The performance of the control strategy was investigated and verified using PSCAD/EMTDC software

  3. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology.

    Soltis, P S; Soltis, D E; Chase, M W

    1999-11-25

    Comparative biology requires a firm phylogenetic foundation to uncover and understand patterns of diversification and evaluate hypotheses of the processes responsible for these patterns. In the angiosperms, studies of diversification in floral form, stamen organization, reproductive biology, photosynthetic pathway, nitrogen-fixing symbioses and life histories have relied on either explicit or implied phylogenetic trees. Furthermore, to understand the evolution of specific genes and gene families, evaluate the extent of conservation of plant genomes and make proper sense of the huge volume of molecular genetic data available for model organisms such as Arabidopsis, Antirrhinum, maize, rice and wheat, a phylogenetic perspective is necessary. Here we report the results of parsimony analyses of DNA sequences of the plastid genes rbcL and atpB and the nuclear 18S rDNA for 560 species of angiosperms and seven non-flowering seed plants and show a well-resolved and well-supported phylogenetic tree for the angiosperms for use in comparative biology.

  4. Review on Control of DC Microgrids and Multiple Microgrid Clusters

    Meng, Lexuan; Shafiee, Qobad; Ferrari-Trecate, Giancarlo

    2017-01-01

    This paper performs an extensive review on control schemes and architectures applied to DC microgrids. It covers multi-layer hierarchical control schemes, coordinated control strategies, plug-and-play operations, stability and active damping aspects as well as nonlinear control algorithms....... Islanding detection, protection and microgrid clusters control are also briefly summarized. All the mentioned issues are discussed with the goal of providing control design guidelines for DC microgrids. The future research challenges, from the authors’ point of view, are also provided in the final...

  5. Automatic diagnosis of multiple alarms for reactor-control rooms

    Gimmy, K.L.; Nomm, E.

    1981-01-01

    A system has been developed at the Savannah River Plant to help reactor operators respond to multiple alarms in a developing incident situation. The need for such systems has become evident in recent years, particularly after the three Mile Island incident

  6. Presentation of Malaria Epidemics Using Multiple Optimal Controls

    Abid Ali Lashari

    2012-01-01

    Full Text Available An existing model is extended to assess the impact of some antimalaria control measures, by re-formulating the model as an optimal control problem. This paper investigates the fundamental role of three type of controls, personal protection, treatment, and mosquito reduction strategies in controlling the malaria. We work in the nonlinear optimal control framework. The existence and the uniqueness results of the solution are discussed. A characterization of the optimal control via adjoint variables is established. The optimality system is solved numerically by a competitive Gauss-Seidel-like implicit difference method. Finally, numerical simulations of the optimal control problem, using a set of reasonable parameter values, are carried out to investigate the effectiveness of the proposed control measures.

  7. Engineering challenges of BioNEMS: the integration of microfluidics, micro- and nanodevices, models and external control for systems biology.

    Wikswo, J P; Prokop, A; Baudenbacher, F; Cliffel, D; Csukas, B; Velkovsky, M

    2006-08-01

    Systems biology, i.e. quantitative, postgenomic, postproteomic, dynamic, multiscale physiology, addresses in an integrative, quantitative manner the shockwave of genetic and proteomic information using computer models that may eventually have 10(6) dynamic variables with non-linear interactions. Historically, single biological measurements are made over minutes, suggesting the challenge of specifying 10(6) model parameters. Except for fluorescence and micro-electrode recordings, most cellular measurements have inadequate bandwidth to discern the time course of critical intracellular biochemical events. Micro-array expression profiles of thousands of genes cannot determine quantitative dynamic cellular signalling and metabolic variables. Major gaps must be bridged between the computational vision and experimental reality. The analysis of cellular signalling dynamics and control requires, first, micro- and nano-instruments that measure simultaneously multiple extracellular and intracellular variables with sufficient bandwidth; secondly, the ability to open existing internal control and signalling loops; thirdly, external BioMEMS micro-actuators that provide high bandwidth feedback and externally addressable intracellular nano-actuators; and, fourthly, real-time, closed-loop, single-cell control algorithms. The unravelling of the nested and coupled nature of cellular control loops requires simultaneous recording of multiple single-cell signatures. Externally controlled nano-actuators, needed to effect changes in the biochemical, mechanical and electrical environment both outside and inside the cell, will provide a major impetus for nanoscience.

  8. The implications of non-linear biological oscillations on human electrophysiology for electrohypersensitivity (EHS) and multiple chemical sensitivity (MCS).

    Sage, Cindy

    2015-01-01

    The 'informational content' of Earth's electromagnetic signaling is like a set of operating instructions for human life. These environmental cues are dynamic and involve exquisitely low inputs (intensities) of critical frequencies with which all life on Earth evolved. Circadian and other temporal biological rhythms depend on these fluctuating electromagnetic inputs to direct gene expression, cell communication and metabolism, neural development, brainwave activity, neural synchrony, a diversity of immune functions, sleep and wake cycles, behavior and cognition. Oscillation is also a universal phenomenon, and biological systems of the heart, brain and gut are dependent on the cooperative actions of cells that function according to principles of non-linear, coupled biological oscillations for their synchrony. They are dependent on exquisitely timed cues from the environment at vanishingly small levels. Altered 'informational content' of environmental cues can swamp natural electromagnetic cues and result in dysregulation of normal biological rhythms that direct growth, development, metabolism and repair mechanisms. Pulsed electromagnetic fields (PEMF) and radiofrequency radiation (RFR) can have the devastating biological effects of disrupting homeostasis and desynchronizing normal biological rhythms that maintain health. Non-linear, weak field biological oscillations govern body electrophysiology, organize cell and tissue functions and maintain organ systems. Artificial bioelectrical interference can give false information (disruptive signaling) sufficient to affect critical pacemaker cells (of the heart, gut and brain) and desynchronize functions of these important cells that orchestrate function and maintain health. Chronic physiological stress undermines homeostasis whether it is chemically induced or electromagnetically induced (or both exposures are simultaneous contributors). This can eventually break down adaptive biological responses critical to health

  9. Multiple Coulomb scattering of high-energy heavy charged particle beams used in biology and medicine

    Wong, M.; Schimmerling, W.; Ludewigt, B.; Phillips, M.; Curtis, S.; Tobias, C.A.

    1987-01-01

    The authors measured lateral displacement and angular distributions of high-energy heavy charged particles emerging from a target at the Lawrence Berkeley Laboratory BEVALAC with beams used in radiobiology experiments. Multiple Coulomb scattering occurring in the target material generally spreads the beam laterally and increases its divergence. The apparatus consists of four sets of position-sensitive semiconductor detectors located along the beam line. Each providing two position signals and one energy signal. The difference between the two position signals is used to determine the particle position in one dimension. The two position signals are constrained to add up to the energy deposition signal in order to reject multiple-particle traversals. The vector directions for the incident and emerging particles are reconstructed in three dimensions from their measured coordinated positions. Lateral and angular distributions are reported for beams of high-energy neon, iron and uranium ions incident on targets of aluminum, cooper, lead and water

  10. Biological control of fruit-tree red spider mite

    Rabbinge, R.

    1976-01-01

    During the last decade, integrated pest control systems have been developed for several crops. One of the main fields of research in integrated control has been the control of orchard pests. Experience with modified spraying programmes in apple orchards, the increasing resistance of spider

  11. The biological control as a strategy to support nontraditional agricultural exports in Peru: An empirical analysis

    Franklin Duarte Cueva

    2012-12-01

    Full Text Available The study is oriented to explore the general characteristics of agriculture, the biological control as a pest control mechanism and agro export industry. In this context, we try to promote the use of biological control as a strategy to support nontraditional exports related to products such as asparagus and fresh avocados grown in the La Libertad Department (Peru, through an agronomic and management approach. Biological control is the basis of integrated pest management (IPM and contributes to the conservation of agricultural ecosystems allowing to export companies reduce costs, fulfill international phytosanitary measures and supports the preservation of the environment and health. Thus, the Peruvian agro export companies could build a sustainable competitive advantage and seek a positioning as socially responsible firms. We analyze variables such as crop statistics, comparative costs between biological control and chemical control, main destination markets for asparagus and fresh avocados, international standards, among others.

  12. Top-down models in biology: explanation and control of complex living systems above the molecular level.

    Pezzulo, Giovanni; Levin, Michael

    2016-11-01

    It is widely assumed in developmental biology and bioengineering that optimal understanding and control of complex living systems follows from models of molecular events. The success of reductionism has overshadowed attempts at top-down models and control policies in biological systems. However, other fields, including physics, engineering and neuroscience, have successfully used the explanations and models at higher levels of organization, including least-action principles in physics and control-theoretic models in computational neuroscience. Exploiting the dynamic regulation of pattern formation in embryogenesis and regeneration requires new approaches to understand how cells cooperate towards large-scale anatomical goal states. Here, we argue that top-down models of pattern homeostasis serve as proof of principle for extending the current paradigm beyond emergence and molecule-level rules. We define top-down control in a biological context, discuss the examples of how cognitive neuroscience and physics exploit these strategies, and illustrate areas in which they may offer significant advantages as complements to the mainstream paradigm. By targeting system controls at multiple levels of organization and demystifying goal-directed (cybernetic) processes, top-down strategies represent a roadmap for using the deep insights of other fields for transformative advances in regenerative medicine and systems bioengineering. © 2016 The Author(s).

  13. Multiple Estimation Architecture in Discrete-Time Adaptive Mixing Control

    Simone Baldi

    2013-05-01

    Full Text Available Adaptive mixing control (AMC is a recently developed control scheme for uncertain plants, where the control action coming from a bank of precomputed controller is mixed based on the parameter estimates generated by an on-line parameter estimator. Even if the stability of the control scheme, also in the presence of modeling errors and disturbances, has been shown analytically, its transient performance might be sensitive to the initial conditions of the parameter estimator. In particular, for some initial conditions, transient oscillations may not be acceptable in practical applications. In order to account for such a possible phenomenon and to improve the learning capability of the adaptive scheme, in this paper a new mixing architecture is developed, involving the use of parallel parameter estimators, or multi-estimators, each one working on a small subset of the uncertainty set. A supervisory logic, using performance signals based on the past and present estimation error, selects the parameter estimate to determine the mixing of the controllers. The stability and robustness properties of the resulting approach, referred to as multi-estimator adaptive mixing control (Multi-AMC, are analytically established. Besides, extensive simulations demonstrate that the scheme improves the transient performance of the original AMC with a single estimator. The control scheme and the analysis are carried out in a discrete-time framework, for easier implementation of the method in digital control.

  14. Enhancing biological control of basal stem rot disease (Ganoderma boninense) in oil palm plantations.

    Susanto, A; Sudharto, P S; Purba, R Y

    2005-01-01

    Basal Stem Rot (BSR) disease caused by Ganoderma boninense is the most destructive disease in oil palm, especially in Indonesia and Malaysia. The available control measures for BSR disease such as cultural practices and mechanical and chemical treatment have not proved satisfactory due to the fact that Ganoderma has various resting stages such as melanised mycelium, basidiospores and pseudosclerotia. Alternative control measures to overcome the Ganoderma problem are focused on the use of biological control agents and planting resistant material. Present studies conducted at Indonesian Oil Palm Research Institute (IOPRI) are focused on enhancing the use of biological control agents for Ganoderma. These activities include screening biological agents from the oil palm rhizosphere in order to evaluate their effectiveness as biological agents in glasshouse and field trials, testing their antagonistic activities in large scale experiments and eradicating potential disease inoculum with biological agents. Several promising biological agents have been isolated, mainly Trichoderma harzianum, T. viride, Gliocladium viride, Pseudomonas fluorescens, and Bacillus sp. A glasshouse and field trial for Ganoderma control indicated that treatment with T. harzianum and G. viride was superior to Bacillus sp. A large scale trial showed that the disease incidence was lower in a field treated with biological agents than in untreated fields. In a short term programme, research activities at IOPRI are currently focusing on selecting fungi that can completely degrade plant material in order to eradicate inoculum. Digging holes around the palm bole and adding empty fruit bunches have been investigated as ways to stimulate biological agents.

  15. Biological Activity of Lenalidomide and Its Underlying Therapeutic Effects in Multiple Myeloma

    Roberta Martiniani

    2012-01-01

    Full Text Available Lenalidomide is a synthetic compound derived by modifying the chemical structure of thalidomide. It belongs to the second generation of immunomodulatory drugs (IMiDs and possesses pleiotropic properties. Even if lenalidomide has been shown to be active in the treatment of several hematologic malignancies, this review article is mostly focalized on its mode of action in multiple myeloma. The present paper is about the direct and indirect antitumor effects of lenalidomide on malignant plasmacells, bone marrow microenvironment, bone resorption and host’s immune response. The molecular mechanisms and targets of lenalidomide remain largely unknown, but recent evidence shows cereblon (CRBN as a possible mediator of its therapeutical effects.

  16. Multiple Model Adaptive Control Using Dual Youla-Kucera Factorisation

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2012-01-01

    We propose a multi-model adaptive control scheme for uncertain linear plants based on the concept of model unfalsification. The approach relies on examining the ability of a pre-computed set of plant-controller candidates and choosing the one that is best able to reproduce observed in- and output...

  17. Circadian phase resetting via single and multiple control targets.

    Neda Bagheri

    2008-07-01

    Full Text Available Circadian entrainment is necessary for rhythmic physiological functions to be appropriately timed over the 24-hour day. Disruption of circadian rhythms has been associated with sleep and neuro-behavioral impairments as well as cancer. To date, light is widely accepted to be the most powerful circadian synchronizer, motivating its use as a key control input for phase resetting. Through sensitivity analysis, we identify additional control targets whose individual and simultaneous manipulation (via a model predictive control algorithm out-perform the open-loop light-based phase recovery dynamics by nearly 3-fold. We further demonstrate the robustness of phase resetting by synchronizing short- and long-period mutant phenotypes to the 24-hour environment; the control algorithm is robust in the presence of model mismatch. These studies prove the efficacy and immediate application of model predictive control in experimental studies and medicine. In particular, maintaining proper circadian regulation may significantly decrease the chance of acquiring chronic illness.

  18. Robust biological nitrogen removal by creating multiple tides in a single bed tidal flow constructed wetland.

    Hu, Yuansheng; Zhao, Yaqian; Rymszewicz, Anna

    2014-02-01

    Achieving effective total nitrogen (TN) removal is one of the major challenges faced by constructed wetlands (CWs). To address this issue, multiple "tides" were proposed in a single stage tidal flow constructed wetland (TFCW). With this adoption, exceptional TN removal (85% on average) was achieved under a high nitrogen loading rate (NLR) of around 28 g Nm(-2)day(-1), which makes the proposed system an adequate option to provide advanced wastewater treatment for peri-urban communities and rural area. It was revealed that the multiple "tides" not only promoted TN removal performance, but also brought more flexibility to TFCWs. Adsorption of NH4(+)-N onto the wetland medium (during contact period) and regeneration of the adsorption capacity via nitrification (during bed resting) were validated as the key processes for NH4(+)-N conversion in TFCWs. Moreover, simultaneous nitrification denitrification (SND) was found to be significant during the bed resting period. These findings will provide a new foundation for the design and modeling of nitrogen conversion and oxygen transfer in TFCWs. © 2013.

  19. Complete Host Range Testing on Common Reed with Potential Biological Control Agents and Investigation into Biological Control for Flowering Rush

    2016-07-01

    CR-16-5 v Preface This report was prepared by Drs. Patrick Häfliger and Hariet Hinz, Centre for Agriculture and Bioscience International (CABI...through Cornell University, the Washington Department of Agriculture , the Washington Department of Ecology, the Washington Department of Natural...capacity during biological invasion in an aquatic plant Butomus umbellatus (Butomaceae). American Journal of Botany 92:495–502. Dieckmann, L. 1983

  20. Multiple, novel biologically active endophytic actinomycetes isolated from upper Amazonian rainforests.

    Bascom-Slack, Carol A; Ma, Cong; Moore, Emily; Babbs, Beatrice; Fenn, Kathleen; Greene, Joshua S; Hann, Bradley D; Keehner, Jocelyn; Kelley-Swift, Elizabeth G; Kembaiyan, Vivek; Lee, Sun Jin; Li, Puyao; Light, David Y; Lin, Emily H; Schorn, Michelle A; Vekhter, Daniel; Boulanger, Lori-Ann; Hess, W M; Vargas, Percy Núñez; Strobel, Gary A; Strobel, Scott A

    2009-08-01

    Microbial biodiversity provides an increasingly important source of medically and industrially useful compounds. We have isolated 14 actinomycete species from a collection of approximately 300 plant stem samples from the upper Amazonian rainforest in Peru. All of the cultured isolates produce substances with inhibitory activity directed at a range of potential fungal and bacterial pathogens. For some organisms, this activity is very broad in spectrum while other organisms show specific activity against a limited number of organisms. Two of these organisms preferentially inhibit bacterial test organisms over eukaryotic organisms. rDNA sequence analysis indicates that these organisms are not equivalent to any other cultured deposits in GenBank. Our results provide evidence of the untapped biodiversity in the form of biologically active microbes present within the tissues of higher plants.

  1. Integration of multiple biological features yields high confidence human protein interactome.

    Karagoz, Kubra; Sevimoglu, Tuba; Arga, Kazim Yalcin

    2016-08-21

    The biological function of a protein is usually determined by its physical interaction with other proteins. Protein-protein interactions (PPIs) are identified through various experimental methods and are stored in curated databases. The noisiness of the existing PPI data is evident, and it is essential that a more reliable data is generated. Furthermore, the selection of a set of PPIs at different confidence levels might be necessary for many studies. Although different methodologies were introduced to evaluate the confidence scores for binary interactions, a highly reliable, almost complete PPI network of Homo sapiens is not proposed yet. The quality and coverage of human protein interactome need to be improved to be used in various disciplines, especially in biomedicine. In the present work, we propose an unsupervised statistical approach to assign confidence scores to PPIs of H. sapiens. To achieve this goal PPI data from six different databases were collected and a total of 295,288 non-redundant interactions between 15,950 proteins were acquired. The present scoring system included the context information that was assigned to PPIs derived from eight biological attributes. A high confidence network, which included 147,923 binary interactions between 13,213 proteins, had scores greater than the cutoff value of 0.80, for which sensitivity, specificity, and coverage were 94.5%, 80.9%, and 82.8%, respectively. We compared the present scoring method with others for evaluation. Reducing the noise inherent in experimental PPIs via our scoring scheme increased the accuracy significantly. As it was demonstrated through the assessment of process and cancer subnetworks, this study allows researchers to construct and analyze context-specific networks via valid PPI sets and one can easily achieve subnetworks around proteins of interest at a specified confidence level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  3. Efficient Control Law Simulation for Multiple Mobile Robots

    Driessen, B.J.; Feddema, J.T.; Kotulski, J.D.; Kwok, K.S.

    1998-10-06

    In this paper we consider the problem of simulating simple control laws involving large numbers of mobile robots. Such simulation can be computationally prohibitive if the number of robots is large enough, say 1 million, due to the 0(N2 ) cost of each time step. This work therefore uses hierarchical tree-based methods for calculating the control law. These tree-based approaches have O(NlogN) cost per time step, thus allowing for efficient simulation involving a large number of robots. For concreteness, a decentralized control law which involves only the distance and bearing to the closest neighbor robot will be considered. The time to calculate the control law for each robot at each time step is demonstrated to be O(logN).

  4. Dynamic pipe control with a multiple digit automatic measuring device

    Jenzer, P.

    1984-01-01

    With the flow rotating method, thin-walled pipes can be produced with very tight tolerances and high mechanical sturdiness. The measuring device permits a dynamic control of these pipes, the outer diameter of which can lie between 70 and 300 mm, the length between 500 and 2000 mm and the wall thickness between 0,5 and 10 mm. Depending on the pipe type, up to 27 measurements in a maximum of 5 measuring levels are to be controlled. (orig.) [de

  5. First controlled vertical flight of a biologically inspired microrobot

    Perez-Arancibia, Nestor O; Ma, Kevin Y; Greenberg, Jack D; Wood, Robert J [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Galloway, Kevin C, E-mail: nperez@seas.harvard.edu, E-mail: kevinma@seas.harvard.edu, E-mail: kevin.galloway@wyss.harvard.edu, E-mail: jdgreenb@seas.harvard.edu, E-mail: rjwood@eecs.harvard.edu [Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 (United States)

    2011-09-15

    In this paper, we present experimental results on altitude control of a flying microrobot. The problem is approached in two stages. In the first stage, system identification of two relevant subsystems composing the microrobot is performed, using a static flapping experimental setup. In the second stage, the information gathered through the static flapping experiments is employed to design the controller used in vertical flight. The design of the proposed controller relies on the idea of treating an exciting signal as a subsystem of the microrobot. The methods and results presented here are a key step toward achieving total autonomy of bio-inspired flying microrobots.

  6. First controlled vertical flight of a biologically inspired microrobot

    Perez-Arancibia, Nestor O; Ma, Kevin Y; Greenberg, Jack D; Wood, Robert J; Galloway, Kevin C

    2011-01-01

    In this paper, we present experimental results on altitude control of a flying microrobot. The problem is approached in two stages. In the first stage, system identification of two relevant subsystems composing the microrobot is performed, using a static flapping experimental setup. In the second stage, the information gathered through the static flapping experiments is employed to design the controller used in vertical flight. The design of the proposed controller relies on the idea of treating an exciting signal as a subsystem of the microrobot. The methods and results presented here are a key step toward achieving total autonomy of bio-inspired flying microrobots.

  7. Practice makes pretty good: assessment of primary literature reading abilities across multiple large-enrollment biology laboratory courses.

    Sato, Brian K; Kadandale, Pavan; He, Wenliang; Murata, Paige M N; Latif, Yama; Warschauer, Mark

    2014-01-01

    Primary literature is essential for scientific communication and is commonly utilized in undergraduate biology education. Despite this, there is often little time spent training our students how to critically analyze a paper. To address this, we introduced a primary literature module in multiple upper-division laboratory courses. In this module, instructors conduct classroom discussions that dissect a paper as researchers do. While previous work has identified classroom interventions that improve primary literature comprehension within a single course, our goal was to determine whether including a scientific paper module in our classes could produce long-term benefits. On the basis of performance in an assessment exam, we found that our module resulted in longitudinal gains, including increased comprehension and critical-thinking abilities in subsequent lab courses. These learning gains were specific to courses utilizing our module, as no longitudinal gains were seen in students who had taken other upper-division labs that lacked extensive primary literature discussion. In addition, we assessed whether performance on our assessment correlated with a variety of factors, including grade point average, course performance, research background, and self-reported confidence in understanding of the article. Furthermore, all of the study conclusions are independent of biology disciplines, as we observe similar trends within each course. © 2014 B. K. Sato et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Biological control and management of the detoxication wastewater treatment technologies

    Topalova Yana

    2007-01-01

    Full Text Available Detoxication technologies require the combination of theoretical and practical knowledge of xenobiotic biodegradation, wastewater treatment technologies, and management rules. The purpose of this complicated combination is to propose specialized strategies for detoxication, based on lab- and pilot-scale modeling. These strategies include preliminary created algorithms for preventing the risk of water pollution and sediments. The technologies and algorithms are essentially important outcome, applied in the textile, pharmaceutical, cosmetic, woodtreating, and oiltreating industries. In this paper four rehabilitation technologies for pretreatment of water contaminated by pentachlorophenol (PCP have been developed in the frame of the European and Bulgarian National projects. Emphasize is put on the biological systems and their potential of detoxication management. The light and transmission electron microscopy of the reconstructed activated sludges the microbial, kinetic and enzymological indicators are presented and approved as critical points in the biocontrol.

  9. SOME ASPECTS OF THE BIOLOGY AND CONTROL OF ...

    Key Words: Callosobruchus maculatus, developmental period, soya bean, Azadirachta indica, Citrus sinensis. ASPECTS DE LA BIOLOGIE ET DU CONTROLE DU CALLOSOBRUCHUS MACULATUS (F.) SUR LA CONSERVATION DES GRAINES DE SOJA DES VARIETES GLYCINE MAX (L.) MERR NOTE DE SYNTHESE

  10. Biological control of schistosome transmission in flowing water habitats.

    Jobin, W R; Laracuente, A

    1979-09-01

    Marisa cornuarietis was evaluated in Puerto Rico for control of schistosome transmission in flowing water. A population of Biomphalaria glabrata and their schistosome infections disappeared after introduction of 20,000 M. cornuarietis to an endemic stream, while in nearby untreated streams the B. glabrata population remained stable and the schistosome prevalence increased. This method cost U.S. $0.10 per capita for over a year of protection, 5%-10% of the cost of chemical control.

  11. Hyporheic Interfaces Serve as Ecological Control Points for Mountainous Landscape Biological Productivity

    Newcomer, M. E.; Dwivedi, D.; Raberg, J.; Fox, P. M.; Nico, P. S.; Wainwright, H. M.; Conrad, M. E.; Bill, M.; Bouskill, N.; Williams, K. H.; Hubbard, S.; Steefel, C. I.

    2017-12-01

    Riverine systems in snow-dominated mountainous regions often express complex biogeochemistry and river nutrient indicators as a function of hydrologic variability. In early spring, meltwater infiltration from a ripened snowpack creates a hydrological gradient through hillslopes, floodplains, and hyporheic zones. During this time, these systems are more-or-less a passive filter that allows the rising limb of the hydrograph to display chemo-dynamic relationships (inversely proportional) with solutes and nutrients. During the growing season, temperatures, plants, microbes, and hydrologic gradients shift dramatically and activate hyporheic-zone biogeochemistry as a major control on water nutrient degradation. Hyporheic biogeochemical reliance on the timing of meltwater infiltration and the possibility of a longer vernal window under future climate change indicates the importance of hyporheic cycling as the dominant ecological control point on carbon and nitrogen fluxes and transformations. The objective of our study is to develop a predictive understanding of the subsurface and surface controls on hyporheic biogeochemical behavior through data-model integration. Data from our 2017 field campaign in the East River, Colorado, a pristine, mountainous watershed, were taken at key times during the rising, peak, falling, and dry limb of the hydrograph. Throughout multiple locations across this spatial and temporal gradient, we measured surface and subsurface gases, geochemistry, isotopes, and hydrological flow conditions and used this data to constrain a numerical flow and reactive transport model of the hyporheic zone that included microbial and flow feedback dynamics. Our data coupled with the predictive power of our numerical model reveal that the hyporheic zone serves dual roles throughout the year—as a net source of nutrients and solutes during the early vernal phase, shifting to a net sink of nutrients during the summer dry season. The possibility of a future

  12. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics

    Liu Chunbao

    2016-01-01

    Full Text Available Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader.

  13. Synthesis, Molecular Modelling and Biological Evaluation of Novel Heterodimeric, Multiple Ligands Targeting Cholinesterases and Amyloid Beta

    Michalina Hebda

    2016-03-01

    Full Text Available Cholinesterases and amyloid beta are one of the major biological targets in the search for a new and efficacious treatment of Alzheimer’s disease. The study describes synthesis and pharmacological evaluation of new compounds designed as dual binding site acetylcholinesterase inhibitors. Among the synthesized compounds, two deserve special attention—compounds 42 and 13. The former is a saccharin derivative and the most potent and selective acetylcholinesterase inhibitor (EeAChE IC50 = 70 nM. Isoindoline-1,3-dione derivative 13 displays balanced inhibitory potency against acetyl- and butyrylcholinesterase (BuChE (EeAChE IC50 = 0.76 μM, EqBuChE IC50 = 0.618 μM, and it inhibits amyloid beta aggregation (35.8% at 10 μM. Kinetic studies show that the developed compounds act as mixed or non-competitive acetylcholinesterase inhibitors. According to molecular modelling studies, they are able to interact with both catalytic and peripheral active sites of the acetylcholinesterase. Their ability to cross the blood-brain barrier (BBB was confirmed in vitro in the parallel artificial membrane permeability BBB assay. These compounds can be used as a solid starting point for further development of novel multifunctional ligands as potential anti-Alzheimer’s agents.

  14. Strategic Integration of Multiple Bioinformatics Resources for System Level Analysis of Biological Networks.

    D'Souza, Mark; Sulakhe, Dinanath; Wang, Sheng; Xie, Bing; Hashemifar, Somaye; Taylor, Andrew; Dubchak, Inna; Conrad Gilliam, T; Maltsev, Natalia

    2017-01-01

    Recent technological advances in genomics allow the production of biological data at unprecedented tera- and petabyte scales. Efficient mining of these vast and complex datasets for the needs of biomedical research critically depends on a seamless integration of the clinical, genomic, and experimental information with prior knowledge about genotype-phenotype relationships. Such experimental data accumulated in publicly available databases should be accessible to a variety of algorithms and analytical pipelines that drive computational analysis and data mining.We present an integrated computational platform Lynx (Sulakhe et al., Nucleic Acids Res 44:D882-D887, 2016) ( http://lynx.cri.uchicago.edu ), a web-based database and knowledge extraction engine. It provides advanced search capabilities and a variety of algorithms for enrichment analysis and network-based gene prioritization. It gives public access to the Lynx integrated knowledge base (LynxKB) and its analytical tools via user-friendly web services and interfaces. The Lynx service-oriented architecture supports annotation and analysis of high-throughput experimental data. Lynx tools assist the user in extracting meaningful knowledge from LynxKB and experimental data, and in the generation of weighted hypotheses regarding the genes and molecular mechanisms contributing to human phenotypes or conditions of interest. The goal of this integrated platform is to support the end-to-end analytical needs of various translational projects.

  15. Differential physiological responses of dalmatian toadflax, Linaria dalmatica L. Miller, to injury from two insect biological control agents: Implications for decision-making in biological control

    Robert K. D. Peterson; Sharlene E. Sing; David K. Weaver

    2005-01-01

    Successful biological control of invasive weeds with specialist herbivorous insects is predicated on the assumption that the injury stresses the weeds sufficiently to cause reductions in individual fitness. Because plant gas exchange directly impacts growth and fitness, characterizing how injury affects these primary processes may provide a key indicator of...

  16. Hierarchical Control for Multiple DC-Microgrids Clusters

    Shafiee, Qobad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    DC microgrids (MGs) have gained research interest during the recent years because of many potential advantages as compared to the ac system. To ensure reliable operation of a low-voltage dc MG as well as its intelligent operation with the other DC MGs, a hierarchical control is proposed in this p......DC microgrids (MGs) have gained research interest during the recent years because of many potential advantages as compared to the ac system. To ensure reliable operation of a low-voltage dc MG as well as its intelligent operation with the other DC MGs, a hierarchical control is proposed...

  17. Cooperative Control for Multiple Autonomous Vehicles Using Descriptor Functions

    Marta Niccolini

    2014-01-01

    Full Text Available The paper presents a novel methodology for the control management of a swarm of autonomous vehicles. The vehicles, or agents, may have different skills, and be employed for different missions. The methodology is based on the definition of descriptor functions that model the capabilities of the single agent and each task or mission. The swarm motion is controlled by minimizing a suitable norm of the error between agents’ descriptor functions and other descriptor functions which models the entire mission. The validity of the proposed technique is tested via numerical simulation, using different task assignment scenarios.

  18. Do biological-based strategies hold promise to biofouling control in MBRs?

    Malaeb, Lilian; Le-Clech, Pierre; Vrouwenvelder, Johannes S.; Ayoub, George M.; Saikaly, Pascal

    2013-01-01

    . The reason for the slow advancement in successful control of biofouling is largely attributed to the complex interactions of involved biological compounds and the lack of representative-for-practice experimental approaches to evaluate potential effective

  19. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  20. Biological control of saltcedar (Tamarix spp.) by saltcedar leaf beetles (Diorhabda spp.): effects on small mammals

    The spread of introduced saltcedar (Tamarix spp.) throughout many riparian systems across the western United States motivated the introduction of biological control agents that are specific to saltcedar, saltcedar leaf beetles (Diorhabda carinulata, D. elongata; Chrysomelidae). I monitored small mam...

  1. Costs and benefits of biological control of invasive alien plants: case studies from South Africa

    Van Wilgen, BW

    2004-01-01

    Full Text Available Invasive alien species can have significant negative environmental and economic impacts. Such species are often controlled biologically by means of introducing host-specific insects or pathogens that can reduce the species' invasive potential...

  2. Parasitoids attacking emerald ash borers in western Pennsylvania and their potential use in biological control

    J.J. Duan; R.W. Fuester; J. Wildonger; P.B. Taylor; S. Barth; S-E. Spichiger

    2009-01-01

    Current biological control programs against the emerald ash borer (EAB, Agrilus planipennis Fairmaire) have primarily focused on the introduction and releases of exotic parasitoids from China, home of the pest origin....

  3. Biological control of toxic cyanobacteria by mixotrophic predators: an experimental test of intraguild predation theory

    Wilken, S.; Verspagen, J.M.H.; Naus-Wiezer, S.M.H.; Van Donk, E.; Huisman, Jef

    2014-01-01

    Intraguild predators both feed on and compete with their intraguild prey. In theory, intraguild predators can therefore be very effective as biological control agents of intraguild prey species, especially in productive environments. We investigated this hypothesis using the mixotrophic chrysophyte

  4. Multiple Model Adaptive Attitude Control of LEO Satellite with Angular Velocity Constraints

    Shahrooei, Abolfazl; Kazemi, Mohammad Hosein

    2018-04-01

    In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.

  5. An agent-based negotiation approach for balancing multiple coupled control domains

    Umair, Aisha; Clausen, Anders; Jørgensen, Bo Nørregaard

    2015-01-01

    Solving multi-objective multi-issue negotiation problems involving interdependent issues distributed among multiple control domains is inherent to most non-trivial cyber-physical systems. In these systems, the coordinated operation of interconnected subsystems performing autonomous control....... The proposed approach can solve negotiation problems with interdependent issues across multiple coupled control domains. We demonstrate our approach by solving a coordination problem where a Combined Heat and Power Plant must allocate electricity for three commercial greenhouses to ensure the required plant...

  6. Synthesis for robust synchronization of chaotic systems under output feedback control with multiple random delays

    Wen Guilin; Wang Qingguo; Lin Chong; Han Xu; Li Guangyao

    2006-01-01

    Synchronization under output feedback control with multiple random time delays is studied, using the paradigm in nonlinear physics-Chua's circuit. Compared with other synchronization control methods, output feedback control with multiple random delay is superior for a realistic synchronization application to secure communications. Sufficient condition for global stability of delay-dependent synchronization is established based on the LMI technique. Numerical simulations fully support the analytical approach, in spite of the random delays

  7. Co-administration of Albendazole and Levamisole to control multiple ...

    Albendazole (ABZ) and levamisole (LEV) were co-administered to evaluate their ability to control natural helminth infections in a sheep farm where resistance to the individual anthelmintic had previously been reported. Thirty two sheep of mixed ages and sex were randomly allocated to four equal groups. Group 1 and 2 ...

  8. Multiple Primary LED Lamp Colour Controller with Inherent Brightness Limitation

    Barcena, R.; Ackermann, B.

    2007-01-01

    There is a strong interest in using LEDs for general illumination due to the potential they offer for energy saving, environmental friendliness, new opportunities in lighting design, and control of the intensity, colour, and spatial distribution of light. General illumination requires primarily

  9. Quality control for retinal OCT in multiple sclerosis

    Schippling, S; Balk, Lj; Costello, F

    2015-01-01

    to provide guidance on the use of validated quality control (QC) criteria for the use of OCT in MS research and clinical trials. METHODS: A prospective multi-centre (n = 13) study. Peripapillary ring scan QC rating of an OCT training set (n = 50) was followed by a test set (n = 50). Inter-rater agreement...

  10. Aerated biofilters with multiple-level air injection configurations to enhance biological treatment of methane emissions.

    Farrokhzadeh, Hasti; Hettiaratchi, J Patrick A; Jayasinghe, Poornima; Kumar, Sunil

    2017-09-01

    Aiming to improve conventional methane biofilter performance, a multiple-level aeration biofilter design is proposed. Laboratory flow-through column experiments were conducted to evaluate three actively-aerated methane biofilter configurations. Columns were aerated at one, two, and three levels of the bed depth, with air introduced at flow rates calculated from methane oxidation reaction stoichiometry. Inlet methane loading rates were increased in five stages between 6 and 18mL/min. The effects of methane feeding rate, levels of aeration, and residence time on methane oxidation rates were determined. Samples collected after completion of flow-through experiments were used to determine methane oxidation kinetic parameters, V max , K m , and methanotrophic community distribution across biofilter columns. Results obtained from mixed variances analysis and response surfaces, as well as methanotrophic activity data, suggested that, biofilter column with two aeration levels has the most even performance over time, maintaining 85.1% average oxidation efficiency over 95days of experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Multiple biological complex of alkaline extract of the leaves of Sasa senanensis Rehder.

    Sakagami, Hiroshi; Zhou, Li; Kawano, Michiyo; Thet, May Maw; Tanaka, Shoji; Machino, Mamoru; Amano, Shigeru; Kuroshita, Reina; Watanabe, Shigeru; Chu, Qing; Wang, Qin-Tao; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Sekine, Keisuke; Shirataki, Yoshiaki; Zhang, Chang-Hao; Uesawa, Yoshihiro; Mohri, Kiminori; Kitajima, Madoka; Oizumi, Hiroshi; Oizumi, Takaaki

    2010-01-01

    Previous studies have shown anti-inflammatory potential of alkaline extract of the leaves of Sasa senanensis Rehder (SE). The aim of the present study was to clarity the molecular entity of SE, using various fractionation methods. SE inhibited the production of nitric oxide (NO), but not tumour necrosis factor-α by lipopolysaccharide (LPS)-stimulated mouse macrophage-like cells. Lignin carbohydrate complex prepared from SE inhibited the NO production to a comparable extent with SE, whereas chlorophyllin was more active. On successive extraction with organic solvents, nearly 90% of SE components, including chlorophyllin, were recovered from the aqueous layer. Anti-HIV activity of SE was comparable with that of lignin-carbohydrate complex, and much higher than that of chlorophyllin and n-butanol extract fractions. The CYP3A inhibitory activity of SE was significantly lower than that of grapefruit juice and chlorophyllin. Oral administration of SE slightly reduced the number of oral bacteria. When SE was applied to HPLC, nearly 70% of SE components were eluted as a single peak. These data suggest that multiple components of SE may be associated with each other in the native state or after extraction with alkaline solution.

  12. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats.

    Wang, Yanjun; Liu, Xiangyang; Zhang, Chen; Wang, Zhengjun

    2018-06-01

    High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP + , NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats. Copyright © 2018. Published by Elsevier Inc.

  13. Biological control of banana black Sigatoka disease with Trichoderma

    Poholl Adan Sagratzki Cavero

    2015-06-01

    Full Text Available Black Sigatoka disease caused by Mycosphaerella fijiensis is the most severe banana disease worldwide. The pathogen is in an invasive phase in Brazil and is already present in most States of the country. The potential of 29 isolates of Trichoderma spp. was studied for the control of black Sigatoka disease under field conditions. Four isolates were able to significantly reduce disease severity and were further tested in a second field experiment. Isolate 2.047 showed the best results in both field experiments and was selected for fungicide sensitivity tests and mass production. This isolate was identified as Trichoderma atroviride by sequencing fragments of the ITS region of the rDNA and tef-1α of the RNA polymerase. Trichoderma atroviride was as effective as the fungicide Azoxystrobin, which is recommended for controlling black Sigatoka. This biocontrol agent has potential to control the disease and may be scaled-up for field applications on rice-based solid fermentation

  14. Interferon Lambda Genetics and Biology in Regulation of Viral Control

    Emily A. Hemann

    2017-12-01

    Full Text Available Type III interferons, also known as interferon lambdas (IFNλs, are the most recent addition to the IFN family following their discovery in 2003. Initially, IFNλ was demonstrated to induce expression of interferon-stimulated genes and exert antiviral properties in a similar manner to type I IFNs. However, while IFNλ has been described to have largely overlapping expression and function with type I IFNs, it has become increasingly clear that type III IFNs also have distinct functions from type I IFNs. In contrast to type I IFNs, whose receptor is ubiquitously expressed, type III IFNs signal and function largely at barrier epithelial surfaces, such as the respiratory and gastrointestinal tracts, as well as the blood–brain barrier. In further support of unique functions for type III IFNs, single nucleotide polymorphisms in IFNL genes in humans are strongly associated with outcomes to viral infection. These biological linkages have also been more directly supported by studies in mice highlighting roles of IFNλ in promoting antiviral immune responses. In this review, we discuss the current understanding of type III IFNs, and how their functions are similar to, and different from, type I IFN in various immune cell subtypes and viral infections.

  15. The biological basis for the control of prenatal irradiation

    1988-01-01

    The embryo and fetus have been generally considered to be more sensitive than the adult to the detrimental effects of radiation exposure. In particular, recent re-evaluations of epidemiological data on human population exposed to radiation have suggested that there may be greater sensitivity than heretofore recognized to the induction of mental retardation and reduced intelligence by exposure during gestation. To assist national authorities in evaluating this problem and establishing appropriate protection measures for limiting the dose to the embryo and fetus and, thus, to pregnant or potentially pregnant women, the Nuclear Energy Agency has appointed a Group of Consultants to assemble and evaluate the biological data relevant to the protection of the human conceptus, and to make recommendations for achieving this in the operational practice. The Group has surveyed the human data dealing with the biologcal effects of radiation exposure at low doses, and has supplemented this with information derived from animal studies. The Group has also taken full account of the studies and recommendations issued in this area by other international organizations, primarily the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) and the International Commission on Radiological Protection (ICRP). This report is published under the responsibility of the Secretary General of the OECD, and does not commit Member governments of the Organization

  16. Biology and control of the raspberry crown borer (Lepidoptera: Sesiidae).

    McKern, Jacquelyn A; Johnson, Donn T; Lewis, Barbara A

    2007-04-01

    This study explored the biology of raspberry crown borer, Pennisetia marginata (Harris) (Lepidoptera: Sesiidae), in Arkansas and the optimum timing for insecticide and nematode applications. The duration of P. marginata's life cycle was observed to be 1 yr in Arkansas. Insecticide trials revealed that bifenthrin, chlorpyrifos, imidacloprid, metaflumizone, and metofluthrin efficacy were comparable with that of azinphosmethyl, the only labeled insecticide for P. marginata in brambles until 2005. Applications on 23 October 2003 for plots treated with bifenthrin, chlorpyrifos, and azinphosmethyl resulted in >88% reduction in larvae per crown. Applications on 3 November 2004 of metaflumizone, metofluthrin, and bifenthrin resulted in >89% reduction in larvae per crown. Applications on 7 April 2005 for metofluthrin, imidacloprid, bifenthrin, metaflumizone, and benzoylphenyl urea resulted in >64% reduction in the number of larvae per crown. Applications on 6 May 2004 did not reduce larval numbers. The optimum timing for treatments was found to be between October and early April, before the larvae tunneled into the crowns of plants. Applying bifenthrin with as little as 468 liters water/ha (50 gal/acre) was found to be as effective against larvae as higher volumes of spray. Nematode applications were less successful than insecticides. Nematode applications of Steinernemafeltiae, Steinernema carpocapsae, and Heterorhabditis bacteriophora reduced larvae counts per plant by 46, 53, and 33%, respectively.

  17. Controls of Multiple Stressors on the Black Sea Fishery

    Temel Oguz

    2017-04-01

    Full Text Available Black Sea is one of the most severely degraded and exploited large marine ecosystems in the world. For the last 50 years after the depletion of large predatory fish stocks, anchovy (with the partial contribution of sprat has been acting as the main top predator species and experienced a major stock collapse at the end of 1990s. After the collapse, eastern part of the southern Black Sea became the only region sustaining relatively high anchovy catch (400,000 tons whereas the total catch within the rest of the sea was reduced to nearly its one-third. The lack of recovery of different fish stocks under a slow ecosystem rehabilitation may be attributed, on the one hand, to inappropriate management measures and the lack of harmonized fishery policy among the riparian countries. On the other hand, impacts of multiple stressors (eutrophication, alien species invasions, natural climatic variations on the food web may contribute to resilience of the system toward its recovery. The overfishing/recovery problem therefore cannot be isolated from rehabilitation efforts devoted to the long-term chronic degradation of the food web structure, and alternative fishery-related management measures must be adopted as a part of a comprehensive ecosystem-based management strategy. The present study provides a data-driven ecosystem assessment, underlines the key environmental issues and threats, and points to the critical importance of holistic approach to resolve the fishery-ecosystem interactions. It also stresses the transboundary nature of the problem.

  18. Anaerobic Digestion. Instructor's Guide. Biological Treatment Process Control.

    Carnegie, John W., Ed.

    This instructor's guide contains materials needed to teach a four-lesson unit on anaerobic digestion control. These materials include: (1) unit overview; (2) lesson plans; (3) lecture outlines; (4) student worksheets for each lesson (with answers); and (5) two copies of a final quiz (with and without answers). Lesson 1 is a review of the theory of…

  19. Ecological risks of biological control agents: impacts on IPM

    Hokkanen, H.M.T.; Lenteren, van J.C.; Menzler-Hokkanen, I.

    2007-01-01

    Since the early days of integrated pest management a sound ecological foundation has been considered essential for the development of effective systems. From time to time, there have been attempts to evaluate the ways in which ecological theory is exploited in pest control, and to review the lessons

  20. Comparison between chemical and biological control of Fusarium ...

    ... College of Education, Jeddah, Saudi Arabia. The results revealed that treatment with the fungicide carbomar or T. harzianum as well as with B. subtilis, in presence of F. solani increased the % of healthy seedlings as well as their length , fresh and dry weight than in presence of F. solani alone but still less than the control.

  1. Identifying Ant-Mirid Spatial Interactions to Improve Biological Control in Cacao-Based Agroforestry System.

    Bagny Beilhe, Leïla; Piou, Cyril; Tadu, Zéphirin; Babin, Régis

    2018-06-06

    The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.

  2. A biologically inspired neural network controller for ballistic arm movements

    Schmid Maurizio

    2007-09-01

    Full Text Available Abstract Background In humans, the implementation of multijoint tasks of the arm implies a highly complex integration of sensory information, sensorimotor transformations and motor planning. Computational models can be profitably used to better understand the mechanisms sub-serving motor control, thus providing useful perspectives and investigating different control hypotheses. To this purpose, the use of Artificial Neural Networks has been proposed to represent and interpret the movement of upper limb. In this paper, a neural network approach to the modelling of the motor control of a human arm during planar ballistic movements is presented. Methods The developed system is composed of three main computational blocks: 1 a parallel distributed learning scheme that aims at simulating the internal inverse model in the trajectory formation process; 2 a pulse generator, which is responsible for the creation of muscular synergies; and 3 a limb model based on two joints (two degrees of freedom and six muscle-like actuators, that can accommodate for the biomechanical parameters of the arm. The learning paradigm of the neural controller is based on a pure exploration of the working space with no feedback signal. Kinematics provided by the system have been compared with those obtained in literature from experimental data of humans. Results The model reproduces kinematics of arm movements, with bell-shaped wrist velocity profiles and approximately straight trajectories, and gives rise to the generation of synergies for the execution of movements. The model allows achieving amplitude and direction errors of respectively 0.52 cm and 0.2 radians. Curvature values are similar to those encountered in experimental measures with humans. The neural controller also manages environmental modifications such as the insertion of different force fields acting on the end-effector. Conclusion The proposed system has been shown to properly simulate the development of

  3. Pointright: a system to redirect mouse and keyboard control among multiple machines

    Johanson, Bradley E [Palo Alto, CA; Winograd, Terry A [Stanford, CA; Hutchins, Gregory M [Mountain View, CA

    2008-09-30

    The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.

  4. Mechanization and Control Concepts for Biologically Inspired Micro Aerial Vehicles

    Raney, David L.; Slominski, Eric C.

    2003-01-01

    It is possible that MAV designs of the future will exploit flapping flight in order to perform missions that require extreme agility, such as rapid flight beneath a forest canopy or within the confines of a building. Many of nature's most agile flyers generate flapping motions through resonant excitation of an aeroelastically tailored structure: muscle tissue is used to excite a vibratory mode of their flexible wing structure that creates propulsion and lift. A number of MAV concepts have been proposed that would operate in a similar fashion. This paper describes an ongoing research activity in which mechanization and control concepts with application to resonant flapping MAVs are being explored. Structural approaches, mechanical design, sensing and wingbeat control concepts inspired by hummingbirds, bats and insects are examined. Experimental results from a testbed capable of generating vibratory wingbeat patterns that approximately match those exhibited by hummingbirds in hover, cruise, and reverse flight are presented.

  5. Biological Control of Mosquito Vectors: Past, Present, and Future

    Giovanni Benelli

    2016-10-01

    Full Text Available Mosquitoes represent the major arthropod vectors of human disease worldwide transmitting malaria, lymphatic filariasis, and arboviruses such as dengue virus and Zika virus. Unfortunately, no treatment (in the form of vaccines or drugs is available for most of these diseases andvectorcontrolisstillthemainformofprevention. Thelimitationsoftraditionalinsecticide-based strategies, particularly the development of insecticide resistance, have resulted in significant efforts to develop alternative eco-friendly methods. Biocontrol strategies aim to be sustainable and target a range of different mosquito species to reduce the current reliance on insecticide-based mosquito control. In thisreview, weoutline non-insecticide basedstrategiesthat havebeenimplemented orare currently being tested. We also highlight the use of mosquito behavioural knowledge that can be exploited for control strategies.

  6. Computational Biomathematics: Toward Optimal Control of Complex Biological Systems

    2016-09-26

    SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS...neighbor or bi-linear interpolation). The following paper is in preparation: Scaling methods and heuristic algorithms for agent-based models. Matt...The actual method of control used is in the form of heuristic algorithms. In general, these algorithms search through a virtually infinite set of

  7. Biological control of banana black Sigatoka disease with Trichoderma

    Poholl Adan Sagratzki Cavero; Rogério Eiji Hanada; Luadir Gasparotto; Rosalee Albuquerque Coelho Neto; Jorge Teodoro de Souza

    2015-01-01

    Black Sigatoka disease caused by Mycosphaerella fijiensis is the most severe banana disease worldwide. The pathogen is in an invasive phase in Brazil and is already present in most States of the country. The potential of 29 isolates of Trichoderma spp. was studied for the control of black Sigatoka disease under field conditions. Four isolates were able to significantly reduce disease severity and were further tested in a second field experiment. Isolate 2.047 showed the best results in both f...

  8. Biological control of Egyptian broomrape (Orobanche aegyptiaca using Fusarium spp.

    I. Ghannam

    2007-08-01

    Full Text Available The broomrape (Orobanche spp. is an obligate holoparasitic weed that causes severe damage to many important vegetable crops. Many broomrape control strategies have been tested over the years. In this investigation, 125 Fusarium spp. isolates were recovered from diseased broomrape spikes collected from fields in agricultural areas near Hebron. The pathogenicity of isolates on broomrape was evaluated using an inoculum suspension containing mycelia and conidia. The most effective Fusarium isolates significantly increased the dead spikes of broomrape by 33.6–72.7% compared to the control; there was no obvious pathogenic effect on the tomato plants. Fusarium spp. isolates Fu 20, 25 and 119 were identified as F. solani, while Fu 30, 52, 59, 87 and 12-04 were F. oxysporum. In addition, the two previously known Fusarium strains, F. oxysporum strain EId (CNCM-I-1622 (Foxy and F. arthrosporioides strain E4a (CNCM-I-1621 (Farth were equally effective in controlling broomrape parasitizing tomato plants grown in pots, where the dead spikes of broomrape increased by 50.0 and 51.6%, respectively.

  9. 75 FR 28233 - Availability of an Environmental Assessment for a Biological Control Agent for Asian Citrus Psyllid

    2010-05-20

    ...] Availability of an Environmental Assessment for a Biological Control Agent for Asian Citrus Psyllid AGENCY... radiata, into the continental United States for use as a biological control agent to reduce the severity... of an alternative biological control agent, an encyrtid wasp, (Diaphorencyrtus aligarhensis). However...

  10. 77 FR 46373 - Field Release of Aphelinus glycinis for the Biological Control of the Soybean Aphid in the...

    2012-08-03

    ... Inspection Service [Docket No APHIS-2012-0061] Field Release of Aphelinus glycinis for the Biological Control... for the biological control of the soybean aphid, Aphis glycines, in the continental United States. We... glycinis for the Biological Control of the Soybean Aphid in the Continental United States'' (March 2012...

  11. Dissection of Biological Property of Chinese Acupuncture Point Zusanli Based on Long-Term Treatment via Modulating Multiple Metabolic Pathways

    Guangli Yan

    2013-01-01

    Full Text Available Acupuncture has a history of over 3000 years and is a traditional Chinese medical therapy that uses hair-thin metal needles to puncture the skin at specific points on the body to promote wellbeing, while its molecular mechanism and ideal biological pathways are still not clear. High-throughput metabolomics is the global assessment of endogenous metabolites within a biologic system and can potentially provide a more accurate snap shot of the actual physiological state. We hypothesize that acupuncture-treated human would produce unique characterization of metabolic phenotypes. In this study, UPLC/ESI-HDMS coupled with pattern recognition methods and system analysis were carried out to investigate the mechanism and metabolite biomarkers for acupuncture treatment at “Zusanli” acupoint (ST-36 as a case study. The top 5 canonical pathways including alpha-linolenic acid metabolism, d-glutamine and d-glutamate metabolism, citrate cycle, alanine, aspartate, and glutamate metabolism, and vitamin B6 metabolism pathways were acutely perturbed, and 53 differential metabolites were identified by chemical profiling and may be useful to clarify the physiological basis and mechanism of ST-36. More importantly, network construction has led to the integration of metabolites associated with the multiple perturbation pathways. Urine metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture.

  12. Dissection of Biological Property of Chinese Acupuncture Point Zusanli Based on Long-Term Treatment via Modulating Multiple Metabolic Pathways.

    Yan, Guangli; Zhang, Aihua; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Zhang, Yingzhi; Xie, Ning; Wang, Xijun

    2013-01-01

    Acupuncture has a history of over 3000 years and is a traditional Chinese medical therapy that uses hair-thin metal needles to puncture the skin at specific points on the body to promote wellbeing, while its molecular mechanism and ideal biological pathways are still not clear. High-throughput metabolomics is the global assessment of endogenous metabolites within a biologic system and can potentially provide a more accurate snap shot of the actual physiological state. We hypothesize that acupuncture-treated human would produce unique characterization of metabolic phenotypes. In this study, UPLC/ESI-HDMS coupled with pattern recognition methods and system analysis were carried out to investigate the mechanism and metabolite biomarkers for acupuncture treatment at "Zusanli" acupoint (ST-36) as a case study. The top 5 canonical pathways including alpha-linolenic acid metabolism, d-glutamine and d-glutamate metabolism, citrate cycle, alanine, aspartate, and glutamate metabolism, and vitamin B6 metabolism pathways were acutely perturbed, and 53 differential metabolites were identified by chemical profiling and may be useful to clarify the physiological basis and mechanism of ST-36. More importantly, network construction has led to the integration of metabolites associated with the multiple perturbation pathways. Urine metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture.

  13. A comparative analysis of multiple-choice and student performance-task assessment in the high school biology classroom

    Cushing, Patrick Ryan

    This study compared the performance of high school students on laboratory assessments. Thirty-four high school students who were enrolled in the second semester of a regular biology class or had completed the biology course the previous semester participated in this study. They were randomly assigned to examinations of two formats, performance-task and traditional multiple-choice, from two content areas, using a compound light microscope and diffusion. Students were directed to think-aloud as they performed the assessments. Additional verbal data were obtained during interviews following the assessment. The tape-recorded narrative data were analyzed for type and diversity of knowledge and skill categories, and percentage of in-depth processing demonstrated. While overall mean scores on the assessments were low, elicited statements provided additional insight into student cognition. Results indicated that a greater diversity of knowledge and skill categories was elicited by the two microscope assessments and by the two performance-task assessments. In addition, statements demonstrating in-depth processing were coded most frequently in narratives elicited during clinical interviews following the diffusion performance-task assessment. This study calls for individual teachers to design authentic assessment practices and apply them to daily classroom routines. Authentic assessment should be an integral part of the learning process and not merely an end result. In addition, teachers are encouraged to explicitly identify and model, through think-aloud methods, desired cognitive behaviors in the classroom.

  14. Cohesive Motion Control Algorithm for Formation of Multiple Autonomous Agents

    Debabrata Atta

    2010-01-01

    Full Text Available This paper presents a motion control strategy for a rigid and constraint consistent formation that can be modeled by a directed graph whose each vertex represents individual agent kinematics and each of directed edges represents distance constraints maintained by an agent, called follower, to its neighbouring agent. A rigid and constraint consistent graph is called persistent graph. A persistent graph is minimally persistent if it is persistent, and no edge can be removed without losing its persistence. An acyclic (free of cycles in its sensing pattern minimally persistent graph of Leader-Follower structure has been considered here which can be constructed from an initial Leader-Follower seed (initial graph with two vertices, one is Leader and another one is First Follower and one edge in between them is directed towards Leader by Henneberg sequence (a procedure of growing a graph containing only vertex additions. A set of nonlinear optimization-based decentralized control laws for mobile autonomous point agents in two dimensional plane have been proposed. An infinitesimal deviation in formation shape created continuous motion of Leader is compensated by corresponding continuous motion of other agents fulfilling the shortest path criteria.

  15. New experimental approaches to the biology of flight control systems.

    Taylor, Graham K; Bacic, Marko; Bomphrey, Richard J; Carruthers, Anna C; Gillies, James; Walker, Simon M; Thomas, Adrian L R

    2008-01-01

    Here we consider how new experimental approaches in biomechanics can be used to attain a systems-level understanding of the dynamics of animal flight control. Our aim in this paper is not to provide detailed results and analysis, but rather to tackle several conceptual and methodological issues that have stood in the way of experimentalists in achieving this goal, and to offer tools for overcoming these. We begin by discussing the interplay between analytical and empirical methods, emphasizing that the structure of the models we use to analyse flight control dictates the empirical measurements we must make in order to parameterize them. We then provide a conceptual overview of tethered-flight paradigms, comparing classical ;open-loop' and ;closed-loop' setups, and describe a flight simulator that we have recently developed for making flight dynamics measurements on tethered insects. Next, we provide a conceptual overview of free-flight paradigms, focusing on the need to use system identification techniques in order to analyse the data they provide, and describe two new techniques that we have developed for making flight dynamics measurements on freely flying birds. First, we describe a technique for obtaining inertial measurements of the orientation, angular velocity and acceleration of a steppe eagle Aquila nipalensis in wide-ranging free flight, together with synchronized measurements of wing and tail kinematics using onboard instrumentation and video cameras. Second, we describe a photogrammetric method to measure the 3D wing kinematics of the eagle during take-off and landing. In each case, we provide demonstration data to illustrate the kinds of information available from each method. We conclude by discussing the prospects for systems-level analyses of flight control using these techniques and others like them.

  16. Control of biological hazards in cold smoked salmon production

    Huss, Hans Henrik; Embarek, Peter Karim Ben; Jeppesen, V.F.

    1995-01-01

    An outline of the common processing technology for cold smoked salmon in Denmark is presented. The safety hazards related to pathogenic bacteria, parasites and biogenic amines are discussed with special emphasis on hazards related to Clostridium botulinum and Listeria monocytogenes. Critical...... control points are identified for all hazards except growth of L. monocytogenes. For this reason a limitation of shelf life to three weeks at +5 degrees C far cold smoked vacuum-packed salmon having greater than or equal to 3% water phase salt is recommended...

  17. H-infty Control of systems with multiple i/o delays

    Agoes Ariffin Moelja, A.A.; Meinsma, Gjerrit; Mirkin, Leonid

    2003-01-01

    In this paper the standard (four-block) H-infty control problem for systems with multiple i/o delays in the feedback loop is studied. The central idea is to see the multiple delay operator as a special series connection of elementary delay operators, called the adobe delay operators. The adobe delay

  18. Multiple Acid Sensors Control Helicobacter pylori Colonization of the Stomach.

    Huang, Julie Y; Goers Sweeney, Emily; Guillemin, Karen; Amieva, Manuel R

    2017-01-01

    Helicobacter pylori's ability to respond to environmental cues in the stomach is integral to its survival. By directly visualizing H. pylori swimming behavior when encountering a microscopic gradient consisting of the repellent acid and attractant urea, we found that H. pylori is able to simultaneously detect both signals, and its response depends on the magnitudes of the individual signals. By testing for the bacteria's response to a pure acid gradient, we discovered that the chemoreceptors TlpA and TlpD are each independent acid sensors. They enable H. pylori to respond to and escape from increases in hydrogen ion concentration near 100 nanomolar. TlpD also mediates attraction to basic pH, a response dampened by another chemoreceptor TlpB. H. pylori mutants lacking both TlpA and TlpD (ΔtlpAD) are unable to sense acid and are defective in establishing colonization in the murine stomach. However, blocking acid production in the stomach with omeprazole rescues ΔtlpAD's colonization defect. We used 3D confocal microscopy to determine how acid blockade affects the distribution of H. pylori in the stomach. We found that stomach acid controls not only the overall bacterial density, but also the microscopic distribution of bacteria that colonize the epithelium deep in the gastric glands. In omeprazole treated animals, bacterial abundance is increased in the antral glands, and gland colonization range is extended to the corpus. Our findings indicate that H. pylori has evolved at least two independent receptors capable of detecting acid gradients, allowing not only survival in the stomach, but also controlling the interaction of the bacteria with the epithelium.

  19. Multiple cognitive control mechanisms associated with the nature of conflict.

    Kim, Chobok; Chung, Chongwook; Kim, Jeounghoon

    2010-06-07

    Cognitive control is required to regulate conflict. The conflict monitoring theory suggests that the dorsal anterior cingulate cortex (dACC) is involved in detecting response conflict and the dorsolateral prefrontal cortex (DLPFC) plays a critical role in regulating conflict. Recent studies, however, have suggested that rostral dACC (rdACC) responds to response conflict whereas caudal dACC (cdACC) is associated with perceptual conflict. Moreover, DLPFC has been engaged only in regulation of response conflict. A neural network involved in perceptual conflict, however, remains unclear. In this study, we used functional magnetic resonance imaging (fMRI) in an attempt to reveal monitor-controller networks corresponding to either perceptual conflict or response conflict. A version of the Stroop color matching task was used to manipulate perceptual conflict, response conflict was manipulated by an arrow. The results demonstrated that rdACC and DLPFC were engaged in response conflict whereas cdACC and the dorsal portion of premotor cortex (pre-PMd) were involved in perceptual conflict. Interestingly, the posterior parietal cortex (PPC) was activated by both types of conflict. Correlation analyses between behavioral conflict effects and neural responses demonstrated that rdACC and DLPFC were associated with response conflict whereas cdACC and pre-PMd were associated with perceptual conflict. PPC was not correlated with either perceptual conflict or response conflict. We suggest that cdACC and pre-PMd play critical roles in perceptual conflict processing, and this network is independent from the rdACC/DLPFC network for response conflict processing. We also discussed the function of PPC in conflict processing. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Control of BTEX migration using a biologically enhanced permeable barrier

    Borden, R.C.; Goin, R.T.; Kao, C.M.

    1997-01-01

    A permeable barrier system, consisting of a line of closely spaced wells, was installed perpendicular to ground water flow to control the migration of a dissolved hydrocarbon plume. The wells were charged with concrete briquets that release oxygen and nitrate at a controlled rate, enhancing aerobic biodegradation in the downgradient aquifer. Laboratory batch reactor experiments were conducted to identify concrete mixtures that slowly released oxygen over an extended time period. A full-scale permeable barrier system using ORC was constructed at a gasoline-spill site. During the first 242 days of operation, total BTEX decreased from 17 to 3.4 mg/L and dissolved oxygen increased from 0.4 to 1.8 mg/L during transport through the barrier. Over time, BTEX treatment efficiencies declined, indicating the barrier system had become less effective in releasing oxygen and nutrients to the highly contaminated portion of the aquifer. Point dilution tests and sediment analyses performed at the conclusion of the project indicated that the aquifer in the vicinity of the remediation wells had been clogged by precipitation with iron minerals

  1. The role and control of sludge age in biological nutrient removal activated sludge systems.

    Ekama, G A

    2010-01-01

    The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.

  2. On the diversity of multiple optimal controls for quantum systems

    Shir, O M; Baeck, Th; Beltrani, V; Rabitz, H; Vrakking, M J J

    2008-01-01

    This study presents simulations of optimal field-free molecular alignment and rotational population transfer (starting from the J = 0 rotational ground state of a diatomic molecule), optimized by means of laser pulse shaping guided by evolutionary algorithms. Qualitatively different solutions are obtained that optimize the alignment and population transfer efficiency to the maximum extent that is possible given the existing constraints on the optimization due to the finite bandwidth and energy of the laser pulse, the finite degrees of freedom in the laser pulse shaping and the evolutionary algorithm employed. The effect of these constraints on the optimization process is discussed at several levels, subject to theoretical as well as experimental considerations. We show that optimized alignment yields can reach extremely high values, even with severe constraints being present. The breadth of optimal controls is assessed, and a correlation is found between the diversity of solutions and the difficulty of the problem. In the pulse shapes that optimize dynamic alignment we observe a transition between pulse sequences that maximize the initial population transfer from J = 0 to J = 2 and pulse sequences that optimize the transfer to higher rotational levels

  3. Investigating Biological Control Agents for Controlling Invasive Populations of the Mealybug Pseudococcus comstocki in France.

    Thibaut Malausa

    Full Text Available Pseudococcus comstocki (Hemiptera: Pseudococcidae is a mealybug species native to Eastern Asia and present as an invasive pest in northern Italy and southern France since the start of the century. It infests apple and pear trees, grapevines and some ornamental trees. Biocontrol programmes against this pest proved successful in central Asia and North America in the second half of the 20th century. In this study, we investigated possible biocontrol agents against P. comstocki, with the aim of developing a biocontrol programme in France. We carried out systematic DNA-barcoding at each step in the search for a specialist parasitoid. First we characterised the French target populations of P. comstocki. We then identified the parasitoids attacking P. comstocki in France. Finally, we searched for foreign mealybug populations identified a priori as P. comstocki and surveyed their hymenopteran parasitoids. Three mealybug species (P. comstocki, P. viburni and P. cryptus were identified during the survey, together with at least 16 different parasitoid taxa. We selected candidate biological control agent populations for use against P. comstocki in France, from the species Allotropa burrelli (Hymenoptera: Platygastridae and Acerophagus malinus (Hymenoptera: Encyrtidae. The coupling of molecular and morphological characterisation for both pests and natural enemies facilitated the programme development and the rejection of unsuitable or generalist parasitoids.

  4. Multiple roles of the Y chromosome in the biology of Drosophila melanogaster.

    Piergentili, Roberto

    2010-09-01

    The X and Y chromosomes of Drosophila melanogaster were the first examples of chromosomes associated with genetic information. Thanks to the serendipitous discovery of a male with white eyes in 1910, T.H. Morgan was able to associate the X chromosome of the fruit fly with a phenotypic character (the eye color) for the first time. A few years later, his student, C.B. Bridges, demonstrated that X0 males, although phenotypically normal, are completely sterile. This means that the X chromosome, like the autosomes, harbors genes that control several phenotypic traits, while the Y chromosome is important for male fertility only. Notwithstanding its long history--almost 100 years in terms of genetic studies--most of the features of the Y chromosome are still a mystery. This is due to the intrinsic nature of this genetic element, namely, (1) its molecular composition (mainly transposable elements and satellite DNA), (2) its genetic inertia (lack of recombination due to its heterochromatic nature), (3) the absence of homology with the X (with the only exception of the nucleolar organizer), (4) the lack of visible phenotypes when it is missing (indeed, except for their sterility, X0 flies are normal males), and (5) its low density as for protein-coding sequences (to date, only 13 genes out of approximately 14,000 have been mapped on this chromosome in D. melanogaster, i.e., ~0.1% of the total). Nonetheless, a more accurate analysis reveals that this chromosome can influence several complex phenotypes: (1) it has a role in the fertility of both sexes and viability of males when over-represented; (2) it can unbalance the intracellular nucleotide pool; (3) it can interfere with the gene expression either by recruiting proteins involved in chromatin remodeling (PEV) or, to a higher extent, by influencing the expression of up to 1,000 different genes, probably by changing the availability of transcription factors; (4) it plays a major role (up to 50%) in the resistance to heat

  5. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans

    Coppée Jean-Yves

    2010-02-01

    Full Text Available Abstract Background Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III to As(V as a detoxification mechanism. Results In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III. To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (σ54 of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE and a putative -12/-24 σ54-dependent promoter motif was identified upstream of aoxAB coding sequences. Conclusion These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III in this microorganism.

  6. Biological control of dodder (Cuscuta campestris L. by fungi pathogens

    F. Fallahpour

    2016-04-01

    Full Text Available Parasite weeds are the most important yield reducing factors, and among them dodder (Cuscuta campestris L. is an obligate parasite of many plant families. In order to find a suitable biocontrol agent for dodder a study was conducted based on a randomized complete design with four replications at research greenhouse of Faculty of Agriculture, Ferdowsi University of Mashhad, Iran during 2007-2009. Diseased dodders sampled from sugarbeet farms of Chenaran, Iran. After culturing and isolating exiting fungi from infected tissues of dodder, Fusarium sp., Alternaria sp. and Colletotrichum sp. were recognized. Inoculation of isolates was carried out with concenteration of 1×108 spores per ml sterile water at different growth stages of dodder in labratoary and greenhouse. Among different fungi, isolate of 323 of F. oxysporum showed an effective control on germination of dodder seeds and the highest level of plant pathogencity was before the contact of dodder with host and infection in older plants decreased. Infection of this isolate with crops such as sugarbeet (Beta vulgaris L., alfalfa (Medigago sativa L., basil (Ocimum basilicum L., wheat (Triticum aestivum L. and barley (Hordeum vulgare L. showed no symptoms.

  7. Biology and control of swamp dodder (Cuscuta gronovii)

    Bewick, T.A.

    1987-01-01

    A simple model predicting swamp dodder (Cuscuta gronovii Willd.) emergence was developed. The model states that 0.1% of the cranberry seedlings will emerge after 150 to 170 GDD have accumulated after the winter ice has melted on the cranberry beds, using 0 C as the low temperature threshold. Experiments in cranberry showed that pronamide [3,5-dichloro-(N-1,1-dimethyl-2-propynyl)benzamide] was effective in controlling swamp dodder when applied preemergence. Rates below 2.4 kg ai/ha appeared to be safe for cranberry plants and fruit. Experiments with 14 C glyphosate showed that the herbicide moved out of carrot leaves to the physiological sinks in the plant. In carrots parasitized by swamp dodder the dodder acted as one of the strongest sinks for photosynthates from the host. In cranberry glyphosate moved out of the leaves, but most remained in the stem to which the treated leaves were attached. The only physiological sinks that accumulated significant amounts of label were the stem apices. The concentration of the herbicide in this sink decreased with time. Swamp dodder stems were able to absorb glyphosate directly from solution

  8. Semi-active control of a cable-stayed bridge under multiple-support excitations.

    Dai, Ze-Bing; Huang, Jin-Zhi; Wang, Hong-Xia

    2004-03-01

    This paper presents a semi-active strategy for seismic protection of a benchmark cable-stayed bridge with consideration of multiple-support excitations. In this control strategy, Magnetorheological (MR) dampers are proposed as control devices, a LQG-clipped-optimal control algorithm is employed. An active control strategy, shown in previous researches to perform well at controlling the benchmark bridge when uniform earthquake motion was assumed, is also used in this study to control this benchmark bridge with consideration of multiple-support excitations. The performance of active control system is compared to that of the presented semi-active control strategy. Because the MR fluid damper is a controllable energy- dissipation device that cannot add mechanical energy to the structural system, the proposed control strategy is fail-safe in that bounded-input, bounded-output stability of the controlled structure is guaranteed. The numerical results demonstrated that the performance of the presented control design is nearly the same as that of the active control system; and that the MR dampers can effectively be used to control seismically excited cable-stayed bridges with multiple-support excitations.

  9. Assessing the status of biological control as a management tool for suppression of invasive alien plants in South Africa

    Zachariades, Costas; Paterson, Iain D.; Strathie, Lorraine W.; Hill, Martin P.; van Wilgen, Brian W.

    2017-01-01

    Background: Biological control of invasive alien plants (IAPs) using introduced natural enemies contributes significantly to sustained, cost-effective management of natural resources in South Africa. The status of, and prospects for, biological control is therefore integral to National Status Reports (NSRs) on Biological Invasions, the first of which is due in 2017. Objectives: Our aim was to evaluate the status of, and prospects for, biological control of IAPs in South Africa. We discuss...

  10. Biologically inspired control of humanoid robot arms robust and adaptive approaches

    Spiers, Adam; Herrmann, Guido

    2016-01-01

    This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniqu...

  11. Quantifying conservation biological control for management of Bemisia tabaci (Hemiptera: Aleyrodidae) in cotton

    Conservation biological control can be an effective tactic for minimizing insect-induced damage to agricultural production. The most effective manner of applying CBC is through an Integrated Pest Management (IPM) strategy, combining many tactics including cultural controls, pest sampling, the use of...

  12. Hybridization between a native and introduced predator of Adelgidae: An unintended result of classical biological control

    N.P. Havill; Gina Davis; David Mausel; Joanne Klein; Richard McDonald; Cera Jones; Melissa Fischer; Scott Salom; Adelgisa. Caccone

    2012-01-01

    Hybridization between introduced biological control agents and native species has the potential to impact native biodiversity and pest control efforts. This study reports progress towards predicting the outcome of hybridization between two beetle species, the introduced Laricobius nigrinus Fender and the native L. rubidus LeConte...

  13. Compatible biological and chemical control systems for Rhizoctonia solani in potato

    Boogert, van den P.H.J.F.; Luttikholt, A.J.G.

    2004-01-01

    A series of chemical and biological control agents were tested for compatibility with the Rhizoctonia-specific biocontrol fungus Verticillium biguttatum aimed at designing novel control strategies for black scurf (Rhizoctonia solani) and other tuber diseases in potato. The efficacy of chemicals,

  14. Candidate predators for biological control of the poultry red mite Dermanyssus gallinae

    Lesna, I.; Wolfs, P.; Faraji, F.; Roy, L.; Komdeur, J.; Sabelis, M.W.

    2009-01-01

    The poultry red mite, Dermanyssus gallinae, is currently a significant pest in the poultry industry in Europe. Biological control by the introduction of predatory mites is one of the various options for controlling poultry red mites. Here, we present the first results of an attempt to identify

  15. Candidate predators for biological control of the poultry red mite Dermanyssus gallinae

    Lesna, Izabela; Wolfs, Peter; Faraji, Farid; Roy, Lise; Komdeur, Jan; Sabelis, Maurice W.

    The poultry red mite, Dermanyssus gallinae, is currently a significant pest in the poultry industry in Europe. Biological control by the introduction of predatory mites is one of the various options for controlling poultry red mites. Here, we present the first results of an attempt to identify

  16. Control biológico del entrenamiento de resistencia. Biological control of endurance training.

    González Gross, Marcela

    2006-01-01

    Full Text Available ResumenLa alta exigencia en los deportistas de elite hace cada vez más necesario controlar el proceso de adaptación al entrenamiento. El objetivo de esta revisión es analizar la información biológica de un análisis de sangre, al objeto de obtener información de la carga de entrenamiento en atletas de resistencia. La mayor parte de los parámetros sanguíneos han sido empleados, más que para determinar el proceso del entrenamiento, precisamente, para lo opuesto: el sobreentrenamiento. La concentración en plasma de sustratos metabólicos (glucosa y ácidos grasos no son parámetros que pueda utilizarse para controlar el entrenamiento, debido a las bajas especificidad y sensibilidad. No obstante, la concentración de determinados enzimas que intervienen en la utilización de los sustratos puede ser importante. Valores de creatín kinasa superiores a 200 U/l en una persona sana sugiere claramente que la carga de entrenamiento total de una determinada sesión ha sido elevada. La concentración en plasma de algún producto de degradación del catabolismo también puede señalar la adaptación del organismo al entrenamiento. La concentración de ácido láctico en plasma es la herramienta más común en la valoración de la carga de entrenamiento. La concentración de urea es un buen marcador biológico de la carga de entrenamiento. Valores superiores a 8 mmol/l en varones y de 6,5 mmol/l en mujeres, indican que el entrenamiento ha sido muy intenso. La determinación de otros productos (amonio o sustratos (glutamina se han utilizado para detectar el sobreentrenamiento.AbstractThe high exigency in the elite sportsmen does more necessary to control the process of training adaptation. The purpose of this review is to analyze the biological information of a blood analysis to obtain data of load training in endurance athletes. Most blood parameters has been used to evaluate the overtraining state instead of determining the training process. The

  17. High Precision Zinc Stable Isotope Measurement of Certified Biological Reference Materials Using the Double Spike Technique and Multiple Collector-ICP-MS.

    Moore, Rebekah E T; Larner, Fiona; Coles, Barry J; Rehkämper, Mark

    2017-04-01

    Biological reference materials with well-characterised stable isotope compositions are lacking in the field of 'isotope biochemistry', which seeks to understand bodily processes that rely on essential metals by determining metal stable isotope ratios. Here, we present Zn stable isotope data for six biological reference materials with certified trace metal concentrations: fish muscle, bovine muscle, pig kidney, human hair, human blood serum and human urine. Replicate analyses of multiple aliquots of each material achieved reproducibilities (2sd) of 0.04-0.13‰ for δ 66/64 Zn (which denotes the deviation of the 66 Zn/ 64 Zn ratio of a sample from a pure Zn reference material in parts per 1000). This implies only very minor isotopic heterogeneities within the samples, rendering them suitable as quality control materials for Zn isotope analyses. This endorsement is reinforced by (i) the close agreement of our Zn isotope data for two of the samples (bovine muscle and human blood serum) to previously published results for different batches of the same material and (ii) the similarity of the isotopic data for the samples (δ 66/64 Zn ≈ -0.8 to 0.0‰) to previously published Zn isotope results for similar biological materials. Further tests revealed that the applied Zn separation procedure is sufficiently effective to enable accurate data acquisition even at low mass resolving power (M/ΔM ≈ 400), as measurements and analyses conducted at much higher mass resolution (M/ΔM ≈ 8500) delivered essentially identical results.

  18. Quality controls in integrative approaches to detect errors and inconsistencies in biological databases

    Ghisalberti Giorgio

    2010-12-01

    Full Text Available Numerous biomolecular data are available, but they are scattered in many databases and only some of them are curated by experts. Most available data are computationally derived and include errors and inconsistencies. Effective use of available data in order to derive new knowledge hence requires data integration and quality improvement. Many approaches for data integration have been proposed. Data warehousing seams to be the most adequate when comprehensive analysis of integrated data is required. This makes it the most suitable also to implement comprehensive quality controls on integrated data. We previously developed GFINDer (http://www.bioinformatics.polimi.it/GFINDer/, a web system that supports scientists in effectively using available information. It allows comprehensive statistical analysis and mining of functional and phenotypic annotations of gene lists, such as those identified by high-throughput biomolecular experiments. GFINDer backend is composed of a multi-organism genomic and proteomic data warehouse (GPDW. Within the GPDW, several controlled terminologies and ontologies, which describe gene and gene product related biomolecular processes, functions and phenotypes, are imported and integrated, together with their associations with genes and proteins of several organisms. In order to ease maintaining updated the GPDW and to ensure the best possible quality of data integrated in subsequent updating of the data warehouse, we developed several automatic procedures. Within them, we implemented numerous data quality control techniques to test the integrated data for a variety of possible errors and inconsistencies. Among other features, the implemented controls check data structure and completeness, ontological data consistency, ID format and evolution, unexpected data quantification values, and consistency of data from single and multiple sources. We use the implemented controls to analyze the quality of data available from several

  19. The Main Biological Hazards in Animal Biosafety Level 2 Facilities and Strategies for Control.

    Li, Xiao Yan; Xue, Kang Ning; Jiang, Jin Sheng; Lu, Xuan Cheng

    2016-04-01

    Concern about the biological hazards involved in microbiological research, especially research involving laboratory animals, has increased in recent years. Working in an animal biosafety level 2 facility (ABSL-2), commonly used for research on infectious diseases, poses various biological hazards. Here, the regulations and standards related to laboratory biosafety in China are introduced, the potential biological hazards present in ABSL-2 facilities are analyzed, and a series of strategies to control the hazards are presented. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  20. labelling and quality control of some 99m Tc-radiopharmaceuticals of expected biological activity

    Abdallah, A.B.I.

    2009-01-01

    this thesis addresses the labelling and quality control of some 99m Tc-radiopharmaceuticals which could be used for infection imaging. this study focuses on the labelling of sarafloxation, gatifloxation and cefepine with technetium-99m and biological evaluation of these labeled complexes and biodistribution in both normal and inflamed mice. the thesis is organized into two chapters: chapter I :labelling of some antibiotics chapter II :biological evaluation.

  1. Mating Frequency and Effects on Sex Ratio in Female Parasitoids of xanthopimpla Stemmator (Thunberg). Implications in biological control Programmes

    Gitau, C.W.

    2002-01-01

    Cereals, especially maize and sorghum are the most important field crops in Africa. classical biological Control is a management strategy that employs natural enemies against exotic pests on cereal crops. The method has been used against Chilo partellus (Swinhoe) (Lepidoptera: Crambidae), an introduced pest of maize, using the larval parasitoid cotesia flavipes (Cameron). However, C. flavipes is not able to attack all stem borer species in targeted areas. to complement its work, Xanthopimpla stemmator has successfully been established in Mauritius on Chilo sacchariphagus (Bojer). It is a common phenomenon for haplo-diploid parasitoids to give rise to male progeny when insemination does not take place. Mating becomes important to the parasitoid population since a male biased sex ratio can bring about collapse of the population. The aim of this study was to determine wether xanthopimpla stemmator females mat more than once and wether sex ratio of progeny is affected by multiple mating in female X. stemmator. The female showed a tendency to mate once. Multiple mating did not have any significant effect on either sex ratio or longevity. More males were produced in multiple mated females than once mated females.The effect of multiple mating in X. stemmator on sex ratio in relation to biocontrol programmes are discussed

  2. A New Attribute Control Chart using Multiple Dependent State Repetitive Sampling

    Aldosari, Mansour Sattam; Aslam, Muhammad; Jun, Chi-Hyuck

    2017-01-01

    In this manuscript, a new attribute control chart using multiple dependent state repetitive sampling is designed. The operational procedure and structure of the proposed control chart is given. The required measures to determine the average run length (ARL) for in-control and out-of-control processes are given. Tables of ARLs are reported for various control chart parameters. The proposed control chart is more sensitive in detecting a small shift in the process as compared to the existing attribute control charts. The simulation study shows the efficiency of the proposed chart over the existing charts. An example is given for the illustration purpose.

  3. A New Attribute Control Chart using Multiple Dependent State Repetitive Sampling

    Aldosari, Mansour Sattam

    2017-03-25

    In this manuscript, a new attribute control chart using multiple dependent state repetitive sampling is designed. The operational procedure and structure of the proposed control chart is given. The required measures to determine the average run length (ARL) for in-control and out-of-control processes are given. Tables of ARLs are reported for various control chart parameters. The proposed control chart is more sensitive in detecting a small shift in the process as compared to the existing attribute control charts. The simulation study shows the efficiency of the proposed chart over the existing charts. An example is given for the illustration purpose.

  4. Biologically Inspired Modular Neural Control for a Leg-Wheel Hybrid Robot

    Manoonpong, Poramate; Wörgötter, Florentin; Laksanacharoen, Pudit

    2014-01-01

    In this article we present modular neural control for a leg-wheel hybrid robot consisting of three legs with omnidirectional wheels. This neural control has four main modules having their functional origin in biological neural systems. A minimal recurrent control (MRC) module is for sensory signal...... processing and state memorization. Its outputs drive two front wheels while the rear wheel is controlled through a velocity regulating network (VRN) module. In parallel, a neural oscillator network module serves as a central pattern generator (CPG) controls leg movements for sidestepping. Stepping directions...... or they can serve as useful modules for other module-based neural control applications....

  5. Realtime control of multiple-focus phased array heating patterns based on noninvasive ultrasound thermography.

    Casper, Andrew; Liu, Dalong; Ebbini, Emad S

    2012-01-01

    A system for the realtime generation and control of multiple-focus ultrasound phased-array heating patterns is presented. The system employs a 1-MHz, 64-element array and driving electronics capable of fine spatial and temporal control of the heating pattern. The driver is integrated with a realtime 2-D temperature imaging system implemented on a commercial scanner. The coordinates of the temperature control points are defined on B-mode guidance images from the scanner, together with the temperature set points and controller parameters. The temperature at each point is controlled by an independent proportional, integral, and derivative controller that determines the focal intensity at that point. Optimal multiple-focus synthesis is applied to generate the desired heating pattern at the control points. The controller dynamically reallocates the power available among the foci from the shared power supply upon reaching the desired temperature at each control point. Furthermore, anti-windup compensation is implemented at each control point to improve the system dynamics. In vitro experiments in tissue-mimicking phantom demonstrate the robustness of the controllers for short (2-5 s) and longer multiple-focus high-intensity focused ultrasound exposures. Thermocouple measurements in the vicinity of the control points confirm the dynamics of the temperature variations obtained through noninvasive feedback. © 2011 IEEE

  6. Adaption of Ulva pertusa to multiple-contamination of heavy metals and nutrients: Biological mechanism of outbreak of Ulva sp. green tide.

    Ge, Changzi; Yu, Xiru; Kan, Manman; Qu, Chunfeng

    2017-12-15

    The multiple-contamination of heavy metals and nutrients worsens increasingly and Ulva sp. green tide occurs almost simultaneously. To reveal the biological mechanism for outbreak of the green tide, Ulva pertusa was exposed to seven-day-multiple-contamination. The relation between pH variation (V pH ), Chl a content, ratio of (Chl a content)/(Chl b content) (R chla/chlb ), SOD activity of U. pertusa (A SOD ) and contamination concentration is [Formula: see text] (pcontamination concentrations of seawaters where Ulva sp. green tide occurred and the contamination concentrations set in the present work, U. pertusa can adapt to multiple-contaminations in these waters. Thus, the adaption to multiple-contamination may be one biological mechanism for the outbreak of Ulva sp. green tide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Modelling approach for biological control of insect pest by releasing infected pest

    Tan Yuanshun; Chen Lansun

    2009-01-01

    Models of biological control have a long history of theoretical development that have focused on the interactions between a predator and a prey. Here we have extended the classical epidemic model to include a continuous and impulsive pest control strategies by releasing the infected pests bred in laboratory. For the continuous model, the results imply that the susceptible pest goes to extinct if the threshold condition R 0 0 > 1, the positive equilibrium of continuous model is globally asymptotically stable. Similarly, the threshold condition which guarantees the global stability of the susceptible pest-eradication periodic solution is obtained for the model with impulsive control strategy. Consequently, based on the results obtained in this paper, the control strategies which maintain the pests below an acceptably low level are discussed by controlling the release rate and impulsive period. Finally, the biological implications of the results and the efficiency of two control strategies are also discussed

  8. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent

    Williams, Wyatt I; Friedman, Jonathan M; Gaskin, John F; Norton, Andrew P

    2014-01-01

    Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the utilization of highly specific natural enemies to control exotic pests, may be negatively affected by host hybridization because of shifts in plant traits, such as root allocation or chemical constituents. We investigated introgressi...

  9. Multiple single-board-computer system for the KEK positron generator control

    Nakahara, Kazuo; Abe, Isamu; Enomoto, Atsushi; Otake, Yuji; Urano, Takao

    1986-01-01

    The KEK positron generator is controlled by means of a distributed microprocessor network. The control system is composed of three kinds of equipment: device controllers for the linac equipment, operation management stations and a communication network. Individual linac equipment has its own microprocessor-based controller. A multiple single board computer (SBC) system is used for communication control and for equipment surveillance; it has a database containing communication and linac equipment status information. The linac operation management that should be the most soft part in the control system, is separated from the multiple SBC system and is carried out by work-stations. The principle that every processor executes only one task is maintained throughout the control system. This made the software architecture very simple. (orig.)

  10. Natural biological control of pest mites in Brazilian sun coffee agroecosystems.

    Teodoro, Adenir V; Sarmento, Renato A; Rêgo, Adriano S; da Graça S Maciel, Anilde

    2010-06-01

    Coffee is one of the leading commodities in tropical America. Although plantations are usually established under a canopy of trees in most producing countries in the region, Brazilian coffee is mostly produced under full sun conditions. Such simple, single-crop agroecosystems with intensive agrochemical inputs often suffer with pests like mites. Predatory mites of the family Phytoseiidae are the main natural enemies associated with pest mites in the field. However, these beneficial arthropods struggle to survive in intensive agroecosystems such as coffee monocultures due to unfavorable microclimatic conditions, widespread pesticide use, and lack of alternative food (pollen, nectar). Conservation biological control uses a range of management strategies to sustain and enhance populations of indigenous natural enemies such as predatory mites. We discuss here conservation biological control as a strategy to improve biological control of pest mites by native predatory mites in Brazilian coffee monocultures as well as some related patents.

  11. Using consumption rate to assess potential predators for biological control of white perch

    Gosch N.J.C.

    2011-08-01

    Full Text Available Control of undesirable fishes is important in aquatic systems, and using predation as a tool for biological control is an attractive option to fishery biologists. However, determining the appropriate predators for biological control is critical for success. The objective of this study was to evaluate the utility of consumption rate as an index to determine the most effective predators for biological control of an invasive fish. Consumption rate values were calculated for nine potential predators that prey on white perch Morone americana in Branched Oak and Pawnee reservoirs, Nebraska. The consumption rate index provided a unique and insightful means of determining the potential effectiveness of each predator species in controlling white perch. Cumulative frequency distributions facilitated interpretation by providing a graphical presentation of consumption rates by all individuals within each predator species. Largemouth bass Micropterus salmoides, walleye Sander vitreus and sauger S. canadensis were the most efficient white perch predators in both reservoirs; however, previous attempts to increase biomass of these predators have failed suggesting that successful biological control is unlikely using existing predator species in these Nebraska reservoirs.

  12. Multiple-state based power control for multi-radio multi-channel wireless mesh networks

    Olwal, TO

    2009-01-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in wireless mesh networks (WMNs). In this paper, we present asynchronous multiple-state based power control for MRMC WMNs. First, WMN is represented as a set of disjoint...

  13. A simple optical fibre-linked remote control system for multiple devices

    We report on the development of a simple control system which can handle multiple devices through an optical fibre data link. The devices are controlled using a set of DACs through serial data communication via a serial port of a PC. Serial data from the PC get converted to parallel mode using a homemade “serial in ...

  14. Effect of biological activated carbon pre-treatment to control organic fouling in the microfiltration of biologically treated secondary effluent.

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2014-10-15

    Biological activated carbon (BAC) filtration was investigated as a pre-treatment for reducing the organic fouling of a microfiltration membrane (0.1 μm polyvinylidene fluoride) in the treatment of a biologically treated secondary effluent (BTSE) from a municipal wastewater treatment plant. BAC treatment of the BTSE resulted in a marked improvement in permeate flux, which was attributed to the effective removal of organic foulants and particulates. Although the BAC removed significantly less dissolved organic carbon than the granular activated carbon (GAC) treatment which was used as a control for comparison, it led to a markedly greater flux. This was attributed to the effective removal of the very high molecular weight substances such as biopolymers by the BAC through biodegradation and adsorption of those molecules on the biofilm. Size exclusion chromatography showed the BAC treatment led to approximately 30% reduction in these substances, whereas the GAC did not greatly remove these molecules. The BAC treatment led to a greater reduction of loosely-attached and firmly-attached membrane surface foulant, and this was confirmed by attenuated total reflection-fourier transform infrared spectroscopy analysis. This study demonstrated the potential of BAC pre-treatment for reducing organic fouling and thus improving flux for the microfiltration of BTSE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Second-Order Controllability of Multi-Agent Systems with Multiple Leaders

    Liu Bo; Han Xiao; Shi Yun-Tao; Su Hou-Sheng

    2016-01-01

    This paper proposes a new second-order continuous-time multi-agent model and analyzes the controllability of second-order multi-agent system with multiple leaders based on the asymmetric topology. This paper considers the more general case: velocity coupling topology is different from location coupling topology. Some sufficient and necessary conditions are presented for the controllability of the system with multiple leaders. In addition, the paper studies the controllability of the system with velocity damping gain. Simulation results are given to illustrate the correctness of theoretical results. (paper)

  16. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM): novel biological insights and development of early treatment strategies.

    Korde, Neha; Kristinsson, Sigurdur Y; Landgren, Ola

    2011-05-26

    Monoclonal gammopathy of unknown significance (MGUS) and smoldering multiple myeloma (SMM) are asymptomatic plasma cell dyscrasias, with a propensity to progress to symptomatic MM. In recent years there have been improvements in risk stratification models (involving molecular markers) of both disorders, which have led to better understanding of the biology and probability of progression of MGUS and SMM. In the context of numerous molecular events and heterogeneous risk of progression, developing individualized risk profiles for patients with MGUS and SMM represents an ongoing challenge that has to be addressed by prospective clinical monitoring and extensive correlative science. In this review we discuss the current standard of care of patients with MGUS and SMM, the use of risk models, including flow cytometry and free-light chain analyses, for predicting risk of progression. Emerging evidence from molecular studies on MGUS and SMM, involving cytogenetics, gene-expression profiling, and microRNA as well as molecular imaging is described. Finally, future directions for improving individualized management of MGUS and SMM patients, as well as the potential for developing early treatment strategies designed to delay and prevent development of MM are discussed.

  17. Generation of Composite Dose and Biological Effective Dose (BED) Over Multiple Treatment Modalities and Multistage Planning Using Deformable Image Registration

    Zhang, Geoffrey; Huang, T-C; Feygelman, Vladimir; Stevens, Craig; Forster, Kenneth

    2010-01-01

    Currently there are no commercially available tools to generate composite plans across different treatment modalities and/or different planning image sets. Without a composite plan, it may be difficult to perform a meaningful dosimetric evaluation of the overall treatment course. In this paper, we introduce a method to generate composite biological effective dose (BED) plans over multiple radiotherapy treatment modalities and/or multistage plans, using deformable image registration. Two cases were used to demonstrate the method. Case I was prostate cancer treated with intensity-modulated radiation therapy (IMRT) and a permanent seed implant. Case II involved lung cancer treated with two treatment plans generated on two separate computed tomography image sets. Thin-plate spline or optical flow methods were used as appropriate to generate deformation matrices. The deformation matrices were then applied to the dose matrices and the resulting physical doses were converted to BED and added to yield the composite plan. Cell proliferation and sublethal repair were considered in the BED calculations. The difference in BED between normal tissues and tumor volumes was accounted for by using different BED models, α/β values, and cell potential doubling times. The method to generate composite BED plans presented in this paper provides information not available with the traditional simple dose summation or physical dose summation. With the understanding of limitations and uncertainties of the algorithms involved, it may be valuable for the overall treatment plan evaluation.

  18. Evaluation of impedance on biological Tissues using automatic control measurement system

    Kil, Sang Hyeong; Shin, Dong Hoon; Lee, Seong Mo [Pusan National University, Yangsan (Korea, Republic of); Lee, Moo Seok; Kim, Sang Sik [Pusan National University, Busan (Korea, Republic of); Kim, Gun FDo; Lee, Jong Kyu [Pukyung National University, Busan (Korea, Republic of)

    2015-08-15

    Each biological tissue has endemic electrical characteristics owing to various differences such as those in cellular arrangement or organization form. The endemic electrical characteristics change when any biological change occurs. This work is a preliminary study surveying the changes in the electrical characteristics of biological tissue caused by radiation exposure. For protection against radiation hazards, therefore the electrical characteristics of living tissue were evaluated after development of the automatic control measurement system using LabVIEW. No alteration of biological tissues was observed before and after measurement of the electrical characteristics, and the biological tissues exhibited similar patterns. Through repeated measurements using the impedance/gain-phase analyzer, the coefficient of variation was determined as within 10%. The reproducibility impedance phase difference in electrical characteristics of the biological tissue did not change, and the tissue had resistance. The absolute value of impedance decreased constantly in proportion to the frequency. It has become possible to understand the electrical characteristics of biological tissues through the measurements made possible by the use of the developed.

  19. Evaluation of impedance on biological Tissues using automatic control measurement system

    Kil, Sang Hyeong; Shin, Dong Hoon; Lee, Seong Mo; Lee, Moo Seok; Kim, Sang Sik; Kim, Gun FDo; Lee, Jong Kyu

    2015-01-01

    Each biological tissue has endemic electrical characteristics owing to various differences such as those in cellular arrangement or organization form. The endemic electrical characteristics change when any biological change occurs. This work is a preliminary study surveying the changes in the electrical characteristics of biological tissue caused by radiation exposure. For protection against radiation hazards, therefore the electrical characteristics of living tissue were evaluated after development of the automatic control measurement system using LabVIEW. No alteration of biological tissues was observed before and after measurement of the electrical characteristics, and the biological tissues exhibited similar patterns. Through repeated measurements using the impedance/gain-phase analyzer, the coefficient of variation was determined as within 10%. The reproducibility impedance phase difference in electrical characteristics of the biological tissue did not change, and the tissue had resistance. The absolute value of impedance decreased constantly in proportion to the frequency. It has become possible to understand the electrical characteristics of biological tissues through the measurements made possible by the use of the developed.

  20. Advanced topics in control and estimation of state-multiplicative noisy systems

    Gershon, Eli

    2013-01-01

    Advanced Topics in Control and Estimation of State-Multiplicative Noisy Systems begins with an introduction and extensive literature survey. The text proceeds to cover solutions of measurement-feedback control and state problems and the formulation of the Bounded Real Lemma for both continuous- and discrete-time systems. The continuous-time reduced-order and stochastic-tracking control problems for delayed systems are then treated. Ideas of nonlinear stability are introduced for infinite-horizon systems, again, in both the continuous- and discrete-time cases. The reader is introduced to six practical examples of noisy state-multiplicative control and filtering associated with various fields of control engineering. The book is rounded out by a three-part appendix containing stochastic tools necessary for a proper appreciation of the text: a basic introduction to nonlinear stochastic differential equations and aspects of switched systems and peak to peak  optimal control and filtering. Advanced Topics in Contr...

  1. Are we ready to move beyond the reductionist approach of classical synergy control?. Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    Lacquaniti, Francesco; Ivanenko, Yuri P.; Zago, Myrka

    2016-07-01

    Starting from the classical concepts introduced by Sherrington [1] and considerably elaborated by Bernstein [2], much has been learned about motor synergies in the last several years. The contributions of the group funded by the European project ;The Hand Embodied; are remarkable in the field of biological and robotic control of the hand based on synergies, and they are reflected in this enjoyable review [3]. There, Santello et al. adopt Bernstein's definition of motor synergies as multiple elements working together towards a common goal, with the result that multiple degrees of freedom are controlled within a lower-dimensional space than the available number of dimensions.

  2. Biologically inspired control and modeling of (biorobotic systems and some applications of fractional calculus in mechanics

    Lazarević Mihailo P.

    2013-01-01

    Full Text Available In this paper, the applications of biologically inspired modeling and control of (biomechanical (nonredundant mechanisms are presented, as well as newly obtained results of author in mechanics which are based on using fractional calculus. First, it is proposed to use biological analog-synergy due to existence of invariant features in the execution of functional motion. Second, the model of (biomechanical system may be obtained using another biological concept called distributed positioning (DP, which is based on the inertial properties and actuation of joints of considered mechanical system. In addition, it is proposed to use other biological principles such as: principle of minimum interaction, which takes a main role in hierarchical structure of control and self-adjusting principle (introduce local positive/negative feedback on control with great amplifying, which allows efficiently realization of control based on iterative natural learning. Also, new, recently obtained results of the author in the fields of stability, electroviscoelasticity, and control theory are presented which are based on using fractional calculus (FC. [Projekat Ministarstva nauke Republike Srbije, br. 35006

  3. The role of evolutionary biology in research and control of liver flukes in Southeast Asia.

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F; Wilcox, Bruce A

    2016-09-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The inception and evolution of a unique masters program in cancer biology, prevention and control.

    Cousin, Carolyn; Blancato, Jan

    2010-09-01

    The University of the District of Columbia (UDC) and the Lombardi Comprehensive Cancer Center (LCCC), Georgetown University Medical Center established a Masters Degree Program in Cancer Biology, Prevention and Control at UDC that is jointly administered and taught by UDC and LCCC faculty. The goal of the Masters Degree Program is to educate students as master-level cancer professionals capable of conducting research and service in cancer biology, prevention, and control or to further advance the education of students to pursue doctoral studies. The Program's unique nature is reflected in its philosophy "the best cancer prevention and control researchers are those with a sound understanding of cancer biology". This program is a full-time, 2-year, 36-credit degree in which students take half of their coursework at UDC and half of their coursework at LCCC. During the second year, students are required to conduct research either at LCCC or UDC. Unlike most cancer biology programs, this unique Program emphasizes both cancer biology and cancer outreach training.

  5. Potential for widespread application of biological control of stored-product pests

    Hansen, Lise Stengaard

    2007-01-01

    Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biologica...... for these situations will contribute to ensuring that stored food products are protected from insect and mite pests using techniques that are safe for consumers, workers and the environment.......Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biological...

  6. Biological Control of Diseases of Vegetables Grown Hydroponically in Thailand: Challenge and Opportunity.

    Kanjanamaneesathian, Mana

    2015-01-01

    In Thailand, yield loss due to plant diseases in vegetables grown hydroponically is very high as a result of the growers` lack of knowledge for controlling diseases and their un- willingness to invest in setting-up the proper hydroponic system from the beginning. Severe root rot disease caused by Pythium spp. is frequent and can be anticipated in the hot climate in Thailand. This review focuses on the diseases in temperate lettuces which have been produced hydroponically and have been attacked by plant pathogens, particularly Pythium spp. Biological control of vegetable diseases grown hydroponically has been investigated in Thailand. Research is being carried out to identify effective strains of the antagonists, formulating the applicable products and delivering them appropriately to control the disease. Products of Bacillus subtilis, Chaetomium globosom and Trichoderma harzianum have been recommended for use to control diseases in vegetables grown hydroponically. Control efficacy of these products is varied as the biological products have been used by the growers in the paradigm of using chemical fungicide for disease control in hydroponic production system, overlooking the intrinsic characteristics of the biological control products. The recent patent, which minimizes the effects of sunlight and heat on the nutrient solution without the use of an external energy for cooling the nutrient, should be applied in producing hydroponic vegetables to mitigate poor plant growth and root rot disease outbreak in Thailand.

  7. Experiences in simulating and testing coordinated voltage control provided by multiple wind power plants

    Arlaban, T.; Alonso, O.; Ortiz, D. [Acciona Windpower S.A. (Spain); Peiro, J.; Rivas, R. [Red Electrica de Espana SAU (Spain); Quinonez-Varela, G.; Lorenzo, P. [Acciona Energia S.A. (Spain)

    2011-07-01

    This document presents some field tests performed in a transmission system node in order to check the adequacy of voltage control performance by multiple wind power plants, with an overall capacity of 395 MW. It briefly explains the Spanish TSO motivation towards new voltage control requirements and the necessity of performing such tests in order to set the most convenient voltage control parameters and to verify the stable operation. It presents how different the voltage control capability between modern wind turbines (DFIG) and older ones (SCIG) specifically retrofitted for voltage control is. (orig.)

  8. A Memory/Immunology-Based Control Approach with Applications to Multiple Spacecraft Formation Flying

    Liguo Weng

    2013-01-01

    Full Text Available This paper addresses the problem of formation control for multiple spacecrafts in Planetary Orbital Environment (POE. Due to the presence of diverse interferences and uncertainties in the outer space, such as the changing spacecraft mass, unavailable space parameters, and varying gravity forces, traditional control methods encounter great difficulties in this area. A new control approach inspired by human memory and immune system is proposed, and this approach is shown to be capable of learning from past control experience and current behavior to improve its performance. It demands much less system dynamic information as compared with traditional controls. Both theoretic analysis and computer simulation verify its effectiveness.

  9. Fundamental host range of Leptoypha hospita (Hemiptera: Tingidae), a potential biological control agent of Chinese privet

    Yanzhuo Zhang; James L. Hanula; Scott Horn; Cera Jones; S. Kristine Braman; Jianghua Sun

    2016-01-01

    Chinese privet, Ligustrum sinense Lour., is an invasive shrub within riparian areas of the southeastern United States. Biological control is considered the most suitable management option for Chinese privet. The potential host range of the lace bug, Leptoypha hospita Drake et...

  10. Biological control in agro-systems by means of the handling of entomophagous insects

    Nicholls, Clara Ines; Altieri, Miguel A

    1998-01-01

    From several decades ago the importance of natural enemies of the noxious organisms has been recognized. Unfortunately the introduction of the biological control has not had the desired dimension. The indiscriminate use of biocides products has altered the biodiversity of the agro-ecosystem. The parasitoids and predators have suffered the noxious effects of the plaguicides. These natural enemies of the plagues play a momentous paper in the regulation of noxious insects population. The predators of the insecta class register in diverse orders and the abundance of species is impressive. But the knowledge of their importance is only partial. In many countries the kindness of these organisms has not been specified and does not protect them. In the case of parasitoids something similar occurs. It is say that their biotic diversity is incalculable but very few species are exploited. In these two groups rest the classic biological control projects. The successes in projects of biological control are recognized and they are enlarging in several countries but more impulse is required. Due to demands of a sustainable agricultural production it should support the biological control of plagues. In this document general looks on the topic are expounded

  11. Leveraging culture collections for the discovery and development of microbial biological control agents

    The incorporation of living microbial biological control agents into integrated pest management programs is highly desirable because it reduces the use of chemical insecticides harmful to livestock, humans and the environment. In addition, it provides an alternative means to combat resistance to che...

  12. The potential use of lures for thrips biological control in greenhouses: practice and theory

    Teulon, D.A.J.; Davidson, M.M.; Nielsen, M.C.; Perry, N.B.; Tol, van R.W.H.M.; Kogel, de W.J.

    2008-01-01

    Exploiting the response of thrips pest species to odours has long been a goal for improving thrips pest management including biological control. Applications of attractants could include improved monitoring, push-pull (in conjunction with a repellent odour), lure and kill, and lure and infect

  13. Conservation Biological Control of Pests in the Molecular Era: New Opportunities to Address Old Constraints

    Gurr, Geoff M.; You, Minsheng

    2016-01-01

    Biological control has long been considered a potential alternative to pesticidal strategies for pest management but its impact and level of use globally remain modest and inconsistent. A rapidly expanding range of molecular – particularly DNA-related – techniques is currently revolutionizing many life sciences. This review identifies a series of constraints on the development and uptake of conservation biological control and considers the contemporary and likely future influence of molecular methods on these constraints. Molecular approaches are now often used to complement morphological taxonomic methods for the identification and study of biological control agents including microbes. A succession of molecular techniques has been applied to ‘who eats whom’ questions in food-web ecology. Polymerase chain reaction (PCR) approaches have largely superseded immunological approaches such as enzyme-linked immunosorbent assay (ELISA) and now – in turn – are being overtaken by next generation sequencing (NGS)-based approaches that offer unparalleled power at a rapidly diminishing cost. There is scope also to use molecular techniques to manipulate biological control agents, which will be accelerated with the advent of gene editing tools, the CRISPR/Cas9 system in particular. Gene editing tools also offer unparalleled power to both elucidate and manipulate plant defense mechanisms including those that involve natural enemy attraction to attacked plants. Rapid advances in technology will allow the development of still more novel pest management options for which uptake is likely to be limited chiefly by regulatory hurdles. PMID:26793225

  14. Low doses of ionizing radiation: Biological effects and regulatory control. Contributed papers

    1997-11-01

    The International Atomic Energy Agency and the World Health Organization, in cooperation with the United Nations Scientific Committee on the Effects of Atomic Radiation, organized an international conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, held in seville, Spain, from 17 to 21 November 1997. This technical document contains concise papers submitted to the conference

  15. Low doses of ionizing radiation: Biological effects and regulatory control. Contributed papers

    NONE

    1997-11-01

    The International Atomic Energy Agency and the World Health Organization, in cooperation with the United Nations Scientific Committee on the Effects of Atomic Radiation, organized an international conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, held in seville, Spain, from 17 to 21 November 1997. This technical document contains concise papers submitted to the conference. Refs, figs, tabs.

  16. Economic evaluation of the successful biological control of Azolla filiculoides in South Africa

    McConnachie, AJ

    2003-09-01

    Full Text Available that it was no longer considered a problem in South Africa. The results reflect the dynamics of biological control on site-specific survey information, and place higher benefit–cost ratios achieved in other national level studies in a better context. It also raises...

  17. The effect of initial density and parasitoid intergenerational survival rate on classical biological control

    Xiao Yanni; Tang Sanyi

    2008-01-01

    Models of biological control have a long history of theoretical development that have focused on the interaction of a parasitoid and its host. The host-parasitoid systems have identified several important and general factors affecting the long-term dynamics of interacting populations. However, much less is known about how the initial densities of host-parasitoid populations affect the biological control as well as the stability of host-parasitoid systems. To do this, the classical Nicholson-Bailey model with host self-regulation and parasitoid intergenerational survival rate is used to uncover the effect of initial densities on the successful biological control. The results indicate that the simplest Nicholson-Bailey model has various coexistence with a wide range of parameters, including boundary attractors where the parasitoid population is absent and interior attractors where host-parasitoid coexists. The final stable states of host-parasitoid populations depend on their initial densities as well as their ratios, and those results are confirmed by basins of attraction of initial densities. The results also indicate that the parasitoid intergenerational survival rate increases the stability of the host-parasitoid systems. Therefore, the present research can help us to further understand the dynamical behavior of host-parasitoid interactions, to improve the classical biological control and to make management decisions

  18. The Erythraeoidea (Trombidiformes: Prostigmata) as Biological Control Agents, with Special Reference to the Genus Balaustium

    Muñoz-Cárdenas, K.; Fuentes-Quintero, L.S.; Rueda-Ramirez, D.; Rodríguez, C.D.; Cantor, R.F.; Carrillo, D.; de Moraes, G.J.; Peña, J.E.

    2015-01-01

    Erythraeoidea is a widely distributed group with great potential for practical use in biological control programs, but whose study has been limited due to the complex life cycle that often includes alteration in feeding behaviour and habitat. Several associations of these mites to different species

  19. Potentials of biological control of plant diseases in the tropics | Ofor ...

    This paper highlights the various categories of biological control, which are employed in an Integrated Disease Management (IDM) scheme. These include conservation, classical biocontrol and augmentation. Also, the various types of biocontrol agents/agencies which are currently in use in various parts of the world like, ...

  20. Use of pupal parasitoids as biological control agents of filth flies on equine facilities

    House flies, Musca domestica L., and stable flies, Stomoxys calcitrans (L.), (Diptera: Muscidae), are common pests on horse farms. The use of pupal parasitoids as biological control agents for filth flies is becoming more popular on equine facilities; however, there is a lack of information on the e...

  1. Prospects for biological soil-borne disease control: application of indigenous versus synthetic microbiomes

    Biological disease control of soil-borne plant diseases has traditionally employed the biopesticide approach whereby single strains or strain mixtures are introduced into production systems through inundative/inoculative release. The approach has significant barriers that have long been recognized,...

  2. Nuclear polyhedrosis virus as a biological control agent for Malacosoma americanum (Lepidoptera: Lasiocampidae)

    R.A. Progar; M.J. Rinella; D. Fekedulegn; L. Butler

    2010-01-01

    In addition to damaging trees, the eastern tent caterpillar is implicated in early fetal loss and late-term abortion in horses. In a field study, we evaluated the potential biological control of the caterpillar using eastern tent caterpillar nuclear polyhedrosis virus (ETNPV), a naturally occurring virus that is nearly species-specific. Egg masses were hatched and...

  3. Assessing risks and benefits of floral supplements in conservation biological control

    Winkler, K.; Wackers, F.L.; Termorshuizen, A.J.; Lenteren, van J.C.

    2010-01-01

    The use of flowering field margins is often proposed as a method to support biological control in agro-ecosystems. In addition to beneficial insects, many herbivores depend on floral food as well. The indiscriminate use of flowering species in field margins can therefore lead to higher pest numbers.

  4. Host range of Secusio extensa (Lepidoptera: Arctiidae), and potential for biological control of Senecio madagascariensis (Asteraceae)

    M. M. Ramadan; K. T. Murai; T. Johnson

    2010-01-01

    Secusio extensa (Lepidoptera: Arctiidae) was evaluated as a potential biological control agent for Madagascar fireweed, Senecio madagascariensis (Asteraceae), which has invaded over 400 000 acres of rangeland in the Hawaiian Islands and is toxic to cattle and horses. The moth was introduced from southeastern Madagascar...

  5. 41 CFR 101-42.1102-5 - Drugs, biologicals, and reagents other than controlled substances.

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Drugs, biologicals, and reagents other than controlled substances. 101-42.1102-5 Section 101-42.1102-5 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS...

  6. Using matrix population models to inform biological control management of the wheat stem sawfly, Cephus cinctus

    Demographic models are a powerful means of identifying vulnerable life stages of pest species and assessing the potential effectiveness of various management approaches in reducing pest population growth and spread. In a biological control context, such models can be used to focus foreign explorati...

  7. Biological control of Alternaria radicina in seed production of carrots with Ulocladium atrum

    Köhl, J.; Langerak, C.J.; Meekes, E.T.M.; Molhoek, W.M.L.

    2004-01-01

    Black rot of carrots is caused by seed-borne Alternaria radicina. Biological control of seed infestation by treatments applied to plants in flower during seed production with the fungal antagonist Ulocladium atrum was investigated in laboratory and field experiments resulting in a reduction of seed

  8. External rostral characters for differentiation of sexes in the biological control agent Mecinus janthinus (Coleoptera: Curculionidae)

    Marjolein Schat; Sharlene E. Sing; Robert K. D. Peterson

    2007-01-01

    The stem-boring weevil, Mecinus janthinus (Germar), is a promising, well established classical biological control agent for the exotic invasive weed Dalmatian toadflax (Linaria dalmatica (L.) Mill.) (Scrophulariaceae). In this paper we present readily apparent rostral characters that can be used for sex differentiation of live stem-boring weevils at low magnification....

  9. Status of biological control projects on terrestrial invasive alien weeds in California

    In cooperation with foreign scientists, we are currently developing new classical biological control agents for five species of invasive alien terrestrial weeds. Cape-Ivy. A gall-forming fly, Parafreutreta regalis, and a stem-boring moth, Digitivalva delaireae, have been favorably reviewed by TAG...

  10. Effects of biological control agents and exotic plant invasion on deer mouse populations

    Yvette K. Ortega; Dean E. Pearson; Kevin S. McKelvey

    2004-01-01

    Exotic insects are commonly introduced as biological control agents to reduce densities of invasive exotic plants. Although current biocontrol programs for weeds take precautions to minimize ecological risks, little attention is paid to the potential nontarget effects of introduced food subsidies on native consumers. Previous research demonstrated that two gall flies (...

  11. Releases of natural enemies in Hawaii since 1980 for classical biological control of weeds

    P. Conant; J. N. Garcia; M. T. Johnson; W. T. Nagamine; C. K. Hirayama; G. P. Markin; R. L. Hill

    2013-01-01

    A comprehensive review of biological control of weeds in Hawaii was last published in 1992, covering 74 natural enemy species released from 1902 through 1980. The present review summarizes releases of 21 natural enemies targeting seven invasive weeds from 1981 to 2010. These projects were carried out by Hawaii Department of Agriculture (HDOA), USDA Forest Service (USFS...

  12. Potential biological control agents for management of cogongrass (Cyperales: Poaceae) in the southeastern USA

    Cogongrass, Imperata cylindrica (L.) Palisot de Beauvois (Cyperales: Poaceae), is a noxious invasive weed in the southeastern USA. Surveys for potential biological control agents of cogongrass were conducted in Asia and East Africa from 2013 to 2016. Several insect herbivores were found that may hav...

  13. Ex-ante analysis of economic returns from biological control of coconut mite in Tanzania

    Oleke, J.M.; Manyong, V.; Mignouna, D.; Isinika, A.; Mutabazi, K.; Hanna, R.; Sabelis, M.

    2013-01-01

    The coconut mite, Aceria guerreronis Keifer, has been identified as one of the pests that pose a threat to the coconut industry in Benin. The study presents the simulation results of the economic benefits of the biological control of coconut mites in Benin using a standard economic surplus model. In

  14. Biological control of fusarium wilt of tomato by antagonist fungi and ...

    Biological control of Fusarium oxysporum f. sp. lycopersici (FOL) causing wilt disease of tomato was studied in vitro as well as under pot conditions. Dual culture technique showed that Aspergillus niger, Penicillium citrinum, Penicillium sp. and Trichoderma harzianum inhibited the radial colony growth of the test pathogen.

  15. Genome sequences of three strains of Aspergillus flavus for the biological control of Aflatoxin

    The genomes of three strains of Aspergillus flavus with demonstrated utility for the biological control of aflatoxin were sequenced. These sequences were assembled with MIRA and annotated with Augustus using A. flavus strain 3357 (NCBI EQ963472) as a reference. Each strain had a genome of 36.3 to ...

  16. Status of biological control of the shrub gorse (Ulex europaeus) on the Island of Hawaii

    G. P. Markin; P. Conant

    2013-01-01

    On the island of Hawaii, gorse (Ulex europaeus L.) is limited to an isolated core infestation of approximately 2000 hectares with scattered plants and small patches in the surrounding 10,000 hectares. Between 1985 and 2000, seven biological control agents were introduced, five of which successfully established. By 2000, their combined impact had reduced the yearly...

  17. Integration of biological control and transgenic insect protection for mitigation of mycotoxins in corn

    Biological control is known to be effective in reducing aflatoxin contamination of corn and some transgenic corn hybrids incur greatly reduced damage from corn earworm (Helicoverpa zea). We conducted seven field trials over two years to test the hypothesis that transgenic insect protection and biol...

  18. A feedback control model for network flow with multiple pure time delays

    Press, J.

    1972-01-01

    A control model describing a network flow hindered by multiple pure time (or transport) delays is formulated. Feedbacks connect each desired output with a single control sector situated at the origin. The dynamic formulation invokes the use of differential difference equations. This causes the characteristic equation of the model to consist of transcendental functions instead of a common algebraic polynomial. A general graphical criterion is developed to evaluate the stability of such a problem. A digital computer simulation confirms the validity of such criterion. An optimal decision making process with multiple delays is presented.

  19. Evaluation of biological control of fusarium wilt in gerbera with Trichoderma asperellum

    Daiani Brandler; Luan Junior Divensi; Rodrigo José Tonin; Thalita Pedrozo Pilla; Ines Rezendes; Paola Mendes Milanesi

    2017-01-01

    The increase in flower cultivation in recent years has been reflecting the higher incidence of soil pathogens that can cause serious problems. This study aimed to evaluate the biological control of Fusarium wilt in gerbera with Trichoderma asperellum. The evaluated treatments were: T1) Control, only sterile substrate; T2) Substrate + Fusarium oxysporum; T3) Substrate + Fusarium oxysporum + Trichoderma asperellum; and T4) Substrate + Trichoderma asperellum. For this, the pathogen was isolated ...

  20. Improving the cost-effectiveness, trade and safety of biological control for agricultural insect pests using nuclear techniques

    If appropriately applied, biological control offers one of the most promising, environmentally sound, and sustainable control tactics for arthropod pests and weeds for application as part of an integrated pest management (IPM) approach. Public support for biological control as one of the preferred m...

  1. Do biological-based strategies hold promise to biofouling control in MBRs?

    Malaeb, Lilian

    2013-10-01

    Biofouling in membrane bioreactors (MBRs) remains a primary challenge for their wider application, despite the growing acceptance of MBRs worldwide. Research studies on membrane fouling are extensive in the literature, with more than 200 publications on MBR fouling in the last 3 years; yet, improvements in practice on biofouling control and management have been remarkably slow. Commonly applied cleaning methods are only partially effective and membrane replacement often becomes frequent. The reason for the slow advancement in successful control of biofouling is largely attributed to the complex interactions of involved biological compounds and the lack of representative-for-practice experimental approaches to evaluate potential effective control strategies. Biofouling is driven by microorganisms and their associated extra-cellular polymeric substances (EPS) and microbial products. Microorganisms and their products convene together to form matrices that are commonly treated as a black box in conventional control approaches. Biological-based antifouling strategies seem to be a promising constituent of an effective integrated control approach since they target the essence of biofouling problems. However, biological-based strategies are in their developmental phase and several questions should be addressed to set a roadmap for translating existing and new information into sustainable and effective control techniques. This paper investigates membrane biofouling in MBRs from the microbiological perspective to evaluate the potential of biological-based strategies in offering viable control alternatives. Limitations of available control methods highlight the importance of an integrated anti-fouling approach including biological strategies. Successful development of these strategies requires detailed characterization of microorganisms and EPS through the proper selection of analytical tools and assembly of results. Existing microbiological/EPS studies reveal a number of

  2. Cardiocladius oliffi (Diptera: Chironomidae as a potential biological control agent against Simulium squamosum (Diptera: Simuliidae

    Wilson Michael D

    2009-04-01

    Full Text Available Abstract Background The control of onchocerciasis in the African region is currently based mainly on the mass drug administration of ivermectin. Whilst this has been found to limit morbidity, it does not stop transmission. In the absence of a macrofilaricide, there is a need for an integrated approach for disease management, which includes vector control. Vector control using chemical insecticides is expensive to apply, and therefore the use of other measures such as biological control agents is needed. Immature stages of Simulium squamosum, reared in the laboratory from egg masses collected from the field at Boti Falls and Huhunya (River Pawnpawn in Ghana, were observed to be attacked and fed upon by larvae of the chironomid Cardiocladius oliffi Freeman, 1956 (Diptera: Chironomidae. Methods Cardiocladius oliffi was successfully reared in the rearing system developed for S. damnosum s.l. and evaluated for its importance as a biological control agent in the laboratory. Results Even at a ratio of one C. oliffi to five S. squamosum, they caused a significant decrease in the number of adult S. squamosum emerging from the systems (treatments. Predation was confirmed by the amplification of Simulium DNA from C. oliffi observed to have fed on S. squamosum pupae. The study also established that the chironomid flies could successfully complete their development on a fish food diet only. Conclusion Cardiocladius oliffi has been demonstrated as potential biological control agent against S. squamosum.

  3. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent

    Williams, Wyatt I.; Friedman, Jonathan M.; Gaskin, John F.; Norton, Andrew P.

    2014-01-01

    Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the utilization of highly specific natural enemies to control exotic pests, may be negatively affected by host hybridization because of shifts in plant traits, such as root allocation or chemical constituents. We investigated introgression between two parent species of the invasive shrub tamarisk (Tamarix spp.) in the western United States, and how differences in plant traits affect interactions with a biological control agent. Introgression varied strongly with latitude of origin and was highly correlated with plant performance. Increased levels of T. ramosissima introgression resulted in both higher investment in roots and tolerance to defoliation and less resistance to insect attack. Because tamarisk hybridization occurs predictably on the western U.S. landscape, managers may be able to exploit this information to maximize control efforts. Genetic differentiation in plant traits in this system underpins the importance of plant hybridization and may explain why some biological control releases are more successful than others.

  4. Impulse control disorders are associated with multiple psychiatric symptoms in Parkinson's disease.

    Jaakkola, Elina; Kaasinen, Valtteri; Siri, Chiara; Martikainen, Kirsti; Cilia, Roberto; Niemelä, Solja; Joutsa, Juho

    2014-01-01

    Impulse control disorders can have serious adverse consequences to the life of a patient with Parkinson's disease. Although impulse control disorders are common, a possible psychiatric comorbidity has not been fully characterized. The aim of this study was to investigate the psychiatric symptoms exhibited by Parkinson's disease patients with impulse control disorders. The study was conducted as a postal survey to patients in the registry of the Finnish Parkinson Association. A total of 290 Parkinson's disease patients were evaluated for impulse control disorders using the Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease. Psychiatric symptoms were systematically screened using the Symptom Checklist 90. We found that 108 of the evaluated patients had one or more impulse control disorders. Patients with impulse control disorders had markedly higher scores for symptoms of psychoticism (Bonferroni corrected p disorder (p impulse control disorders. Impulse control disorders were shown to be independently associated with these symptoms. Patients with multiple impulse control disorders had higher scores for depression and obsessive-compulsive symptoms when compared with patients that exhibited only one impulse control disorder. COUNCLUSIONS: Our results confirm the previous observations that impulse control disorders in Parkinson's disease are linked with multiple psychiatric symptoms, including psychoticism, interpersonal sensitivity, obsessive-compulsive symptoms and depression. Clinicians treating these patients should acknowledge the concomitant psychiatric symptoms.

  5. Landscape Diversity and Crop Vigor Influence Biological Control of the Western Grape Leafhopper (E. elegantula Osborn in Vineyards.

    Houston Wilson

    Full Text Available This study evaluated how the proportional area of natural habitat surrounding a vineyard (i.e. landscape diversity worked in conjunction with crop vigor, cultivar and rootstock selection to influence biological control of the western grape leafhopper (Erythroneura elegantula Osborn. The key natural enemies of E. elegantula are Anagrus erythroneurae S. Trjapitzin & Chiappini and A. daanei Triapitsyn, both of which are likely impacted by changes in landscape diversity due to their reliance on non-crop habitat to successfully overwinter. Additionally, E. elegantula is sensitive to changes in host plant quality which may influence densities on specific cultivars, rootstocks and/or vines with increased vigor. From 2010-2013, data were collected on natural enemy and leafhopper densities, pest parasitism rates and vine vigor from multiple vineyards that represented a continuum of landscape diversity. Early in the season, vineyards in more diverse landscapes had higher Anagrus spp. densities and lower E. elegantula densities, which led to increased parasitism of E. elegantula. Although late season densities of E. elegantula tended to be lower in vineyards with higher early season parasitism rates and lower total petiole nitrogen content, they were also affected by rootstock and cultivar. While diverse landscapes can support higher natural enemy populations, which can lead to increased biological control, leafhopper densities also appear to be mediated by cultivar, rootstock and vine vigor.

  6. Strengthening cancer biology research, prevention, and control while reducing cancer disparities: student perceptions of a collaborative master's degree program in cancer biology, preventions, and control.

    Jillson, I A; Cousin, C E; Blancato, J K

    2013-09-01

    This article provides the findings of a survey of previous and current students in the UDC/GU-LCCC master's degree program. This master's degree program, Cancer Biology, Prevention, and Control is administered and taught jointly by faculty of a Minority Serving Institution, the University of the District of Columbia, and the Lombardi Comprehensive Cancer Center to incorporate the strengths of a community-based school with a research intensive medical center. The program was initiated in 2008 through agreements with both University administrations and funding from the National Cancer Institute. The master's degree program is 36 credits with a focus on coursework in biostatistics, epidemiology, tumor biology, cancer prevention, medical ethics, and cancer outreach program design. For two semesters during the second year, students work full-time with a faculty person on a laboratory or outreach project that is a requirement for graduation. Students are supported and encouraged to transition to a doctoral degree after they obtain the master's and many of them are currently in doctorate programs. Since the inception of the program, 45 students have initiated the course of study, 28 have completed the program, and 13 are currently enrolled in the program. The survey was designed to track the students in their current activities, as well as determine which courses, program enhancements, and research experiences were the least and most useful, and to discern students' perceptions of knowledge acquired on various aspects of Cancer Biology Prevention, and Control Master's Program. Thirty of the 35 individuals to whom email requests were sent responded to the survey, for a response rate of 85.7%. The results of this study will inform the strengthening of the Cancer Biology program by the Education Advisory Committee. They can also be used in the development of comparable collaborative master's degree programs designed to address the significant disparities in prevalence of

  7. Control Strategies for Islanded Microgrid using Enhanced Hierarchical Control Structure with Multiple Current-Loop Damping Schemes

    Han, Yang; Shen, Pan; Zhao, Xin

    2017-01-01

    In this paper, the modeling, controller design, and stability analysis of the islanded microgrid (MG) using enhanced hierarchical control structure with multiple current loop damping schemes is proposed. The islanded MG is consisted of the parallel-connected voltage source inverters using LCL...... output filters, and the proposed control structure includes: the primary control with additional phase-shift loop, the secondary control for voltage amplitude and frequency restoration, the virtual impedance loops which contains virtual positive- and negative-sequence impedance loops at fundamental...... frequency, and virtual variable harmonic impedance loop at harmonic frequencies, and the inner voltage and current loop controllers. A small-signal model for the primary and secondary controls with additional phase-shift loop is presented, which shows an over-damped feature from eigenvalue analysis...

  8. Biological control of fruit flies (Diptera: Tephritidae) through parasitoid augmentative releases: Current status

    Montoya, Pablo; Liedo, Pablo

    2000-01-01

    Fruit flies are among the main pests affecting the world fruit industry (Aluja 1993). Bait sprays have traditionally been used successfully to control them; however, the side effects on the environment and health hazards commonly associated with pesticides, have resulted in strong public opposition to the use of bait sprays. This is particularly so when sprays are applied in urban areas or in coffee plantations where, although Medflies are present, they do not pose a danger to crops. Alternative methods that are effective and environmental friendly to suppress fruit fly populations are highly desirable. Biological control, the use of natural enemies to suppress pest populations, represents such an alternative. Some of the most successful cases of biological control are the control of Iceria purchasi Maskell (Homoptera: Margarodidae) by Rodolia cardinalis Mulsant (Coleoptera: Coccinellidae) in California (De Bach 1968, van den Bosch et al. 1982), and the control of Aleurocanthus woglumi Ashby (Homoptera: Aleyrodidae) mainly by Encarsia (=Prospaltella) opulenta Silv. (Hymenoptera: Aphelinidae) in Mexico (Jimenez 1961, 1971), both using the classical approach. However, this approach has been limited to certain conditions of environmental stability and biodiversity which are only found in a few ecosystems. Other factors, such as types of pests, the economic threshold and product quality requirements represent additional limitations. The best option in many cases could be augmentative biological control, which could overcome some of the deficiencies of the classical approach (Sivinski 1996). According to Knipling (1992) and Barclay (1987), augmentative biological control can be considered as a formal alternative for suppressing pest populations and even for use in eradication programmes, after integration with the sterile insect technique (SIT). In this approach, mass production of natural enemies is required and this production has to be cost effective

  9. Controlled multiple neutral planes by low elastic modulus adhesive for flexible organic photovoltaics.

    Kim, Wansun; Lee, Inhwa; Yoon Kim, Dong; Yu, Youn-Yeol; Jung, Hae-Yoon; Kwon, Seyeoul; Seo Park, Weon; Kim, Taek-Soo

    2017-05-12

    To protect brittle layers in organic photovoltaic devices, the mechanical neutral plane strategy can be adopted through placing the brittle functional materials close to the neutral plane where stress and strain are zero during bending. However, previous research has been significantly limited in the location and number of materials to protect through using a single neutral plane. In this study, multiple neutral planes are generated using low elastic modulus adhesives and are controlled through quantitative analyses in order to protect the multiple brittle materials at various locations. Moreover, the protection of multiple brittle layers at various locations under both concave and convex bending directions is demonstrated. Multilayer structures that have soft adhesives are further analyzed using the finite element method analysis in order to propose guidelines for structural design when employing multiple neutral planes.

  10. Assessment of Personality Types and Locus of Control in Multiple Sclerosis Patients

    Sh. Mazaheri

    2008-07-01

    Full Text Available Introduction & Objective: Multiple sclerosis (MS is an autoimmune disease with unknown cause. MS is one of the disabling neurologic diseases in adult especially young range that myelin part of central nervous system (CNS is destructed. The aim of this study was assessment of types A and B personality and internal and external locus of control in multiple sclerosis (MS patients and comparison of the results with control group.Materials & Methods: In a case-control study, 30 patients with MS and 30 normal persons as control group evaluated with neurological examination, Rotter locus of control test and Friedman-Rosenman questionnaire for detection of types A and B personality. We employed to analyze the results.Results: 43 percent and 57 percent of MS patients had internal and external locus of control respectively. 63 percent and 37 percent of MS patients had type A and B personality respectively. 60 percent and 40 percent of control group had internal and external locus of control respectively. 20 percent and 80 percent of control group had type A and B personality respectively. Difference between personality type in two groups was significant (P<0.01.Conclusions: In this study, MS patients had more type A personality in comparison to control group.

  11. Consensus definitions and application guidelines for control groups in cerebrospinal fluid biomarker studies in multiple sclerosis

    Teunissen, Charlotte; Menge, Til; Altintas, Ayse

    2013-01-01

    The choice of appropriate control group(s) is critical in cerebrospinal fluid (CSF) biomarker research in multiple sclerosis (MS). There is a lack of definitions and nomenclature of different control groups and a rationalized application of different control groups. We here propose consensus......). Furthermore, we discuss the application of these control groups in specific study designs, such as for diagnostic biomarker studies, prognostic biomarker studies and therapeutic response studies. Application of these uniform definitions will lead to better comparability of biomarker studies and optimal use...

  12. Robust Fault Tolerant Control for a Class of Time-Delay Systems with Multiple Disturbances

    Songyin Cao

    2013-01-01

    Full Text Available A robust fault tolerant control (FTC approach is addressed for a class of nonlinear systems with time delay, actuator faults, and multiple disturbances. The first part of the multiple disturbances is supposed to be an uncertain modeled disturbance and the second one represents a norm-bounded variable. First, a composite observer is designed to estimate the uncertain modeled disturbance and actuator fault simultaneously. Then, an FTC strategy consisting of disturbance observer based control (DOBC, fault accommodation, and a mixed H2/H∞ controller is constructed to reconfigure the considered systems with disturbance rejection and attenuation performance. Finally, simulations for a flight control system are given to show the efficiency of the proposed approach.

  13. The biological control of aquatic weeds in South Africa: Current status and future challenges

    Martin P. Hill

    2017-03-01

    Full Text Available Background: Aquatic ecosystems in South Africa are prone to invasion by several invasive alien aquatic weeds, most notably, Eichhornia crassipes (Mart. Solms-Laub. (Pontederiaceae (water hyacinth; Pistia stratiotes L. (Araceae (water lettuce; Salvinia molesta D.S. Mitch. (Salviniaceae (salvinia; Myriophyllum aquaticum (Vell. Conc. Verd. (parrot’s feather; and Azolla filiculoides Lam. (Azollaceae (red water fern. Objective: We review the biological control programme on waterweeds in South Africa. Results: Our review shows significant reductions in the extent of invasions, and a return on biodiversity and socio-economic benefits through the use of this method. These studies provide justification for the control of widespread and emerging freshwater invasive alien aquatic weeds in South Africa. Conclusions: The long-term management of alien aquatic vegetation relies on the correct implementation of biological control for those species already in the country and the prevention of other species entering South Africa.

  14. Commercial Biological Control Agents Targeted Against Plant-Parasitic Root-knot Nematodes

    Marie-Stéphane Tranier

    2014-12-01

    Full Text Available Root-knot nematodes are microscopic round worms, which cause severe agricultural losses. Their attacks affect the productivity by reducing the amount and the caliber of the fruits. Chemical control is widely used, but biological control appears to be a better solution, mainly using microorganisms to reduce the quantity of pests infecting crops. Biological control is developing gradually, and with time, more products are being marketed worldwide. They can be formulated with bacteria, viruses or with filamentous fungi, which can destroy and feed on phytoparasitic nematodes. To be used by the farmers, biopesticides must be legalized by the states, which has led to the establishment of a legal framework for their use, devised by various governmental organizations.

  15. [Physicians' knowledge in Israel on the biology and control of head lice].

    Mumcuoglu, Kosta Y; Mumcuoglu, Michael; Danilevich, Maria; Gilead, Leon

    2008-10-01

    Health providers such as physicians, nurses and pharmacists should be knowledgeable about the biology of head lice and the ways to control them effectively, in order to reduce the proportion of children infested with head lice. To evaluate the knowledge of physicians in Israel on the biology and epidemiology of lice, as well as their experience with infested individuals and their preferences for diagnosis, prophylaxis and control. An anonymous questionnaire with 37 questions was used. The first 20 questions addressed the general knowledge of physicians on lice biology and control, while the remaining 17 questions were related to their personal experience with lice and louse treatment. Out of 273 physicians interviewed 66.8% had good knowledge of lice, while the remaining 33.2% had some knowledge on lice. The difference between the groups of physicians with medium and good knowledge on lice was borderline significant (P=0.0722), with the dermatologists borderline significantly less knowledgeable than the rest (P=0.0765). Significant differences were found between those physicians with 4-6 or 11-20 years of professional experience and the remaining groups (twice Pbiology and control was higher than male physicians (39.4% and 29.4%, respectively), the differences were borderline significant (P=0.09). Pediatricians and dermatologists examined significantly more children than family physicians and general practitioners (P control of head louse infestations.

  16. Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato

    Seventy-two isolates of Trichoderma were obtained from Hubei Province of China and identified to species based on the ITS-rDNA sequences. The isolates were initially tested for invasive growth on the colonies of Botrytis cinerea in the dual cultures with B. cinerea on potato dextrose agar at 20°C. T...

  17. Smart Control of Multiple Evaporator Systems with Wireless Sensor and Actuator Networks

    Apolinar González-Potes

    2016-02-01

    Full Text Available This paper describes the complete integration of a fuzzy control of multiple evaporator systems with the IEEE 802.15.4 standard, in which we study several important aspects for this kind of system, like a detailed analysis of the end-to-end real-time flows over wireless sensor and actuator networks (WSAN, a real-time kernel with an earliest deadline first (EDF scheduler, periodic and aperiodic tasking models for the nodes, lightweight and flexible compensation-based control algorithms for WSAN that exhibit packet dropouts, an event-triggered sampling scheme and design methodologies. We address the control problem of the multi-evaporators with the presence of uncertainties, which was tackled through a wireless fuzzy control approach, showing the advantages of this concept where it can easily perform the optimization for a set of multiple evaporators controlled by the same smart controller, which should have an intelligent and flexible architecture based on multi-agent systems (MAS that allows one to add or remove new evaporators online, without the need for reconfiguring, while maintaining temporal and functional restrictions in the system. We show clearly how we can get a greater scalability, the self-configuration of the network and the least overhead with a non-beacon or unslotted mode of the IEEE 802.15.4 protocol, as well as wireless communications and distributed architectures, which could be extremely helpful in the development process of networked control systems in large spatially-distributed plants, which involve many sensors and actuators. For this purpose, a fuzzy scheme is used to control a set of parallel evaporator air-conditioning systems, with temperature and relative humidity control as a multi-input and multi-output closed loop system; in addition, a general architecture is presented, which implements multiple control loops closed over a communication network, integrating the analysis and validation method for multi

  18. Hydrotherapy for the Treatment of Pain in People with Multiple Sclerosis: A Randomized Controlled Trial

    Castro-Sánchez, Adelaida María; Matarán-Peñarrocha, Guillermo A.; Lara-Palomo, Inmaculada; Saavedra-Hernández, Manuel; Arroyo-Morales, Manuel; Moreno-Lorenzo, Carmen

    2011-01-01

    Background. Multiple sclerosis (MS) is a chronic demyelinating neurological disease. Several studies have reported that complementary and alternative therapies can have positive effects against pain in these patients. Objective. The objective was to investigate the effectiveness of an Ai-Chi aquatic exercise program against pain and other symptoms in MS patients. Methods. In this randomized controlled trial, 73 MS patients were randomly assigned to an experimental or control group for a 20-we...

  19. Use of wiener nonlinear MPC to control a CSTR with multiple steady state

    Lusson Cervantes, A.; Agamennoni, O.E.; Figueroa, J.L.

    2003-01-01

    In this paper a Nonlinear Model Predictive Control based on a Wiener Model with a Piecewise Linear gain is presented. The major advantages of this algorithm is that it retains all the interesting properties of the classical linear MPC and the computations are easy to solve due to the canonical structure of the nonlinear gain. The proposed control scheme is applied to a nonlinear CSTR that presents multiple steady states.

  20. Towards a decision support system for control of multiple food safety hazards in raw milk production

    Spiegel, van der M.; Sterrenburg, P.; Haasnoot, W.; Fels-Klerx, van der H.J.

    2013-01-01

    Decision support systems (DSS) for controlling multiple food safety hazards in raw milk production have not yet been developed, but the underlying components are fragmentarily available. This article presents the state-of-the-art of essential DSS elements for judging food safety compliance of raw

  1. All Set! Evidence of Simultaneous Attentional Control Settings for Multiple Target Colors

    Irons, Jessica L.; Folk, Charles L.; Remington, Roger W.

    2012-01-01

    Although models of visual search have often assumed that attention can only be set for a single feature or property at a time, recent studies have suggested that it may be possible to maintain more than one attentional control setting. The aim of the present study was to investigate whether spatial attention could be guided by multiple attentional…

  2. Evaluation of biases present in the cohort multiple randomised controlled trial design : a simulation study

    Candlish, Jane; Pate, Alexander; Sperrin, Matthew; Staa, Tjeerd P van

    2017-01-01

    BACKGROUND: The cohort multiple randomised controlled trial (cmRCT) design provides an opportunity to incorporate the benefits of randomisation within clinical practice; thus reducing costs, integrating electronic healthcare records, and improving external validity. This study aims to address a key

  3. Comparison of Intelligibility Measures for Adults with Parkinson's Disease, Adults with Multiple Sclerosis, and Healthy Controls

    Stipancic, Kaila L.; Tjaden, Kris; Wilding, Gregory

    2016-01-01

    Purpose: This study obtained judgments of sentence intelligibility using orthographic transcription for comparison with previously reported intelligibility judgments obtained using a visual analog scale (VAS) for individuals with Parkinson's disease and multiple sclerosis and healthy controls (K. Tjaden, J. E. Sussman, & G. E. Wilding, 2014).…

  4. Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures

    Kang, Rongjie; Zheng Tianjiang; Guglielmino, Emanuele; Caldwell, Darwin G; Branson, David T

    2013-01-01

    Biological tentacles, such as octopus arms, have entirely flexible structures and virtually infinite degrees of freedom (DOF) that allow for elongation, shortening and bending at any point along the arm length. The amazing dexterity of biological tentacles has driven the growing implementation of continuum manipulators in robotic systems. This paper presents a pneumatic manipulator inspired by biological continuum structures in some of their key features and functions, such as continuum morphology, intrinsic compliance and stereotyped motions with hyper redundant DOF. The kinematics and dynamics of the manipulator are formulated and identified, and a hierarchical controller taking inspiration from the structure of an octopus nervous system is used to relate desired stereotyped motions to individual actuator inputs. Simulations and experiments are carried out to validate the model and prototype where good agreement was found between the two. (paper)

  5. The quality control for biological-shield heavy concrete construction of nuclear power project

    Sun Hongjun; Ma Xinchao

    2012-01-01

    The paper introduces the function and characteristics of biological protective heavy-concrete, and its main application scope and role in Fangjiashan nuclear power project. From the aspects of raw material selection, mixing ratio test, heavy concrete production, the paper discusses the main control points of heavy concrete construction process, points out the basic characteristics of heavy concrete construction, and put forward measures to prevent density non-uniformity during heavy concrete construction and to control slump during transportation. Results prove that reasonable construction process control can assure the engineering quality. (authors)

  6. Energy-based control for a biologically inspired hexapod robot with rolling locomotion

    Takuma Nemoto

    2015-04-01

    Full Text Available This paper presents an approach to control rolling locomotion on the level ground with a biologically inspired hexapod robot. For controlling rolling locomotion, a controller which can compensate energy loss with rolling locomotion of the hexapod robot is designed based on its dynamic model. The dynamic model describes the rolling locomotion which is limited to planar one by an assumption that the hexapod robot does not fall down while rolling and influences due to collision and contact with the ground, and it is applied for computing the mechanical energy of the hexapod robot and a plant for a numerical simulation. The numerical simulation of the rolling locomotion on the level ground verifies the effectiveness of the proposed controller. The simulation results show that the hexapod robot can perform the rolling locomotion with the proposed controller. In conclusion, it is shown that the proposed control approach is effective in achieving the rolling locomotion on the level ground.

  7. Auditory decision aiding in supervisory control of multiple unmanned aerial vehicles.

    Donmez, Birsen; Cummings, M L; Graham, Hudson D

    2009-10-01

    This article is an investigation of the effectiveness of sonifications, which are continuous auditory alerts mapped to the state of a monitored task, in supporting unmanned aerial vehicle (UAV) supervisory control. UAV supervisory control requires monitoring a UAV across multiple tasks (e.g., course maintenance) via a predominantly visual display, which currently is supported with discrete auditory alerts. Sonification has been shown to enhance monitoring performance in domains such as anesthesiology by allowing an operator to immediately determine an entity's (e.g., patient) current and projected states, and is a promising alternative to discrete alerts in UAV control. However, minimal research compares sonification to discrete alerts, and no research assesses the effectiveness of sonification for monitoring multiple entities (e.g., multiple UAVs). The authors conducted an experiment with 39 military personnel, using a simulated setup. Participants controlled single and multiple UAVs and received sonifications or discrete alerts based on UAV course deviations and late target arrivals. Regardless of the number of UAVs supervised, the course deviation sonification resulted in reactions to course deviations that were 1.9 s faster, a 19% enhancement, compared with discrete alerts. However, course deviation sonifications interfered with the effectiveness of discrete late arrival alerts in general and with operator responses to late arrivals when supervising multiple vehicles. Sonifications can outperform discrete alerts when designed to aid operators to predict future states of monitored tasks. However, sonifications may mask other auditory alerts and interfere with other monitoring tasks that require divided attention. This research has implications for supervisory control display design.

  8. Biological control against the carob moth Ectomyelois ceratoniae in oases and in packing houses in Tunisia

    Dhouibi, M.H.; Cheikh, T.; Cherni, M.; Ben Moussa, I.; Hawlitsky, N.; Zaaraoui, H.; Krisaane, T.

    2000-01-01

    The carob moth, Ectomyelois ceratoniae Zeller is abundant in the Mediterranean countries. It attacks various dry fruit in cultures or in stored products, notably pomegranate, Punica granatum L.; date palm, Phoenis dactylifera L. plantations; citrus, Citrus spp., apricot, Prunus armeniaca L. and pistachios, Pistachio vera. We can find E. ceratoniae in the north as well as in the south of Tunisia, especially in central zones and Saharan areas where caterpillar infestations can reach 90% of pomegranate fruit and 20% of dates (Dhouibi 1991). To reduce this damage, several control methods have been experimented. Chemical control is the most effective means of control against pests. However, against this species, insecticides seem to be difficult and randomly used, due to the endophytic behaviour of the pyralid and the position of the fruit on the pomegranate tree. Moreover, this method has very ominous repercussions on biological cadence. Besides, it is necessary to look for other control means to allow the preservation of the ecosystem. In Tunisia, several efforts have been directed at biological control, by using local parasitoids and through usage of the bio-insecticides mainly Bacillus thuringiensis (Dhouibi 1992, 1994, Dhouibi and Jemmasi 1993). In order to substitute the chemical control and to strengthen the integrated control, other possibilities can be envisaged, for example, the genetic method or the autocidal control, that is, based on mass rearing and the substerile male releases into the natural population. For the purpose, it provokes the sterility to ulterior generations and evaluates the impact of irradiation on the different biological parameters of emerged adults from treated nymphs and their competitiveness. Dhouibi and Omran (1995) and Dhouibi and Tijani (1996) have studied the mass rearing of the carob moth pyralid on an artificial diet and the effect of different irradiation doses, especially a substerilising dose, on E. ceratoniae pupae

  9. Biological control against the carob moth Ectomyelois ceratoniae in oases and in packing houses in Tunisia

    Dhouibi, M H; Cheikh, T; Cherni, M; Ben Moussa, I [Institut National Agronomique de Tunisie, Tunis Mahrajene (Tunisia); Hawlitsky, N [INRA Versaille (France); Zaaraoui, H; Krisaane, T [Groupement Interprofessionnel de Dattes de Toseur (Tunisia)

    2000-07-01

    The carob moth, Ectomyelois ceratoniae Zeller is abundant in the Mediterranean countries. It attacks various dry fruit in cultures or in stored products, notably pomegranate, Punica granatum L.; date palm, Phoenis dactylifera L. plantations; citrus, Citrus spp., apricot, Prunus armeniaca L. and pistachios, Pistachio vera. We can find E. ceratoniae in the north as well as in the south of Tunisia, especially in central zones and Saharan areas where caterpillar infestations can reach 90% of pomegranate fruit and 20% of dates (Dhouibi 1991). To reduce this damage, several control methods have been experimented. Chemical control is the most effective means of control against pests. However, against this species, insecticides seem to be difficult and randomly used, due to the endophytic behaviour of the pyralid and the position of the fruit on the pomegranate tree. Moreover, this method has very ominous repercussions on biological cadence. Besides, it is necessary to look for other control means to allow the preservation of the ecosystem. In Tunisia, several efforts have been directed at biological control, by using local parasitoids and through usage of the bio-insecticides mainly Bacillus thuringiensis (Dhouibi 1992, 1994, Dhouibi and Jemmasi 1993). In order to substitute the chemical control and to strengthen the integrated control, other possibilities can be envisaged, for example, the genetic method or the autocidal control, that is, based on mass rearing and the substerile male releases into the natural population. For the purpose, it provokes the sterility to ulterior generations and evaluates the impact of irradiation on the different biological parameters of emerged adults from treated nymphs and their competitiveness. Dhouibi and Omran (1995) and Dhouibi and Tijani (1996) have studied the mass rearing of the carob moth pyralid on an artificial diet and the effect of different irradiation doses, especially a substerilising dose, on E. ceratoniae pupae.

  10. The Dynamics and Sliding Mode Control of Multiple Cooperative Welding Robot Manipulators

    Bin Zi

    2012-08-01

    Full Text Available This paper deals with the design, dynamic modelling and sliding mode control of multiple cooperative welding robot manipulators (MWRMs. The MWRMs can handle complex tasks that are difficult or even impossible for a single manipulator. The kinematics and dynamics of the MWRMs are studied on the basis of the Denavit-Hartenberg and Lagrange method. Following that, considering the MWRM system with nonlinear and unknown disturbances, a non-singular terminal sliding mode control strategy is designed. By means of the Lyapunov function, the stability of the controller is proved. Simulation results indicate that the good control performance of the MWRMs is achieved by the non-singular terminal sliding mode controller, which also illustrates the correctness of the dynamic modelling and effectiveness of the proposed control strategy.

  11. Front-end module readout and control electronics for the PHENIX Multiplicity Vertex Detector

    Ericson, M.N.; Allen, M.D.; Boissevain, J.

    1997-11-01

    Front-end module (FEM) readout and control are implemented as modular, high-density, reprogrammable functions in the PHENIX Multiplicity Vertex Detector. FEM control is performed by the heap manager, an FPGA-based circuit in the FEM unit. Each FEM has 256 channels of front-end electronics, readout, and control, all located on an MCM. Data readout, formatting, and control are performed by the heap manager along with 4 interface units that reside outside the MVD detector cylinder. This paper discusses the application of a generic heap manager and the addition of 4 interface module types to meet the specific control and data readout needs of the MVD. Unit functioning, interfaces, timing, data format, and communication rates will be discussed in detail. In addition, subsystem issues regarding mode control, serial architecture and functions, error handling, and FPGA implementation and programming will be presented

  12. Biological control agents for suppression of post-harvest diseases of potatoes: strategies on discovery and development

    As used in plant pathology, the term "biological control" or its short form “biocontrol” commonly refers to the decrease in the inoculum or the disease-producing activity of a pathogen accomplished through one or more organisms, including the host plant but excluding man. Biological control of plant...

  13. The influence of flower morphology and nectar quality on the longevity of a parasitoid biological control agent

    Vattala, H.D.; Wratten, S.D.; Phillips, C.B.; Wäckers, F.L.

    2006-01-01

    Conservation biological control aims to enhance the efficacy of arthropod biological control agents, such as parasitoids, partly by providing them with access to floral nectar. However, the suitability of a flower species for providing nectar to a parasitoid is dependent on the morphologies of the

  14. Protein-polymer nano-machines. Towards synthetic control of biological processes

    Alexander Cameron

    2004-09-01

    Full Text Available Abstract The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition. The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams 12. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales 3. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function 4.

  15. Agronomic aspects of strip intercropping lettuce with alyssum for biological control of aphids

    Brennan, Eric B.

    2013-01-01

    Organic lettuce growers in California typically use insectary strips of alyssum (Lobularia maritima (L.) Desv.) to attract hoverflies (Syrphidae) that provide biological control of aphids. A two year study with transplanted organic romaine lettuce in Salinas, California investigated agronomic aspects of lettuce monoculture and lettuce-alyssum strip intercropping on beds in replacement intercropping treatments where alyssum transplants replaced 2 to 8% of the lettuce transplants, and in additi...

  16. The Use and Exchange of Biological Control Agents for Food and Agriculture

    J.C.van; Lenteren; M.J.W.Cock; J.Brodeur; B.Barratt; F.Bigler; K.Bolckmans; F.Haas; P.G.Mason; J.R.P.Parra

    2010-01-01

    The report sets out to summarize the past and current situation regarding the practice of biologicalcontrol inrelationtothe use and exchange of genetic resources relevant for BCAs.It considers the twomain categories of biological control:classical and augmentative.Allowing access to BCAs for use inanother country imposes no risk of liability to the source country.Local scientific knowledge abouthabitats,fauna andflora,can be helpful

  17. Dynamic Analysis of a Phytoplankton-Fish Model with Biological and Artificial Control

    Wang, Yapei; Zhao, Min; Pan, Xinhong; Dai, Chuanjun

    2014-01-01

    We investigate a nonlinear model of the interaction between phytoplankton and fish, which uses a pair of semicontinuous systems with biological and artificial control. First, the existence of an order-1 periodic solution to the system is analyzed using a Poincaré map and a geometric method. The stability conditions of the order-1 periodic solution are obtained by a theoretical mathematical analysis. Furthermore, based on previous analysis, we investigate the bifurcation in the order-1 periodi...

  18. Trichoderma-plant-pathogen interactions: advances in genetics of biological control.

    Mukherjee, Mala; Mukherjee, Prasun K; Horwitz, Benjamin A; Zachow, Christin; Berg, Gabriele; Zeilinger, Susanne

    2012-12-01

    Trichoderma spp. are widely used in agriculture as biofungicides. Induction of plant defense and mycoparasitism (killing of one fungus by another) are considered to be the most important mechanisms of Trichoderma-mediated biological control. Understanding these mechanisms at the molecular level would help in developing strains with superior biocontrol properties. In this article, we review our current understanding of the genetics of interactions of Trichoderma with plants and plant pathogens.

  19. Combining epidemiology with basic biology of sand flies, parasites, and hosts to inform leishmaniasis transmission dynamics and control.

    Courtenay, Orin; Peters, Nathan C; Rogers, Matthew E; Bern, Caryn

    2017-10-01

    Quantitation of the nonlinear heterogeneities in Leishmania parasites, sand fly vectors, and mammalian host relationships provides insights to better understand leishmanial transmission epidemiology towards improving its control. The parasite manipulates the sand fly via production of promastigote secretory gel (PSG), leading to the "blocked sand fly" phenotype, persistent feeding attempts, and feeding on multiple hosts. PSG is injected into the mammalian host with the parasite and promotes the establishment of infection. Animal models demonstrate that sand flies with the highest parasite loads and percent metacyclic promastigotes transmit more parasites with greater frequency, resulting in higher load infections that are more likely to be both symptomatic and efficient reservoirs. The existence of mammalian and sand fly "super-spreaders" provides a biological basis for the spatial and temporal clustering of clinical leishmanial disease. Sand fly blood-feeding behavior will determine the efficacies of indoor residual spraying, topical insecticides, and bed nets. Interventions need to have sufficient coverage to include transmission hot spots, especially in the absence of field tools to assess infectiousness. Interventions that reduce sand fly densities in the absence of elimination could have negative consequences, for example, by interfering with partial immunity conferred by exposure to sand fly saliva. A deeper understanding of both sand fly and host biology and behavior is essential to ensuring effectiveness of vector interventions.

  20. Multiple Modes of Nematode Control by Volatiles of Pseudomonas putida 1A00316 from Antarctic Soil against Meloidogyne incognita

    Yile Zhai

    2018-02-01

    Full Text Available Pseudomonas putida 1A00316 isolated from Antarctic soil showed nematicidal potential for biological control of Meloidogyne incognita; however, little was known about whether strain 1A00316 could produce volatile organic compounds (VOCs, and if they had potential for use in biological control against M. incognita. In this study, VOCs produced by a culture filtrate of P. putida 1A00316 were evaluated by in vitro experiments in three-compartment Petri dishes and 96-well culture plates. Our results showed that M. incognita juveniles gradually reduced their movement within 24–48 h of incubation with mortality ranging from 6.49 to 86.19%, and mostly stopped action after 72 h. Moreover, egg hatching in culture filtrates of strain 1A00316 was much reduced compared to that in sterile distilled water or culture medium. Volatiles from P. putida 1A00316 analysis carried out by solid-phase micro-extraction gas chromatography–mass spectrometry (SPME-GC/MS included dimethyl-disulfide, 1-undecene, 2-nonanone, 2-octanone, (Z-hexen-1-ol acetate, 2-undecanone, and 1-(ethenyloxy-octadecane. Of these, dimethyl-disulfide, 2-nonanone, 2-octanone, (Z-hexen-1-ol acetate, and 2-undecanone had strong nematicidal activity against M. incognita J2 larvae by direct-contact in 96-well culture plates, and only 2-undecanone acted as a fumigant. In addition, the seven VOCs inhibited egg hatching of M. incognita both by direct-contact and by fumigation. All of the seven VOCs repelled M. incognita J2 juveniles in 2% water agar Petri plates. These results show that VOCs from strain 1A00316 act on different stages in the development of M. incognita via nematicidal, fumigant, and repellent activities and have potential for development as agents with multiple modes of control of root-knot nematodes.

  1. Real-Time Optimal Flood Control Decision Making and Risk Propagation Under Multiple Uncertainties

    Zhu, Feilin; Zhong, Ping-An; Sun, Yimeng; Yeh, William W.-G.

    2017-12-01

    Multiple uncertainties exist in the optimal flood control decision-making process, presenting risks involving flood control decisions. This paper defines the main steps in optimal flood control decision making that constitute the Forecast-Optimization-Decision Making (FODM) chain. We propose a framework for supporting optimal flood control decision making under multiple uncertainties and evaluate risk propagation along the FODM chain from a holistic perspective. To deal with uncertainties, we employ stochastic models at each link of the FODM chain. We generate synthetic ensemble flood forecasts via the martingale model of forecast evolution. We then establish a multiobjective stochastic programming with recourse model for optimal flood control operation. The Pareto front under uncertainty is derived via the constraint method coupled with a two-step process. We propose a novel SMAA-TOPSIS model for stochastic multicriteria decision making. Then we propose the risk assessment model, the risk of decision-making errors and rank uncertainty degree to quantify the risk propagation process along the FODM chain. We conduct numerical experiments to investigate the effects of flood forecast uncertainty on optimal flood control decision making and risk propagation. We apply the proposed methodology to a flood control system in the Daduhe River basin in China. The results indicate that the proposed method can provide valuable risk information in each link of the FODM chain and enable risk-informed decisions with higher reliability.

  2. On decentralized adaptive full-order sliding mode control of multiple UAVs.

    Xiang, Xianbo; Liu, Chao; Su, Housheng; Zhang, Qin

    2017-11-01

    In this study, a novel decentralized adaptive full-order sliding mode control framework is proposed for the robust synchronized formation motion of multiple unmanned aerial vehicles (UAVs) subject to system uncertainty. First, a full-order sliding mode surface in a decentralized manner is designed to incorporate both the individual position tracking error and the synchronized formation error while the UAV group is engaged in building a certain desired geometric pattern in three dimensional space. Second, a decentralized virtual plant controller is constructed which allows the embedded low-pass filter to attain the chattering free property of the sliding mode controller. In addition, robust adaptive technique is integrated in the decentralized chattering free sliding control design in order to handle unknown bounded uncertainties, without requirements for assuming a priori knowledge of bounds on the system uncertainties as stated in conventional chattering free control methods. Subsequently, system robustness as well as stability of the decentralized full-order sliding mode control of multiple UAVs is synthesized. Numerical simulation results illustrate the effectiveness of the proposed control framework to achieve robust 3D formation flight of the multi-UAV system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Possibility of biological control of primocane fruiting raspberry disease caused by Fusarium sambucinum.

    Shternshis, Margarita V; Belyaev, Anatoly A; Matchenko, Nina S; Shpatova, Tatyana V; Lelyak, Anastasya A

    2015-10-01

    Biological control agents are a promising alternative to chemical pesticides for plant disease suppression. The main advantage of the natural biocontrol agents, such as antagonistic bacteria compared with chemicals, includes environmental pollution prevention and a decrease of chemical residues in fruits. This study is aimed to evaluate the impact of three Bacillus strains on disease of primocane fruiting raspberry canes caused by Fusarium sambucinum under controlled infection load and uncontrolled environmental factors. Bacillus subtilis, Bacillus licheniformis, and Bacillus amyloliquefaciens were used for biocontrol of plant disease in 2013 and 2014 which differed by environmental conditions. The test suspensions were 10(5) CFU/ml for each bacterial strain. To estimate the effect of biological agents on Fusarium disease, canes were cut at the end of vegetation, and the area of outer and internal lesions was measured. In addition to antagonistic effect, the strains revealed the ability to induce plant resistance comparable with chitosan-based formulation. Under variable ways of cane treatment by bacterial strains, the more effective were B. subtilis and B. licheniformis demonstrating dual biocontrol effect. However, environmental factors were shown to impact the strain biocontrol ability; changes in air temperature and humidity led to the enhanced activity of B. amyloliquefaciens. For the first time, the possibility of replacing chemicals with environmentally benign biological agents for ecologically safe control of the raspberry primocane fruiting disease was shown.

  4. Evaluation of biologic occupational risk control practices: quality indicators development and validation.

    Takahashi, Renata Ferreira; Gryschek, Anna Luíza F P L; Izumi Nichiata, Lúcia Yasuko; Lacerda, Rúbia Aparecida; Ciosak, Suely Itsuko; Gir, Elucir; Padoveze, Maria Clara

    2010-05-01

    There is growing demand for the adoption of qualification systems for health care practices. This study is aimed at describing the development and validation of indicators for evaluation of biologic occupational risk control programs. The study involved 3 stages: (1) setting up a research team, (2) development of indicators, and (3) validation of the indicators by a team of specialists recruited to validate each attribute of the developed indicators. The content validation method was used for the validation, and a psychometric scale was developed for the specialists' assessment. A consensus technique was used, and every attribute that obtained a Content Validity Index of at least 0.75 was approved. Eight indicators were developed for the evaluation of the biologic occupational risk prevention program, with emphasis on accidents caused by sharp instruments and occupational tuberculosis prevention. The indicators included evaluation of the structure, process, and results at the prevention and biologic risk control levels. The majority of indicators achieved a favorable consensus regarding all validated attributes. The developed indicators were considered validated, and the method used for construction and validation proved to be effective. Copyright (c) 2010 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  5. Coordinated voltage control for multiple wind plants in Eastern Wyoming. Analysis, field experience and validation

    Miller, Nicholas; MacDowell, Jason; Chmiel, Gary; Konopinski, Ryan; Gautam, Durga [GE Energy, Schenectady, NY (United States); Laughter, Grant; Hagen, Dave [PacifiCorp., Salt Lake City, UT (United States)

    2012-07-01

    At high levels of wind power penetration, multiple wind plants may be the predominant generation resource over large geographic areas. Thus, not only do wind plants need to provide a high level of functionality, they must coordinate properly with each other. This paper describes the analysis and field testing of wind plant voltage controllers designed to improve system voltage performance through passive coordination. The described wind power plant controls can coordinate the real and reactive power response of multiple wind turbines and thereby make the plant function as a single ''grid friendly'' power generation source. For this application, involving seven large wind plants with predominantly GE wind turbines in Eastern Wyoming, the voltage portion of the controllers were configured and tuned to allow the collective reactive power response of multiple wind plants in the region to work well together. This paper presents the results of the initial configuration and tuning study, and the results of the subsequent field tuning and testing of the modified controls. The paper also presents some comparisons of the measured field performance with the stability simulation models, which show that the available wind plant models provide accurate, high fidelity results for actual operating conditions of commercial wind power plants. (orig.)

  6. A Telerehabilitation Program Improves Postural Control in Multiple Sclerosis Patients: A Spanish Preliminary Study

    Rosa Ortiz-Gutiérrez

    2013-10-01

    Full Text Available Postural control disorders are among the most frequent motor disorder symptoms associated with multiple sclerosis. This study aims to demonstrate the potential improvements in postural control among patients with multiple sclerosis who complete a telerehabilitation program that represents a feasible alternative to physical therapy for situations in which conventional treatment is not available. Fifty patients were recruited. Control group (n = 25 received physiotherapy treatment twice a week (40 min per session. Experimental group (n = 25 received monitored telerehabilitation treatment via videoconference using the Xbox 360® and Kinect console. Experimental group attended 40 sessions, four sessions per week (20 min per session.The treatment schedule lasted 10 weeks for both groups. A computerized dynamic posturography (Sensory Organization Test was used to evaluate all patients at baseline and at the end of the treatment protocol. Results showed an improvement over general balance in both groups. Visual preference and the contribution of vestibular information yielded significant differences in the experimental group. Our results demonstrated that a telerehabilitation program based on a virtual reality system allows one to optimize the sensory information processing and integration systems necessary to maintain the balance and postural control of people with multiple sclerosis. We suggest that our virtual reality program enables anticipatory PC and response mechanisms and might serve as a successful therapeutic alternative in situations in which conventional therapy is not readily available.

  7. A Telerehabilitation Program Improves Postural Control in Multiple Sclerosis Patients: A Spanish Preliminary Study

    Ortiz-Gutiérrez, Rosa; Cano-de-la-Cuerda, Roberto; Galán-del-Río, Fernando; Alguacil-Diego, Isabel María; Palacios-Ceña, Domingo; Miangolarra-Page, Juan Carlos

    2013-01-01

    Postural control disorders are among the most frequent motor disorder symptoms associated with multiple sclerosis. This study aims to demonstrate the potential improvements in postural control among patients with multiple sclerosis who complete a telerehabilitation program that represents a feasible alternative to physical therapy for situations in which conventional treatment is not available. Fifty patients were recruited. Control group (n = 25) received physiotherapy treatment twice a week (40 min per session). Experimental group (n = 25) received monitored telerehabilitation treatment via videoconference using the Xbox 360® and Kinect console. Experimental group attended 40 sessions, four sessions per week (20 min per session).The treatment schedule lasted 10 weeks for both groups. A computerized dynamic posturography (Sensory Organization Test) was used to evaluate all patients at baseline and at the end of the treatment protocol. Results showed an improvement over general balance in both groups. Visual preference and the contribution of vestibular information yielded significant differences in the experimental group. Our results demonstrated that a telerehabilitation program based on a virtual reality system allows one to optimize the sensory information processing and integration systems necessary to maintain the balance and postural control of people with multiple sclerosis. We suggest that our virtual reality program enables anticipatory PC and response mechanisms and might serve as a successful therapeutic alternative in situations in which conventional therapy is not readily available. PMID:24185843

  8. Towards Biological Control of Kudzu Through an Improved Understanding of Insect-Kudzu Interactions

    Orr, D.; Barber, G.; DeBarr, G.; Thornton, M.

    2001-08-03

    The authors evaluated various approaches to the biological control of kudzu and exotic weed that infests the SRS. A large number of native pollinators were found to be attracted to kudzu. The viability of seed was found to be low, between 2% and 11%. This is the result of native Hemiptera. The results suggest that seed feeding insects should not be targeted for importation. Both kudzu and soybeans had the same level of abundance and diversity of herbivore insects and the same levels of defoliation. No vine or root damaging species were found. Efforts should be targeted to the latter insects to control kudzu.

  9. Quality control in the neutron activation analysis of biological markers for selenium in epidemiological investigations

    Morris, J.S.; Ngwenyama, R.A.; Guthrie, J.M.; Brockman, J.D.; Spate, V.L.; Robertson, J.D.

    2008-01-01

    Instrumental neutron activation analysis is routinely used at the MURR to quantify selenium in prospectively-collected biologic markers including blood serum and toenails. These specimens are typically collected from well-defined cohort populations participating in investigations assessing selenium intake and incidence of chronic disease endpoints. These epidemiological investigations, whether observational (case-control) or clinical (intervention), typically generate thousands of samples. The purpose of this paper is to assess, through evaluation of quality control results, if the achievable accuracy and precision in the measurement of selenium using NAA is adequate to determine a relative risk of 1.2 at high confidence in epidemiological studies. (author)

  10. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?

    Marc eBardin

    2015-07-01

    Full Text Available The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i the selection pressure exerted by it on populations of plant pathogens and (ii on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringensis and apparition of resistance of the codling moth Cydia pomonella to the Cydia pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss i.e. modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents.

  11. Hierarchical Robot Control System and Method for Controlling Select Degrees of Freedom of an Object Using Multiple Manipulators

    Abdallah, Muhammad E. (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor)

    2013-01-01

    A robotic system includes a robot having manipulators for grasping an object using one of a plurality of grasp types during a primary task, and a controller. The controller controls the manipulators during the primary task using a multiple-task control hierarchy, and automatically parameterizes the internal forces of the system for each grasp type in response to an input signal. The primary task is defined at an object-level of control, e.g., using a closed-chain transformation, such that only select degrees of freedom are commanded for the object. A control system for the robotic system has a host machine and algorithm for controlling the manipulators using the above hierarchy. A method for controlling the system includes receiving and processing the input signal using the host machine, including defining the primary task at the object-level of control, e.g., using a closed-chain definition, and parameterizing the internal forces for each of grasp type.

  12. Full-order optimal compensators for flow control: the multiple inputs case

    Semeraro, Onofrio; Pralits, Jan O.

    2018-03-01

    Flow control has been the subject of numerous experimental and theoretical works. We analyze full-order, optimal controllers for large dynamical systems in the presence of multiple actuators and sensors. The full-order controllers do not require any preliminary model reduction or low-order approximation: this feature allows us to assess the optimal performance of an actuated flow without relying on any estimation process or further hypothesis on the disturbances. We start from the original technique proposed by Bewley et al. (Meccanica 51(12):2997-3014, 2016. https://doi.org/10.1007/s11012-016-0547-3), the adjoint of the direct-adjoint (ADA) algorithm. The algorithm is iterative and allows bypassing the solution of the algebraic Riccati equation associated with the optimal control problem, typically infeasible for large systems. In this numerical work, we extend the ADA iteration into a more general framework that includes the design of controllers with multiple, coupled inputs and robust controllers (H_{∞} methods). First, we demonstrate our results by showing the analytical equivalence between the full Riccati solutions and the ADA approximations in the multiple inputs case. In the second part of the article, we analyze the performance of the algorithm in terms of convergence of the solution, by comparing it with analogous techniques. We find an excellent scalability with the number of inputs (actuators), making the method a viable way for full-order control design in complex settings. Finally, the applicability of the algorithm to fluid mechanics problems is shown using the linearized Kuramoto-Sivashinsky equation and the Kármán vortex street past a two-dimensional cylinder.

  13. Coordinated Formation Control of Multiple Autonomous Underwater Vehicles for Pipeline Inspection

    Xianbo Xiang

    2010-02-01

    Full Text Available This paper addresses the control problem of inspecting underwater pipeline on the seabed, with coordinated multiple autonomous underwater vehicles in a formation. Based on the leader-follower strategy, the dedicated nonlinear path following controller is rigorously built on Lyapunov-based design, driving a fleet of vehicles onto assigned parallel paths elevated and offset from the underwater pipeline, while keeping a triangle formation to capture complete 3D images for inspection. Due to the spatial-temporal decoupling characteristics of individual path following controller, the velocities of the followers can be adapted in the coordinated control level, only relying on the information of generalized along-path length from the leader, in order to build the desired formation. Thus, the communication variable broadcast from the leader is kept to a minimum, which is feasible under the severely constraints of acoustic communication bandwidth. Simulation results illustrate the efficiency of coordinated formation controller proposed for underwater pipeline inspection.

  14. Comparison of Masking Level Difference in Patients with Multiple Sclerosis and Healthy Control Group

    Soghrat Faghihzadeh

    2012-03-01

    Full Text Available Background and Aim: Multiple sclerosis (MS is a neurological disorder that involves central nervous system. Studies have showed that multiple sclerosis affects behavioral central auditory tests, such as masking release or masking level difference (MLD. The purpose of this study is to compare the masking level difference between multiple sclerosis patients and normal subjects.Methods: This cross sectional and non-interventional study was conducted on 32 multiple sclerosis patients aged between 20-50 years and 32 controls matched for age and gender in Faculty of Rehabilitation, Tehran University of Medical Sciences. masking level difference test was performed on each subject.Results: The mean masking level difference in the two groups was significantly different (p<0.01 however, gender did not prove to play a role in this difference.Conclusion: As part of the multiple sclerosis diagnosis panel, masking level difference test is an efficient modality for evaluation of hearing impairment and monitoring of rehabilitation progress.

  15. Multiple Model Predictive Hybrid Feedforward Control of Fuel Cell Power Generation System

    Long Wu

    2018-02-01

    Full Text Available Solid oxide fuel cell (SOFC is widely considered as an alternative solution among the family of the sustainable distributed generation. Its load flexibility enables it adjusting the power output to meet the requirements from power grid balance. Although promising, its control is challenging when faced with load changes, during which the output voltage is required to be maintained as constant and fuel utilization rate kept within a safe range. Moreover, it makes the control even more intractable because of the multivariable coupling and strong nonlinearity within the wide-range operating conditions. To this end, this paper developed a multiple model predictive control strategy for reliable SOFC operation. The resistance load is regarded as a measurable disturbance, which is an input to the model predictive control as feedforward compensation. The coupling is accommodated by the receding horizon optimization. The nonlinearity is mitigated by the multiple linear models, the weighted sum of which serves as the final control execution. The merits of the proposed control structure are demonstrated by the simulation results.

  16. Effects of Pilates exercises on sensory interaction, postural control and fatigue in patients with multiple sclerosis.

    Soysal Tomruk, Melda; Uz, Muhammed Zahid; Kara, Bilge; İdiman, Egemen

    2016-05-01

    Decreased postural control, sensory integration deficits and fatigue are important problems that cause functional impairments in patients with multiple sclerosis (pwMS). To examine the effect of modified clinical Pilates exercises on sensory interaction and balance, postural control and fatigue in pwMS. Eleven patients with multiple sclerosis and 12 healthy matched controls were recruited in this study. Limits of stability and postural stability tests were used to evaluate postural control by Biodex Balance System and sensory interaction assessed. Fatigue was assessed by Modified Fatigue Impact Scale. Pilates exercises were applied two times a week for 10 weeks and measurements were repeated to pwMS after exercise training. Postural control and fatigue (except psychosocial parameter) of pwMS were significantly worser than healthy controls (pPilates training (ppilates exercises (p>0.05). Ten-week Pilates training is effective to improve sensory interaction and to decrease fatigue. Pilates exercises can be applied safely in ambulatory pwMS for enhance sensory interaction and balance and combat fatigue. More investigations are needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Relationships between trunk performance, gait and postural control in persons with multiple sclerosis.

    Freund, Jane E; Stetts, Deborah M; Vallabhajosula, Srikant

    2016-06-30

    Multiple sclerosis (MS) is a chronic progressive disease of the central nervous system. Compared to healthy individuals, persons with multiple sclerosis (PwMS) have increased postural sway in quiet stance, decreased gait speed and increased fall incidence. Trunk performance has been implicated in postural control, gait dysfunction, and fall prevention in older adults. However, the relationship of trunk performance to postural control and gait has not been adequately studied in PwMS. To compare trunk muscle structure and performance in PwMS to healthy age and gendered-matched controls (HC); to determine the effects of isometric trunk endurance testing on postural control in both populations; and to determine the relationship of trunk performance with postural control, gait and step activity in PwMS. Fifteen PwMS and HC completed ultrasound imaging of trunk muscles, 10 m walk test, isometric trunk endurance tests, and postural sway test. Participants wore a step activity monitor for 7 days. PwMS had worse isometric trunk endurance compared to HC. PwMS trunk flexion endurance negatively correlated to several postural control measures and positively correlated to gait speed and step activity. Clinicians should consider evaluation and interventions directed at impaired trunk endurance in PwMS.

  18. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities.

    Peterson, Julie A; Ode, Paul J; Oliveira-Hofman, Camila; Harwood, James D

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  19. Integration of plant defense traits with biological control of arthropod pests: challenges and opportunities

    Julie A Peterson

    2016-11-01

    Full Text Available Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically-, plant toxin-, plant nutrient-, and/or physically-mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  20. Design and selection of load control strategies using a multiple objective model and evolutionary algorithms

    Gomes, Alvaro; Antunes, Carlos Henggeler; Martins, Antonio Gomes

    2005-01-01

    This paper aims at presenting a multiple objective model to evaluate the attractiveness of the use of demand resources (through load management control actions) by different stakeholders and in diverse structure scenarios in electricity systems. For the sake of model flexibility, the multiple (and conflicting) objective functions of technical, economical and quality of service nature are able to capture distinct market scenarios and operating entities that may be interested in promoting load management activities. The computation of compromise solutions is made by resorting to evolutionary algorithms, which are well suited to tackle multiobjective problems of combinatorial nature herein involving the identification and selection of control actions to be applied to groups of loads. (Author)

  1. A distributed Synchronous reservation multiple access control protocol for mobile Ad hoc networks

    ZHANG Yanling; SUN Xianpu; LI Jiandong

    2007-01-01

    This study proposes a new multiple access control protocol named distributed synchronous reservation multiple access control protocol.in which the hidden and exposed terminal problems are solved,and the quality of service(QoS)requirements for real-time traffic are guaranteed.The protocol is founded on time division multiplex address and a different type of traffic is assigned to difierent priority,according to which a node should compete for and reserve the free slots in a different method.Moreover,there is a reservation acknowledgement process before data transmit in each reserved slot,so that the intruded terminal problem is solved.The throughput and average packets drop probability of this protocol are analyzed and simulated in a fully connected network.the results of which indicate that this protocol is efficient enough to support the real-time traffic.and it is more suitable to MANETs.

  2. A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation

    Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming

    2018-03-01

    This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.

  3. Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors.

    Liu, Hesheng; Stufflebeam, Steven M; Sepulcre, Jorge; Hedden, Trey; Buckner, Randy L

    2009-12-01

    Cerebral lateralization is a fundamental property of the human brain and a marker of successful development. Here we provide evidence that multiple mechanisms control asymmetry for distinct brain systems. Using intrinsic activity to measure asymmetry in 300 adults, we mapped the most strongly lateralized brain regions. Both men and women showed strong asymmetries with a significant, but small, group difference. Factor analysis on the asymmetric regions revealed 4 separate factors that each accounted for significant variation across subjects. The factors were associated with brain systems involved in vision, internal thought (the default network), attention, and language. An independent sample of right- and left-handed individuals showed that hand dominance affects brain asymmetry but differentially across the 4 factors supporting their independence. These findings show the feasibility of measuring brain asymmetry using intrinsic activity fluctuations and suggest that multiple genetic or environmental mechanisms control cerebral lateralization.

  4. A nonlinear disturbance-decoupled elevation axis controller for the Multiple Mirror Telescope

    Clark, Dusty; Trebisky, Tom; Powell, Keith

    2008-07-01

    The Multiple Mirror Telescope (MMT), upgraded in 2000 to a monolithic 6.5m primary mirror from its original array of six 1.8m primary mirrors, was commissioned with axis controllers designed early in the upgrade process without regard to structural resonances or the possibility of the need for digital filtering of the control axis signal path. Post-commissioning performance issues led us to investigate replacement of the original control system with a more modern digital controller with full control over the system filters and gain paths. This work, from system identification through controller design iteration by simulation, and pre-deployment hardware-in-the-loop testing, was performed using latest-generation tools with Matlab® and Simulink®. Using Simulink's Real Time Workshop toolbox to automatically generate C source code for the controller from the Simulink diagram and a custom target build script, we were able to deploy the new controller into our existing software infrastructure running Wind River's VxWorks™real-time operating system. This paper describes the process of the controller design, including system identification data collection, with discussion of implementation of non-linear control modes and disturbance decoupling, which became necessary to obtain acceptable wind buffeting rejection.

  5. Formation Learning Control of Multiple Autonomous Underwater Vehicles With Heterogeneous Nonlinear Uncertain Dynamics.

    Yuan, Chengzhi; Licht, Stephen; He, Haibo

    2017-09-26

    In this paper, a new concept of formation learning control is introduced to the field of formation control of multiple autonomous underwater vehicles (AUVs), which specifies a joint objective of distributed formation tracking control and learning/identification of nonlinear uncertain AUV dynamics. A novel two-layer distributed formation learning control scheme is proposed, which consists of an upper-layer distributed adaptive observer and a lower-layer decentralized deterministic learning controller. This new formation learning control scheme advances existing techniques in three important ways: 1) the multi-AUV system under consideration has heterogeneous nonlinear uncertain dynamics; 2) the formation learning control protocol can be designed and implemented by each local AUV agent in a fully distributed fashion without using any global information; and 3) in addition to the formation control performance, the distributed control protocol is also capable of accurately identifying the AUVs' heterogeneous nonlinear uncertain dynamics and utilizing experiences to improve formation control performance. Extensive simulations have been conducted to demonstrate the effectiveness of the proposed results.

  6. The Florey lecture, 1983. Biological control, as exemplified by smallpox eradication and myxomatosis.

    Fenner, F

    1983-06-22

    Biological control is an important method of dealing with plant and insect pests. The control of rabbits by myxomatosis and the eradication of smallpox by vaccination are unusual examples of biological control, in that they involve a vertebrate and a viral pest respectively. Myxomatosis is a benign disease in Sylvilagus rabbits in South America which is transmitted mechanically by mosquitoes. In the European rabbit, Oryctolagus, which is a pest in Australia and England, the virus from Sylvilagus produces a generalized disease that is almost always lethal. Myxomatosis was deliberately introduced into Australia in 1950 and into Europe in 1952. It was at first spectacularly successful in controlling the rabbit pest, but biological adjustments occurred in the virulence of the virus and the genetic resistances of rabbits. After 30 years of interaction, natural selection has resulted in a balance at a fairly high level of viral virulence. Smallpox has been a major scourge of mankind for over 1500 years. It spread from Asia to Europe in the Middle ages and from Europe to Africa and the Americas in the 15th and 16th centuries. Jenner's cowpox vaccine provided a method of control that reduced the severity of the disease during the 19th century but failed to eliminate the disease from many countries before the 1930s. Thereafter it was eradicated from Europe and North America, but remained endemic in South America, Africa and Asia. In 1967 it was still endemic in 33 countries and W.H.O. established a programme for global eradication within 10 years. The goal was achieved in 1977. Problems of the eradication programme and reasons for its success will be described.

  7. Biological control of white mold by Trichoderma harzianum in common bean under field conditions

    Daniel Diego Costa Carvalho

    2015-12-01

    Full Text Available Abstract: The objective of this work was to evaluate Trichoderma harzianum isolates for biological control of white mold in common bean (Phaseolus vulgaris. Five isolates were evaluated for biocontrol of white mold in 'Perola' common bean under field conditions, in the 2009 and 2010 crop seasons. A commercial isolate (1306 and a control treatment were included. Foliar applications at 2x109 conidia mL-1 were performed at 42 and 52 days after sowing (DAS, in 2009, and at 52 DAS in 2010. The CEN287, CEN316, and 1306 isolates decreased the number of Sclerotinia sclerotiorum apothecia per square meter in comparison to the control, in both crop seasons. CEN287, CEN316, and 1306 decreased white mold severity during the experimental period, when compared to the control.

  8. FPGA implementation of high-frequency multiple PWM for variable voltage variable frequency controller

    Boumaaraf, Abdelâali, E-mail: aboumaaraf@yahoo.fr [Université Abbès Laghrour, Laboratoire des capteurs, Instrumentations et procédés (LCIP), Khenchela (Algeria); University of Farhat Abbas Setif1, Sétif, 19000 (Algeria); Mohamadi, Tayeb [University of Farhat Abbas Setif1, Sétif, 19000 (Algeria); Gourmat, Laïd [Université Abbès Laghrour, Khenchela, 40000 (Algeria)

    2016-07-25

    In this paper, we present the FPGA implementation of the multiple pulse width modulation (MPWM) signal generation with repetition of data segments, applied to the variable frequency variable voltage systems and specially at to the photovoltaic water pumping system, in order to generate a signal command very easily between 10 Hz to 60 Hz with a small frequency and reduce the cost of the control system.

  9. Participant recruitment into a randomised controlled trial of exercise therapy for people with multiple sclerosis

    Carter, Anouska; Humphreys, Liam; Snowdon, Nicky; Sharrack, Basil; Daley, Amanda; Petty, Jane; Woodroofe, Nicola; Saxton, John

    2015-01-01

    Background The success of a clinical trial is often dependant on whether recruitment targets can be met in the required time frame. Despite an increase in research into the benefits of exercise in people with multiple sclerosis (PwMS), no trial has reported detailed data on effective recruitment strategies for large-scale randomised controlled trials. The main purpose of this report is to provide a detailed outline of recruitment strategies, rates and estimated costs in the Exercise Intervent...

  10. Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors

    Liu, Hesheng; Stufflebeam, Steven M.; Sepulcre, Jorge; Hedden, Trey; Buckner, Randy L.

    2009-01-01

    Cerebral lateralization is a fundamental property of the human brain and a marker of successful development. Here we provide evidence that multiple mechanisms control asymmetry for distinct brain systems. Using intrinsic activity to measure asymmetry in 300 adults, we mapped the most strongly lateralized brain regions. Both men and women showed strong asymmetries with a significant, but small, group difference. Factor analysis on the asymmetric regions revealed 4 separate factors that each ac...

  11. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity.

    Zhang, Yimeng; Chu, Wenhai; Yao, Dechang; Yin, Daqiang

    2017-08-01

    The comprehensive control efficiency for the formation potentials (FPs) of a range of regulated and unregulated halogenated disinfection by-products (DBPs) (including carbonaceous DBPs (C-DBPs), nitrogenous DBPs (N-DBPs), and iodinated DBPs (I-DBPs)) with the multiple drinking water treatment processes, including pre-ozonation, conventional treatment (coagulation-sedimentation, pre-sand filtration), ozone-biological activated carbon (O 3 -BAC) advanced treatment, and post-sand filtration, was investigated. The potential toxic risks of DBPs by combing their FPs and toxicity values were also evaluated. The results showed that the multiple drinking water treatment processes had superior performance in removing organic/inorganic precursors and reducing the formation of a range of halogenated DBPs. Therein, ozonation significantly removed bromide and iodide, and thus reduced the formation of brominated and iodinated DBPs. The removal of organic carbon and nitrogen precursors by the conventional treatment processes was substantially improved by O 3 -BAC advanced treatment, and thus prevented the formation of chlorinated C-DBPs and N-DBPs. However, BAC filtration leads to the increased formation of brominated C-DBPs and N-DBPs due to the increase of bromide/DOC and bromide/DON. After the whole multiple treatment processes, the rank order for integrated toxic risk values caused by these halogenated DBPs was haloacetonitriles (HANs)≫haloacetamides (HAMs)>haloacetic acids (HAAs)>trihalomethanes (THMs)>halonitromethanes (HNMs)≫I-DBPs (I-HAMs and I-THMs). I-DBPs failed to cause high integrated toxic risk because of their very low FPs. The significant higher integrated toxic risk value caused by HANs than other halogenated DBPs cannot be ignored. Copyright © 2017. Published by Elsevier B.V.

  12. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization.

    Miao, Xiang; Qu, Dan; Yang, Dongxue; Nie, Bing; Zhao, Yikang; Fan, Hongyou; Sun, Zaicheng

    2018-01-01

    Multiple-color-emissive carbon dots (CDots) have potential applications in various fields such as bioimaging, light-emitting devices, and photocatalysis. The majority of the current CDots to date exhibit excitation-wavelength-dependent emissions with their maximum emission limited at the blue-light region. Here, a synthesis of multiple-color-emission CDots by controlled graphitization and surface function is reported. The CDots are synthesized through controlled thermal pyrolysis of citric acid and urea. By regulating the thermal-pyrolysis temperature and ratio of reactants, the maximum emission of the resulting CDots gradually shifts from blue to red light, covering the entire light spectrum. Specifically, the emission position of the CDots can be tuned from 430 to 630 nm through controlling the extent of graphitization and the amount of surface functional groups, COOH. The relative photoluminescence quantum yields of the CDots with blue, green, and red emission reach up to 52.6%, 35.1%, and 12.9%, respectively. Furthermore, it is demonstrated that the CDots can be uniformly dispersed into epoxy resins and be fabricated as transparent CDots/epoxy composites for multiple-color- and white-light-emitting devices. This research opens a door for developing low-cost CDots as alternative phosphors for light-emitting devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Photo-Responsive Graphene and Carbon Nanotubes to Control and Tackle Biological Systems

    Cardano, Francesca; Frasconi, Marco; Giordani, Silvia

    2018-01-01

    Photo-responsive multifunctional nanomaterials are receiving considerable attention for biological applications because of their unique properties. The functionalization of the surface of carbon nanotubes (CNTs) and graphene, among other carbon based nanomaterials, with molecular switches that exhibit reversible transformations between two or more isomers in response to different kind of external stimuli, such as electromagnetic radiation, temperature and pH, has allowed the control of the optical and electrical properties of the nanomaterial. Light-controlled molecular switches, such as azobenzene and spiropyran, have attracted a lot of attention for nanomaterial's functionalization because of the remote modulation of their physicochemical properties using light stimulus. The enhanced properties of the hybrid materials obtained from the coupling of carbon based nanomaterials with light-responsive switches has enabled the fabrication of smart devices for various biological applications, including drug delivery, bioimaging and nanobiosensors. In this review, we highlight the properties of photo-responsive carbon nanomaterials obtained by the conjugation of CNTs and graphene with azobenzenes and spiropyrans molecules to investigate biological systems, devising possible future directions in the field. PMID:29707534

  14. Interaction of Ulocladium atrum, a Potential Biological Control Agent, with Botrytis cinerea and Grapevine Plantlets

    Sébastien Ronseaux

    2013-09-01

    Full Text Available The effectiveness of biological control agent, Ulocladium atrum (isolates U13 and U16 in protecting Vitis vinifera L. cv. Chardonnay against gray mold disease caused by Botrytis cinerea, and simulation of the foliar defense responses was investigated. A degraded mycelium structure during cultural assay on potato dextrose agar revealed that U. atrum isolates U13 and U16 were both antagonistic to B. cinerea, mainly when isolates were inoculated two days before Botrytis. Under in vitro conditions, foliar application of U. atrum protected grapevine leaves against gray mold disease. An increase in chitinase activity was induced by the presence of U. atrum isolates indicating that the biological control agents triggered plant defense mechanisms. Moreover, U13 has the potential to colonize the grapevine plantlets and to improve their growth. The ability of U. atrum isolates to exhibit an antagonistic effect against B. cinerea in addition to their aptitude to induce plant resistance and to promote grapevine growth may explain a part of their biological activity. Hence, this study suggests that U. atrum provides a suitable biocontrol agent against gray mold in grapevines.

  15. Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt

    Amer F. Mahmoud

    2016-04-01

    Full Text Available Fusarium graminearum Schwabe causes Fusarium head blight (FHB, a devastating disease that leads to extensive yield and quality loss of wheat and other cereal crops. Twelve isolates of F. graminearum were collected from naturally infected spikes of wheat from Assiut Egypt. These isolates were compared using SRAP. The results indicated distinct genetic groups exist within F. graminearum, and demonstrated that these groups have different biological properties, especially with respect to their pathogenicity on wheat. There were biologically significant differences between the groups; with group (B isolates being more aggressive towards wheat than groups (A and (C. Furthermore, Trichoderma harzianum (Rifai and Bacillus subtilis (Ehrenberg which isolated from wheat kernels were screened for antagonistic activity against F. graminearum. They significantly reduced the growth of F. graminearum colonies in culture. In order to gain insight into biological control effect in situ, highly antagonistic isolates of T. harzianum and B. subtilis were selected, based on their in vitro effectiveness, for greenhouse test. It was revealed that T. harzianum and B. subtilis significantly reduced FHB severity. The obtained results indicated that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in FHB and should be harnessed for further biocontrol applications. The accurate analysis of genetic variation and studies of population structures have significant implications for understanding the genetic traits and disease control programs in wheat. This is the first known report of the distribution and genetic variation of F. graminearum on wheat spikes in Assiut Egypt.

  16. Photo-Responsive Graphene and Carbon Nanotubes to Control and Tackle Biological Systems

    Cardano, Francesca; Frasconi, Marco; Giordani, Silvia

    2018-04-01

    Photo-responsive multifunctional nanomaterials are receiving considerable attention for biological applications because of their unique properties. The functionalization of the surface of carbon nanotubes (CNTs) and graphene, among other carbon based nanomaterials, with molecular switches that exhibit reversible transformations between two or more isomers in response to different kind of external stimuli, such as electromagnetic radiation, temperature and pH, has allowed the control of the optical and electrical properties of the nanomaterial. Light-controlled molecular switches, such as azobenzene and spiropyran, have attracted a lot of attention for nanomaterial’s functionalization because of the remote modulation of their physicochemical properties using light stimulus. The enhanced properties of the hybrid materials obtained from the coupling of carbon based nanomaterials with light-responsive switches has enabled the fabrication of smart devices for various biological applications, including drug delivery, bioimaging and nanobiosensors. In this review, we highlight the properties of photo-responsive carbon nanomaterials obtained by the conjugation of CNTs and graphene with azobenzenes and spiropyrans molecules to investigate biological systems, devising possible future directions in the field.

  17. Biological control of Botrytis gray mould on tomato cultivated in greenhouse.

    Fiume, F; Fiume, G

    2006-01-01

    Research was carried out to evaluate the effectiveness of the biological control of the Botrytis gray mould, caused by Botrytis cinerea Pers., one of the most important fungal diseases of the tomato (Lycopersicon esculentum Mill.). Biological control was performed by using Trichoderma harzianum Rifai, an antagonist that is a naturally occurring fungus found on some plants and in the soil worldwide. Trichoderma spp. are fungi diffused in nearly all agricultural soils and in other environments such as decaying wood. The object of this research is to find control strategies to reduce chemical treatments that cause damage to the environment and increase the pathogen resistance, applying the biological control by using T. harzianum against B. cinerea. A commercial product containing a natural isolate of T. harzianum is trichodex (Makhteshim Chemical Works, LTD). The research was performed in laboratory and in greenhouse. In laboratory, radial growth reduction of B. cinerea, in presence of T. harzianum, was calculated in relation to the growth of the pathogen control, by using a specific formula that measures the percentage of the inhibition of the radial mycelial growth. In greenhouse, starting from the tomato fruit setting, the research was carried out comparing, by a randomized complete block experiment design, replicated four times, the following treatments:1) untreated control; 2) pyrimethanil (400 g/L of a.i.), at 200 cc/hL of c.i. (pyrimidine fungicides); 3) trichodex at 100g/hL (1 kg/ha); 4) trichodex at 200 g/hL (2 kg/ha); 5) trichodex at 400 g/hL (4 kg/ha). Before fruit setting, the plots were all treated against Botrytis gray mould with iprodione 50% (100 g/hL), procymidone 50% (100 g/hL) and switch (Novartis plant protection) at 80 g/hL. In dual culture, the inhibition of B. cinerea radial mycelial growth was 76%. No inhibition halo was observed between B. cinerea and T. harzianum colonies but, after 3 days, the pathogen colony radius resulted no more than 1

  18. A multiple-time-scale approach to the control of ITBs on JET

    Laborde, L.; Mazon, D.; Moreau, D. [EURATOM-CEA Association (DSM-DRFC), CEA Cadarache, 13 - Saint Paul lez Durance (France); Moreau, D. [Culham Science Centre, EFDA-JET, Abingdon, OX (United Kingdom); Ariola, M. [EURATOM/ENEA/CREATE Association, Univ. Napoli Federico II, Napoli (Italy); Cordoliani, V. [Ecole Polytechnique, 91 - Palaiseau (France); Tala, T. [EURATOM-Tekes Association, VTT Processes (Finland)

    2005-07-01

    The simultaneous real-time control of the current and temperature gradient profiles could lead to the steady state sustainment of an internal transport barrier (ITB) and so to a stationary optimized plasma regime. Recent experiments in JET have demonstrated significant progress in achieving such a control: different current and temperature gradient target profiles have been reached and sustained for several seconds using a controller based on a static linear model. It's worth noting that the inverse safety factor profile evolves on a slow time scale (resistive time) while the normalized electron temperature gradient reacts on a faster one (confinement time). Moreover these experiments have shown that the controller was sensitive to rapid plasma events such as transient ITBs during the safety factor profile evolution or MHD instabilities which modify the pressure profiles on the confinement time scale. In order to take into account the different dynamics of the controlled profiles and to better react to rapid plasma events the control technique is being improved by using a multiple-time-scale approximation. The paper describes the theoretical analysis and closed-loop simulations using a control algorithm based on two-time-scale state-space model. These closed-loop simulations using the full dynamic but linear model used for the controller design to simulate the plasma response have demonstrated that this new controller allows the normalized electron temperature gradient target profile to be reached faster than the one used in previous experiments. (A.C.)

  19. A multiple-time-scale approach to the control of ITBs on JET

    Laborde, L.; Mazon, D.; Moreau, D.; Moreau, D.; Ariola, M.; Cordoliani, V.; Tala, T.

    2005-01-01

    The simultaneous real-time control of the current and temperature gradient profiles could lead to the steady state sustainment of an internal transport barrier (ITB) and so to a stationary optimized plasma regime. Recent experiments in JET have demonstrated significant progress in achieving such a control: different current and temperature gradient target profiles have been reached and sustained for several seconds using a controller based on a static linear model. It's worth noting that the inverse safety factor profile evolves on a slow time scale (resistive time) while the normalized electron temperature gradient reacts on a faster one (confinement time). Moreover these experiments have shown that the controller was sensitive to rapid plasma events such as transient ITBs during the safety factor profile evolution or MHD instabilities which modify the pressure profiles on the confinement time scale. In order to take into account the different dynamics of the controlled profiles and to better react to rapid plasma events the control technique is being improved by using a multiple-time-scale approximation. The paper describes the theoretical analysis and closed-loop simulations using a control algorithm based on two-time-scale state-space model. These closed-loop simulations using the full dynamic but linear model used for the controller design to simulate the plasma response have demonstrated that this new controller allows the normalized electron temperature gradient target profile to be reached faster than the one used in previous experiments. (A.C.)

  20. Simultaneous control of multiple instruments at the Advanced Technology Solar Telescope

    Johansson, Erik M.; Goodrich, Bret

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) is a 4-meter solar observatory under construction at Haleakala, Hawaii. The simultaneous use of multiple instruments is one of the unique capabilities that makes the ATST a premier ground based solar observatory. Control of the instrument suite is accomplished by the Instrument Control System (ICS), a layer of software between the Observatory Control System (OCS) and the instruments. The ICS presents a single narrow interface to the OCS and provides a standard interface for the instruments to be controlled. It is built upon the ATST Common Services Framework (CSF), an infrastructure for the implementation of a distributed control system. The ICS responds to OCS commands and events, coordinating and distributing them to the various instruments while monitoring their progress and reporting the status back to the OCS. The ICS requires no specific knowledge about the instruments. All information about the instruments used in an experiment is passed by the OCS to the ICS, which extracts and forwards the parameters to the appropriate instrument controllers. The instruments participating in an experiment define the active instrument set. A subset of those instruments must complete their observing activities in order for the experiment to be considered complete and are referred to as the must-complete instrument set. In addition, instruments may participate in eavesdrop mode, outside of the control of the ICS. All instrument controllers use the same standard narrow interface, which allows new instruments to be added without having to modify the interface or any existing instrument controllers.

  1. The role of bacillus-based biological control agents in integrated pest management systems: plant diseases.

    Jacobsen, B J; Zidack, N K; Larson, B J

    2004-11-01

    ABSTRACT Bacillus-based biological control agents (BCAs) have great potential in integrated pest management (IPM) systems; however, relatively little work has been published on integration with other IPM management tools. Unfortunately, most research has focused on BCAs as alternatives to synthetic chemical fungicides or bactericides and not as part of an integrated management system. IPM has had many definitions and this review will use the national coalition for IPM definition: "A sustainable approach to managing pests by combining biological, cultural, physical and chemical tools in a way that minimizes economic, health and environmental risks." This review will examine the integrated use of Bacillus-based BCAs with disease management tools, including resistant cultivars, fungicides or bactericides, or other BCAs. This integration is important because the consistency and degree of disease control by Bacillus-based BCAs is rarely equal to the control afforded by the best fungicides or bactericides. In theory, integration of several tools brings stability to disease management programs. Integration of BCAs with other disease management tools often provides broader crop adaptation and both more efficacious and consistent levels of disease control. This review will also discuss the use of Bacillus-based BCAs in fungicide resistance management. Work with Bacillus thuringiensis and insect pest management is the exception to the relative paucity of reports but will not be the focus of this review.

  2. Mites and spiders act as biological control agent to sand flies

    Diwakar Singh Dinesh

    2014-02-01

    Full Text Available Objective: To find out natural biological control agents of sand flies vector of kala azar in Bihar, India. Methods: Sand flies collected from the field using CDC light trap installing overnight to the collection site scrutitinized for Phlebotomus argentipes, the established vector of visceral leishmaniasis. Blood fed adult females were confined in the insectary for its development of life cycle. During developmental stages 2nd to 4th instars larvae were examined closely by using compound microscope for mite infestation. Adult spider residing along with sand flies collected in trap were kept in cage along with sand flies and their activities were watched closely and recorded by video and picture. Results: Mites were found predating 2nd to 4th instars larvae only under the laboratory conditions and lowering down the population of sand flies up to basal level within 15 d after infestation. One specific spider was found eating blood fed female sand flies kept inside the cage (n=50 attacking on lower part of thoracic region to kill the sand fly and ate desired soft part. Conclusions: Both predators, mites and spiders are acting as biological control agents to larvae and adults of sand flies respectively resulting variable density of vectors due to variable association with these predators and also cause lowering the transmission of the disease as hidden natural controlling agent of sand flies. The extensive study will be of immense help in controlling sand flies without use of environmental pollutant i.e. chemical insecticide.

  3. Controlled power delivery for super-resolution imaging of biological samples using digital micromirror device

    Valiya Peedikakkal, Liyana; Cadby, Ashley

    2017-02-01

    Localization based super resolution images of a biological sample is generally achieved by using high power laser illumination with long exposure time which unfortunately increases photo-toxicity of a sample, making super resolution microscopy, in general, incompatible with live cell imaging. Furthermore, the limitation of photobleaching reduces the ability to acquire time lapse images of live biological cells using fluorescence microscopy. Digital Light Processing (DLP) technology can deliver light at grey scale levels by flickering digital micromirrors at around 290 Hz enabling highly controlled power delivery to samples. In this work, Digital Micromirror Device (DMD) is implemented in an inverse Schiefspiegler telescope setup to control the power and pattern of illumination for super resolution microscopy. We can achieve spatial and temporal patterning of illumination by controlling the DMD pixel by pixel. The DMD allows us to control the power and spatial extent of the laser illumination. We have used this to show that we can reduce the power delivered to the sample to allow for longer time imaging in one area while achieving sub-diffraction STORM imaging in another using higher power densities.

  4. Phenotypic charactheristics of fluorescent pseudomonss, biological control agent of lincat disease of temanggung tobacco

    NINING NURUL AZIZAH

    2007-04-01

    Full Text Available Fluorescent pseudomonass isolated from local plants-rishosphere in temanggung controlled lincat disease of tobacco. This report describe phenotypic charactheristics of the bacteria in order to be used as a base for the development of the bacteria as a biological control agent of lincat disease. Phenotypic charactheristics of six isolates of fluorescent Pseudomonass which controlled lincat disease in the field were determined in the laboratory of Plant Bacteriology, Faculty of Agriculture, Gadjah Mada University. Plant pathogenicity tests were conducted by hypersensitive reaction into tobacco leaf and inoculation to tobacco plants. Antagonism test between fluorescent Pseudomonass and other candidate of biological control agents were also conducted. The results indicated that the bacteria were rod shape, Gram negative, positive reaction in catalase and oxidase tests. Nitrate reduce to nitrite, arginine was hydrolysed, fluorescent pigment were produced on King’s B medium, levan formation positive and all bacteria denitrifiy. The bacteria used urea, tween 80 and amylum were not hydrolised, poly--hydroxybutyrate was not accumulated in the cells. Negative reactions were observed for lysine decarboxylation, indol production, VP/MR reaction, and gelatn liquefation. Some compounds could be used as solely carbon sources. All isolates grew on the medium containing 2% NaCl. The best pH for growth was 6-7 and all isolates grew at 20-41C. Negative result were obtained for hypersensitive reaction and pathogenicity tests.

  5. In vitro susceptibility of nematophagous fungi to antiparasitic drugs: interactions and implications for biological control

    J. N. Vieira

    Full Text Available Abstract The fast anthelmintic resistance development has shown a limited efficiency in the control of animal’s endoparasitosis and has promoted research using alternative control methods. The use of chemicals in animal anthelmintic treatment, in association with nematophagous fungi used for biological control, is a strategy that has proven to be effective in reducing the nematode population density in farm animals. This study aims to verify the in vitro susceptibility of the nematophagous fungi Arthrobotrys oligospora, Duddingtonia flagrans and Paecilomyces lilacinus against the antiparasitic drugs albendazole, thiabendazole, ivermectin, levamisole and closantel by using the Minimum Inhibitory Concentration (MIC. MICs ranged between 4.0 and 0.031 µg/mL for albendazole, thiabendazole and ivermectin, between 0.937 and 0.117 µg/mL for levamisole, and between 0.625 and 0.034 µg/mL for closantel. The results showed that all antiparasitic drugs had an in vitro inhibitory effect on nematophagous fungi, which could compromise their action as agents of biological control. D. flagrans was the most susceptible species to all drugs.

  6. The small hive beetle Aethina tumida: A review of its biology and control measures

    Andrew G. S. CUTHBERTSON et al

    2013-10-01

    Full Text Available The small hive beetle Aethina tumida is an endemic parasitic pest and scavenger of colonies of social bees indigenous to sub-Saharan Africa. In this region this species rarely inflicts severe damage on strong colonies since the bees have develo­­ped strategies to combat them. However, A. tumida has since ‘escaped’ from its native home and has recently invaded areas such as North America and Australia where its economic impact on the apiculture industry has been significant. Small hive beetle, should it become established within Europe, represents a real and live threat to the UK bee keeping industry. Here we review the biology and current pest status of A. tumida and up to-date research in terms of both chemical and biological control used against this honey bee pest [Current Zoology 59 (5: 644–653, 2013].

  7. Controls of nitrite oxidation in ammonia-removing biological air filters

    Juhler, Susanne; Ottosen, Lars Ditlev Mørck; Nielsen, Lars Peter

    2008-01-01

    in accumulation of nitrate rather than nitrite and a significant decline in pH. As a consequence, ammonia is removed more efficiently, but heterotrophic oxidation of odorous compounds might be inhibited.  To identify the controlling mechanisms of nitrite oxidation, full-scale biological air filters were...... activity resulting in a lowered pH and thus a decreased FA concentration, promoting further growth of NOB. Yet, in some cases a situation with a nitrate-to-nitrite ratio of 1 and moderate pH remained stable even under varying air load and water supply, suggesting that additional mechanisms were involved......In biological air filters ammonia is removed due to the action of Ammonia Oxidizing Bacteria (AOB) resulting in nitrite accumulation exceeding 100 mM. Among filters treating exhaust air from pig facilities successful establishment of Nitrite Oxidizing Bacteria (NOB) sometimes occurs, resulting...

  8. Multiple-Time-Scales Hierarchical Frequency Stability Control Strategy of Medium-Voltage Isolated Microgrid

    Zhao, Zhuoli; Yang, Ping; Guerrero, Josep M.

    2016-01-01

    In this paper, an islanded medium-voltage (MV) microgrid placed in Dongao Island is presented, which integrates renewable-energy-based distributed generations (DGs), energy storage system (ESS), and local loads. In an isolated microgrid without connection to the main grid to support the frequency......, it is more complex to control and manage. Thus in order to maintain the frequency stability in multiple-time-scales, a hierarchical control strategy is proposed. The proposed control architecture divides the system frequency in three zones: (A) stable zone, (B) precautionary zone and (C) emergency zone...... of Zone B. Theoretical analysis, time-domain simulation and field test results under various conditions and scenarios in the Dongao Island microgrid are presented to prove the validity of the introduced control strategy....

  9. Vibration control of uncertain multiple launch rocket system using radial basis function neural network

    Li, Bo; Rui, Xiaoting

    2018-01-01

    Poor dispersion characteristics of rockets due to the vibration of Multiple Launch Rocket System (MLRS) have always restricted the MLRS development for several decades. Vibration control is a key technique to improve the dispersion characteristics of rockets. For a mechanical system such as MLRS, the major difficulty in designing an appropriate control strategy that can achieve the desired vibration control performance is to guarantee the robustness and stability of the control system under the occurrence of uncertainties and nonlinearities. To approach this problem, a computed torque controller integrated with a radial basis function neural network is proposed to achieve the high-precision vibration control for MLRS. In this paper, the vibration response of a computed torque controlled MLRS is described. The azimuth and elevation mechanisms of the MLRS are driven by permanent magnet synchronous motors and supposed to be rigid. First, the dynamic model of motor-mechanism coupling system is established using Lagrange method and field-oriented control theory. Then, in order to deal with the nonlinearities, a computed torque controller is designed to control the vibration of the MLRS when it is firing a salvo of rockets. Furthermore, to compensate for the lumped uncertainty due to parametric variations and un-modeled dynamics in the design of the computed torque controller, a radial basis function neural network estimator is developed to adapt the uncertainty based on Lyapunov stability theory. Finally, the simulated results demonstrate the effectiveness of the proposed control system and show that the proposed controller is robust with regard to the uncertainty.

  10. Biologically Based Methods for Control of Fumonisin-Producing Fusarium Species and Reduction of the Fumonisins.

    Alberts, Johanna F; van Zyl, Willem H; Gelderblom, Wentzel C A

    2016-01-01

    Infection by the fumonisin-producing Fusarium spp. and subsequent fumonisin contamination of maize adversely affect international trade and economy with deleterious effects on human and animal health. In developed countries high standards of the major food suppliers and retailers are upheld and regulatory controls deter the importation and local marketing of fumonisin-contaminated food products. In developing countries regulatory measures are either lacking or poorly enforced, due to food insecurity, resulting in an increased mycotoxin exposure. The lack and poor accessibility of effective and environmentally safe control methods have led to an increased interest in practical and biological alternatives to reduce fumonisin intake. These include the application of natural resources, including plants, microbial cultures, genetic material thereof, or clay minerals pre- and post-harvest. Pre-harvest approaches include breeding for resistant maize cultivars, introduction of biocontrol microorganisms, application of phenolic plant extracts, and expression of antifungal proteins and fumonisin degrading enzymes in transgenic maize cultivars. Post-harvest approaches include the removal of fumonisins by natural clay adsorbents and enzymatic degradation of fumonisins through decarboxylation and deamination by recombinant carboxylesterase and aminotransferase enzymes. Although, the knowledge base on biological control methods has expanded, only a limited number of authorized decontamination products and methods are commercially available. As many studies detailed the use of natural compounds in vitro, concepts in reducing fumonisin contamination should be developed further for application in planta and in the field pre-harvest, post-harvest, and during storage and food-processing. In developed countries an integrated approach, involving good agricultural management practices, hazard analysis and critical control point (HACCP) production, and storage management, together with

  11. Biologically Based Methods for Control of Fumonisin-producing Fusarium species and Reduction of the Fumonisins

    Johanna Francina Alberts

    2016-04-01

    Full Text Available Infection by the fumonisin-producing Fusarium spp. and subsequent fumonisin contamination of maize adversely affect international trade and economy with deleterious effects on human and animal health. In developed countries high standards of the major food suppliers and retailers are upheld and regulatory controls deter the importation and local marketing of fumonisin-contaminated food products. In developing countries regulatory measures are either lacking or poorly enforced, due to food insecurity, resulting in an increased mycotoxin exposure. The lack and poor accessibility of effective and environmentally safe control methods have led to an increased interest in practical and biological alternatives to reduce fumonisin intake. These include the application of natural resources, including plants, microbial cultures, genetic material thereof or clay minerals pre- and postharvest. Pre-harvest approaches include breeding for resistant maize cultivars, introduction of biocontrol microorganisms, application of phenolic plant extracts, and expression of antifungal proteins and fumonisin degrading enzymes in transgenic maize cultivars. Postharvest approaches include the removal of fumonisins by natural clay adsorbents and enzymatic degradation of fumonisins through decarboxylation and deamination by recombinant carboxylesterase and aminotransferase enzymes. Although the knowledge base on biological control methods has expanded, only a limited number of authorized decontamination products and methods are commercially available. As many studies detailed the use of natural compounds in vitro, concepts in reducing fumonisin contamination should be developed further for application in planta and in the field pre-harvest, postharvest, and during storage and food-processing. In developed countries an integrated approach, involving good agricultural management practices, hazard analysis and critical control point (HACCP production and storage management

  12. Biologically Based Methods for Control of Fumonisin-Producing Fusarium Species and Reduction of the Fumonisins

    Alberts, Johanna F.; van Zyl, Willem H.; Gelderblom, Wentzel C. A.

    2016-01-01

    Infection by the fumonisin-producing Fusarium spp. and subsequent fumonisin contamination of maize adversely affect international trade and economy with deleterious effects on human and animal health. In developed countries high standards of the major food suppliers and retailers are upheld and regulatory controls deter the importation and local marketing of fumonisin-contaminated food products. In developing countries regulatory measures are either lacking or poorly enforced, due to food insecurity, resulting in an increased mycotoxin exposure. The lack and poor accessibility of effective and environmentally safe control methods have led to an increased interest in practical and biological alternatives to reduce fumonisin intake. These include the application of natural resources, including plants, microbial cultures, genetic material thereof, or clay minerals pre- and post-harvest. Pre-harvest approaches include breeding for resistant maize cultivars, introduction of biocontrol microorganisms, application of phenolic plant extracts, and expression of antifungal proteins and fumonisin degrading enzymes in transgenic maize cultivars. Post-harvest approaches include the removal of fumonisins by natural clay adsorbents and enzymatic degradation of fumonisins through decarboxylation and deamination by recombinant carboxylesterase and aminotransferase enzymes. Although, the knowledge base on biological control methods has expanded, only a limited number of authorized decontamination products and methods are commercially available. As many studies detailed the use of natural compounds in vitro, concepts in reducing fumonisin contamination should be developed further for application in planta and in the field pre-harvest, post-harvest, and during storage and food-processing. In developed countries an integrated approach, involving good agricultural management practices, hazard analysis and critical control point (HACCP) production, and storage management, together with

  13. Biological insect control using Metarhizium anisopliae: morphological, molecular, and ecological aspects

    Patricia Vieira Tiago

    2014-04-01

    Full Text Available Microbial control of insects is based on the rational use of pathogens to maintain environmentally balanced pest population levels, and Metarhizium anisopliae has been the most studied and most utilized fungal species for that purpose. The natural genetic variability of entomopathogenic fungi is considered one of the principal advantages of microbial insect control. The inter- and intraspecific variability and the genetic diversity and population structures of Metarhizium and other entomopathogenic fungi have been examined using ITS-RFLP, ISSR, and ISSP molecular markers. The persistence of M. anisopliae in the soil and its possible effects on the structures of resident microbial communities must be considered when selecting isolates for biological insect control.

  14. Surface modification of poly(dimethylsiloxane) for controlling biological cells' adhesion using a scanning radical microjet

    Tan, Helen M.L.; Fukuda, H.; Akagi, T.; Ichiki, T.

    2007-01-01

    A scanning radical microjet (SRMJ) equipment using oxygen microplasma has been developed and successfully applied for controlling biological cells' attachment on biocompatible polymer material, poly(dimethylsiloxane) (PDMS). The radical microjet has advantages in localized and high-rate surface treatment. Moreover, maskless hydrophilic patterning using SRMJ has been demonstrated to be applicable to patterned cell cultivation which is useful in emerging biotechnological field such as tissue engineering and cell-based biosensors. Since control of PDMS surface properties is an indispensable prerequisite for cells' attachment, effects of oxygen flow rates and treatment time on localized hydrophilic patterning of PDMS surfaces were first investigated for controlling HeLa cells' (human epitheloid carcinoma cell line) attachment. Relationships between surface conditions of treated PDMS films and attached cell density are also discussed based on surface properties analyzed using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS)

  15. Consensus seeking, formation keeping, and trajectory tracking in multiple vehicle cooperative control

    Ren, Wei

    Cooperative control problems for multiple vehicle systems can be categorized as either formation control problems with applications to mobile robots, unmanned air vehicles, autonomous underwater vehicles, satellites, aircraft, spacecraft, and automated highway systems, or non-formation control problems such as task assignment, cooperative transport, cooperative role assignment, air traffic control, cooperative timing, and cooperative search. The cooperative control of multiple vehicle systems poses significant theoretical and practical challenges. For cooperative control strategies to be successful, numerous issues must be addressed. We consider three important and correlated issues: consensus seeking, formation keeping, and trajectory tracking. For consensus seeking, we investigate algorithms and protocols so that a team of vehicles can reach consensus on the values of the coordination data in the presence of imperfect sensors, communication dropout, sparse communication topologies, and noisy and unreliable communication links. The main contribution of this dissertation in this area is that we show necessary and/or sufficient conditions for consensus seeking with limited, unidirectional, and unreliable information exchange under fixed and switching interaction topologies (through either communication or sensing). For formation keeping, we apply a so-called "virtual structure" approach to spacecraft formation flying and multi-vehicle formation maneuvers. As a result, single vehicle path planning and trajectory generation techniques can be employed for the virtual structure while trajectory tracking strategies can be employed for each vehicle. The main contribution of this dissertation in this area is that we propose a decentralized architecture for multiple spacecraft formation flying in deep space with formation feedback introduced. This architecture ensures the necessary precision in the presence of actuator saturation, internal and external disturbances, and

  16. Biological control of Aeromonas salmonicida subsp. salmonicida infection in rainbow trout (Oncorhynchus mykiss) using Aeromonas phage PAS-1.

    Kim, J H; Choresca, C H; Shin, S P; Han, J E; Jun, J W; Park, S C

    2015-02-01

    The potential control efficacy of Aeromonas phage PAS-1 was evaluated against Aeromonas salmonicida subsp. salmonicida infection in rainbow trout (Oncorhynchus mykiss) model in this study. The phage was co-cultured with the virulent A. salmonicida subsp. salmonicida strain AS05 that possesses the type III secretion system (TTSS) ascV gene, and efficient bacteriolytic activity was observed against the bacteria. The administration of PAS-1 in rainbow trout demonstrated that the phage was cleared from the fish within 200 h post-administration, and a temporal neutralizing activity against the phage was detected in the sera of phage-administrated fish. The administration of PAS-1 (multiplicity of infection: 10 000) in A. salmonicida subsp. salmonicida infected rainbow trout model showed notable protective effects, with increased survival rates and mean times to death. These results demonstrated that Aeromonas phage PAS-1 could be considered as an alternative biological control agent against A. salmonicida subsp. salmonicida infections in rainbow trout culture. © 2013 Blackwell Verlag GmbH.

  17. Damping-tunable energy-harvesting vehicle damper with multiple controlled generators: Design, modeling and experiments

    Xie, Longhan; Li, Jiehong; Li, Xiaodong; Huang, Ledeng; Cai, Siqi

    2018-01-01

    Hydraulic dampers are used to decrease the vibration of a vehicle, where vibration energy is dissipated as heat. In addition to resulting in energy waste, the damping coefficient in hydraulic dampers cannot be changed during operation. In this paper, an energy-harvesting vehicle damper was proposed to replace traditional hydraulic dampers. The goal is not only to recover kinetic energy from suspension vibration but also to change the damping coefficient during operation according to road conditions. The energy-harvesting damper consists of multiple generators that are independently controlled by switches. One of these generators connects to a tunable resistor for fine tuning the damping coefficient, while the other generators are connected to a control and rectifying circuit, each of which both regenerates electricity and provides a constant damping coefficient. A mathematical model was built to investigate the performance of the energy-harvesting damper. By controlling the number of switched-on generators and adjusting the value of the external tunable resistor, the damping can be fine tuned according to the requirement. In addition to the capability of damping tuning, the multiple controlled generators can output a significant amount of electricity. A prototype was built to test the energy-harvesting damper design. Experiments on an MTS testing system were conducted, with results that validated the theoretical analysis. Experiments show that changing the number of switched-on generators can obviously tune the damping coefficient of the damper and simultaneously produce considerable electricity.

  18. A study on software-based sensing technology for multiple object control in AR video.

    Jung, Sungmo; Song, Jae-Gu; Hwang, Dae-Joon; Ahn, Jae Young; Kim, Seoksoo

    2010-01-01

    Researches on Augmented Reality (AR) have recently received attention. With these, the Machine-to-Machine (M2M) market has started to be active and there are numerous efforts to apply this to real life in all sectors of society. To date, the M2M market has applied the existing marker-based AR technology in entertainment, business and other industries. With the existing marker-based AR technology, a designated object can only be loaded on the screen from one marker and a marker has to be added to load on the screen the same object again. This situation creates a problem where the relevant marker'should be extracted and printed in screen so that loading of the multiple objects is enabled. However, since the distance between markers will not be measured in the process of detecting and copying markers, the markers can be overlapped and thus the objects would not be augmented. To solve this problem, a circle having the longest radius needs to be created from a focal point of a marker to be copied, so that no object is copied within the confines of the circle. In this paper, software-based sensing technology for multiple object detection and loading using PPHT has been developed and overlapping marker control according to multiple object control has been studied using the Bresenham and Mean Shift algorithms.

  19. A Study on Software-based Sensing Technology for Multiple Object Control in AR Video

    Seoksoo Kim

    2010-11-01

    Full Text Available Researches on Augmented Reality (AR have recently received attention. With these, the Machine-to-Machine (M2M market has started to be active and there are numerous efforts to apply this to real life in all sectors of society. To date, the M2M market has applied the existing marker-based AR technology in entertainment, business and other industries. With the existing marker-based AR technology, a designated object can only be loaded on the screen from one marker and a marker has to be added to load on the screen the same object again. This situation creates a problem where the relevant marker should be extracted and printed in screen so that loading of the multiple objects is enabled. However, since the distance between markers will not be measured in the process of detecting and copying markers, the markers can be overlapped and thus the objects would not be augmented. To solve this problem, a circle having the longest radius needs to be created from a focal point of a marker to be copied, so that no object is copied within the confines of the circle. In this paper, software-based sensing technology for multiple object detection and loading using PPHT has been developed and overlapping marker control according to multiple object control has been studied using the Bresenham and Mean Shift algorithms.

  20. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness

    Willems, Sara M; Wright, Daniel J.; Day, Felix R

    2017-01-01

    with involvement of psychomotor impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are consistent with a causal effect of higher genetically predicted grip strength on lower fracture risk. In conclusion, our findings provide new biological insight into the mechanistic underpinnings of grip...... strength and the causal role of muscular strength in age-related morbidities and mortality....