WorldWideScience

Sample records for multiple antibiotics biological

  1. Antibiotic Resistance and the Biology of History.

    Science.gov (United States)

    Landecker, Hannah

    2016-12-01

    Beginning in the 1940s, mass production of antibiotics involved the industrial-scale growth of microorganisms to harvest their metabolic products. Unfortunately, the use of antibiotics selects for resistance at answering scale. The turn to the study of antibiotic resistance in microbiology and medicine is examined, focusing on the realization that individual therapies targeted at single pathogens in individual bodies are environmental events affecting bacterial evolution far beyond bodies. In turning to biological manifestations of antibiotic use, sciences fathom material outcomes of their own previous concepts. Archival work with stored soil and clinical samples produces a record described here as 'the biology of history': the physical registration of human history in bacterial life. This account thus foregrounds the importance of understanding both the materiality of history and the historicity of matter in theories and concepts of life today.

  2. Structural Biology Guides Antibiotic Discovery

    Science.gov (United States)

    Polyak, Steven

    2014-01-01

    Modern drug discovery programs require the contribution of researchers in a number of specialist areas. One of these areas is structural biology. Using X-ray crystallography, the molecular basis of how a drug binds to its biological target and exerts its mode of action can be defined. For example, a drug that binds into the active site of an…

  3. Synthetic biology era: Improving antibiotic's world.

    Science.gov (United States)

    Guzmán-Trampe, Silvia; Ceapa, Corina D; Manzo-Ruiz, Monserrat; Sánchez, Sergio

    2017-06-15

    The emergence of antibiotic-resistant pathogen microorganisms is problematic in the context of the current spectrum of available medication. The poor specificity and the high toxicity of some available molecules have made imperative the search for new strategies to improve the specificity and to pursue the discovery of novel compounds with increased bioactivity. Using living cells as platforms, synthetic biology has counteracted this problem by offering novel pathways to create synthetic systems with improved and desired functions. Among many other biotechnological approaches, the advances in synthetic biology have made it possible to design and construct novel biological systems in order to look for new drugs with increased bioactivity. Advancements have also been made in the redesigning of RNA and DNA molecules in order to engineer antibiotic clusters for antibiotic overexpression. As for the production of these antibacterial compounds, yeasts and filamentous fungi as well as gene therapy are utilized to enhance protein solubility. Specific delivery is achieved by creating chimeras using plant genes into bacterial hosts. Some of these synthetic systems are currently in clinical trials, proving the proficiency of synthetic biology in terms of both pharmacological activities as well as an increase in the biosafety of treatments. It is possible that we may just be seeing the tip of the iceberg, and synthetic biology applications will overpass expectations beyond our present knowledge. Copyright © 2017. Published by Elsevier Inc.

  4. Allergies, antibiotics use, and multiple sclerosis.

    Science.gov (United States)

    Ren, Jinma; Ni, Huijuan; Kim, Minchul; Cooley, Kimberly L; Valenzuela, Reuben M; Asche, Carl V

    2017-08-01

    The associations between allergies, antibiotics use, and multiple sclerosis (MS) remain controversial and their mediating or moderating effects have not yet been examined. We aimed to assess the direct and indirect influences of allergies and antibiotics use on MS development, and their interactions. A 1:3 matched case-control study was performed using the National Ambulatory Medical Care Survey database from 2006 to 2013 in the USA. Multiple sclerosis was identified based on the ICD-9 code (340.0) in any position. Cases were matched to their controls based on survey year, age, gender, race, payer type, region, and tobacco use. Allergy diseases and antibiotics prescriptions were extracted by ICD-9 code and drug classification code, respectively. Both generalized structural equation model and MacArthur approach were used to examine their intrinsic relationships. The weighted prevalence of MS was 133.7 per 100,000 visits. A total of 829 MS patients and 2441 controls were matched. Both respiratory tract allergies (OR = 0.29, 95% CI: 0.18, 0.49) and other allergies (OR = 0.38, 95% CI: 0.19, 0.77) were associated with a reduction of the risk of MS. Patients with respiratory tract allergies were more likely to use penicillin (OR = 8.73, 95% CI: 4.12, 18.53) and other antibiotics (OR = 3.77, 95% CI: 2.72, 5.21), and those with other allergies had a higher likelihood of penicillin use (OR = 4.15, 95% CI: 1.27, 13.54); however, the link between antibiotics use and MS was not confirmed although penicillin use might mediate the relationship between allergies and MS. The findings supported allergy as a protective factor for MS development. We also suggest antibiotics use might not be a suitable indicator of bacterial infection to investigate the cause of MS.

  5. Distribution of multiple antibiotic resistant Vibrio spp across Palk Bay

    Digital Repository Service at National Institute of Oceanography (India)

    Sneha, K.G.; Anas, A.; Jayalakshmy, K.V.; Jasmin, C.; VipinDas, P.V.; Pai, S.S.; Pappu, S.; Nair, M.; Muraleedharan, K.R.; Sudheesh, K.; Nair, S.

    Presence of multiple antibiotic resistant microorganisms in marine systems is increasingly a focus of concern as they pose potential health risk to humans and animals. The present study reports the distribution, diversity, antibiotic resistance...

  6. Antibiotic resistance shaping multi-level population biology of bacteria.

    Science.gov (United States)

    Baquero, Fernando; Tedim, Ana P; Coque, Teresa M

    2013-01-01

    Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent "population biologies." Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of "clinical" antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi

  7. Antibiotic resistance shaping multilevel population biology of bacteria

    Directory of Open Access Journals (Sweden)

    Fernando eBaquero

    2013-03-01

    Full Text Available Antibiotics have natural functions, mostly involving cell-to-cell signalling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent population biologies. Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of clinical antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge

  8. Multiple Realizability and Biological Laws

    NARCIS (Netherlands)

    Raerinne, Jani P.; Eronen, Markus I.

    2012-01-01

    We critically analyze Alexander Rosenberg's argument based on the multiple realizability of biological properties that there are no biological laws. The argument is intuitive and suggestive. Nevertheless, a closer analysis reveals that the argument rests on dubious assumptions about the nature of

  9. Immunomodulatory Effects of Macrolide Antibiotics - Part 1 : Biological Mechanisms

    NARCIS (Netherlands)

    Altenburg, J.; de Graaff, C. S.; van der Werf, T. S.; Boersma, W. G.

    2011-01-01

    Macrolide antibiotics are well known for their antibacterial and anti-inflammatory properties. This article provides an overview of the biological mechanisms through which macrolides exert this 'double effect'. Their antibacterial effect consists of the inhibition of bacterial protein synthesis,

  10. Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics.

    Science.gov (United States)

    Zou, Xuan; Wang, Lianrong; Li, Zhiqiang; Luo, Jie; Wang, Yunfu; Deng, Zixin; Du, Shiming; Chen, Shi

    2018-01-01

    Antibiotic production is often governed by large gene clusters composed of genes related to antibiotic scaffold synthesis, tailoring, regulation, and resistance. With the expansion of genome sequencing, a considerable number of antibiotic gene clusters has been isolated and characterized. The emerging genome engineering techniques make it possible towards more efficient engineering of antibiotics. In addition to genomic editing, multiple synthetic biology approaches have been developed for the exploration and improvement of antibiotic natural products. Here, we review the progress in the development of these genome editing techniques used to engineer new antibiotics, focusing on three aspects of genome engineering: direct cloning of large genomic fragments, genome engineering of gene clusters, and regulation of gene cluster expression. This review will not only summarize the current uses of genomic engineering techniques for cloning and assembly of antibiotic gene clusters or for altering antibiotic synthetic pathways but will also provide perspectives on the future directions of rebuilding biological systems for the design of novel antibiotics. © 2017 Wiley Periodicals, Inc.

  11. [Biological treatment of multiple sclerosis

    DEFF Research Database (Denmark)

    Sorensen, P.S.; Sellebjerg, F.

    2008-01-01

    In 1996 interferon (IFN)beta was the first biopharmaceutical product to be approved for the treatment of relapsing-remitting multiple sclerosis (MS). In 2006 the more potent monoclonal antibody natalizumab was approved. Presently, a number of monoclonal antibodies are being studied, including ale...

  12. Treatment of Antibiotic Pharmaceutical Wastewater Using a Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Rongjun Su

    2015-01-01

    Full Text Available Rotating biological contactors (RBC are effective for treating wastewater, while they are rarely reported to be used for treating antibiotic pharmaceutical wastewater (APW. The current study investigates treatment of APW using an RBC. The effects of influent concentration, number of stages, and temperature on the remediation of APW were studied. The results indicated, even at low ambient temperature, 45% COD and 40% NH4+-N removal efficiencies. Moreover, the BOD5 removal efficiency was 85%. Microscopic observations illustrated that there were various active microorganisms displayed in the biofilms and their distribution changed from stage to stage. Compared with activated sludge, the biofilms in this study have higher content of dry matter and are easier to dehydrate and settle. Compared with current commercial incineration processes or advanced oxidation processes, RBC can greatly reduce the treatment cost. This research shows RBC is effective for such an inherently biorecalcitrant wastewater even at low ambient temperature.

  13. Intergenic and intragenic conjugal transfer of multiple antibiotic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-19

    Jan 19, 2009 ... antibiotic resistance determinants among bacteria in the aquatic ... loci of antibiotic resistant gene among bacteria in the surface water of Bangladesh. ..... bial communities is in assessing the risk of genetically engineered ...

  14. Antibiotics

    Science.gov (United States)

    Antibiotics are powerful medicines that fight bacterial infections. Used properly, antibiotics can save lives. They either kill bacteria or ... natural defenses can usually take it from there. Antibiotics do not fight infections caused by viruses, such ...

  15. Chemistry and biology by new multiple choice

    International Nuclear Information System (INIS)

    Seo, Hyeong Seok; Kim, Seong Hwan

    2003-02-01

    This book is divided into two parts, the first part is about chemistry, which deals with science of material, atom structure and periodic law, chemical combination and power between molecule, state of material and solution, chemical reaction and an organic compound. The second part give description of biology with molecule and cell, energy in cells and chemical synthesis, molecular biology and heredity, function on animal, function on plant and evolution and ecology. This book has explanation of chemistry and biology with new multiple choice.

  16. A Novel Application of Synthetic Biology and Directed Evolution to Engineer Phage-based Antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meiye [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    The emergence of multiple drug resistant bacteria poses threats to human health, agriculture and food safety. Annually over 100,000 deaths and up to $20 billion loss to the U.S. economy are attributed to multiple drug resistant bacteria. With only four new chemical antibiotics in the drug development pipeline, we are in dire need of new solutions to address the emerging threat of multiple drug resistance. We propose a paradigm-changing approach to address the multi-drug resistant bacteria problem by utilizing Synthetic Biology (SynBio) methodologies to create and evolve “designer” bacteriophages or phages – viruses that specifically infect bacteria – to infect and kill newly emerging pathogenic bacterial strains WITHOUT the need for chemical antibiotics. A major advantage of using phage to combat pathogenic bacteria is that phages can co-evolve with their bacterial host, and Sandia can be the first in the world to establish an industrial scale Synthetic Biology pipeline for phage directed evolution for safe, targeted, customizable solution to bacterial drug resistance. Since there is no existing phage directed evolution effort within or outside of Sandia, this proposal is suitable as a high-risk LDRD effort to create the first pipeline for such an endeavor. The high potential reward nature of this proposal will be the immediate impact in decontamination and restoration of surfaces and infrastructure, with longer term impact in human or animal therapeutics. The synthetic biology and screening approaches will lead to fundamental knowledge of phage/bacteria co-evolution, making Sandia a world leader in directed evolution of bacteriophages.

  17. Antibiotic Application and Emergence of Multiple Antibiotic Resistance (MAR) in Global Catfish Aquaculture.

    Science.gov (United States)

    Chuah, Li-Oon; Effarizah, M E; Goni, Abatcha Mustapha; Rusul, Gulam

    2016-06-01

    Catfish is one of the most cultivated species worldwide. Antibiotics are usually used in catfish farming as therapeutic and prophylactic agents. In the USA, only oxytetracycline, a combination of sulfadimethoxine and ormetoprim, and florfenicol are approved by the Food Drug Administration for specific fish species (e.g., catfish and salmonids) and their specific diseases. Misuse of antibiotics as prophylactic agents in disease prevention, however, is common and contributes in the development of antibiotic resistance. Various studies had reported on antibiotic residues and/or resistance in farmed species, feral fish, water column, sediments, and, in a lesser content, among farm workers. Ninety percent of the world aquaculture production is carried out in developing countries, which lack regulations and enforcement on the use of antibiotics. Hence, efforts are needed to promote the development and enforcement of such a regulatory structure. Alternatives to antibiotics such as antibacterial vaccines, bacteriophages and their lysins, and probiotics have been applied to curtail the increasing emergence of antibiotic-resistant bacteria due to the imprudent application of antibiotics in aquaculture.

  18. Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water.

    Science.gov (United States)

    Calomiris, J J; Armstrong, J L; Seidler, R J

    1984-06-01

    Bacterial isolates from the drinking water system of an Oregon coastal community were examined to assess the association of metal tolerance with multiple antibiotic resistance. Positive correlations between tolerance to high levels of Cu2+, Pb2+, and Zn2+ and multiple antibiotic resistance were noted among bacteria from distribution waters but not among bacteria from raw waters. Tolerances to higher levels of Al3+ and Sn2+ were demonstrated more often by raw water isolates which were not typically multiple antibiotic resistant. A similar incidence of tolerance to Cd2+ was demonstrated by isolates of both water types and was not associated with multiple antibiotic resistance. These results suggest that simultaneous selection phenomena occurred in distribution water for bacteria which exhibited unique patterns of tolerance to Cu2+, Pb2+, and Zn2+ and antibiotic resistance.

  19. Multiple antibiotic resistance patterns of rhizospheric bacteria isolated from Phragmites australis growing in constructed wetland for distillery effluent treatment.

    Science.gov (United States)

    Chaturvedi, Sonal; Chandra, Ram; Rai, Vibhuti

    2008-01-01

    Susceptibility patterns of 12 different antibiotics were investigated against rhizospheric bacteria isolated from Phragmites australis from three different zones i.e. upper (0-5 cm), middle (5-10 cm), lower (10-15 cm) in constructed wetland system with and without distillery effluent. The major pollutants of distillery effluent were phenols, sulphide, heavy metals, and higher levels of biological oxygen demand (BOD), chemical oxygen demand (COD) etc. The antibiotic resistance properties of bacteria were correlated with the heavy metal tolerance (one of distillery pollutant). Twenty-two species from contaminated and seventeen species from non-contaminated site were tested by agar disc-diffusion method. The results revealed that more than 63% of total isolates were resistance towards one or more antibiotics tested from all the three different zones of contaminated sites. The multiple-drug resistance property was shown by total 8 isolates from effluent contaminated region out of which 3 isolates were from upper zone, 3 isolates from middle zone and 2 isolates were from lower zone. Results indicated that isolates from contaminated rhizosphere were found more resistant to antibiotics than isolates from non-contaminated rhizosphere. Further this study produces evidence suggesting that tolerance to antibiotics was acquired by isolates for the adaptation and detoxification of all the pollutants present in the effluent at contaminated site. This consequently facilitated the phytoremediation of effluent, which emerges the tolerance and increases resistance to antibiotics.

  20. Intergenic and intragenic conjugal transfer of multiple antibiotic ...

    African Journals Online (AJOL)

    Conjugation process was conducted to determine the means of transferring ... In this study, it was surprisingly observed that tetracycline resistant gene was ... among pathogenic bacteria, particularly since antibiotics are indiscriminately used in ...

  1. Recent advances in the chemistry and biology of carbapenem antibiotics.

    Science.gov (United States)

    Coulton, S; Hunt, E

    1996-01-01

    The discovery of the olivanic acids and thienamycin aroused considerable interest amongst medicinal chemists and microbiologists around the world. The susceptibility of these agents to metabolic degradation has, however, been a major obstacle in their development. For many years the only notable success from such intensive research was the combination of imipenem with cilastatin, an inhibitor of the renal dipeptidase enzyme DHP-1. The enormous success of Primaxin for the treatment of a range of life-threatening bacterial infections provided the impetus for the discovery of totally synthetic, non-natural carbapenem derivatives that combine the broad spectrum of antimicrobial activity with stability to enzymatic degradation. This has indeed been realised in the development of meropenem; it possesses the broad spectrum of activity and resistance to beta-lactamases that are embodied in imipenem as well as displaying increased stability to human dehydropeptidases. Most recent research has focused upon the development of carbapenem antibiotics which combine broad spectrum antimicrobial activity and metabolic stability with oral absorption, for the treatment of community-acquired infections. Indeed, the pro-drug esters of the tricyclic carbapenems represent the first significant advance in this respect. However, the increased use of carbapenem antibiotics would undoubtedly accelerate the emergence of carbapenem-hydrolysing enzymes. The ultimate challenge could therefore be the design and synthesis of carbapenem derivatives that are resistant to these metallo-beta-lactamases. Due to the enormous problems encountered in the development of the carbapenem antibiotics, this area of research has, in the past, been described as a battlefield that did not bode well for the future [181]. Primaxin and meropenem proved however that these problems were not insurmountable, and are therefore a testimony to the persistence and dedication of those scientists in their war against

  2. Presence and biological activity of antibiotics used in fuel ethanol and corn co-product production.

    Science.gov (United States)

    Compart, D M Paulus; Carlson, A M; Crawford, G I; Fink, R C; Diez-Gonzalez, F; Dicostanzo, A; Shurson, G C

    2013-05-01

    Antibiotics are used in ethanol production to control bacteria from competing with yeast for nutrients during starch fermentation. However, there is no published scientific information on whether antibiotic residues are present in distillers grains (DG), co-products from ethanol production, or whether they retain their biological activity. Therefore, the objectives of this study were to quantify concentrations of various antibiotic residues in DG and determine whether residues were biologically active. Twenty distillers wet grains and 20 distillers dried grains samples were collected quarterly from 9 states and 43 ethanol plants in the United States. Samples were analyzed for DM, CP, NDF, crude fat, S, P, and pH to describe the nutritional characteristics of the samples evaluated. Samples were also analyzed for the presence of erythromycin, penicillin G, tetracycline, tylosin, and virginiamycin M1, using liquid chromatography and mass spectrometry. Additionally, virginiamycin residues were determined, using a U.S. Food and Drug Administration-approved bioassay method. Samples were extracted and further analyzed for biological activity by exposing the sample extracts to 10(4) to 10(7) CFU/mL concentrations of sentinel bacterial strains Escherichia coli ATCC 8739 and Listeria monocytogenes ATCC 19115. Extracts that inhibited bacterial growth were considered to have biological activity. Physiochemical characteristics varied among samples but were consistent with previous findings. Thirteen percent of all samples contained low (≤1.12 mg/kg) antibiotic concentrations. Only 1 sample extract inhibited growth of Escherichia coli at 10(4) CFU/mL, but this sample contained no detectable concentrations of antibiotic residues. No extracts inhibited Listeria monocytogenes growth. These data indicate that the likelihood of detectable concentrations of antibiotic residues in DG is low; and if detected, they are found in very low concentrations. The inhibition in only 1 DG

  3. The impact of antibiotics (benzylpenicillin, and nystatin) on the biological properties of ordinary chernozems

    Science.gov (United States)

    Akimenko, Yu. V.; Kazeev, K. Sh.; Kolesnikov, S. I.

    2014-09-01

    In recent years, the input of antibiotics into soils has sharply increased. We studied the impact antibiotics (benzylpenicillin, pharmasin, and nystatin) at different concentrations (100 and 600 mg/kg) on population densities of microorganisms and enzymatic activity of ordinary chernozems in model experiments. The applied doses of antibiotics had definite suppressing effects on population densities of microorganisms (up to 30-70% of the control) and on the soil enzymatic activity (20-70% of the control). Correlation analysis showed close correlation between the concentrations of antibiotics and the population densities of soil microorganisms ( r = -0.68-0.86). Amylolytic bacteria had the highest resistance to the antibiotics, whereas ammonifying bacteria had the lowest resistance. Among the studied enzymes belonging to oxidoreductases and hydrolases, catalase and phosphatase had the highest and the lowest resistance to the antibiotics, respectively. The effect of antibiotics on the biological properties of the chernozem lasted for a long time. The studied parameters were not completely recovered in 120 days.

  4. Labeling and biological Characterization of an antibiotic for infection detection

    International Nuclear Information System (INIS)

    Essouiss, Imen; Ghali, Wafa; Saied, Nadia; Saidi, M.

    2009-01-01

    Nuclear imaging is a non-invasive exploration technique, used for rapid diagnostic of infectious disease Thus, for osteoarticular infection scintigraphic techniques were proposed to ameliorate the diagnostic sensibility and the use of radiolabeled antibiotics as imaging agents of infectious loci become more and more recognized. In this work, a new sulfanilamid derivative, the N-sulfanilamide-ferrocene-carboxamide was chemically synthesized then labeled with technetium-99m, with a radiochemical yield, 82 pourcent In in-vitro studies were done with E.coli. first , the up-take of labeled molecule was estimated as 65 pourcent. Then, the bacteriostatical effect of the molecule was determinated by considering the Optical Density at 600 nm. The obtained results, encourage us to do more, with biodistibution on normal and infected mice ; with staphylococcus aureus. Then to carry out scintigraphic imaging with gamma camera to check out the potentiality of the molecule as an infectious imaging agent

  5. Multiple antibiotic resistant Escherichia coli from a tropical rain forest stream

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, C.E.; Alvarez, H.J.; Ortiz, N.; Bisbal, M.; Arias, W.; Baerga, C. [Univ. of Puerto Rico, Rio Piedras (Puerto Rico). Dept. of Biology; Hazen, T.C. [E.I. DuPont de Nemours and Co., Aiken, SC (United States). Savannah River Lab.

    1988-12-31

    High densities of fecal coliforms were obtained from a pristine site and sewage contaminated site in a tropical rain forest watershed in Puerto Rico. Confirmation of fecal coliform isolates as Escherichia coli was significantly lower than for temperate waters. Antibiotic resistance and multiple antibiotic resistance were common for isolates at both sites; however, the site receiving sewage effluent had a greater proportion of multiple antibiotic resistant isolates. R. plasmids were recovered from 4 MAR isolates, 2 from each site. All recovered plasmids were approximately 1 kilobase. The recovered plasmid were also capable of transforming E. coli HB101 in vitro. The high concentrations of enterobacteriaceae, small R-plasmid size, R-plasmid transformability, and long term survival of fecal origin bacteria in tropical freshwater environments give increasing importance to adequate sewage treatment, and better indicator monitoring methods for tropical areas.

  6. Characterization of multiple antibiotic resistant clinical strains of Staphylococcus isolated from pregnant women vagina.

    Science.gov (United States)

    Hetsa, Bakwena Ashton; Kumar, Ajay; Ateba, Collins Njie

    2018-03-29

    Vagina which is one of the important reservoirs for Staphylococcus and in pregnant women pathogenic strains may infect the child during the birth or by vertical transmission. A total of 68 presumptive Staphylococcus strains isolated from human vagina were found to be gram-positive cocci, and only 32 (47%) isolates were found beta-hemolytic. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) results confirmed 33 isolates belonged to Staphylococcus which consisting of 6 species, i.e., S. aureus (14), S. vitulinus (7), S. epidermidis (4), S cohnii (3), S. equorum (3), and S. succinus (2). Further, the result of antibiotic susceptibility tests showed that large proportions (76%-100%) of the isolates were resistant to multiple antibiotics and more often resistant to penicillin (100%), ampicillin (100%), oxacillin (97%), oxytetracycline (97%), vancomycin (97%), rifampin (85%), erythromycin (82%), and streptomycin (76%). In the present study, only the sec enterotoxin gene was detected in four S. aureus strains. DNA fingerprints of the 33 isolates that were generated using random amplified polymorphic DNA (RAPD) and enterobacterial repetitive intergenic consensus (ERIC) PCR analysis revealed great genetic relatedness of isolates. High prevalence of vaginal colonization with multiple antibiotic-resistant staphylococci among pregnant women was observed which were emerged from the single respective species clones that underwent evolution. The vertical transmission of these multiple antibiotic-resistant Staphylococcus species to the infant is possible; therefore, the findings of this study emphasize the need for regular surveillance of antibiotic-resistant bacterial strains in pregnant women in this area.

  7. Ultra-high performance liquid chromatography tandem mass spectrometry for the determination of five glycopeptide antibiotics in food and biological samples using solid-phase extraction.

    Science.gov (United States)

    Deng, Fenfang; Yu, Hong; Pan, Xinhong; Hu, Guoyuan; Wang, Qiqin; Peng, Rongfei; Tan, Lei; Yang, Zhicong

    2018-02-23

    This paper demonstrated the development and validation of an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of five glycopeptide antibiotics in food and biological samples. The target glycopeptide antibiotics were isolated from the samples by solvent extraction, and the extracts were cleaned with a tandem solid-phase extraction step using mixed strong cation exchange and hydrophilic/lipophilic balance cartridges. Subsequently, the analytes were eluted with different solvents, and then quantified by UHPLC-MS/MS in the positive ionization mode with multiple reaction monitoring. Under optimal conditions, good linear correlations were obtained for the five glycopeptide antibiotics in the concentration range of 1.0 μg/L to 20.0 μg/L, and with linear correlation coefficients >0.998. Employing this method, the target glycopeptide antibiotics in food and biological samples were identified with a recovery of 83.0-102%, and a low quantitation limit of 1.0 μg/kg in food and 2.0 μg/L in biological samples with low matrix effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The residues and environmental risks of multiple veterinary antibiotics in animal faeces.

    Science.gov (United States)

    Li, Yan-Xia; Zhang, Xue-Lian; Li, Wei; Lu, Xiao-Fei; Liu, Bei; Wang, Jing

    2013-03-01

    To understand the residues and ecological risks of veterinary antibiotics (VAs) in animal faeces from concentrated animal feeding operations in northeastern China, 14 VAs were identified by high performance liquid chromatography, and the preliminary risks of six antibiotics were assessed using the hazard quotient (HQ). The investigated VAs occurred in 7.41 to 57.41 % of the 54 samples, and the levels ranged from 0.08 to 56.81 mg kg(-1). Tetracyclines were predominant with a maximum level of 56.81 mg kg(-1) mostly detected in pig faeces. Sulfonamides were common and detected with the highest concentration of 7.11 mg kg(-1). Fluoroquinolones were more widely detected in chicken faeces rather than in pig or cow faeces, which contained the dominant antibiotic enrofloxacin. In comparison, the residue of tylosin was less frequently found. The risk evaluations of the six antibiotics revealed that tetracyclines, especially oxytetracycline, displayed the greatest ecological risk because of its high HQ value of 15.75. The results of this study imply that multiple kinds of VAs were jointly used in animal feeding processes in the study area. These medicine residues in animal faeces may potentially bring ecological risks if the animal manure is not treated effectively.

  9. Investigation of colistin sensitivity via three different methods in Acinetobacter baumannii isolates with multiple antibiotic resistance.

    Science.gov (United States)

    Sinirtaş, Melda; Akalin, Halis; Gedikoğlu, Suna

    2009-09-01

    In recent years there has been an increase in life-threatening infections caused by Acinetobacter baumannii with multiple antibiotic resistance, which has lead to the use of polymyxins, especially colistin, being reconsidered. The aim of this study was to investigate the colistin sensitivity of A. baumannii isolates with multiple antibiotic resistance via different methods, and to evaluate the disk diffusion method for colistin against multi-resistant Acinetobacter isolates, in comparison to the E-test and Phoenix system. The study was carried out on 100 strains of A. baumannii (colonization or infection) isolated from the microbiological samples of different patients followed in the clinics and intensive care units of Uludağ University Medical School between the years 2004 and 2005. Strains were identified and characterized for their antibiotic sensitivity by Phoenix system (Becton Dickinson, Sparks, MD, USA). In all studied A. baumannii strains, susceptibility to colistin was determined to be 100% with the disk diffusion, E-test, and broth microdilution methods. Results of the E-test and broth microdilution method, which are accepted as reference methods, were found to be 100% consistent with the results of the disk diffusion tests; no very major or major error was identified upon comparison of the tests. The sensitivity and the positive predictive value of the disk diffusion method were found to be 100%. Colistin resistance in A. baumannii was not detected in our region, and disk diffusion method results are in accordance with those of E-test and broth microdilution methods.

  10. Multiple prescriptions of antibiotics for children aged 0 to 5 years in relation to type of antibiotic

    DEFF Research Database (Denmark)

    Thrane, Nana; Olesen, Charlotte; Schønheyder, Henrik Carl

    1999-01-01

    The risk of receiving more than one prescription within an antibiotic course was examined for all children aged 0 to 5 years in a Danish county during 1997. We identified 29,307 prescriptions of systemic antibiotics for 16,245 children in a prescription database. Ten per cent of the prescriptions...

  11. Simultaneous assay of multiple antibiotics in human plasma by LC-MS/MS: importance of optimizing formic acid concentration.

    Science.gov (United States)

    Chen, Feng; Hu, Zhe-Yi; Laizure, S Casey; Hudson, Joanna Q

    2017-03-01

    Optimal dosing of antibiotics in critically ill patients is complicated by the development of resistant organisms requiring treatment with multiple antibiotics and alterations in systemic exposure due to diseases and extracorporeal drug removal. Developing guidelines for optimal antibiotic dosing is an important therapeutic goal requiring robust analytical methods to simultaneously measure multiple antibiotics. An LC-MS/MS assay using protein precipitation for cleanup followed by a 6-min gradient separation was developed to simultaneously determine five antibiotics in human plasma. The precision and accuracy were within the 15% acceptance range. The formic acid concentration was an important determinant of signal intensity, peak shape and matrix effects. The method was designed to be simple and successfully applied to a clinical pharmacokinetic study.

  12. Antibiotic abatement in different advanced oxidation processes coupled with a biological sequencing batch biofilm reactor

    International Nuclear Information System (INIS)

    Esplugas, M.; Gonzalez, O.; Benito, J.; Sans, C.

    2009-01-01

    During the last decade, the lack of fresh water is becoming a major concern. Recently, the present of recalcitrant products such as pharmaceuticals has caused a special interest due to their undefined environmental impact. Among these antibiotics are one of the numerous recalcitrant pollutants present in surface waters that might not be completely removed in the biological stage of sewage treatment plants because of their antibacterial nature. Advanced Oxidation Processes (AOPs) have proved to be highly efficient for the degradation of most organic pollutants in wastewaters. (Author)

  13. Metagenomic insights into ultraviolet disinfection effects on antibiotic resistome in biologically treated wastewater.

    Science.gov (United States)

    Hu, Qing; Zhang, Xu-Xiang; Jia, Shuyu; Huang, Kailong; Tang, Junying; Shi, Peng; Ye, Lin; Ren, Hongqiang

    2016-09-15

    High-throughput sequencing-based metagenomic approaches were used to comprehensively investigate ultraviolet effects on the microbial community structure, and diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in biologically treated wastewater. After ultraviolet radiation, some dominant genera, like Aeromonas and Halomonas, in the wastewater almost disappeared, while the relative abundance of some minor genera including Pseudomonas and Bacillus increased dozens of times. Metagenomic analysis showed that 159 ARGs within 14 types were detectable in the samples, and the radiation at 500 mJ/cm(2) obviously increased their total relative abundance from 31.68 ppm to 190.78 ppm, which was supported by quantitative real time PCR. As the dominant persistent ARGs, multidrug resistance genes carried by Pseudomonas and bacitracin resistance gene bacA carried by Bacillus mainly contributed to the ARGs abundance increase. Bacterial community shift and MGEs replication induced by the radiation might drive the resistome alteration. The findings may shed new light on the mechanism behind the ultraviolet radiation effects on antibiotic resistance in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Towards Integration of Biological and Physiological Functions at Multiple Levels

    Directory of Open Access Journals (Sweden)

    Taishin eNomura

    2010-12-01

    Full Text Available An aim of systems physiology today can be stated as to establish logical and quantitative bridges between phenomenological attributes of physiological entities such as cells and organs and physical attributes of biological entities, i.e., biological molecules, allowing us to describe and better understand physiological functions in terms of underlying biological functions. This article illustrates possible schema that can be used for promoting systems physiology by integrating quantitative knowledge of biological and physiological functions at multiple levels of time and space with the use of information technology infrastructure. Emphasis will be made for systematic, modular, hierarchical, and standardized descriptions of mathematical models of the functions and advantages for the use of them.

  15. High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa.

    Science.gov (United States)

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2015-10-01

    This study aimed at investigating the presence of antibiotic-resistant Escherichia coli in river bed sediments of the Apies River, Gauteng, South Africa, in order to better inform health management decisions designed to protect users of the river. Overall, 180 water and sediment samples were collected at 10 sites along the Apies River from January to February 2014. E. coli was enumerated using the Colilert® 18/Quanti-Tray® 2000 (IDEXX). Isolates were purified by streaking on eosin methylene blue agar followed by the indole test. Pure E. coli isolates were tested for resistance to nine antibiotics by the Kirby-Bauer disc diffusion method. Over 98% of the isolates were resistant to at least one of the antibiotics tested. The highest resistance was observed against nitrofurantoin (sediments) and ampicillin (water). Over 80% of all resistant isolates showed multiple antibiotic resistance (resistance to ≥3 antibiotics). The abundance of E. coli in the sediments not only adds to the evidence that sediments are a reservoir for bacteria and possibly other pathogens including antibiotic-resistant bacteria but also suggests that antibiotic-resistant genes could be transferred to pathogens due to the high prevalence of multiple-antibiotic-resistant (MAR) strains of E. coli observed in the sediment. Using untreated water from the Apies River following resuspension for drinking and other household purposes could pose serious health risks for users. Our results suggest that river bed sediments could serve as reservoirs for MAR bacteria including pathogens under different climatic conditions and their analysis could provide information of public health concerns.

  16. Multiple Antibiotic Resistance Patterns of Escherichia coli Isolates from Swine Farms

    OpenAIRE

    Mathew, A. G.; Saxton, A. M.; Upchurch, W. G.; Chattin, S. E.

    1999-01-01

    Antibiotic resistance of Escherichia coli from sows and pigs was determined to compare patterns between pigs of various ages and degrees of antibiotic use. Resistance patterns differed between farm types and pigs of differing ages, indicating that pig age and degree of antibiotic use affect resistance of fecal E. coli.

  17. Potential of Biological Processes to Eliminate Antibiotics in Livestock Manure: An Overview

    OpenAIRE

    Massé, Daniel I.; Cata Saady, Noori M.; Gilbert, Yan

    2014-01-01

    Simple Summary Beside their use to treat infections, antibiotics are used excessively as growth promoting factors in livestock industry. Animals discharge in their feces and urine between 70%–90% of the antibiotic administrated unchanged or in active metabolites. Because livestock manure is re-applied to land as a fertilizer, concerns are growing over spread of antibiotics in water and soil. Development of antibiotic resistant bacteria is a major risk. This paper reviewed the potential of ana...

  18. Potential of Biological Processes to Eliminate Antibiotics in Livestock Manure: An Overview

    Science.gov (United States)

    Massé, Daniel I.; Cata Saady, Noori M.; Gilbert, Yan

    2014-01-01

    Simple Summary Beside their use to treat infections, antibiotics are used excessively as growth promoting factors in livestock industry. Animals discharge in their feces and urine between 70%–90% of the antibiotic administrated unchanged or in active metabolites. Because livestock manure is re-applied to land as a fertilizer, concerns are growing over spread of antibiotics in water and soil. Development of antibiotic resistant bacteria is a major risk. This paper reviewed the potential of anaerobic digestion to degrade antibiotics in livestock manure. Anaerobic digestion can degrade manure-laden antibiotic to various extents depending on the concentration and class of antibiotic, bioreactor operating conditions, type of feedstock and inoculum sources. Abstract Degrading antibiotics discharged in the livestock manure in a well-controlled bioprocess contributes to a more sustainable and environment-friendly livestock breeding. Although most antibiotics remain stable during manure storage, anaerobic digestion can degrade and remove them to various extents depending on the concentration and class of antibiotic, bioreactor operating conditions, type of feedstock and inoculum sources. Generally, antibiotics are degraded during composting > anaerobic digestion > manure storage > soil. Manure matrix variation influences extraction, quantification, and degradation of antibiotics, but it has not been well investigated. Fractioning of manure-laden antibiotics into liquid and solid phases and its effects on their anaerobic degradation and the contribution of abiotic (physical and chemical) versus biotic degradation mechanisms need to be quantified for various manures, antibiotics types, reactor designs and temperature of operations. More research is required to determine the kinetics of antibiotics’ metabolites degradation during anaerobic digestion. Further investigations are required to assess the degradation of antibiotics during psychrophilic anaerobic digestion. PMID

  19. Improved detection of multiple environmental antibiotics through an optimized sample extraction strategy in liquid chromatography-mass spectrometry analysis.

    Science.gov (United States)

    Yi, Xinzhu; Bayen, Stéphane; Kelly, Barry C; Li, Xu; Zhou, Zhi

    2015-12-01

    A solid-phase extraction/liquid chromatography/electrospray ionization/multi-stage mass spectrometry (SPE-LC-ESI-MS/MS) method was optimized in this study for sensitive and simultaneous detection of multiple antibiotics in urban surface waters and soils. Among the seven classes of tested antibiotics, extraction efficiencies of macrolides, lincosamide, chloramphenicol, and polyether antibiotics were significantly improved under optimized sample extraction pH. Instead of only using acidic extraction in many existing studies, the results indicated that antibiotics with low pK a values (antibiotics with high pK a values (>7) were extracted more efficiently under neutral conditions. The effects of pH were more obvious on polar compounds than those on non-polar compounds. Optimization of extraction pH resulted in significantly improved sample recovery and better detection limits. Compared with reported values in the literature, the average reduction of minimal detection limits obtained in this study was 87.6% in surface waters (0.06-2.28 ng/L) and 67.1% in soils (0.01-18.16 ng/g dry wt). This method was subsequently applied to detect antibiotics in environmental samples in a heavily populated urban city, and macrolides, sulfonamides, and lincomycin were frequently detected. Antibiotics with highest detected concentrations were sulfamethazine (82.5 ng/L) in surface waters and erythromycin (6.6 ng/g dry wt) in soils. The optimized sample extraction strategy can be used to improve the detection of a variety of antibiotics in environmental surface waters and soils.

  20. Synthesis, molecular modeling and biological evaluation of PSB as targeted antibiotics.

    Science.gov (United States)

    Cheng, Kui; Zheng, Qing-Zhong; Hou, Jin; Zhou, Yang; Liu, Chang-Hong; Zhao, Jing; Zhu, Hai-Liang

    2010-04-01

    We described here the design, synthesis, molecular modeling, and biological evaluation of a series of peptide and Schiff bases (PSB) small molecules, inhibitors of Escherichia coli beta-Ketoacyl-acyl carrier protein synthase III (ecKAS III). The initial lead compound was reported by us previously, we continued to carry out structure-activity relationship studies and optimize the lead structure to potent inhibitors in this research. The results demonstrated that both N-(2-(3,5-dichloro-2-hydroxybenzylideneamino)propyl)-2-hydroxybenzamide (1f) and 2-hydroxy-N-(2-(2-hydroxy-5-iodobenzylideneamino)propyl)-4-methylbenzamide (3e) posses good ecKAS III inhibitory activity and well binding affinities by bonding Gly152/Gly209 of ecKAS III and fit into the mouth of the substrate tunnel, and can be as potential antibiotics agent, displaying minimal inhibitory concentration values in the range 0.20-3.13microg/mL and 0.39-3.13microg/mL against various bacteria. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. The role of epigenetics in the biology of multiple myeloma

    DEFF Research Database (Denmark)

    Dimopoulos, K; Gimsing, P; Grønbæk, K

    2014-01-01

    Several recent studies have highlighted the biological complexity of multiple myeloma (MM) that arises as a result of several disrupted cancer pathways. Apart from the central role of genetic abnormalities, epigenetic aberrations have also been shown to be important players in the development of MM......, and a lot of research during the past decades has focused on the ways DNA methylation, histone modifications and noncoding RNAs contribute to the pathobiology of MM. This has led to, apart from better understanding of the disease biology, the development of epigenetic drugs, such as histone deacetylase...... inhibitors that are already used in clinical trials in MM with promising results. This review will present the role of epigenetic abnormalities in MM and how these can affect specific pathways, and focus on the potential of novel 'epidrugs' as future treatment modalities for MM....

  2. Potential of Biological Processes to Eliminate Antibiotics in Livestock Manure: An Overview

    Directory of Open Access Journals (Sweden)

    Daniel I. Massé

    2014-04-01

    Full Text Available Degrading antibiotics discharged in the livestock manure in a well-controlled bioprocess contributes to a more sustainable and environment-friendly livestock breeding. Although most antibiotics remain stable during manure storage, anaerobic digestion can degrade and remove them to various extents depending on the concentration and class of antibiotic, bioreactor operating conditions, type of feedstock and inoculum sources. Generally, antibiotics are degraded during composting > anaerobic digestion > manure storage > soil. Manure matrix variation influences extraction, quantification, and degradation of antibiotics, but it has not been well investigated. Fractioning of manure-laden antibiotics into liquid and solid phases and its effects on their anaerobic degradation and the contribution of abiotic (physical and chemical versus biotic degradation mechanisms need to be quantified for various manures, antibiotics types, reactor designs and temperature of operations. More research is required to determine the kinetics of antibiotics’ metabolites degradation during anaerobic digestion. Further investigations are required to assess the degradation of antibiotics during psychrophilic anaerobic digestion.

  3. Systems biology-guided identification of synthetic lethal gene pairs and its potential use to discover antibiotic combinations

    DEFF Research Database (Denmark)

    Aziz, Ramy K.; Monk, Jonathan M.; Lewis, R. M.

    2015-01-01

    Mathematical models of metabolism from bacterial systems biology have proven their utility across multiple fields, for example metabolic engineering, growth phenotype simulation, and biological discovery. The usefulness of the models stems from their ability to compute a link between genotype...... of metabolic models, and highlight one potential application of systems biology to drug discovery and translational medicine....

  4. Multiple Pathways of Genome Plasticity Leading to Development of Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Didier Mazel

    2013-05-01

    Full Text Available The emergence of multi-resistant bacterial strains is a major source of concern and has been correlated with the widespread use of antibiotics. The origins of resistance are intensively studied and many mechanisms involved in resistance have been identified, such as exogenous gene acquisition by horizontal gene transfer (HGT, mutations in the targeted functions, and more recently, antibiotic tolerance through persistence. In this review, we focus on factors leading to integron rearrangements and gene capture facilitating antibiotic resistance acquisition, maintenance and spread. The role of stress responses, such as the SOS response, is discussed.

  5. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients

    DEFF Research Database (Denmark)

    Jitwasinkul, Tossawan; Suriyaphol, Prapat; Tangphatsornruang, Sithichoke

    2016-01-01

    Antibiotic resistance genes are rapidly spread between pathogens and the normal flora, with plasmids playing an important role in their circulation. This study aimed to investigate antibiotic resistance plasmids in the gut microbiome of hospitalised patients. Stool samples were collected from seven...... inpatients at Siriraj Hospital (Bangkok, Thailand) and were compared with a sample from a healthy volunteer. Plasmids from the gut microbiomes extracted from the stool samples were subjected to high-throughput DNA sequencing (GS Junior). Newbler-assembled DNA reads were categorised into known and unknown...... in the gut microbiome; however, it was difficult to link these to the antibiotic resistance genes identified. That the antibiotic resistance genes came from hospital and community environments is worrying....

  6. Multiple levels of epigenetic control for bone biology and pathology.

    Science.gov (United States)

    Montecino, Martin; Stein, Gary; Stein, Janet; Zaidi, Kaleem; Aguilar, Rodrigo

    2015-12-01

    Multiple dimensions of epigenetic control contribute to regulation of gene expression that governs bone biology and pathology. Once confined to DNA methylation and a limited number of post-translational modifications of histone proteins, the definition of epigenetic mechanisms is expanding to include contributions of non-coding RNAs and mitotic bookmarking, a mechanism for retaining phenotype identity during cell proliferation. Together these different levels of epigenetic control of physiological processes and their perturbations that are associated with compromised gene expression during the onset and progression of disease, have contributed to an unprecedented understanding of the activities (operation) of the genomic landscape. Here, we address general concepts that explain the contribution of epigenetic control to the dynamic regulation of gene expression during eukaryotic transcription. This article is part of a Special Issue entitled Epigenetics and Bone. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Antibacterial activity of selected medicinal plants against multiple antibiotic resistant uropathogens: a study from Kolli Hills, Tamil Nadu, India.

    Science.gov (United States)

    Narayanan, A S; Raja, S S S; Ponmurugan, K; Kandekar, S C; Natarajaseenivasan, K; Maripandi, A; Mandeel, Q A

    2011-09-01

    The increasing incidence of antibiotic resistance among bacterial pathogens necessitates medicinal plants as an alternate therapy in restricting the resistant infectious organisms. In this primitive study, the antibiotic resistance of organisms isolated from urinary tract infected patients was evaluated using the National Committee for Clinical Laboratory Standards (NCCLS) method and Multiple Antibiotic Resistance (MAR) index values, and the MAR values was also calculated for plant extracts. The 10 common medicinal plants collected from Kolli hills, Namakkal, south India were extracted using the chloroform, methanol, acetone, ethanol and saponification procedure. The efficacy of the extracts on the uropathogens was tested by agar disc diffusion method in order to analyse the inhibitory activity of plant extract on the organisms. Azadiracta indica A. Juss., Tinospora cordifolia (Wild.) and Euphorbia hirta Linn. exhibited high inhibitory activity against most of the 11 tested organisms followed by Cassia javanica Linn. and Phyllanthus niruri Linn. The maximum zone size of 46.3 mm was exhibited by methanol extract of P. niruri Linn. against Pseudomonas aeruginosa. Asparagus racemosus Willd. and Eupatorium triplinerve Vahl had the least activity against resistant pathogens. Saponified lipids of most of the plants exhibited maximum antibacterial activity. Among the tested organisms, P. aeruginosa and Staphylococcus epidermidis were the most susceptible and Serratia marcescens, Enterobacter cloaceae, Citrobacter koseri, and Citrobacter freundii were the least inhibited by most of the extracts of medicinal plants. It is concluded that revised antibiotic policies and more importantly the development of herbal medicine as an alternative may be incorporated in urological practice.

  8. Capitalization of multiple intelligence types during the biology disciplines

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2010-05-01

    Full Text Available The study was conducted on a sample of children at the Lăpuş School with classes I-VIII, using the teaching/learning process of the biology disciplines. A key element in applying the theory of Multiple Intelligence in a classroom is knowing the intelligence profile of children. Differentiated teaching approach was designed based on the predominant types of intelligences. For this purpose we used various methods: questionnaire, observation of children as they are given various tasks, interview, development of projects, role play, the biographical method-personal history of child, analysis of activities' results (compositions, drawings, collages, portfolios, debates in pair-groups, and case studies. In child’s profile, (types of intelligences become qualities that we capitalize in training, designing different teaching approach depending on predominant types of intelligences. The results appeared without delay. After a school's year that we worked differently with the children, they have improved school performance and became more interested in the study of biological disciplines thus arousing their curiosity and respect towards life.

  9. Oral Antibiotic Treatment of Mice Exacerbates the Disease Severity of Multiple Flavivirus Infections

    Directory of Open Access Journals (Sweden)

    Larissa B. Thackray

    2018-03-01

    Full Text Available Summary: Although the outcome of flavivirus infection can vary from asymptomatic to lethal, environmental factors modulating disease severity are poorly defined. Here, we observed increased susceptibility of mice to severe West Nile (WNV, Dengue, and Zika virus infections after treatment with oral antibiotics (Abx that depleted the gut microbiota. Abx treatment impaired the development of optimal T cell responses, with decreased levels of WNV-specific CD8+ T cells associated with increased infection and immunopathology. Abx treatments that resulted in enhanced WNV susceptibility generated changes in the overall structure of the gut bacterial community and in the abundance of specific bacterial taxa. As little as 3 days of treatment with ampicillin was sufficient to alter host immunity and WNV outcome. Our results identify oral Abx therapy as a potential environmental determinant of systemic viral disease, and they raise the possibility that perturbation of the gut microbiota may have deleterious consequences for subsequent flavivirus infections. : Thackray et al. observed increased susceptibility to West Nile, Zika, and Dengue virus infections following oral antibiotic treatment in mice. Antibiotics altered the bacterial abundance and community structure and the development of optimal T cell immunity. These data suggest that antibiotics may have deleterious consequences for subsequent flavivirus infections. Keywords: West Nile virus, Dengue virus, Zika virus, flavivirus, oral antibiotics, gut microbiota, risk factors, pathogenesis determinants, immunity

  10. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options

    Science.gov (United States)

    Lee, Chang-Ro; Lee, Jung Hun; Park, Moonhee; Park, Kwang Seung; Bae, Il Kwon; Kim, Young Bae; Cha, Chang-Jun; Jeong, Byeong Chul; Lee, Sang Hee

    2017-01-01

    Acinetobacter baumannii is undoubtedly one of the most successful pathogens responsible for hospital-acquired nosocomial infections in the modern healthcare system. Due to the prevalence of infections and outbreaks caused by multi-drug resistant A. baumannii, few antibiotics are effective for treating infections caused by this pathogen. To overcome this problem, knowledge of the pathogenesis and antibiotic resistance mechanisms of A. baumannii is important. In this review, we summarize current studies on the virulence factors that contribute to A. baumannii pathogenesis, including porins, capsular polysaccharides, lipopolysaccharides, phospholipases, outer membrane vesicles, metal acquisition systems, and protein secretion systems. Mechanisms of antibiotic resistance of this organism, including acquirement of β-lactamases, up-regulation of multidrug efflux pumps, modification of aminoglycosides, permeability defects, and alteration of target sites, are also discussed. Lastly, novel prospective treatment options for infections caused by multi-drug resistant A. baumannii are summarized. PMID:28348979

  11. Exploring lipids with nonlinear optical microscopy in multiple biological systems

    Science.gov (United States)

    Alfonso-Garcia, Alba

    Lipids are crucial biomolecules for the well being of humans. Altered lipid metabolism may give rise to a variety of diseases that affect organs from the cardiovascular to the central nervous system. A deeper understanding of lipid metabolic processes would spur medical research towards developing precise diagnostic tools, treatment methods, and preventive strategies for reducing the impact of lipid diseases. Lipid visualization remains a complex task because of the perturbative effect exerted by traditional biochemical assays and most fluorescence markers. Coherent Raman scattering (CRS) microscopy enables interrogation of biological samples with minimum disturbance, and is particularly well suited for label-free visualization of lipids, providing chemical specificity without compromising on spatial resolution. Hyperspectral imaging yields large datasets that benefit from tailored multivariate analysis. In this thesis, CRS microscopy was combined with Raman spectroscopy and other label-free nonlinear optical techniques to analyze lipid metabolism in multiple biological systems. We used nonlinear Raman techniques to characterize Meibum secretions in the progression of dry eye disease, where the lipid and protein contributions change in ratio and phase segregation. We employed similar tools to examine lipid droplets in mice livers aboard a spaceflight mission, which lose their retinol content contributing to the onset of nonalcoholic fatty-liver disease. We also focused on atherosclerosis, a disease that revolves around lipid-rich plaques in arterial walls. We examined the lipid content of macrophages, whose variable phenotype gives rise to contrasting healing and inflammatory activities. We also proposed new label-free markers, based on lifetime imaging, for macrophage phenotype, and to detect products of lipid oxidation. Cholesterol was also detected in hepatitis C virus infected cells, and in specific strains of age-related macular degeneration diseased cells by

  12. Multiple antibiotic resistance iIndex of EscherichiaColi isolates in a ...

    African Journals Online (AJOL)

    Background: The effectiveness of available antibiotics is reducing as microorganisms device means of evading its effects, resulting in the development of superbugs. Pathogens previously susceptible are becoming resistant, and spreading beyond the hospital environment. This change is a major concern for infection ...

  13. Martinomycin, a new polyether antibiotic produced by Streptomyces salvialis. I. Taxonomy, fermentation and biological activity.

    Science.gov (United States)

    Bernan, V S; Montenegro, D A; Goodman, J J; Alluri, M R; Carter, G T; Abbanat, D R; Pearce, C J; Maiese, W M; Greenstein, M

    1994-12-01

    Actinomycete culture LL-D37187 has been found to produce the new polyether antibiotic martinomycin. Taxonomic studies, including morphological, physiological, and cell wall chemistry analyses, revealed that culture LL-D37187 is a novel streptomycete species, and the proposed name is Streptomyces salvialis. Martinomycin exhibits activity against the Southern Army Worm (Spodoptera eridania) and Gram-positive bacteria.

  14. Evolutionary Explanations for Antibiotic Resistance in Daily Press, Online Websites and Biology Textbooks in Sweden

    Science.gov (United States)

    Bohlin, Gustav; Höst, Gunnar E.

    2015-01-01

    The present study explores the extent and precision of evolutionary explanations for antibiotic resistance in communication directed toward the Swedish public. Bacterial resistance develops through evolutionary mechanisms and knowledge of these helps to explain causes underlying the growing prevalence of resistant strains, as well as important…

  15. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus

    Directory of Open Access Journals (Sweden)

    Barke Jörg

    2010-08-01

    Full Text Available Abstract Background Attine ants live in an intensely studied tripartite mutualism with the fungus Leucoagaricus gongylophorus, which provides food to the ants, and with antibiotic-producing actinomycete bacteria. One hypothesis suggests that bacteria from the genus Pseudonocardia are the sole, co-evolved mutualists of attine ants and are transmitted vertically by the queens. A recent study identified a Pseudonocardia-produced antifungal, named dentigerumycin, associated with the lower attine Apterostigma dentigerum consistent with the idea that co-evolved Pseudonocardia make novel antibiotics. An alternative possibility is that attine ants sample actinomycete bacteria from the soil, selecting and maintaining those species that make useful antibiotics. Consistent with this idea, a Streptomyces species associated with the higher attine Acromyrmex octospinosus was recently shown to produce the well-known antifungal candicidin. Candicidin production is widespread in environmental isolates of Streptomyces, so this could either be an environmental contaminant or evidence of recruitment of useful actinomycetes from the environment. It should be noted that the two possibilities for actinomycete acquisition are not necessarily mutually exclusive. Results In order to test these possibilities we isolated bacteria from a geographically distinct population of A. octospinosus and identified a candicidin-producing Streptomyces species, which suggests that they are common mutualists of attine ants, most probably recruited from the environment. We also identified a Pseudonocardia species in the same ant colony that produces an unusual polyene antifungal, providing evidence for co-evolution of Pseudonocardia with A. octospinosus. Conclusions Our results show that a combination of co-evolution and environmental sampling results in the diversity of actinomycete symbionts and antibiotics associated with attine ants.

  16. Biochemical studies on antibiotic production from Streptomyces sp.: Taxonomy, fermentation, isolation and biological properties

    OpenAIRE

    Houssam M. Atta

    2015-01-01

    Tunicamycin is a nucleotide antibiotic which was isolated from the fermentation broth of a Streptomyces strain No. T-4. According to the morphological, cultural, physiological and biochemical characteristics, and 16S rDNA sequence analysis, strain T-4 was identified as Streptomyces torulosus. It is active in vitro against some microbial pathogenic viz: Staphylococcus aureus, NCTC 7447; Micrococcus lutea, ATCC 9341; Bacillus subtilis, NCTC 10400; B. pumilus, NCTC; Klebsiella pneumonia, NCIMB 9...

  17. In silico analysis of antibiotic-induced Clostridium difficile infection: Remediation techniques and biological adaptations.

    Science.gov (United States)

    Jones, Eric W; Carlson, Jean M

    2018-02-01

    In this paper we study antibiotic-induced C. difficile infection (CDI), caused by the toxin-producing C. difficile (CD), and implement clinically-inspired simulated treatments in a computational framework that synthesizes a generalized Lotka-Volterra (gLV) model with SIR modeling techniques. The gLV model uses parameters derived from an experimental mouse model, in which the mice are administered antibiotics and subsequently dosed with CD. We numerically identify which of the experimentally measured initial conditions are vulnerable to CD colonization, then formalize the notion of CD susceptibility analytically. We simulate fecal transplantation, a clinically successful treatment for CDI, and discover that both the transplant timing and transplant donor are relevant to the the efficacy of the treatment, a result which has clinical implications. We incorporate two nongeneric yet dangerous attributes of CD into the gLV model, sporulation and antibiotic-resistant mutation, and for each identify relevant SIR techniques that describe the desired attribute. Finally, we rely on the results of our framework to analyze an experimental study of fecal transplants in mice, and are able to explain observed experimental results, validate our simulated results, and suggest model-motivated experiments.

  18. Study on a new antifungal antibiotic, yimeimycin--isolation, structure elucidation and biological activities

    International Nuclear Information System (INIS)

    Shi Yuefeng; Sang Jinlong; Zhu Lihong; Li Xiaohui; Wu Jian

    2004-01-01

    Strain HA-8416, the producer of yimeimycin, was isolated from a soil sample collected in Hangzhou, Zhejiang province, China. Based on the investigation of morphological, cultural, physiological and biochemical characteristic as well as the cell wall chemical composition, strain HA8416 is extremely similar to Streptomyces hygrospinosus SF-104, and named Streptomyces hygrospinosus var tianmushanensis n. var. Sand et al. By means of spectroscopic analysis (UV, 1 H-NMR, DEPT CNMR and H-H COSY), yimeimycin was identified as a new antibiotic of the nucleoside family. Yimeimeycin appeared no activities against G + /G-bacteria, but was active against the fungi, Sphaerotheca cucurbitae, Pellicularia sasakii, Colletotrichum orbiculare, especially

  19. Activation of Multiple Antibiotic Resistance in Uropathogenic Escherichia coli Strains by Aryloxoalcanoic Acid Compounds

    Science.gov (United States)

    Balagué, Claudia; Véscovi, Eleonora García

    2001-01-01

    Clofibric and ethacrynic acids are prototypical pharmacological agents administered in the treatment of hypertrigliceridemia and as a diuretic agent, respectively. They share with 2,4-dichlorophenoxyacetic acid (the widely used herbicide known as 2,4-D) a chlorinated phenoxy structural moiety. These aryloxoalcanoic agents (AOAs) are mainly excreted by the renal route as unaltered or conjugated active compounds. The relatedness of these agents at the structural level and their potential effect on therapeutically treated or occupationally exposed individuals who are simultaneously undergoing a bacterial urinary tract infection led us to analyze their action on uropathogenic, clinically isolated Escherichia coli strains. We found that exposure to these compounds increases the bacterial resistance to an ample variety of antibiotics in clinical isolates of both uropathogenic and nonpathogenic E. coli strains. We demonstrate that the AOAs induce an alteration of the bacterial outer membrane permeability properties by the repression of the major porin OmpF in a micF-dependent process. Furthermore, we establish that the antibiotic resistance phenotype is primarily due to the induction of the MarRAB regulatory system by the AOAs, while other regulatory pathways that also converge into micF modulation (OmpR/EnvZ, SoxRS, and Lrp) remained unaltered. The fact that AOAs give rise to uropathogenic strains with a diminished susceptibility to antimicrobials highlights the impact of frequently underestimated or ignored collateral effects of chemical agents. PMID:11353631

  20. 2H NMR evidence for antibiotic-induced cholesterol immobilization in biological model membranes

    International Nuclear Information System (INIS)

    Dufourc, E.J.; Smith, I.C.

    1985-01-01

    The interaction of the polyene antibiotic filipin with membrane sterols has been studied by deuterium nuclear magnetic resonance of the molecular probes [2,2,3,4,4,6- 2 H6]cholesterol and 1-myristoyl-2-[4',4',14',14',14'- 2 H5]myristoyl-sn-glycero-3-phospho- choline. At physiological temperatures, there is evidence of filipin-induced cholesterol immobilization in the membrane. The 2 H NMR spectra of cholesterol show two domains in which ordering and dynamics are very different. In one of these, cholesterol is static on the 2 H NMR time scale, whereas in the other it undergoes rapid axially symmetric motions similar to those it exhibits in the drug-free membrane; this indicates that the jumping frequency of cholesterol between the labile and immobilized domains is less than 10(5) s -1 . The distribution of cholesterol between these two sites is temperature dependent. In contrast to cholesterol, the phospholipids sense only one type of environment, at both the top and center of the bilayer, indicating that cholesterol acts as a screen, preventing the lipids from direct interaction with the antibiotic. At low temperature, the ordering of the lipid in the presence of cholesterol does not change upon filipin addition, whereas at elevated temperatures the local ordering of both the lipid and the labile cholesterol is significantly lower than that in the absence of the drug

  1. Biochemical studies on antibiotic production from Streptomyces sp.: Taxonomy, fermentation, isolation and biological properties

    Directory of Open Access Journals (Sweden)

    Houssam M. Atta

    2015-01-01

    Full Text Available Tunicamycin is a nucleotide antibiotic which was isolated from the fermentation broth of a Streptomyces strain No. T-4. According to the morphological, cultural, physiological and biochemical characteristics, and 16S rDNA sequence analysis, strain T-4 was identified as Streptomyces torulosus. It is active in vitro against some microbial pathogenic viz: Staphylococcus aureus, NCTC 7447; Micrococcus lutea, ATCC 9341; Bacillus subtilis, NCTC 10400; B. pumilus, NCTC; Klebsiella pneumonia, NCIMB 9111; Escherichia coli, NCTC 10416; Pseudomonas aeruginosa, ATCC 10145; Saccharomyces cerevisiae ATCC 9763; Candida albicans, IMRU 3669; Aspergillus flavus, IMI 111023; Aspergillus niger IMI 31276; Aspergillus fumigatus ATCC 16424; Fusarium oxysporum; Rhizoctonia solani; Alternaria alternata; Botrytis fabae and Penicillium chrysogenium. The production media were optimized for maximum yield of secondary metabolites. The metabolites were extracted using n-butanol (1:1, v/v at pH 7.0. The chemical structural analysis with UV, IR, and MS spectral analyses confirmed that the compound produced by Streptomyces torulosus, T-4 is tunicamycin antibiotic.

  2. Bacteria isolated from pristine high altitude environments in the Argentinean Andean wetlands: plasmid profile and multiple antibiotic resistance

    International Nuclear Information System (INIS)

    Dib, J.R.; Martinez, M.A.; Sineriz, F.; Farias, M.E.

    2005-01-01

    Full text: Andean wetlands, placed in the North-Western Argentine at 4,600 m altitude, are attractive for both, environmental and biotechnology studies. Most of these wetlands are completely remote and inaccessible, having a high salinity and metal contents, a wide range of daily temperature changes, and an important intensity of solar UV-B radiation. Bacteria isolated from these environments were identified by 16SrDNA sequence and resulted in Gram-positive colored bacteria. Interesting features, to our knowledge never reported so far from bacteria isolates from these pristine high altitude lake-environments, such as similar plasmids profiles and multiple antibiotic resistances are the focus of this work. At least two plasmids were found in all isolates studied by using modifications of the alkaline Iysis method. Their preliminary characterization in this work includes size, incompatibility group through PCR, genetic transference to suitable hosts by transformation and conjugation, and studies of possible relationships of them with antibiotic resistances. (author)

  3. Aminoglycoside antibiotics as a tool for the study of the biological role of calcium ions. Historical overview.

    Science.gov (United States)

    Corrado, A P; de Morais, I P; Prado, W A

    1989-01-01

    Beginning with the pioneering work of Vital-Brazil and Corrado (1957), which suggested a possible interaction between aminoglycoside antibiotics (AGA) and calcium ions at the neuromuscular junction, the authors review the studies that demonstrated the existence of a competitive antagonism between AGA and calcium ions. In view of the low liposolubility of AGA and their inability to cross biological membranes, this antagonism seems to occur exclusively at calcium-binding sites at the level of the outer opening of calcium channels of the N-subtype, which are also the sites of interaction of omega-conotoxin. Being highly water soluble, AGA are easily removed from their binding sites with a consequent rapid reversal of their effects, a factor of primary importance to explain their wide use as tools in the pharmacological analysis of the study of the biological role of calcium ion on the membrane's outer surface. This use has advantages over the use of inorganic di- and trivalent cations such as Mg2+, Mn2+, Cd2+, Ni2+, La3+, etc., since the latter, though they are considered to be the most specific competitive antagonists of calcium ions, may induce biphasic effects due to their ability to cross the membranes and replace calcium and/or increase intracellular calcium concentration. The performance of AGA is also superior when compared with the so-called "specific" organic calcium antagonists--verapamil and nifedipine derivatives--since the latter, in addition to inducing possible biphasic effects, antagonize calcium in a non-competitive manner. Finally, the authors remark that AGA-Ca2+ antagonism relevance is not limited only to basic aspects and that it may have therapeutic implications since it provides alternatives for reducing the toxic adverse effects of this important group of antibiotics.

  4. Combined Hydration and Antibiotics with Lisinopril to Mitigate Acute and Delayed High-dose Radiation Injuries to Multiple Organs.

    Science.gov (United States)

    Fish, Brian L; Gao, Feng; Narayanan, Jayashree; Bergom, Carmen; Jacobs, Elizabeth R; Cohen, Eric P; Moulder, John E; Orschell, Christie M; Medhora, Meetha

    2016-11-01

    The NIAID Radiation and Nuclear Countermeasures Program is developing medical agents to mitigate the acute and delayed effects of radiation that may occur from a radionuclear attack or accident. To date, most such medical countermeasures have been developed for single organ injuries. Angiotensin converting enzyme (ACE) inhibitors have been used to mitigate radiation-induced lung, skin, brain, and renal injuries in rats. ACE inhibitors have also been reported to decrease normal tissue complication in radiation oncology patients. In the current study, the authors have developed a rat partial-body irradiation (leg-out PBI) model with minimal bone marrow sparing (one leg shielded) that results in acute and late injuries to multiple organs. In this model, the ACE inhibitor lisinopril (at ~24 mg m d started orally in the drinking water at 7 d after irradiation and continued to ≥150 d) mitigated late effects in the lungs and kidneys after 12.5-Gy leg-out PBI. Also in this model, a short course of saline hydration and antibiotics mitigated acute radiation syndrome following doses as high as 13 Gy. Combining this supportive care with the lisinopril regimen mitigated overall morbidity for up to 150 d after 13-Gy leg-out PBI. Furthermore, lisinopril was an effective mitigator in the presence of the growth factor G-CSF (100 μg kg d from days 1-14), which is FDA-approved for use in a radionuclear event. In summary, by combining lisinopril (FDA-approved for other indications) with hydration and antibiotics, acute and delayed radiation injuries in multiple organs were mitigated.

  5. Biological interactions and cooperative management of multiple species.

    Science.gov (United States)

    Jiang, Jinwei; Min, Yong; Chang, Jie; Ge, Ying

    2017-01-01

    Coordinated decision making and actions have become the primary solution for the overexploitation of interacting resources within ecosystems. However, the success of coordinated management is highly sensitive to biological, economic, and social conditions. Here, using a game theoretic framework and a 2-species model that considers various biological relationships (competition, predation, and mutualism), we compute cooperative (or joint) and non-cooperative (or separate) management equilibrium outcomes of the model and investigate the effects of the type and strength of the relationships. We find that cooperation does not always show superiority to non-cooperation in all biological interactions: (1) if and only if resources are involved in high-intensity predation relationships, cooperation can achieve a win-win scenario for ecosystem services and resource diversity; (2) for competitive resources, cooperation realizes higher ecosystem services by sacrificing resource diversity; and (3) for mutual resources, cooperation has no obvious advantage for either ecosystem services or resource evenness but can slightly improve resource abundance. Furthermore, by using a fishery model of the North California Current Marine Ecosystem with 63 species and seven fleets, we demonstrate that the theoretical results can be reproduced in real ecosystems. Therefore, effective ecosystem management should consider the interconnection between stakeholders' social relationship and resources' biological relationships.

  6. A Marine Sulfate-Reducing Bacterium Producing Multiple Antibiotics: Biological and Chemical Investigation

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2009-07-01

    Full Text Available A marine sulfate-reducing bacterium SRB-22 was isolated by means of the agar shake dilution method and identified as Desulfovibrio desulfuricans by morphological, physiological and biochemical characteristics and 16S rDNA analysis. In the bioassay, its extract showed broad-spectrum antimicrobial activity using the paper disc agar diffusion method. This isolate showed a different antimicrobial profile than either ampicillin or nystatin and was found to produce at least eight antimicrobial components by bioautography. Suitable fermentation conditions for production of the active constituents were determined to be 28 day cultivation at 25 °C to 30 °C with a 10% inoculation ratio. Under these conditions, the SRB-22 was fermented, extracted and chemically investigated. So far an antimicrobial compound, mono-n-butyl phthalate, and an inactive compound, thymine, have been isolated and characterized.

  7. Papulacandins, a new family of antibiotics with antifungal activity, I. Fermentation, isolation, chemical and biological characterization of papulacandins A, B, C, D and E.

    Science.gov (United States)

    Traxler, P; Gruner, J; Auden, J A

    1977-04-01

    Papulacandin, a new antibiotic complex, active against Candida albicans and several other yeasts, was isolated from a strain of Papularia sphaerosperma. The fermentation, isolation, physico-chemical properties and biological activity of the five structurally related papulacandins A, B, C, D and E are reported. Papulacandin B, the main component, was assigned the formula of C47H64O17.

  8. Principles of Chemical Biology: From Sexy Fatty Acids and EBV probes to Anti-Acid Antibiotic via Post-Biotics and Host-Microbe Metabolic Complementarity.

    Science.gov (United States)

    2017-06-22

    This month: The role of fatty acids in sex determination; a probe to monitor and inhibit EBNA1 at the same time; a biological role for post-biotics; what happens when you mix microbes, hosts, and drugs; and an antibiotic that cross-protects with acid. Copyright © 2017. Published by Elsevier Ltd.

  9. Lysophosphatidic acid as a lipid mediator with multiple biological actions.

    Science.gov (United States)

    Aikawa, Shizu; Hashimoto, Takafumi; Kano, Kuniyuki; Aoki, Junken

    2015-02-01

    Lysophosphatidic acid (LPA) is one of the simplest glycerophospholipids with one fatty acid chain and a phosphate group as a polar head. Although LPA had been viewed just as a metabolic intermediate in de novo lipid synthetic pathways, it has recently been paid much attention as a lipid mediator. LPA exerts many kinds of cellular processes, such as cell proliferation and smooth muscle contraction, through cognate G protein-coupled receptors. Because lipids are not coded by the genome directly, it is difficult to know their patho- and physiological roles. However, recent studies have identified several key factors mediating the biological roles of LPA, such as receptors and producing enzymes. In addition, studies of transgenic and gene knockout animals for these LPA-related genes, have revealed the biological significance of LPA. In this review we will summarize recent advances in the studies of LPA production and its roles in both physiological and pathological conditions. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  10. Adaption of the microbial community to continuous exposures of multiple residual antibiotics in sediments from a salt-water aquacultural farm.

    Science.gov (United States)

    Xi, Xiuping; Wang, Min; Chen, Yongshan; Yu, Shen; Hong, Youwei; Ma, Jun; Wu, Qian; Lin, Qiaoyin; Xu, Xiangrong

    2015-06-15

    Residual antibiotics from aquacultural farming may alter microbial community structure in aquatic environments in ways that may adversely or positively impact microbially-mediated ecological functions. This study investigated 26 ponds (26 composited samples) used to produce fish, razor clam and shrimp (farming and drying) and 2 channels (10 samples) in a saltwater aquacultural farm in southern China to characterize microbial community structure (represented by phospholipid fatty acids) in surface sediments (0-10 cm) with long-term exposure to residual antibiotics. 11 out of 14 widely-used antibiotics were quantifiable at μg kg(-1) levels in sediments but their concentrations did not statistically differ among ponds and channels, except norfloxacin in drying shrimp ponds and thiamphenicol in razor clam ponds. Concentrations of protozoan PLFAs were significantly increased in sediments from razor clam ponds while other microbial groups were similar among ponds and channels. Both canonical-correlation and stepwise-multiple-regression analyses on microbial community and residual antibiotics suggested that roxithromycin residuals were significantly related to shifts in microbial community structure in sediments. This study provided field evidence that multiple residual antibiotics at low environmental levels from aquacultural farming do not produce fundamental shifts in microbial community structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A multiple antibiotic and serum resistant oligotrophic strain, Klebsiella pneumoniae MB45 having novel dfrA30, is sensitive to ZnO QDs

    Directory of Open Access Journals (Sweden)

    Chakrabarti Pinak

    2011-05-01

    Full Text Available Abstract Background The aim of this study was to describe a novel trimethoprim resistance gene cassette, designated dfrA30, within a class 1 integron in a facultatively oligotrophic, multiple antibiotic and human serum resistant test strain, MB45, in a population of oligotrophic bacteria isolated from the river Mahananda; and to test the efficiency of surface bound acetate on zinc oxide quantum dots (ZnO QDs as bactericidal agent on MB45. Methods Diluted Luria broth/Agar (10-3 media was used to cultivate the oligotrophic bacteria from water sample. Multiple antibiotic resistant bacteria were selected by employing replica plate method. A rapid assay was performed to determine the sensitivity/resistance of the test strain to human serum. Variable region of class 1 integron was cloned, sequenced and the expression of gene coding for antibiotic resistance was done in Escherichia coli JM 109. Identity of culture was determined by biochemical phenotyping and 16S rRNA gene sequence analyses. A phylogenetic tree was constructed based on representative trimethoprim resistance-mediating DfrA proteins retrieved from GenBank. Growth kinetic studies for the strain MB45 were performed in presence of varied concentrations of ZnO QDs. Results and conclusions The facultatively oligotrophic strain, MB45, resistant to human serum and ten antibiotics trimethoprim, cotrimoxazole, ampicillin, gentamycin, netilmicin, tobramycin, chloramphenicol, cefotaxime, kanamycin and streptomycin, has been identified as a new strain of Klebsiella pneumoniae. A novel dfr gene, designated as dfrA30, found integrated in class 1 integron was responsible for resistance to trimethoprim in Klebsiella pneumoniae strain MB45. The growth of wild strain MB45 was 100% arrested at 500 mg/L concentration of ZnO QDs. To our knowledge this is the first report on application of ZnO quantum dots to kill multiple antibiotics and serum resistant K. pneumoniae strain.

  12. Cloning, expression, crystallization and preliminary X-ray analysis of a putative multiple antibiotic resistance repressor protein (MarR) from Xanthomonas campestris

    International Nuclear Information System (INIS)

    Tu, Zhi-Le; Li, Juo-Ning; Chin, Ko-Hsin; Chou, Chia-Cheng; Lee, Cheng-Chung; Shr, Hui-Lin; Lyu, Ping-Chiang; Gao, Fei Philip; Wang, Andrew H.-J.; Chou, Shan-Ho

    2005-01-01

    A putative repressor for the multiple antibiotic resistance operon from a plant pathogen X. campestris pv. campestris has been overexpressed in E. coli, purified and crystallized. The crystals diffracted to 2.3 Å with good quality. The multiple antibiotic resistance operon (marRAB) is a member of the multidrug-resistance system. When induced, this operon enhances resistance of bacteria to a variety of medically important antibiotics, causing a serious global health problem. MarR is a marR-encoded protein that represses the transcription of the marRAB operon. Through binding with salicylate and certain antibiotics, however, MarR can derepress and activate the marRAB operon. In this report, the cloning, expression, crystallization and preliminary X-ray analysis of XC1739, a putative MarR repressor protein present in the Xanthomonas campestris pv. campestris, a Gram-negative bacterium causing major worldwide disease of cruciferous crops, are described. The XC1739 crystals diffracted to a resolution of at least 1.8 Å. They are orthorhombic and belong to space group P2 1 2 1 2 1 , with unit-cell parameters a = 39.5, b = 54.2 and c = 139.5 Å, respectively. They contain two molecules in the asymmetric unit from calculation of the self-rotation function

  13. Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium Paenibacillus larvae.

    Science.gov (United States)

    Garcia-Gonzalez, Eva; Müller, Sebastian; Hertlein, Gillian; Heid, Nina; Süssmuth, Roderich D; Genersch, Elke

    2014-10-01

    Paenibacillus larvae is the etiological agent of American Foulbrood (AFB) a world-wide distributed devastating disease of the honey bee brood. Previous comparative genome analysis and more recently, the elucidation of the bacterial genome, provided evidence that this bacterium harbors putative functional nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) and therefore, might produce nonribosomal peptides (NRPs) and polyketides (PKs). Such biosynthesis products have been shown to display a wide-range of biological activities such as antibacterial, antifungal or cytotoxic activity. Herein we present an in silico analysis of the first NRPS/PKS hybrid of P. larvae and we show the involvement of this cluster in the production of a compound named paenilamicin (Pam). For the characterization of its in vitro and in vivo bioactivity, a knock-out mutant strain lacking the production of Pam was constructed and subsequently compared to wild-type species. This led to the identification of Pam by mass spectrometry. Purified Pam-fractions showed not only antibacterial but also antifungal and cytotoxic activities. The latter suggested a direct effect of Pam on honey bee larval death which could, however, not be corroborated in laboratory infection assays. Bee larvae infected with the non-producing Pam strain showed no decrease in larval mortality, but a delay in the onset of larval death. We propose that Pam, although not essential for larval mortality, is a virulence factor of P. larvae influencing the time course of disease. These findings are not only of significance in elucidating and understanding host-pathogen interactions but also within the context of the quest for new compounds with antibiotic activity for drug development. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  14. Glyphosate accumulation, translocation, and biological effects in Coffea arabica after single and multiple exposures

    DEFF Research Database (Denmark)

    Schrübbers, Lars Christoph; Valverde, Bernal E.; Strobel, Bjarne W.

    2016-01-01

    In perennial crops like coffee, glyphosate drift exposure can occur multiple times during its commercial life span. Due to limited glyphosate degradation in higher plants, a potential accumulation of glyphosate could lead to increased biological effects with increased exposure frequency....... In this study, we investigated glyphosate translocation over time, and its concentration and biological effects after single and multiple simulated spray-drift exposures. Additionally, shikimic acid/glyphosate ratios were used as biomarkers for glyphosate binding to its target enzyme.Four weeks after...... the exposure, glyphosate was continuously translocated. Shikimic acid levels were lin-ear correlated with glyphosate levels. After two months, however, glyphosate appeared to have reduced activity. In the greenhouse, multiple applications resulted in higher internal glyphosate concentrations.The time...

  15. High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa

    CSIR Research Space (South Africa)

    Abia, ALK

    2015-10-01

    Full Text Available This study aimed at investigating the presence of antibiotic-resistant Escherichia coli in river bed sediments of the Apies River, Gauteng, South Africa, in order to better inform health management decisions designed to protect users of the river...

  16. Yaequinolones, new insecticidal antibiotics produced by Penicillium sp. FKI-2140. I. Taxonomy, fermentation, isolation and biological activity.

    Science.gov (United States)

    Uchida, Ryuji; Imasato, Rie; Yamaguchi, Yuichi; Masuma, Rokuro; Shiomi, Kazuro; Tomoda, Hiroshi; Omura, Satoshi

    2006-10-01

    New nine insecticidal antibiotics designated yaequinolones were isolated from the culture broth of the fungal strain Penicillium sp. FKI-2140 by solvent extraction, centrifugal partition chromatography and HPLC. Yaequinolones showed growth inhibitory activity against brine shrimp (Artemia salina). Among them, yaequinolone F has the most potent activity with MIC value of 0.19 microg/ml.

  17. Antibiotics and Antibiotic Resistance

    Science.gov (United States)

    ... all that ails you. Antibiotics, also known as antimicrobial drugs, are drugs that fight infections caused by bacteria. ... Information for Consumers and Health Professionals Information by drug class Antimicrobial Resistance Animal and Veterinary Related Resources Further information ...

  18. On the possibility of multiple utilization of Bowen's Kale for neutron activation analysis of biological materials

    International Nuclear Information System (INIS)

    Marinov, V.M.; Lazarova, M.S.; Mihajlov, M.I.; Apostolov, D.

    1977-01-01

    The results of investigations related to the multiple utilization of Bowen's Kale in developing neutron-activation methods for determining microelements in biological materials carried out in recent years are presented. Bowen's Kale might be used as: (1) experimental material in the development of a method and its verification, i.e. as a test for biological materials; (2) a material where experimental conditions might be optimized; (3) a material for investigating the accuracy, reproducibility and the limit of proof at experimental conditions already defined; (4) a monitor; (5) a multielement volume reference standard for a number of microelements during their simultaneous determination and (6) a standard for verifying the authenticity of the results obtained. In this manner, a reliable criterion for comparison of the potentialities, the accuracy, reproducibility, the limits of proof and the authenticity of the neutron-activation methods of determining microelements in biological materials is introduced. (author)

  19. Biological Activity of Carbazole Alkaloids and Essential Oil of Murraya koenigii Against Antibiotic Resistant Microbes and Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Thilahgavani Nagappan

    2011-11-01

    Full Text Available A total of three carbazole alkaloids and essential oil from the leaves of Murraya koenigii (Rutaceae were obtained and examined for their effects on the growth of five antibiotic resistant pathogenic bacteria and three tumor cell lines (MCF-7, P 388 and Hela. The structures of these carbazoles were elucidated based on spectroscopy data and compared with literature data, hence, were identified as mahanine (1, mahanimbicine (2 and mahanimbine (3. The chemical constituents of the essential oil were identified using Gas Chromatography-Mass Spectroscopy (GCMS. These compounds exhibited potent inhibition against antibiotic resistant bacteria such as Staphylococcus aureus (210P JTU, Psedomonas aeruginosa (ATCC 25619, Klebsiella pneumonia (SR1-TU, Escherchia coli (NI23 JTU and Streptococcus pneumoniae (SR16677-PRSP with significant minimum inhibition concentration (MIC values (25.0–175.0 mg/mL and minimum bacteriacidal concentrations (MBC (100.0–500.0 mg/mL. The isolated compounds showed significant antitumor activity against MCF-7, Hela and P388 cell lines. Mahanimbine (3 and essential oil in particular showed potent antibacteria and cytotoxic effect with dose dependent trends (≤5.0 μg/mL. The findings from this investigation are the first report of carbazole alkaloids’ potential against antibiotic resistant clinical bacteria, MCF-7 and P388 cell lines.

  20. Characterization of multiple antibiotic resistance of culturable microorganisms and metagenomic analysis of total microbial diversity of marine fish sold in retail shops in Mumbai, India.

    Science.gov (United States)

    Naik, Onkar A; Shashidhar, Ravindranath; Rath, Devashish; Bandekar, Jayant R; Rath, Archana

    2018-03-01

    Marine fish species were analyzed for culturable and total metagenomic microbial diversity, antibiotic resistance (AR) pattern, and horizontal gene transfer in culturable microorganisms. We observed a high AR microbial load of 3 to 4 log CFU g -1 . Many fish pathogens like Providencia, Staphylococcus, Klebsiella pneumoniae, Enterobacter, Vagococcus, and Aeromonas veronii were isolated. Photobacterium and Vibrio were two major fish and human pathogens which were identified in the fish metagenome. Other pathogens that were identified were Shewanella, Acinetobacter, Psychrobacter, and Flavobacterium. Most of these pathogens were resistant to multiple antibiotics such as erythromycin, kanamycin, neomycin, streptomycin, penicillin, cefotaxime, bacitracin, rifampicin, trimethoprim, ciprofloxacin, and doxycycline with a high multiple antibiotic resistance index of 0.54-0.77. The fish microflora showed high prevalence of AR genes like bla TEM , Class I integron, tetA, aph(3')-IIIa, ermB, aadA, and sul1. Nineteen of 26 AR isolates harbored Class I integrons showing high co-resistance to trimethoprim, kanamycin, doxycycline, and cefotaxime. Mobile R-plasmids from 6 of the 12 AR pathogens were transferred to recipient E. coli after conjugation. The transconjugants harbored the same R-plasmid carrying bla CTX-M , dfr1, tetA, bla TEM , and cat genes. This study confirms that fish is a potential carrier of AR pathogens which can enter the human gut via food chain. To the best of our knowledge, this is the first study in the Indian subcontinent reporting a direct evidence of spread of AR pathogens to humans from specific marine fish consumption.

  1. Multiple Genetic Analysis System-Based Antibiotic Susceptibility Testing in Helicobacter pylori and High Eradication Rate With Phenotypic Resistance-Guided Quadruple Therapy.

    Science.gov (United States)

    Dong, Fangyuan; Ji, Danian; Huang, Renxiang; Zhang, Fan; Huang, Yiqin; Xiang, Ping; Kong, Mimi; Nan, Li; Zeng, Xianping; Wu, Yong; Bao, Zhijun

    2015-11-01

    Antibiotics resistance in Helicobacter pylori (H. pylori) is the major factor for eradication failure. Molecular tests including fluorescence in situ hybridization, PCR-restriction fragment length polymorphism, and dual priming oligonucleotide-PCR (DPO-PCR) play critical roles in the detection of antibiotic susceptibility; however, limited knowledge is known about application of multiple genetic analysis system (MGAS) in the area of H. pylori identification and antibiotics resistance detection.The aim of this study is to determine the antibiotics resistance using different molecular tests and evaluate the treatment outcomes of E-test-based genotypic resistance.A total of 297 patients with dyspepsia complaint were recruited for gastroscopies. Ninety patients with H. pylori culture positive were randomly divided into 2 groups (test group and control group). E-test, general PCR, and MGAS assay were performed in test group. Patients in control group were treated with empirical therapy (rabeprazole + bismuth potassium citrate + amoxicillin [AMX] + clarithromycin [CLR]), whereas patients in test group received quadruple therapy based on E-test results twice daily for 14 consecutive days. The eradication effect of H. pylori was confirmed by C-urea breath test after at least 4 weeks when treatment was finished.Rapid urease test showed 46.5% (128/297) patients with H. pylori infection, whereas 30.3% (90/297) patients were H. pylori culture positive. E-test showed that H. pylori primary resistance rate to CLR, AMX, metronidazole, tetracycline, and levofloxacin (LVX) was 40.0% (18/45), 4.4% (2/45), 53.3% (24/45), 0% (0/45), and 55.6% (25/45), respectively. In addition, there are many multidrug resistant (MDR) phenotypes, and the MDR strains have higher minimum inhibitory concentration than their single-drug resistant counterparts. Considering E-test as the reference test, the sensitivities of general PCR and MGAS in detecting CLR resistance were 83.3% (15/18) and 94.4% (17

  2. Occurrence and distribution of multiple antibiotic-resistant bacteria of Enterobacteriaceae family in waters of Veraval coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Maloo, A.; Borade, S.; Dhawde, R.; Gajbhiye, S.N.; Dastager, S.G.

    ) bacteria is the overuse and misuse of antibiotics in human medicine, veterinary medicine, agriculture and aquaculture (McManus, Stockwell 2001). Microbial indicators have been used worldwide as a tool to indicate the contamination of water by human... the microbial contamination spread: station-1 (0 km from shore i.e. jetty area), station-2 (0.5 km inside to mouth harbor), station-3 (0.5 km outside to mouth harbor), station-4 (2 km right from station-3), station-5 (5 km left from station-3), station-6 (2...

  3. Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals.

    Science.gov (United States)

    He, Xiaolin; Xu, Yanbin; Chen, Jinliang; Ling, Jiayin; Li, Yafei; Huang, Lu; Zhou, Xiao; Zheng, Li; Xie, Guangyan

    2017-11-01

    Abuse of antibiotics and heavy metals in aquaculture has been widely concerned and might aggravate the spread of resistance genes in environment. To investigate the occurrence and proliferation of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs), three commonly used antibiotics (tetracycline, sulfanilamide, cefotaxime) and two heavy metals (Zn and Cu) were designed to add individually or jointly in nine fish tanks including five individual exposure tanks of tetracycline (tet), sulfanilamide (sul), cefotaxime (cef), Cu, Zn and four combination exposure tanks of tetracycline + sulfanilamide (tet + sul), tetracycline + sulfanilamide + cefotaxime (tet + sul + cef), tetracycline + sulfanilamide + Cu (tet + sul + Cu), tetracycline + sulfanilamide + Zn (tet + sul + Zn) as well as the control during the experiment period of 180 days. Nineteen ARGs (tetA, tetB, tetC, tetD, tetE, tetG, tetM, tetO, tetQ, tetS, tetW, tetX, tetY, sul1, sul2, sul3, bla DHA , bla MOX , bla FOX ), two HMRGs (copA, czcA) and the class 1 integron gene (intI 1) in fish tanks water were investigated. The results showed that the residual rate of antibiotics and heavy metals ranged from 0.03% to 2.46% and 9.25%-52.97%, respectively, positively related to their original concentration and types. Tetracycline resistance genes were more sensitive to antibiotics and easier to be induced and developed than sulfanilamide resistance genes and AmpC β-lactamase resistance genes. The total relative abundances of ARGs in combined stresses exposure tanks (tet + sul, tet + sul + cef, tet + sul + Cu, tet + sul + Zn) were about 1.01-1.55 times more than the sum of their individual ones. The co-selective effects of cefotaxime on the abundance and diversity of tetracycline resistance genes were stronger than Zn and Cu. Besides, multivariate correlation analysis revealed that tetO, tetQ, tetW and sul3 were in significant correlation with the

  4. Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment.

    Science.gov (United States)

    Prevost, Luanna B; Lemons, Paula P

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. © 2016 L. B. Prevost and P. P. Lemons. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Clinical and biological features of multiple myeloma involving the gastrointestinal system.

    Science.gov (United States)

    Talamo, Giampaolo; Cavallo, Federica; Zangari, Maurizio; Barlogie, Bart; Lee, Choon-Kee; Pineda-Roman, Mauricio; Kiwan, Elias; Krishna, Somashekar; Tricot, Guido

    2006-07-01

    We report 24 cases of multiple myeloma (MM) with involvement of the gastrointestinal (GI) system. We found a strong association with high A lactate dehydrogenase levels, plasmablastic morphology, and A unfavorable karyotype. GI involvement at the time of initial diagnosis was much rarer than later in the course of the disease. The A median survival after diagnosis of GI involvement was 7 months. Among 13 patients treated with stem cell transplantation, the response rate was 92%, and median progression-free survival was 4 months. We conclude that MM involving the GI system is associated with adverse biological features and with short-lasting remissions, even after A high-dose chemotherapy.

  6. Multiple daily fractionation in radiotherapy: biological rationale and preliminary clinical experiences

    Energy Technology Data Exchange (ETDEWEB)

    Arcangeli, G [Instituto Medico Scientifico, Rome (Italy). Dept. of Oncology; Mauro, F; Morelli, D; Nervi, C

    1979-09-01

    The biological bases of radiation dose fractionation are reviewed and discussed with special emphasis on reassortment. Experimental data on animal model systems are presented to clarify that reassortment has to be added to sublethal damage repair and reoxygenation in the rationale for an optimized radiotherapy course according to tumor cell kinetics. Clinical results on several human tumors treated with twice or thrice daily fractions are described. These results show that some clinically radioresistant tumors (especially if not characterized by a relatively long clinical doubling line) can be satisfactorily dealt with using multiple daily fractionation. Clinical observations indicate that a relatively high cumulative daily dose (200 + 150 + 150 rad) can be safely administered.

  7. Development of Multiple Antibiotic Resistance in Bacillus subtilis Cells Exposed to Microgravity: the BRIC-18 Experiment to the International Space Station

    Science.gov (United States)

    Fajardo-Cavazos, Patricia; Moeller, Ralf; Nicholson, Wayne; Narvel, Raed

    Increased pathogenicity of opportunistic bacteria during long-term spaceflight is considered an astronaut risk. Because only a limited pharmacy can be carried on long-duration missions, the development of resistance to multiple antibiotics is a concern for mission planning. In support of the BRIC-18 experiment to the ISS, we have performed ground-based experiments to address the question whether simulated microgravity affects the frequency of resistance to the model antibiotics rifampicin (RFM) and trimethoprim (TMP). In these experiments, the model bacteria Bacillus subtilis and Staphylococcus epidermidis were cultivated for 6 days at ISS ambient temperature in 10-ml High Aspect Ratio Vessels (HARVs) on two 4-place clinostats (Synthecon) oriented either vertically (V) or horizontally (H). Cells were harvested, enumerated and plated onto medium containing RFM (5 micrograms/ml). The frequency of mutation to RFM resistance was calculated, and RFM-resistant mutants were plated onto medium containing the second antibiotic, TMP (5 micrograms/ml) to determine the frequency of mutation to double (RFM+TMP) resistance. After 6 days of cultivation, V-cultures showed higher cell densities and than H-cultures for both bacteria. However, only in B. subtilis did V-cultures show higher frequencies of mutation to RFM resistance than H-cultures. Launch of BRIC-18 to the ISS is currently scheduled for March 16, 2014 and return 30 days later. Results from both the spaceflight and ground control experiments will be presented. Supported by NASA-SAIP fellowship to R.N. and NASA grant (NNX12AN70G) to P.F.-C., R.M., and W.L.N.

  8. Removal of Antibiotics in Biological Wastewater Treatment Systems-A Critical Assessment Using the Activated Sludge Modeling Framework for Xenobiotics (ASM-X).

    Science.gov (United States)

    Polesel, Fabio; Andersen, Henrik R; Trapp, Stefan; Plósz, Benedek Gy

    2016-10-04

    Many scientific studies present removal efficiencies for pharmaceuticals in laboratory-, pilot-, and full-scale wastewater treatment plants, based on observations that may be impacted by theoretical and methodological approaches used. In this Critical Review, we evaluated factors influencing observed removal efficiencies of three antibiotics (sulfamethoxazole, ciprofloxacin, tetracycline) in pilot- and full-scale biological treatment systems. Factors assessed include (i) retransformation to parent pharmaceuticals from e.g., conjugated metabolites and analogues, (ii) solid retention time (SRT), (iii) fractions sorbed onto solids, and (iv) dynamics in influent and effluent loading. A recently developed methodology was used, relying on the comparison of removal efficiency predictions (obtained with the Activated Sludge Model for Xenobiotics (ASM-X)) with representative measured data from literature. By applying this methodology, we demonstrated that (a) the elimination of sulfamethoxazole may be significantly underestimated when not considering retransformation from conjugated metabolites, depending on the type (urban or hospital) and size of upstream catchments; (b) operation at extended SRT may enhance antibiotic removal, as shown for sulfamethoxazole; (c) not accounting for fractions sorbed in influent and effluent solids may cause slight underestimation of ciprofloxacin removal efficiency. Using tetracycline as example substance, we ultimately evaluated implications of effluent dynamics and retransformation on environmental exposure and risk prediction.

  9. Excessive biologic response to IFNβ is associated with poor treatment response in patients with multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Richard A Rudick

    Full Text Available BACKGROUND: Interferon-beta (IFNβ is used to inhibit disease activity in multiple sclerosis (MS, but its mechanisms of action are incompletely understood, individual treatment response varies, and biological markers predicting response to treatment have yet to be identified. METHODS: The relationship between the molecular response to IFNβ and treatment response was determined in 85 patients using a longitudinal design in which treatment effect was categorized by brain magnetic resonance imaging as good (n = 70 or poor response (n = 15. Molecular response was quantified using a customized cDNA macroarray assay for 166 IFN-regulated genes (IRGs. RESULTS: The molecular response to IFNβ differed significantly between patients in the pattern and number of regulated genes. The molecular response was strikingly stable for individuals for as long as 24 months, however, suggesting an individual 'IFN response fingerprint'. Unexpectedly, patients with poor response showed an exaggerated molecular response. IRG induction ratios demonstrated an exaggerated molecular response at both the first and 6-month IFNβ injections. CONCLUSION: MS patients exhibit individually unique but temporally stable biological responses to IFNβ. Poor treatment response is not explained by the duration of biological effects or the specific genes induced. Rather, individuals with poor treatment response have a generally exaggerated biological response to type 1 IFN injections. We hypothesize that the molecular response to type I IFN identifies a pathogenetically distinct subset of MS patients whose disease is driven in part by innate immunity. The findings suggest a strategy for biologically based, rational use of IFNβ for individual MS patients.

  10. Minocycline: far beyond an antibiotic

    Science.gov (United States)

    Garrido-Mesa, N; Zarzuelo, A; Gálvez, J

    2013-01-01

    Minocycline is a second-generation, semi-synthetic tetracycline that has been in therapeutic use for over 30 years because of its antibiotic properties against both gram-positive and gram-negative bacteria. It is mainly used in the treatment of acne vulgaris and some sexually transmitted diseases. Recently, it has been reported that tetracyclines can exert a variety of biological actions that are independent of their anti-microbial activity, including anti-inflammatory and anti-apoptotic activities, and inhibition of proteolysis, angiogenesis and tumour metastasis. These findings specifically concern to minocycline as it has recently been found to have multiple non-antibiotic biological effects that are beneficial in experimental models of various diseases with an inflammatory basis, including dermatitis, periodontitis, atherosclerosis and autoimmune disorders such as rheumatoid arthritis and inflammatory bowel disease. Of note, minocycline has also emerged as the most effective tetracycline derivative at providing neuroprotection. This effect has been confirmed in experimental models of ischaemia, traumatic brain injury and neuropathic pain, and of several neurodegenerative conditions including Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Alzheimer's disease, multiple sclerosis and spinal cord injury. Moreover, other pre-clinical studies have shown its ability to inhibit malignant cell growth and activation and replication of human immunodeficiency virus, and to prevent bone resorption. Considering the above-mentioned findings, this review will cover the most important topics in the pharmacology of minocycline to date, supporting its evaluation as a new therapeutic approach for many of the diseases described herein. PMID:23441623

  11. Removal of Antibiotics in Biological Wastewater Treatment Systems—A Critical Assessment Using the Activated Sludge Modeling Framework for Xenobiotics (ASM-X)

    DEFF Research Database (Denmark)

    Polesel, Fabio; Andersen, Henrik Rasmus; Trapp, Stefan

    2016-01-01

    Many scientific studies present removal efficiencies for pharmaceuticals in laboratory-, pilot-, and full-scale wastewater treatment plants, based on observations that may be impacted by theoretical and methodological approaches used. In this Critical Review, we evaluated factors influencing...... observed removal efficiencies of three antibiotics (sulfamethoxazole, ciprofloxacin, tetracycline) in pilot- and full-scale biological treatment systems. Factors assessed include (i) retransformation to parent pharmaceuticals from e.g., conjugated metabolites and analogues, (ii) solid retention time (SRT......), (iii) fractions sorbed onto solids, and (iv) dynamics in influent and effluent loading. A recently developed methodology was used, relying on the comparison of removal efficiency predictions (obtained with the Activated Sludge Model for Xenobiotics (ASM-X)) with representative measured data from...

  12. Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment

    Science.gov (United States)

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021

  13. Multivariate two-part statistics for analysis of correlated mass spectrometry data from multiple biological specimens.

    Science.gov (United States)

    Taylor, Sandra L; Ruhaak, L Renee; Weiss, Robert H; Kelly, Karen; Kim, Kyoungmi

    2017-01-01

    High through-put mass spectrometry (MS) is now being used to profile small molecular compounds across multiple biological sample types from the same subjects with the goal of leveraging information across biospecimens. Multivariate statistical methods that combine information from all biospecimens could be more powerful than the usual univariate analyses. However, missing values are common in MS data and imputation can impact between-biospecimen correlation and multivariate analysis results. We propose two multivariate two-part statistics that accommodate missing values and combine data from all biospecimens to identify differentially regulated compounds. Statistical significance is determined using a multivariate permutation null distribution. Relative to univariate tests, the multivariate procedures detected more significant compounds in three biological datasets. In a simulation study, we showed that multi-biospecimen testing procedures were more powerful than single-biospecimen methods when compounds are differentially regulated in multiple biospecimens but univariate methods can be more powerful if compounds are differentially regulated in only one biospecimen. We provide R functions to implement and illustrate our method as supplementary information CONTACT: sltaylor@ucdavis.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. QSRR modeling for the chromatographic retention behavior of some β-lactam antibiotics using forward and firefly variable selection algorithms coupled with multiple linear regression.

    Science.gov (United States)

    Fouad, Marwa A; Tolba, Enas H; El-Shal, Manal A; El Kerdawy, Ahmed M

    2018-05-11

    The justified continuous emerging of new β-lactam antibiotics provokes the need for developing suitable analytical methods that accelerate and facilitate their analysis. A face central composite experimental design was adopted using different levels of phosphate buffer pH, acetonitrile percentage at zero time and after 15 min in a gradient program to obtain the optimum chromatographic conditions for the elution of 31 β-lactam antibiotics. Retention factors were used as the target property to build two QSRR models utilizing the conventional forward selection and the advanced nature-inspired firefly algorithm for descriptor selection, coupled with multiple linear regression. The obtained models showed high performance in both internal and external validation indicating their robustness and predictive ability. Williams-Hotelling test and student's t-test showed that there is no statistical significant difference between the models' results. Y-randomization validation showed that the obtained models are due to significant correlation between the selected molecular descriptors and the analytes' chromatographic retention. These results indicate that the generated FS-MLR and FFA-MLR models are showing comparable quality on both the training and validation levels. They also gave comparable information about the molecular features that influence the retention behavior of β-lactams under the current chromatographic conditions. We can conclude that in some cases simple conventional feature selection algorithm can be used to generate robust and predictive models comparable to that are generated using advanced ones. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Association study of multiple antibiotic resistance and virulence: a strategy to assess the extent of risk posed by bacterial population in aquatic environment.

    Science.gov (United States)

    Singh, Santosh Kumar; Ekka, Roseleen; Mishra, Mitali; Mohapatra, Harapriya

    2017-07-01

    The present study explored the association between multiple antibiotic resistance (MAR) index and virulence index to determine what percent of environmental antibiotic-resistant (eARB) bacteria could pose threat as potential pathogen. 16srRNA-based sequencing of 113 non-duplicate isolates identified majority of them to be gram negative belonging to Enterobacter, Pseudomonas, Aeromonas, Proteus, Acinetobacter, and Klebsiella. Statistical comparison of MAR indices of the abovementioned genera indicated differences in the median values among the groups (p  Klebsiella = Acinetobacter > Proteus > Aeromonas > Enterobacter. Association between MAR index and virulence index revealed that 25% of isolates in the population under study posed high threat to human/animal or both; out of which 75% isolates belonged to genus Pseudomonas. Based on observations of comparative analysis of the six gram-negative genera, it could be concluded that Pseudomonas isolates from environment pose significantly high threat as potential pathogens while Enterobacter isolates posed no threat.

  16. Evolutionary Genetic Analysis Uncovers Multiple Species with Distinct Habitat Preferences and Antibiotic Resistance Phenotypes in the Stenotrophomonas maltophilia Complex

    Directory of Open Access Journals (Sweden)

    Luz E. Ochoa-Sánchez

    2017-08-01

    were significantly more susceptible to antibiotics than S. maltophilia. We demonstrate that the sympatric lineages recovered display significantly differentiated habitat preferences, antibiotic resistance profiles and β-lactamase expression phenotypes, as shown by diverse multivariate analyses and robust univariate statistical tests. We discuss our data in light of current models of bacterial speciation, which fit these data well, stressing the implications of species delimitation in ecological, evolutionary and clinical research.

  17. Comparison of single-dose and multiple-dose antibiotics for lower urinary tract infection in pregnancy.

    Science.gov (United States)

    Usta, Taner A; Dogan, Ozgur; Ates, Ugur; Yucel, Burak; Onar, Zehra; Kaya, Erdal

    2011-09-01

    To compare the efficacy of fosfomycin trometamol, cefuroxime axetil, and amoxicillin clavulanate antibiotics, and to assess the difference in patient compliance, in the treatment of urinary tract infections during pregnancy. Between September 2007 and May 2008, 90 out of 324 pregnant women with complaints of lower urinary tract infection, who were followed at the outpatient clinic or referred to the emergency department of Vakif Gureba Education and Research Hospital, were enrolled in a prospective study. Patients were randomized into 3 equal groups for treatment with single-dose fosfomycin trometamol, or 5-day courses of amoxicillin clavulanate or cefuroxime axetil. After follow-up, study data were obtained for 28, 27, and 29 patients, respectively. The treatment groups did not differ significantly in terms of demographics, clinical success rate, microbiological cure rate, or adverse effects. Significantly higher drug compliance was observed in the fosfomycin trometamol group than in the other 2 groups (PUTI as the standard course of treatment with amoxicillin clavulanate or cefuroxime axetil. Fosfomycin trometamol may be a preferable treatment for UTI because of its simpler use and better rates of compliance. Copyright © 2011 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Adaptive Landscapes of Resistance Genes Change as Antibiotic Concentrations Change.

    Science.gov (United States)

    Mira, Portia M; Meza, Juan C; Nandipati, Anna; Barlow, Miriam

    2015-10-01

    Most studies on the evolution of antibiotic resistance are focused on selection for resistance at lethal antibiotic concentrations, which has allowed the detection of mutant strains that show strong phenotypic traits. However, solely focusing on lethal concentrations of antibiotics narrowly limits our perspective of antibiotic resistance evolution. New high-resolution competition assays have shown that resistant bacteria are selected at relatively low concentrations of antibiotics. This finding is important because sublethal concentrations of antibiotics are found widely in patients undergoing antibiotic therapies, and in nonmedical conditions such as wastewater treatment plants, and food and water used in agriculture and farming. To understand the impacts of sublethal concentrations on selection, we measured 30 adaptive landscapes for a set of TEM β-lactamases containing all combinations of the four amino acid substitutions that exist in TEM-50 for 15 β-lactam antibiotics at multiple concentrations. We found that there are many evolutionary pathways within this collection of landscapes that lead to nearly every TEM-genotype that we studied. While it is known that the pathways change depending on the type of β-lactam, this study demonstrates that the landscapes including fitness optima also change dramatically as the concentrations of antibiotics change. Based on these results we conclude that the presence of multiple concentrations of β-lactams in an environment result in many different adaptive landscapes through which pathways to nearly every genotype are available. Ultimately this may increase the diversity of genotypes in microbial populations. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Antibiotic Resistance in Human Chronic Periodontitis Microbiota

    NARCIS (Netherlands)

    Rams, Thomas E.; Degener, John E.; van Winkelhoff, Arie J.

    Background: Patients with chronic periodontitis (CP) may yield multiple species of putative periodontal bacterial pathogens that vary in their antibiotic drug susceptibility. This study determines the occurrence of in vitro antibiotic resistance among selected subgingival periodontal pathogens in

  20. The Effects of Urban Sprawl on Birds at Multiple Levels of Biological Organization

    Directory of Open Access Journals (Sweden)

    Robert Blair

    2004-12-01

    Full Text Available Urban sprawl affects the environment in myriad ways and at multiple levels of biological organization. In this paper I explore the effects of sprawl on native bird communities by comparing the occurrence of birds along gradients of urban land use in southwestern Ohio and northern California and by examining patterns at the individual, species, community, landscape, and continental levels. I do this by assessing the distribution and abundance of all bird species occupying sites of differing land-use intensity in Ohio and California. Additionally, I conducted predation experiments using artificial nests, tracked the nest fate of American Robins and Northern Cardinals, and assessed land cover in these sites. At the individual level, predation on artificial nests decreased with urbanization; however, this trend was not reflected in the nesting success of robins and cardinals, which did not increase with urbanization. At the species level, sprawl affected local patterns of extinction and invasion; the density of different species peaked at different levels of urbanization. At the community level, species richness and diversity peaked at moderate levels of urbanization, and the number of low-nesting species and of species with multiple broods increased with urbanization. The community-level results may reflect both the species-level patterns of local extinction and invasion as well as broader landscape-level patterns. At the landscape level, a linear combination of spatial heterogeneity and density of woody patches accurately predicted both species richness and Shannon Diversity. At the continental level, local extinction of endemic species, followed by the invasion of ubiquitous weedy species, leads to faunal homogenization between ecoregions.

  1. Comet assay with gill cells of Mytilus galloprovincialis end point tools for biomonitoring of water antibiotic contamination: Biological treatment is a reliable process for detoxification.

    Science.gov (United States)

    Mustapha, Nadia; Zouiten, Amina; Dridi, Dorra; Tahrani, Leyla; Zouiten, Dorra; Mosrati, Ridha; Cherif, Ameur; Chekir-Ghedira, Leila; Mansour, Hedi Ben

    2016-04-01

    This article investigates the ability of Pseudomonas peli to treat industrial pharmaceuticals wastewater (PW). Liquid chromatography-mass spectrometry (MS)/MS analysis revealed the presence, in this PW, of a variety of antibiotics such as sulfathiazole, sulfamoxole, norfloxacine, cloxacilline, doxycycline, and cefquinome.P. peli was very effective to be grown in PW and inducts a remarkable increase in chemical oxygen demand and biochemical oxygen demand (140.31 and 148.51%, respectively). On the other hand, genotoxicity of the studied effluent, before and after 24 h of shaking incubation with P. peli, was evaluated in vivo in the Mediterranean wild mussels Mytilus galloprovincialis using comet assay for quantification of DNA fragmentation. Results show that PW exhibited a statistically significant (pbody weight (b.w.); 0.33 ml/kg b.w. of PW, respectively. However, genotoxicity decreased strongly when tested with the PW obtained after incubation with P. peli We can conclude that using comet assay genotoxicity end points are useful tools to biomonitor the physicochemical and biological quality of water. Also, it could be concluded that P. peli can treat and detoxify the studied PW. © The Author(s) 2013.

  2. The determinants of the antibiotic resistance process.

    Science.gov (United States)

    Franco, Beatriz Espinosa; Altagracia Martínez, Marina; Sánchez Rodríguez, Martha A; Wertheimer, Albert I

    2009-01-01

    The use of antibiotic drugs triggers a complex interaction involving many biological, sociological, and psychological determinants. Resistance to antibiotics is a serious worldwide problem which is increasing and has implications for morbidity, mortality, and health care both in hospitals and in the community. To analyze current research on the determinants of antibiotic resistance and comprehensively review the main factors in the process of resistance in order to aid our understanding and assessment of this problem. We conducted a MedLine search using the key words "determinants", "antibiotic", and "antibiotic resistance" to identify publications between 1995 and 2007 on the determinants of antibiotic resistance. Publications that did not address the determinants of antibiotic resistance were excluded. The process and determinants of antibiotic resistance are described, beginning with the development of antibiotics, resistance and the mechanisms of resistance, sociocultural determinants of resistance, the consequences of antibiotic resistance, and alternative measures proposed to combat antibiotic resistance. Analysis of the published literature identified the main determinants of antibiotic resistance as irrational use of antibiotics in humans and animal species, insufficient patient education when antibiotics are prescribed, lack of guidelines for treatment and control of infections, lack of scientific information for physicians on the rational use of antibiotics, and lack of official government policy on the rational use of antibiotics in public and private hospitals.

  3. Treatment of periodontitis in smokers with multiple sessions of antimicrobial photodynamic therapy or systemic antibiotics: A randomized clinical trial.

    Science.gov (United States)

    Theodoro, Letícia Helena; Assem, Naida Zanini; Longo, Mariéllen; Alves, Márcio Luiz Ferro; Duque, Cristiane; Stipp, Rafael Nobrega; Vizoto, Natália Leal; Garcia, Valdir Gouveia

    2018-06-01

    The aim of this study was to evaluate the effects of non-surgical periodontal therapies on smokers with chronic periodontitis, involving multiple adjunctive applications of antimicrobial photodynamic therapy (aPDT), and systemic metronidazole (MTZ) with amoxicillin (AMX). All participants were treated with scaling and root planing (SRP). Seventeen patients received 400 mg of MTZ and 500 mg of AMX three times per day for 7 days (MTZ + AMX). Additionally, 17 patients received a placebo, and 17 patients were treated with three applications of aPDT (immediately, 48 h and 96 h after SRP). Clinical and microbiological examinations were performed at baseline and at 90 and 180 days post-therapy. Subgingival samples were analyzed using real-time polymerase chain reaction. After 180 days, the patients in groups MTZ + AMX and aPDT had significantly lower mean probing depths, more clinical attachment level gains and less bleeding on probing. At 180 days, in the moderate pocket there was a reduction in the levels of Porphyromonas gingivalis and Prevotella nigrescens in the MTZ + AMX group, while group aPDT showed a reduction in Prevotella nigrescens. Furthermore, at 180 days, in the deep pocket a reduction in Porphyromonas gingivalis, Prevotella intermedia and Prevotella nigrescens was observed in group MTZ + AMX, as well as a reduction in the levels of Prevotella intermedia and Prevotella nigrescens in group aPDT. In smokers with periodontitis, the MTZ + AMX and aPDT treatments significantly improved the effects of SRP. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Prevalence of Multiple Antibiotics Resistant (MAR) Pseudomonas Species in the Final Effluents of Three Municipal Wastewater Treatment Facilities in South Africa

    Science.gov (United States)

    Odjadjare, Emmanuel E.; Igbinosa, Etinosa O.; Mordi, Raphael; Igere, Bright; Igeleke, Clara L.; Okoh, Anthony I.

    2012-01-01

    The final effluents of three (Alice, Dimbaza, and East London) wastewater treatment plants (WWTPs) were evaluated to determine their physicochemical quality and prevalence of multiple antibiotics resistant (MAR) Pseudomonas species, between August 2007 and July 2008. The annual mean total Pseudomonas count (TPC) was 1.20 × 104 (cfu/100 mL), 1.08 × 104 (cfu/100 mL), and 2.66 × 104 (cfu/100 mL), for the Alice, Dimbaza, and East London WWTPs respectively. The effluents were generally compliant with recommended limits for pH, temperature, TDS, DO, nitrite and nitrate; but fell short of target standards for turbidity, COD, and phosphate. The tested isolates were highly sensitive to gentamicin (100%), ofloxacin (100%), clindamycin (90%), erythromycin (90%) and nitrofurantoin (80%); whereas high resistance was observed against the penicillins (90–100%), rifampin (90%), sulphamethoxazole (90%) and the cephems (70%). MAR index ranged between 0.26 and 0.58. The study demonstrated that MAR Pseudomonas species were quite prevalent in the final effluents of WWTPs in South Africa; and this can lead to serious health risk for communities that depend on the effluent-receiving waters for sundry purposes. PMID:22829792

  5. Single versus multiple enemies and the impact on biological control of spider mites in cassava fields in West-Africa

    NARCIS (Netherlands)

    Onzo, A.; Sabelis, M.W.; Hanna, R.

    2014-01-01

    To determine whether to use single or multiple predator species for biological pest control requires manipulative field experiments. We performed such tests in Benin (West Africa) in cassava fields infested by the cassava green mite Mononychellus tanajoa, and the cotton red mite Oligonychus

  6. Forgotten antibiotics

    DEFF Research Database (Denmark)

    Pulcini, Céline; Bush, Karen; Craig, William A

    2012-01-01

    In view of the alarming spread of antimicrobial resistance in the absence of new antibiotics, this study aimed at assessing the availability of potentially useful older antibiotics. A survey was performed in 38 countries among experts including hospital pharmacists, microbiologists, and infectious...

  7. Improvement of antifungal and antibacterial antibiotic producing strain of Bacillus subtilis AFCI-69 by radiation and chemical mutagens. Part of a coordinated programme on radiation biology

    International Nuclear Information System (INIS)

    Ahmad, M.S.

    1978-08-01

    Gamma radiation was used to select higher antibiotic yield mutants of Bacillus subtilis AECL 69. The test organisms were Aspergillus niger RAGENI 70 and Staphylococcus aureus 6571 (16) N.C.T.C. Searches for fermentation, purification and characterization of antibiotics of parent strain and its mutants were carried out

  8. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology.

    Science.gov (United States)

    Niu, Guoqing; Tan, Huarong

    2015-02-01

    The alarming rise in antibiotic-resistant pathogens has coincided with a decline in the supply of new antibiotics. It is therefore of great importance to find and create new antibiotics. Nucleoside antibiotics are a large family of natural products with diverse biological functions. Their biosynthesis is a complex process through multistep enzymatic reactions and is subject to hierarchical regulation. Genetic and biochemical studies of the biosynthetic machinery have provided the basis for pathway engineering and combinatorial biosynthesis to create new or hybrid nucleoside antibiotics. Dissection of regulatory mechanisms is leading to strategies to increase the titer of bioactive nucleoside antibiotics. Copyright © 2014. Published by Elsevier Ltd.

  9. Antibiotic resistance reservoirs

    NARCIS (Netherlands)

    Versluis, Dennis

    2016-01-01

    One of the major threats to human health in the 21st century is the emergence of pathogenic bacteria that are resistant to multiple antibiotics, thereby limiting treatment options. An important route through which pathogens become resistant is via acquisition of resistance genes from

  10. Recent progress in the biology of multiple myeloma and future directions in the treatment.

    Science.gov (United States)

    Pico, J L; Castagna, L; Bourhis, J H

    1998-04-01

    A great amount of scientific information, accumulated over recent years on the biology of Multiple Myeloma (MM), has fuelled speculation about the origin of malignant plasma cells, about a purported critical role played by the bone marrow stroma, and further still, on cytokine interactions and in particular that of IL-6 and its relationship with the immune system. Among the growth factors secreted by stroma cells, IL-6 is a potent stimulator of myeloma cells in vitro but does not induce a malignant phenotype in normal plasma cells. Many efforts have been produced to identify the stem cell in MM and probably memory B lymphocytes are the best candidates. The demonstration of a Graft vs Myeloma effect in the allogeneic setting strongly supports the immunotherapy in MM. Recent data also suggest that a virus (Kaposi-associated herpes virus, HHV-8) may be significantly associated with the development of MM. In parallel, progress has been achieved in the treatment of this incurable disease with well defined prognostic factors, more efficient supportive care and its corollary, improved quality of life and dose-intensified chemo-radiotherapy followed by autologous hematopoietic stem cell support. Improving the quality of grafts with the selection of CD34 positive cells is another approach aimed at reducing plasma cell contamination without impairing haematological recovery. An EBMT randomized study assessing the role of CD34 selection has been initiated by our group Increasingly efficient first-line therapy, better quality autografts and improved post-remission treatment with, for example, anti-idiopathic vaccination are the most promising future directions.

  11. Comparing Effects of Biologic Agents in Treating Patients with Rheumatoid Arthritis: A Multiple Treatment Comparison Regression Analysis.

    Directory of Open Access Journals (Sweden)

    Ingunn Fride Tvete

    Full Text Available Rheumatoid arthritis patients have been treated with disease modifying anti-rheumatic drugs (DMARDs and the newer biologic drugs. We sought to compare and rank the biologics with respect to efficacy. We performed a literature search identifying 54 publications encompassing 9 biologics. We conducted a multiple treatment comparison regression analysis letting the number experiencing a 50% improvement on the ACR score be dependent upon dose level and disease duration for assessing the comparable relative effect between biologics and placebo or DMARD. The analysis embraced all treatment and comparator arms over all publications. Hence, all measured effects of any biologic agent contributed to the comparison of all biologic agents relative to each other either given alone or combined with DMARD. We found the drug effect to be dependent on dose level, but not on disease duration, and the impact of a high versus low dose level was the same for all drugs (higher doses indicated a higher frequency of ACR50 scores. The ranking of the drugs when given without DMARD was certolizumab (ranked highest, etanercept, tocilizumab/ abatacept and adalimumab. The ranking of the drugs when given with DMARD was certolizumab (ranked highest, tocilizumab, anakinra/rituximab, golimumab/ infliximab/ abatacept, adalimumab/ etanercept [corrected]. Still, all drugs were effective. All biologic agents were effective compared to placebo, with certolizumab the most effective and adalimumab (without DMARD treatment and adalimumab/ etanercept (combined with DMARD treatment the least effective. The drugs were in general more effective, except for etanercept, when given together with DMARDs.

  12. Antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Marianne Frieri

    2017-07-01

    Full Text Available Summary: Antimicrobial resistance in bacterial pathogens is a challenge that is associated with high morbidity and mortality. Multidrug resistance patterns in Gram-positive and -negative bacteria are difficult to treat and may even be untreatable with conventional antibiotics. There is currently a shortage of effective therapies, lack of successful prevention measures, and only a few new antibiotics, which require development of novel treatment options and alternative antimicrobial therapies. Biofilms are involved in multidrug resistance and can present challenges for infection control. Virulence, Staphylococcus aureus, Clostridium difficile infection, vancomycin-resistant enterococci, and control in the Emergency Department are also discussed. Keywords: Antibiotic resistance, Biofilms, Infections, Public health, Emergency Department

  13. Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549).

    Science.gov (United States)

    Vijayakumar, S; Vaseeharan, B; Malaikozhundan, B; Gopi, N; Ekambaram, P; Pachaiappan, R; Velusamy, P; Murugan, K; Benelli, G; Suresh Kumar, R; Suriyanarayanamoorthy, M

    2017-01-01

    Botanical-mediated synthesis of nanomaterials is currently emerging as a cheap and eco-friendly nanotechnology, since it does not involve the use of toxic chemicals. In the present study, we focused on the synthesis of gold nanoparticles using the aqueous peel extract of Musa paradisiaca (MPPE-AuNPs) following a facile and cheap fabrication process. The green synthesized MPPE-AuNPs were bio-physically characterized by UV-Vis spectroscopy, FTIR, XRD, TEM, Zeta potential analysis and EDX. MPPE-AuNPs were crystalline in nature, spherical to triangular in shape, with particle size ranging within 50 nm. The biofilm inhibition activity of MPPE-AuNPs was higher against multiple antibiotic resistant (MARS) Gram-positive Enterococcus faecalis. Light and confocal laser scanning microscopic observations evidenced that the MPPE-AuNPs effectively inhibited the biofilm of E. faecalis when tested at 100 μg mL -1 . Cytotoxicity studies demonstrated that MPPE-AuNPs were effective in inhibiting the viability of human A549 lung cancer cells at higher concentrations of 100 μg mL -1 . The morphological changes in the MPPE-AuNPs treated A549 lung cancer cells were visualized under phase-contrast microscopy. Furthermore, the ecotoxicity of MPPE-AuNPs on the freshwater micro crustacean Ceriodaphnia cornuta were evaluated. Notably, no mortality was recorded in MPPE-AuNPs treated C. cornuta at 250 μg mL -1 . This study concludes that MPPE-AuNPs are non-toxic, eco-friendly and act as a multipurpose potential biomaterial for biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Multiple-Swarm Ensembles: Improving the Predictive Power and Robustness of Predictive Models and Its Use in Computational Biology.

    Science.gov (United States)

    Alves, Pedro; Liu, Shuang; Wang, Daifeng; Gerstein, Mark

    2018-01-01

    Machine learning is an integral part of computational biology, and has already shown its use in various applications, such as prognostic tests. In the last few years in the non-biological machine learning community, ensembling techniques have shown their power in data mining competitions such as the Netflix challenge; however, such methods have not found wide use in computational biology. In this work, we endeavor to show how ensembling techniques can be applied to practical problems, including problems in the field of bioinformatics, and how they often outperform other machine learning techniques in both predictive power and robustness. Furthermore, we develop a methodology of ensembling, Multi-Swarm Ensemble (MSWE) by using multiple particle swarm optimizations and demonstrate its ability to further enhance the performance of ensembles.

  15. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-A review.

    Science.gov (United States)

    Boyd, Philip W; Collins, Sinead; Dupont, Sam; Fabricius, Katharina; Gattuso, Jean-Pierre; Havenhand, Jonathan; Hutchins, David A; Riebesell, Ulf; Rintoul, Max S; Vichi, Marcello; Biswas, Haimanti; Ciotti, Aurea; Gao, Kunshan; Gehlen, Marion; Hurd, Catriona L; Kurihara, Haruko; McGraw, Christina M; Navarro, Jorge M; Nilsson, Göran E; Passow, Uta; Pörtner, Hans-Otto

    2018-06-01

    Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process-oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science-based policy formulation. © 2018 John Wiley & Sons Ltd.

  16. Multiple challenges of antibiotic use in a large hospital in Ethiopia - a ward-specific study showing high rates of hospital-acquired infections and ineffective prophylaxis.

    Science.gov (United States)

    Gutema, Girma; Håkonsen, Helle; Engidawork, Ephrem; Toverud, Else-Lydia

    2018-05-03

    This project aims to study the use of antibiotics in three clinical wards in the largest tertiary teaching hospital in Ethiopia for a period of 1 year. The specific aims were to assess the prevalence of patients on antibiotics, quantify the antibiotic consumption and identify the main indications of use. The material was all the medical charts (n = 2231) retrieved from three clinical wards (internal medicine, gynecology/obstetrics and surgery) in Tikur Anbessa Specialized Hospital (TASH) in Addis Ababa between September 2013 and September 2014. Data collection was performed manually by four pharmacists. Each medical chart represented one patient. About 60% of the patients were admitted to internal medicine, 20% to each of the other two wards. The number of bed days (BD) was on average 16.5. Antibiotics for systemic use were prescribed to 73.7% of the patients (on average: 2.1 antibiotics/patient) of whom 86.6% got a third or fourth generation cephalosporin (mainly ceftriaxone). The average consumption of antibiotics was 81.6 DDD/100BD, varying from 91.8 in internal medicine and 71.6 in surgery to 47.6 in gynecology/obstetrics. The five most frequently occurring infections were pneumonia (26.6%), surgical site infections (21.5%), neutropenic fever (6.9%), sepsis (6.4%) and urinary tract infections (4.7%). About one fourth of the prescriptions were for prophylactic purposes. Hospital acquired infections occurred in 23.5% of the patients (353 cases of surgical site infection). The prescribing was based on empirical treatment and sensitivity testing was reported in only 3.8% of the cases. In the present study from three wards in the largest tertiary teaching hospital in Ethiopia, three out of four patients were prescribed antibiotics, primarily empirically. The mean antibiotic consumption was 81.6 DDD/100BD. Surgical site infections constituted a large burden of the infections treated in the hospital, despite extensive prescribing of prophylaxis. The findings show

  17. Towards a More Biologically-meaningful Climate Characterization: Variability in Space and Time at Multiple Scales

    Science.gov (United States)

    Christianson, D. S.; Kaufman, C. G.; Kueppers, L. M.; Harte, J.

    2013-12-01

    Sampling limitations and current modeling capacity justify the common use of mean temperature values in summaries of historical climate and future projections. However, a monthly mean temperature representing a 1-km2 area on the landscape is often unable to capture the climate complexity driving organismal and ecological processes. Estimates of variability in addition to mean values are more biologically meaningful and have been shown to improve projections of range shifts for certain species. Historical analyses of variance and extreme events at coarse spatial scales, as well as coarse-scale projections, show increasing temporal variability in temperature with warmer means. Few studies have considered how spatial variance changes with warming, and analysis for both temporal and spatial variability across scales is lacking. It is unclear how the spatial variability of fine-scale conditions relevant to plant and animal individuals may change given warmer coarse-scale mean values. A change in spatial variability will affect the availability of suitable habitat on the landscape and thus, will influence future species ranges. By characterizing variability across both temporal and spatial scales, we can account for potential bias in species range projections that use coarse climate data and enable improvements to current models. In this study, we use temperature data at multiple spatial and temporal scales to characterize spatial and temporal variability under a warmer climate, i.e., increased mean temperatures. Observational data from the Sierra Nevada (California, USA), experimental climate manipulation data from the eastern and western slopes of the Rocky Mountains (Colorado, USA), projected CMIP5 data for California (USA) and observed PRISM data (USA) allow us to compare characteristics of a mean-variance relationship across spatial scales ranging from sub-meter2 to 10,000 km2 and across temporal scales ranging from hours to decades. Preliminary spatial analysis at

  18. Antibiotics susceptibility patterns of urine bacterial isolates in Zaria ...

    African Journals Online (AJOL)

    Conclusion: Ps aeruginosa, Staph aureus and E. coli are highly prevalent in urine of the residents of Zaria investigated. The high multiple antibiotics resistance identified makes it necessary for antibiotic susceptibility testing to be conducted prior to antibiotics prescription in in Zaria. Key words: Antibiotics resistance; bacteria; ...

  19. Gender gaps in achievement and participation in multiple introductory biology classrooms.

    Science.gov (United States)

    Eddy, Sarah L; Brownell, Sara E; Wenderoth, Mary Pat

    2014-01-01

    Although gender gaps have been a major concern in male-dominated science, technology, engineering, and mathematics disciplines such as physics and engineering, the numerical dominance of female students in biology has supported the assumption that gender disparities do not exist at the undergraduate level in life sciences. Using data from 23 large introductory biology classes for majors, we examine two measures of gender disparity in biology: academic achievement and participation in whole-class discussions. We found that females consistently underperform on exams compared with males with similar overall college grade point averages. In addition, although females on average represent 60% of the students in these courses, their voices make up less than 40% of those heard responding to instructor-posed questions to the class, one of the most common ways of engaging students in large lectures. Based on these data, we propose that, despite numerical dominance of females, gender disparities remain an issue in introductory biology classrooms. For student retention and achievement in biology to be truly merit based, we need to develop strategies to equalize the opportunities for students of different genders to practice the skills they need to excel. © 2014 S. L. Eddy et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. The determinants of the antibiotic resistance process

    Directory of Open Access Journals (Sweden)

    Beatriz Espinosa Franco

    2009-04-01

    Full Text Available Beatriz Espinosa Franco1, Marina Altagracia Martínez2, Martha A Sánchez Rodríguez1, Albert I Wertheimer31Facultad de Estudios Superiores Zaragoza (UNAM, Mexico; 2Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico; 3Temple University, Philadelphia, Pennsylvania, USABackground: The use of antibiotic drugs triggers a complex interaction involving many biological, sociological, and psychological determinants. Resistance to antibiotics is a serious worldwide problem which is increasing and has implications for morbidity, mortality, and health care both in hospitals and in the community.Objectives: To analyze current research on the determinants of antibiotic resistance and comprehensively review the main factors in the process of resistance in order to aid our understanding and assessment of this problem.Methods: We conducted a MedLine search using the key words “determinants”, “antibiotic”, and “antibiotic resistance” to identify publications between 1995 and 2007 on the determinants of antibiotic resistance. Publications that did not address the determinants of antibiotic resistance were excluded.Results: The process and determinants of antibiotic resistance are described, beginning with the development of antibiotics, resistance and the mechanisms of resistance, sociocultural determinants of resistance, the consequences of antibiotic resistance, and alternative measures proposed to combat antibiotic resistance.Conclusions: Analysis of the published literature identified the main determinants of antibiotic resistance as irrational use of antibiotics in humans and animal species, insufficient patient education when antibiotics are prescribed, lack of guidelines for treatment and control of infections, lack of scientific information for physicians on the rational use of antibiotics, and lack of official government policy on the rational use of antibiotics in public and private hospitals.Keywords: antibiotic drug resistance

  1. Gender Gaps in Achievement and Participation in Multiple Introductory Biology Classrooms

    Science.gov (United States)

    Brownell, Sara E.; Wenderoth, Mary Pat

    2014-01-01

    Although gender gaps have been a major concern in male-dominated science, technology, engineering, and mathematics disciplines such as physics and engineering, the numerical dominance of female students in biology has supported the assumption that gender disparities do not exist at the undergraduate level in life sciences. Using data from 23 large introductory biology classes for majors, we examine two measures of gender disparity in biology: academic achievement and participation in whole-class discussions. We found that females consistently underperform on exams compared with males with similar overall college grade point averages. In addition, although females on average represent 60% of the students in these courses, their voices make up less than 40% of those heard responding to instructor-posed questions to the class, one of the most common ways of engaging students in large lectures. Based on these data, we propose that, despite numerical dominance of females, gender disparities remain an issue in introductory biology classrooms. For student retention and achievement in biology to be truly merit based, we need to develop strategies to equalize the opportunities for students of different genders to practice the skills they need to excel. PMID:25185231

  2. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Munck, Christian

    morbidity and mortality as well as an increase in the cost of treatment. Understanding how bacteria respond to antibiotic exposure gives the foundations for a rational approach to counteract antimicrobial resistance. In the work presented in this thesis, I explore the two fundamental sources...... of antimicrobial resistance: (1) adaptive mutations and (2) horizontal acquisition of resistance genes from antibiotic gene reservoirs. By studying the geno- and phenotypic changes of E. coli in response to single and drug-pair exposures, I uncover the evolutionary trajectories leading to adaptive resistance. I...... to rationally design drug combinations that limit the evolution of antibiotic resistance due to counteracting evolutionary trajectories. My results highlight that an in-depth knowledge about the genetic responses to the individual antimicrobial compounds enables the prediction of responses to drug combinations...

  3. Gender Gaps in Achievement and Participation in Multiple Introductory Biology Classrooms

    Science.gov (United States)

    Eddy, Sarah L.; Brownell, Sara E.; Wenderoth, Mary Pat

    2014-01-01

    Although gender gaps have been a major concern in male-dominated science, technology, engineering, and mathematics disciplines such as physics and engineering, the numerical dominance of female students in biology has supported the assumption that gender disparities do not exist at the undergraduate level in life sciences. Using data from 23 large…

  4. Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants.

    Science.gov (United States)

    Guo, Shengye; Li, Xingyu; He, Pengfei; Ho, Honhing; Wu, Yixin; He, Yueqiu

    2015-06-01

    Bacillus subtilis XF-1 is a gram-positive, plant-associated bacterium that stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. In particular, it is especially highly efficient at controlling the clubroot disease of cruciferous crops. Its 4,061,186-bp genome contains an estimated 3853 protein-coding sequences and the 1155 genes of XF-1 are present in most genome-sequenced Bacillus strains: 3757 genes in B. subtilis 168, and 1164 in B. amyloliquefaciens FZB42. Analysis using the Cluster of Orthologous Groups database of proteins shows that 60 genes control bacterial mobility, 221 genes are related to cell wall and membrane biosynthesis, and more than 112 are genes associated with secondary metabolites. In addition, the genes contributed to the strain's plant colonization, bio-control and stimulation of plant growth. Sequencing of the genome is a fundamental step for developing a desired strain to serve as an efficient biological control agent and plant growth stimulator. Similar to other members of the taxon, XF-1 has a genome that contains giant gene clusters for the non-ribosomal synthesis of antifungal lipopeptides (surfactin and fengycin), the polyketides (macrolactin and bacillaene), the siderophore bacillibactin, and the dipeptide bacilysin. There are two synthesis pathways for volatile growth-promoting compounds. The expression of biosynthesized antibiotic peptides in XF-1 was revealed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry.

  5. Combating Antibiotic Resistance

    Science.gov (United States)

    ... Bacteria Phasing Out Certain Antibiotic Use in Farm Animals FDA: Cutting-Edge Technology Sheds Light on Antibiotic Resistance For More Information Antibiotics and Antibiotic Resistance Antimicrobial Resistance Information for Consumers and Health Professionals CDC: ...

  6. Meaning Making through Multiple Modalities in a Biology Classroom: A Multimodal Semiotics Discourse Analysis

    Science.gov (United States)

    Jaipal, Kamini

    2010-01-01

    The teaching of science is a complex process, involving the use of multiple modalities. This paper illustrates the potential of a multimodal semiotics discourse analysis framework to illuminate meaning-making possibilities during the teaching of a science concept. A multimodal semiotics analytical framework is developed and used to (1) analyze the…

  7. The biological clock modulates the human cortisol response in a multiplicative fashion

    NARCIS (Netherlands)

    van de Werken, Maan; Booij, Sanne H.; van der Zwan, J Esi; Simons, Mirre J. P.; Gordijn, Marijke C. M.; Beersma, Domien G. M.

    Human cortisol levels follow a clear circadian rhythm. We investigated the contribution of alternation of sleep and wakefulness and the circadian clock, using forced desynchrony. Cortisol levels were best described by a multiplication of a circadian and a wake-time component. The human cortisol

  8. Integrated analysis of multiple data sources reveals modular structure of biological networks

    International Nuclear Information System (INIS)

    Lu Hongchao; Shi Baochen; Wu Gaowei; Zhang Yong; Zhu Xiaopeng; Zhang Zhihua; Liu Changning; Zhao, Yi; Wu Tao; Wang Jie; Chen Runsheng

    2006-01-01

    It has been a challenging task to integrate high-throughput data into investigations of the systematic and dynamic organization of biological networks. Here, we presented a simple hierarchical clustering algorithm that goes a long way to achieve this aim. Our method effectively reveals the modular structure of the yeast protein-protein interaction network and distinguishes protein complexes from functional modules by integrating high-throughput protein-protein interaction data with the added subcellular localization and expression profile data. Furthermore, we take advantage of the detected modules to provide a reliably functional context for the uncharacterized components within modules. On the other hand, the integration of various protein-protein association information makes our method robust to false-positives, especially for derived protein complexes. More importantly, this simple method can be extended naturally to other types of data fusion and provides a framework for the study of more comprehensive properties of the biological network and other forms of complex networks

  9. The potential of TaqMan Array Cards for detection of multiple biological agents by real-time PCR.

    Directory of Open Access Journals (Sweden)

    Phillip A Rachwal

    Full Text Available The TaqMan Array Card architecture, normally used for gene expression studies, was evaluated for its potential to detect multiple bacterial agents by real-time PCR. Ten PCR assays targeting five biological agents (Bacillus anthracis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis, and Yersinia pestis were incorporated onto Array Cards. A comparison of PCR performance of each PCR in Array Card and singleplex format was conducted using DNA extracted from pure bacterial cultures. When 100 fg of agent DNA was added to Array Card channels the following levels of agent detection (where at least one agent PCR replicate returned a positive result were observed: Y. pestis 100%, B. mallei & F. tularensis 93%; B. anthracis 71%; B. pseudomallei 43%. For B. mallei & pseudomallei detection the BPM2 PCR, which detects both species, outperformed PCR assays specific to each organism indicating identification of the respective species would not be reproducible at the 100 fg level. Near 100% levels of detection were observed when 100 fg of DNA was added to each PCR in singleplex format with singleplex PCRs also returning sporadic positives at the 10 fg per PCR level. Before evaluating the use of Array Cards for the testing of environmental and clinical sample types, with potential levels of background DNA and PCR inhibitors, users would therefore have to accept a 10-fold reduction in sensitivity of PCR assays on the Array Card format, in order to benefit for the capacity to test multiple samples for multiple agents. A two PCR per agent strategy would allow the testing of 7 samples for the presence of 11 biological agents or 3 samples for 23 biological agents per card (with negative control channels.

  10. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology.

    Science.gov (United States)

    Soltis, P S; Soltis, D E; Chase, M W

    1999-11-25

    Comparative biology requires a firm phylogenetic foundation to uncover and understand patterns of diversification and evaluate hypotheses of the processes responsible for these patterns. In the angiosperms, studies of diversification in floral form, stamen organization, reproductive biology, photosynthetic pathway, nitrogen-fixing symbioses and life histories have relied on either explicit or implied phylogenetic trees. Furthermore, to understand the evolution of specific genes and gene families, evaluate the extent of conservation of plant genomes and make proper sense of the huge volume of molecular genetic data available for model organisms such as Arabidopsis, Antirrhinum, maize, rice and wheat, a phylogenetic perspective is necessary. Here we report the results of parsimony analyses of DNA sequences of the plastid genes rbcL and atpB and the nuclear 18S rDNA for 560 species of angiosperms and seven non-flowering seed plants and show a well-resolved and well-supported phylogenetic tree for the angiosperms for use in comparative biology.

  11. The implications of non-linear biological oscillations on human electrophysiology for electrohypersensitivity (EHS) and multiple chemical sensitivity (MCS).

    Science.gov (United States)

    Sage, Cindy

    2015-01-01

    The 'informational content' of Earth's electromagnetic signaling is like a set of operating instructions for human life. These environmental cues are dynamic and involve exquisitely low inputs (intensities) of critical frequencies with which all life on Earth evolved. Circadian and other temporal biological rhythms depend on these fluctuating electromagnetic inputs to direct gene expression, cell communication and metabolism, neural development, brainwave activity, neural synchrony, a diversity of immune functions, sleep and wake cycles, behavior and cognition. Oscillation is also a universal phenomenon, and biological systems of the heart, brain and gut are dependent on the cooperative actions of cells that function according to principles of non-linear, coupled biological oscillations for their synchrony. They are dependent on exquisitely timed cues from the environment at vanishingly small levels. Altered 'informational content' of environmental cues can swamp natural electromagnetic cues and result in dysregulation of normal biological rhythms that direct growth, development, metabolism and repair mechanisms. Pulsed electromagnetic fields (PEMF) and radiofrequency radiation (RFR) can have the devastating biological effects of disrupting homeostasis and desynchronizing normal biological rhythms that maintain health. Non-linear, weak field biological oscillations govern body electrophysiology, organize cell and tissue functions and maintain organ systems. Artificial bioelectrical interference can give false information (disruptive signaling) sufficient to affect critical pacemaker cells (of the heart, gut and brain) and desynchronize functions of these important cells that orchestrate function and maintain health. Chronic physiological stress undermines homeostasis whether it is chemically induced or electromagnetically induced (or both exposures are simultaneous contributors). This can eventually break down adaptive biological responses critical to health

  12. Multiple Coulomb scattering of high-energy heavy charged particle beams used in biology and medicine

    International Nuclear Information System (INIS)

    Wong, M.; Schimmerling, W.; Ludewigt, B.; Phillips, M.; Curtis, S.; Tobias, C.A.

    1987-01-01

    The authors measured lateral displacement and angular distributions of high-energy heavy charged particles emerging from a target at the Lawrence Berkeley Laboratory BEVALAC with beams used in radiobiology experiments. Multiple Coulomb scattering occurring in the target material generally spreads the beam laterally and increases its divergence. The apparatus consists of four sets of position-sensitive semiconductor detectors located along the beam line. Each providing two position signals and one energy signal. The difference between the two position signals is used to determine the particle position in one dimension. The two position signals are constrained to add up to the energy deposition signal in order to reject multiple-particle traversals. The vector directions for the incident and emerging particles are reconstructed in three dimensions from their measured coordinated positions. Lateral and angular distributions are reported for beams of high-energy neon, iron and uranium ions incident on targets of aluminum, cooper, lead and water

  13. A Review on Antibiotic Resistance: Alarm Bells are Ringing

    OpenAIRE

    Zaman, Sojib Bin; Hussain, Muhammed Awlad; Nye, Rachel; Mehta, Varshil; Mamun, Kazi Taib; Hossain, Naznin

    2017-01-01

    Antibiotics are the ?wonder drugs? to combat microbes. For decades, multiple varieties of antibiotics have not only been used for therapeutic purposes but practiced prophylactically across other industries such as agriculture and animal husbandry. Uncertainty has arisen, as microbes have become resistant to common antibiotics while the host remains unaware that antibiotic resistance has emerged. The aim of this review is to explore the origin, development, and the current state of antibiotic ...

  14. Multiple antibiotic susceptibility of polyphosphate kinase mutants (ppk1 and ppk2 from Pseudomonas aeruginosa PAO1 as revealed by global phenotypic analysis

    Directory of Open Access Journals (Sweden)

    Javiera Ortiz-Severín

    2015-01-01

    Full Text Available BACKGROUND: Pseudomonas aeruginosa is known to be a multidrug resistant opportunistic pathogen. Particularly, P. aeruginosa PAO1 polyphosphate kinase mutant (ppk1 is deficient in motility, quorum sensing, biofilm formation and virulence FINDINGS: By using Phenotypic Microarrays (PM we analyzed near 2000 phenotypes of P. aeruginosa PAO1 polyP kinase mutants (ppk1 and ppk2. We found that both ppk mutants shared most of the phenotypic changes and interestingly many of them related to susceptibility toward numerous and different type of antibiotics such as Ciprofloxacin, Chloramphenicol and Rifampicin CONCLUSIONS: Combining the fact that ppk1 mutants have reduced virulence and are more susceptible to antibiotics, polyP synthesis and particularly PPK1, is a good target for the design of molecules with anti-virulence and anti-persistence properties.

  15. A locked nucleic acid (LNA-based real-time PCR assay for the rapid detection of multiple bacterial antibiotic resistance genes directly from positive blood culture.

    Directory of Open Access Journals (Sweden)

    Lingxiang Zhu

    Full Text Available Bacterial strains resistant to various antibiotic drugs are frequently encountered in clinical infections, and the rapid identification of drug-resistant strains is highly essential for clinical treatment. We developed a locked nucleic acid (LNA-based quantitative real-time PCR (LNA-qPCR method for the rapid detection of 13 antibiotic resistance genes and successfully used it to distinguish drug-resistant bacterial strains from positive blood culture samples. A sequence-specific primer-probe set was designed, and the specificity of the assays was assessed using 27 ATCC bacterial strains and 77 negative blood culture samples. No cross-reaction was identified among bacterial strains and in negative samples, indicating 100% specificity. The sensitivity of the assays was determined by spiking each bacterial strain into negative blood samples, and the detection limit was 1-10 colony forming units (CFU per reaction. The LNA-qPCR assays were first applied to 72 clinical bacterial isolates for the identification of known drug resistance genes, and the results were verified by the direct sequencing of PCR products. Finally, the LNA-qPCR assays were used for the detection in 47 positive blood culture samples, 19 of which (40.4% were positive for antibiotic resistance genes, showing 91.5% consistency with phenotypic susceptibility results. In conclusion, LNA-qPCR is a reliable method for the rapid detection of bacterial antibiotic resistance genes and can be used as a supplement to phenotypic susceptibility testing for the early detection of antimicrobial resistance to allow the selection of appropriate antimicrobial treatment and to prevent the spread of resistant isolates.

  16. Prescribing Antibiotics

    DEFF Research Database (Denmark)

    Pedersen, Inge Kryger; Jepsen, Kim Sune

    2018-01-01

    The medical professions will lose an indispensable tool in clinical practice if even simple infections cannot be cured because antibiotics have lost effectiveness. This article presents results from an exploratory enquiry into “good doctoring” in the case of antibiotic prescribing at a time when...... the knowledge base in the healthcare field is shifting. Drawing on in-depth interviews about diagnosing and prescribing, the article demonstrates how the problem of antimicrobial resistance is understood and engaged with by Danish general practitioners. When general practitioners speak of managing “non......-medical issues,” they refer to routines, clinical expertise, experiences with their patients, and decision-making based more on contextual circumstances than molecular conditions—and on the fact that such conditions can be hard to assess. This article’s contribution to knowledge about how new and global health...

  17. PF1163A and B, new antifungal antibiotics produced by Penicillium sp. I. Taxonomy of producing strain, fermentation, isolation and biological activities.

    Science.gov (United States)

    Nose, H; Seki, A; Yaguchi, T; Hosoya, A; Sasaki, T; Hoshiko, S; Shomura, T

    2000-01-01

    Two novel antifungal antibiotics, PF1163A and B, were isolated from the fermentation broth of Penicillium sp. They were purified from the solid cultures of rice media using ethyl acetate extraction, silica gel and Sephadex LH-20 column chromatographies. PF1163A and B showed potent growth inhibitory activity against pathogenic fungal strain Candida albicans but did not show cytotoxic activity against mammalian cells. These compounds inhibited the ergosterol biosynthesis in Candida albicans.

  18. Antibiotics Resistance in Rhizobium: Type, Process, Mechanism and Benefit for Agriculture.

    Science.gov (United States)

    Naamala, Judith; Jaiswal, Sanjay K; Dakora, Felix D

    2016-06-01

    The use of high-quality rhizobial inoculants on agricultural legumes has contributed substantially to the N economy of farming systems through inputs from biological nitrogen fixation (BNF). Large populations of symbiotically effective rhizobia should be available in the rhizosphere for symbiotic BNF with host plants. The rhizobial populations should also be able to compete and infect host plants. However, the rhizosphere comprises large populations of different microorganisms. Some of these microorganisms naturally produce antibiotics which are lethal to susceptible rhizobial populations in the soil. Therefore, intrinsic resistance to antibiotics is a desirable trait for the rhizobial population. It increases the rhizobia's chances of growth, multiplication and persistence in the soil. With a large population of rhizobia in the soil, infectivity of host plants and the subsequent BNF efficiency can be guaranteed. This review, therefore, puts together findings by various researchers on antibiotic resistance in bacteria with the main emphasis on rhizobia. It describes the different modes of action of different antibiotics, the types of antibiotic resistance exhibited by rhizobia, the mechanisms of acquisition of antibiotic resistance in rhizobia and the levels of tolerance of different rhizobial species to different antibiotics.

  19. Biological Activity of Lenalidomide and Its Underlying Therapeutic Effects in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Roberta Martiniani

    2012-01-01

    Full Text Available Lenalidomide is a synthetic compound derived by modifying the chemical structure of thalidomide. It belongs to the second generation of immunomodulatory drugs (IMiDs and possesses pleiotropic properties. Even if lenalidomide has been shown to be active in the treatment of several hematologic malignancies, this review article is mostly focalized on its mode of action in multiple myeloma. The present paper is about the direct and indirect antitumor effects of lenalidomide on malignant plasmacells, bone marrow microenvironment, bone resorption and host’s immune response. The molecular mechanisms and targets of lenalidomide remain largely unknown, but recent evidence shows cereblon (CRBN as a possible mediator of its therapeutical effects.

  20. Robust biological nitrogen removal by creating multiple tides in a single bed tidal flow constructed wetland.

    Science.gov (United States)

    Hu, Yuansheng; Zhao, Yaqian; Rymszewicz, Anna

    2014-02-01

    Achieving effective total nitrogen (TN) removal is one of the major challenges faced by constructed wetlands (CWs). To address this issue, multiple "tides" were proposed in a single stage tidal flow constructed wetland (TFCW). With this adoption, exceptional TN removal (85% on average) was achieved under a high nitrogen loading rate (NLR) of around 28 g Nm(-2)day(-1), which makes the proposed system an adequate option to provide advanced wastewater treatment for peri-urban communities and rural area. It was revealed that the multiple "tides" not only promoted TN removal performance, but also brought more flexibility to TFCWs. Adsorption of NH4(+)-N onto the wetland medium (during contact period) and regeneration of the adsorption capacity via nitrification (during bed resting) were validated as the key processes for NH4(+)-N conversion in TFCWs. Moreover, simultaneous nitrification denitrification (SND) was found to be significant during the bed resting period. These findings will provide a new foundation for the design and modeling of nitrogen conversion and oxygen transfer in TFCWs. © 2013.

  1. Multiple, novel biologically active endophytic actinomycetes isolated from upper Amazonian rainforests.

    Science.gov (United States)

    Bascom-Slack, Carol A; Ma, Cong; Moore, Emily; Babbs, Beatrice; Fenn, Kathleen; Greene, Joshua S; Hann, Bradley D; Keehner, Jocelyn; Kelley-Swift, Elizabeth G; Kembaiyan, Vivek; Lee, Sun Jin; Li, Puyao; Light, David Y; Lin, Emily H; Schorn, Michelle A; Vekhter, Daniel; Boulanger, Lori-Ann; Hess, W M; Vargas, Percy Núñez; Strobel, Gary A; Strobel, Scott A

    2009-08-01

    Microbial biodiversity provides an increasingly important source of medically and industrially useful compounds. We have isolated 14 actinomycete species from a collection of approximately 300 plant stem samples from the upper Amazonian rainforest in Peru. All of the cultured isolates produce substances with inhibitory activity directed at a range of potential fungal and bacterial pathogens. For some organisms, this activity is very broad in spectrum while other organisms show specific activity against a limited number of organisms. Two of these organisms preferentially inhibit bacterial test organisms over eukaryotic organisms. rDNA sequence analysis indicates that these organisms are not equivalent to any other cultured deposits in GenBank. Our results provide evidence of the untapped biodiversity in the form of biologically active microbes present within the tissues of higher plants.

  2. Integration of multiple biological features yields high confidence human protein interactome.

    Science.gov (United States)

    Karagoz, Kubra; Sevimoglu, Tuba; Arga, Kazim Yalcin

    2016-08-21

    The biological function of a protein is usually determined by its physical interaction with other proteins. Protein-protein interactions (PPIs) are identified through various experimental methods and are stored in curated databases. The noisiness of the existing PPI data is evident, and it is essential that a more reliable data is generated. Furthermore, the selection of a set of PPIs at different confidence levels might be necessary for many studies. Although different methodologies were introduced to evaluate the confidence scores for binary interactions, a highly reliable, almost complete PPI network of Homo sapiens is not proposed yet. The quality and coverage of human protein interactome need to be improved to be used in various disciplines, especially in biomedicine. In the present work, we propose an unsupervised statistical approach to assign confidence scores to PPIs of H. sapiens. To achieve this goal PPI data from six different databases were collected and a total of 295,288 non-redundant interactions between 15,950 proteins were acquired. The present scoring system included the context information that was assigned to PPIs derived from eight biological attributes. A high confidence network, which included 147,923 binary interactions between 13,213 proteins, had scores greater than the cutoff value of 0.80, for which sensitivity, specificity, and coverage were 94.5%, 80.9%, and 82.8%, respectively. We compared the present scoring method with others for evaluation. Reducing the noise inherent in experimental PPIs via our scoring scheme increased the accuracy significantly. As it was demonstrated through the assessment of process and cancer subnetworks, this study allows researchers to construct and analyze context-specific networks via valid PPI sets and one can easily achieve subnetworks around proteins of interest at a specified confidence level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Impact of urban contamination of the La Paz River basin on thermotolerant coliform density and occurrence of multiple antibiotic resistant enteric pathogens in river water, irrigated soil and fresh vegetables.

    Science.gov (United States)

    Poma, Violeta; Mamani, Nataniel; Iñiguez, Volga

    2016-01-01

    La Paz River in Andean highlands is heavily polluted with urban run-off and further contaminates agricultural lowlands and downstream waters at the Amazon watershed. Agricultural produce at this region is the main source of vegetables for the major Andean cities of La Paz and El Alto. We conducted a 1 year study, to evaluate microbial quality parameters and occurrence of multiple enteropathogenic bacteria (Enterohemorrhagic E. coli-EHEC, Enteroinvasive E. coli or Shigella-EIEC/Shigella, Enteroaggregative E. coli-EAEC, Enteropathogenic E. coli-EPEC Enterotoxigenic E. coli-ETEC and Salmonella) and its resistance to 11 antibiotics. Four sampling locations were selected: a fresh mountain water reservoir (un-impacted, site 1) and downstream sites receiving wastewater discharges (impacted, sites 2-4). River water (sites 1-4, N = 48), and soil and vegetable samples (site 3, N = 24) were collected during dry (April-September) and rainy seasons (October-March). Throughout the study, thermotolerant coliform density values at impacted sites greatly exceeded the guidelines for recreational and agricultural water uses. Seasonal differences were found for thermotolerant coliform density during dry season in water samples nearby a populated and hospital compound area. In contrast to the un-impacted site, where none of the tested enteropathogens were found, 100 % of surface water, 83 % of soil and 67 % of vegetable samples at impacted sites, were contaminated with at least one enteropathogen, being ETEC and Salmonella the most frequently found. ETEC isolates displayed different patterns of toxin genes among sites. The occurrence of enteropathogens was associated with the thermotolerant coliform density. At impacted sites, multiple enteropathogens were frequently found during rainy season. Among isolated enteropathogens, 50 % were resistant to at least two antibiotics, with resistance to ampicillin, nalidixic acid, trimethoprim-sulfamethoxazole and tetracycline commonly

  4. Distribution of antibiotic resistance in urban watershed in Japan

    International Nuclear Information System (INIS)

    Ham, Young-Sik; Kobori, Hiromi; Kang, Joo-Hyon; Matsuzaki, Takayuki; Iino, Michiyo; Nomura, Hayashi

    2012-01-01

    Antibiotic-resistant E. coli concentrations showed large spatial and temporal variations, with greater concentrations observed in tributaries and downstream than in the upstream and midstream. Twenty percent of the geometric mean concentrations of antibiotic-resistant E. coli in the Tama River basin (Japan) exceeded the maximum acceptable concentration of indicator E. coli established by the USEPA. The indicator E. coli concentrations were positively correlated with those of antibiotic-resistant E. coli and multiple-antibiotic-resistant E. coli (resistance to more than two kinds of antibiotics), respectively, but not the detection rate of antibiotic-resistant E. coli, implying that use of antibiotic-resistant E. coli concentration rather than the detection rate can be a better approach for water quality assessment. Multiple-antibiotic-resistant E. coli is a useful indicator for estimating the resistance diffusion, water quality degradation and public health risk potential. This assessment provides beneficial information for setting national regulatory or environmental standards and managing integrated watershed areas. - Highlights: ► We extensively observed antibiotic-resistant E. coli (AREc) in Tama River (Japan). ► AREc count rather than the detection rate is better approach for water quality test. ► Multiple-AREc is resistant to the antibiotic to which single-AREc has no resistance. ► Multiple-AREc increase will accelerate the diffusion of antibiotic resistance. - Multiple-antibiotic-resistant E. coli in the watershed can cause the diffusion of conventionally rare antibiotic resistance.

  5. Predation and selection for antibiotic resistance in natural environments

    DEFF Research Database (Denmark)

    Leisner, Jørgen; Jørgensen, Niels O. G.; Middelboe, Mathias

    2016-01-01

    Genes encoding resistance to antibiotics appear, like the antibiotics themselves, to be ancient, originating long before the rise of the era of anthropogenic antibiotics. However, detailed understanding of the specific biological advantages of antibiotic resistance in natural environments is still...... lacking, thus limiting our efforts to prevent environmental influx of resistance genes. Here, we propose that antibiotic-resistant cells not only evade predation from antibiotic producers but also take advantage of nutrients released from cells that are killed by the antibiotic-producing bacteria. Thus......, predation is potentially an important mechanism for driving antibiotic resistance during slow or stationary phase of growth when nutrients are deprived. This adds to explain the ancient nature and widespread occurrence of antibiotic resistance in natural environments unaffected by anthropogenic antibiotics...

  6. Practice makes pretty good: assessment of primary literature reading abilities across multiple large-enrollment biology laboratory courses.

    Science.gov (United States)

    Sato, Brian K; Kadandale, Pavan; He, Wenliang; Murata, Paige M N; Latif, Yama; Warschauer, Mark

    2014-01-01

    Primary literature is essential for scientific communication and is commonly utilized in undergraduate biology education. Despite this, there is often little time spent training our students how to critically analyze a paper. To address this, we introduced a primary literature module in multiple upper-division laboratory courses. In this module, instructors conduct classroom discussions that dissect a paper as researchers do. While previous work has identified classroom interventions that improve primary literature comprehension within a single course, our goal was to determine whether including a scientific paper module in our classes could produce long-term benefits. On the basis of performance in an assessment exam, we found that our module resulted in longitudinal gains, including increased comprehension and critical-thinking abilities in subsequent lab courses. These learning gains were specific to courses utilizing our module, as no longitudinal gains were seen in students who had taken other upper-division labs that lacked extensive primary literature discussion. In addition, we assessed whether performance on our assessment correlated with a variety of factors, including grade point average, course performance, research background, and self-reported confidence in understanding of the article. Furthermore, all of the study conclusions are independent of biology disciplines, as we observe similar trends within each course. © 2014 B. K. Sato et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Vancomycin analogues containing monosaccharides exhibit improved antibiotic activity: a combined one-pot enzymatic glycosylation and chemical diversification strategy.

    Science.gov (United States)

    Thayer, Desiree A; Wong, Chi-Huey

    2006-09-18

    Many natural products contain carbohydrate moieties that contribute to their biological activity. Manipulation of the carbohydrate domain of natural products through multiple glycosylations to identify new derivatives with novel biological activities has been a difficult and impractical process. We report a practical one-pot enzymatic approach with regeneration of cosubstrates to synthesize analogues of vancomycin that contain an N-alkyl glucosamine, which exhibited marked improvement in antibiotic activity against a vancomycin-resistant strain of Enterococcus.

  8. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics

    Directory of Open Access Journals (Sweden)

    Liu Chunbao

    2016-01-01

    Full Text Available Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader.

  9. Synthesis, Molecular Modelling and Biological Evaluation of Novel Heterodimeric, Multiple Ligands Targeting Cholinesterases and Amyloid Beta

    Directory of Open Access Journals (Sweden)

    Michalina Hebda

    2016-03-01

    Full Text Available Cholinesterases and amyloid beta are one of the major biological targets in the search for a new and efficacious treatment of Alzheimer’s disease. The study describes synthesis and pharmacological evaluation of new compounds designed as dual binding site acetylcholinesterase inhibitors. Among the synthesized compounds, two deserve special attention—compounds 42 and 13. The former is a saccharin derivative and the most potent and selective acetylcholinesterase inhibitor (EeAChE IC50 = 70 nM. Isoindoline-1,3-dione derivative 13 displays balanced inhibitory potency against acetyl- and butyrylcholinesterase (BuChE (EeAChE IC50 = 0.76 μM, EqBuChE IC50 = 0.618 μM, and it inhibits amyloid beta aggregation (35.8% at 10 μM. Kinetic studies show that the developed compounds act as mixed or non-competitive acetylcholinesterase inhibitors. According to molecular modelling studies, they are able to interact with both catalytic and peripheral active sites of the acetylcholinesterase. Their ability to cross the blood-brain barrier (BBB was confirmed in vitro in the parallel artificial membrane permeability BBB assay. These compounds can be used as a solid starting point for further development of novel multifunctional ligands as potential anti-Alzheimer’s agents.

  10. Strategic Integration of Multiple Bioinformatics Resources for System Level Analysis of Biological Networks.

    Science.gov (United States)

    D'Souza, Mark; Sulakhe, Dinanath; Wang, Sheng; Xie, Bing; Hashemifar, Somaye; Taylor, Andrew; Dubchak, Inna; Conrad Gilliam, T; Maltsev, Natalia

    2017-01-01

    Recent technological advances in genomics allow the production of biological data at unprecedented tera- and petabyte scales. Efficient mining of these vast and complex datasets for the needs of biomedical research critically depends on a seamless integration of the clinical, genomic, and experimental information with prior knowledge about genotype-phenotype relationships. Such experimental data accumulated in publicly available databases should be accessible to a variety of algorithms and analytical pipelines that drive computational analysis and data mining.We present an integrated computational platform Lynx (Sulakhe et al., Nucleic Acids Res 44:D882-D887, 2016) ( http://lynx.cri.uchicago.edu ), a web-based database and knowledge extraction engine. It provides advanced search capabilities and a variety of algorithms for enrichment analysis and network-based gene prioritization. It gives public access to the Lynx integrated knowledge base (LynxKB) and its analytical tools via user-friendly web services and interfaces. The Lynx service-oriented architecture supports annotation and analysis of high-throughput experimental data. Lynx tools assist the user in extracting meaningful knowledge from LynxKB and experimental data, and in the generation of weighted hypotheses regarding the genes and molecular mechanisms contributing to human phenotypes or conditions of interest. The goal of this integrated platform is to support the end-to-end analytical needs of various translational projects.

  11. Aerated biofilters with multiple-level air injection configurations to enhance biological treatment of methane emissions.

    Science.gov (United States)

    Farrokhzadeh, Hasti; Hettiaratchi, J Patrick A; Jayasinghe, Poornima; Kumar, Sunil

    2017-09-01

    Aiming to improve conventional methane biofilter performance, a multiple-level aeration biofilter design is proposed. Laboratory flow-through column experiments were conducted to evaluate three actively-aerated methane biofilter configurations. Columns were aerated at one, two, and three levels of the bed depth, with air introduced at flow rates calculated from methane oxidation reaction stoichiometry. Inlet methane loading rates were increased in five stages between 6 and 18mL/min. The effects of methane feeding rate, levels of aeration, and residence time on methane oxidation rates were determined. Samples collected after completion of flow-through experiments were used to determine methane oxidation kinetic parameters, V max , K m , and methanotrophic community distribution across biofilter columns. Results obtained from mixed variances analysis and response surfaces, as well as methanotrophic activity data, suggested that, biofilter column with two aeration levels has the most even performance over time, maintaining 85.1% average oxidation efficiency over 95days of experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Multiple biological complex of alkaline extract of the leaves of Sasa senanensis Rehder.

    Science.gov (United States)

    Sakagami, Hiroshi; Zhou, Li; Kawano, Michiyo; Thet, May Maw; Tanaka, Shoji; Machino, Mamoru; Amano, Shigeru; Kuroshita, Reina; Watanabe, Shigeru; Chu, Qing; Wang, Qin-Tao; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Sekine, Keisuke; Shirataki, Yoshiaki; Zhang, Chang-Hao; Uesawa, Yoshihiro; Mohri, Kiminori; Kitajima, Madoka; Oizumi, Hiroshi; Oizumi, Takaaki

    2010-01-01

    Previous studies have shown anti-inflammatory potential of alkaline extract of the leaves of Sasa senanensis Rehder (SE). The aim of the present study was to clarity the molecular entity of SE, using various fractionation methods. SE inhibited the production of nitric oxide (NO), but not tumour necrosis factor-α by lipopolysaccharide (LPS)-stimulated mouse macrophage-like cells. Lignin carbohydrate complex prepared from SE inhibited the NO production to a comparable extent with SE, whereas chlorophyllin was more active. On successive extraction with organic solvents, nearly 90% of SE components, including chlorophyllin, were recovered from the aqueous layer. Anti-HIV activity of SE was comparable with that of lignin-carbohydrate complex, and much higher than that of chlorophyllin and n-butanol extract fractions. The CYP3A inhibitory activity of SE was significantly lower than that of grapefruit juice and chlorophyllin. Oral administration of SE slightly reduced the number of oral bacteria. When SE was applied to HPLC, nearly 70% of SE components were eluted as a single peak. These data suggest that multiple components of SE may be associated with each other in the native state or after extraction with alkaline solution.

  13. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats.

    Science.gov (United States)

    Wang, Yanjun; Liu, Xiangyang; Zhang, Chen; Wang, Zhengjun

    2018-06-01

    High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP + , NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats. Copyright © 2018. Published by Elsevier Inc.

  14. Enantioselective Total Synthesis of Antibiotic CJ-16,264, Synthesis and Biological Evaluation of Designed Analogues, and Discovery of Highly Potent and Simpler Antibacterial Agents.

    Science.gov (United States)

    Nicolaou, K C; Pulukuri, Kiran Kumar; Rigol, Stephan; Buchman, Marek; Shah, Akshay A; Cen, Nicholas; McCurry, Megan D; Beabout, Kathryn; Shamoo, Yousif

    2017-11-08

    An improved and enantioselective total synthesis of antibiotic CJ-16,264 through a practical kinetic resolution and an iodolactonization reaction to form the iodo pyrrolizidinone fragment of the molecule is described. A series of racemic and enantiopure analogues of CJ-16,264 was designed and synthesized through the developed synthetic technologies and tested against drug-resistant bacterial strains. These studies led to interesting structure-activity relationships and the identification of a number of simpler, and yet equipotent, or even more potent, antibacterial agents than the natural product, thereby setting the foundation for further investigations in the quest for new anti-infective drugs.

  15. Antibiotic Resistance of Bacteria: A Global Challenge

    Indian Academy of Sciences (India)

    protein that functions as an elctroneutral antiport system. The .... isolates, obtained from north Bengal, and over the counter sale of the same antibiotics in and around .... biology is being applied to rapidly explore and optimize the interactions ...

  16. Potential of berberine to enhance antimicrobial activity of commonly used antibiotics for dairy cow mastitis caused by multiple drug-resistant Staphylococcus epidermidis infection.

    Science.gov (United States)

    Zhou, X; Yang, C; Li, Y; Liu, X; Wang, Y

    2015-08-19

    Berberine is a plant alkaloid with antimicrobial activity against a variety of microorganisms. In this study, the antimicrobial properties of berberine against multi-drug resistant field isolates of Staphylococcus epidermidis were investigated using berberine alone or in combination with a commonly used antibiotics in veterinary clinics, including penicillin, lincomycin, and amoxicillin. The results indicated that the minimum inhibitory concentrations of berberine, penicillin, lincomycin, and amoxicillin against field S. epidermidis isolates were 2-512, 0.8-213, 0.4-1024, and 0.4-256 mg/mL, respectively. Furthermore, the synergistic effects of antimicrobial activity against these multi-drug resistant isolates were observed when the berberine was combined with penicillin, lincomycin, or amoxicillin; no antagonistic effect of the combination was detected in any of the clinical isolates. These observations were further confirmed using a time-killing assay, in which a combination of 2 agents yielded a greater than 2.03-2.44 log10 decrease in colony-forming unit/mL compared with each agent alone. These findings suggest that berberine is a promising compound for preventing and treating multi-drug resistant S. epidermidis infected mastitis in dairy cows either alone or in combination with other commonly used antibiotics, such as penicillin, lincomycin, and amoxicillin.

  17. Dissection of Biological Property of Chinese Acupuncture Point Zusanli Based on Long-Term Treatment via Modulating Multiple Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Guangli Yan

    2013-01-01

    Full Text Available Acupuncture has a history of over 3000 years and is a traditional Chinese medical therapy that uses hair-thin metal needles to puncture the skin at specific points on the body to promote wellbeing, while its molecular mechanism and ideal biological pathways are still not clear. High-throughput metabolomics is the global assessment of endogenous metabolites within a biologic system and can potentially provide a more accurate snap shot of the actual physiological state. We hypothesize that acupuncture-treated human would produce unique characterization of metabolic phenotypes. In this study, UPLC/ESI-HDMS coupled with pattern recognition methods and system analysis were carried out to investigate the mechanism and metabolite biomarkers for acupuncture treatment at “Zusanli” acupoint (ST-36 as a case study. The top 5 canonical pathways including alpha-linolenic acid metabolism, d-glutamine and d-glutamate metabolism, citrate cycle, alanine, aspartate, and glutamate metabolism, and vitamin B6 metabolism pathways were acutely perturbed, and 53 differential metabolites were identified by chemical profiling and may be useful to clarify the physiological basis and mechanism of ST-36. More importantly, network construction has led to the integration of metabolites associated with the multiple perturbation pathways. Urine metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture.

  18. Dissection of Biological Property of Chinese Acupuncture Point Zusanli Based on Long-Term Treatment via Modulating Multiple Metabolic Pathways.

    Science.gov (United States)

    Yan, Guangli; Zhang, Aihua; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Zhang, Yingzhi; Xie, Ning; Wang, Xijun

    2013-01-01

    Acupuncture has a history of over 3000 years and is a traditional Chinese medical therapy that uses hair-thin metal needles to puncture the skin at specific points on the body to promote wellbeing, while its molecular mechanism and ideal biological pathways are still not clear. High-throughput metabolomics is the global assessment of endogenous metabolites within a biologic system and can potentially provide a more accurate snap shot of the actual physiological state. We hypothesize that acupuncture-treated human would produce unique characterization of metabolic phenotypes. In this study, UPLC/ESI-HDMS coupled with pattern recognition methods and system analysis were carried out to investigate the mechanism and metabolite biomarkers for acupuncture treatment at "Zusanli" acupoint (ST-36) as a case study. The top 5 canonical pathways including alpha-linolenic acid metabolism, d-glutamine and d-glutamate metabolism, citrate cycle, alanine, aspartate, and glutamate metabolism, and vitamin B6 metabolism pathways were acutely perturbed, and 53 differential metabolites were identified by chemical profiling and may be useful to clarify the physiological basis and mechanism of ST-36. More importantly, network construction has led to the integration of metabolites associated with the multiple perturbation pathways. Urine metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture.

  19. A comparative analysis of multiple-choice and student performance-task assessment in the high school biology classroom

    Science.gov (United States)

    Cushing, Patrick Ryan

    This study compared the performance of high school students on laboratory assessments. Thirty-four high school students who were enrolled in the second semester of a regular biology class or had completed the biology course the previous semester participated in this study. They were randomly assigned to examinations of two formats, performance-task and traditional multiple-choice, from two content areas, using a compound light microscope and diffusion. Students were directed to think-aloud as they performed the assessments. Additional verbal data were obtained during interviews following the assessment. The tape-recorded narrative data were analyzed for type and diversity of knowledge and skill categories, and percentage of in-depth processing demonstrated. While overall mean scores on the assessments were low, elicited statements provided additional insight into student cognition. Results indicated that a greater diversity of knowledge and skill categories was elicited by the two microscope assessments and by the two performance-task assessments. In addition, statements demonstrating in-depth processing were coded most frequently in narratives elicited during clinical interviews following the diffusion performance-task assessment. This study calls for individual teachers to design authentic assessment practices and apply them to daily classroom routines. Authentic assessment should be an integral part of the learning process and not merely an end result. In addition, teachers are encouraged to explicitly identify and model, through think-aloud methods, desired cognitive behaviors in the classroom.

  20. Characterisation of recently emerged multiple antibiotic-resistant Salmonella enterica serovar typhimurium DT104 and other multiresistant phage types from Danish pig herds

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Aarestrup, Frank Møller

    1998-01-01

    electrophoresis (PFGE) using the restriction enzyme Xba I, Overall, 66 per cent of the 670 isolates were sensitive to all the antimicrobial agents tested. Eleven isolates of S typhimurium were resistant to ampicillin, streptomycin and tetracycline and also resistant to other antibiotics in different resistance...... patterns. Seven different multiresistant clones were identified, The most common clones were four isolates of DT104 and three isolates of DT193, TWO Of the three S typhimurium DT104 from 1994 and 1995 were sensitive to all the antimicrobials tested whereas the remaining isolate from 1994 was resistant......A total of 670 isolates of Salmonella enterica were isolated from Danish pig herds, phage typed and tested for susceptibility to amoxycillin + clavulanate, ampicillin, colistin, enrofloxacin, gentamicin, neomycin, spectinomycin, streptomycin, tetracyclines, and trimethoprim + sulphadiazine. S...

  1. General practitioners’ views on the acceptability and applicability of a web-based intervention to reduce antibiotic prescribing for acute cough in multiple European countries: a qualitative study prior to a randomised trial

    Directory of Open Access Journals (Sweden)

    Anthierens Sibyl

    2012-10-01

    Full Text Available Abstract Background Interventions to promote prudent antibiotic prescribing by general practitioners (GPs have often only been developed for use in one country. We aimed to develop an intervention which would be appropriate to implement in multiple European countries in order to offer greater benefit to practice whilst using fewer resources. The INTRO (INternet TRaining for antibiOtic use intervention needed to deliver training to GPs in the use of C-Reactive Protein (CRP near patient tests to help diagnose acute cough and in communication skills to help explain prescribing decisions to patients. We explored GPs’ views on the initial version of INTRO to test acceptability and potentially increase applicability for use in multiple countries before the start of a randomised trial. Method 30 GPs from five countries (Belgium, England, the Netherlands, Poland and Spain, were interviewed using a “think aloud” approach. GPs were asked to work through the intervention and discuss their views on the content and format in relation to following the intervention in their own practice. GPs viewed the same intervention but versions were created in five languages. Data were coded using thematic analysis. Results GPs in all five countries reported the view that the intervention addressed an important topic, was broadly acceptable and feasible to use, and would be a useful tool to help improve clinical practice. However, GPs in the different countries identified aspects of the intervention that did not reflect their national culture or healthcare system. These included perceived differences in communication style used in the consultation, consultation length and the stage of illness at which patient typically presented. Conclusion An online intervention to support evidence-based use of antibiotics is acceptable and feasible to implement amongst GPs in multiple countries. However, tailoring of the intervention to suit national contexts was necessary by

  2. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Hansen, Malene Plejdrup; Hoffmann, Tammy C; McCullough, Amanda R

    2015-01-01

    hygiene, and possibly vaccination and exercise, may be effective. Also, a large range of complementary and alternative medicines (e.g. zinc, vitamin C and probiotics) are proposed for preventing and treating ARIs, but evidence for efficacy is scarce. General practitioners' (GPs) attitudes towards...... wrong. Shared decision making might be a solution, as it enables clinician and patient to participate jointly in making a health decision, having discussed the options together with the evidence for their harms as well as benefits. Furthermore, GPs' diagnostic uncertainty - often leading...... will greatly improve the use of antibiotics for ARIs. However, used in concert, combinations are likely to enable clinicians and health care systems to implement the strategies that will reduce antimicrobial resistance in the future....

  3. Antibiotic resistance patterns and beta-lactamase identification in ...

    African Journals Online (AJOL)

    Background. Antibiotic resistance is a growing problem worldwide. Mechanisms of resistance vary, and some can confer resistance to multiple classes of antibiotics. Objective. To characterise the antibiotic resistance profiles of Escherichia coli isolates obtained from stool samples of young rural children exposed or ...

  4. Adaption of Ulva pertusa to multiple-contamination of heavy metals and nutrients: Biological mechanism of outbreak of Ulva sp. green tide.

    Science.gov (United States)

    Ge, Changzi; Yu, Xiru; Kan, Manman; Qu, Chunfeng

    2017-12-15

    The multiple-contamination of heavy metals and nutrients worsens increasingly and Ulva sp. green tide occurs almost simultaneously. To reveal the biological mechanism for outbreak of the green tide, Ulva pertusa was exposed to seven-day-multiple-contamination. The relation between pH variation (V pH ), Chl a content, ratio of (Chl a content)/(Chl b content) (R chla/chlb ), SOD activity of U. pertusa (A SOD ) and contamination concentration is [Formula: see text] (pcontamination concentrations of seawaters where Ulva sp. green tide occurred and the contamination concentrations set in the present work, U. pertusa can adapt to multiple-contaminations in these waters. Thus, the adaption to multiple-contamination may be one biological mechanism for the outbreak of Ulva sp. green tide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Demographics of antibiotic persistence

    DEFF Research Database (Denmark)

    Kollerova, Silvia; Jouvet, Lionel; Steiner, Ulrich

    Persister cells, cells that can survive antibiotic exposure but lack heritable antibiotic resistance, are assumed to play a crucial role for the evolution of antibiotic resistance. Persistence is a stage associated with reduced metabolic activity. Most previous studies have been done on batch...... even play a more prominent role for the evolution of resistance and failures of medical treatment by antibiotics as currently assumed....

  6. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM): novel biological insights and development of early treatment strategies.

    Science.gov (United States)

    Korde, Neha; Kristinsson, Sigurdur Y; Landgren, Ola

    2011-05-26

    Monoclonal gammopathy of unknown significance (MGUS) and smoldering multiple myeloma (SMM) are asymptomatic plasma cell dyscrasias, with a propensity to progress to symptomatic MM. In recent years there have been improvements in risk stratification models (involving molecular markers) of both disorders, which have led to better understanding of the biology and probability of progression of MGUS and SMM. In the context of numerous molecular events and heterogeneous risk of progression, developing individualized risk profiles for patients with MGUS and SMM represents an ongoing challenge that has to be addressed by prospective clinical monitoring and extensive correlative science. In this review we discuss the current standard of care of patients with MGUS and SMM, the use of risk models, including flow cytometry and free-light chain analyses, for predicting risk of progression. Emerging evidence from molecular studies on MGUS and SMM, involving cytogenetics, gene-expression profiling, and microRNA as well as molecular imaging is described. Finally, future directions for improving individualized management of MGUS and SMM patients, as well as the potential for developing early treatment strategies designed to delay and prevent development of MM are discussed.

  7. Generation of Composite Dose and Biological Effective Dose (BED) Over Multiple Treatment Modalities and Multistage Planning Using Deformable Image Registration

    International Nuclear Information System (INIS)

    Zhang, Geoffrey; Huang, T-C; Feygelman, Vladimir; Stevens, Craig; Forster, Kenneth

    2010-01-01

    Currently there are no commercially available tools to generate composite plans across different treatment modalities and/or different planning image sets. Without a composite plan, it may be difficult to perform a meaningful dosimetric evaluation of the overall treatment course. In this paper, we introduce a method to generate composite biological effective dose (BED) plans over multiple radiotherapy treatment modalities and/or multistage plans, using deformable image registration. Two cases were used to demonstrate the method. Case I was prostate cancer treated with intensity-modulated radiation therapy (IMRT) and a permanent seed implant. Case II involved lung cancer treated with two treatment plans generated on two separate computed tomography image sets. Thin-plate spline or optical flow methods were used as appropriate to generate deformation matrices. The deformation matrices were then applied to the dose matrices and the resulting physical doses were converted to BED and added to yield the composite plan. Cell proliferation and sublethal repair were considered in the BED calculations. The difference in BED between normal tissues and tumor volumes was accounted for by using different BED models, α/β values, and cell potential doubling times. The method to generate composite BED plans presented in this paper provides information not available with the traditional simple dose summation or physical dose summation. With the understanding of limitations and uncertainties of the algorithms involved, it may be valuable for the overall treatment plan evaluation.

  8. Genetic architecture of intrinsic antibiotic susceptibility.

    Directory of Open Access Journals (Sweden)

    Hany S Girgis

    2009-05-01

    Full Text Available Antibiotic exposure rapidly selects for more resistant bacterial strains, and both a drug's chemical structure and a bacterium's cellular network affect the types of mutations acquired.To better characterize the genetic determinants of antibiotic susceptibility, we exposed a transposon-mutagenized library of Escherichia coli to each of 17 antibiotics that encompass a wide range of drug classes and mechanisms of action. Propagating the library for multiple generations with drug concentrations that moderately inhibited the growth of the isogenic parental strain caused the abundance of strains with even minor fitness advantages or disadvantages to change measurably and reproducibly. Using a microarray-based genetic footprinting strategy, we then determined the quantitative contribution of each gene to E. coli's intrinsic antibiotic susceptibility. We found both loci whose removal increased general antibiotic tolerance as well as pathways whose down-regulation increased tolerance to specific drugs and drug classes. The beneficial mutations identified span multiple pathways, and we identified pairs of mutations that individually provide only minor decreases in antibiotic susceptibility but that combine to provide higher tolerance.Our results illustrate that a wide-range of mutations can modulate the activity of many cellular resistance processes and demonstrate that E. coli has a large mutational target size for increasing antibiotic tolerance. Furthermore, the work suggests that clinical levels of antibiotic resistance might develop through the sequential accumulation of chromosomal mutations of small individual effect.

  9. Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs.

    Science.gov (United States)

    Cherkasov, Artem; Hilpert, Kai; Jenssen, Håvard; Fjell, Christopher D; Waldbrook, Matt; Mullaly, Sarah C; Volkmer, Rudolf; Hancock, Robert E W

    2009-01-16

    Increased multiple antibiotic resistance in the face of declining antibiotic discovery is one of society's most pressing health issues. Antimicrobial peptides represent a promising new class of antibiotics. Here we ask whether it is possible to make small broad spectrum peptides employing minimal assumptions, by capitalizing on accumulating chemical biology information. Using peptide array technology, two large random 9-amino-acid peptide libraries were iteratively created using the amino acid composition of the most active peptides. The resultant data was used together with Artificial Neural Networks, a powerful machine learning technique, to create quantitative in silico models of antibiotic activity. On the basis of random testing, these models proved remarkably effective in predicting the activity of 100,000 virtual peptides. The best peptides, representing the top quartile of predicted activities, were effective against a broad array of multidrug-resistant "Superbugs" with activities that were equal to or better than four highly used conventional antibiotics, more effective than the most advanced clinical candidate antimicrobial peptide, and protective against Staphylococcus aureus infections in animal models.

  10. The expression of antibiotic resistance genes in antibiotic-producing bacteria.

    Science.gov (United States)

    Mak, Stefanie; Xu, Ye; Nodwell, Justin R

    2014-08-01

    Antibiotic-producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance. © 2014 John Wiley & Sons Ltd.

  11. Anti-inflammatory and immunomodulatory effects of antibiotics and their use in dermatology

    OpenAIRE

    Swetalina Pradhan; Bhushan Madke; Poonam Kabra; Adarsh Lata Singh

    2016-01-01

    Antibiotics (antibacterial, antiviral, and antiparasitic) are class of drugs which result in either killing or inhibiting growth and multiplication of infectious organisms. Antibiotics are commonly prescribed by all specialties for treatment of infections. However, antibiotics have hitherto immunomodulatory and anti-inflammatory properties and can be exploited for various noninfectious dermatoses. Dermatologists routinely prescribe antibiotics in treatment of various noninfectious disorders. ...

  12. Antibiotic resistance in animals.

    Science.gov (United States)

    Barton, Mary D; Pratt, Rachael; Hart, Wendy S

    2003-01-01

    There is currently no systematic surveillance or monitoring of antibiotic resistance in Australian animals. Registration of antibiotics for use in animals is tightly controlled and has been very conservative. Fluoroquinolones have not been registered for use in food producing animals and other products have been removed from the market because of human health concerns. In the late 1970s, the Animal Health Committee coordinated a survey of resistance in Salmonella and Escherichia coli isolates from cattle, pigs and poultry and in bovine Staphylococcus aureus. Some additional information is available from published case reports. In samples collected prior to the withdrawal of avoparcin from the market, no vancomycin resistant Enterococcus faecium or Enterococcus faecalis were detected in samples collected from pigs, whereas some vanA enterococci, including E. faecium and E. faecalis, were found in chickens. No vanB enterococci were detected in either species. Virginiamycin resistance was common in both pig and poultry isolates. Multiple resistance was common in E. coli and salmonellae isolates. No fluoroquinolone resistance was found in salmonellae, E. coli or Campylobacter. Beta-lactamase production is common in isolates from bovine mastitis, but no methicillin resistance has been detected. However, methicillin resistance has been reported in canine isolates of Staphylococcus intermedius and extended spectrum beta-lactamase producing E. coli has been found in dogs.

  13. The antibiotic resistome.

    Science.gov (United States)

    Wright, Gerard D

    2010-08-01

    Antibiotics are essential for the treatment of bacterial infections and are among our most important drugs. Resistance has emerged to all classes of antibiotics in clinical use. Antibiotic resistance has, proven inevitable and very often it emerges rapidly after the introduction of a drug into the clinic. There is, therefore, a great interest in understanding the origins, scope and evolution of antibiotic resistance. The review discusses the concept of the antibiotic resistome, which is the collection of all genes that directly or indirectly contribute to antibiotic resistance. The review seeks to assemble current knowledge of the resistome concept as a means of understanding the totality of resistance and not just resistance in pathogenic bacteria. The concept of the antibiotic resistome provides a framework for the study and understanding of how resistance emerges and evolves. Furthermore, the study of the resistome reveals strategies that can be applied in new antibiotic discoveries.

  14. Know When Antibiotics Work

    Centers for Disease Control (CDC) Podcasts

    2015-04-15

    This podcast provides a brief background about antibiotics and quick tips to help prevent antibiotic resistance.  Created: 4/15/2015 by Division of Bacterial Diseases (DBD), National Center for Immunization and Respiratory Disease (NCIRD), Get Smart: Know When Antibiotics Work Program.   Date Released: 4/16/2015.

  15. Antibiotics: Miracle Drugs

    Centers for Disease Control (CDC) Podcasts

    The overuse of antibiotics has led to the development of resistance among bacteria, making antibiotics ineffective in treating certain conditions. This podcast discusses the importance of talking to your healthcare professional about whether or not antibiotics will be beneficial if you've been diagnosed with an infectious disease.

  16. Systemic antibiotics in periodontics.

    Science.gov (United States)

    Slots, Jørgen

    2004-11-01

    This position paper addresses the role of systemic antibiotics in the treatment of periodontal disease. Topical antibiotic therapy is not discussed here. The paper was prepared by the Research, Science and Therapy Committee of the American Academy of Periodontology. The document consists of three sections: 1) concept of antibiotic periodontal therapy; 2) efficacy of antibiotic periodontal therapy; and 3) practical aspects of antibiotic periodontal therapy. The conclusions drawn in this paper represent the position of the American Academy of Periodontology and are intended for the information of the dental profession.

  17. Enabling techniques in the search for new antibiotics: Combinatorial biosynthesis of sugar-containing antibiotics.

    Science.gov (United States)

    Park, Je Won; Nam, Sang-Jip; Yoon, Yeo Joon

    2017-06-15

    Nature has a talent for inventing a vast number of natural products, including hybrids generated by blending different scaffolds, resulting in a myriad of bioactive chemical entities. Herein, we review the highlights and recent trends (2010-2016) in the combinatorial biosynthesis of sugar-containing antibiotics where nature's structural diversification capabilities are exploited to enable the creation of new anti-infective and anti-proliferative drugs. In this review, we describe the modern combinatorial biosynthetic approaches for polyketide synthase-derived complex and aromatic polyketides, non-ribosomal peptide synthetase-directed lipo-/glycopeptides, aminoglycosides, nucleoside antibiotics, and alkaloids, along with their therapeutic potential. Finally, we present the feasible nexus between combinatorial biosynthesis, systems biology, and synthetic biology as a toolbox to provide new antibiotics that will be indispensable in the post-antibiotic era. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Transfer of Antibiotic Resistance in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Haaber, Jakob; Penadés, José R; Ingmer, Hanne

    2017-01-01

    Staphylococcus aureus is a serious human pathogen with remarkable adaptive powers. Antibiotic-resistant clones rapidly emerge mainly by acquisition of antibiotic-resistance genes from other S. aureus strains or even from other genera. Transfer is mediated by a diverse complement of mobile genetic...... of plasmids that can be transferred by conjugation and the efficiency with which transduction occurs. Here, we review the main routes of antibiotic resistance gene transfer in S. aureus in the context of its biology as a human commensal and a life-threatening pathogen. Staphylococcus aureus cells...... are effective in exchanging mobile genetic elements, including antibiotic-resistance genes.During colonization or infection of host organisms, the exchange appears to be particularly effective.Bacteriophage-mediated transfer involves both transduction and autotransduction, which may enable lysogenic S. aureus...

  19. A brief history of the antibiotic era: lessons learned and challenges for the future

    Directory of Open Access Journals (Sweden)

    Rustam I Aminov

    2010-12-01

    Full Text Available This article gives a very brief overview of the antibiotic era, beginning from the discovery of first antibiotics until the present day situation, which is marred by the emergence of hard-to-treat multiple antibiotic resistant infections. The ways of responding to the antibiotic resistance challenges such as the development of novel strategies in the search for new antimicrobials, designing more effective preventive measures and, importantly, better understanding the ecology of antibiotics and antibiotic resistance are discussed. The expansion of conceptual frameworks based on recent developments in the field of antimicrobials, antibiotic resistance and chemotherapy is also discussed.

  20. Nonmedical Uses of Antibiotics: Time to Restrict Their Use?

    Science.gov (United States)

    Meek, Richard William; Vyas, Hrushi; Piddock, Laura Jane Violet

    2015-10-01

    The global crisis of antibiotic resistance has reached a point where, if action is not taken, human medicine will enter a postantibiotic world and simple injuries could once again be life threatening. New antibiotics are needed urgently, but better use of existing agents is just as important. More appropriate use of antibiotics in medicine is vital, but the extensive use of antibiotics outside medical settings is often overlooked. Antibiotics are commonly used in animal husbandry, bee-keeping, fish farming and other forms of aquaculture, ethanol production, horticulture, antifouling paints, food preservation, and domestically. This provides multiple opportunities for the selection and spread of antibiotic-resistant bacteria. Given the current crisis, it is vital that the nonmedical use of antibiotics is critically examined and that any nonessential use halted.

  1. Nonmedical Uses of Antibiotics: Time to Restrict Their Use?

    Directory of Open Access Journals (Sweden)

    Richard William Meek

    2015-10-01

    Full Text Available The global crisis of antibiotic resistance has reached a point where, if action is not taken, human medicine will enter a postantibiotic world and simple injuries could once again be life threatening. New antibiotics are needed urgently, but better use of existing agents is just as important. More appropriate use of antibiotics in medicine is vital, but the extensive use of antibiotics outside medical settings is often overlooked. Antibiotics are commonly used in animal husbandry, bee-keeping, fish farming and other forms of aquaculture, ethanol production, horticulture, antifouling paints, food preservation, and domestically. This provides multiple opportunities for the selection and spread of antibiotic-resistant bacteria. Given the current crisis, it is vital that the nonmedical use of antibiotics is critically examined and that any nonessential use halted.

  2. Incentives for new antibiotics: the Options Market for Antibiotics (OMA) model

    OpenAIRE

    Brogan, David M; Mossialos, Elias

    2013-01-01

    Background Antimicrobial resistance is a growing threat resulting from the convergence of biological, economic and political pressures. Investment in research and development of new antimicrobials has suffered secondary to these pressures, leading to an emerging crisis in antibiotic resistance. Methods Current policies to stimulate antibiotic development have proven inadequate to overcome market failures. Therefore innovative ideas utilizing market forces are necessary to stimulate new invest...

  3. Ribosomal Antibiotics: Contemporary Challenges

    Directory of Open Access Journals (Sweden)

    Tamar Auerbach-Nevo

    2016-06-01

    Full Text Available Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of “pathogen-specific antibiotics,” in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification.

  4. KeyPathwayMiner - De-novo network enrichment by combining multiple OMICS data and biological networks

    DEFF Research Database (Denmark)

    Baumbach, Jan; Alcaraz, Nicolas; Pauling, Josch K.

    We tackle the problem of de-novo pathway extraction. Given a biological network and a set of case-control studies, KeyPathwayMiner efficiently extracts and visualizes all maximal connected sub-networks that contain mainly genes that are dysregulated, e.g., differentially expressed, in most cases ...

  5. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness

    DEFF Research Database (Denmark)

    Willems, Sara M; Wright, Daniel J.; Day, Felix R

    2017-01-01

    with involvement of psychomotor impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are consistent with a causal effect of higher genetically predicted grip strength on lower fracture risk. In conclusion, our findings provide new biological insight into the mechanistic underpinnings of grip...... strength and the causal role of muscular strength in age-related morbidities and mortality....

  6. Antibiotics and Breastfeeding.

    Science.gov (United States)

    de Sá Del Fiol, Fernando; Barberato-Filho, Silvio; de Cássia Bergamaschi, Cristiane; Lopes, Luciane Cruz; Gauthier, Timothy P

    2016-01-01

    During the breastfeeding period, bacterial infections can occur in the nursing mother, requiring the use of antibiotics. A lack of accurate information may lead health care professionals and mothers to suspend breastfeeding, which may be unnecessary. This article provides information on the main antibiotics that are appropriate for clinical use and the interference of these antibiotics with the infant to support medical decisions regarding the discontinuation of breastfeeding. We aim to provide information on the pharmacokinetic factors that interfere with the passage of antibiotics into breast milk and the toxicological implications of absorption by the infant. Publications related to the 20 most frequently employed antibiotics and their transfer into breast milk were evaluated. The results demonstrate that most antibiotics in clinical use are considered suitable during breastfeeding; however, the pharmacokinetic profile of each drug must be observed to ensure the resolution of the maternal infection and the safety of the infant. © 2016 S. Karger AG, Basel.

  7. High Antibiotic Consumption

    DEFF Research Database (Denmark)

    Malo, Sara; José Rabanaque, María; Feja, Cristina

    2014-01-01

    Heavy antibiotic users are those individuals with the highest exposure to antibiotics. They play an important role as contributors to the increasing risk of antimicrobial resistance. We applied different methods to identify and characterize the group of heavy antibiotic users in Spain as well...... as their exposure to antibiotics. Data on outpatient prescribing of antimicrobials (ATC J01) in 2010 were obtained from a prescription database covering Aragón (northeastern Spain). The antimicrobial consumption at the individual level was analysed both according to the volume of DDD and the number of packages...... purchased per year. Heavy antibiotic users were identified according to Lorenz curves and characterized by age, gender, and their antimicrobial prescription profile. Lorenz curves demonstrated substantial differences in the individual use of antimicrobials. Heavy antibiotic users (5% of individuals...

  8. Multiple antibiotics resistant among environmental isolates of ...

    African Journals Online (AJOL)

    In this study we assessed the functionality of integrons, melanin-like pigment and biofilm formation on multidrug resistance among environmental isolates of Stenotrophomonas maltophilia. Marked resistances were noted against aztreonam (60%), cefepime (68%), ceftazidime (77%), ciprofloxacin (72%), gentamicin (65%), ...

  9. ORIGINAL ARTICLE MULTIPLE ANTIBIOTIC RESISTANCE (MAR ...

    African Journals Online (AJOL)

    boaz

    ABSRACT. Background/Objectives: Pseudomonas and Klebsiella infections are important nosocomial infections because of the attendant significant morbidity, mortality and socio-economic impact. These infections are difficult to treat due to the innate and acquired resistance mediated by the organisms' genome and other ...

  10. Osmotic Compounds Enhance Antibiotic Efficacy against Acinetobacter baumannii Biofilm Communities.

    Science.gov (United States)

    Falghoush, Azeza; Beyenal, Haluk; Besser, Thomas E; Omsland, Anders; Call, Douglas R

    2017-10-01

    Biofilm-associated infections are a clinical challenge, in part because a hydrated matrix protects the bacterial community from antibiotics. Herein, we evaluated how different osmotic compounds (maltodextrin, sucrose, and polyethylene glycol [PEG]) enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities. Established (24-h) test tube biofilms (strain ATCC 17978) were treated with osmotic compounds in the presence or absence of 10× the MIC of different antibiotics (50 μg/ml tobramycin, 20 μg/ml ciprofloxacin, 300 μg/ml chloramphenicol, 30 μg/ml nalidixic acid, or 100 μg/ml erythromycin). Combining antibiotics with hypertonic concentrations of the osmotic compounds for 24 h reduced the number of biofilm bacteria by 5 to 7 log ( P baumannii strains were similarly treated with 400-Da PEG and tobramycin, resulting in a mean 2.7-log reduction in recoverable bacteria compared with tobramycin treatment alone. Multivariate regression models with data from different osmotic compounds and nine antibiotics demonstrated that the benefit from combining hypertonic treatments with antibiotics is a function of antibiotic mass and lipophilicity ( r 2 > 0.82; P baumannii and Escherichia coli K-12. Augmenting topical antibiotic therapies with a low-mass hypertonic treatment may enhance the efficacy of antibiotics against wound biofilms, particularly when using low-mass hydrophilic antibiotics. IMPORTANCE Biofilms form a barrier that protects bacteria from environmental insults, including exposure to antibiotics. We demonstrated that multiple osmotic compounds can enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities, but viscosity is a limiting factor, and the most effective compounds have lower molecular mass. The synergism between osmotic compounds and antibiotics is also dependent on the hydrophobicity and mass of the antibiotics. The statistical models presented herein provide a basis for predicting the optimal combination of

  11. Structure of polysaccharide antibiotics

    International Nuclear Information System (INIS)

    Matutano, L.

    1966-01-01

    Study of the structure of antibiotics having two or several sugars in their molecule. One may distinguish: the polysaccharide antibiotics themselves, made up of two or several sugars either with or without nitrogen, such as streptomycin, neomycins, paromomycine, kanamycin, chalcomycin; the hetero-polysaccharide antibiotics made up of one saccharide part linked to an aglycone of various type through a glucoside: macrolide, pigment, pyrimidine purine. Amongst these latter are: erythromycin, magnamycin, spiramycin, oleandomycin, cinerubin and amicetin. The sugars can either play a direct role in biochemical reactions or act as a dissolving agent, as far as the anti-microbe power of these antibiotics is concerned. (author) [fr

  12. Antibiotics: Miracle Drugs

    Centers for Disease Control (CDC) Podcasts

    2015-04-16

    The overuse of antibiotics has led to the development of resistance among bacteria, making antibiotics ineffective in treating certain conditions. This podcast discusses the importance of talking to your healthcare professional about whether or not antibiotics will be beneficial if you’ve been diagnosed with an infectious disease.  Created: 4/16/2015 by Division of Bacterial Diseases (DBD), National Center for Immunization and Respiratory Disease (NCIRD), Get Smart: Know When Antibiotics Work Program.   Date Released: 4/16/2015.

  13. First Evaluation of the Biologically Active Substances and Antioxidant Potential of Regrowth Velvet Antler by means of Multiple Biochemical Assays

    Directory of Open Access Journals (Sweden)

    Yujiao Tang

    2015-01-01

    Full Text Available We investigated the biologically active substances contained in RVA (regrowth velvet antler by comparing the composition of biologically active substances and antioxidant potential of different antler segments. RVA was subjected to extraction using DW (distilled water. RVA was divided into 3 segments: T-RVA (top RVA, M-RVA (middle RVA, and B-RVA (base RVA. The T-RVA section possessed the greatest amounts of uronic acid (36.251 mg/g, sulfated GAGs (sulfated glycosaminoglycans (555.76 mg/g, sialic acid (111.276 mg/g, uridine (0.957 mg/g, uracil (1.084 mg/g, and hypoxanthine (1.2631 mg/g. In addition, the T-RVA section possessed the strongest antioxidant capacity as determined by DPPH, H2O2 (hydrogen peroxide, hydroxyl, and ABTS (2,2′-azinobis-3-ethylbenzthiazoline-6-sulphonate radical scavenging activity as well as FRAP (ferric reducing antioxidant power and ORAC (oxygen radical absorbance capacity. The values of those were 53.44, 23.09, 34.12, 60.31, and 35.81 TE/μM at 1 mg/mL and 113.57 TE/μM at 20 μg/mL. These results indicate that the T-RVA section possesses the greatest amount of biologically active substances and highest antioxidant potential. This is the first report on the biologically active substances and antioxidant potential of RVA.

  14. Multiple Paternity in a Reintroduced Population of the Orinoco Crocodile (Crocodylus intermedius) at the El Frío Biological Station, Venezuela.

    Science.gov (United States)

    Rossi Lafferriere, Natalia A; Antelo, Rafael; Alda, Fernando; Mårtensson, Dick; Hailer, Frank; Castroviejo-Fisher, Santiago; Ayarzagüena, José; Ginsberg, Joshua R; Castroviejo, Javier; Doadrio, Ignacio; Vilá, Carles; Amato, George

    2016-01-01

    The success of a reintroduction program is determined by the ability of individuals to reproduce and thrive. Hence, an understanding of the mating system and breeding strategies of reintroduced species can be critical to the success, evaluation and effective management of reintroduction programs. As one of the most threatened crocodile species in the world, the Orinoco crocodile (Crocodylus intermedius) has been reduced to only a few wild populations in the Llanos of Venezuela and Colombia. One of these populations was founded by reintroduction at Caño Macanillal and La Ramera lagoon within the El Frío Biological Station, Venezuela. Twenty egg clutches of C. intermedius were collected at the El Frío Biological Station for incubation in the lab and release of juveniles after one year. Analyzing 17 polymorphic microsatellite loci from 335 hatchlings we found multiple paternity in C. intermedius, with half of the 20 clutches fathered by two or three males. Sixteen mothers and 14 fathers were inferred by reconstruction of multilocus parental genotypes. Our findings showed skewed paternal contributions to multiple-sired clutches in four of the clutches (40%), leading to an overall unequal contribution of offspring among fathers with six of the 14 inferred males fathering 90% of the total offspring, and three of those six males fathering more than 70% of the total offspring. Our results provide the first evidence of multiple paternity occurring in the Orinoco crocodile and confirm the success of reintroduction efforts of this critically endangered species in the El Frío Biological Station, Venezuela.

  15. Multiple Paternity in a Reintroduced Population of the Orinoco Crocodile (Crocodylus intermedius at the El Frío Biological Station, Venezuela.

    Directory of Open Access Journals (Sweden)

    Natalia A Rossi Lafferriere

    Full Text Available The success of a reintroduction program is determined by the ability of individuals to reproduce and thrive. Hence, an understanding of the mating system and breeding strategies of reintroduced species can be critical to the success, evaluation and effective management of reintroduction programs. As one of the most threatened crocodile species in the world, the Orinoco crocodile (Crocodylus intermedius has been reduced to only a few wild populations in the Llanos of Venezuela and Colombia. One of these populations was founded by reintroduction at Caño Macanillal and La Ramera lagoon within the El Frío Biological Station, Venezuela. Twenty egg clutches of C. intermedius were collected at the El Frío Biological Station for incubation in the lab and release of juveniles after one year. Analyzing 17 polymorphic microsatellite loci from 335 hatchlings we found multiple paternity in C. intermedius, with half of the 20 clutches fathered by two or three males. Sixteen mothers and 14 fathers were inferred by reconstruction of multilocus parental genotypes. Our findings showed skewed paternal contributions to multiple-sired clutches in four of the clutches (40%, leading to an overall unequal contribution of offspring among fathers with six of the 14 inferred males fathering 90% of the total offspring, and three of those six males fathering more than 70% of the total offspring. Our results provide the first evidence of multiple paternity occurring in the Orinoco crocodile and confirm the success of reintroduction efforts of this critically endangered species in the El Frío Biological Station, Venezuela.

  16. Handling Time-dependent Variables : Antibiotics and Antibiotic Resistance

    NARCIS (Netherlands)

    Munoz-Price, L. Silvia; Frencken, Jos F.; Tarima, Sergey; Bonten, Marc

    2016-01-01

    Elucidating quantitative associations between antibiotic exposure and antibiotic resistance development is important. In the absence of randomized trials, observational studies are the next best alternative to derive such estimates. Yet, as antibiotics are prescribed for varying time periods,

  17. Antibiotic Utilization and Prescribing Patterns in a Nigerian ...

    African Journals Online (AJOL)

    The study of prescribing pattern seeks to monitor, evaluate and suggest a modification in prescriber's prescribing habits so as to make medical care rational and cost effective. Information about antibiotic use pattern is necessary for a constructive approach to problems that arise from multiple antibiotics available. To identify ...

  18. [Antibiotics: present and future].

    Science.gov (United States)

    Bérdy, János

    2013-04-14

    The author discuss the up to date interpretation of the concept of antibiotics and antibiotic research, as well as the present role of various natural, semisynthetic and synthetic antibiotic compounds in various areas of the human therapy. The origin and the total number of all antibiotics and applied antibiotics in the practice, as well as the bioactive microbial metabolites (antibiotics) in other therapeutical, non-antibiotic fields (including agriculture) are also reviewed. The author discusses main problems, such as increasing (poly)resistance, virulence of pathogens and the non-scientific factors (such as a decline of research efforts and their sociological, economic, financial and regulatory reasons). A short summary of the history of Hungarian antibiotic research is also provided. The author briefly discusses the prospects in the future and the general advantages of the natural products over synthetic compounds. It is concluded that new approaches for the investigation of the unlimited possibilities of the living world are necessary. The discovery of new types or simply neglected (micro)organisms and their biosynthetic capabilities, the introduction of new biotechnological and genetic methods (genomics, metagenom, genome mining) are absolutely required in the future.

  19. The future of antibiotics

    Science.gov (United States)

    2014-01-01

    Antibiotic resistance continues to spread even as society is experiencing a market failure of new antibiotic research and development (R&D). Scientific, economic, and regulatory barriers all contribute to the antibiotic market failure. Scientific solutions to rekindle R&D include finding new screening strategies to identify novel antibiotic scaffolds and transforming the way we think about treating infections, such that the goal is to disarm the pathogen without killing it or modulate the host response to the organism without targeting the organism for destruction. Future economic strategies are likely to focus on ‘push’ incentives offered by public-private partnerships as well as increasing pricing by focusing development on areas of high unmet need. Such strategies can also help protect new antibiotics from overuse after marketing. Regulatory reform is needed to re-establish feasible and meaningful traditional antibiotic pathways, to create novel limited-use pathways that focus on highly resistant infections, and to harmonize regulatory standards across nations. We need new antibiotics with which to treat our patients. But we also need to protect those new antibiotics from misuse when they become available. If we want to break the cycle of resistance and change the current landscape, disruptive approaches that challenge long-standing dogma will be needed. PMID:25043962

  20. History of Antibiotics Research.

    Science.gov (United States)

    Mohr, Kathrin I

    2016-01-01

    For thousands of years people were delivered helplessly to various kinds of infections, which often reached epidemic proportions and have cost the lives of millions of people. This is precisely the age since mankind has been thinking of infectious diseases and the question of their causes. However, due to a lack of knowledge, the search for strategies to fight, heal, and prevent the spread of communicable diseases was unsuccessful for a long time. It was not until the discovery of the healing effects of (antibiotic producing) molds, the first microscopic observations of microorganisms in the seventeenth century, the refutation of the abiogenesis theory, and the dissolution of the question "What is the nature of infectious diseases?" that the first milestones within the history of antibiotics research were set. Then new discoveries accelerated rapidly: Bacteria could be isolated and cultured and were identified as possible agents of diseases as well as producers of bioactive metabolites. At the same time the first synthetic antibiotics were developed and shortly thereafter, thousands of synthetic substances as well as millions of soil borne bacteria and fungi were screened for bioactivity within numerous microbial laboratories of pharmaceutical companies. New antibiotic classes with different targets were discovered as on assembly line production. With the beginning of the twentieth century, many of the diseases which reached epidemic proportions at the time-e.g., cholera, syphilis, plague, tuberculosis, or typhoid fever, just to name a few, could be combatted with new discovered antibiotics. It should be considered that hundred years ago the market launch of new antibiotics was significantly faster and less complicated than today (where it takes 10-12 years in average between the discovery of a new antibiotic until the launch). After the first euphoria it was quickly realized that bacteria are able to develop, acquire, and spread numerous resistance mechanisms

  1. Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies.

    Science.gov (United States)

    Abel Zur Wiesch, Pia; Clarelli, Fabrizio; Cohen, Ted

    2017-01-01

    Identifying optimal dosing of antibiotics has proven challenging-some antibiotics are most effective when they are administered periodically at high doses, while others work best when minimizing concentration fluctuations. Mechanistic explanations for why antibiotics differ in their optimal dosing are lacking, limiting our ability to predict optimal therapy and leading to long and costly experiments. We use mathematical models that describe both bacterial growth and intracellular antibiotic-target binding to investigate the effects of fluctuating antibiotic concentrations on individual bacterial cells and bacterial populations. We show that physicochemical parameters, e.g. the rate of drug transmembrane diffusion and the antibiotic-target complex half-life are sufficient to explain which treatment strategy is most effective. If the drug-target complex dissociates rapidly, the antibiotic must be kept constantly at a concentration that prevents bacterial replication. If antibiotics cross bacterial cell envelopes slowly to reach their target, there is a delay in the onset of action that may be reduced by increasing initial antibiotic concentration. Finally, slow drug-target dissociation and slow diffusion out of cells act to prolong antibiotic effects, thereby allowing for less frequent dosing. Our model can be used as a tool in the rational design of treatment for bacterial infections. It is easily adaptable to other biological systems, e.g. HIV, malaria and cancer, where the effects of physiological fluctuations of drug concentration are also poorly understood.

  2. Antibacterial effect of mango (Mangifera indica Linn.) leaf extract against antibiotic sensitive and multi-drug resistant Salmonella typhi.

    Science.gov (United States)

    Hannan, Abdul; Asghar, Samra; Naeem, Tahir; Ikram Ullah, Muhammad; Ahmed, Ijaz; Aneela, Syeda; Hussain, Shabbir

    2013-07-01

    Alternative herbal medicine has been used to treat various infections from centuries. Natural plants contain phytoconstituents having similar chemical properties as of synthetic antibiotics. Typhoid fever is a serious infection and failure of its treatment emerged multi-drug resistant (MDR) bugs of Salmonella typhi. Due to multiple and repeated issues with antibiotics efficacy, it became essential to evaluate biological properties of plants from different geographical origins. Mango leaves have been Reported for various medicinal effects like antioxidant, antimicrobial, antihelminthic, antidiabetic and antiallergic etc. Objective of present study was to investigate anti-typhoid properties of acetone mango leaf extract (AMLE) against antibiotic sensitive and MDR S. typhi isolates. A total of 50 isolates of S. typhi including MDR (n=30) and antibiotic sensitive (n=20) were investigated. Staphylococcus aureus (ATCC 25923) and Salmonella typhimurium (ATCC14028) were used as quality control strains. AMLE was prepared and its antibacterial activity was evaluated by agar well diffusion screening method and minimum inhibitory concentration (MIC), by agar dilution technique. Zone of inhibition (mm) of AMLE against MDR and antibiotic sensitive isolates was 18±1.5mm (Mean±S.D). Zone of S. aureus (ATCC 25923) and S. typhimurium (ATCC14028) was 20±1.5mm (Mean±S.D). MIC of AMLE was Reported in range from 10-50 mg/ml. The present study described the inhibitory effects of mango leaves against S. typhi.

  3. Using Multiple Lenses to Examine the Development of Beginning Biology Teachers' Pedagogical Content Knowledge for Teaching Natural Selection Simulations

    Science.gov (United States)

    Sickel, Aaron J.; Friedrichsen, Patricia

    2018-02-01

    Pedagogical content knowledge (PCK) has become a useful construct to examine science teacher learning. Yet, researchers conceptualize PCK development in different ways. The purpose of this longitudinal study was to use three analytic lenses to understand the development of three beginning biology teachers' PCK for teaching natural selection simulations. We observed three early-career biology teachers as they taught natural selection in their respective school contexts over two consecutive years. Data consisted of six interviews with each participant. Using the PCK model developed by Magnusson et al. (1999), we examined topic-specific PCK development utilizing three different lenses: (1) expansion of knowledge within an individual knowledge base, (2) integration of knowledge across knowledge bases, and (3) knowledge that explicitly addressed core concepts of natural selection. We found commonalities across the participants, yet each lens was also useful to understand the influence of different factors (e.g., orientation, subject matter preparation, and the idiosyncratic nature of teacher knowledge) on PCK development. This multi-angle approach provides implications for considering the quality of beginning science teachers' knowledge and future research on PCK development. We conclude with an argument that explicitly communicating lenses used to understand PCK development will help the research community compare analytic approaches and better understand the nature of science teacher learning.

  4. Incentives for new antibiotics: the Options Market for Antibiotics (OMA) model.

    Science.gov (United States)

    Brogan, David M; Mossialos, Elias

    2013-11-07

    Antimicrobial resistance is a growing threat resulting from the convergence of biological, economic and political pressures. Investment in research and development of new antimicrobials has suffered secondary to these pressures, leading to an emerging crisis in antibiotic resistance. Current policies to stimulate antibiotic development have proven inadequate to overcome market failures. Therefore innovative ideas utilizing market forces are necessary to stimulate new investment efforts. Employing the benefits of both the previously described Advanced Market Commitment and a refined Call Options for Vaccines model, we describe herein a novel incentive mechanism, the Options Market for Antibiotics. This model applies the benefits of a financial call option to the investment in and purchase of new antibiotics. The goal of this new model is to provide an effective mechanism for early investment and risk sharing while maintaining a credible purchase commitment and incentives for companies to ultimately bring new antibiotics to market. We believe that the Options Market for Antibiotics (OMA) may help to overcome some of the traditional market failures associated with the development of new antibiotics. Additional work must be done to develop a more robust mathematical model to pave the way for practical implementation.

  5. Systematic approach to optimize a pretreatment method for ultrasensitive liquid chromatography with tandem mass spectrometry analysis of multiple target compounds in biological samples.

    Science.gov (United States)

    Togashi, Kazutaka; Mutaguchi, Kuninori; Komuro, Setsuko; Kataoka, Makoto; Yamazaki, Hiroshi; Yamashita, Shinji

    2016-08-01

    In current approaches for new drug development, highly sensitive and robust analytical methods for the determination of test compounds in biological samples are essential. These analytical methods should be optimized for every target compound. However, for biological samples that contain multiple compounds as new drug candidates obtained by cassette dosing tests, it would be preferable to develop a single method that allows the determination of all compounds at once. This study aims to establish a systematic approach that enables a selection of the most appropriate pretreatment method for multiple target compounds without the use of their chemical information. We investigated the retention times of 27 known compounds under different mobile phase conditions and determined the required pretreatment of human plasma samples using several solid-phase and liquid-liquid extractions. From the relationship between retention time and recovery in a principal component analysis, appropriate pretreatments were categorized into several types. Based on the category, we have optimized a pretreatment method for the identification of three calcium channel blockers in human plasma. Plasma concentrations of these drugs in a cassette-dose clinical study at microdose level were successfully determined with a lower limit of quantitation of 0.2 pg/mL for diltiazem, 1 pg/mL for nicardipine, and 2 pg/mL for nifedipine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Determination of aminoglycoside antibiotics using complex compounds of chromotropic acid bisazoderivatives with rare earth ions

    International Nuclear Information System (INIS)

    Alykov, N.M.

    1981-01-01

    Studies of complex formation of bisazo derivatives of chromotropic acid with rare earth ions and aminoglycoside antibiotics have made it possible to choose carboxyarsenazo, orthanyl R and carboxynitrazo as highly sensitive reagents for determining aminoglycoside antibiotics. Conditions have been found for the formation of precipitates of different-ligand complexes containing rare earth ions, bisazo derivatives of chromotropic acid and aminogylcoside antibiotics. A procedure has been worked out of determining the antibiotics in biological samples with carboxyarsenazo [ru

  7. Improved Prediction of Phosphorus Dynamics in Biotechnological Processes by Considering Precipitation and Polyphosphate Formation: A Case Study on Antibiotic Production with Streptomyces coelicolor

    DEFF Research Database (Denmark)

    Bürger, Patrick; Flores-Alsina, Xavier; Arellano-Garcia, Harvey

    2018-01-01

    The multiplicity of physicochemical and biological processes, where phosphorus is involved, makes their accurate prediction using current mathematical models in biotechnology quite a challenge. In this work, an antibiotic production model of Streptomyces coelicolor is chosen as a representative...... approach describing intracellular polyphosphate accumulation and consumption has been developed and implemented. A heuristic re-estimation of selected parameters is carried out to improve overall model performance. The improved process model predicts phosphate dynamics (root mean squared error ≤52h: −90...

  8. IgD multiple myeloma: Clinical, biological features and prognostic value of the serum free light chain assay.

    Science.gov (United States)

    Djidjik, R; Lounici, Y; Chergeulaïne, K; Berkouk, Y; Mouhoub, S; Chaib, S; Belhani, M; Ghaffor, M

    2015-09-01

    IgD multiple myeloma (MM) is a rare subtype of myeloma, it affects less than 2% of patients with MM. To evaluate the clinical and prognostic attributes of serum free light chains (sFLCs) analysis, we examined 17 cases of IgD MM. From 1998 to 2012, we obtained 1250 monoclonal gammapathies including 590 multiple myeloma and 17 patients had IgD MM. With preponderance of men patients with a mean age at diagnosis of: 59±12years. Patients with IgD MM have a short survival (Median survival=9months). The presenting features included: bone pain (75%), lymphadenopathy (16%), hepatomegaly (25%), splenomegaly (8%), associated AL amyloidosis (6%), renal impairment function (82%), infections (47%), hypercalcemia (37%) and anemia (93%). Serum electrophoresis showed a subtle M-spike (Mean=13.22±10g/L) in all patients associated to a hypogammaglobulinemia. There was an over-representation of Lambda light chain (65%); high serum β2-microglobulin in 91% and Bence Jones proteinuria was identified in 71%. The median rate of sFLCs κ was 19.05mg/L and 296.75mg/L for sFLCs λ. sFLCR was abnormal in 93% of patients and it showed concordance between baseline sFLCR and the survival (P=0.034). The contribution of FLC assay is crucial for the prognosis of patients with IgD MM. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Development and biological evaluation of 99mTc-tocilizumab as molecular imaging agent in multiple myeloma

    International Nuclear Information System (INIS)

    Gutierrez, M.

    2012-01-01

    Multiple myeloma (M M) is a neoplasm characterized by infiltration of malignant plasma cells in the bone marrow, and is associated with high levels of monoclonal protein component or M. One of the key molecules involved in the pathogenesis of M M is the interleukin I L-6. This is a polypeptide belonging to the class of cytokines helical, having antiinflammatory activity and pro inflammatory and is secreted by a wide variety of cells. It has been found that high levels of I L-6 are directly related to the growth and survival of M M cell proliferation therefore I L antagonists may be of potential use therapeutic and diagnostic purposes. The Tocilizumab (Act emr To®) is a humanized monoclonal antibody directed against the receptor, both soluble and membrane I L-6 blocking cell signaling mediated by this. The possibility of combining Tocilizumab a gamma emitting isotope would determine l to topography where an increased expression of I L, with the consequent possibility that this associated with an infectious or neoplastic process is observed. In this way it could be used as a diagnostic method. Based on the above, the present work aims to develop the marking and evaluation of 99m Tc Tocilizumab, which could be used as diagnostic radiopharmaceutical to determine the location of the lesion and its extension, both debut in monitoring patients with multiple myeloma

  10. Macrolide antibiotics for bronchiectasis.

    Science.gov (United States)

    Kelly, Carol; Chalmers, James D; Crossingham, Iain; Relph, Nicola; Felix, Lambert M; Evans, David J; Milan, Stephen J; Spencer, Sally

    2018-03-15

    Bronchiectasis is a chronic respiratory disease characterised by abnormal and irreversible dilatation and distortion of the smaller airways. Bacterial colonisation of the damaged airways leads to chronic cough and sputum production, often with breathlessness and further structural damage to the airways. Long-term macrolide antibiotic therapy may suppress bacterial infection and reduce inflammation, leading to fewer exacerbations, fewer symptoms, improved lung function, and improved quality of life. Further evidence is required on the efficacy of macrolides in terms of specific bacterial eradication and the extent of antibiotic resistance. To determine the impact of macrolide antibiotics in the treatment of adults and children with bronchiectasis. We identified trials from the Cochrane Airways Trials Register, which contains studies identified through multiple electronic searches and handsearches of other sources. We also searched trial registries and reference lists of primary studies. We conducted all searches on 18 January 2018. We included randomised controlled trials (RCTs) of at least four weeks' duration that compared macrolide antibiotics with placebo or no intervention for the long-term management of stable bronchiectasis in adults or children with a diagnosis of bronchiectasis by bronchography, plain film chest radiograph, or high-resolution computed tomography. We excluded studies in which participants had received continuous or high-dose antibiotics immediately before enrolment or before a diagnosis of cystic fibrosis, sarcoidosis, or allergic bronchopulmonary aspergillosis. Our primary outcomes were exacerbation, hospitalisation, and serious adverse events. Two review authors independently screened the titles and abstracts of 103 records. We independently screened the full text of 40 study reports and included 15 trials from 30 reports. Two review authors independently extracted outcome data and assessed risk of bias for each study. We analysed

  11. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions

    NARCIS (Netherlands)

    Leibovici, Leonard; Paul, Mical; Garner, Paul; Sinclair, David J; Afshari, Arash; Pace, Nathan Leon; Cullum, Nicky; Williams, Hywel C; Smyth, Alan; Skoetz, Nicole; Del Mar, Chris; Schilder, Anne G M; Yahav, Dafna; Tovey, David

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies. This

  12. Fighting antibiotic resistance in the intensive care unit using antibiotics.

    Science.gov (United States)

    Plantinga, Nienke L; Wittekamp, Bastiaan H J; van Duijn, Pleun J; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to classical infection prevention protocols and surveillance programs, counterintuitive interventions, such as selective decontamination with antibiotics and antibiotic rotation have been applied and investigated to control the emergence of antibiotic resistance. This review provides an overview of selective oropharyngeal and digestive tract decontamination, decolonization of methicillin-resistant Staphylococcus aureus and antibiotic rotation as strategies to modulate antibiotic resistance in the intensive care unit.

  13. Selection of antibiotic resistance at very low antibiotic concentrations

    OpenAIRE

    Sandegren, Linus

    2014-01-01

    Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are fou...

  14. Antibiotic alternatives: the substitution of antibiotics in animal husbandry?

    OpenAIRE

    Cheng, Guyue; Hao, Haihong; Xie, Shuyu; Wang, Xu; Dai, Menghong; Huang, Lingli; Yuan, Zonghui

    2014-01-01

    It is a common practice for decades to use of sub-therapeutic dose of antibiotics in food-animal feeds to prevent animals from diseases and to improve production performance in modern animal husbandry. In the meantime, concerns over the increasing emergence of antibiotic-resistant bacteria due to the unreasonable use of antibiotics and an appearance of less novelty antibiotics have prompted efforts to develop so-called alternatives to antibiotics. Whether or not the alternatives could really ...

  15. Mass rearing and augmentative biological control evaluation of Rhynocoris fuscipes (Hemiptera: Reduviidae) against multiple pests of cotton.

    Science.gov (United States)

    Tomson, Majesh; Sahayaraj, Kitherian; Kumar, Vivek; Avery, Pasco B; McKenzie, Cindy L; Osborne, Lance S

    2017-08-01

    Rhynocoris fuscipes (Fab.) (Hemiptera: Reduviidae) is a generalist predator of cotton pests and is commonly found inhabiting cotton-growing regions in southern India. With the goal of integrating this predator in standard management practices used against cotton pests on a commercial scale, (1) we developed a protocol for adult group rearing of this predator inside micro-environmental cages (MECs), and (2) we evaluated the biocontrol potential of mass-produced predators against cotton pests under potted and field conditions. Higher fecundity and adult longevity of R. fuscipes was recorded in the MECs than under natural growing conditions. The reduviid predator preferred stones and fallen leaves as hiding places in the MECs. The predator showed a higher biocontrol potential during the night hours against two pests, Phenacoccus solenopsis Tinsley and Dysdercus cingulatus (Fab.), than during the day under potted conditions. Under field conditions, R. fuscipes significantly reduced the population of Aphis gossypii Glover, P. solenopsis, D. cingulatus and Helicoverpa armigera (Hübner) by 28, 70, 29 and 50%, respectively. No negative impact of R. fuscipes was reported on other natural enemies present in the cotton agroecosystem. Significantly higher crop yield and cost benefit ratio were observed in R. fuscipes-released plots than in the control plots. The results suggest that R. fuscipes can be mass produced efficiently under controlled conditions in MECs, and used in an integrated management program for multiple cotton pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Association between magnetic resonance imaging patterns and baseline disease features in multiple myeloma: analyzing surrogates of tumour mass and biology

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Elias K.; Merz, Maximilian; Shah, Sofia; Hillengass, Michaela; Wagner, Barbara; Hose, Dirk; Raab, M.S. [University Hospital Heidelberg, Department of Internal Medicine V, Heidelberg (Germany); Hielscher, Thomas [German Cancer Research Center, Division of Biostatistics, Heidelberg (Germany); Kloth, Jost K.; Weber, Marc-Andre [University Hospital of Heidelberg, Clinic of Diagnostic and Interventional Radiology, Heidelberg (Germany); Jauch, Anna [University Hospital of Heidelberg, Institute of Human Genetics, Heidelberg (Germany); Delorme, Stefan [German Cancer Research Center, Department of Radiology, Heidelberg (Germany); Goldschmidt, Hartmut [University Hospital Heidelberg, Department of Internal Medicine V, Heidelberg (Germany); National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg (Germany); Hillengass, Jens [University Hospital Heidelberg, Department of Internal Medicine V, Heidelberg (Germany); German Cancer Research Center, Department of Radiology, Heidelberg (Germany)

    2016-11-15

    To assess associations between bone marrow infiltration patterns and localization in magnetic resonance imaging (MRI) and baseline clinical/prognostic parameters in multiple myeloma (MM). We compared baseline MM parameters, MRI patterns and localization of focal lesions to the mineralized bone in 206 newly diagnosed MM patients. A high tumour mass (represented by International Staging System stage III) was significantly associated with severe diffuse infiltration (p = 0.015) and a higher number of focal lesions (p = 0.006). Elevated creatinine (p = 0.003), anaemia (p < 0.001) and high LDH (p = 0.001) correlated with severe diffuse infiltration. A salt and pepper diffuse pattern had a favourable prognosis. A higher degree of destruction of mineralized bone (assessed by X-ray or computed tomography) was associated with an increasing number of focal lesions on MRI (p < 0.001). Adverse cytogenetics (del17p/gain1q21/t(4;14)) were associated with diffuse infiltration (p = 0.008). The presence of intraosseous focal lesions exceeding the mineralized bone had a borderline significant impact on prognosis. Diffuse bone marrow infiltration on MRI correlates with adverse cytogenetics, lowered haemoglobin values and high tumour burden in newly diagnosed MM whereas an increasing number of focal lesions correlates with a higher degree of bone destruction. Focal lesions exceeding the cortical bone did not adversely affect the prognosis. (orig.)

  17. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds.

    Science.gov (United States)

    Jaganathan, Ganesh K; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-03-13

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h -1 ) suffered significantly higher membrane damage at temperature between -20 °C and -10 °C than slow cooled (3 °Ch -1 ) seeds (P  0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to -20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes.

  18. Antibiotic-Resistant Gonorrhea

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Gonorrhea Note: Javascript is disabled or is not supported ... on Facebook Sexually Transmitted Diseases (STDs) Antibiotic-Resistant Gonorrhea Recommend on Facebook Tweet Share Compartir Low Resolution ...

  19. Glycopeptide antibiotic biosynthesis.

    Science.gov (United States)

    Yim, Grace; Thaker, Maulik N; Koteva, Kalinka; Wright, Gerard

    2014-01-01

    Glycopeptides such as vancomycin, teicoplanin and telavancin are essential for treating infections caused by Gram-positive bacteria. Unfortunately, the dwindled pipeline of new antibiotics into the market and the emergence of glycopeptide-resistant enterococci and other resistant bacteria are increasingly making effective antibiotic treatment difficult. We have now learned a great deal about how bacteria produce antibiotics. This information can be exploited to develop the next generation of antimicrobials. The biosynthesis of glycopeptides via nonribosomal peptide assembly and unusual amino acid synthesis, crosslinking and tailoring enzymes gives rise to intricate chemical structures that target the bacterial cell wall. This review seeks to describe recent advances in our understanding of both biosynthesis and resistance of these important antibiotics.

  20. Antibiotics for uncomplicated diverticulitis

    DEFF Research Database (Denmark)

    Shabanzadeh, Daniel M; Wille-Jørgensen, Peer

    2012-01-01

    Diverticulitis is an inflammatory complication to the very common condition diverticulosis. Uncomplicated diverticulitis has traditionally been treated with antibiotics with reference to the microbiology, extrapolation from trials on complicated intra-abdominal infections and clinical experience....

  1. Antibiotics for sore throat.

    Science.gov (United States)

    Spinks, Anneliese; Glasziou, Paul P; Del Mar, Chris B

    2013-11-05

    Sore throat is a common reason for people to present for medical care. Although it remits spontaneously, primary care doctors commonly prescribe antibiotics for it. To assess the benefits of antibiotics for sore throat for patients in primary care settings. We searched CENTRAL 2013, Issue 6, MEDLINE (January 1966 to July week 1, 2013) and EMBASE (January 1990 to July 2013). Randomised controlled trials (RCTs) or quasi-RCTs of antibiotics versus control assessing typical sore throat symptoms or complications. Two review authors independently screened studies for inclusion and extracted data. We resolved differences in opinion by discussion. We contacted trial authors from three studies for additional information. We included 27 trials with 12,835 cases of sore throat. We did not identify any new trials in this 2013 update. 1. Symptoms Throat soreness and fever were reduced by about half by using antibiotics. The greatest difference was seen at day three. The number needed to treat to benefit (NNTB) to prevent one sore throat at day three was less than six; at week one it was 21. 2. Non-suppurative complications The trend was antibiotics protecting against acute glomerulonephritis but there were too few cases to be sure. Several studies found antibiotics reduced acute rheumatic fever by more than two-thirds within one month (risk ratio (RR) 0.27; 95% confidence interval (CI) 0.12 to 0.60). 3. Suppurative complications Antibiotics reduced the incidence of acute otitis media within 14 days (RR 0.30; 95% CI 0.15 to 0.58); acute sinusitis within 14 days (RR 0.48; 95% CI 0.08 to 2.76); and quinsy within two months (RR 0.15; 95% CI 0.05 to 0.47) compared to those taking placebo. 4. Subgroup analyses of symptom reduction Antibiotics were more effective against symptoms at day three (RR 0.58; 95% CI 0.48 to 0.71) if throat swabs were positive for Streptococcus, compared to RR 0.78; 95% CI 0.63 to 0.97 if negative. Similarly at week one the RR was 0.29 (95% CI 0.12 to 0

  2. Antibiotic bonding to polytetrafluoroethylene with tridodecylmethylammonium chloride

    International Nuclear Information System (INIS)

    Harvey, R.A.; Alcid, D.V.; Greco, R.S.

    1982-01-01

    Polytetrafluoroethylene (PTFE) treated with the cationic surfactant, triodecylmethylammonium chloride (TDMAC), binds 14 C-penicillin (1.5 to 2 mg antibiotic/cm graft), whereas untreated PTFE or PTFE treated with anionic detergents shows little binding of antibiotic. TDMAC-treated PTFE concomitantly binds penicillin and heparin, generating a surface that potentially can resist both infection and thrombosis. The retention of these biologically active molecules is not due to passive entrapment in the PTFE but reflects an ionic interaction between the anionic ligands and surface-bound TDMAC. Penicillin bound to PTFE is not removed by exhaustive washing in aqueous buffers but is slowly released in the presence of plasma or when the PTFE is placed in a muscle pouch in the rat. Muscle tissue adjacent to the treated PTFE shows elevated levels of antibiotic following implantation. PTFE treated with TDMAC and placed in a muscle pouch binds 14 C-penicillin when it is locally irrigated with antibiotic or when penicillin is administered intravenously. Thus, the TDMAC surface treated either in vitro or in vivo with penicillin provides an effective in situ source for the timed release of antibiotic

  3. Phenotypic Resistance to Antibiotics

    Directory of Open Access Journals (Sweden)

    Jose L. Martinez

    2013-04-01

    Full Text Available The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented.

  4. Antibiotics produced by Streptomyces.

    Science.gov (United States)

    Procópio, Rudi Emerson de Lima; Silva, Ingrid Reis da; Martins, Mayra Kassawara; Azevedo, João Lúcio de; Araújo, Janete Magali de

    2012-01-01

    Streptomyces is a genus of Gram-positive bacteria that grows in various environments, and its shape resembles filamentous fungi. The morphological differentiation of Streptomyces involves the formation of a layer of hyphae that can differentiate into a chain of spores. The most interesting property of Streptomyces is the ability to produce bioactive secondary metabolites, such as antifungals, antivirals, antitumorals, anti-hypertensives, immunosuppressants, and especially antibiotics. The production of most antibiotics is species specific, and these secondary metabolites are important for Streptomyces species in order to compete with other microorganisms that come in contact, even within the same genre. Despite the success of the discovery of antibiotics, and advances in the techniques of their production, infectious diseases still remain the second leading cause of death worldwide, and bacterial infections cause approximately 17 million deaths annually, affecting mainly children and the elderly. Self-medication and overuse of antibiotics is another important factor that contributes to resistance, reducing the lifetime of the antibiotic, thus causing the constant need for research and development of new antibiotics. Copyright © 2012 Elsevier Editora Ltda. All rights reserved.

  5. Strategies to Minimize Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Sang Hee Lee

    2013-09-01

    Full Text Available Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs and various data such as pharmacokinetic (PK and pharmacodynamic (PD properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST, clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care, the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing. The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.

  6. Uncertainty in biological monitoring: a framework for data collection and analysis to account for multiple sources of sampling bias

    Science.gov (United States)

    Ruiz-Gutierrez, Viviana; Hooten, Melvin B.; Campbell Grant, Evan H.

    2016-01-01

    Biological monitoring programmes are increasingly relying upon large volumes of citizen-science data to improve the scope and spatial coverage of information, challenging the scientific community to develop design and model-based approaches to improve inference.Recent statistical models in ecology have been developed to accommodate false-negative errors, although current work points to false-positive errors as equally important sources of bias. This is of particular concern for the success of any monitoring programme given that rates as small as 3% could lead to the overestimation of the occurrence of rare events by as much as 50%, and even small false-positive rates can severely bias estimates of occurrence dynamics.We present an integrated, computationally efficient Bayesian hierarchical model to correct for false-positive and false-negative errors in detection/non-detection data. Our model combines independent, auxiliary data sources with field observations to improve the estimation of false-positive rates, when a subset of field observations cannot be validated a posteriori or assumed as perfect. We evaluated the performance of the model across a range of occurrence rates, false-positive and false-negative errors, and quantity of auxiliary data.The model performed well under all simulated scenarios, and we were able to identify critical auxiliary data characteristics which resulted in improved inference. We applied our false-positive model to a large-scale, citizen-science monitoring programme for anurans in the north-eastern United States, using auxiliary data from an experiment designed to estimate false-positive error rates. Not correcting for false-positive rates resulted in biased estimates of occupancy in 4 of the 10 anuran species we analysed, leading to an overestimation of the average number of occupied survey routes by as much as 70%.The framework we present for data collection and analysis is able to efficiently provide reliable inference for

  7. Multiple analyte adduct formation in liquid chromatography-tandem mass spectrometry - Advantages and limitations in the analysis of biologically-related samples.

    Science.gov (United States)

    Dziadosz, Marek

    2018-05-01

    Multiple analyte adduct formation was examined and discussed in the context of reproducible signal detection in liquid chromatography-tandem mass spectrometry applied in the analysis of biologically-related samples. Appropriate infusion solutions were prepared in H 2 O/methanol (3/97, v/v) with 1 mM sodium acetate and 10 mM acetic acid. An API 4000 QTrap tandem mass spectrometer was used for experiments performed in the negative scan mode (-Q1 MS) and the negative enhanced product ion mode (-EPI). γ‑Hydroxybutyrate and its deuterated form were used as model compounds to highlight both the complexity of adduct formation in popular mobile phases used and the effective signal compensation by the application of isotope-labelled analytes as internal standards. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. [Methodology of Screening New Antibiotics: Present Status and Prospects].

    Science.gov (United States)

    Trenin, A S

    2015-01-01

    Due to extensive distribution of pathogen resistance to available pharmaceuticals and serious problems in the treatment of various infections and tumor diseases, the necessity of new antibiotics is urgent. The basic methodological approaches to chemical synthesis of antibiotics and screening of new antibiotics among natural products, mainly among microbial secondary metabolites, are considered in the review. Since the natural compounds are very much diverse, screening of such substances gives a good opportunity to discover antibiotics of various chemical structure and mechanism of action. Such an approach followed by chemical or biological transformation, is capable of providing the health care with new effective pharmaceuticals. The review is mainly concentrated on screening of natural products and methodological problems, such as: isolation of microbial producers from the habitats, cultivation of microorganisms producing appropriate substances, isolation and chemical characterization of microbial metabolites, identification of the biological activity of the metabolites. The main attention is paid to the problems of microbial secondary metabolism and design of new models for screening biologically active compounds. The last achievements in the field of antibiotics and most perspective approaches to future investigations are discussed. The main methodological approach to isolation and cultivation of the producers remains actual and needs constant improvement. The increase of the screening efficiency can be achieved by more rapid chemical identification of antibiotics and design of new screening models based on the biological activity detection.

  9. [State-of-the-art status on airborne antibiotic resistant bacteria and antibiotic resistance genes].

    Science.gov (United States)

    Li, J; Yao, M S

    2018-04-06

    The world is facing more deaths due to increasing antibiotic-resistant bacterial infections and the shortage of new highly effective antibiotics, however the air media as its important transmission route has not been adequately studied. Based on the latest literature acquired in this work, we have discussed the state-of-the-art research progress of the concentration, distribution and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in different environmental air media, and also analyzed some future prevention and control measures. The large use of antibiotics in the medical settings and animal husbandry places has resulted in higher abundances of ARB and ARGs in the relevant and surrounding atmosphere than in urban and general indoor air environments. ARGs can be spread by adhering to airborne particles, and researchers have also found that air media contain more abundant ARGs than other environmental media such as soil, water and sediment. It was suggested in this review that strengthening the monitoring, study on spreading factors and biological toxicity, and also research and development on pathogen accurate diagnosis and new green antibiotic are expected to help effectively monitor, prevent and control of the impacts of airborne resistant bacteria and resistance genes on both human and ecologies.

  10. High Precision Zinc Stable Isotope Measurement of Certified Biological Reference Materials Using the Double Spike Technique and Multiple Collector-ICP-MS.

    Science.gov (United States)

    Moore, Rebekah E T; Larner, Fiona; Coles, Barry J; Rehkämper, Mark

    2017-04-01

    Biological reference materials with well-characterised stable isotope compositions are lacking in the field of 'isotope biochemistry', which seeks to understand bodily processes that rely on essential metals by determining metal stable isotope ratios. Here, we present Zn stable isotope data for six biological reference materials with certified trace metal concentrations: fish muscle, bovine muscle, pig kidney, human hair, human blood serum and human urine. Replicate analyses of multiple aliquots of each material achieved reproducibilities (2sd) of 0.04-0.13‰ for δ 66/64 Zn (which denotes the deviation of the 66 Zn/ 64 Zn ratio of a sample from a pure Zn reference material in parts per 1000). This implies only very minor isotopic heterogeneities within the samples, rendering them suitable as quality control materials for Zn isotope analyses. This endorsement is reinforced by (i) the close agreement of our Zn isotope data for two of the samples (bovine muscle and human blood serum) to previously published results for different batches of the same material and (ii) the similarity of the isotopic data for the samples (δ 66/64 Zn ≈ -0.8 to 0.0‰) to previously published Zn isotope results for similar biological materials. Further tests revealed that the applied Zn separation procedure is sufficiently effective to enable accurate data acquisition even at low mass resolving power (M/ΔM ≈ 400), as measurements and analyses conducted at much higher mass resolution (M/ΔM ≈ 8500) delivered essentially identical results.

  11. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.

    Science.gov (United States)

    Matsuoka, Yu; Shimizu, Kazuyuki

    2013-10-20

    It is quite important to understand the basic principle embedded in the main metabolism for the interpretation of the fermentation data. For this, it may be useful to understand the regulation mechanism based on systems biology approach. In the present study, we considered the perturbation analysis together with computer simulation based on the models which include the effects of global regulators on the pathway activation for the main metabolism of Escherichia coli. Main focus is the acetate overflow metabolism and the co-fermentation of multiple carbon sources. The perturbation analysis was first made to understand the nature of the feed-forward loop formed by the activation of Pyk by FDP (F1,6BP), and the feed-back loop formed by the inhibition of Pfk by PEP in the glycolysis. Those together with the effect of transcription factor Cra caused by FDP level affected the glycolysis activity. The PTS (phosphotransferase system) acts as the feed-back system by repressing the glucose uptake rate for the increase in the glucose uptake rate. It was also shown that the increased PTS flux (or glucose consumption rate) causes PEP/PYR ratio to be decreased, and EIIA-P, Cya, cAMP-Crp decreased, where cAMP-Crp in turn repressed TCA cycle and more acetate is formed. This was further verified by the detailed computer simulation. In the case of multiple carbon sources such as glucose and xylose, it was shown that the sequential utilization of carbon sources was observed for wild type, while the co-consumption of multiple carbon sources with slow consumption rates were observed for the ptsG mutant by computer simulation, and this was verified by experiments. Moreover, the effect of a specific gene knockout such as Δpyk on the metabolic characteristics was also investigated based on the computer simulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Antibiotics for acute bronchitis.

    Science.gov (United States)

    Smith, Susan M; Fahey, Tom; Smucny, John; Becker, Lorne A

    2017-06-19

    The benefits and risks of antibiotics for acute bronchitis remain unclear despite it being one of the most common illnesses seen in primary care. To assess the effects of antibiotics in improving outcomes and to assess adverse effects of antibiotic therapy for people with a clinical diagnosis of acute bronchitis. We searched CENTRAL 2016, Issue 11 (accessed 13 January 2017), MEDLINE (1966 to January week 1, 2017), Embase (1974 to 13 January 2017), and LILACS (1982 to 13 January 2017). We searched the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) and ClinicalTrials.gov on 5 April 2017. Randomised controlled trials comparing any antibiotic therapy with placebo or no treatment in acute bronchitis or acute productive cough, in people without underlying pulmonary disease. At least two review authors extracted data and assessed trial quality. We did not identify any new trials for inclusion in this 2017 update. We included 17 trials with 5099 participants in the primary analysis. The quality of trials was generally good. At follow-up there was no difference in participants described as being clinically improved between the antibiotic and placebo groups (11 studies with 3841 participants, risk ratio (RR) 1.07, 95% confidence interval (CI) 0.99 to 1.15). Participants given antibiotics were less likely to have a cough (4 studies with 275 participants, RR 0.64, 95% CI 0.49 to 0.85; number needed to treat for an additional beneficial outcome (NNTB) 6) and a night cough (4 studies with 538 participants, RR 0.67, 95% CI 0.54 to 0.83; NNTB 7). Participants given antibiotics had a shorter mean cough duration (7 studies with 2776 participants, mean difference (MD) -0.46 days, 95% CI -0.87 to -0.04). The differences in presence of a productive cough at follow-up and MD of productive cough did not reach statistical significance.Antibiotic-treated participants were more likely to be improved according to clinician's global assessment (6 studies

  13. Staphylococcus aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance.

    Directory of Open Access Journals (Sweden)

    Patricia Reed

    2015-05-01

    Full Text Available Many important cellular processes are performed by molecular machines, composed of multiple proteins that physically interact to execute biological functions. An example is the bacterial peptidoglycan (PG synthesis machine, responsible for the synthesis of the main component of the cell wall and the target of many contemporary antibiotics. One approach for the identification of essential components of a cellular machine involves the determination of its minimal protein composition. Staphylococcus aureus is a Gram-positive pathogen, renowned for its resistance to many commonly used antibiotics and prevalence in hospitals. Its genome encodes a low number of proteins with PG synthesis activity (9 proteins, when compared to other model organisms, and is therefore a good model for the study of a minimal PG synthesis machine. We deleted seven of the nine genes encoding PG synthesis enzymes from the S. aureus genome without affecting normal growth or cell morphology, generating a strain capable of PG biosynthesis catalyzed only by two penicillin-binding proteins, PBP1 and the bi-functional PBP2. However, multiple PBPs are important in clinically relevant environments, as bacteria with a minimal PG synthesis machinery became highly susceptible to cell wall-targeting antibiotics, host lytic enzymes and displayed impaired virulence in a Drosophila infection model which is dependent on the presence of specific peptidoglycan receptor proteins, namely PGRP-SA. The fact that S. aureus can grow and divide with only two active PG synthesizing enzymes shows that most of these enzymes are redundant in vitro and identifies the minimal PG synthesis machinery of S. aureus. However a complex molecular machine is important in environments other than in vitro growth as the expendable PG synthesis enzymes play an important role in the pathogenicity and antibiotic resistance of S. aureus.

  14. The multifaceted roles of antibiotics and antibiotic resistance in nature

    Directory of Open Access Journals (Sweden)

    Saswati eSengupta

    2013-03-01

    Full Text Available Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic-resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic-resistance in pathogens. In the natural milieu, antibiotics are often found to be present in subinhibitory concentrations acting as signalling molecules supporting quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host-parasite interactions (e.g., phagocytosis, adherence to the target cell and so on. The evolutionary and ecological aspects of antibiotics and antibiotic-resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behaviour of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and genes that confer resistance to antibiotics in

  15. Effects of Metals on Antibiotic Resistance and Conjugal Plasmid Transfer in Soil Bacterial Communities

    DEFF Research Database (Denmark)

    Song, Jianxiao

    Antibiotic resistance currently represents one of the biggest challenges for human health and in recent years the environmental dimension of antibiotic resistance has been increasingly recognized. The soil environment serves as an important reservoir of antibiotic resistance determinants. In addi...... adaptation to metal stress did not significantly increase the permissiveness of the soil bacterial community towards conjugal plasmid transfer........ In addition to direct selection of antibiotic resistance by antibiotics, metals may co-select for antibiotic resistance via different mechanisms causing environmental selection of antibiotic resistance in metal contaminated soils. Horizontal gene transfer of mobile genetic elements (MGEs) like plasmids...... is generally considered one of the most important co-selection mechanisms as multiple resistance genes can be located on the same MGE. This PhD thesis focused on the impact of metals (Cu and Zn) on the development of antibiotic resistance in bacterial communities in soils exposed to different degrees...

  16. Antibiotics and antibiotic resistance in agroecosystems: State of the science

    Science.gov (United States)

    We propose a simple causal model depicting relationships involved in dissemination of antibiotics and antibiotic resistance in agroecosystems and potential effects on human health, functioning of natural ecosystems, and agricultural productivity. Available evidence for each causal link is briefly su...

  17. Overdosing on Antibiotics

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Du, a Beijing resident in her 60s, believes that an antibiotic is a panacea for the maladies of her now 6-year-old grand- daughter Guoguo. Du began to take care of her granddaugh- ter since the child was merely 2 months old, for the gid's parents were busy. She is comfortable with her caretaker duties except when the girl runs high fevers. Then, the anxious grandma will feed the girl antibiotics or take her to a private child clinic nearby for intravenous infusion.

  18. Antibiotics in Animal Products

    Science.gov (United States)

    Falcão, Amílcar C.

    The administration of antibiotics to animals to prevent or treat diseases led us to be concerned about the impact of these antibiotics on human health. In fact, animal products could be a potential vehicle to transfer drugs to humans. Using appropri ated mathematical and statistical models, one can predict the kinetic profile of drugs and their metabolites and, consequently, develop preventive procedures regarding drug transmission (i.e., determination of appropriate withdrawal periods). Nevertheless, in the present chapter the mathematical and statistical concepts for data interpretation are strictly given to allow understanding of some basic pharma-cokinetic principles and to illustrate the determination of withdrawal periods

  19. Improving antibiotic use in daily hospital practice : The antibiotic checklist

    NARCIS (Netherlands)

    van Daalen, F.V.

    2018-01-01

    Better use of current antibiotic agents is necessary to help control antimicrobial resistance (AMR). Antibiotic stewardship programs (ASPs) are introduced to coordinate activities to measure and improve appropriate antibiotic use in daily hospital practice. This thesis shows how the introduction of

  20. Rapid optical determination of β-lactamase and antibiotic activity

    Science.gov (United States)

    2014-01-01

    Background The absence of rapid tests evaluating antibiotic susceptibility results in the empirical prescription of antibiotics. This can lead to treatment failures due to escalating antibiotic resistance, and also furthers the emergence of drug-resistant bacteria. This study reports a rapid optical method to detect β-lactamase and thereby assess activity of β-lactam antibiotics, which could provide an approach for targeted prescription of antibiotics. The methodology is centred on a fluorescence quenching based probe (β-LEAF – β-Lactamase Enzyme Activated Fluorophore) that mimics the structure of β-lactam antibiotics. Results The β-LEAF assay was performed for rapid determination of β-lactamase production and activity of β-lactam antibiotic (cefazolin) on a panel of Staphylococcus aureus ATCC strains and clinical isolates. Four of the clinical isolates were determined to be lactamase producers, with the capacity to inactivate cefazolin, out of the twenty-five isolates tested. These results were compared against gold standard methods, nitrocefin disk test for β-lactamase detection and disk diffusion for antibiotic susceptibility, showing results to be largely consistent. Furthermore, in the sub-set of β-lactamase producers, it was demonstrated and validated that multiple antibiotics (cefazolin, cefoxitin, cefepime) could be assessed simultaneously to predict the antibiotic that would be most active for a given bacterial isolate. Conclusions The study establishes the rapid β-LEAF assay for β-lactamase detection and prediction of antibiotic activity using S. aureus clinical isolates. Although the focus in the current study is β-lactamase-based resistance, the overall approach represents a broad diagnostic platform. In the long-term, these studies form the basis for the development of assays utilizing a broader variety of targets, pathogens and drugs. PMID:24708478

  1. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review

    DEFF Research Database (Denmark)

    Zorriehzahra, Mohammad Jalil; Delshad, Somayeh Torabi; Adel, Milad

    2016-01-01

    Wide and discriminate use of antibiotics has resulted in serious biological and ecological concerns, especially the emergence of antibiotic resistance. Probiotics, known as beneficial microbes, are being proposed as an effective and eco-friendly alternative to antibiotics. They were first applied...... in aquaculture species more than three decades ago, but considerable attention had been given only in the early 2000s. Probiotics are defined as live or dead, or even a component of the microorganisms that act under different modes of action in conferring beneficial effects to the host or to its environment....... Several probiotics have been characterized and applied in fish and a number of them are of host origin. Unlike some disease control alternatives being adapted and proposed in aquaculture where actions are unilateral, the immense potential of probiotics lies on their multiple mechanisms in conferring...

  2. Antibiotic Resistance of Diverse Bacteria from Aquaculture in Borneo

    Directory of Open Access Journals (Sweden)

    M. M. Kathleen

    2016-01-01

    Full Text Available The administration of antimicrobials in aquaculture provides a selective pressure creating a reservoir of multiple resistant bacteria in the cultured fish and shrimps as well as the aquaculture environment. The objective of this study was to determine the extent of antibiotic resistance in aquaculture products and aquaculture’s surrounding environment in Sarawak, Malaysian Borneo. Ninety-four identified bacterial isolates constituted of 17 genera were isolated from sediment, water, and cultured organisms (fish and shrimp in selected aquaculture farms. These isolates were tested for their antibiotic resistance against 22 antibiotics from several groups using the disk diffusion method. The results show that the highest resistance was observed towards streptomycin (85%, n=20, while the lowest resistance was towards gentamicin (1.1%, n=90. The multiple antibiotic resistant (MAR index of the isolates tested ranged between 0 and 0.63. It was suggested that isolates with MAR index > 0.2 were recovered from sources with high risk of antibiotic resistant contamination. This study revealed low level of antibiotic resistance in the aquaculture bacterial isolates except for streptomycin and ampicillin (>50% resistance, n=94 which have been used in the aquaculture industry for several decades. Antibiotic resistant patterns should be continuously monitored to predict the emergence and widespread of MAR. Effective action is needed to keep the new resistance from further developing and spreading.

  3. Bacterial cheating limits antibiotic resistance

    Science.gov (United States)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  4. EDITORIAL THE TREASURE CALLED ANTIBIOTICS

    African Journals Online (AJOL)

    pneumonia, typhoid fever, plaque, tuberculosis, typhus, syphilis, etc. were rampant.1 ... the bacteria to resist the effect of antibiotic for which they were initially ... research and development of new antibiotics, vaccines, diagnostic and other tools.

  5. Silver enhances antibiotic activity against gram-negative bacteria.

    Science.gov (United States)

    Morones-Ramirez, J Ruben; Winkler, Jonathan A; Spina, Catherine S; Collins, James J

    2013-06-19

    A declining pipeline of clinically useful antibiotics has made it imperative to develop more effective antimicrobial therapies, particularly against difficult-to-treat Gram-negative pathogens. Silver has been used as an antimicrobial since antiquity, yet its mechanism of action remains unclear. We show that silver disrupts multiple bacterial cellular processes, including disulfide bond formation, metabolism, and iron homeostasis. These changes lead to increased production of reactive oxygen species and increased membrane permeability of Gram-negative bacteria that can potentiate the activity of a broad range of antibiotics against Gram-negative bacteria in different metabolic states, as well as restore antibiotic susceptibility to a resistant bacterial strain. We show both in vitro and in a mouse model of urinary tract infection that the ability of silver to induce oxidative stress can be harnessed to potentiate antibiotic activity. Additionally, we demonstrate in vitro and in two different mouse models of peritonitis that silver sensitizes Gram-negative bacteria to the Gram-positive-specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. Finally, we used silver and antibiotic combinations in vitro to eradicate bacterial persister cells, and show both in vitro and in a mouse biofilm infection model that silver can enhance antibacterial action against bacteria that produce biofilms. This work shows that silver can be used to enhance the action of existing antibiotics against Gram-negative bacteria, thus strengthening the antibiotic arsenal for fighting bacterial infections.

  6. Mechanisms of Antibiotic Resistance

    Science.gov (United States)

    Munita, Jose M.; Arias, Cesar A.

    2015-01-01

    Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic “attack” is the prime example of bacterial adaptation and the pinnacle of evolution. “Survival of the fittest” is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice providing specific examples in relevant bacterial pathogens. PMID:27227291

  7. Antibiotic resistance in Salmonella

    NARCIS (Netherlands)

    Vo, A.T.T.

    2007-01-01

    Immediately after their introduction in the beginning of the fourties of the previous century, the agents used to combat infectious diseases caused by bacteria were regarded with suspicion, but not long thereafter antibiotics had the status of miracle drugs. For decades mankind has lived under the

  8. Salinomycin, a polyether ionophoric antibiotic, inhibits adipogenesis

    International Nuclear Information System (INIS)

    Szkudlarek-Mikho, Maria; Saunders, Rudel A.; Yap, Sook Fan; Ngeow, Yun Fong; Chin, Khew-Voon

    2012-01-01

    Highlights: ► Salinomycin inhibits preadipocyte differentiation into adipocytes. ► Salinomycin inhibits transcriptional regulation of adipogenesis. ► Pharmacological effects of salinomycin suggest toxicity in cancer therapy. -- Abstract: The polyether ionophoric antibiotics including monensin, salinomycin, and narasin, are widely used in veterinary medicine and as food additives and growth promoters in animal husbandry including poultry farming. Their effects on human health, however, are not fully understood. Recent studies showed that salinomycin is a cancer stem cell inhibitor. Since poultry consumption has risen sharply in the last three decades, we asked whether the consumption of meat tainted with growth promoting antibiotics might have effects on adipose cells. We showed in this report that the ionophoric antibiotics inhibit the differentiation of preadipocytes into adipocytes. The block of differentiation is not due to the induction of apoptosis nor the inhibition of cell proliferation. In addition, salinomycin also suppresses the transcriptional activity of the CCAAT/enhancer binding proteins and the peroxisome proliferator-activated receptor γ. These results suggest that the ionophoric antibiotics can be exploited as novel anti-obesity therapeutics and as pharmacological probes for the study of adipose biology. Further, the pharmacological effects of salinomycin could be a harbinger of its toxicity on the adipose tissue and other susceptible target cells in cancer therapy.

  9. Salinomycin, a polyether ionophoric antibiotic, inhibits adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Szkudlarek-Mikho, Maria; Saunders, Rudel A. [Department of Medicine, Biochemistry and Cancer Biology, Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH 43614 (United States); Yap, Sook Fan [Faculty of Medicine and Health Sciences, Department of Pre-Clinical Sciences, University of Tunku Abdul Rahman (Malaysia); Ngeow, Yun Fong [Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chin, Khew-Voon, E-mail: khew-voon.chin@utoledo.edu [Department of Medicine, Biochemistry and Cancer Biology, Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH 43614 (United States)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Salinomycin inhibits preadipocyte differentiation into adipocytes. Black-Right-Pointing-Pointer Salinomycin inhibits transcriptional regulation of adipogenesis. Black-Right-Pointing-Pointer Pharmacological effects of salinomycin suggest toxicity in cancer therapy. -- Abstract: The polyether ionophoric antibiotics including monensin, salinomycin, and narasin, are widely used in veterinary medicine and as food additives and growth promoters in animal husbandry including poultry farming. Their effects on human health, however, are not fully understood. Recent studies showed that salinomycin is a cancer stem cell inhibitor. Since poultry consumption has risen sharply in the last three decades, we asked whether the consumption of meat tainted with growth promoting antibiotics might have effects on adipose cells. We showed in this report that the ionophoric antibiotics inhibit the differentiation of preadipocytes into adipocytes. The block of differentiation is not due to the induction of apoptosis nor the inhibition of cell proliferation. In addition, salinomycin also suppresses the transcriptional activity of the CCAAT/enhancer binding proteins and the peroxisome proliferator-activated receptor {gamma}. These results suggest that the ionophoric antibiotics can be exploited as novel anti-obesity therapeutics and as pharmacological probes for the study of adipose biology. Further, the pharmacological effects of salinomycin could be a harbinger of its toxicity on the adipose tissue and other susceptible target cells in cancer therapy.

  10. Salinomycin, A Polyether Ionophoric Antibiotic, Inhibits Adipogenesis

    Science.gov (United States)

    Szkudlarek-Mikho, Maria; Saunders, Rudel A.; Yap, Sook Fan; Ngeow, Yun Fong; Chin, Khew-Voon

    2012-01-01

    The polyether ionophoric antibiotics including monensin, salinomycin, and narasin, are widely used in veterinary medicine and as food additives and growth promoters in animal husbandry including poultry farming. Their effects on human health, however, are not fully understood. Recent studies showed that salinomycin is a cancer stem cell inhibitor. Since poultry consumption has risen sharply in the last three decades, we asked whether the consumption of meat tainted with growth promoting antibiotics might have effects on adipose cells. We showed in this report that the ionophoric antibiotics inhibit the differentiation of preadipocytes into adipocytes. The block of differentiation is not due to the induction of apoptosis nor the inhibition of cell proliferation. In addition, salinomycin also suppresses the transcriptional activity of the CCAAT/enhancer binding proteins and the peroxisome proliferator-activated receptor γ. These results suggest that the ionophoric antibiotics can be exploited as novel anti-obesity therapeutics and as pharmacological probes for the study of adipose biology. Further, the pharmacological effects of salinomycin could be a harbinger of its toxicity on the adipose tissue and other susceptible target cells in cancer therapy. PMID:23123626

  11. Antibiotic Resistance in Foodborne Pathogens

    OpenAIRE

    Walsh, Ciara; Duffy, Geraldine

    2013-01-01

    Wide-spread antibiotic resistance among bacterial pathogens is now a serious public health issue and multi-antibiotic resistance has been reported in many foodborne pathogens including Salmonella and E. coli. A study to determine antibiotic resistance profiles of a range of Salmonella and Verocytotoxigenic E.coli (VTEC) isolated from Irish foods revealed significant levels of antibiotic resistance in the strains. S. typhimurium DT104 were multiantibiotic resistant with 97% resistant to 7 anti...

  12. When and How to Take Antibiotics

    Science.gov (United States)

    ... bacterial balance, it may cause stomach upsets, diarrhea, vaginal infections, or other problems. If you take antibiotics unnecessarily ... before taking antibiotics? Antibiotics often lead to a vaginal yeast infection. Because antibiotics kill the normal bacteria in the ...

  13. Genomic sequencing of a strain of Acinetobacter baumannii and potential mechanisms to antibiotics resistance.

    Science.gov (United States)

    Zhao, Lei; Li, Hongru; Zhu, Ziwen; Wakefield, Mark R; Fang, Yujiang; Ye, Ying

    2017-06-01

    Acinetobacter baumannii has been becoming a great challenge to clinicians due to their resistance to almost all available antibiotics. In this study, we sequenced the genome from a multiple antibiotics resistant Acinetobacter baumannii stain which was named A. baumannii-1isolated from China by SMRT sequencing technology to explore its potential mechanisms to antibiotic resistance. We found that several mechanisms might contribute to the antibiotic resistance of Acinetobacter baumannii. Specifically, we found that SNP in genes associated with nucleotide excision repair and ABC transporter might contribute to its resistance to multiple antibiotics; we also found that specific genes associated with bacterial DNA integration and recombination, DNA-mediated transposition and response to antibiotics might contribute to its resistance to multiple antibiotics; Furthermore, specific genes associated with penicillin and cephalosporin biosynthetic pathway and specific genes associated with CHDL and MBL β-lactamase genes might contribute to its resistance to multiple antibiotics. Thus, the detailed mechanisms by which Acinetobacter baumannii show extensive resistance to multiple antibiotics are very complicated. Such a study might be helpful to develop new strategies to control Acinetobacter baumannii infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions

    DEFF Research Database (Denmark)

    Leibovici, Leonard; Paul, Mical; Garner, Paul

    2016-01-01

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies....... This omission creates a skewed view, which emphasizes short-term efficacy and ignores the long-term consequences to the patient and other people. We offer a framework for addressing antibiotic resistance in systematic reviews. We suggest that the data on background resistance in the original trials should...... controlled trials or systematic reviews....

  15. Selection of antibiotic resistance at very low antibiotic concentrations.

    Science.gov (United States)

    Sandegren, Linus

    2014-05-01

    Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are found in sewage water, soils, and many water environments due to natural production and contamination from human activities. Selection of resistance at non-lethal antibiotic concentrations (below the wild-type minimum inhibitory concentration) occurs due to differences in growth rate at the particular antibiotic concentration between cells with different tolerance levels to the antibiotic. The minimum selective concentration for a particular antibiotic is reached when its reducing effect on growth of the susceptible strain balances the reducing effect (fitness cost) of the resistance determinant in the resistant strain. Recent studies have shown that resistant bacteria can be selected at concentrations several hundred-fold below the lethal concentrations for susceptible cells. Resistant mutants selected at low antibiotic concentrations are generally more fit than those selected at high concentrations but can still be highly resistant. The characteristics of selection at low antibiotic concentrations, the potential clinical problems of this mode of selection, and potential solutions will be discussed.

  16. Environmental pollution by antibiotics and by antibiotic resistance determinants

    International Nuclear Information System (INIS)

    Martinez, Jose Luis

    2009-01-01

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  17. Environmental pollution by antibiotics and by antibiotic resistance determinants

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jose Luis, E-mail: jlmtnez@cnb.csic.e [Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Darwin 3, Cantoblanco, 28049 Madrid, and CIBERESP (Spain)

    2009-11-15

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  18. Evidence for a complex relationship between antibiotics and antibiotic-resistant Escherichia coli: from medical center patients to a receiving environment.

    Science.gov (United States)

    Oberlé, Kenny; Capdeville, Marion-Justine; Berthe, Thierry; Budzinski, Hélène; Petit, Fabienne

    2012-02-07

    The aim of this study was to investigate the relationship between antibiotics and antibiotic-resistant fecal bacteria (E. coli) in water along a medical center-wastewater treatment plant-river continuum (4 km). A multiresidue chemical analysis methodology, using solid phase extraction coupled with liquid chromatography tandem mass spectrometry, was performed to detect whether low levels of contamination by 34 antibiotics were related to antibiotic resistance of E. coli and antibiotic use. The contamination of water by antibiotics and antibiotic-resistant E. coli decreased along the continuum. Although amoxicillin was predominantly prescribed, only ofloxacin (1 ng·L(-1)) and sulfamethoxazole (4 ng·L(-1)) persisted in the river. At the retirement home, in the medical center, even though no tetracycline and sulfamethoxazole were consumed, the highest occurrences of antibiotic resistance were in classes of quinolones (42.0%), sulfonamides (24.0%), tetracyclines (38.0%), and penicillins (38.0%), mainly due to the presence of multiple antibiotic-resistance genes on class 1 integrons. Along the continuum, the occurrence of E. coli resistant to antibiotics and those carrying class 1 integrons decreased in water samples (p-value antibiotic compounds (ofloxacin, sulfamethoxazole) were found, but they did not correspond to the major resistances (tetracycline, amoxicillin) of E. coli.

  19. Generic antibiotics in Japan.

    Science.gov (United States)

    Fujimura, Shigeru; Watanabe, Akira

    2012-08-01

    Generic drugs have been used extensively in many developed countries, although their use in Japan has been limited. Generic drugs reduce drug expenses and thereby national medical expenditure. Because generic drugs provide advantages for both public administration and consumers, it is expected that they will be more widely used in the future. However, the diffusion rate of generic drugs in Japan is quite low compared with that of other developed countries. An investigation on generic drugs conducted by the Ministry of Health, Labour and Welfare in Japan revealed that 17.2 % of doctors and 37.2 % of patients had not used generic drugs. The major reasons for this low use rate included distrust of off-patent products and lower drug price margin compared with the brand name drug. The generic drugs available in the market include external drugs such as wet packs, antihypertensive agents, analgesics, anticancer drugs, and antibiotics. Among them, antibiotics are frequently used in cases of acute infectious diseases. When the treatment of these infections is delayed, the infection might be aggravated rapidly. The pharmacokinetics-pharmacodynamics (PK-PD) theory has been adopted in recent chemotherapy, and in many cases, the most appropriate dosage and administration of antibiotics are determined for individual patients considering renal function; high-dosage antibiotics are used preferably for a short duration. Therefore, a highly detailed antimicrobial agent is necessary. However, some of the generic antibiotics have less antibacterial potency or solubility than the brand name products. We showed that the potency of the generic products of vancomycin and teicoplanin is lower than that of the branded drugs by 14.6 % and 17.3 %, respectively. Furthermore, we confirmed that a generic meropenem drug for injection required about 82 s to solubilize in saline, whereas the brand product required only about 21 s. It was thought that the cause may be the difference in size of bulk

  20. The analysis of the antibiotic resistome offers new opportunities for therapeutic intervention.

    Science.gov (United States)

    Corona, Fernando; Blanco, Paula; Alcalde-Rico, Manuel; Hernando-Amado, Sara; Lira, Felipe; Bernardini, Alejandra; Sánchez, María B; Martínez, José L

    2016-06-01

    Most efforts in the development of antimicrobials have focused on the screening of lethal targets. Nevertheless, the constant expansion of antimicrobial resistance makes the antibiotic resistance determinants themselves suitable targets for finding inhibitors to be used in combination with antibiotics. Among them, inhibitors of antibiotic inactivating enzymes and of multidrug efflux pumps are suitable candidates for improving the efficacy of antibiotics. In addition, the application of systems biology tools is helping to understand the changes in bacterial physiology associated to the acquisition of resistance, including the increased susceptibility to other antibiotics displayed by some antibiotic-resistant mutants. This information is useful for implementing novel strategies based in metabolic interventions or combination of antibiotics for improving the efficacy of antibacterial therapy.

  1. Antibiotic use and microbiome function.

    Science.gov (United States)

    Ferrer, Manuel; Méndez-García, Celia; Rojo, David; Barbas, Coral; Moya, Andrés

    2017-06-15

    Our microbiome should be understood as one of the most complex components of the human body. The use of β-lactam antibiotics is one of the microbiome covariates that influence its composition. The extent to which our microbiota changes after an antibiotic intervention depends not only on the chemical nature of the antibiotic or cocktail of antibiotics used to treat specific infections, but also on the type of administration, duration and dose, as well as the level of resistance that each microbiota develops. We have begun to appreciate that not all bacteria within our microbiota are vulnerable or reactive to different antibiotic interventions, and that their influence on both microbial composition and metabolism may differ. Antibiotics are being used worldwide on a huge scale and the prescription of antibiotics is continuing to rise; however, their effects on our microbiota have been reported for only a limited number of them. This article presents a critical review of the antibiotics or antibiotic cocktails whose use in humans has been linked to changes in the composition of our microbial communities, with a particular focus on the gut, oral, respiratory, skin and vaginal microbiota, and on their molecular agents (genes, proteins and metabolites). We review the state of the art as of June 2016, and cover a total of circa 68 different antibiotics. The data herein are the first to compile information about the bacteria, fungi, archaea and viruses most influenced by the main antibiotic treatments prescribed nowadays. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Prescribing antibiotics in general practice:

    DEFF Research Database (Denmark)

    Sydenham, Rikke Vognbjerg; Pedersen, Line Bjørnskov; Plejdrup Hansen, Malene

    Objectives The majority of antibiotics are prescribed from general practice. The use of broad-spectrum antibiotics increases the risk of development of bacteria resistant to antibiotic treatment. In spite of guidelines aiming to minimize the use of broad-spectrum antibiotics we see an increase...... in the use of these agents. The overall aim of the project is to explore factors influencing the decision process and the prescribing behaviour of the GPs when prescribing antibiotics. We will study the impact of microbiological testing on the choice of antibiotic. Furthermore the project will explore how...... the GPs’ prescribing behaviour is influenced by selected factors. Method The study consists of a register-based study and a questionnaire study. The register-based study is based on data from the Register of Medicinal Product Statistics (prescribed antibiotics), Statistics Denmark (socio-demographic data...

  3. Fate of antibiotic resistance genes within the microbial communities of three waste water treatment plants

    OpenAIRE

    Di Cesare, Andrea; Eckert, Ester; D'Urso, Silvia; Doppelbauer, Julia; Corno, Gianluca

    2016-01-01

    Although Waste Water Treatment Plant (WWTP) are designed to reduce the biological pollution of urban waters, they lack a specific action against antibiotic resistance bacteria (ARB) or antibiotic resistance genes (ARGs). Nowadays, it is well documented that WWTPs constitute a reservoir of antibiotic resistances and, in some cases, they can be a favorable environment for the selection of ARB. This represent a serious concern for the public health, because the effluents of the WWTPs can be reus...

  4. Importance of magnesium depletion with hypofunction of the biological clock in the pathophysiology of headhaches with photophobia, sudden infant death and some clinical forms of multiple sclerosis.

    Science.gov (United States)

    Durlach, J; Pagès, N; Bac, P; Bara, M; Guiet-Bara, A

    2004-12-01

    Mg depletion is a type of Mg deficit due to a dysregulation of the Mg status. It cannot be corrected through nutritional supplementation only, but requires the most specific correction of the dysregulating mechanism. Among those, Biological Clock (BC) dysrhythmias are to be considered. The aim of this study is to analyze the clinical forms of Mg depletion with hypofunction of the Biological Clock (hBC). hBC may be due to either Primary disorders of BC [Suprachiasmatic Nuclei (SCN) and pineal gland (PG)] or Secondary with homeostatic response [reactive Photophobia (Pphi] to light neurostimulating effects [Nervous Hyper Excitability (NHE)]. The symptomatology is mainly diurnal and observed during fair weather (Spring,Summer). The elective marker of hBC is represented by a decrease in melatonin and in its metabolites in various fluids. The clinical forms of NHE due to Mg depletion with hBC are central and peripheral. The central forms associate anxiety, headaches and dyssomnia. The peripheral manifestations are neuromuscular: photosensitive epilepsia mainly. Three chronopathological forms of Mg depletion with hBC have been highlighted: 1. Headaches with Pphi: mainly migraine; 2. Sudden Infant Death Syndrome (SIDS); 3. Multiple Sclerosis (MS).- Headaches with Pphi, migraine particularly. These cephalalgias are diurnal with Pphi and are aggravated during the fair seasons (particularly during midnight sun-summer). Migraine is their typical form with its dishabituation to visual stimuli and its occipital cortex hyperexcitability. Comorbidity with anxiety is frequent. In 2/3 of the cases, it appears first.- SIDS might be linked to an impaired maturation of both photoendocrine system and brown adipose tissue. MS may be associated with primary disorders of BC Clinical forms of Mg depletion with hBC in MS present diurnal exacerbations and relapses during fair seasons. They have been underestimated because they disagree with the dogma of the , presently questioned

  5. Antibiotics and oral contraceptives.

    Science.gov (United States)

    DeRossi, Scott S; Hersh, Elliot V

    2002-10-01

    With the exception of rifampin-like drugs, there is a lack of scientific evidence supporting the ability of commonly prescribed antibiotics, including all those routinely employed in outpatient dentistry, to either reduce blood levels and/or the effectiveness of oral contraceptives. To date, all clinical trials studying the effects of concomitant antibiotic therapy (with the exception of rifampin and rifabutin) have failed to demonstrate an interaction. Like all drugs, oral contraceptives are not 100% effective with the failure rate in the typical United States population reported to be as high as 3%. It is thus possible that the case reports of unintended pregnancies during antibiotic therapy may simply represent the normal failure rate of these drugs. Considering that both drug classes are prescribed frequently to women of childbearing potential, one would expect a much higher rate of oral contraceptive failure in this group of patients if a true drug:drug interaction existed. On the other hand, if the interaction does exist but is a relatively rare event, occurring in, say, 1 in 5000 women, clinical studies such as those described in this article would not detect the interaction. The pharmacokinetic studies of simultaneous antibiotic and oral contraceptive ingestion, and the retrospective studies of pregnancy rates among oral contraceptive users exposed to antibiotics, all suffer from one potential common weakness, i.e., their relatively small sample size. Sample sizes in the pharmacokinetic trials ranged from 7 to 24 participants, whereas the largest retrospective study of pregnancy rates still evaluated less than 800 total contraceptive users. Still, the incidence of such a rare interaction would not differ from the accepted normal failure rate of oral contraceptive therapy. The medico-legal ramifications of what looks like at best a rare interaction remains somewhat "murky." On one hand, we have medico-legal experts advising the profession to exercise caution

  6. Surveillance of antibiotic resistance

    Science.gov (United States)

    Johnson, Alan P.

    2015-01-01

    Surveillance involves the collection and analysis of data for the detection and monitoring of threats to public health. Surveillance should also inform as to the epidemiology of the threat and its burden in the population. A further key component of surveillance is the timely feedback of data to stakeholders with a view to generating action aimed at reducing or preventing the public health threat being monitored. Surveillance of antibiotic resistance involves the collection of antibiotic susceptibility test results undertaken by microbiology laboratories on bacteria isolated from clinical samples sent for investigation. Correlation of these data with demographic and clinical data for the patient populations from whom the pathogens were isolated gives insight into the underlying epidemiology and facilitates the formulation of rational interventions aimed at reducing the burden of resistance. This article describes a range of surveillance activities that have been undertaken in the UK over a number of years, together with current interventions being implemented. These activities are not only of national importance but form part of the international response to the global threat posed by antibiotic resistance. PMID:25918439

  7. Spectrophotometric Investigations of Macrolide Antibiotics: A Brief Review

    Directory of Open Access Journals (Sweden)

    Mrudul R. Keskar

    2015-01-01

    Full Text Available Macrolides, one of the most commonly used class of antibiotics, are a group of drugs produced by Streptomyces species. They belong to the polyketide class of natural products. Their activity is due to the presence of a large macrolide lactone ring with deoxy sugar moieties. They are protein synthesis inhibitors and broad-spectrum antibiotics, active against both gram-positive and gram-negative bacteria. Different analytical techniques have been reported for the determination of macrolides such as chromatographic methods, flow injection methods, spectrofluorometric methods, spectrophotometric methods, and capillary electrophoresis methods. Among these methods, spectrophotometric methods are sensitive and cost effective for the analysis of various antibiotics in pharmaceutical formulations as well as biological samples. This article reviews different spectrophotometric methods for the determination of macrolide antibiotics.

  8. Antibiotic Therapy for Very Low Birth Weigh Newborns in NICU

    Science.gov (United States)

    Afjeh, Seyyed-Abolfazl; Sabzehei, Mohammad-Kazem; Fahimzad, Seyyed-Ali-Reza; Shiva, Farideh; Shamshiri, Ahmad-Reza; Esmaili, Fatemeh

    2016-01-01

    Background Prolonged empiric antibiotics therapy in neonates results in several adverse consequences including widespread antibiotic resistance, late onset sepsis (LOS), necrotizing enterocolitis (NEC), prolonged hospital course (HC) and increase in mortality rates. Objectives To assess the risk factors and the outcome of prolonged empiric antibiotic therapy in very low birth weight (VLBW) newborns. Materials and Methods Prospective study in VLBW neonates admitted to NICU and survived > 2 W, from July 2011 - June 2012. All relevant perinatal and postnatal data including duration of antibiotics therapy (Group I 2W) and outcome up to the time of discharge or death were documented and compared. Results Out of 145 newborns included in the study, 62 were in group I, and 83 in Group II. Average duration of antibiotic therapy was 14 days (range 3 - 62 days); duration in Group I and Group II was 10 ± 2.3 vs 25.5 ± 10.5 days. Hospital stay was 22.3 ± 11.5 vs 44.3 ± 14.7 days, respectively. Multiple regression analysis revealed following risk factors as significant for prolonged empiric antibiotic therapy: VLBW especially stage II, 12 (8.3%) newborns died. Infant mortality alone and with LOS/NEC was higher in group II as compared to group I (P < 0.002 and < 0.001 respectively). Conclusions Prolonged empiric antibiotic therapy caused increasing rates of LOS, NEC, HC and infant mortality. PMID:27307961

  9. Limited bacterial diversity within a treatment plant receiving antibiotic containing waste from bulk drug production

    NARCIS (Netherlands)

    Marathe, Nachiket P.; Shetty, Sudarshan A.; Shouche, Yogesh S.; Larsson, D.G.J.

    2016-01-01

    Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted

  10. Tolerance of Norway spruce (Picea abies [L.] Karst.) embryogenic tissue to penicillin, carbapenem and aminoglycoside antibiotics

    Czech Academy of Sciences Publication Activity Database

    Malá, J.; Pavingerová, Daniela; Cvrčková, H.; Bříza, Jindřich; Dostál, J.; Šíma, P.

    2009-01-01

    Roč. 55, č. 4 (2009), s. 156-161 ISSN 1212-4834 R&D Projects: GA MZe QH71290 Institutional research plan: CEZ:AV0Z50510513 Keywords : somatic embryogenesis * Norway spruce * penicillin antibiotics * Agrobacterium tumefaciens * carbapenem antibiotics Subject RIV: EB - Genetics ; Molecular Biology

  11. Multirate delivery of multiple therapeutic agents from metal-organic frameworks

    Directory of Open Access Journals (Sweden)

    Alistair C. McKinlay

    2014-12-01

    Full Text Available The highly porous nature of metal-organic frameworks (MOFs offers great potential for the delivery of therapeutic agents. Here, we show that highly porous metal-organic frameworks can be used to deliver multiple therapeutic agents—a biologically active gas, an antibiotic drug molecule, and an active metal ion—simultaneously but at different rates. The possibilities offered by delivery of multiple agents with different mechanisms of action and, in particular, variable timescales may allow new therapy approaches. Here, we show that the loaded MOFs are highly active against various strains of bacteria.

  12. A study of antibiotic prescribing

    DEFF Research Database (Denmark)

    Jaruseviciene, L.; Radzeviciene-Jurgute, R.; Jurgutis, A.

    2012-01-01

    Background. Globally, general practitioners (GPs) write more than 90% of all antibiotic prescriptions. This study examines the experiences of Lithuanian and Russian GPs in antibiotic prescription for upper respiratory tract infections, including their perceptions of when it is not indicated...... clinically or pharmacologically. Methods. 22 Lithuanian and 29 Russian GPs participated in five focus group discussions. Thematic analysis was used to analyse the data. Results. We identified four main thematic categories: patients' faith in antibiotics as medication for upper respiratory tract infections......; patient potential to influence a GP's decision to prescribe antibiotics for upper respiratory tract infections; impediments perceived by GPs in advocating clinically grounded antibiotic prescribing with their patients, and strategies applied in physician-patient negotiation about antibiotic prescribing...

  13. Antibiotics in late clinical development.

    Science.gov (United States)

    Fernandes, Prabhavathi; Martens, Evan

    2017-06-01

    Most pharmaceutical companies have stopped or have severely limited investments to discover and develop new antibiotics to treat the increasing prevalence of infections caused by multi-drug resistant bacteria, because the return on investment has been mostly negative for antibiotics that received marketing approved in the last few decades. In contrast, a few small companies have taken on this challenge and are developing new antibiotics. This review describes those antibiotics in late-stage clinical development. Most of them belong to existing antibiotic classes and a few with a narrow spectrum of activity are novel compounds directed against novel targets. The reasons for some of the past failures to find new molecules and a path forward to help attract investments to fund discovery of new antibiotics are described. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Antibiotic prevention of postcataract endophthalmitis

    DEFF Research Database (Denmark)

    Kessel, Line; Flesner, Per; Andresen, Jens

    2015-01-01

    Endophthalmitis is one of the most feared complications after cataract surgery. The aim of this systematic review was to evaluate the effect of intracameral and topical antibiotics on the prevention of endophthalmitis after cataract surgery. A systematic literature review in the MEDLINE, CINAHL......, Cochrane Library and EMBASE databases revealed one randomized trial and 17 observational studies concerning the prophylactic effect of intracameral antibiotic administration on the rate of endophthalmitis after cataract surgery. The effect of topical antibiotics on endophthalmitis rate was reported by one...... with the use of intracameral antibiotic administration of cefazolin, cefuroxime and moxifloxacin, whereas no effect was found with the use of topical antibiotics or intracameral vancomycin. Endophthalmitis occurred on average in one of 2855 surgeries when intracameral antibiotics were used compared to one...

  15. The influence of a sustained multifaceted approach to improve antibiotic prescribing in Slovenia during the past decade: findings and implications.

    Science.gov (United States)

    Fürst, Jurij; Čižman, Milan; Mrak, Jana; Kos, Damjan; Campbell, Stephen; Coenen, Samuel; Gustafsson, Lars L; Fürst, Luka; Godman, Brian

    2015-02-01

    Rising antibiotic resistance has become an increasing public health problem. There is a well-established correlation between antibiotic consumption and antimicrobial resistance. Consequently, measures to rationalize the prescribing of antibiotics should reduce the resistant strains. Following a 24% increase in antibiotic consumption at the end of the 1990s, multiple activities were designed and introduced by the Health Insurance Institute of Slovenia (ZZZS) and other organizations in Slovenia at the end of 1999. These activities reduced the antibiotic consumption by 18.7% by 2002. These measures have continued. To study changes in antibiotic utilization from 1995 to 2012 alongside the multiple interventions and their consequences, including changes in resistance patterns. This was a retrospective observational study involving all patients dispensed at least one ZZZS prescription for an antibiotic in Slovenia. Utilization was expressed in defined daily doses per thousand inhabitants per day. Multifaceted interventions were conducted over time involving all key stakeholder groups, that is, the Ministry of Health, ZZZS, physician groups and patients. These included comprehensive communication programs as well as prescribing restrictions for a number of antibiotics and classes. From 1999 to 2012, antibiotic consumption decreased by 2-9% per year, with an overall decrease of 31%. There were also appreciable structural changes. Overall antibiotic utilization and the utilization of 7 out of 10 antibiotics significantly decreased after multiple interventions. The resistance of Streptococcus pneumoniae to penicillin decreased in line with decreased utilization. However, its resistance to macrolides increased from 5.4 to 21% despite halving of its utilization. The resistance of Escherichia coli to fluoroquinolones doubled from 10 to 21% despite utilization decreasing by a third. Expenditures on antibiotics decreased by 53%. Multiple demand-side measures introduced following

  16. Antibiotics from predatory bacteria

    Directory of Open Access Journals (Sweden)

    Juliane Korp

    2016-03-01

    Full Text Available Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism.

  17. Resurgence of persisting non-cultivable Borrelia burgdorferi following antibiotic treatment in mice.

    Directory of Open Access Journals (Sweden)

    Emir Hodzic

    Full Text Available The agent of Lyme borreliosis, Borrelia burgdorferi, evades host immunity and establishes persistent infections in its varied mammalian hosts. This persistent biology may pose challenges to effective antibiotic treatment. Experimental studies in dogs, mice, and non-human primates have found persistence of B. burgdorferi DNA following treatment with a variety of antibiotics, but persisting spirochetes are non-cultivable. Persistence of B. burgdorferi DNA has been documented in humans following treatment, but the significance remains unknown. The present study utilized a ceftriaxone treatment regimen in the C3H mouse model that resulted in persistence of non-cultivable B. burgdorferi in order to determine their long-term fate, and to examine their effects on the host. Results confirmed previous studies, in which B. burgdorferi could not be cultured from tissues, but low copy numbers of B. burgdorferi flaB DNA were detectable in tissues at 2, 4 and 8 months after completion of treatment, and the rate of PCR-positive tissues appeared to progressively decline over time. However, there was resurgence of spirochete flaB DNA in multiple tissues at 12 months, with flaB DNA copy levels nearly equivalent to those found in saline-treated mice. Despite the continued non-cultivable state, RNA transcription of multiple B. burgdorferi genes was detected in host tissues, flaB DNA was acquired by xenodiagnostic ticks, and spirochetal forms could be visualized within ticks and mouse tissues by immunofluorescence and immunohistochemistry, respectively. A number of host cytokines were up- or down-regulated in tissues of both saline- and antibiotic-treated mice in the absence of histopathology, indicating host response to the presence of non-cultivable, despite the lack of inflammation in tissues.

  18. The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, antibiotics and ecological considerations.

    Science.gov (United States)

    Whitehead, Neil A; Byers, Joseph T; Commander, Paul; Corbett, Mark J; Coulthurst, Sarah J; Everson, Lee; Harris, Abigail K P; Pemberton, Clare L; Simpson, Natalie J L; Slater, Holly; Smith, Debra S; Welch, Martin; Williamson, Neil; Salmond, George P C

    2002-08-01

    Erwinia carotovora is a Gram-negative bacterial phytopathogen that causes soft-rot disease and potato blackleg. The organism is environmentally widespread and exhibits an opportunistic plant pathogenesis. The ability to secrete multiple plant cell wall-degrading enzymes is a key virulence trait and exoenzyme production is responsive to multiple environmental and physiological cues. One important cue is the cell population density of the pathogen. Cell density is monitored via an acylated homoserine lactone (acyl HSL) signalling molecule, which is thought to diffuse between Erwinia cells in a process now commonly known as 'quorum sensing'. This molecule also acts as the chemical communication signal controlling production of a broad-spectrum beta-lactam antibiotic (1-carbapen-2-em-3-carboxylic acid; carbapenem) synthesised in concert with exoenzyme elaboration, possibly for niche defence. In antibiotic production control, quorum sensing acts at the level of transcriptional activation of the antibiotic biosynthetic cluster. This is achieved via a dedicated LuxR-type protein, CarR that is bound to the signalling molecule. The molecular relay connecting acyl HSL production and exoenzyme induction is not clear, despite the identification of a multitude of global regulatory genes, including those of the RsmA/rsmB system, impinging on enzyme synthesis. Quorum sensing control mediated by acyl HSLs is widespread in Gram-negative bacteria and is responsible for the regulation of diverse phenotypes. Although there is still a paucity of meaningful information on acyl HSL availability and in-situ biological function, there is growing evidence that such molecules play significant roles in microbial ecology.

  19. Chemical Elicitors of Antibiotic Biosynthesis in Actinomycetes

    Directory of Open Access Journals (Sweden)

    Anton P. Tyurin

    2018-06-01

    Full Text Available Whole genome sequencing of actinomycetes has uncovered a new immense realm of microbial chemistry and biology. Most biosynthetic gene clusters present in genomes were found to remain “silent” under standard cultivation conditions. Some small molecules—chemical elicitors—can be used to induce the biosynthesis of antibiotics in actinobacteria and to expand the chemical diversity of secondary metabolites. Here, we outline a brief account of the basic principles of the search for regulators of this type and their application.

  20. Healthy scents: microbial volatiles as new frontier in antibiotic research?

    NARCIS (Netherlands)

    Avalos Garcia, M.; van Wezel, G.P.; Raaijmakers, J.M.; Garbeva, P.V.

    2018-01-01

    Microorganisms represent a large and still resourceful pool for the discovery of novel compounds to combat antibiotic resistance in human and animal pathogens. The ability of microorganisms to produce structurally diverse volatile compounds has been known for decades, yet their biological functions

  1. Profile of sensitivity and resistance to antibiotics of Staphylococcus ...

    African Journals Online (AJOL)

    Staphylococcus aureus is a bacterial specie that opposed more resistance again many antibiotics. This study aimed to determine the resistance profile of Staphylococcus aureus isolated from biological patient's liquids. A total of 303 samples including urine and vaginal pus samples from human were collected.

  2. Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Edward Geisinger

    2015-02-01

    Full Text Available Acinetobacter baumannii is an opportunistic pathogen of increasing importance due to its propensity for intractable multidrug-resistant infections in hospitals. All clinical isolates examined contain a conserved gene cluster, the K locus, which determines the production of complex polysaccharides, including an exopolysaccharide capsule known to protect against killing by host serum and to increase virulence in animal models of infection. Whether the polysaccharides determined by the K locus contribute to intrinsic defenses against antibiotics is unknown. We demonstrate here that mutants deficient in the exopolysaccharide capsule have lowered intrinsic resistance to peptide antibiotics, while a mutation affecting sugar precursors involved in both capsule and lipopolysaccharide synthesis sensitizes the bacterium to multiple antibiotic classes. We observed that, when grown in the presence of certain antibiotics below their MIC, including the translation inhibitors chloramphenicol and erythromycin, A. baumannii increases production of the K locus exopolysaccharide. Hyperproduction of capsular exopolysaccharide is reversible and non-mutational, and occurs concomitantly with increased resistance to the inducing antibiotic that is independent of the presence of the K locus. Strikingly, antibiotic-enhanced capsular exopolysaccharide production confers increased resistance to killing by host complement and increases virulence in a mouse model of systemic infection. Finally, we show that augmented capsule production upon antibiotic exposure is facilitated by transcriptional increases in K locus gene expression that are dependent on a two-component regulatory system, bfmRS. These studies reveal that the synthesis of capsule, a major pathogenicity determinant, is regulated in response to antibiotic stress. Our data are consistent with a model in which gene expression changes triggered by ineffectual antibiotic treatment cause A. baumannii to transition

  3. The antibiotic resistome: what's new?

    Science.gov (United States)

    Perry, Julie Ann; Westman, Erin Louise; Wright, Gerard D

    2014-10-01

    The antibiotic resistome is dynamic and ever expanding, yet its foundations were laid long before the introduction of antibiotics into clinical practice. Here, we revisit our theoretical framework for the resistome concept and consider the many factors that influence the evolution of novel resistance genes, the spread of mobile resistance elements, and the ramifications of these processes for clinical practice. Observing the trends and prevalence of genes within the antibiotic resistome is key to maintaining the efficacy of antibiotics in the clinic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. [Usage of antibiotics in hospitals].

    Science.gov (United States)

    Ternák, G; Almási, I

    1996-12-29

    The authors publish the results of a survey conducted among hospital records of patients discharged from eight inpatient's institutes between 1-31st of January 1995 to gather information on the indications and usage of antibiotics. The institutes were selected from different part of the country to represent the hospital structure as much as possible. Data from the 13,719 documents were recorded and analysed by computer program. It was found that 27.6% of the patients (3749 cases) received antibiotic treatment. 407 different diagnosis and 365 different surgical procedures (as profilaxis) were considered as indications of antibiotic treatment (total: 4450 indications for 5849 antibiotic treatment). The largest group of patients receiving antibiotics was of antibiotic profilaxis (24.56%, 1093 cases), followed by lower respiratory tract infections (19.89%, 849 cases), uroinfections (10.53%, 469 cases) and upper respiratory tract infections. Relatively large group of patients belonged to those who had fever or subfebrility without known reason (7.35%, 327 cases) and to those who did not have any proof in their document indicating the reasons of antibiotic treatment (6.4%, 285 cases). We can not consider the antibiotic indications well founded in those groups of patients (every sixth or every fifth cases). The most frequently used antibiotics were of [2-nd] generation cefalosporins. The rate of nosocomial infections were found as 6.78% average. The results are demonstrated on diagrams and table.

  5. Effective antibiotic stewardship in spinal cord injury: Challenges and a way forward.

    Science.gov (United States)

    Skelton, Felicia; Suda, Katie; Evans, Charlesnika; Trautner, Barbara

    2018-01-11

    Context Antibiotic stewardship, defined as a multidisciplinary program to reduce the misuse of antibiotics, and in turn, antibiotic resistance, is a high priority. Persons with spinal cord injury/disorder (SCI/D) are vulnerable to receiving multiple courses of antibiotics over their lifetime given frequent healthcare exposure, and have high rates of bacterial infection with multi-drug resistant organisms. Additional challenges to evaluating appropriate use of antibiotics in this population include bacterial colonization in the urine and the differences in the presenting signs and symptoms of infection. Therefore, Veterans Health Administration (VHA) facilities with SCI/D centers need effective antibiotic stewardship programs. Results We analyzed the results of a 2012 VHA-wide survey evaluating available antibiotic stewardship resources, and compared the resources present at facilities with SCI/D (n=23) versus non-SCI/D facilities (n=107). VHA facilities with SCI/D centers are more likely to have components of an antibiotic stewardship program that have led to reduced antibiotic use in previous studies. They are also more likely to have personnel with infectious diseases training. Conclusion VHA facilities with SCI/D centers have the resources needed for antibiotic stewardship. The next step will be to determine how to implement effective antibiotic stewardship tailored for this patient care setting.

  6. Infusional β-lactam antibiotics in febrile neutropenia: has the time come?

    Science.gov (United States)

    Abbott, Iain J; Roberts, Jason A

    2012-12-01

    Febrile neutropenia presents a clinical challenge in which timely and appropriate antibiotic exposure is crucial. In the context of altered pharmacokinetics and rising bacterial resistance, standard antibiotic doses are unlikely to be sufficient. This review explores the potential utility of altered dosing approaches of β-lactam antibiotics to optimize treatment in febrile neutropenia. There is a dynamic relationship between the antibiotic, the infecting pathogen, and the host. Great advancements have been made in the understanding of the pharmacokinetic changes in critical illness and the pharmacodynamic relationships of antibiotics in these settings. Antibiotic treatment in febrile neutropenia is becoming increasingly difficult. Patients are of higher acuity, receive more intensive chemotherapy regimens leading to prolonged neutropenia, and are often exposed to multiple antibiotic courses. These patients display significant variability in antibiotic clearances and increases in volume of distribution compared with standard ward-based patients. Rising antibiotic resistance and a lack of new antibiotics in production have prompted alternative dosing strategies based on pharmacokinetic/pharmacodynamic data, such as extended or continuous infusions of β-lactam antibiotics, to maximize the likelihood of treatment success. A definitive study that describes a mortality benefit of such dosing regimens remains elusive and the theoretical advantages require testing in well designed clinical trials.

  7. Sequential interactions of silver-silica nanocomposite (Ag-SiO2 NC) with cell wall, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple antibiotic-resistant bacterium

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Jiya, J.; Rameez, M.J.; Anand, P.B.; Anantharaman, M.R.; Nair, S.

    The study was carried out to understand the effect of silver–silica nanocomposite (Ag-SiO sub(2)NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drug-resistant bacterium. Bacterial sensitivity...

  8. Sequential interactions of silver-silica nanocomposite (Ag-SiO2NC) with cell wall, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple antibiotic-resistant bacterium

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Jiya, J.; Rameez, M.J.; Anand, P.B.; Anantharaman, M.R.; Nair, S.

    The study was carried out to understand the effect of silver-silica nanocomposite (Ag-SiO sub(2)NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drug-resistant bacterium Bacterial sensitivity...

  9. Fighting antibiotic resistance in the intensive care unit using antibiotics

    NARCIS (Netherlands)

    Plantinga, Nienke L.; Wittekamp, Bastiaan H J; Van Duijn, Pleun J.; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to

  10. Assessment of physicochemical parameters and prevalence of virulent and multiple-antibiotic-resistant Escherichia coli in treated effluent of two wastewater treatment plants and receiving aquatic milieu in Durban, South Africa.

    Science.gov (United States)

    Pillay, Leanne; Olaniran, Ademola O

    2016-05-01

    The poor operational status of some wastewater treatment plants often result in the discharge of inadequately treated effluent into receiving surface waters. This is of significant public health concern as there are many informal settlement dwellers (ISDs) that rely on these surface waters for their domestic use. This study investigated the treatment efficiency of two independent wastewater treatment plants (WWTPs) in Durban, South Africa and determined the impact of treated effluent discharge on the physicochemical and microbial quality of the receiving water bodies over a 6-month period. Presumptive Escherichia coli isolates were identified using biochemical tests and detection of the mdh gene via PCR. Six major virulence genes namely eae, hly, fliC, stx1, stx2, and rfbE were also detected via PCR while antibiotic resistance profiles of the isolates were determined using Kirby-Bauer disc diffusion assay. The physicochemical parameters of the wastewater samples ranged variously between 9 and 313.33 mg/L, 1.52 and 76.43 NTUs, and 6.30 and 7.87 for COD, turbidity, and pH respectively, while the E. coli counts ranged between 0 and 31.2 × 10(3) CFU/ml. Of the 200 selected E. coli isolates, the hly gene was found in 28 %, fliC in 20 %, stx2 in 17 %, eae in 14 %, with stx1 and rfbE in only 4 % of the isolates. Notable resistance was observed toward trimethoprim (97 %), tetracycline (56 %), and ampicillin (52.5 %). These results further highlight the poor operational status of these WWTPs and outline the need for improved water quality monitoring and enforcement of stringent guidelines.

  11. A survey of critical care nurses' practices and perceptions surrounding early intravenous antibiotic initiation during septic shock.

    Science.gov (United States)

    Roberts, Russel J; Alhammad, Abdullah M; Crossley, Lindsay; Anketell, Eric; Wood, LeeAnn; Schumaker, Greg; Garpestad, Erik; Devlin, John W

    2017-08-01

    Delays in antibiotic administration after severe sepsis recognition increases mortality. While physician and pharmacy-related barriers to early antibiotic initiation have been well evaluated, those factors that affect the speed by which critical care nurses working in either the emergency department or the intensive care unit setting initiate antibiotic therapy remains poorly characterized. To evaluate the knowledge, practices and perceptions of critical care nurses regarding antibiotic initiation in patients with newly recognised septic shock. A validated survey was distributed to 122 critical care nurses at one 320-bed academic institution with a sepsis protocol advocating intravenous(IV) antibiotic initiation within 1hour of shock recognition. Among 100 (82%) critical care nurses responding, nearly all (98%) knew of the existence of the sepsis protocol. However, many critical care nurses stated they would optimise blood pressure [with either fluid (38%) or both fluid and a vasopressor (23%)] before antibiotic initiation. Communicated barriers to rapid antibiotic initiation included: excessive patient workload (74%), lack of awareness IV antibiotic(s) ordered (57%) or delivered (69%), need for administration of multiple non-antibiotic IV medications (54%) and no IV access (51%). Multiple nurse-related factors influence IV antibiotic(s) initiation speed and should be incorporated into sepsis quality improvement efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Antibiotic Resistant Salmonella and Vibrio Associated with Farmed Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Sanjoy Banerjee

    2012-01-01

    Full Text Available Salmonella and Vibrio species were isolated and identified from Litopenaeus vannamei cultured in shrimp farms. Shrimp samples showed occurrence of 3.3% of Salmonella and 48.3% of Vibrio. The isolates were also screened for antibiotic resistance to oxolinic acid, sulphonamides, tetracycline, sulfamethoxazole/trimethoprim, norfloxacin, ampicillin, doxycycline hydrochloride, erythromycin, chloramphenicol, and nitrofurantoin. Salmonella enterica serovar Corvallis isolated from shrimp showed individual and multiple antibiotic resistance patterns. Five Vibrio species having individual and multiple antibiotic resistance were also identified. They were Vibrio cholerae (18.3%, V. mimicus (16.7%, V. parahaemolyticus (10%, V. vulnificus (6.7%, and V. alginolyticus (1.7%. Farm owners should be concerned about the presence of these pathogenic bacteria which also contributes to human health risk and should adopt best management practices for responsible aquaculture to ensure the quality of shrimp.

  13. Detection of antibiotic resistance in probiotics of dietary supplements

    KAUST Repository

    Wong, Aloysius Tze

    2015-09-14

    Background Probiotics are live microorganisms that confer nutrition- and health-promoting benefits if consumed in adequate amounts. Concomitant with the demand for natural approaches to maintaining health is an increase in inclusion of probiotics in food and health products. Since probiotic bacteria act as reservoir for antibiotic resistant determinants, the transfer of these genes to pathogens sharing the same intestinal habitat is thus conceivable considering the fact that dietary supplements contain high amounts of often heterogeneous populations of probiotics. Such events can confer pathogens protection against commonly-used drugs. Despite numerous reports of antibiotic resistant probiotics in food and biological sources, the antibiogram of probiotics from dietary supplements remained elusive. Findings Here, we screened five commercially available dietary supplements for resistance towards antibiotics of different classes. Probiotics of all batches of products were resistant towards vancomycin while batch-dependent resistance towards streptomycin, aztreonam, gentamycin and/or ciprofloxacin antibiotics was detected for probiotics of brands Bi and Bn, Bg, and L. Isolates of brand Cn was also resistant towards gentamycin, streptomycin and ciprofloxacin antibiotics. Additionally, we also report a discrepancy between the enumerated viable bacteria amounts and the claims of the manufacturers. Conclusions This short report has highlighted the present of antibiotic resistance in probiotic bacteria from dietary supplements and therefore serves as a platform for further screenings and for in-depth characterization of the resistant determinants and the molecular machinery that confers the resistance.

  14. Long-Term Evolution Studies of E. Coli under Combined Effects of Simulated Microgravity and Antibiotic.

    Science.gov (United States)

    Karouia, Fathi; Tirumalai, Madhan R.; Ott, Mark C.; Pierson, Duane L.; Fox, George E.; Tran, Quyen

    2016-07-01

    Multiple spaceflight and simulated microgravity experiments have shown changes in phenotypic microbial characteristics such as microbial growth, morphology, metabolism, genetic transfer, antibiotic and stress susceptibility, and an increase in virulence factors. However, while these studies have contributed to expand our understanding of the short-term effects of spaceflight or simulated microgravity on biological systems, it remains unclear the type of responses subsequent to long-term exposure to space environment and microgravity in particular. As such, organisms exposed to the space environment for extended periods of time may evolve in unanticipated ways thereby negatively impacting long duration space missions. We report here for the first time, an experimental study of microbial evolution in which the effect of long-term exposure to Low Shear Modeled MicroGravity (LSMMG) on microbial gene expression and physiology in Escherichia coli (E. coli) MG1655 was examined using functional genomics, and molecular techniques with and without simultaneous exposure to broad spectrum antibiotic chloramphenicol. E. coli cells were grown under simulated microgravity for 1000 generations in High Aspect Ratio Vessels (HARVs) that were either heat-sterilized (115 deg C, 15 min) or by using/rinsing the HARVs with a saturated solution of the broad-spectrum antibiotic chloramphenicol. In the case of the cells evolved using the antibiotic sterilized HARVs, the expression levels of 357 genes were significantly changed. In particular, fimbriae encoding genes were significantly up-regulated whereas genes encoding the flagellar motor complex were down-regulated. Re-sequencing of the genome revealed that a number of the flagellar genes were actually deleted. The antibiotic resistance levels of the evolved strains were analyzed using VITEK analyzer. The evolved strain was consistently resistant to the antibiotics used (viz., Ampicillin, Cefalotin, Cefurox-ime, Cefuroxime Axetil

  15. INTEGRATIVE SAMPLING OF ANTIBIOTICS AND OTHER ...

    Science.gov (United States)

    Pharmaceuticals from human and veterinary use continually enter the environment through municipal wastewater treatment plants (WWTPs), surface runoff from animal waste, and direct disposal of unused medications. The presence of these chemicals, albeit often at subtherapeutic trace levels, may be partly responsible for development of antibiotic-resistant bacteria and sublethal effects in aquatic organisms. Conventional sampling techniques (i.e., grab sampling) often are insufficient for detecting these trace levels. A new sampling technique, the Polar Organic Chemical Integrative Sampler (POCIS), developed by scientists at the USGS's Columbia Environmental Research Center, can provide the time-weighted average concentrations of these complex mixtures. A pilot study targeting the antibiotic azithromycin involved deploying the POCIS for 30 days in the effluents of three WWTPs in Nevada, Utah, and South Carolina. Azithromycin was detected at each WWTP at 19 to 66 ng/L. This translates to a yearly loading, into each of the three receiving waters, of 0.4 to 4 kg/year. In a separate study investigating potential impacts of confined animal feeding operations on national wildlife refuges in the Delmarva peninsula, the antibiotic tetracycline and the natural hormone 17B-estradiol were detected at multiple sites. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and

  16. Antibiotics, pediatric dysbiosis, and disease.

    Science.gov (United States)

    Vangay, Pajau; Ward, Tonya; Gerber, Jeffrey S; Knights, Dan

    2015-05-13

    Antibiotics are by far the most common medications prescribed for children. Recent epidemiological data suggests an association between early antibiotic use and disease phenotypes in adulthood. Antibiotic use during infancy induces imbalances in gut microbiota, called dysbiosis. The gut microbiome's responses to antibiotics and its potential link to disease development are especially complex to study in the changing infant gut. Here, we synthesize current knowledge linking antibiotics, dysbiosis, and disease and propose a framework for studying antibiotic-related dysbiosis in children. We recommend future studies into the microbiome-mediated effects of antibiotics focused on four types of dysbiosis: loss of keystone taxa, loss of diversity, shifts in metabolic capacity, and blooms of pathogens. Establishment of a large and diverse baseline cohort to define healthy infant microbiome development is essential to advancing diagnosis, interpretation, and eventual treatment of pediatric dysbiosis. This approach will also help provide evidence-based recommendations for antibiotic usage in infancy. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Biotherapeutics as alternatives to antibiotics

    Science.gov (United States)

    Increasing pressure to limit antibiotic use in agriculture is heightening the need for alternative methods to reduce the adverse effects of clinical and subclinical disease on livestock performance that are currently managed by in-feed antibiotic usage. Immunomodulators have long been sought as such...

  18. Antibiotic prophylaxis for patients undergoing elective endoscopic ...

    African Journals Online (AJOL)

    Antibiotic prophylaxis for patients undergoing elective endoscopic retrograde cholangiopancreatography. M Brand, D Bisoz. Abstract. Background. Antibiotic prophylaxis for endoscopic retrograde cholangiopancreatography (ERCP) is controversial. We set out to assess the current antibiotic prescribing practice among ...

  19. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: Complexation versus mixture

    International Nuclear Information System (INIS)

    Zhang Yu; Cai Xiyun; Lang Xianming; Qiao Xianliang; Li Xuehua; Chen Jingwen

    2012-01-01

    Co-contamination of ligand-like antibiotics (e.g., tetracyclines and quinolones) and heavy metals prevails in the environment, and thus the complexation between them is involved in environmental risks of antibiotics. To understand toxicological significance of the complex, effects of metal coordination on antibiotics' toxicity were investigated. The complexation of two antibiotics, oxytetracycline and ciprofloxacin, with three heavy metals, copper, zinc, and cadmium, was verified by spectroscopic techniques. The antibiotics bound metals via multiple coordination sites and rendered a mixture of various complexation speciations. Toxicity analysis indicated that metal coordination did modify the toxicity of the antibiotics and that antibiotic, metal, and their complex acted primarily as concentration addition. Comparison of EC 50 values revealed that the complex commonly was highest toxic and predominately correlated in toxicity to the mixture. Finally, environmental scenario analysis demonstrated that ignoring complexation would improperly classify environmental risks of the antibiotics. - Highlights: ► The complex of antibiotic with metal is a mixture of various complexation modes. ► Antibiotic and metal act as various combined interactions when their complexation is ignored. ► Antibiotic, metal, and their complex act as concentration addition interaction. ► Complex commonly is the highest toxicant. ► Neglecting complexation renders improper classification of risks for antibiotics. - Antibiotic, heavy metal and their complex act primarily as concentration addition interaction and the complex commonly is highest toxic.

  20. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: Complexation versus mixture

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhang [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Cai Xiyun, E-mail: xiyuncai@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Xianming, Lang [Liaoning Academy of Environmental Sciences, Shenyang 110031 (China); Xianliang, Qiao; Xuehua, Li; Jingwen, Chen [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China)

    2012-07-15

    Co-contamination of ligand-like antibiotics (e.g., tetracyclines and quinolones) and heavy metals prevails in the environment, and thus the complexation between them is involved in environmental risks of antibiotics. To understand toxicological significance of the complex, effects of metal coordination on antibiotics' toxicity were investigated. The complexation of two antibiotics, oxytetracycline and ciprofloxacin, with three heavy metals, copper, zinc, and cadmium, was verified by spectroscopic techniques. The antibiotics bound metals via multiple coordination sites and rendered a mixture of various complexation speciations. Toxicity analysis indicated that metal coordination did modify the toxicity of the antibiotics and that antibiotic, metal, and their complex acted primarily as concentration addition. Comparison of EC{sub 50} values revealed that the complex commonly was highest toxic and predominately correlated in toxicity to the mixture. Finally, environmental scenario analysis demonstrated that ignoring complexation would improperly classify environmental risks of the antibiotics. - Highlights: Black-Right-Pointing-Pointer The complex of antibiotic with metal is a mixture of various complexation modes. Black-Right-Pointing-Pointer Antibiotic and metal act as various combined interactions when their complexation is ignored. Black-Right-Pointing-Pointer Antibiotic, metal, and their complex act as concentration addition interaction. Black-Right-Pointing-Pointer Complex commonly is the highest toxicant. Black-Right-Pointing-Pointer Neglecting complexation renders improper classification of risks for antibiotics. - Antibiotic, heavy metal and their complex act primarily as concentration addition interaction and the complex commonly is highest toxic.

  1. Penicillin’s Discovery and Antibiotic Resistance: Lessons for the Future?

    Science.gov (United States)

    
Lobanovska, Mariya; Pilla, Giulia

    2017-01-01

    Undoubtedly, the discovery of penicillin is one of the greatest milestones in modern medicine. 2016 marks the 75th anniversary of the first systemic administration of penicillin in humans, and is therefore an occasion to reflect upon the extraordinary impact that penicillin has had on the lives of millions of people since. This perspective presents a historical account of the discovery of the wonder drug, describes the biological nature of penicillin, and considers lessons that can be learned from the golden era of antibiotic research, which took place between the 1940s and 1960s. Looking back at the history of penicillin might help us to relive this journey to find new treatments and antimicrobial agents. This is particularly relevant today as the emergence of multiple drug resistant bacteria poses a global threat, and joint efforts are needed to combat the rise and spread of resistance. PMID:28356901

  2. Antibiotic tolerance and microbial biofilms

    DEFF Research Database (Denmark)

    Folkesson, Anders

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We study the dynamics of antibiotic action within hydrodynamic flow chamber biofilms of Escherichia coli and Pseudomonas aeruginosa using isogenic mutants and fluorescent gene...... expression reporters and we address the question of how biofilm organization affects antibiotic susceptibility. The dynamics of microbial killing is monitored by viable count determination, and confocal laser microscopy. Our work shows that the apparent increased antibiotic tolerance is due to the formation...... of antibiotic tolerant subpopulations within the biofilm. The formation of these subpopulations is highly variable and dependent on the antibiotic used, the biofilm structural organization and the induction of specific tolerance mechanisms....

  3. The Prehistory of Antibiotic Resistance.

    Science.gov (United States)

    Perry, Julie; Waglechner, Nicholas; Wright, Gerard

    2016-06-01

    Antibiotic resistance is a global problem that is reaching crisis levels. The global collection of resistance genes in clinical and environmental samples is the antibiotic "resistome," and is subject to the selective pressure of human activity. The origin of many modern resistance genes in pathogens is likely environmental bacteria, including antibiotic producing organisms that have existed for millennia. Recent work has uncovered resistance in ancient permafrost, isolated caves, and in human specimens preserved for hundreds of years. Together with bioinformatic analyses on modern-day sequences, these studies predict an ancient origin of resistance that long precedes the use of antibiotics in the clinic. Understanding the history of antibiotic resistance is important in predicting its future evolution. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Antibiotics for acute maxillary sinusitis

    DEFF Research Database (Denmark)

    Ahovuo-Saloranta, Anneli; Borisenko, Oleg V; Kovanen, Niina

    2008-01-01

    BACKGROUND: Expert opinions vary on the appropriate role of antibiotics for sinusitis, one of the most commonly diagnosed conditions among adults in ambulatory care. OBJECTIVES: We examined whether antibiotics are effective in treating acute sinusitis, and if so, which antibiotic classes...... are the most effective. SEARCH STRATEGY: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, 2007, Issue 3); MEDLINE (1950 to May 2007) and EMBASE (1974 to June 2007). SELECTION CRITERIA: Randomized controlled trials (RCTs) comparing antibiotics with placebo...... or antibiotics from different classes for acute maxillary sinusitis in adults. We included trials with clinically diagnosed acute sinusitis, whether or not confirmed by radiography or bacterial culture. DATA COLLECTION AND ANALYSIS: At least two review authors independently screened search results, extracted...

  5. Antibiotic prescribing for acute bronchitis

    DEFF Research Database (Denmark)

    Llor, Carl; Bjerrum, Lars

    2016-01-01

    INTRODUCTION: Acute bronchitis is a self-limiting infectious disease characterized by acute cough with or without sputum but without signs of pneumonia. About 90% of cases are caused by viruses. AREAS COVERED: Antibiotics for acute bronchitis have been associated with an approximately half......-day reduction in duration of cough. However, at follow-up there are no significant differences in overall clinical improvement inpatients treated with antibiotics compared with those receiving placebo. Despite this, antibiotics are administered to approximately two thirds of these patients. This review...... discusses the reason for this antibiotic overprescription. Other therapies targeted to control symptoms have also demonstrated a marginal or no effect. EXPERT COMMENTARY: Clinicians should be aware of the marginal effectiveness of antibiotic therapy. Some strategies like the use of rapid tests, delayed...

  6. A Report on Antibiotic Management of Neonatal Sepsis Caused by ...

    African Journals Online (AJOL)

    This is a report on a case of neonatal sepsis and clinical management with multiple antibiotic therapy in a neonatal intensive care unit (NICU) in Brazil. A preterm baby boy was born by caesarean section at. 34 weeks and two days of gestation from an oligodramnious pregnancy with intrauterine growth restriction.

  7. Nebulized antibiotics in mechanically ventilated patients: roadmap and challenges.

    Science.gov (United States)

    Poulakou, G; Siakallis, G; Tsiodras, S; Arfaras-Melainis, A; Dimopoulos, G

    2017-03-01

    Nebulized antibiotics use has become common practice in the therapeutics of pneumonia in cystic fibrosis patients. There is an increasing interest in their use for respiratory infections in mechanically ventilated (MV) patients in order to a) overcome pharmacokinetic issues in the lung compartment with traditional systemic antibiotic use and b) prevent the emergence of multi-drug-resistant (MDR) pathogens. Areas covered: The beneficial effects of antibiotic nebulization in MV patients e.g. increasing efficacy, reduced toxicity and prevention of resistance are described. Physicochemical parameters of optimal lung deposition, characteristics of currently available nebulizers, practical aspects of the procedure, including drug preparation and adjustments of ventilator and circuit parameter are presented. Antibiotics used in nebulized route, along with efficacy in various clinical indications and safety issues are reviewed. Expert commentary: The safety of nebulization of antibiotics has been proven in numerous studies; efficacy as adjunctive treatment to intravenous regimens or as monotherapy has been demonstrated in ventilator-associated pneumonia or ventilator-associated tracheobronchitis due to MDR or susceptible pathogens. However, due to the heterogeneity of studies, multiple meta-analyses fail to demonstrate a clear effect. Clarification of indications, standardization of technique and implementation of clinical practice guidelines, based on new large-scale trials will lead to the optimal use of nebulized antibiotics.

  8. Enteropathogens and antibiotics.

    Science.gov (United States)

    González-Torralba, Ana; García-Esteban, Coral; Alós, Juan-Ignacio

    2018-01-01

    Infectious gastroenteritis remains a public health problem. The most severe cases are of bacterial origin. In Spain, Campylobacter and Salmonella are the most prevalent bacterial genus, while Yersinia and Shigella are much less frequent. Most cases are usually self-limiting and antibiotic therapy is not generally indicated, unless patients have risk factors for severe infection and shigellosis. Ciprofloxacin, third generation cephalosporins, azithromycin, ampicillin, cotrimoxazole and doxycycline are the most recommended drugs. The susceptibility pattern of the different bacteria determines the choice of the most appropriate treatment. The aim of this review is to analyse the current situation, developments, and evolution of resistance and multidrug resistance in these 4 enteric pathogens. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  9. Molecular study on some antibiotic resistant genes in Salmonella spp. isolates

    Science.gov (United States)

    Nabi, Ari Q.

    2017-09-01

    Studying the genes related with antimicrobial resistance in Salmonella spp. is a crucial step toward a correct and faster treatment of infections caused by the pathogen. In this work Integron mediated antibiotic resistant gene IntI1 (Class I Integrase IntI1) and some plasmid mediated antibiotic resistance genes (Qnr) were scanned among the isolated non-Typhoid Salmonellae strains with known resistance to some important antimicrobial drugs using Sybr Green real time PCR. The aim of the study was to correlate the multiple antibiotics and antimicrobial resistance of Salmonella spp. with the presence of integrase (IntI1) gene and plasmid mediated quinolone resistant genes. Results revealed the presence of Class I Integrase gene in 76% of the isolates with confirmed multiple antibiotic resistances. Moreover, about 32% of the multiple antibiotic resistant serotypes showed a positive R-PCR for plasmid mediated qnrA gene encoding for nalidixic acid and ciprofloxacin resistance. No positive results could be revealed form R-PCRs targeting qnrB or qnrS. In light of these results we can conclude that the presence of at least one of the qnr genes and/or the presence of Integrase Class I gene were responsible for the multiple antibiotic resistance to for nalidixic acid and ciprofloxacin from the studied Salmonella spp. and further studies required to identify the genes related with multiple antibiotic resistance of the pathogen.

  10. Prevalence of antibiotic-resistant Gram-negative bacteria associated with the red-eared slider (Trachemys scripta elegans).

    Science.gov (United States)

    Liu, Dandan; Wilson, Cailin; Hearlson, Jodie; Singleton, Jennifer; Thomas, R Brent; Crupper, Scott S

    2013-09-01

    Free-ranging Red-eared Sliders (Trachemys scripta elegans) were captured from farm ponds located in the Flint Hills of Kansas and a zoo pond in Emporia, Kansas, USA, to evaluate their enteric bacterial flora and associated antibiotic resistance. Bacteria obtained from cloacal swabs were composed of six different Gram-negative genera. Although antibiotic resistance was present in turtles captured from both locations, 40 and 49% of bacteria demonstrated multiple antibiotic resistance to four of the antibiotics tested from the zoo captured and Flint Hills ponds turtles, respectively. These data illustrate environmental antibiotic resistance is widespread in the bacterial flora obtained from Red-eared Sliders in east central Kansas.

  11. The synthesis of a novel octapeptidolipid antibiotic

    International Nuclear Information System (INIS)

    Levitt, R.R.

    1986-05-01

    The bacillomycins comprise a group of antifungal polypeptide antibiotic compounds closely related in terms of their physico-chemical properties, amino acid and β-amino fatty acid compositions. Iturin A, which belongs to the bacillomycins, consists of seven amino acids. Attempts to produce a β-NC 15 fatty acid in acceptable yield proved unsuccessful and was later discarded in favour of the preparation of a β-NC 14 fatty acid. The different experimental procedures used and results obtained when preparing both fatty acids are detailed. The method developed in preparing the β-NC 14 fatty acid affords a new general synthetic route for the production of β-amino fatty acids in good yield. The strategy considered in selecting which amino acid to commence the peptide synthesis with, the use in the Merrifield procedure of N-protected amino acids, coupling reagents, deprotecting and cleaving agents, and the HPLC purification procedures used for the linear and cyclic octapeptides, are all described. The 1 H-NMR spectrum of the synthetic cyclic compound compared favourably with the spectrum of natural iturin A and these results are also presented. This dissertation presents the total synthesis of a novel octapeptidolipid antifungal antibiotic (iturin A analogue), utilising the Merrifield solid phase procedure. The biological activity of the synthesised and purified linear and cyclic iturin A analogues were compared with that of bacillomycin S. The test for biological activity and results obtained are described and illustrated with photographic plates

  12. Synthesis of a novel octapeptidolipid antibiotic

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, R R

    1986-01-01

    The bacillomycins comprise a group of antifungal polypeptide antibiotic compounds closely related in terms of their physico-chemical properties, amino acid and ..beta..-amino fatty acid compositions. Iturin A, which belongs to the bacillomycins, consists of seven amino acids. Attempts to produce a ..beta..-NC/sub 15/ fatty acid in acceptable yield proved unsuccessful and was later discarded in favour of the preparation of a ..beta..-NC/sub 14/ fatty acid. The different experimental procedures used and results obtained when preparing both fatty acids are detailed. The method developed in preparing the ..beta..-NC/sub 14/ fatty acid affords a new general synthetic route for the production of ..beta..-amino fatty acids in good yield. The strategy considered in selecting which amino acid to commence the peptide synthesis with, the use in the Merrifield procedure of N-protected amino acids, coupling reagents, deprotecting and cleaving agents, and the HPLC purification procedures used for the linear and cyclic octapeptides, are all described. The /sup 1/H-NMR spectrum of the synthetic cyclic compound compared favourably with the spectrum of natural iturin A and these results are also presented. This dissertation presents the total synthesis of a novel octapeptidolipid antifungal antibiotic (iturin A analogue), utilising the Merrifield solid phase procedure. The biological activity of the synthesised and purified linear and cyclic iturin A analogues were compared with that of bacillomycin S. The test for biological activity and results obtained are described and illustrated with photographic plates.

  13. Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts

    International Nuclear Information System (INIS)

    Lv, Lu; Yu, Xin; Xu, Qian; Ye, Chengsong

    2015-01-01

    Halogenated nitrogenous disinfection byproducts (N-DBPs) raise concerns regarding their mutagenicity and carcinogenicity threatening public health. However, environmental consequence of their mutagenicity has received less attention. In this study, the effect of halogenated N-DBPs on bacterial antibiotic resistance (BAR) was investigated. After exposure to bromoacetamide (BAcAm), trichloroacetonitrile (TCAN) or tribromonitromethane (TBNM), the resistance of Pseudomonas aeruginosa PAO1 to both individual and multiple antibiotics (ciprofloxacin, gentamicin, polymyxin B, rifampin, tetracycline, ciprofloxacin + gentamicin and ciprofloxacin + tetracycline) was increased, which was predominantly ascribed to the overexpression of efflux pumps. The mechanism of this effect was demonstrated to be mutagenesis through sequencing and analyzing antibiotic resistance genes. The same induction phenomena also appeared in Escherichia coli, suggesting this effect may be universal to waterborne pathogens. Therefore, more attention should be given to halogenated N-DBPs, as they could increase not only genotoxicological risks but also epidemiological risks of drinking water. - Highlights: • The halogenated N-DBPs could induce bacterial antibiotic resistance. • Both individual and multiple resistances could be induced. • Efflux mechanism played an important role in the induced antibiotic resistance. • The halogenated N-DBPs induced bacterial antibiotic resistance via mutagenesis. • Effects of N-DBPs on antibiotic resistance may be universal to waterborne pathogens. - Halogenated N-DBPs could increase antibiotic resistance, even multidrug resistance via mutagenesis, contributing to the enrichment of antibiotic resistant bacteria in drinking water

  14. Antibiotic resistance and virulence genes in coliform water isolates.

    Science.gov (United States)

    Stange, C; Sidhu, J P S; Tiehm, A; Toze, S

    2016-11-01

    Widespread fecal pollution of surface water may present a major health risk and a significant pathway for dissemination of antibiotic resistance bacteria. The River Rhine is one of the longest and most important rivers in Europe and an important raw water source for drinking water production. A total of 100 coliform isolates obtained from River Rhine (Germany) were examined for their susceptibility to seven antimicrobial agents. Resistances against amoxicillin, trimethoprim/sulfamethoxazole and tetracycline were detected in 48%, 11% and 9% of isolates respectively. The antibiotic resistance could be traced back to the resistance genes bla TEM , bla SHV , ampC, sul1, sul2, dfrA1, tet(A) and tet(B). Whereby, the ampC gene represents a special case, because its presence is not inevitably linked to a phenotypic antibiotic resistance. Multiple antibiotics resistance was often accompanied by the occurrence of class 1 or 2 integrons. E. coli isolates belonging to phylogenetic groups A and B1 (commensal) were more predominant (57%) compared to B2 and D groups (43%) which are known to carry virulent genes. Additionally, six E. coli virulence genes were also detected. However, the prevalence of virulence genes in the E. coli isolates was low (not exceeding 4.3% per gene) and no diarrheagenic E. coli pathotypes were detected. This study demonstrates that surface water is an important reservoir of ARGs for a number of antibiotic classes such as sulfonamide, trimethoprim, beta-lactam-antibiotics and tetracycline. The occurrence of antibiotic resistance in coliform bacteria isolated from River Rhine provides evidence for the need to develop management strategies to limit the spread of antibiotic resistant bacteria in aquatic environment. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Optimizing Antibiotic Use in Nursing Homes Through Antibiotic Stewardship.

    Science.gov (United States)

    Sloane, Philip D; Huslage, Kirk; Kistler, Christine E; Zimmerman, Sheryl

    2016-01-01

    Antibiotic stewardship is becoming a requirement for nursing homes. Programs should be interdisciplinary and multifaceted; should have support from nursing home administrators; and should aim to promote antibiotics only when needed, not just in case. Recommended components include use of evidence-based guidelines; ongoing monitoring of antibiotic prescriptions, cultures, and study results; monitoring of health outcomes; use of nursing home-specific antibiograms; regular reporting and feedback to medical providers and nurses; and education of residents and families. ©2016 by the North Carolina Institute of Medicine and The Duke Endowment. All rights reserved.

  16. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens

    DEFF Research Database (Denmark)

    Jiang, Xinglin; Ellabaan, Mostafa M Hashim; Charusanti, Pep

    2017-01-01

    It has been hypothesized that some antibiotic resistance genes (ARGs) found in pathogenic bacteria derive from antibiotic-producing actinobacteria. Here we provide bioinformatic and experimental evidence supporting this hypothesis. We identify genes in proteobacteria, including some pathogens...... and experimentally test a 'carry-back' mechanism for the transfer, involving conjugative transfer of a carrier sequence from proteobacteria to actinobacteria, recombination of the carrier sequence with the actinobacterial ARG, followed by natural transformation of proteobacteria with the carrier-sandwiched ARG. Our...... results support the existence of ancient and, possibly, recent transfers of ARGs from antibiotic-producing actinobacteria to proteobacteria, and provide evidence for a defined mechanism....

  17. Social interaction, noise and antibiotic-mediated switches in the intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Vanni Bucci

    Full Text Available The intestinal microbiota plays important roles in digestion and resistance against entero-pathogens. As with other ecosystems, its species composition is resilient against small disturbances but strong perturbations such as antibiotics can affect the consortium dramatically. Antibiotic cessation does not necessarily restore pre-treatment conditions and disturbed microbiota are often susceptible to pathogen invasion. Here we propose a mathematical model to explain how antibiotic-mediated switches in the microbiota composition can result from simple social interactions between antibiotic-tolerant and antibiotic-sensitive bacterial groups. We build a two-species (e.g. two functional-groups model and identify regions of domination by antibiotic-sensitive or antibiotic-tolerant bacteria, as well as a region of multistability where domination by either group is possible. Using a new framework that we derived from statistical physics, we calculate the duration of each microbiota composition state. This is shown to depend on the balance between random fluctuations in the bacterial densities and the strength of microbial interactions. The singular value decomposition of recent metagenomic data confirms our assumption of grouping microbes as antibiotic-tolerant or antibiotic-sensitive in response to a single antibiotic. Our methodology can be extended to multiple bacterial groups and thus it provides an ecological formalism to help interpret the present surge in microbiome data.

  18. The In Vitro Antibiotic Susceptibility of Malaysian Isolates of Burkholderia pseudomallei

    Directory of Open Access Journals (Sweden)

    Norazah Ahmad

    2013-01-01

    Full Text Available Acute melioidosis may present as localised or septicaemic infections and can be fatal if left untreated. Burkholderia pseudomallei resistant to antibiotics used for the treatment of melioidosis had been reported. The aim of this study was to determine the in vitro antibiotic susceptibility patterns of Burkholderia pseudomallei isolated in Malaysia to a panel of antibiotics used for the treatment of melioidosis and also to potential alternative antibiotics such as tigecycline, ampicillin/sulbactam, and piperacillin/tazobactam. A total of 170 Burkholderia pseudomallei isolates were subjected to minimum inhibitory concentration determination using E-test method to eleven antibiotics. All isolates were sensitive to meropenem and piperacillin/tazobactam. For ceftazidime, imipenem, amoxicillin/clavulanic acid, and doxycycline resistance was observed in 1 isolate (0.6% for each of the antibiotics. Trimethoprim/sulfamethoxazole resistance was observed in 17 (10% isolates. For other antibiotics, ampicillin/sulbactam, chloramphenicol, tigecycline, and ciprofloxacin resistance were observed in 1 (0.6%, 6 (3.5%, 60 (35.3% and 98 (57.7% isolates respectively. One isolate B170/06 exhibited resistance to 4 antibiotics, namely, ciprofloxacin, chloramphenicol, trimethoprim/sulfamethoxazole, and tigecycline. In conclusion, the Malaysian isolates were highly susceptible to the current antibiotics used in the treatment of melioidosis in Malaysia. Multiple resistances to the antibiotics used in the maintenance therapy are the cause for a concern.

  19. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Science.gov (United States)

    Hong, Pei-Ying; Al-Jassim, Nada; Ansari, Mohd Ikram; Mackie, Roderick I.

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water. PMID:27029309

  20. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying; Aljassim, Nada I.; Ansari, Mohd Ikram; Mackie, Roderick

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  1. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Roderick I. Mackie

    2013-07-01

    Full Text Available Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  2. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  3. Toxicological impacts of antibiotics on aquatic micro-organisms: A mini-review.

    Science.gov (United States)

    Välitalo, Pia; Kruglova, Antonina; Mikola, Anna; Vahala, Riku

    2017-05-01

    Antibiotics are found globally in the environment at trace levels due to their extensive consumption, which raises concerns about the effects they can have on non-target organisms, especially environmental micro-organisms. So far the majority of studies have focused on different aspects of antibiotic resistance or on analyzing the occurrence, fate, and removal of antibiotics from hospital and municipal wastewaters. Little attention has been paid to ecotoxicological effects of antibiotics on aquatic micro-organisms although they play a critical role in most ecosystems and they are potentially sensitive to these substances. Here we review the current state of research on the toxicological impacts of antibiotics to aquatic micro-organisms, including proteobacteria, cyanobacteria, algae and bacteria commonly present in biological wastewater treatment processes. We focus on antibiotics that are poorly removed during wastewater treatment and thus end up in surface waters. We critically discuss and compare the available analytical methods and test organisms based on effect concentrations and identify the knowledge gaps and future challenges. We conclude that, in general, cyanobacteria and ammonium oxidizing bacteria are the most sensitive micro-organisms to antibiotics. It is important to include chronic tests in ecotoxicological assessment, because acute tests are not always appropriate in case of low sensitivity (for example for proteobacteria). However, the issue of rapid development of antibiotic resistance should be regarded in chronic testing. Furthermore, the application of other species of bacteria and endpoints should be considered in the future, not forgetting the mixture effect and bacterial community studies. Due to differences in the sensitivity of different test organisms to individual antibiotic substances, the application of several bioassays with varying test organisms would provide more comprehensive data for the risk assessment of antibiotics

  4. Antibiotics and inflammatory bowel diseases.

    Science.gov (United States)

    Scribano, Maria Lia; Prantera, Cosimo

    2013-01-01

    Inflammatory bowel diseases are characterized by an altered composition of gut microbiota (dysbiosis) that may contribute to their development. Antibiotics can alter the bacterial flora, and a link between antibiotic use and onset of Crohn's disease (CD), but not ulcerative colitis, has been reported. The hypothesis that Mycobacterium avium subspecies paratuberculosis (MAP) could be an etiologic agent of CD has not been confirmed by a large study on patients treated by an association of antibiotics active against MAP. The observations supporting a role of intestinal microbiota in CD pathogenesis provide the rationale for a therapeutic manipulation of the intestinal flora through the employment of antibiotics. However, current data do not strongly support a therapeutic benefit from antibiotics, and there is still controversy regarding their use as primary therapy for treatment of acute flares of CD, and for postoperative recurrence prevention. Nevertheless, clinical practice and some studies suggest that a subgroup of patients with colonic involvement, early disease, and abnormal laboratory test of inflammation may respond better to antibiotic treatment. Since their long-term use is frequently complicated by a high rate of side effects, the use of antibiotics that work locally appears to be promising.

  5. Antibiotic-resistant fecal bacteria, antibiotics, and mercury in surface waters of Oakland County, Michigan, 2005-2006

    Science.gov (United States)

    Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole

    2007-01-01

    Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/ or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic

  6. Antibiotic Sensitivity of Micrococcus radiodurans

    Science.gov (United States)

    Hawiger, J.; Jeljaszewicz, J.

    1967-01-01

    A wild-type strain of Micrococcus radiodurans and its nonpigmented mutant W1 were tested for sensitivity to 10 antibiotics selected from the standpoint of their mechanism of action. Representatives of groups of antibiotics inhibiting deoxyribonucleic acid (DNA) synthesis, DNA-dependent ribonucleic acid synthesis, protein synthesis, and cell wall synthesis were selected. M. radiodurans and its mutant exhibited full susceptibility to all antibiotics tested (mitomycin C, actinomycin D, chloramphenicol, dihydrostreptomycin, erythromycin, neomycin, kanamycin, benzylpenicillin, bacitracin, and vancomycin), the degree of susceptibility being of the same order as that of a standard strain of Staphylococcus aureus 209 P, with the exception of dihydrostreptomycin. PMID:4166078

  7. Systemic antibiotic therapy in periodontics

    Directory of Open Access Journals (Sweden)

    Anoop Kapoor

    2012-01-01

    Full Text Available Systemic antibiotics in conjunction with scaling and root planing (SRP, can offer an additional benefit over SRP alone in the treatment of periodontitis, in terms of clinical attachment loss (CAL and pocket depth change, and reduced risk of additional CAL loss. However, antibiotics are not innocuous drugs. Their use should be justified on the basis of a clearly established need and should not be substituted for adequate local treatment. The aim of this review is to discuss the rationale, proper selection, dosage and duration for antibiotic therapy so as to optimize the usefulness of drug therapy.

  8. Antibiotics as CECs: An Overview of the Hazards Posed by Antibiotics and Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Geoffrey Ivan Scott

    2016-04-01

    Full Text Available ABSTRACTMonitoring programs have traditionally monitored legacy contaminants but are shifting focus to Contaminants of Emerging Concern (CECs. CECs present many challenges for monitoring and assessment, because measurement methods don't always exist nor have toxicological studies been fully conducted to place results in proper context. Also some CECs affect metabolic pathways to produce adverse outcomes that are not assessed through traditional toxicological evaluations. Antibiotics are CECs that pose significant environmental risks including development of both toxic effects at high doses and antibiotic resistance at doses well below the Minimum Inhibitory Concentration (MIC which kill bacteria and have been found in nearly half of all sites monitored in the US. Antimicrobial resistance has generally been attributed to the use of antibiotics in medicine for humans and livestock as well as aquaculture operations. The objective of this study was to assess the extent and magnitude of antibiotics in the environment and estimate their potential hazards in the environment. Antibiotics concentrations were measured in a number of monitoring studies which included Waste Water Treatment Plants (WWTP effluent, surface waters, sediments and biota. A number of studies reported levels of Antibiotic Resistant Microbes (ARM in surface waters and some studies found specific ARM genes (e.g. the blaM-1 gene in E. coli which may pose additional environmental risk. High levels of this gene were found to survive WWTP disinfection and accumulated in sediment at levels 100-1000 times higher than in the sewerage effluent, posing potential risks for gene transfer to other bacteria.in aquatic and marine ecosystems. Antibiotic risk assessment approaches were developed based on the use of MICs and MIC Ratios [High (Antibiotic Resistant/Low (Antibiotic Sensitive MIC] for each antibiotic indicating the range of bacterial adaptability to each antibiotic to help define the No

  9. Antibiotic consumption and Enterobacteriaceae skin colonization in hospitalized adults.

    Science.gov (United States)

    Kirby, A; Berry, C; West, R

    2017-01-01

    Enterobacteriaceae are increasingly antibiotic resistant, and skin colonization may contribute to their spread in hospitals. This study screened 100 hospitalized adults for Enterobacteriaceae skin colonization, and assessed potential risk factors, including antibiotic consumption. Multi-variable analysis found that antibiotic consumption whilst an inpatient [odds ratio (OR) 3.16, 95% confidence interval (CI) 1.19-8.4] and male sex (OR 2.92, 95% CI 1.06-8.4) were risk factors for Enterobacteriaceae skin colonization. If these risk factors are confirmed, work to understand the biological mechanism involved may lead to the development of interventions to prevent Enterobacteriaceae skin colonization. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  10. The use of selective adsorbents in capillary electrophoresis-mass spectrometry for analyte preconcentration and microreactions: a powerful three-dimensional tool for multiple chemical and biological applications.

    Science.gov (United States)

    Guzman, N A; Stubbs, R J

    2001-10-01

    Much attention has recently been directed to the development and application of online sample preconcentration and microreactions in capillary electrophoresis using selective adsorbents based on chemical or biological specificity. The basic principle involves two interacting chemical or biological systems with high selectivity and affinity for each other. These molecular interactions in nature usually involve noncovalent and reversible chemical processes. Properly bound to a solid support, an "affinity ligand" can selectively adsorb a "target analyte" found in a simple or complex mixture at a wide range of concentrations. As a result, the isolated analyte is enriched and highly purified. When this affinity technique, allowing noncovalent chemical interactions and biochemical reactions to occur, is coupled on-line to high-resolution capillary electrophoresis and mass spectrometry, a powerful tool of chemical and biological information is created. This paper describes the concept of biological recognition and affinity interaction on-line with high-resolution separation, the fabrication of an "analyte concentrator-microreactor", optimization conditions of adsorption and desorption, the coupling to mass spectrometry, and various applications of clinical and pharmaceutical interest.

  11. Using Multiple Lenses to Examine the Development of Beginning Biology Teachers' Pedagogical Content Knowledge for Teaching Natural Selection Simulations

    Science.gov (United States)

    Sickel, Aaron J.; Friedrichsen, Patricia

    2018-01-01

    Pedagogical content knowledge (PCK) has become a useful construct to examine science teacher learning. Yet, researchers conceptualize PCK development in different ways. The purpose of this longitudinal study was to use three analytic lenses to understand the development of three beginning biology teachers' PCK for teaching natural selection…

  12. Prophylactic antibiotics versus post- operative antibiotics in herniorraphy

    Directory of Open Access Journals (Sweden)

    Abedulla Khan Kayamkani

    2015-07-01

    Full Text Available Postoperative surgical site infections are a major source of illness.  Infection results in longer hospital stay and higher costs.  Uses of preoperative antibiotics have been standardized and are being used routinely in most clinical surgeries and include controversial areas like breast surgery and herniorraphy. Objective of the study is to find out the benefit of prophylactic use of antibiotics in the management of herniorraphy.This project was carried out in a multispeciality tertiary care teaching hospital from 1st-30th April in 2002. Group 1 patients were treated prophylactically half an hour before surgery with single dose of I.V. antibiotics (injection.  Ampicillin 1gm + injection.  Gentamicin 80mg. Group 2 patients were treated post surgery with capsule. Ampicillin 500mg 4 times a day for 7 days and injection. Gentamicin twice a day for first 4 days. In case of group 1 patients only one out of 20 patients (5% was infected.  Whereas in-group 2 patients 5 out of 20 patients (25% were infected. The cost of prophylactic antibiotic treatment was Rs. 25.56 per patient.  The postoperative antibiotic treatment cost was Rs. 220.4 per patient.  That means postoperative treatment is around 8.62 times costlier than prophylactic treatment.             From this study it is evident that prophylactic (preoperative treatment is better than postoperative treatment with antibiotics.

  13. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions.

    Science.gov (United States)

    Leibovici, Leonard; Paul, Mical; Garner, Paul; Sinclair, David J; Afshari, Arash; Pace, Nathan Leon; Cullum, Nicky; Williams, Hywel C; Smyth, Alan; Skoetz, Nicole; Del Mar, Chris; Schilder, Anne G M; Yahav, Dafna; Tovey, David

    2016-09-01

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies. This omission creates a skewed view, which emphasizes short-term efficacy and ignores the long-term consequences to the patient and other people. We offer a framework for addressing antibiotic resistance in systematic reviews. We suggest that the data on background resistance in the original trials should be reported and taken into account when interpreting results. Data on emergence of resistance (whether in the body reservoirs or in the bacteria causing infection) are important outcomes. Emergence of resistance should be taken into account when interpreting the evidence on antibiotic treatment in randomized controlled trials or systematic reviews. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. A Simple Assay to Screen Antimicrobial Compounds Potentiating the Activity of Current Antibiotics

    Directory of Open Access Journals (Sweden)

    Junaid Iqbal

    2013-01-01

    Full Text Available Antibiotic resistance continues to pose a significant problem in the management of bacterial infections, despite advances in antimicrobial chemotherapy and supportive care. Here, we suggest a simple, inexpensive, and easy-to-perform assay to screen antimicrobial compounds from natural products or synthetic chemical libraries for their potential to work in tandem with the available antibiotics against multiple drug-resistant bacteria. The aqueous extract of Juglans regia tree bark was tested against representative multiple drug-resistant bacteria in the aforementioned assay to determine whether it potentiates the activity of selected antibiotics. The aqueous extract of J. regia bark was added to Mueller-Hinton agar, followed by a lawn of multiple drug-resistant bacteria, Salmonella typhi or enteropathogenic E. coli. Next, filter paper discs impregnated with different classes of antibiotics were placed on the agar surface. Bacteria incubated with extract or antibiotics alone were used as controls. The results showed a significant increase (>30% in the zone of inhibition around the aztreonam, cefuroxime, and ampicillin discs compared with bacteria incubated with the antibiotics/extract alone. In conclusion, our assay is able to detect either synergistic or additive action of J. regia extract against multiple drug-resistant bacteria when tested with a range of antibiotics.

  15. Design and rationale of the Procalcitonin Antibiotic Consensus Trial (ProACT), a multicenter randomized trial of procalcitonin antibiotic guidance in lower respiratory tract infection.

    Science.gov (United States)

    Huang, David T; Angus, Derek C; Chang, Chung-Chou H; Doi, Yohei; Fine, Michael J; Kellum, John A; Peck-Palmer, Octavia M; Pike, Francis; Weissfeld, Lisa A; Yabes, Jonathan; Yealy, Donald M

    2017-08-29

    Overuse of antibiotics is a major public health problem, contributing to growing antibiotic resistance. Procalcitonin has been reported to be commonly elevated in bacterial, but not viral infection. Multiple European trials found procalcitonin-guided care reduced antibiotic use in lower respiratory tract infection, with no apparent harm. However, applicability to US practice is limited due to trial design features impractical in the US, between-country differences, and residual safety concerns. The Procalcitonin Antibiotic Consensus Trial (ProACT) is a multicenter randomized trial to determine the impact of a procalcitonin antibiotic prescribing guideline, implemented with basic reproducible strategies, in US patients with lower respiratory tract infection. We describe the trial methods using the Consolidated Standards of Reporting Trials (CONSORT) framework, and the rationale for key design decisions, including choice of eligibility criteria, choice of control arm, and approach to guideline implementation. ClinicalTrials.gov NCT02130986 . Registered May 1, 2014.

  16. Transport and transformation of genetic information in the critical zone: The case of antibiotic resistance genes

    Science.gov (United States)

    Zhu, Y. G.

    2015-12-01

    In addition to material and energy flows, the dynamics and functions of the Earth's critical zone are intensively mediated by biological actions performed by diverse organisms. These biological actions are modulated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions, such as nutrient turnover and pollutant biodegradation. Although geobiology, as an interdisciplinary research area, is playing and vital role in linking biological and geochemical processes at different temporal and spatial scales, the distribution and transport of functional genes have rarely been investigated from the Earth's critical zone perspectives. To illustrate the framework of studies on the transport and transformation of genetic information in the critical zone, antibiotic resistance is taken as an example. Antibiotic resistance genes are considered as a group of emerging contaminants, and their emergence and spread within the critical zone on one hand are induced by anthropogenic activities, and on other hand are threatening human health worldwide. The transport and transformation of antibiotic resistance genes are controlled by both horizontal gene transfer between bacterial cells and the movement of bacteria harboring antibiotic resistance genes. In this paper, the fate and behavior of antibiotic resistance genes will be discussed in the following aspects: 1) general overview of environmental antibiotic resistance; 2) high through quantification of the resistome in various environmental media; 3) pathways of resistance gene flow within the critical zone; and 4) potential strategies in mitigating antibiotic resistance, particularly from the critical zone perspectives.

  17. Antibiotic managment in renal failure.

    Science.gov (United States)

    Winter, R E

    1976-06-01

    This is a brief compilation of the work of many investigators. It includes facts about toxicity and recommendations about antibiotic management in patients with renal failure. As new data are accrued, changes in these recommendations will be necessary.

  18. Antibiotic prophylaxis in obstetric procedures.

    Science.gov (United States)

    van Schalkwyk, Julie; Van Eyk, Nancy

    2010-09-01

    To review the evidence and provide recommendations on antibiotic prophylaxis for obstetrical procedures. Outcomes evaluated include need and effectiveness of antibiotics to prevent infections in obstetrical procedures. Published literature was retrieved through searches of Medline and The Cochrane Library on the topic of antibiotic prophylaxis in obstetrical procedures. Results were restricted to systematic reviews, randomized controlled trials/controlled clinical trials, and observational studies. Searches were updated on a regular basis and articles published from January 1978 to June 2009 were incorporated in the guideline. Current guidelines published by the American College of Obstetrics and Gynecology were also incorporated. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology assessment-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The evidence obtained was reviewed and evaluated by the Infectious Diseases Committee of the Society of Obstetricians and Gynaecologists of Canada under the leadership of the principal authors, and recommendations were made according to guidelines developed by the Canadian Task Force on Preventive Health Care (Table 1). Implementation of this guideline should reduce the cost and harm resulting from the administration of antibiotics when they are not required and the harm resulting from failure to administer antibiotics when they would be beneficial. SUMMARY STATEMENTS: 1. Available evidence does not support the use of prophylactic antibiotics to reduce infectious morbidity following operative vaginal delivery. (II-1) 2. There is insufficient evidence to argue for or against the use of prophylactic antibiotics to reduce infectious morbidity for manual removal of the placenta. (III) 3. There is insufficient evidence to argue for or against the use of

  19. Use of antibiotics in children

    DEFF Research Database (Denmark)

    Pottegård, Anton; Broe, A.; Aabenhus, R.

    2015-01-01

    Background: We aimed to describe the use of systemic antibiotics among children in Denmark. Methods: National data on drug use in Denmark were extracted from the Danish National Prescription Database. We used prescription data for all children in Denmark aged 0 to 11 years from January 1, 2000...... to December 31, 2012. Results: We obtained data on 5,884,301 prescriptions for systemic antibiotics issued to 1,206,107 children. The most used single substances were phenoxymethylpenicillin (45%), amoxicillin (34%) and erythromycin (6%). The highest incidence rate of antibiotic treatment episodes......-1. There was little evidence of heavy users. Conclusion: Prescribing rate of antibiotics to children in Denmark remained stable at a high level from 2000 to 2012. An increase in the use of broad-spectrum beta-lactam penicillin was noted, but otherwise the prescribing pattern adhered well to National guidelines...

  20. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection.

    Science.gov (United States)

    Sharkey, Liam K R; Edwards, Thomas A; O'Neill, Alex J

    2016-03-22

    Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. Copyright © 2016 Sharkey et al.

  1. [Self-medication with antibiotics in Poland

    NARCIS (Netherlands)

    Olczak, A.; Grzesiowski, P.; Hryniewicz, W.; Haaijer-Ruskamp, F.M.

    2006-01-01

    Antibiotic resistance, the important public health threat, depends on antibiotic overuse/misuse. Self-medication with antibiotics is of serious medical concern. The aim of the study, as a part of SAR project (Self-medication with antibiotic in Europe) was to survey the incidence of this phenomenon.

  2. Characterization of the Antibiotic Compound No. 70 Produced by Streptomyces sp. IMV-70

    Science.gov (United States)

    Trenozhnikova, Lyudmila P.; Khasenova, Almagul K.; Balgimbaeva, Assya S.; Fedorova, Galina B.; Katrukha, Genrikh S.; Tokareva, Nina L.; Kwa, Boo H.; Azizan, Azliyati

    2012-01-01

    We describe the actinomycete strain IMV-70 isolated from the soils of Kazakhstan, which produces potent antibiotics with high levels of antibacterial activity. After the research of its morphological, chemotaxonomic, and cultural characteristics, the strain with potential to be developed further as a novel class of antibiotics with chemotherapeutics potential was identified as Streptomyces sp. IMV-70. In the process of fermentation, the strain Streptomyces spp. IMV-70 produces the antibiotic no. 70, which was isolated from the culture broth by extraction with organic solvents. Antibiotic compound no. 70 was purified and separated into individual components by HPLC, TLC, and column chromatography methods. The main component of the compound is the antibiotic 70-A, which was found to be identical to the peptolide etamycin A. Two other antibiotics 70-B and 70-C have never been described and therefore are new antibiotics. The physical-chemical and biological characteristics of these preparations were described and further researched. Determination of the optimal growth conditions to cultivate actinomycete-producer strain IMV-70 and development of methods to isolate, purify, and accumulate preparations of the new antibiotic no. 70 enable us to research further the potential of this new class of antibiotics. PMID:22536145

  3. Characterization of the Antibiotic Compound No. 70 Produced by Streptomyces sp. IMV-70

    Directory of Open Access Journals (Sweden)

    Lyudmila P. Trenozhnikova

    2012-01-01

    Full Text Available We describe the actinomycete strain IMV-70 isolated from the soils of Kazakhstan, which produces potent antibiotics with high levels of antibacterial activity. After the research of its morphological, chemotaxonomic, and cultural characteristics, the strain with potential to be developed further as a novel class of antibiotics with chemotherapeutics potential was identified as Streptomyces sp. IMV-70. In the process of fermentation, the strain Streptomyces spp. IMV-70 produces the antibiotic no. 70, which was isolated from the culture broth by extraction with organic solvents. Antibiotic compound no. 70 was purified and separated into individual components by HPLC, TLC, and column chromatography methods. The main component of the compound is the antibiotic 70-A, which was found to be identical to the peptolide etamycin A. Two other antibiotics 70-B and 70-C have never been described and therefore are new antibiotics. The physical-chemical and biological characteristics of these preparations were described and further researched. Determination of the optimal growth conditions to cultivate actinomycete-producer strain IMV-70 and development of methods to isolate, purify, and accumulate preparations of the new antibiotic no. 70 enable us to research further the potential of this new class of antibiotics.

  4. Synthetic membrane-targeted antibiotics.

    Science.gov (United States)

    Vooturi, S K; Firestine, S M

    2010-01-01

    Antimicrobial resistance continues to evolve and presents serious challenges in the therapy of both nosocomial and community-acquired infections. The rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-resistant enterococci (VRE) suggests that antimicrobial resistance is an inevitable evolutionary response to antimicrobial use. This highlights the tremendous need for antibiotics against new bacterial targets. Agents that target the integrity of bacterial membrane are relatively novel in the clinical armamentarium. Daptomycin, a lipopeptide is a classical example of membrane-bound antibiotic. Nature has also utilized this tactic. Antimicrobial peptides (AMPs), which are found in all kingdoms, function primarily by permeabilizing the bacterial membrane. AMPs have several advantages over existing antibiotics including a broad spectrum of activity, rapid bactericidal activity, no cross-resistance with the existing antibiotics and a low probability for developing resistance. Currently, a small number of peptides have been developed for clinical use but therapeutic applications are limited because of poor bioavailability and high manufacturing cost. However, their broad specificity, potent activity and lower probability for resistance have spurred the search for synthetic mimetics of antimicrobial peptides as membrane-active antibiotics. In this review, we will discuss the different classes of synthetic membrane-bound antibiotics published since 2004.

  5. Expedient antibiotics production: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bienkowski, P.R.; Byers, C.H.; Lee, D.D.

    1988-05-01

    The literature on the manufacture, separation and purification, and clinical uses of antibiotics was reviewed, and a bibliography of the pertinent material was completed. Five antimicrobial drugs, penicillin V and G, (and amoxicillin with clavulanic acid), Cephalexin (a cephalosporin), tetracycline and oxytetracycline, Bacitracin (topical), and sulfonamide (chemically produced) were identified for emergency production. Plants that manufacture antibiotics in the continental United States, Mexico, and Puerto Rico have been identified along with potential alternate sites such as those where SCP, enzyme, and fermentation ethanol are produced. Detailed process flow sheets and process descriptions have been derived from the literature and documented. This investigation revealed that a typical antibiotic-manufacturing facility is composed of two main sections: (1) a highly specialized, but generic, fermentation unit and (2) a multistep, complex separation and purification unit which is specific to a particular antibiotic product. The fermentation section requires specialized equipment for operation in a sterile environment which is not usually available in other industries. The emergency production of antibiotics under austere conditions will be feasible only if a substantial reduction in the complexity and degree of separation and purity normally required can be realized. Detailed instructions were developed to assist state and federal officials who would be directing the resumption of antibiotic production after a nuclear attack. 182 refs., 54 figs., 26 tabs.

  6. Microbial community functional structure in response to antibiotics in pharmaceutical wastewater treatment systems.

    Science.gov (United States)

    Zhang, Yu; Xie, Jianping; Liu, Miaomiao; Tian, Zhe; He, Zhili; van Nostrand, Joy D; Ren, Liren; Zhou, Jizhong; Yang, Min

    2013-10-15

    It is widely demonstrated that antibiotics in the environment affect microbial community structure. However, direct evidence regarding the impacts of antibiotics on microbial functional structures in wastewater treatment systems is limited. Herein, a high-throughput functional gene array (GeoChip 3.0) in combination with quantitative PCR and clone libraries were used to evaluate the microbial functional structures in two biological wastewater treatment systems, which treat antibiotic production wastewater mainly containing oxytetracycline. Despite the bacteriostatic effects of antibiotics, the GeoChip detected almost all key functional gene categories, including carbon cycling, nitrogen cycling, etc., suggesting that these microbial communities were functionally diverse. Totally 749 carbon-degrading genes belonging to 40 groups (24 from bacteria and 16 from fungi) were detected. The abundance of several fungal carbon-degrading genes (e.g., glyoxal oxidase (glx), lignin peroxidase or ligninase (lip), manganese peroxidase (mnp), endochitinase, exoglucanase_genes) was significantly correlated with antibiotic concentrations (Mantel test; P functional genes have been enhanced by the presence of antibiotics. However, from the fact that the majority of carbon-degrading genes were derived from bacteria and diverse antibiotic resistance genes were detected in bacteria, it was assumed that many bacteria could survive in the environment by acquiring antibiotic resistance and may have maintained the position as a main player in nutrient removal. Variance partitioning analysis showed that antibiotics could explain 24.4% of variations in microbial functional structure of the treatment systems. This study provides insights into the impacts of antibiotics on microbial functional structure of a unique system receiving antibiotic production wastewater, and reveals the potential importance of the cooperation between fungi and bacteria with antibiotic resistance in maintaining the

  7. Antibiotic innovation for future public health needs.

    Science.gov (United States)

    Theuretzbacher, U

    2017-10-01

    The public health threat of antibiotic resistance has gained attention at the highest political levels globally, and recommendations on how to respond are being considered for implementation. Among the recommended responses being explored for their feasibility is the introduction of economic incentives to promote research and development of new antibiotics. There is broad agreement that public investment should stimulate innovation and be linked to policies promoting sustainable and equitable access to antibiotics. Though commonly used, the term 'innovation' is not based on a common understanding. This article aims to initiate discussion on the meaning of 'innovation' in this context. Literature and expert opinion. As the definition of a novel class (novel scaffold, novel pharmacophore), a novel target (novel binding site) and a novel mode of action-the three traditional criteria for 'innovation' in this context-may be confounded by the complexities of antibacterial drug discovery, a biological and outcome-oriented definition of innovation is presented to initiate discussion. Such an expanded definition of innovation in this specific context is based on the overarching requirement that a drug not be affected by cross-resistance to existing drugs in the organisms and indications for which it is intended to be used, and that it have low potential for high-frequency, high-level single-step resistance if intended as a single drug therapy. Policy makers, public health authorities and funders could use such a comprehensive definition of innovation to prioritize where publicly funded incentives should be applied. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Dielectrophoretic assay of bacterial resistance to antibiotics

    International Nuclear Information System (INIS)

    Johari, Juliana; Huebner, Yvonne; Hull, Judith C; Dale, Jeremy W; Hughes, Michael P

    2003-01-01

    The dielectrophoretic collection spectra of antibiotic-sensitive and antibiotic-resistant strains of Staphylococcus epidermidis have been determined. These indicate that in the absence of antibiotic treatment there is a strong similarity between the dielectric properties of sensitive and resistant strains, and that there is a significant difference between the sensitive strains before and after treatment with the antibiotic streptomycin after 24 h exposure. This method offers possibilities for the assessment of bacterial resistance to antibiotics. (note)

  9. Macrolide antibiotics and the airway: antibiotic or non-antibiotic effects?

    LENUS (Irish Health Repository)

    Murphy, D M

    2010-03-01

    The macrolides are a class of antibiotics widely prescribed in infectious disease. More recently, there has been considerable interest in potential indications for these agents, in addition to their simple antibacterial indications, in a number of lung pathophysiologies.

  10. Prevalence of Antibiotic-Resistant Escherichia coli in Drinking Water Sources in Hangzhou City

    Directory of Open Access Journals (Sweden)

    Zhaojun Chen

    2017-06-01

    Full Text Available This study investigated the distribution of antibiotic resistant Escherichia coli (E. coli and examined the possible relationship between water quality parameters and antibiotic resistance from two different drinking water sources (the Qiantang River and the Dongtiao Stream in Hangzhou city of China. E. coli isolates were tested for their susceptibility to 18 antibiotics. Most of the isolates were resistant to tetracycline (TE, followed by ampicillin (AM, piperacillin (PIP, trimethoprim/sulfamethoxazole (SXT, and chloramphenicol (C. The antibiotic resistance rate of E. coli isolates from two water sources was similar; For E. coli isolates from the Qiantang River, their antibiotic resistance rates decreased from up- to downstream. Seasonally, the dry and wet season had little impact on antibiotic resistance. Spearman's rank correlation revealed significant correlation between resistance to TE and phenicols or ciprofloxacin (CIP, as well as quinolones (ciprofloxacin and levofloxacin and cephalosporins or gentamicin (GM. Pearson's chi-square tests found certain water parameters such as nutrient concentration were strongly associated with resistance to some of the antibiotics. In addition, tet genes were detected from all 82 TE-resistant E. coli isolates, and most of the isolates (81.87% contained multiple tet genes, which displayed 14 different combinations. Collectively, this study provided baseline data on antibiotic resistance of drinking water sources in Hangzhou city, which indicates drinking water sources could be the reservoir of antibiotic resistance, potentially presenting a public health risk.

  11. Study on Antibiotic compounds from Pseudomonas aeruginosa NO4 Strain

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Young; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2011-05-15

    As important human and veterinary medicines, antibiotics are being produced and consumed in large quantities around the world. For example, more than 50 million pounds (22,000 tons) of antibiotics are produced in the U.S. each year and annual production in Germany is about 2,000 tons. Antibiotics are low molecular weight microbial metabolites that at low concentrations inhibit the growth of other microorganisms. Resistant bacteria may also spread and become broader infection-control problems, not only within health care institutions, but in communities as well. Clinically important bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). MRSA is a common cause of infection among hospitalized patients. Pseudomonas aeruginosa is a major cause of opportunistic infections among immunocompromised individuals. The spread of this organism in health care settings is often difficult to control due to the presence of multiple intrinsic and acquired mechanisms of antimicrobial resistance. In this study, we isolated novel bacterium which had strong antagonistic activity and separated antibiotic compounds from Pseudomonas sp., and analyzed characteristics and molecular weight of the antibiotic compound

  12. Study on Antibiotic compounds from Pseudomonas aeruginosa NO4 Strain

    International Nuclear Information System (INIS)

    Nam, Ji Young; Kim, Jin Kyu

    2011-01-01

    As important human and veterinary medicines, antibiotics are being produced and consumed in large quantities around the world. For example, more than 50 million pounds (22,000 tons) of antibiotics are produced in the U.S. each year and annual production in Germany is about 2,000 tons. Antibiotics are low molecular weight microbial metabolites that at low concentrations inhibit the growth of other microorganisms. Resistant bacteria may also spread and become broader infection-control problems, not only within health care institutions, but in communities as well. Clinically important bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). MRSA is a common cause of infection among hospitalized patients. Pseudomonas aeruginosa is a major cause of opportunistic infections among immunocompromised individuals. The spread of this organism in health care settings is often difficult to control due to the presence of multiple intrinsic and acquired mechanisms of antimicrobial resistance. In this study, we isolated novel bacterium which had strong antagonistic activity and separated antibiotic compounds from Pseudomonas sp., and analyzed characteristics and molecular weight of the antibiotic compound

  13. Graphene oxide in the water environment could affect tetracycline-antibiotic resistance.

    Science.gov (United States)

    Guo, Mei-Ting; Zhang, Guo-Sheng

    2017-09-01

    In recent years, the influence of new materials like nanoparticles in the water environment on biological substances has been widely studied. Antibiotic resistance genes (ARGs) represent a new type of pollutant in the environment. Graphene oxide (GO), as a nano material, because of its unique structure, may have an impact on antibiotic resistance bacteria (ARB) and ARGs; however the research in this area is rarely reported. Therefore, this study mainly investigated the effects of GO on bacterial antibiotic resistance. The results showed that GO had a limited effect on ARB inactivation. A high concentration of GO (>10 mg/L) can damage resistant plasmids to reduce bacterial resistance to antibiotics, but low concentrations of GO (antibiotic resistance needs further investigation. Copyright © 2017. Published by Elsevier Ltd.

  14. Determinants of between-country differences in ambulatory antibiotic use and antibiotic resistance in Europe: a longitudinal observational study.

    Science.gov (United States)

    Blommaert, A; Marais, C; Hens, N; Coenen, S; Muller, A; Goossens, H; Beutels, P

    2014-02-01

    To identify key determinants explaining country-year variations in antibiotic use and resistance. Ambulatory antibiotic use data [in defined daily doses per 1000 inhabitants per day (DIDs)] for 19 European countries from 1999 to 2007 were collected, along with 181 variables describing countries in terms of their agriculture, culture, demography, disease burden, education, healthcare organization and socioeconomics. After assessing data availability, overlap and relevance, multiple imputation generalized estimating equations were applied with a stepwise selection procedure to select significant determinants of global antibiotic use (expressed in DIDs), relative use of subgroups (amoxicillin and co-amoxiclav) and resistance of Escherichia coli and Streptococcus pneumoniae. Relative humidity, healthcare expenditure proportional to gross domestic product, feelings of distrust, proportion of population aged >65 years and availability of treatment guidelines were associated with higher total antibiotic use expressed in DIDs. Restrictions on marketing activities towards prescribers, population density, number of antibiotics, educational attainment and degree of atheism were associated with a lower number of total DIDs used. Relative prescribing of amoxicillin and co-amoxiclav was mainly determined by healthcare system choices [e.g. general practitioner (GP) registration and restricted marketing]. Specific antibiotic use was found to be a significant determinant of resistance for some but not all drug/organism combinations. Incentives to stimulate GP gatekeeping were associated with lower levels of resistance, and life expectancy at age 65+ and atheism were associated with more resistance. Myriad factors influence antibiotic use and resistance at the country level and an important part of these can be modified by policy choices.

  15. Management Options For Reducing The Release Of Antibiotics And Antibiotic Resistance Genes To The Environment

    Science.gov (United States)

    Background: There is growing concern worldwide about the role of polluted soil and water - 77 environments in the development and dissemination of antibiotic resistance. 78 Objective: To identify management options for reducing the spread of antibiotics and 79 antibiotic resist...

  16. An overview of the challenges in designing, integrating, and delivering BARD: a public chemical biology resource and query portal across multiple organizations, locations, and disciplines

    Science.gov (United States)

    de Souza, Andrea; Bittker, Joshua; Lahr, David; Brudz, Steve; Chatwin, Simon; Oprea, Tudor I.; Waller, Anna; Yang, Jeremy; Southall, Noel; Guha, Rajarshi; Schurer, Stephan; Vempati, Uma; Southern, Mark R.; Dawson, Eric S.; Clemons, Paul A.; Chung, Thomas D.Y.

    2015-01-01

    Recent industry-academic partnerships involve collaboration across disciplines, locations, and organizations using publicly funded “open-access” and proprietary commercial data sources. These require effective integration of chemical and biological information from diverse data sources, presenting key informatics, personnel, and organizational challenges. BARD (BioAssay Research Database) was conceived to address these challenges and to serve as a community-wide resource and intuitive web portal for public-sector chemical biology data. Its initial focus is to enable scientists to more effectively use the NIH Roadmap Molecular Libraries Program (MLP) data generated from 3-year pilot and 6-year production phases of the Molecular Libraries Probe Production Centers Network (MLPCN), currently in its final year. BARD evolves the current data standards through structured assay and result annotations that leverage the BioAssay Ontology (BAO) and other industry-standard ontologies, and a core hierarchy of assay definition terms and data standards defined specifically for small-molecule assay data. We have initially focused on migrating the highest-value MLP data into BARD and bringing it up to this new standard. We review the technical and organizational challenges overcome by the inter-disciplinary BARD team, veterans of public and private sector data-integration projects, collaborating to describe (functional specifications), design (technical specifications), and implement this next-generation software solution. PMID:24441647

  17. A canonical correlation analysis-based dynamic bayesian network prior to infer gene regulatory networks from multiple types of biological data.

    Science.gov (United States)

    Baur, Brittany; Bozdag, Serdar

    2015-04-01

    One of the challenging and important computational problems in systems biology is to infer gene regulatory networks (GRNs) of biological systems. Several methods that exploit gene expression data have been developed to tackle this problem. In this study, we propose the use of copy number and DNA methylation data to infer GRNs. We developed an algorithm that scores regulatory interactions between genes based on canonical correlation analysis. In this algorithm, copy number or DNA methylation variables are treated as potential regulator variables, and expression variables are treated as potential target variables. We first validated that the canonical correlation analysis method is able to infer true interactions in high accuracy. We showed that the use of DNA methylation or copy number datasets leads to improved inference over steady-state expression. Our results also showed that epigenetic and structural information could be used to infer directionality of regulatory interactions. Additional improvements in GRN inference can be gleaned from incorporating the result in an informative prior in a dynamic Bayesian algorithm. This is the first study that incorporates copy number and DNA methylation into an informative prior in dynamic Bayesian framework. By closely examining top-scoring interactions with different sources of epigenetic or structural information, we also identified potential novel regulatory interactions.

  18. An Overview of the Challenges in Designing, Integrating, and Delivering BARD: A Public Chemical-Biology Resource and Query Portal for Multiple Organizations, Locations, and Disciplines.

    Science.gov (United States)

    de Souza, Andrea; Bittker, Joshua A; Lahr, David L; Brudz, Steve; Chatwin, Simon; Oprea, Tudor I; Waller, Anna; Yang, Jeremy J; Southall, Noel; Guha, Rajarshi; Schürer, Stephan C; Vempati, Uma D; Southern, Mark R; Dawson, Eric S; Clemons, Paul A; Chung, Thomas D Y

    2014-06-01

    Recent industry-academic partnerships involve collaboration among disciplines, locations, and organizations using publicly funded "open-access" and proprietary commercial data sources. These require the effective integration of chemical and biological information from diverse data sources, which presents key informatics, personnel, and organizational challenges. The BioAssay Research Database (BARD) was conceived to address these challenges and serve as a community-wide resource and intuitive web portal for public-sector chemical-biology data. Its initial focus is to enable scientists to more effectively use the National Institutes of Health Roadmap Molecular Libraries Program (MLP) data generated from the 3-year pilot and 6-year production phases of the Molecular Libraries Probe Production Centers Network (MLPCN), which is currently in its final year. BARD evolves the current data standards through structured assay and result annotations that leverage BioAssay Ontology and other industry-standard ontologies, and a core hierarchy of assay definition terms and data standards defined specifically for small-molecule assay data. We initially focused on migrating the highest-value MLP data into BARD and bringing it up to this new standard. We review the technical and organizational challenges overcome by the interdisciplinary BARD team, veterans of public- and private-sector data-integration projects, who are collaborating to describe (functional specifications), design (technical specifications), and implement this next-generation software solution. © 2014 Society for Laboratory Automation and Screening.

  19. Assessment of biological effects of pollutants in a hyper eutrophic tropical water body, Lake Beira, Sri Lanka using multiple biomarker responses of resident fish, Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Pathiratne, Asoka; Pathiratne, K A S; De Seram, P K C

    2010-08-01

    Biomarkers measured at the molecular and cellular level in fish have been proposed as sensitive "early warning" tools for biological effect measurements in environmental quality assessments. Lake Beira is a hypertrophic urban water body with a complex mixture of pollutants including polycyclic aromatic hydrocarbons (PAHs) and Microcystins. In this study, a suite of biomarker responses viz. biliary fluorescent aromatic compounds (FACs), hepatic ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST), brain and muscle cholinesterases (ChE), serum sorbitol dehydrogenase (SDH), and liver histology of Oreochromis niloticus, the dominant fish inhabiting this tropical Lake were evaluated to assess the pollution exposure and biological effects. Some fish sampled in the dry periods demonstrated prominent structural abnormalities in the liver and concomitant increase in serum SDH and reduction in hepatic GST activities in comparison to the control fish and the fish sampled in the rainy periods. The resident fish with apparently normal liver demonstrated induction of hepatic EROD and GST activities and increase in biliary FACs irrespective of the sampling period indicating bioavailability of PAHs. Muscle ChE activities of the resident fish were depressed significantly indicating exposure to anticholinesterase substances. The results revealed that fish populations residing in this Lake is under threat due to the pollution stress. Hepatic abnormalities in the fish may be mainly associated with the pollution stress due to recurrent exposure to PAHs and toxigenic Microcystis blooms in the Lake.

  20. Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis.

    Science.gov (United States)

    Bleich, Rachel; Watrous, Jeramie D; Dorrestein, Pieter C; Bowers, Albert A; Shank, Elizabeth A

    2015-03-10

    Bacteria have evolved the ability to produce a wide range of structurally complex natural products historically called "secondary" metabolites. Although some of these compounds have been identified as bacterial communication cues, more frequently natural products are scrutinized for antibiotic activities that are relevant to human health. However, there has been little regard for how these compounds might otherwise impact the physiology of neighboring microbes present in complex communities. Bacillus cereus secretes molecules that activate expression of biofilm genes in Bacillus subtilis. Here, we use imaging mass spectrometry to identify the thiocillins, a group of thiazolyl peptide antibiotics, as biofilm matrix-inducing compounds produced by B. cereus. We found that thiocillin increased the population of matrix-producing B. subtilis cells and that this activity could be abolished by multiple structural alterations. Importantly, a mutation that eliminated thiocillin's antibiotic activity did not affect its ability to induce biofilm gene expression in B. subtilis. We go on to show that biofilm induction appears to be a general phenomenon of multiple structurally diverse thiazolyl peptides and use this activity to confirm the presence of thiazolyl peptide gene clusters in other bacterial species. Our results indicate that the roles of secondary metabolites initially identified as antibiotics may have more complex effects--acting not only as killing agents, but also as specific modulators of microbial cellular phenotypes.

  1. Total synthesis of crocacins A, C and D: new antibiotics isolated from Chondromyces crocatus and Chondromyces pediculatus

    International Nuclear Information System (INIS)

    Oliveira, Luciana G. de; Dias, Luiz C.; Rosso, Giovanni B.

    2008-01-01

    This review describes the endeavors that led to the total synthesis of a novel class of antibiotic compounds: the crocacins A-D. Other aspects such as isolation, structural elucidation as well as the biological activities are also presented. (author)

  2. [Antibiotic resistance: A global crisis].

    Science.gov (United States)

    Alós, Juan-Ignacio

    2015-12-01

    The introduction of antibiotics into clinical practice represented one of the most important interventions for the control of infectious diseases. Antibiotics have saved millions of lives and have also brought a revolution in medicine. However, an increasing threat has deteriorated the effectiveness of these drugs, that of bacterial resistance to antibiotics, which is defined here as the ability of bacteria to survive in antibiotic concentrations that inhibit/kill others of the same species. In this review some recent and important examples of resistance in pathogens of concern for mankind are mentioned. It is explained, according to present knowledge, the process that led to the current situation in a short time, evolutionarily speaking. It begins with the resistance genes, continues with clones and genetic elements involved in the maintenance and dissemination, and ends with other factors that contribute to its spread. Possible responses to the problem are also reviewed, with special reference to the development of new antibiotics. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  3. Consumer attitudes and use of antibiotics.

    Science.gov (United States)

    Vanden Eng, Jodi; Marcus, Ruthanne; Hadler, James L; Imhoff, Beth; Vugia, Duc J; Cieslak, Paul R; Zell, Elizabeth; Deneen, Valerie; McCombs, Katherine Gibbs; Zansky, Shelley M; Hawkins, Marguerite A; Besser, Richard E

    2003-09-01

    Recent antibiotic use is a risk factor for infection or colonization with resistant bacterial pathogens. Demand for antibiotics can be affected by consumers' knowledge, attitudes, and practices. In 1998-1999, the Foodborne Diseases Active Surveillance Network (FoodNet( conducted a population-based, random-digit dialing telephone survey, including questions regarding respondents' knowledge, attitudes, and practices of antibiotic use. Twelve percent had recently taken antibiotics; 27% believed that taking antibiotics when they had a cold made them better more quickly, 32% believed that taking antibiotics when they had a cold prevented more serious illness, and 48% expected a prescription for antibiotics when they were ill enough from a cold to seek medical attention. These misguided beliefs and expectations were associated with a lack of awareness of the dangers of antibiotic use; 58% of patients were not aware of the possible health dangers. National educational efforts are needed to address these issues if patient demand for antibiotics is to be reduced.

  4. Campaign Preparation for Complex Initiatives: A Person-Centered Approach to Audience Segmentation of Parents' Antibiotic Stewardship.

    Science.gov (United States)

    Smith, Rachel A; MacGeorge, Erina L; Hackman, Nicole M; M'ikanatha, Nkuchia M

    2017-10-25

    The evolution of antibiotic resistance is outpacing the speed at which new antibiotics will reach the marketplace. To slow the rate of resistance, people need to engage in antibiotic stewardship, which includes acts to prevent the spread of bacteria and judicious use of antibiotics to treat infections. This study identified the patterns and predictors of antibiotic stewardship behaviors of parents (N = 516) related to their children. The latent class analysis revealed three profiles of parental stewardship, labeled Stewards, Requesters, and Non-Stewards. The findings implied different campaign goals: to encourage Stewards to follow through on their intentions, to encourage Requesters to stop asking providers for antibiotics when their children have ear infections, and to influence Non-Stewards to accept medical advice when an antibiotic is not indicated and to dispose of leftover antibiotics. The covariate analysis provided theoretical insight into the strategies to pursue in campaigns targeting these three groups. For example, parents who perceived antibiotic-resistant infections as less serious health conditions, felt less worry when thinking about their child getting an antibiotic-resistant infection, and had stronger misattributions of antibiotics' efficacy to treat multiple symptoms were more likely to be Requesters and Non-Stewards, instead of Stewards.

  5. Adverse consequences of neonatal antibiotic exposure.

    Science.gov (United States)

    Cotten, Charles M

    2016-04-01

    Antibiotics have not only saved lives and improved outcomes, but they also influence the evolving microbiome. This review summarizes reports on neonatal infections and variation in antibiotic utilization, discusses the emergence of resistant organisms, and presents data from human neonates and animal models demonstrating the impact of antibiotics on the microbiome, and how microbiome alterations impact health. The importance of antibiotic stewardship is also discussed. Infections increase neonatal morbidity and mortality. Furthermore, the clinical presentation of infections can be subtle, prompting clinicians to empirically start antibiotics when infection is a possibility. Antibiotic-resistant infections are a growing problem. Cohort studies have identified extensive center variations in antibiotic usage and associations between antibiotic exposures and outcomes. Studies of antibiotic-induced microbiome alterations and downstream effects on the developing immune system have increased our understanding of the mechanisms underlying the associations between antibiotics and adverse outcomes. The emergence of resistant microorganisms and recent evidence linking antibiotic practice variations with health outcomes has led to the initiation of antibiotic stewardship programs. The review encourages practitioners to assess local antibiotic use with regard to local microbiology, and to adopt steps to reduce infections and use antibiotics wisely.

  6. A new statistical method for transfer coefficient calculations in the framework of the general multiple-compartment model of transport for radionuclides in biological systems.

    Science.gov (United States)

    Garcia, F; Arruda-Neto, J D; Manso, M V; Helene, O M; Vanin, V R; Rodriguez, O; Mesa, J; Likhachev, V P; Filho, J W; Deppman, A; Perez, G; Guzman, F; de Camargo, S P

    1999-10-01

    A new and simple statistical procedure (STATFLUX) for the calculation of transfer coefficients of radionuclide transport to animals and plants is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. By using experimentally available curves of radionuclide concentrations versus time, for each animal compartment (organs), flow parameters were estimated by employing a least-squares procedure, whose consistency is tested. Some numerical results are presented in order to compare the STATFLUX transfer coefficients with those from other works and experimental data.

  7. A new statistical method for transfer coefficient calculations in the framework of the general multiple-compartment model of transport for radionuclides in biological systems

    International Nuclear Information System (INIS)

    Garcia, F.; Manso, M.V.; Rodriguez, O.; Mesa, J.; Arruda-Neto, J.D.T.; Helene, O.M.; Vanin, V.R.; Likhachev, V.P.; Pereira Filho, J.W.; Deppman, A.; Perez, G.; Guzman, F.; Camargo, S.P. de

    1999-01-01

    A new and simple statistical procedure (STATFLUX) for the calculation of transfer coefficients of radionuclide transport to animals and plants is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. By using experimentally available curves of radionuclide concentrations versus time, for each animal compartment (organs), flow parameters were estimated by employing a least-squares procedure, whose consistency is tested. Some numerical results are presented in order to compare the STATFLUX transfer coefficients with those from other works and experimental data. (author)

  8. Radioactivity measurements for determining bacterial increase and sensitivity to antibiotics. [/sup 14/C tracer

    Energy Technology Data Exchange (ETDEWEB)

    Jaszsagi-Nagy, E [Magyar Tudomanyos Akademia, Budapest; Lendvay, J [Orszagos Frederic Joliot-Curie Sugarbiologiai es Sugaregeszsegugyi Kutato Intezet, Budapest (Hungary)

    1976-01-01

    The authors elaborated a sensitive and objective measuring method for determining the bacteria increase in biological material and the sensitivity to antibiotics. When /sup 14/C glucose is added to the medium as the single source of sugar, the respiratory carbon dioxide formed by the bacteria reflects the rate of increase. The released /sup 14/C dioxide can be measured continuously without loss to the environment and the degree of bacterial infection and the antibiotic activity, respectively, can be determined.

  9. Assays of residual antibiotics after treatment of γ-ray and UV irradiation

    International Nuclear Information System (INIS)

    Shin, Ji Hye; Nam, Ji Hyun; Lee, Dong Hun; Yu, Seung Ho; Lee, Myun Joo

    2010-01-01

    The pollution of antibiotics is a major cause of spreading antibiotics resistant bacteria in the environment. Applications of ozonation, UV, and γ-ray irradiations have been introduced to remove antibiotics in the effluents from wastewater treatment system. In this study, we compared the chemical (HPLC) and biological (antimicrobial susceptibility test, AMS) assays in measuring of the concentrations of residual antibiotics after γ-ray and UV irradiation. Most samples were degraded by γ-ray irradiation (1 ∼ 2 kGy). However, lincomycin and tetracycline were not degraded by UV irradiation. The concentration of residual antibiotics, that was treated with γ-ray and UV irradiation, measuring by bioassay was similar to HPLC. The concentrations of γ-ray irradiated cephradine measured by AMS test were 2 times higher than of HPLC assay, indicating AMS test is more sensitive than HPLC assay. These results indicate that γ-ray irradiation technique is more useful than UV irradiation, and biological assay is more useful to detect the antibiotics and toxic intermediates in antibiotics degradation

  10. Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2017-11-01

    Full Text Available Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi (Brassica chinensis L. to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg−1 were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tetX, blaCTX-M, and sul1 and sul2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems.

  11. Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure.

    Science.gov (United States)

    Zhang, Hao; Li, Xunan; Yang, Qingxiang; Sun, Linlin; Yang, Xinxin; Zhou, Mingming; Deng, Rongzhen; Bi, Linqian

    2017-11-03

    Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs) in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi ( Brassica chinensis L.) to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC) levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg -1 were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tet X, bla CTX-M , and sul 1 and sul 2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems.

  12. Tracking Change: A Look at the Ecological Footprint of Antibiotics and Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    David M. Patrick

    2013-03-01

    Full Text Available Among the class of pollutants considered as ‘emerging contaminants’, antibiotic compounds including drugs used in medical therapy, biocides and disinfectants merit special consideration because their bioactivity in the environment is the result of their functional design. Antibiotics can alter the structure and function of microbial communities in the receiving environment and facilitate the development and spread of resistance in critical species of bacteria including pathogens. Methanogenesis, nitrogen transformation and sulphate reduction are among the key ecosystem processes performed by bacteria in nature that can also be affected by the impacts of environmental contamination by antibiotics. Together, the effects of the development of resistance in bacteria involved in maintaining overall ecosystem health and the development of resistance in human, animal and fish pathogens, make serious contributions to the risks associated with environmental pollution by antibiotics. In this brief review, we discuss the multiple impacts on human and ecosystem health of environmental contamination by antibiotic compounds.

  13. Host-dependent Induction of Transient Antibiotic Resistance: A Prelude to Treatment Failure

    Directory of Open Access Journals (Sweden)

    Jessica Z. Kubicek-Sutherland

    2015-09-01

    Full Text Available Current antibiotic testing does not include the potential influence of host cell environment on microbial susceptibility and antibiotic resistance, hindering appropriate therapeutic intervention. We devised a strategy to identify the presence of host–pathogen interactions that alter antibiotic efficacy in vivo. Our findings revealed a bacterial mechanism that promotes antibiotic resistance in vivo at concentrations of drug that far exceed dosages determined by standardized antimicrobial testing. This mechanism has escaped prior detection because it is reversible and operates within a subset of host tissues and cells. Bacterial pathogens are thereby protected while their survival promotes the emergence of permanent drug resistance. This host-dependent mechanism of transient antibiotic resistance is applicable to multiple pathogens and has implications for the development of more effective antimicrobial therapies.

  14. A high-throughput method for the simultaneous determination of multiple mycotoxins in human and laboratory animal biological fluids and tissues by PLE and HPLC-MS/MS.

    Science.gov (United States)

    Cao, Xiaoqin; Wu, Shuangchan; Yue, Yuan; Wang, Shi; Wang, Yuting; Tao, Li; Tian, Hui; Xie, Jianmei; Ding, Hong

    2013-12-30

    A high-throughput method for the determination of 28 mycotoxins involving pressurised liquid extraction (PLE) coupled with liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has been optimised and validated for determination in various biological fluids and tissues of human and laboratory animals. High-throughput analysis was achieved using PLE pre-treatment and without the need for any cleanup. The extraction solvent was acetonitrile/water/acetic acid (80/19/1, v/v/v). The static extraction time was 5min. The extraction pressure and temperature were 1500psi and 140°C, respectively. The flush volume was 60%. The limits of detection, which were defined as CCα, varied from 0.01μg/kg (μg/L) to 0.69μg/kg (μg/L). The recoveries of spiked samples from 0.20μg/kg (μg/L) to 2μg/kg (μg/L) ranged from 71% to 100.5% with relative standard deviations of less than 17.5%, except FB1 and FB2 recoveries, which were lower than 60%. The method was successfully applied in real samples, and the data indicate that this technique is a useful analytical method for the determination of mycotoxins from humans and animals. To the best of our knowledge, this method is the first for the large-scale testing of multi-class mycotoxins in all types of biological fluids and tissues that uses PLE and HPLC-MS/MS. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Forces shaping the antibiotic resistome.

    Science.gov (United States)

    Perry, Julie A; Wright, Gerard D

    2014-12-01

    Antibiotic resistance has become a problem of global scale. Resistance arises through mutation or through the acquisition of resistance gene(s) from other bacteria in a process called horizontal gene transfer (HGT). While HGT is recognized as an important factor in the dissemination of resistance genes in clinical pathogens, its role in the environment has been called into question by a recent study published in Nature. The authors found little evidence of HGT in soil using a culture-independent functional metagenomics approach, which is in contrast to previous work from the same lab showing HGT between the environment and human microbiome. While surprising at face value, these results may be explained by the lack of selective pressure in the environment studied. Importantly, this work suggests the need for careful monitoring of environmental antibiotic pollution and stringent antibiotic stewardship in the fight against resistance. © 2014 WILEY Periodicals, Inc.

  16. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    is considered poor compared to medicines for lifestyle diseases. According to the WHO we could be moving towards a post-antibiotic era in which previously treatable infections become fatal. Of special importance are multidrug resistant bacteria from the ESKAPE group (Enterococcus faecium, Staphylococcus aureus......Multi-drug resistance to antibiotics represents a global health challenge that results in increased morbidity and mortality rates. The annual death-toll is >700.000 people world-wide, rising to ~10 million by 2050. New antibiotics are lacking, and few are under development as return on investment......, Klebsiella pneumoniae, Acinetobacter, Pseudomonas aeruginosa and Enterobacter). As a consequence of widespread multi-drug resistance, researchers have sought for alternative sources of antimicrobials. Antimicrobial peptides are produced by almost all living organisms as part of their defense or innate immune...

  17. Antibiotic Policies in the Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Nese Saltoglu

    2003-08-01

    Full Text Available The antimicrobial management of patients in the Intensive Care Units are complex. Antimicrobial resistance is an increasing problem. Effective strategies for the prevention of antimicrobial resistance in ICUs have focused on limiting the unnecessary use of antibiotics and increasing compliance with infection control practices. Antibiotic policies have been implemented to modify antibiotic use, including national or regional formulary manipulations, antibiotic restriction forms, care plans, antibiotic cycling and computer assigned antimicrobial therapy. Moreover, infectious diseases consultation is a simple way to limit antibiotic use in ICU units. To improve rational antimicrobial using a multidisiplinary approach is suggested. [Archives Medical Review Journal 2003; 12(4.000: 299-309

  18. Adsorption of antibiotics on microplastics.

    Science.gov (United States)

    Li, Jia; Zhang, Kaina; Zhang, Hua

    2018-06-01

    Microplastics and antibiotics are two classes of emerging contaminants with proposed negative impacts to aqueous ecosystems. Adsorption of antibiotics on microplastics may result in their long-range transport and may cause compound combination effects. In this study, we investigated the adsorption of 5 antibiotics [sulfadiazine (SDZ), amoxicillin (AMX), tetracycline (TC), ciprofloxacin (CIP), and trimethoprim (TMP)] on 5 types of microplastics [polyethylene (PE), polystyrene (PS), polypropylene (PP), polyamide (PA), and polyvinyl chloride (PVC)] in the freshwater and seawater systems. Scanning Electron Microscope (SEM) and X-ray diffractometer (XRD) analysis revealed that microplastics have different surface characterizes and various degrees of crystalline. Adsorption isotherms demonstrated that PA had the strongest adsorption capacity for antibiotics with distribution coefficient (K d ) values ranged from 7.36 ± 0.257 to 756 ± 48.0 L kg -1 in the freshwater system, which can be attributed to its porous structure and hydrogen bonding. Relatively low adsorption capacity was observed on other four microplastics. The adsorption amounts of 5 antibiotics on PS, PE, PP, and PVC decreased in the order of CIP > AMX > TMP > SDZ > TC with K f correlated positively with octanol-water partition coefficients (Log K ow ). Comparing to freshwater system, adsorption capacity in seawater decreased significantly and no adsorption was observed for CIP and AMX. Our results indicated that commonly observed polyamide particles can serve as a carrier of antibiotics in the aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. [Antibiotics in the critically ill].

    Science.gov (United States)

    Kolak, Radmila R

    2010-01-01

    Antibiotics are one the most common therapies administered in the intensive care unit setting. This review outlines the strategy for optimal use of antimicrobial agents in the critically ill. In severely ill patients, empirical antimicrobial therapy should be used when a suspected infection may impair the outcome. It is necessary to collect microbiological documentation before initiating empirical antimicrobial therapy. In addition to antimicrobial therapy, it is recommended to control a focus of infection and to modify factors that promote microbial growth or impair the host's antimicrobial defence. A judicious choice of antimicrobial therapy should be based on the host characteristics, the site of injection, the local ecology, and the pharmacokinetics/pharmacodynamics of antibiotics. This means treating empirically with broad-spectrum antimicrobials as soon as possible and narrowing the spectrum once the organism is identified (de-escalation), and limiting duration of therapy to the minimum effective period. Despite theoretical advantages, a combined antibiotic therapy is nor more effective than a mono-therapy in curing infections in most clinical trials involving intensive care patients. Nevertheless, textbooks and guidelines recommend a combination for specific pathogens and for infections commonly caused by these pathogens. Avoiding unnecessary antibiotic use and optimizing the administration of antimicrobial agents will improve patient outcomes while minimizing risks for the development of bacterial resistance. It is important to note that each intensive care unit should have a program in place which monitors antibiotic utilisation and its effectiveness. Only in this way can the impact of interventions aimed at improving antibiotic use be evaluated at the local level.

  20. Antibiotics for whooping cough (pertussis).

    Science.gov (United States)

    Altunaiji, S; Kukuruzovic, R; Curtis, N; Massie, J

    2007-07-18

    Whooping cough is a highly contagious disease. Infants are at highest risk of severe disease and death. Erythromycin for 14 days is currently recommended for treatment and contact prophylaxis, but is of uncertain benefit. To study the benefits and risks of antibiotic treatment of and contact prophylaxis against whooping cough. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), the Database of Abstracts of Reviews of Effects (DARE) (The Cochrane Library Issue 1, 2007); MEDLINE (January 1966 to March 2007); EMBASE (January 1974 to March 2007). All randomised and quasi-randomised controlled trials of antibiotics for treatment of, and contact prophylaxis against, whooping cough. Three to four review authors independently extracted data and assessed the quality of each trial. Thirteen trials with 2197 participants met the inclusion criteria: 11 trials investigated treatment regimens; 2 investigated prophylaxis regimens. The quality of the trials was variable.Short-term antibiotics (azithromycin for three to five days, or clarithromycin or erythromycin for seven days) were as effective as long-term (erythromycin for 10 to 14 days) in eradicating Bordetella pertussis (B. pertussis) from the nasopharynx (relative risk (RR) 1.02, 95% confidence interval (CI) 0.98 to 1.05), but had fewer side effects (RR 0.66, 95% CI 0.52 to 0.83). Trimethoprim/sulfamethoxazole for seven days was also effective. Nor were there differences in clinical outcomes or microbiological relapse between short and long-term antibiotics. Contact prophylaxis of contacts older than six months of age with antibiotics did not significantly improve clinical symptoms or the number of cases developing culture-positive B. pertussis. Although antibiotics were effective in eliminating B. pertussis, they did not alter the subsequent clinical course of the illness. There is insufficient evidence to determine the benefit of prophylactic treatment of pertussis contacts.

  1. Recent updates of carbapenem antibiotics.

    Science.gov (United States)

    El-Gamal, Mohammed I; Brahim, Imen; Hisham, Noorhan; Aladdin, Rand; Mohammed, Haneen; Bahaaeldin, Amany

    2017-05-05

    Carbapenems are among the most commonly used and the most efficient antibiotics since they are relatively resistant to hydrolysis by most β-lactamases, they target penicillin-binding proteins, and generally have broad-spectrum antibacterial effect. In this review, we described the initial discovery and development of carbapenems, chemical characteristics, in vitro/in vivo activities, resistance studies, and clinical investigations for traditional carbapenem antibiotics in the market; imipenem-cilastatin, meropenem, ertapenem, doripenem, biapenem, panipenem/betamipron in addition to newer carbapenems such as razupenem, tebipenem, tomopenem, and sanfetrinem. We focused on the literature published from 2010 to 2016. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Antibiotics and the resistant microbiome

    DEFF Research Database (Denmark)

    Sommer, Morten; Dantas, Gautam

    2011-01-01

    . Less appreciated are the concomitant changes in the human microbiome in response to these assaults and their contribution to clinical resistance problems. Studies have shown that pervasive changes to the human microbiota result from antibiotic treatment and that resistant strains can persist for years....... Additionally, culture-independent functional characterization of the resistance genes from the microbiome has demonstrated a close evolutionary relationship between resistance genes in the microbiome and in pathogens. Application of these techniques and novel cultivation methods are expected to significantly...... expand our understanding of the interplay between antibiotics and the microbiome....

  3. The Pharmacodynamics of Antibiotic Treatment

    Directory of Open Access Journals (Sweden)

    Imran Mudassar

    2006-01-01

    Full Text Available We derive models of the effects of periodic, discrete dosing or constant dosing of antibiotics on a bacterial population whose growth is checked by nutrient-limitation and possibly by host defenses. Mathematically rigorous results providing sufficient conditions for treatment success, i.e. the elimination of the bacteria, as well as for treatment failure, are obtained. Our models can exhibit bi-stability where the infection-free state and an infection-state are locally stable when antibiotic dosing is marginal. In this case, treatment success may occur only for sub-threshold level infections.

  4. Antibiotic concentrations in intestinal mucosa.

    Science.gov (United States)

    Malmborg, A S

    1985-01-01

    The concentrations in the intestinal mucosa after the initial dose of cefoxitin, piperacillin and clindamycin have been studied. The antibiotics were given at the induction of anesthesia as prophylaxis to patients undergoing elective colorectal surgery. The concentrations of the antibiotics in serum and intestinal mucosa taken during the operation were determined by the microbiological agar diffusion method. Therapeutic concentrations in intestinal mucosa were maintained during the major part of the operation period. The mean mucosa/serum concentration ratios were for cefoxitin 0.4, for piperacillin 0.5 and for clindamycin 1.2.

  5. Antibiotics prescription in Nigerian dental healthcare services.

    Science.gov (United States)

    Azodo, C C; Ojehanon, P I

    2014-09-01

    Inappropriate antibiotics prescription in dental healthcare delivery that may result in the emergence of antibiotic-resistant bacteria, is a worldwide concern. The objective of the study was to determine the antibiotics knowledge and prescription patterns among dentists in Nigeria. A total of 160 questionnaires were distributed to dentists attending continuing education courses organized by two organizations in Southern and Northern parts of Nigeria. Data analysis was done using SPSS version 17.0. A total of 146 questionnaires were returned, properly filled, out of 160 questionnaires, giving an overall response rate 91.3%. The clinical factors predominantly influenced the choice of therapeutic antibiotics among the respondents. In this study, the most commonly prescribed antibiotics among the respondents was a combination of amoxicillin and metronidazole. Of the respondents, 136 (93.2%) of them considered antibiotic resistance as a major problem in Nigeria and 102 (69.9%) have experienced antibiotics resistance in dental practice. The major reported conditions for prophylactic antibiotics among the respondents were diabetic mellitus, HIV/AIDS, history of rheumatic fever, other heart anomalies presenting with heart murmur and presence of prosthetic hip. The knowledge of adverse effects of antibiotics was greatest for tooth discoloration which is related to tetracycline. Data from this study revealed the most commonly prescribed antibiotics as a combination of amoxicillin and metronidazole. There existed gaps in prophylactic antibiotic prescription, consideration in the choice of therapeutic antibiotics and knowledge of adverse effects of antibiotics among the studied dentists.

  6. Probiotic approach to prevent antibiotic resistance.

    Science.gov (United States)

    Ouwehand, Arthur C; Forssten, Sofia; Hibberd, Ashley A; Lyra, Anna; Stahl, Buffy

    2016-01-01

    Probiotics are live microorganisms, mainly belonging to the genera Lactobacillus and Bifidobacterium, although also strain of other species are commercialized, that have a beneficial effect on the host. From the perspective of antibiotic use, probiotics have been observed to reduce the risk of certain infectious disease such as certain types of diarrhea and respiratory tract infection. This may be accompanied with a reduced need of antibiotics for secondary infections. Antibiotics tend to be effective against most common diseases, but increasingly resistance is being observed among pathogens. Probiotics are specifically selected to not contribute to the spread of antibiotic resistance and not carry transferable antibiotic resistance. Concomitant use of probiotics with antibiotics has been observed to reduce the incidence, duration and/or severity of antibiotic-associated diarrhea. This contributes to better adherence to the antibiotic prescription and thereby reduces the evolution of resistance. To what extent probiotics directly reduce the spread of antibiotic resistance is still much under investigation; but maintaining a balanced microbiota during antibiotic use may certainly provide opportunities for reducing the spread of resistances. Key messages Probiotics may reduce the risk for certain infectious diseases and thereby reduce the need for antibiotics. Probiotics may reduce the risk for antibiotic-associated diarrhea Probiotics do not contribute to the spread of antibiotic resistance and may even reduce it.

  7. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Optimization of wetland substrates and hydraulic loading.

    Science.gov (United States)

    Chen, Jun; Wei, Xiao-Dong; Liu, You-Sheng; Ying, Guang-Guo; Liu, Shuang-Shuang; He, Liang-Ying; Su, Hao-Chang; Hu, Li-Xin; Chen, Fan-Rong; Yang, Yong-Qiang

    2016-09-15

    This study aimed to assess removal potential of antibiotics and antibiotic resistance genes (ARGs) in raw domestic wastewater by various mesocosm-scale horizontal subsurface-flow constructed wetlands (CWs) planted Cyperus alternifolius L. with different design parameters. Twelve CWs with three hydraulic loading rates (HLR 10, 20 and 30cm/day) and four substrates (oyster shell, zeolite, medical stone and ceramic) were set up in order to select the best optimized wetland. The result showed that 7 target antibiotics compounds including erythromycin-H2O, lincomycin, monensin, ofloxacin, sulfamerazine, sulfamethazine and novobiocin were detected, and all selected 18 genes (three sulfonamide resistance genes (sul1, sul2 and sul3), four tetracycline resistance genes (tetG, tetM, tetO and tetX), two macrolide resistance genes (ermB and ermC), three quinolone resistance genes (qnrB, qnrD and qnrS) and four chloramphenicol resistance genes (cmlA, fexA, fexB and floR)) and two integrase genes (int1 and int2) were positively detected in the domestic wastewaters. The aqueous removal rates of the total antibiotics ranged from17.9 to 98.5%, while those for the total ARGs varied between 50.0 and 85.8% by the mesocosm-scale CWs. After considering their aqueous removal rates in combination with their mass removals, the CW with zeolite as the substrate and HLR of 20cm/day was selected as the best choice. Combined chemical and biological analyses indicate that both microbial degradation and physical sorption processes were responsible for the fate of antibiotics and ARGs in the wetlands. The findings from this study suggest constructed wetlands could be a promising technology for the removal of emerging contaminants such as antibiotics and ARGs in domestic wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A probabilistic approach to assess antibiotic resistance development risks in environmental compartments and its application to an intensive aquaculture production scenario.

    Science.gov (United States)

    Rico, Andreu; Jacobs, Rianne; Van den Brink, Paul J; Tello, Alfredo

    2017-12-01

    Estimating antibiotic pollution and antibiotic resistance development risks in environmental compartments is important to design management strategies that advance our stewardship of antibiotics. In this study we propose a modelling approach to estimate the risk of antibiotic resistance development in environmental compartments and demonstrate its application in aquaculture production systems. We modelled exposure concentrations for 12 antibiotics used in Vietnamese Pangasius catfish production using the ERA-AQUA model. Minimum selective concentration (MSC) distributions that characterize the selective pressure of antibiotics on bacterial communities were derived from the European Committee on Antimicrobial Susceptibility Testing (EUCAST) Minimum Inhibitory Concentration dataset. The antibiotic resistance development risk (RDR) for each antibiotic was calculated as the probability that the antibiotic exposure distribution exceeds the MSC distribution representing the bacterial community. RDRs in pond sediments were nearly 100% for all antibiotics. Median RDR values in pond water were high for the majority of the antibiotics, with rifampicin, levofloxacin and ampicillin having highest values. In the effluent mixing area, RDRs were low for most antibiotics, with the exception of amoxicillin, ampicillin and trimethoprim, which presented moderate risks, and rifampicin and levofloxacin, which presented high risks. The RDR provides an efficient means to benchmark multiple antibiotics and treatment regimes in the initial phase of a risk assessment with regards to their potential to develop resistance in different environmental compartments, and can be used to derive resistance threshold concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers.

    Science.gov (United States)

    Depoorter, Eliza; Bull, Matt J; Peeters, Charlotte; Coenye, Tom; Vandamme, Peter; Mahenthiralingam, Eshwar

    2016-06-01

    Burkholderia is an incredibly diverse and versatile Gram-negative genus, within which over 80 species have been formally named and multiple other genotypic groups likely represent new species. Phylogenetic analysis based on the 16S rRNA gene sequence and core genome ribosomal multilocus sequence typing analysis indicates the presence of at least three major clades within the genus. Biotechnologically, Burkholderia are well-known for their bioremediation and biopesticidal properties. Within this review, we explore the ability of Burkholderia to synthesise a wide range of antimicrobial compounds ranging from historically characterised antifungals to recently described antibacterial antibiotics with activity against multiresistant clinical pathogens. The production of multiple Burkholderia antibiotics is controlled by quorum sensing and examples of quorum sensing pathways found across the genus are discussed. The capacity for antibiotic biosynthesis and secondary metabolism encoded within Burkholderia genomes is also evaluated. Overall, Burkholderia demonstrate significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites.

  10. Staphylococcus aureus phage types and their correlation to antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Mehndiratta P

    2010-10-01

    Full Text Available Context: Staphylococcus aureus is one of the most devastating human pathogen. The organism has a differential ability to spread and cause outbreak of infections. Characterization of these strains is important to control the spread of infection in the hospitals as well as in the community. Aim: To identify the currently existing phage groups of Staphylococcus aureus, their prevalence and resistance to antibiotics. Materials and Methods: Study was undertaken on 252 Staphylococcus aureus strains isolated from clinical samples. Strains were phage typed and their resistance to antibiotics was determined following standard microbiological procedures. Statistical Analysis: Chi square test was used to compare the antibiotic susceptibility between methicillin resistant Staph. aureus (MRSA and methicillin sensitive S. aureus (MSSA strains. Results: Prevalence of MRSA and MSSA strains was found to be 29.36% and 70.65% respectively. Of these 17.56% of MRSA and 40.44% of MSSA strains were community acquired. All the MSSA strains belonging to phage type 81 from the community were sensitive to all the antibiotics tested including clindamycin and were resistant to penicillin. Forty five percent strains of phage group III and 39% of non-typable MRSA strains from the hospital were resistant to multiple antibiotics. Conclusion: The study revealed that predominant phage group amongst MRSA strains was phage group III and amongst MSSA from the community was phage group NA (phage type 81. MSSA strains isolated from the community differed significantly from hospital strains in their phage type and antibiotic susceptibility. A good correlation was observed between community acquired strains of phage type 81 and sensitivity to gentamycin and clindamycin.

  11. Multiple Antibiotic Resistance (MAR) indices of Pseudomonas and ...

    African Journals Online (AJOL)

    AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL · News. OTHER RESOURCES... for Researchers · for Journals · for Authors · for Policy Makers · about Open Access · Journal Quality.

  12. Exploring rhizosphere bacteria of Eichhornia crassipes for metal tolerance and biological activity

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Gomez, S.; Ribeiro, M.; Deshpande, S.A.; Singh, K.S.; DeSouza, L.

    Cl3, They were further screened for antibiotic sensitivity and biological activity according to Kirby-Bauer disc diffusion method The MTB under metal stress condition showed significant biological activity against clinical pathogens, fouling...

  13. The effect of antibiotics on diatom communities

    Digital Repository Service at National Institute of Oceanography (India)

    DeCosta, P.M.; Anil, A.C.

    Effect of antibiotics (penicillin (P), streptomycin (S) and chloramphenicol (C)) on benthic diatom communities was evaluated using a modified extinction–dilution method. The high antibiotic combinations (2PSC and PSC) reduced diatoms by 99...

  14. Assessment of antibiotic susceptibilities, genotypic characteristics ...

    African Journals Online (AJOL)

    Jane

    2011-09-28

    Sep 28, 2011 ... Staphylococcus aureus and Salmonella Typhimurium ... This study was designed to evaluate the antibiotic susceptibilities, genotypic characteristics and ..... Distribution of reference and virulence genes among antibiotic-sensitive S. aureus (SAS), .... environmental factors such as temperature, water activity,.

  15. Antibiotic and Antimicrobial Resistance: Threat Report 2013

    Science.gov (United States)

    ... Form Controls Cancel Submit Search The CDC Antibiotic / Antimicrobial Resistance Note: Javascript is disabled or is not ... please visit this page: About CDC.gov . Antibiotic / Antimicrobial Resistance About Antimicrobial Resistance Biggest Threats Emerging Drug ...

  16. Original Paper Multicenter study on antibiotic susceptibility ...

    African Journals Online (AJOL)

    Multicenter study on antibiotic susceptibility/resistance trends in the western region of Cameroon ... antibiotic era, IDs used to be serious threats because of lack or insufficient ...... antimicrobial use in livestock; AMR. Control., 116-122. Vandini ...

  17. What Can Be Done about Antibiotic Resistance?

    Science.gov (United States)

    ... Us General Background: What can be done about Antibiotic Resistance? What can I do? Are antibacterial agents, such as antibacterial soaps, a solution? Are antibiotics regulated? Is there any international action on the ...

  18. Antibiotic Prescription in Danish General Practice

    DEFF Research Database (Denmark)

    Sydenham, Rikke Vognbjerg; Plejdrup Hansen, Malene; Pedersen, Line Bjørnskov

    2016-01-01

    1. Background & Aim The overall aim of the project is to describe antibiotic consumption in Danish general practice with emphasis on specific types of antibiotics. The project will shed light on the impact of microbiological diagnostic methods (MDM) on the choice of antibiotic and the project...... will explore how the GPs prescription behaviour is influenced by selected factors. Antibiotics are essential when treating potentially lethal infections. An increasing development of resistant bacteria is considered one of the primary threats to public health. The majority of antibiotics (90%) are prescribed...... from general practice. The prescription of broad-spectrum antibiotics can cause unnecessary side effects for the individual and increases the risk of development of bacteria resistant to antibiotic treatment. Both the prescription of broad-spectrum antibiotics and the level of resistant bacteria...

  19. General Practitioner trainers prescribe fewer antibiotics in primary care: Evidence from France.

    Science.gov (United States)

    Devillers, Louise; Sicsic, Jonathan; Delbarre, Angelique; Le Bel, Josselin; Ferrat, Emilie; Saint Lary, Olivier

    2018-01-01

    Antibiotic prescription is a central public health issue. Overall, 90% of antibiotic prescriptions are delivered to patients in ambulatory care, and a substantial proportion of these prescriptions could be avoided. General Practitioner (GP) trainers are similar to other GPs in terms of sociodemographic and medical activities, but they may have different prescription patterns. Our aim was to compare the antibiotic prescribing rates between GP trainers and non-trainers. This observational cross-sectional study was conducted on administrative data claims from the French National Health Insurance. The antibiotic prescribing rate was calculated. The main independent variable was the training status of the GPs. Prescribing rates were adjusted for the various GPs' characteristics (gender, age, location of the practice, number of visits per GP and the case-mix) in a multiple linear regression analysis. Between June 2014 and July 2015 the prescribing patterns of 860 GPs were analysed, among which 102 were GP trainers (12%). Over the year 363,580 patients were prescribed an antibiotic out of 3,499,248 visits for 1,299,308 patients seen over the year thus representing around 27.5% of patients. In the multivariate analyses, being a trainer resulted in a significant difference of 6.62 percentage points (IC 95%: [-8.55; -4.69]; prole of GP trainers in antibiotic prescriptions. By prescribing fewer antibiotics and influencing the next generations of GPs, the human and economic burden of antibiotics could be reduced.

  20. Occurrence and Distribution of Antibiotic-resistant Bacteria and Transfer of Resistance Genes in Lake Taihu

    Science.gov (United States)

    Yin, Qian; Yue, Dongmei; Peng, Yuke; Liu, Ying; Xiao, Lin

    2013-01-01

    The overuse of antibiotics has accelerated antibiotic resistance in the natural environment, especially fresh water, generating a potential risk for public health around the world. In this study, antibiotic resistance in Lake Taihu was investigated and this was the first thorough data obtained through culture-dependent methods. High percentages of resistance to streptomycin and ampicillin among bacterial isolates were detected, followed by tetracycline and chloramphenicol. Especially high levels of ampicillin resistance in the western and northern regions were illustrated. Bacterial identification of the isolates selected for further study indicated the prevalence of some opportunistic pathogens and 62.0% of the 78 isolates exhibited multiple antibiotic resistance. The presence of ESBLs genes was in the following sequence: blaTEM > blaSHV > blaCTMX and 38.5% of the isolates had a class I integrase gene. Of all tested strains, 80.8% were able to transfer antibiotic resistance through conjugation. We also concluded that some new families of human-associated ESBLs and AmpC genes can be found in natural environmental isolates. The prevalence of antibiotic resistance and the dissemination of transferable antibiotic resistance in bacterial isolates (especially in opportunistic pathogens) was alarming and clearly indicated the urgency of realizing the health risks of antibiotic resistance to human and animal populations who are dependent on Lake Taihu for water consumption. PMID:24240317

  1. Antibiotic treatment of biofilm infections

    DEFF Research Database (Denmark)

    Ciofu, Oana; Rojo-Molinero, Estrella; Macià, María D.

    2017-01-01

    Bacterial biofilms are associated with a wide range of infections, from those related to exogenous devices, such as catheters or prosthetic joints, to chronic tissue infections such as those occurring in the lungs of cystic fibrosis patients. Biofilms are recalcitrant to antibiotic treatment due ...

  2. EAMJ Antibiotic May 2010.indd

    African Journals Online (AJOL)

    2010-05-01

    May 1, 2010 ... ANTIBIOTIC RESISTANT SALMONELLA AND ESCHERICHIA COLI ISOLATED FROM INDIGENOUS GALLUS. DOMESTICUS IN ... in line of resistance was Amp 32.86%, followed by Aug (11.43%), low or moderate ... Salmonellaentericashould be done to identify infected flocks as a regulatory procedure.

  3. PREVALENCE AND ANTIBIOTIC RESISTANCE OF ...

    African Journals Online (AJOL)

    9 mars 2015 ... strategy to prevent the spread of this resistance. Keywords: Staphylococci; Staphylococcus aureus; Oxacillin; Antibiotic resistance; Disc diffusion. Author Correspondence, e-mail: mn.boukhatem@yahoo.fr. ICID: 1142924. Journal of Fundamental and Applied Sciences. ISSN 1112-9867. Available online at.

  4. Prophylactic Antibiotics and Wound Infection

    OpenAIRE

    Elbur, Abubaker Ibrahim; M.A., Yousif; El-Sayed, Ahmed S.A.; Abdel-Rahman, Manar E.

    2013-01-01

    Introduction: Surgical site infections account for 14%-25% of all nosocomial infections. The main aims of this study were to audit the use of prophylactic antibiotic, to quantify the rate of post-operative wound infection, and to identify risk factors for its occurrence in general surgery.

  5. Endophytes as sources of antibiotics.

    Science.gov (United States)

    Martinez-Klimova, Elena; Rodríguez-Peña, Karol; Sánchez, Sergio

    2017-06-15

    Until a viable alternative can be accessible, the emergence of resistance to antimicrobials requires the constant development of new antibiotics. Recent scientific efforts have been aimed at the bioprospecting of microorganisms' secondary metabolites, with special emphasis on the search for antimicrobial natural products derived from endophytes. Endophytes are microorganisms that inhabit the internal tissues of plants without causing apparent harm to the plant. The present review article compiles recent (2006-2016) literature to provide an update on endophyte research aimed at finding metabolites with antibiotic activities. We have included exclusively information on endophytes that produce metabolites capable of inhibiting the growth of bacterial, fungal and protozoan pathogens of humans, animals and plants. Where available, the identified metabolites have been listed. In this review, we have also compiled a list of the bacterial and fungal phyla that have been isolated as endophytes as well as the plant families from which the endophytes were isolated. The majority of endophytes that produce antibiotic metabolites belong to either phylum Ascomycota (kingdom Fungi) or to phylum Actinobacteria (superkingdom Bacteria). Endophytes that produce antibiotic metabolites were predominant, but certainly not exclusively, from the plant families Fabaceae, Lamiaceae, Asteraceae and Araceae, suggesting that endophytes that produce antimicrobial metabolites are not restricted to a reduced number of plant families. The locations where plants (and inhabiting endophytes) were collected from, according to the literature, have been mapped, showing that endophytes that produce bioactive compounds have been collected globally. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Abiotic degradation of antibiotic ionophores

    DEFF Research Database (Denmark)

    Bohn, Pernille; Bak, Søren A; Björklund, Erland

    2013-01-01

    Hydrolytic and photolytic degradation were investigated for the ionophore antibiotics lasalocid, monensin, salinomycin, and narasin. The hydrolysis study was carried out by dissolving the ionophores in solutions of pH 4, 7, and 9, followed by incubation at three temperatures of 6, 22, and 28 °C f...... because they absorb light of environmentally irrelevant wavelengths....

  7. Discovery of small molecules binding to the normal conformation of prion by combining virtual screening and multiple biological activity evaluation methods

    Science.gov (United States)

    Li, Lanlan; Wei, Wei; Jia, Wen-Juan; Zhu, Yongchang; Zhang, Yan; Chen, Jiang-Huai; Tian, Jiaqi; Liu, Huanxiang; He, Yong-Xing; Yao, Xiaojun

    2017-12-01

    Conformational conversion of the normal cellular prion protein, PrPC, into the misfolded isoform, PrPSc, is considered to be a central event in the development of fatal neurodegenerative diseases. Stabilization of prion protein at the normal cellular form (PrPC) with small molecules is a rational and efficient strategy for treatment of prion related diseases. However, few compounds have been identified as potent prion inhibitors by binding to the normal conformation of prion. In this work, to rational screening of inhibitors capable of stabilizing cellular form of prion protein, multiple approaches combining docking-based virtual screening, steady-state fluorescence quenching, surface plasmon resonance and thioflavin T fluorescence assay were used to discover new compounds interrupting PrPC to PrPSc conversion. Compound 3253-0207 that can bind to PrPC with micromolar affinity and inhibit prion fibrillation was identified from small molecule databases. Molecular dynamics simulation indicated that compound 3253-0207 can bind to the hotspot residues in the binding pocket composed by β1, β2 and α2, which are significant structure moieties in conversion from PrPC to PrPSc.

  8. Quantification of methionine and selenomethionine in biological samples using multiple reaction monitoring high performance liquid chromatography tandem mass spectrometry (MRM-HPLC-MS/MS).

    Science.gov (United States)

    Vu, Dai Long; Ranglová, Karolína; Hájek, Jan; Hrouzek, Pavel

    2018-05-01

    Quantification of selenated amino-acids currently relies on methods employing inductively coupled plasma mass spectrometry (ICP-MS). Although very accurate, these methods do not allow the simultaneous determination of standard amino-acids, hampering the comparison of the content of selenated versus non-selenated species such as methionine (Met) and selenomethionine (SeMet). This paper reports two approaches for the simultaneous quantification of Met and SeMet. In the first approach, standard enzymatic hydrolysis employing Protease XIV was applied for the preparation of samples. The second approach utilized methanesulfonic acid (MA) for the hydrolysis of samples, either in a reflux system or in a microwave oven, followed by derivatization with diethyl ethoxymethylenemalonate. The prepared samples were then analyzed by multiple reaction monitoring high performance liquid chromatography tandem mass spectrometry (MRM-HPLC-MS/MS). Both approaches provided platforms for the accurate determination of selenium/sulfur substitution rate in Met. Moreover the second approach also provided accurate simultaneous quantification of Met and SeMet with a low limit of detection, low limit of quantification and wide linearity range, comparable to the commonly used gas chromatography mass spectrometry (GC-MS) method or ICP-MS. The novel method was validated using certified reference material in conjunction with the GC-MS reference method. Copyright © 2018. Published by Elsevier B.V.

  9. Genetic Regulation of Virulence and Antibiotic Resistance in Acinetobacter baumannii

    Science.gov (United States)

    Kröger, Carsten; Kary, Stefani C.; Schauer, Kristina; Cameron, Andrew D. S.

    2016-01-01

    Multidrug resistant microorganisms are forecast to become the single biggest challenge to medical care in the 21st century. Over the last decades, members of the genus Acinetobacter have emerged as bacterial opportunistic pathogens, in particular as challenging nosocomial pathogens because of the rapid evolution of antimicrobial resistances. Although we lack fundamental biological insight into virulence mechanisms, an increasing number of researchers are working to identify virulence factors and to study antibiotic resistance. Here, we review current knowledge regarding the regulation of virulence genes and antibiotic resistance in Acinetobacter baumannii. A survey of the two-component systems AdeRS, BaeSR, GacSA and PmrAB explains how each contributes to antibiotic resistance and virulence gene expression, while BfmRS regulates cell envelope structures important for pathogen persistence. A. baumannii uses the transcription factors Fur and Zur to sense iron or zinc depletion and upregulate genes for metal scavenging as a critical survival tool in an animal host. Quorum sensing, nucleoid-associated proteins, and non-classical transcription factors such as AtfA and small regulatory RNAs are discussed in the context of virulence and antibiotic resistance. PMID:28036056

  10. Antibiotics: Use and misuse in pediatric dentistry

    OpenAIRE

    F C Peedikayil

    2011-01-01

    Antibiotics are commonly used in dentistry for prophylactic as well as for therapeutic purposes. Most often antibiotics are used in unwarranted situations, which may give rise to resistant bacterial strains. Dentists want to make their patients well and to prevent unpleasant complications. These desires, coupled with the belief that many oral problems are infectious, stimulate the prescribing of antibiotics. Good knowledge about the indications of antibiotics is the need of the hour in prescr...

  11. Antibiotic Use and Misuse during Pregnancy and Delivery: Benefits and Risks

    OpenAIRE

    Martinez de Tejada, Begoña

    2014-01-01

    Although pregnancy is considered as a physiological state, most pregnant women in developed countries receive multiple medications to prevent maternal or neonatal complications, with antibiotics among the most frequently prescribed. During pregnancy, antibiotics are often prescribed in the context of preterm labor, intrapartum fever, prevention of neonatal Group B Streptococcus fever, and cesarean section. Outside this period, they are commonly prescribed in the community setting for respira...

  12. Infection and antibiotics in the aetiology, prediction and prevention of preterm birth

    DEFF Research Database (Denmark)

    Oliver, R S; Lamont, R F

    2013-01-01

    the molecular mechanisms responsible for this process have been identified, there is a lack of consensus about effective antibiotic intervention. Systematic reviews of the few well conducted studies suggest that antibiotics active against bacterial vaginosis or related organisms (clindamycin) given......Spontaneous preterm labour and delivery is a syndrome comprising diverse pathological pathways that result in labour and delivery before term. It is recognised that multiple pathological processes are involved, and infection has been well studied and firmly established as a cause. Although...

  13. Antibiotic Modification of Native Grafts: Improving upon nature's scaffolds

    Science.gov (United States)

    Ketonis, Constantinos

    -like cells with no increased toxicity. Furthermore, the antibiotic-modified allograft incorporated well into tibial defects in the rat. Finally, this construct was efficacious in decreasing the severity of infection and host reaction when impacted in an in vivo model of allograft-associated infection. Thus, our proposed modification in surface design serves as a starting point for the development of a new generation of bone grafts that are biologically active at sites of physiological importance.

  14. Empiric antibiotic prescription among febrile under-five Children in ...

    African Journals Online (AJOL)

    limiting viral infection and therefore, would not require antibiotics. Over prescription of antibiotics increases antibiotics exposure and development of resistance among patients. There is need to evaluate empiric antibiotic prescription in order to limit ...

  15. Trends in Antibiotic Prescribing in Adults in Dutch General Practice

    NARCIS (Netherlands)

    M.B. Haeseker (Michiel); N.H.T.M. Dukers-Muijrers (Nicole); C.J.P.A. Hoebe (Christian); C.A. Bruggeman (Cathrien); J.W.L. Cals (Jochen); A. Verbon (Annelies)

    2012-01-01

    textabstractBackground: Antibiotic consumption is associated with adverse drug events (ADE) and increasing antibiotic resistance. Detailed information of antibiotic prescribing in different age categories is scarce, but necessary to develop strategies for prudent antibiotic use. The aim of this

  16. Implementation of an antibiotic checklist increased appropriate antibiotic use in the hospital on Aruba

    NARCIS (Netherlands)

    van Daalen, Frederike Vera; Lagerburg, Anouk; de Kort, Jaclyn; Sànchez Rivas, Elena; Geerlings, Suzanne Eugenie

    2017-01-01

    No interventions have yet been implemented to improve antibiotic use on Aruba. In the Netherlands, the introduction of an antibiotic checklist resulted in more appropriate antibiotic use in nine hospitals. The aim of this study was to introduce the antibiotic checklist on Aruba, test its

  17. Shift in antibiotic prescribing patterns in relation to antibiotic expenditure in paediatrics

    NARCIS (Netherlands)

    Kimpen, JLL; van Houten, M.A.

    In paediatrics, antibiotics are among the most commonly prescribed drugs. Because of an overall rise in health care costs, lack of uniformity in drug prescribing and the emergence of antibiotic resistance, monitoring and control of antibiotic use is of growing concern and strict antibiotic policies

  18. Do topical antibiotics help corneal epithelial trauma?

    OpenAIRE

    King, J. W.; Brison, R. J.

    1993-01-01

    Topical antibiotics are routinely used in emergency rooms to treat corneal trauma, although no published evidence supports this treatment. In a noncomparative clinical trial, 351 patients with corneal epithelial injuries were treated without antibiotics. The infection rate was 0.7%, suggesting that such injuries can be safely and effectively managed without antibiotics. A comparative clinical trial is neither warranted nor feasible.

  19. [Antibiotic therapy in patients with renal insufficiency].

    Science.gov (United States)

    Luckhaupt, H; Rose, K G

    1985-06-01

    For the otolaryngologist (ENT specialist), too, antibiotics are among the most frequently prescribed drugs. This article gives the essential fundamentals for the antibiotic treatment of patients with restricted kidney functions, as well as advice for antibiotic therapy in clinics and in medical practice.

  20. Overcoming the current deadlock in antibiotic research.

    Science.gov (United States)

    Schäberle, Till F; Hack, Ingrid M

    2014-04-01

    Antibiotic-resistant bacteria are on the rise, making it harder to treat bacterial infections. The situation is aggravated by the shrinking of the antibiotic development pipeline. To finance urgently needed incentives for antibiotic research, creative financing solutions are needed. Public-private partnerships (PPPs) are a successful model for moving forward. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Antibiotic susceptibility profiles of oral pathogens

    NARCIS (Netherlands)

    Veloo, A. C. M.; Seme, K.; Raangs, Gerwin; Rurenga, P.; Singadji, Z.; Wekema - Mulder, G.; van Winkelhoff, A. J.

    2012-01-01

    Periodontitis is a bacterial disease that can be treated with systemic antibiotics. The aim of this study was to establish the antibiotic susceptibility profiles of five periodontal pathogens to six commonly used antibiotics in periodontics. A total of 247 periodontal bacterial isolates were tested

  2. New business models for antibiotic innovation.

    Science.gov (United States)

    So, Anthony D; Shah, Tejen A

    2014-05-01

    The increase in antibiotic resistance and the dearth of novel antibiotics have become a growing concern among policy-makers. A combination of financial, scientific, and regulatory challenges poses barriers to antibiotic innovation. However, each of these three challenges provides an opportunity to develop pathways for new business models to bring novel antibiotics to market. Pull-incentives that pay for the outputs of research and development (R&D) and push-incentives that pay for the inputs of R&D can be used to increase innovation for antibiotics. Financial incentives might be structured to promote delinkage of a company's return on investment from revenues of antibiotics. This delinkage strategy might not only increase innovation, but also reinforce rational use of antibiotics. Regulatory approval, however, should not and need not compromise safety and efficacy standards to bring antibiotics with novel mechanisms of action to market. Instead regulatory agencies could encourage development of companion diagnostics, test antibiotic combinations in parallel, and pool and make transparent clinical trial data to lower R&D costs. A tax on non-human use of antibiotics might also create a disincentive for non-therapeutic use of these drugs. Finally, the new business model for antibiotic innovation should apply the 3Rs strategy for encouraging collaborative approaches to R&D in innovating novel antibiotics: sharing resources, risks, and rewards.

  3. [Potentialization of antibiotics by lytic enzymes].

    Science.gov (United States)

    Brisou, J; Babin, P; Babin, R

    1975-01-01

    Few lytic enzymes, specially papaine and lysozyme, acting on the membrane and cell wall structures facilitate effects of bacitracine, streptomycine and other antibiotics. Streptomycino resistant strains became sensibles to this antibiotic after contact with papaine and lysozyme. The results of tests in physiological suspensions concern only the lytic activity of enzymes. The results on nutrient medium concern together lytic, and antibiotic activities.

  4. Reference gene selection for quantitative gene expression studies during biological invasions: A test on multiple genes and tissues in a model ascidian Ciona savignyi.

    Science.gov (United States)

    Huang, Xuena; Gao, Yangchun; Jiang, Bei; Zhou, Zunchun; Zhan, Aibin

    2016-01-15

    As invasive species have successfully colonized a wide range of dramatically different local environments, they offer a good opportunity to study interactions between species and rapidly changing environments. Gene expression represents one of the primary and crucial mechanisms for rapid adaptation to local environments. Here, we aim to select reference genes for quantitative gene expression analysis based on quantitative Real-Time PCR (qRT-PCR) for a model invasive ascidian, Ciona savignyi. We analyzed the stability of ten candidate reference genes in three tissues (siphon, pharynx and intestine) under two key environmental stresses (temperature and salinity) in the marine realm based on three programs (geNorm, NormFinder and delta Ct method). Our results demonstrated only minor difference for stability rankings among the three methods. The use of different single reference gene might influence the data interpretation, while multiple reference genes could minimize possible errors. Therefore, reference gene combinations were recommended for different tissues - the optimal reference gene combination for siphon was RPS15 and RPL17 under temperature stress, and RPL17, UBQ and TubA under salinity treatment; for pharynx, TubB, TubA and RPL17 were the most stable genes under temperature stress, while TubB, TubA and UBQ were the best under salinity stress; for intestine, UBQ, RPS15 and RPL17 were the most reliable reference genes under both treatments. Our results suggest that the necessity of selection and test of reference genes for different tissues under varying environmental stresses. The results obtained here are expected to reveal mechanisms of gene expression-mediated invasion success using C. savignyi as a model species. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Calcined Eggshell Waste for Mitigating Soil Antibiotic-Resistant Bacteria/Antibiotic Resistance Gene Dissemination and Accumulation in Bell Pepper.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Li, Xu; Schwab, Arthur P; Wan, Jinzhong; Liu, Manqiang; Tian, Da; Liu, Kuan; Wu, Jun; Jiang, Xin

    2016-07-13

    The combined accumulation of antibiotics, heavy metals, antibiotic-resistant bacteria (ARB)/antibiotic resistance genes (ARGs) in vegetables has become a new threat to human health. This is the first study to investigate the feasibility of calcined eggshells modified by aluminum sulfate as novel agricultural wastes to impede mixed contaminants from transferring to bell pepper (Capsicum annuum L.). In this work, calcined eggshell amendment mitigated mixed pollutant accumulation in bell pepper significantly, enhanced the dissipation of soil tetracycline, sulfadiazine, roxithromycin, and chloramphenicol, decreased the water-soluble fractions of antibiotics, and declined the diversity of ARB/ARGs inside the vegetable. Moreover, quantitative polymerase chain reaction analysis detected that ARG levels in the bell pepper fruits significantly decreased to 10(-10) copies/16S copies, indicating limited risk of ARGs transferring along the food chain. Furthermore, the restoration of soil microbial biological function suggests that calcined eggshell is an environmentally friendly amendment to control the dissemination of soil ARB/ARGs in the soil-vegetable system.

  6. Antibiotics from bacillus subtilis AECL90 - effect of trace elements and carbohydrates on antibiotic production

    International Nuclear Information System (INIS)

    Malik, M.A.; Shaukat, G.A.; Ahmed, M.S.

    1990-01-01

    Three types of antibiotics S, X and F characteristically bioactive against staphylococcic, xanthomonas and fungi are elaborated by Bacillus Subtilis AECL 69 when grown in molasses peptone malt extract sucrose. No antibiotic production was observed when molasses was omitted from the growth medium. A mineral salt mixture was devised that could replace molasses and restore the production of antibiotics. Influence of various carbohydrates on the production of antibiotics was also studied. Mannose and mannitol had inhibitory effect on the antibiotic production. (author)

  7. Intraventricular antibiotics for bacterial meningitis in neonates.

    Science.gov (United States)

    Shah, Sachin S; Ohlsson, Arne; Shah, Vibhuti S

    2012-07-11

    Neonatal meningitis may be caused by bacteria, especially gram-negative bacteria, which are difficult to eradicate from the cerebrospinal fluid (CSF) using safe doses of antibiotics. In theory, intraventricular administration of antibiotics would produce higher antibiotic concentrations in the CSF than intravenous administration alone, and eliminate the bacteria more quickly. However, ventricular taps may cause harm. To assess the effectiveness and safety of intraventricular antibiotics (with or without intravenous antibiotics) in neonates with meningitis (with or without ventriculitis) as compared to treatment with intravenous antibiotics alone. The Cochrane Library, Issue 2, 2007; MEDLINE; EMBASE; CINAHL and Science Citation Index were searched in June 2007. The Oxford Database of Perinatal Trials was searched in June 2004. Pediatric Research (abstracts of proceedings) were searched (1990 to April 2007) as were reference lists of identified trials and personal files. No language restrictions were applied.This search was updated in May 2011. Selection criteria for study inclusion were: randomised or quasi-randomised controlled trials in which intraventricular antibiotics with or without intravenous antibiotics were compared with intravenous antibiotics alone in neonates (antibiotics compared to the group receiving intravenous antibiotics alone (RR 3.43; 95% CI 1.09 to 10.74; RD 0.30; 95% CI 0.08 to 0.53); NNTH 3; 95% CI 2 to 13). Duration of CSF culture positivity did not differ significantly (MD -1.20 days; 95% CI -2.67 to 0.27). In one trial that enrolled infants with gram-negative meningitis and ventriculitis, the use of intraventricular antibiotics in addition to intravenous antibiotics resulted in a three-fold increased RR for mortality compared to standard treatment with intravenous antibiotics alone. Based on this result, intraventricular antibiotics as tested in this trial should be avoided. Further trials comparing these interventions are not justified in

  8. [Principles of management in biological infections].

    Science.gov (United States)

    Płusa, Tadeusz

    2012-11-01

    The effectiveness of the management in respiratory infection is depending on the nature of the biological pathogen and the immune status of the patient. For this reason, providing assistance to victims the organ function support, similarly as defining the pathogen and targeted antibiotic therapy should be applied. Available diagnostic tests provide rapid ability to identify the pathogen and antibiotics are able to control infection. Lack of efficacy of treatment may indicate the diversity of the pathogen than previously known and raises suspicion of biological warfare pathogen.

  9. Phage Therapy in the Era of Synthetic Biology.

    Science.gov (United States)

    Barbu, E Magda; Cady, Kyle C; Hubby, Bolyn

    2016-10-03

    For more than a century, bacteriophage (or phage) research has enabled some of the most important discoveries in biological sciences and has equipped scientists with many of the molecular biology tools that have advanced our understanding of replication, maintenance, and expression of genetic material. Phages have also been recognized and exploited as natural antimicrobial agents and nanovectors for gene therapy, but their potential as therapeutics has not been fully exploited in Western medicine because of challenges such as narrow host range, bacterial resistance, and unique pharmacokinetics. However, increasing concern related to the emergence of bacteria resistant to multiple antibiotics has heightened interest in phage therapy and the development of strategies to overcome hurdles associated with bacteriophage therapeutics. Recent progress in sequencing technologies, DNA manipulation, and synthetic biology allowed scientists to refactor the entire bacterial genome of Mycoplasma mycoides, thereby creating the first synthetic cell. These new strategies for engineering genomes may have the potential to accelerate the construction of designer phage genomes with superior therapeutic potential. Here, we discuss the use of phage as therapeutics, as well as how synthetic biology can create bacteriophage with desirable attributes. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  10. Antibiotic effectiveness: balancing conservation against innovation.

    Science.gov (United States)

    Laxminarayan, Ramanan

    2014-09-12

    Antibiotic effectiveness is a natural societal resource that is diminished by antibiotic use. As with other such assets, keeping it available requires both conservation and innovation. Conservation encompasses making the best use of current antibiotic effectiveness by reducing demand through vaccination, infection control, diagnostics, public education, incentives for clinicians to prescribe fewer antibiotics, and restrictions on access to newer, last-resort antibiotics. Innovation includes improving the efficacy of current drugs and replenishing effectiveness by developing new drugs. In this paper, I assess the relative benefits and costs of these two approaches to maintaining our ability to treat infections. Copyright © 2014, American Association for the Advancement of Science.

  11. The role of active efflux in antibiotic - resistance of clinical isolates of Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Falsafi T

    2009-01-01

    Full Text Available Purpose: In gram-negative bacteria, active efflux pumps that excrete drugs can confer resistance to antibiotics however, in Helicobacter pylori this role is not well established. The purpose of this study is to evaluate the role of active efflux in resistance of H. pylori isolates to antibiotics. Materials and Methods: Twelve multiple antibiotic resistant (MAR isolates resistant to at least four antibiotics, including β-lactams, metronidazole, tetracycline, erythromycin, and ciprofloxacin; three resistant to only β-lactams, and two hyper-susceptible isolates, were obtained from screening of 96 clinical isolates of H. pylori . Their minimal inhibitory concentrations (MICs for antibiotics and ethidium-bromide (EtBr were compared in the presence- and absence of a proton-conductor, carbonyl cyanide-m chlorophenyl-hydrazone (CCCP using agar-dilution and disc diffusion. Drug accumulation studies for EtBr and antibiotics were assessed in the presence and absence of CCCP using spectrofluorometry. Results: MIC of EtBr for eight MAR-isolates was decreased two- to four-folds in the presence of CCCP, of which five showed reduced MICs for β-lactam, metronidazole, tetracycline, and ciprofloxacin with CCCP. Accumulation of EtBr by the MAR-isolates was rapid and not dependant on the pattern of multiple resistance. Antibiotic accumulation assay confirmed the presence of energy-dependant efflux of β-lactam, metronidazole, tetracycline, and ciprofloxacin, but no erythromycin in five MAR isolates. Energy-dependant efflux of EtBr or antibiotics was not observed for four MAR-isolates, and three isolates were resistant only to β-lactams. Conclusion: Energy-dependant efflux plays a role in the resistance of H. pylori clinical isolates to structurally unrelated antibiotics in a broadly specific multidrug efflux manner. Difference in the efflux potential of MAR isolates may be related to the presence or absence of functional efflux-pumps in diverse H. pylori

  12. Antibiotic prescribing in dental practice in Belgium.

    Science.gov (United States)

    Mainjot, A; D'Hoore, W; Vanheusden, A; Van Nieuwenhuysen, J-P

    2009-12-01

    To assess the types and frequency of antibiotic prescriptions by Belgian dentists, the indications for antibiotic prescription, and dentists' knowledge about recommended practice in antibiotic use. In this cross-sectional survey, dental practitioners were asked to record information about all antibiotics prescribed to their patients during a 2-week period. The dental practitioners were also asked to complete a self-administered questionnaire regarding demographic data, prescribing practices, and knowledge about antibiotic use. A random sample of 268 Belgian dentists participated in the survey. During the 2-week period, 24 421 patient encounters were recorded; 1033 patients were prescribed an antibiotic (4.2%). The median number of prescriptions per dentist for the 2 weeks was 3. Broad spectrum antibiotics were most commonly prescribed: 82% of all prescriptions were for amoxycillin, amoxycillin-clavulanic acid and clindamycin. Antibiotics were often prescribed in the absence of fever (92.2%) and without any local treatment (54.2%). The most frequent diagnosis for which antibiotics were prescribed was periapical abscess (51.9%). Antibiotics were prescribed to 63.3% of patients with periapical abscess and 4.3% of patients with pulpitis. Patterns of prescriptions were confirmed by the data from the self-reported practice. Discrepancies between observed and recommended practice support the need for educational initiatives to promote rational use of antibiotics in dentistry in Belgium.

  13. Synthetic biology of antimicrobial discovery

    Science.gov (United States)

    Zakeri, Bijan; Lu, Timothy K.

    2012-01-01

    Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore, used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery. PMID:23654251

  14. Synthetic biology of antimicrobial discovery.

    Science.gov (United States)

    Zakeri, Bijan; Lu, Timothy K

    2013-07-19

    Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug-resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery.

  15. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa.

    Science.gov (United States)

    Mislin, Gaëtan L A; Schalk, Isabelle J

    2014-03-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen responsible for nosocomial infections. The prevalence of antibiotic-resistant P. aeruginosa strains is increasing, necessitating the urgent development of new strategies to improve the control of this pathogen. Its bacterial envelope constitutes of an outer and an inner membrane enclosing the periplasm. This structure plays a key role in the resistance of the pathogen, by decreasing the penetration and the biological impact of many antibiotics. However, this barrier may also be seen as the "Achilles heel" of the bacterium as some of its functions provide opportunities for breaching bacterial defenses. Siderophore-dependent iron uptake systems act as gates in the bacterial envelope and could be used in a "Trojan horse" strategy, in which the conjugation of an antibiotic to a siderophore could significantly increase the biological activity of the antibiotic, by enhancing its transport into the bacterium. In this review, we provide an overview of the various siderophore-antibiotic conjugates that have been developed for use against P. aeruginosa and show that an accurate knowledge of the structural and functional features of the proteins involved in this transmembrane transport is required for the design and synthesis of effective siderophore-antibiotic Trojan horse conjugates.

  16. Metal coated colloidosomes as carriers for an antibiotic

    Science.gov (United States)

    Sun, Qian; Zhao, Ziyan; Hall, Elizabeth A. H.; Routh, Alexander F.

    2018-06-01

    Colloidosomes are polymer shell microcapsules. They are stable and easy to prepare and have been used to encapsulate drugs for release at specific areas in the body. Traditional polymer shell capsules cannot totally seal drugs, since they are porous and small molecules diffuse through the polymer shell. In this paper, we report a method for encapsulating an antibiotic kanamycin using gold or silver coated colloidosomes. The colloidosomes are impermeable and can be triggered using ultrasound. To investigate the application of the capsules in a biological system, Escherichia Coli (E.coli) was chosen as a model organism. After triggering, the released antibiotic, as well as the metal shell fragments, kill E.coli. Both the silver and gold shells colloidosomes are toxic to this bacterial system and the gold coated colloidosomes can load a higher concentration of kanamycin.

  17. Zincophorin – biosynthesis in Streptomyces griseus and antibiotic properties

    Directory of Open Access Journals (Sweden)

    Walther, Elisabeth

    2016-11-01

    Full Text Available Zincophorin is a polyketide antibiotic that possesses potent activity against Gram-positive bacteria, including human pathogens. While a number of total syntheses of this highly functionalized natural product were reported since its initial discovery, the genetic basis for the biosynthesis of zincophorin has remained unclear. In this study, the co-linearity inherent to polyketide pathways was used to identify the zincophorin biosynthesis gene cluster in the genome of the natural producer HKI 0741. Interestingly, the same locus is fully conserved in the streptomycin-producing actinomycete IFO 13350, suggesting that the latter bacterium is also capable of zincophorin biosynthesis. Biological profiling of zincophorin revealed a dose-dependent inhibition of the Gram-positive bacterium . The antibacterial effect, however, is accompanied by cytotoxicity. Antibiotic and cytotoxic activities were completely abolished upon esterification of the carboxylic acid group in zincophorin.

  18. Effect Of Laser Irradiation On Biosynthesis Of Antibiotics

    International Nuclear Information System (INIS)

    SALAMA, S.M.; MAHMOUD, S.M.; EL-KABBANY, H.M.

    2010-01-01

    An investigation concerning the effect of He:Ne laser irradiation on some isolated actinomycetes was carried out. Seven isolated actinomycetes were considered as most potent producing broad spectrum antibiotics. The strains have been identified on the basis of taxonomic studies as Streptomyces nogalator (H12), Streptomyces griseoluteus (YM23), Amycolatopsis mediterranei (B40), Glycomyces harbinensis (KA16), Streptosporangium corrugatum (B67), Streptoalloteichus hindustamus (B74) and Streptomyces aurantiogriseus (S15). Seven genotypes were chosen after He:Ne laser irradiation as representative for each isolated strain. The active metabolite from most potent genotype of Streptomyces nogalator (H12) was extracted by ethyl acetate then concentrated under vacuo and the crude fraction was purified using thin layer and column chromatography. Ultra violet maximum absorption peak was recorded at 231.5 and 206 nm. The IR and NMR were consulted to confirm the chemical characteristics of the antibiotic. The biological activity and toxicity were also investigated.

  19. Urine culture guided antibiotic interventions: A pharmacist driven antimicrobial stewardship effort in the ED.

    Science.gov (United States)

    Zhang, Xi; Rowan, Nicole; Pflugeisen, Bethann Mangel; Alajbegovic, Sanjin

    2017-04-01

    Antibiotics are overprescribed for abnormal urine tests including asymptomatic bacteriuria (AB), contributing to rising antimicrobial resistance rates. Pharmacists reviewed urine cultures daily from emergency department (ED) encounters to assess antibiotic appropriateness. We studied antibiotic prescribing practices and assessed compliance to national guidelines, correlations with urine analysis (UA) components, and opportunities for antimicrobial stewardship in the ED. This quality improvement project (QIP) was a prospective cohort study at a community hospital ED, with data collected from finalized urine cultures resulting October 30, 2014 through January 5, 2015. Analyses were conducted using Chi-squared and Fisher Exact tests and stepwise multiple logistic regression. Urine cultures from 457 encounters were reviewed, of which 136 met the inclusion criteria as non-pregnant and asymptomatic for urinary tract infection (UTI). 43% of 136 patients were treated with antibiotics, for a total of 426 antibiotic days. Pharmacist interventions for these patients resulted in 122/426 (29%) of potential antibiotic days saved. Factors found to significantly increase the odds of antibiotic prescribing in asymptomatic patients included presence of leukocyte esterase (OR=4.5, 95% CI: 1.2-17.2; p=0.03) or nitrites (OR=10.8, 95% CI: 1.7-68.1; p=0.01) in the urine and age≥75 (OR=3.5, 95% CI: 1.2-9.6, p=0.02). Pharmacist intervention in discontinuing or modifying antibiotics for asymptomatic patients with urine cultures reduced unnecessary antibiotic exposure and was a first step in antimicrobial stewardship efforts in the ED. Future work includes limiting urine tests and subsequent antibiotic therapy for non-pregnant asymptomatic patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The use of machine learning methodologies to analyse antibiotic and biocide susceptibility in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Joana Rosado Coelho

    Full Text Available BACKGROUND: The rise of antibiotic resistance in pathogenic bacteria is a significant problem for the treatment of infectious diseases. Resistance is usually selected by the antibiotic itself; however, biocides might also co-select for resistance to antibiotics. Although resistance to biocides is poorly defined, different in vitro studies have shown that mutants presenting low susceptibility to biocides also have reduced susceptibility to antibiotics. However, studies with natural bacterial isolates are more limited and there are no clear conclusions as to whether the use of biocides results in the development of multidrug resistant bacteria. METHODS: The main goal is to perform an unbiased blind-based evaluation of the relationship between antibiotic and biocide reduced susceptibility in natural isolates of Staphylococcus aureus. One of the largest data sets ever studied comprising 1632 human clinical isolates of S. aureus originated worldwide was analysed. The phenotypic characterization of 13 antibiotics and 4 biocides was performed for all the strains. Complex links between reduced susceptibility to biocides and antibiotics are difficult to elucidate using the standard statistical approaches in phenotypic data. Therefore, machine learning techniques were applied to explore the data. RESULTS: In this pioneer study, we demonstrated that reduced susceptibility to two common biocides, chlorhexidine and benzalkonium chloride, which belong to different structural families, is associated to multidrug resistance. We have consistently found that a minimum inhibitory concentration greater than 2 mg/L for both biocides is related to antibiotic non-susceptibility in S. aureus. CONCLUSIONS: Two important results emerged from our work, one methodological and one other with relevance in the field of antibiotic resistance. We could not conclude on whether the use of antibiotics selects for biocide resistance or vice versa. However, the observation of

  1. Biological Threats Detection Technologies

    International Nuclear Information System (INIS)

    Bartoszcze, M.

    2007-01-01

    Among many decisive factors, which can have the influence on the possibility of decreases the results of use biological agents should be mentioned obligatory: rapid detection and identification of biological factor used, the proper preventive treatment and the medical management. The aims of identification: to identify the factor used, to estimate the area of contamination, to evaluate the possible countermeasure efforts (antibiotics, disinfectants) and to assess the effectiveness of the decontamination efforts (decontamination of the persons, equipment, buildings, environment etc.). The objects of identification are: bacteria and bacteria's spores, viruses, toxins and genetically modified factors. The present technologies are divided into: based on PCR techniques (ABI PRISM, APSIS, BIOVERIS, RAPID), immuno (BADD, RAMP, SMART) PCR and immuno techniques (APDS, LUMINEX) and others (BDS2, LUNASCAN, MALDI). The selected technologies assigned to field conditions, mobile and stationary laboratories will be presented.(author)

  2. [Prophylactic antibiotics for immunocompromised children].

    Science.gov (United States)

    Poirée, M; Picard, C; Aguilar, C; Haas, H

    2013-11-01

    Infections are the most common cause of morbidity and mortality in pediatric immunocompromised children. The emergence of pan-drug resistant bacteria is particularly concerning for these patients. The risk of infection can be reduced by educational rules, immunizing these patients and sometimes antibiotic prophylaxis. But the individual level of risk is very difficult to assess. Using antibiotics may lead to adverse effects such as allergic reactions, cross-reactions with other drugs, development of super-infections, pseudomembranous colitis and overall development of antibioticresistant bacterial strains. Recommendations for preventing infections in these patients exist for specific case such as inherited disorder or stem cell transplantation. In others cases it depends on physicians' habits: the increase of bacterial resistance could lead to reduce the prescriptions non evidence based and not included in official guidelines. Pneumococcal and meningococcal vaccinations might change guidelines and habits. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Bacterial biofilms and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Liliana Caldas-Arias

    2015-04-01

    Full Text Available Biofilms give to bacteria micro-environmental benefits; confers protection against antimicrobials. Bacteria have antibiotic resistance by conventional and unusual mechanisms leading to delayed wound healing, to increase recurrent chronic infections and nosocomial contamination of medical devices. Objective: This narrative review aims to introduce the characteristics of Bacteria-biofilms, antimicrobial resistance mechanisms and potential alternatives for prevention and control of its formation. Methods: Search strategy was performed on records: PubMed / Medline, Lilacs, Redalyc; with suppliers such as EBSCO and thesaurus MeSH and DeCS. Conclusions: Knowledge and research performance of biofilm bacteria are relevant in the search of technology for detection and measuring sensitivity to antibiotics. The identification of Bacterial-biofilms needs no-traditional microbiological diagnosis.

  4. Synergistic antimicrobial activity between pentacyclic triterpenoids and antibiotics against Staphylococcus aureus strains

    Directory of Open Access Journals (Sweden)

    Navaratnam Parasakthi

    2011-06-01

    Full Text Available Abstract Background There has been considerable effort to discover plant-derived antibacterials against methicillin-resistant strains of Staphylococcus aureus (MRSA which have developed resistance to most existing antibiotics, including the last line of defence, vancomycin. Pentacyclic triterpenoid, a biologically diverse plant-derived natural product, has been reported to show anti-staphylococcal activities. The objective of this study is to evaluate the interaction between three pentacyclic triterpenoid and standard antibiotics (methicillin and vancomycin against reference strains of Staphylococcus aureus. Methods and Results The activity of the standard antibiotics and compounds on reference methicillin-sensitive and resistant strains of S. aureus were determined using the macrodilution broth method. The minimum inhibitory concentration (MIC of the compounds was compared with that of the standard antibiotics. The interaction between any two antimicrobial agents was estimated by calculating the fractional inhibitory concentration (FIC index of the combination. The various combinations of antibiotics and compounds reduced the MIC to a range of 0.05 to 50%. Conclusion Pentacyclic triterpenoids have shown anti-staphylococcal activities and although individually weaker than common antibiotics produced from bacteria and fungi, synergistically these compounds may use different mechanism of action or pathways to exert their antimicrobial effects, as implicated in the lowered MICs. Therefore, the use of current antibiotics could be maintained in their combination with plant-derived antibacterial agents as a therapeutic option in the treatment of S. aureus infections.

  5. Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles

    International Nuclear Information System (INIS)

    Shen, Li; Chen, Jing; Li, Na; He, Pingli; Li, Zhen

    2014-01-01

    Highlights: • Tetracyclines directly reduce aurate into gold nanoparticles. • Gold nanoparticles showed characteristic plamson absorbance at 526 nm. • Quantitative detection of tetracyclines with the colorimetric assay. • Tetracyclines spiked urine samples can be detected with the assay. - Abstract: A colorimetric assay utilizing the formation of gold nanoparticles was developed to detect tetracycline antibiotics in fluidic samples. Tetracycline antibiotics showed the capability of directly reducing aurate salts into atomic gold which form gold nanoparticles spontaneously under proper conditions. The resulted gold nanoparticles showed characteristic plasmon absorbance at 526 nm, which can be visualized by naked eyes or with a spectrophotometer. UV–vis absorbance of the resulted gold nanoparticles is correlated directly with the concentrations of tetracycline antibiotics in the solution, allowing for quantitative colorimetric detection of tetracycline antibiotics. Reaction conditions, such as pH, temperature, reaction time, and ionic strength were optimized. Sensitivity of the colorimetric assay can be enhanced by the addition of gold nanoparticle seeds, a LOD as low as 20 ng mL −1 can be achieved with the help of seed particles. The colorimetric assay showed minimum interference from ethanol, methanol, urea, glucose, and other antibiotics such as sulfonamides, amino glycosides etc. Validity of the method was also evaluated on urine samples spiked with tetracycline antibiotics. The method provides a broad spectrum detection method for rapid and sensitive detection of reductive substances such as tetracycline antibiotics in liquid and biological samples

  6. Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles.

    Science.gov (United States)

    Shen, Li; Chen, Jing; Li, Na; He, Pingli; Li, Zhen

    2014-08-11

    A colorimetric assay utilizing the formation of gold nanoparticles was developed to detect tetracycline antibiotics in fluidic samples. Tetracycline antibiotics showed the capability of directly reducing aurate salts into atomic gold which form gold nanoparticles spontaneously under proper conditions. The resulted gold nanoparticles showed characteristic plasmon absorbance at 526 nm, which can be visualized by naked eyes or with a spectrophotometer. UV-vis absorbance of the resulted gold nanoparticles is correlated directly with the concentrations of tetracycline antibiotics in the solution, allowing for quantitative colorimetric detection of tetracycline antibiotics. Reaction conditions, such as pH, temperature, reaction time, and ionic strength were optimized. Sensitivity of the colorimetric assay can be enhanced by the addition of gold nanoparticle seeds, a LOD as low as 20 ng mL(-1) can be achieved with the help of seed particles. The colorimetric assay showed minimum interference from ethanol, methanol, urea, glucose, and other antibiotics such as sulfonamides, amino glycosides etc. Validity of the method was also evaluated on urine samples spiked with tetracycline antibiotics. The method provides a broad spectrum detection method for rapid and sensitive detection of reductive substances such as tetracycline antibiotics in liquid and biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Li [Logistics School, Beijing Wuzi University, Beijing 101149 (China); Chen, Jing; Li, Na [Logistics School, Beijing Wuzi University, Beijing 101149 (China); He, Pingli [State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100094 (China); Li, Zhen [State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193 (China)

    2014-08-11

    Highlights: • Tetracyclines directly reduce aurate into gold nanoparticles. • Gold nanoparticles showed characteristic plamson absorbance at 526 nm. • Quantitative detection of tetracyclines with the colorimetric assay. • Tetracyclines spiked urine samples can be detected with the assay. - Abstract: A colorimetric assay utilizing the formation of gold nanoparticles was developed to detect tetracycline antibiotics in fluidic samples. Tetracycline antibiotics showed the capability of directly reducing aurate salts into atomic gold which form gold nanoparticles spontaneously under proper conditions. The resulted gold nanoparticles showed characteristic plasmon absorbance at 526 nm, which can be visualized by naked eyes or with a spectrophotometer. UV–vis absorbance of the resulted gold nanoparticles is correlated directly with the concentrations of tetracycline antibiotics in the solution, allowing for quantitative colorimetric detection of tetracycline antibiotics. Reaction conditions, such as pH, temperature, reaction time, and ionic strength were optimized. Sensitivity of the colorimetric assay can be enhanced by the addition of gold nanoparticle seeds, a LOD as low as 20 ng mL{sup −1} can be achieved with the help of seed particles. The colorimetric assay showed minimum interference from ethanol, methanol, urea, glucose, and other antibiotics such as sulfonamides, amino glycosides etc. Validity of the method was also evaluated on urine samples spiked with tetracycline antibiotics. The method provides a broad spectrum detection method for rapid and sensitive detection of reductive substances such as tetracycline antibiotics in liquid and biological samples.

  8. Designing Safer and Greener Antibiotics

    Directory of Open Access Journals (Sweden)

    Nicholas Gathergood

    2013-09-01

    Full Text Available Since the production of the first pharmaceutically active molecules at the beginning of the 1900s, drug molecules and their metabolites have been observed in the environment in significant concentrations. In this review, the persistence of antibiotics in the environment and their associated effects on ecosystems, bacterial resistance and health effects will be examined. Solutions to these problems will also be discussed, including the pharmaceutical industries input, green chemistry, computer modeling and representative ionic liquid research.

  9. Prophylactic antibiotics in transurethral prostatectomy

    DEFF Research Database (Denmark)

    Qvist, N; Christiansen, H.M.; Ehlers, D

    1984-01-01

    The study included 88 patients with sterile urine prior to transurethral prostatectomy. Forty-five received a preoperative dose of 2 g of cefotaxime (Claforan) and the remaining 43 were given 10 ml of 0.9% NaCl. The two groups did not differ in frequency of postoperative urinary infection (greate...... of infection and the few side effects of the infections that did occur, prophylactic treatment with an antibiotic is not indicated for transurethral prostatectomy in patients with sterile urine....

  10. Probiotics and antibiotics in IBD.

    Science.gov (United States)

    Sokol, Harry

    2014-01-01

    The involvement of the gut microbiota in the pathogenesis of IBD is supported by many findings and is thus now commonly acknowledged. The imbalance in the composition of the microbiota (dysbiosis) observed in IBD patients is one of the strongest arguments and provides the rationale for a therapeutic manipulation of the gut microbiota. The tools available to achieve this goal include fecal microbiota transplantation, but antibiotics and probiotics have been the most used one until now. Although antibiotics have shown some efficacy in inducing remission in Crohn's disease (CD) and ulcerative colitis (UC), as well as preventing postoperative relapse in CD, they are not currently recommended for the treatment of IBD except for septic complications, notably because of long-term tolerance and ecological issues. Some probiotics have been shown to be as good as 5-aminosalicylic acid to maintain remission in mild-to-moderate UC, but have been disappointing until now in CD in all tested indications. In pouchitis, antibiotics and probiotics have shown efficacy for inducing and maintaining remission, respectively. Targeting the gut microbiota in IBD is an attractive strategy. Current efforts to better understand the host-microbiota interactions in physiological as well as disease settings might lead to the development of rational-based treatments. © 2014 S. Karger AG, Basel.

  11. Antibiotic resistance in Burkholderia species.

    Science.gov (United States)

    Rhodes, Katherine A; Schweizer, Herbert P

    2016-09-01

    The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Design of dual action antibiotics as an approach to search for new promising drugs

    International Nuclear Information System (INIS)

    Tevyashova, A N; Olsufyeva, E N; Preobrazhenskaya, M N

    2015-01-01

    The review is devoted to the latest achievements in the design of dual action antibiotics — heterodimeric (chimeric) structures based on antibacterial agents of different classes (fluoroquinolones, anthracyclines, oxazolidines, macrolides and so on). Covalent binding can make the pharmacokinetic characteristics of these molecules more predictable and improve the penetration of each component into the cell. Consequently, not only does the drug efficacy increase owing to inhibition of two targets but also the resistance to one or both antibiotics can be overcome. The theoretical grounds of elaboration, design principles and methods for the synthesis of dual action antibiotics are considered. The structures are classified according to the type of covalent spacer (cleavable or not) connecting the moieties of two agents. Dual action antibiotics with a spacer that can be cleaved in a living cell are considered as dual action prodrugs. Data on the biological action of heterodimeric compounds are presented and structure–activity relationships are analyzed. The bibliography includes 225 references

  13. Bioavailability of Antibiotics at Soil-Water Interfaces: A Comparison of Measured Activities and Equilibrium Partitioning Estimates.

    Science.gov (United States)

    Menz, Jakob; Müller, Julia; Olsson, Oliver; Kümmerer, Klaus

    2018-06-05

    There are growing concerns that antibiotic pollution impacts environmental microbiota and facilitates the propagation of antibiotic resistance. However, the prediction or analytical determination of bioavailable concentrations of antibiotics in soil is still subject to great uncertainty. Biological assays are increasingly recognized as valuable complementary tools that allow a more direct determination of the residual antibiotic activity. This study assessed the bioavailability of structurally diverse antibiotics at a soil-water interface applying activity-based analyses in conjunction with equilibrium partitioning (EqP) modeling. The activity against Gram-positive and Gram-negative bacteria of nine antibiotics from different classes was determined in the presence and absence of standard soil (LUFA St. 2.2). The addition of soil affected the activity of different antibiotics to highly varying degrees. Moreover, a highly significant correlation ( p < 0.0001) between the experimentally observed and the EqP-derived log EC 50 (half-maximal effective concentration) values was observed. The innovative experimental design of this study provided new insights on the bioavailability of antibiotics at soil-water interfaces. EqP appears to be applicable to a broad range of antibiotics for the purpose of screening-level risk assessment. However, EqP estimates cannot replace soil-specific ecotoxicity testing in higher-tier assessments, since their accuracy is still compromised by a number of factors.

  14. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China

    International Nuclear Information System (INIS)

    Hu Xiangang; Zhou Qixing; Luo Yi

    2010-01-01

    The residue of antibiotics is becoming an intractable environmental problem in many organic vegetable bases. However, their residual levels and distribution are still obscure. This work systematically analyzed the occurrence and migration of typical veterinary antibiotics in organic vegetable bases, northern China. The results showed that there was no obvious geographical difference in antibiotic distribution between soil and manure. A simple migration model can be easy and quick to predict the accumulation of antibiotics in soil. Antibiotics were mainly taken up through water transport and passive absorption in vegetables. The distribution of antibiotics in a plant was in the sequence leaf > stem > root, and performed biological accumulation. The residues of antibiotics in all samples in winter were significantly higher than those in summer. Overall, this work can lay the foundation for understanding ecological risk of antibiotics and their potential adverse effects on human health by food chain. - The residues of typical veterinary antibiotics from manure were detected and migrated in soil, vegetables and groundwater of organic vegetable bases.

  15. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment.

    Science.gov (United States)

    Shao, Sicheng; Hu, Yongyou; Cheng, Jianhua; Chen, Yuancai

    2018-05-28

    Antimicrobial and antibiotics resistance caused by misuse or overuse of antibiotics exposure is a growing and significant threat to global public health. The spread and horizontal transfer of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) by the selective pressure of antibiotics in an aquatic environment is a major public health issue. To develop a better understanding of potential ecological risks die to antibiotics and ARGs, this study mainly summarizes research progress about: (i) the occurrence, concentration, fate, and potential ecological effects of antibiotics and ARGs in various aquatic environments, (ii) the threat, spread, and horizontal gene transfer (HGT) of ARGs, and (iii) the relationship between antibiotics, ARGs, and ARB. Finally, this review also proposes future research direction on antibiotics and ARGs.

  16. Biological Agents

    Science.gov (United States)

    ... E-Tools Safety and Health Topics / Biological Agents Biological Agents This page requires that javascript be enabled ... 202) 693-2300 if additional assistance is required. Biological Agents Menu Overview In Focus: Ebola Frederick A. ...

  17. Studies on the concentration of antibiotics in tissues, 5

    International Nuclear Information System (INIS)

    Kaneko, Osamu

    1988-01-01

    Incorporation of an antibiotic, Cefotetan (CTT), into the serum and oral cavity following irradiation was pharmacokinetically examined in rats. One shot of 100 mg/kg of CTT was given to the caudal vein at Day 3 to 28 following a single electron beam irradiation of 10 Gy to the mandible. The concentrations of CTT in the serum, tongue, and submandibular gland were serially determined using high performance liquid chromatography 5 to 60 min after injection. The minimum biological half-life of CTT in the serum was attained at Day 14 postirradiation. The concentrations of CTT in tissues increased and biological half-life prolonged up to Day 14 postirradiation. These values tended to return to the control values up to Day 28. There was serial correlation between a decrease in serum protein mass up to Day 21 and biological half-life of serum CTT. (N.K.)

  18. Antibiotic prophylaxis in dermatologic surgery: advisory statement 2008.

    Science.gov (United States)

    Wright, Tina I; Baddour, Larry M; Berbari, Elie F; Roenigk, Randall K; Phillips, P Kim; Jacobs, M Amanda; Otley, Clark C

    2008-09-01

    Antibiotic prophylaxis is an important component of dermatologic surgery, and recommendations in this area should reflect the updated 2007 guidelines of the American Heart Association, the American Dental Association with the American Academy of Orthopaedic Surgeons guidelines, and recent prospective studies on surgical site infection. To provide an update on the indications for antibiotic prophylaxis in dermatologic surgery for the prevention of infective endocarditis, hematogenous total joint infection, and surgical site infection. A literature review was performed, expert consensus was obtained, and updated recommendations were created, consistent with the most current authoritative guidelines from the American Heart Association and the American Dental Association with the American Academy of Orthopaedic Surgeons. For patients with high-risk cardiac conditions, and a defined group of patients with prosthetic joints at high risk for hematogenous total joint infection, prophylactic antibiotics are recommended when the surgical site is infected or when the procedure involves breach of the oral mucosa. For the prevention of surgical site infections, antibiotics may be indicated for procedures on the lower extremities or groin, for wedge excisions of the lip and ear, skin flaps on the nose, skin grafts, and for patients with extensive inflammatory skin disease. These recommendations are not based on multiple, large-scale, prospective trials. There is a strong shift away from administration of prophylactic antibiotics in many dermatologic surgery settings, based on updated authoritative guidelines. These recommendations provide guidance to comply with the most current guidelines, modified to address dermatology-specific considerations. Managing physicians may utilize these guidelines while individualizing their approach based on all clinical considerations.

  19. Antibiotic resistance determinants in a Pseudomonas putida strain isolated from a hospital.

    Directory of Open Access Journals (Sweden)

    Lázaro Molina

    Full Text Available Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267 kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ß-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts.

  20. "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era.

    Science.gov (United States)

    Huh, Ae Jung; Kwon, Young Jik

    2011-12-10

    Despite the fact that we live in an era of advanced and innovative technologies for elucidating underlying mechanisms of diseases and molecularly designing new drugs, infectious diseases continue to be one of the greatest health challenges worldwide. The main drawbacks for conventional antimicrobial agents are the development of multiple drug resistance and adverse side effects. Drug resistance enforces high dose administration of antibiotics, often generating intolerable toxicity, development of new antibiotics, and requests for significant economic, labor, and time investments. Recently, nontraditional antibiotic agents have been of tremendous interest in overcoming resistance that is developed by several pathogenic microorganisms against most of the commonly used antibiotics. Especially, several classes of antimicrobial nanoparticles (NPs) and nanosized carriers for antibiotics delivery have proven their effectiveness for treating infectious diseases, including antibiotics resistant ones, in vitro as well as in animal models. This review summarizes emerging efforts in combating against infectious diseases, particularly using antimicrobial NPs and antibiotics delivery systems as new tools to tackle the current challenges in treating infectious diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Antibiotic resistance increases with local temperature

    Science.gov (United States)

    MacFadden, Derek R.; McGough, Sarah F.; Fisman, David; Santillana, Mauricio; Brownstein, John S.

    2018-06-01

    Bacteria that cause infections in humans can develop or acquire resistance to antibiotics commonly used against them1,2. Antimicrobial resistance (in bacteria and other microbes) causes significant morbidity worldwide, and some estimates indicate the attributable mortality could reach up to 10 million by 20502-4. Antibiotic resistance in bacteria is believed to develop largely under the selective pressure of antibiotic use; however, other factors may contribute to population level increases in antibiotic resistance1,2. We explored the role of climate (temperature) and additional factors on the distribution of antibiotic resistance across the United States, and here we show that increasing local temperature as well as population density are associated with increasing antibiotic resistance (percent resistant) in common pathogens. We found that an increase in temperature of 10 °C across regions was associated with an increases in antibiotic resistance of 4.2%, 2.2%, and 2.7% for the common pathogens Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. The associations between temperature and antibiotic resistance in this ecological study are consistent across most classes of antibiotics and pathogens and may be strengthening over time. These findings suggest that current forecasts of the burden of antibiotic resistance could be significant underestimates in the face of a growing population and climate change4.

  2. Antibiotic resistance of Vibrio parahaemolyticus isolated from pond-reared Litopenaeus vannamei marketed in Natal, Brazil

    Directory of Open Access Journals (Sweden)

    Ligia Maria Rodrigues de Melo

    2011-12-01

    Full Text Available Ten out of fifty fresh and refrigerated samples of shrimp (Litopenaeus vannamei collected from retailers in Natal (Rio Grande do Norte, Northeastern Brazil tested positive for Vibrio parahaemolyticus. The Kanagawa test and multiplex PCR assays were used to detect TDH and TRH hemolysins and the tdh, trh and tlh genes, respectively. All strains were Kanagawa-negative and tlh-positive. Antibiotic susceptibility testing was done for seven antibiotics by the agar diffusion technique. Five strains (50% presented multiple antibiotic resistance to ampicillin (90% and amikacin (60%, while two strains (20% displayed intermediate-level resistance to amikacin. All strains were sensitive to chloramphenicol. Intermediate-level susceptibility and/or resistance to other antibiotics ranged from 10 to 90%, with emphasis on the observed growing intermediate-level resistance to ciprofloxacin. Half our isolates yielded a multiple antibiotic resistance index above 0.2 (range: 0.14-0.29, indicating a considerable risk of propagation of antibiotic resistance throughout the food chain.

  3. Occurrence of antibiotic resistance and characterization of resistant genes and integrons in Enterobacteriaceae isolated from integrated fish farms south China

    Science.gov (United States)

    Su, Hao-Chang; Ying, Guang-Guo; Tao, Ran; Zhang, Rui-Quan; Fogarty, Lisa R.; Kolpin, Dana W.

    2011-01-01

    Antibiotics are still widely applied in animal husbandry to prevent diseases and used as feed additives to promote animal growth. This could result in antibiotic resistance to bacteria and antibiotic residues in animals. In this paper, Enterobacteriaceae isolated from four integrated fish farms in Zhongshan, South China were tested for antibiotic resistance, tetracycline resistance genes, sulfonamide resistance genes, and class 1 integrons. The Kirby-Bauer disk diffusion method and polymerase chain reaction (PCR) assays were carried out to test antibiotic susceptibility and resistance genes, respectively. Relatively high antibiotic resistance frequencies were found, especially for ampicillin (80%), tetracycline (52%), and trimethoprim (50%). Out of 203 Enterobacteriaceae isolates, 98.5% were resistant to one or more antibiotics tested. Multiple antibiotic resistance (MAR) was found highest in animal manures with a MAR index of 0.56. Tetracycline resistance genes (tet(A), tet(C)) and sulfonamide resistance genes (sul2) were detected in more than 50% of the isolates. The intI1 gene was found in 170 isolates (83.7%). Both classic and non-classic class 1 integrons were found. Four genes, aadA5, aadA22, dfr2, and dfrA17, were detected. To our knowledge, this is the first report for molecular characterization of antibiotic resistance genes in Enterobacteriaceae isolated from integrated fish farms in China and the first time that gene cassette array dfrA17-aadA5 has been detected in such fish farms. Results of this study indicated that fish farms may be a reservoir of highly diverse and abundant antibiotic resistant genes and gene cassettes. Integrons may play a key role in multiple antibiotic resistances posing potential health risks to the general public and aquaculture.

  4. Antibiotic Stimulation of a Bacillus subtilis Migratory Response

    Science.gov (United States)

    Liu, Yongjin; Kyle, Steven

    2018-01-01

    ABSTRACT Competitive interactions between bacteria reveal physiological adaptations that benefit fitness. Bacillus subtilis is a Gram-positive species with several adaptive mechanisms for competition and environmental stress. Biofilm formation, sporulation, and motility are the outcomes of widespread changes in a population of B. subtilis. These changes emerge from complex, regulated pathways for adapting to external stresses, including competition from other species. To identify competition-specific functions, we cultured B. subtilis with multiple species of Streptomyces and observed altered patterns of growth for each organism. In particular, when plated on agar medium near Streptomyces venezuelae, B. subtilis initiates a robust and reproducible mobile response. To investigate the mechanistic basis for the interaction, we determined the type of motility used by B. subtilis and isolated inducing metabolites produced by S. venezuelae. Bacillus subtilis has three defined forms of motility: swimming, swarming, and sliding. Streptomyces venezuelae induced sliding motility specifically in our experiments. The inducing agents produced by S. venezuelae were identified as chloramphenicol and a brominated derivative at subinhibitory concentrations. Upon further characterization of the mobile response, our results demonstrated that subinhibitory concentrations of chloramphenicol, erythromycin, tetracycline, and spectinomycin all activate a sliding motility response by B. subtilis. Our data are consistent with sliding motility initiating under conditions of protein translation stress. This report underscores the importance of hormesis as an early warning system for potential bacterial competitors and antibiotic exposure. IMPORTANCE Antibiotic resistance is a major challenge for the effective treatment of infectious diseases. Identifying adaptive mechanisms that bacteria use to survive low levels of antibiotic stress is important for understanding pathways to

  5. Impact of pharmacist intervention on antibiotic use and prophylactic antibiotic use in urology clean operations.

    Science.gov (United States)

    Zhou, Y; Ma, L-Y; Zhao, X; Tian, S-H; Sun, L-Y; Cui, Y-M

    2015-08-01

    The use of prophylactic antibiotics in clean operations was routine in China before 2011. Along with the appeal for using antibiotics rationally by WHO in 2011, China launched a national special rectification scheme on clinical use of antibiotics from April that year. The scheme, aimed at achieving rational use of antibiotics, made pharmacists part of the responsible medical team. Our objective was to describe the impacts of pharmacist intervention on the use of antibiotics, particularly in urology clean operations. Pharmacists participated in antibiotic stewardship programmes of the hospital and urological clinical work and conducted real-time interventions at the same time from 2011 to 2013. Data on the use of antibiotics between 2010 and 2013 in urology were collected. Comparison of the 2013 data with those of 2010 showed that antibiotic use density [AUD= DDDs*100/(The number of patients who were treated the same period*Average days in hospital). DDDs = Total drug consumption (g)/DDD. DDD is the Defined Daily Dose] decreased by 57·8(58·8%); average antibiotic cost decreased by 246·94 dollars; the cost of antibiotics as a percentage of total drug cost decreased by 27·7%; the rate of use of antibiotics decreased from 100% to 7·3%. The study illustrates how an antibiotic stewardship programme with pharmacist participation including real-time interventions can promote improved antibiotic-prescribing and significantly decrease costs. © 2015 John Wiley & Sons Ltd.

  6. Beta- Lactam Antibiotics Stimulate Biofilm Formation in Non-Typeable Haemophilus influenzae by Up-Regulating Carbohydrate Metabolism

    Science.gov (United States)

    Wu, Siva; Li, Xiaojin; Gunawardana, Manjula; Maguire, Kathleen; Guerrero-Given, Debbie; Schaudinn, Christoph; Wang, Charles; Baum, Marc M.; Webster, Paul

    2014-01-01

    Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended. PMID:25007395

  7. Beta- lactam antibiotics stimulate biofilm formation in non-typeable haemophilus influenzae by up-regulating carbohydrate metabolism.

    Directory of Open Access Journals (Sweden)

    Siva Wu

    Full Text Available Non-typeable Haemophilus influenzae (NTHi is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended.

  8. Characterization of antibiotic resistant Escherichia coli in different poultry farming systems in the Eastern Province and Kigali City of Rwanda

    Directory of Open Access Journals (Sweden)

    R. Manishimwe

    2017-09-01

    Full Text Available Antibiotic resistance has become a global public health concern as a wide num­ber of resistant bacteria are continuously emerging. Animals have been pointed out as one of the sources of antibiotic-resistant bacteria that can be transferred to humans. To enrich the data on antibiotic resistance in animals in Rwanda, a cross-sectional study was carried out in the Eastern Province and in Kigali City to isolate Escherichia coli from free-range and commercial poultry farms. Fecal samples were collected from 294 poultry farms and E. coli strains were isolated and identified. In total 241 E. coli isolates were subjected to an antibi­otic sensitivity test using five antibiotics (gentamicin, streptomycin, rifampicin, doxycycline and erythromycin. Antibiotic use in poultry was low in free-range poultry farms (30.9% compared to layer and broiler production farms (100%. Among 151 farmers who reported using antibiotics in poultry, almost half (49.7% always used antibiotics with a veterinarian prescription. Out of 241 E. coli isolates, 43.2% had a multiple resistance to four of the five antibiotics tested. Almost all the isolates (98.8% were resistant to erythromycin, 78.8% were resistant to streptomycin, 77.6% were resistant to doxycycline, 69.3% were resistant to rifampicin and only a few were resistant to gentamicin (3.7%. No statistically significant difference was observed regarding isolate resistance against antibiotics according to the farming system type. However, resistance of isolates to doxycycline was significantly higher in farms where antibiotic use was reported (84% than in farms where antibiotic use was not reported (70%. The observed antibiotic resistance of E. coli shows the existence of a potential source of resistance that can be transferred to pathogenic bacteria and impact humans as well as animals.

  9. [New antibiotics produced by Bacillus subtilis strains].

    Science.gov (United States)

    Malanicheva, I A; Kozlov, D G; Efimenko, T A; Zenkova, V A; Kastrukha, G S; Reznikova, M I; Korolev, A M; Borshchevskaia, L N; Tarasova, O D; Sineokiĭ, S P; Efremenkova, O V

    2014-01-01

    Two Bacillus subtilis strains isolated from the fruiting body of a basidiomycete fungus Pholiota squarrosa exhibited a broad range of antibacterial activity, including those against methicillin-resistant Staphylococcus aureus INA 00761 (MRSA) and Leuconostoc mes6nteroides VKPM B-4177 resistant to glycopep-> tide antibiotics, as well as antifungal activity. The strains were identified as belonging to the "B. subtilis" com- plex based on their morphological and physiological characteristics, as well as by sequencing of the 16S rRNA gene fragments. Both strains (INA 01085 and INA 01086) produced insignificant amounts of polyene antibiotics (hexaen and pentaen, respectively). Strain INA 01086 produced also a cyclic polypeptide antibiotic containing Asp, Gly, Leu, Pro, Tyr, Thr, Trp, and Phe, while the antibiotic of strain INA 01085 contained, apart from these, two unidentified nonproteinaceous amino acids. Both polypeptide antibiotics were new compounds efficient against gram-positive bacteria and able to override the natural bacterial antibiotic resistance.

  10. [Anti-amebic effect of polyenic antibiotics].

    Science.gov (United States)

    Liubimova, L K; Ovnanian, K O; Ivanova, L N

    1985-03-01

    All-Union Research technological Institute of Antibiotics and Medical Enzymes, Leningrad. Institute of Epidemiology, Virology and medical parasitology, Ministry of Health of the Armenian SSR. The effect of polyenic antibiotics made in the USSR on development of E. histolytica and E. moshkovski was studied. The following antibiotics were used: levorin and its derivatives, mycoheptin, amphotericin B, amphoglucamine and nystatin. The antibiotics were compared with emetine and metronidazole. Some drugs of the imidazole group were also included into the study. On the whole 15 drugs were tested for their antiamebic activity. All the polyenic antibiotics showed a high antiamebic activity. Levorin and its derivatives were the most active. Their MICs ranged from 0.1 to 5.38 micrograms/ml. The most active of the new imidazoles was 100 times less effective than sodium levorin. The studies show that the polyenic antibiotics have an antiamebic activity and a broad antiprotozoal spectrum.

  11. The environmental release and fate of antibiotics.

    Science.gov (United States)

    Manzetti, Sergio; Ghisi, Rossella

    2014-02-15

    Antibiotics have been used as medical remedies for over 50 years and have recently emerged as new pollutants in the environment. This review encompasses the fate of several antibiotics in the environment, including sulfonamides, nitrofurans, terfenadines, cephalosporins and cyclosporins. It investigates the cycle of transfer from humans and animals including their metabolic transformation. The results show that antibiotic metabolites are of considerable persistence and are localized to ground-water and drinking water supplies. Furthermore, the results also show that several phases of the cycle of antibiotics in the environment are not well understood, such as how low concentrations of antibiotic metabolites in the diet affect humans and animals. This review also shows that improved wastewater decontamination processes are remediating factors for these emerging pollutants. The results obtained here may help legislators and authorities in understanding the fate and transformation of antibiotics in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture.

    Science.gov (United States)

    Johnson, Timothy A; Stedtfeld, Robert D; Wang, Qiong; Cole, James R; Hashsham, Syed A; Looft, Torey; Zhu, Yong-Guan; Tiedje, James M

    2016-04-12

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if

  13. Antibiotic Exposure During the First 6 Months of Life and Weight Gain During Childhood.

    Science.gov (United States)

    Gerber, Jeffrey S; Bryan, Matthew; Ross, Rachael K; Daymont, Carrie; Parks, Elizabeth P; Localio, A Russell; Grundmeier, Robert W; Stallings, Virginia A; Zaoutis, Theoklis E

    Early-life antibiotic exposure has been associated with increased adiposity in animal models, mediated through the gut microbiome. Infant antibiotic exposure is common and often inappropriate. Studies of the association between infant antibiotics and childhood weight gain have reported inconsistent results. To assess the association between early-life antibiotic exposure and childhood weight gain. Retrospective, longitudinal study of singleton births and matched longitudinal study of twin pairs conducted in a network of 30 pediatric primary care practices serving more than 200,000 children of diverse racial and socioeconomic backgrounds across Pennsylvania, New Jersey, and Delaware. Children born between November 1, 2001, and December 31, 2011, at 35 weeks' gestational age or older, with birth weight of 2000 g or more and in the fifth percentile or higher for gestational age, and who had a preventive health visit within 14 days of life and at least 2 additional visits in the first year of life. Children with complex chronic conditions and those who received long-term antibiotics or multiple systemic corticosteroid prescriptions were excluded. We included 38,522 singleton children and 92 twins (46 matched pairs) discordant in antibiotic exposure. Final date of follow-up was December 31, 2012. Systemic antibiotic use in the first 6 months of life. Weight, measured at preventive health visits from age 6 months through 7 years. Of 38,522 singleton children (50% female; mean birth weight, 3.4 kg), 5287 (14%) were exposed to antibiotics during the first 6 months of life (at a mean age of 4.3 months). Antibiotic exposure was not significantly associated with rate of weight change (0.7%; 95% CI, -0.1% to 1.5%; P = .07, equivalent to approximately 0.05 kg; 95% CI, -0.004 to 0.11 kg of added weight gain between age 2 years and 5 years). Among 92 twins (38% female; mean birth weight, 2.8 kg), the 46 twins who were exposed to antibiotics during the first 6 months of life

  14. Synthetic biology platform technologies for antimicrobial applications.

    Science.gov (United States)

    Braff, Dana; Shis, David; Collins, James J

    2016-10-01

    The growing prevalence of antibiotic resistance calls for new approaches in the development of antimicrobial therapeutics. Likewise, improved diagnostic measures are essential in guiding the application of targeted therapies and preventing the evolution of therapeutic resistance. Discovery platforms are also needed to form new treatment strategies and identify novel antimicrobial agents. By applying engineering principles to molecular biology, synthetic biologists have developed platforms that improve upon, supplement, and will perhaps supplant traditional broad-spectrum antibiotics. Efforts in engineering bacteriophages and synthetic probiotics demonstrate targeted antimicrobial approaches that can be fine-tuned using synthetic biology-derived principles. Further, the development of paper-based, cell-free expression systems holds promise in promoting the clinical translation of molecular biology tools for diagnostic purposes. In this review, we highlight emerging synthetic biology platform technologies that are geared toward the generation of new antimicrobial therapies, diagnostics, and discovery channels. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review.

    Science.gov (United States)

    Zorriehzahra, Mohammad Jalil; Delshad, Somayeh Torabi; Adel, Milad; Tiwari, Ruchi; Karthik, K; Dhama, Kuldeep; Lazado, Carlo C

    2016-12-01

    Wide and discriminate use of antibiotics has resulted in serious biological and ecological concerns, especially the emergence of antibiotic resistance. Probiotics, known as beneficial microbes, are being proposed as an effective and eco-friendly alternative to antibiotics. They were first applied in aquaculture species more than three decades ago, but considerable attention had been given only in the early 2000s. Probiotics are defined as live or dead, or even a component of the microorganisms that act under different modes of action in conferring beneficial effects to the host or to its environment. Several probiotics have been characterized and applied in fish and a number of them are of host origin. Unlike some disease control alternatives being adapted and proposed in aquaculture where actions are unilateral, the immense potential of probiotics lies on their multiple mechanisms in conferring benefits to the host fish and the rearing environment. The staggering number of probiotics papers in aquaculture highlights the multitude of advantages from these microorganisms and conspicuously position them in the dynamic search for health-promoting alternatives for cultured fish. This paper provides an update on the use of probiotics in finfish aquaculture, particularly focusing on their modes of action. It explores the contemporary understanding of their spatial and nutritional competitiveness, inhibitory metabolites, environmental modification capability, immunomodulatory potential and stress-alleviating mechanism. This timely update affirms the importance of probiotics in fostering sustainable approaches in aquaculture and provides avenues in furthering its research and development.

  16. Antibiotic use for irreversible pulpitis.

    Science.gov (United States)

    Agnihotry, Anirudha; Fedorowicz, Zbys; van Zuuren, Esther J; Farman, Allan G; Al-Langawi, Jassim Hasan

    2016-02-17

    Irreversible pulpitis, which is characterised by acute and intense pain, is one of the most frequent reasons that patients attend for emergency dental care. Apart from removal of the tooth, the customary way of relieving the pain of irreversible pulpitis is by drilling into the tooth, removing the inflamed pulp (nerve) and cleaning the root canal. However, a significant number of dentists continue to prescribe antibiotics to stop the pain of irreversible pulpitis.This review updates the previous version published in 2013. To assess the effects of systemic antibiotics for irreversible pulpitis. We searched the Cochrane Oral Health Group's Trials Register (to 27 January 2016); the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2015, Issue 12); MEDLINE via Ovid (1946 to 27 January 2016); EMBASE via Ovid (1980 to 27 January 2016), ClinicalTrials.gov (to 27 January 2016) and the WHO International Clinical Trials Registry Platform (to 27 January 2016). There were no language restrictions in the searches of the electronic databases. Randomised controlled trials which compared pain relief with systemic antibiotics and analgesics, against placebo and analgesics in the acute preoperative phase of irreversible pulpitis. Two review authors screened studies and extracted data independently. We assessed the quality of the evidence of included studies using GRADEpro software. Pooling of data was not possible and a descriptive summary is presented. One trial assessed at low risk of bias, involving 40 participants was included in this update of the review. The quality of the body of evidence was rated low for the different outcomes. There was a close parallel distribution of the pain ratings in both the intervention and placebo groups over the seven-day study period. There was insufficient evidence to claim or refute a benefit for penicillin for pain intensity. There was no significant difference in the mean total number of ibuprofen tablets over the

  17. Antibiotic resistance of Vibrio parahaemolyticus isolated from coastal seawater and sediment in Malaysia

    Science.gov (United States)

    Drais, Ashraf Abbas; Usup, Gires; Ahmad, Asmat

    2016-11-01

    Vibrio parahaemolyticus is widely recognized pathogenic Vibrio species due to numerous outbreaks and its' wide occurrence in the marine environment. A total of 50 Vibrio parahaemolyticus isolates were isolated from seawater and sediments in Malaysia were tested for sensitivity to 19 antibiotics using disc diffusion method. It was found that all isolates were resistant towards ampicillin (10 μg), penicillin (10 μg), methicillin (5 μg), and novobiocin (5 μg); but exhibit sensitivity to chloramphenicol (30 μg) and gentamicin (100 μg). The low percentage of sensitivity towards antibiotics was observed with the following antibiotics; amoxicillin 10μg (98%), fluconazole 25μg (98%), erythromycin 15 μg (92%), vancomycin 30 μg (92%), bacitracin 10 μg (84%), carbenicillin 100 μg (84%), cephalothin 30 μg (52%), nitrofurantion 200 μg (52%), ciprofloxacin 5 μg (40%), tetracycline 30 μg (20%), kanamycin 30 μg (10%), nalidixic acid 30 μg (10%) and streptomycin 20 μg (6%). Multiple antibiotic resistance (MAR) index was found to be 0.42-0.78. All the isolates were multi-resistant to these antibiotics. This indicates that the isolates originate from high-risk source of contamination where antibiotics are often used. Thus, there is a need for supervised use of antibiotics and frequent surveillance of V. parahaemolyticus strains for antimicrobial resistance. The presence of V. parahaemolyticus in coastal water with a high value of multiple antibiotic resistance indexes (MARI) can increase the risk of exposure to human and regular monitoring program for this potential human pathogenic bacterium is important.

  18. [INHALED ANTIBIOTICS IN TREATMENT OF NOSOCOMIAL PNEUMONIA].

    Science.gov (United States)

    Kuzovlev, A N; Moroz, V V; Golubev, A M

    2015-01-01

    Nosocomial pneumonia is the most common infection in intensive care units. Currently the problem of resistance of noso-comial pathogens to miost of antibiotics is crucial. Using of inhaled antibiotics in combination with intravenous drugs is eff ective and safe method for treatment of nosocomial pneumonia. The literature review describes current opportunities of ihhaled antibiotic therapy of nosocomial pneumonia, descriptions of drugs, the advantages and disadvantages of this treatment. Special attention is paid for using inhaled aminoglycosides for nosocomial pneumonia.

  19. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy

    NARCIS (Netherlands)

    Stigter, M.; Bezemer, J.M.; de Groot, K.; Layrolle, P.

    2004-01-01

    Carbonated hydroxyapatite (CHA) coatings were applied onto titanium implants by using a biomimetic precipitation method. Different antibiotics were incorporated into the CHA coatings and their release and efficacy against bacteria growth were studied in vitro. The following antibiotics were used

  20. Genomic Analysis Reveals Distinct Concentration-Dependent Evolutionary Trajectories for Antibiotic Resistance in Escherichia coli

    Science.gov (United States)

    Mogre, Aalap; Sengupta, Titas; Veetil, Reshma T.; Ravi, Preethi; Seshasayee, Aswin Sai Narain

    2014-01-01

    Evolution of bacteria under sublethal concentrations of antibiotics represents a trade-off between growth and resistance to the antibiotic. To understand this trade-off, we performed in vitro evolution of laboratory Escherichia coli under sublethal concentrations of the aminoglycoside kanamycin over short time durations. We report that fixation of less costly kanamycin-resistant mutants occurred earlier in populations growing at lower sublethal concentration of the antibiotic, compared with those growing at higher sublethal concentrations; in the latter, resistant mutants with a significant growth defect persisted longer. Using deep sequencing, we identified kanamycin resistance-conferring mutations, which were costly or not in terms of growth in the absence of the antibiotic. Multiple mutations in the C-terminal end of domain IV of the translation elongation factor EF-G provided low-cost resistance to kanamycin. Despite targeting the same or adjacent residues of the protein, these mutants differed from each other in the levels of resistance they provided. Analysis of one of these mutations showed that it has little defect in growth or in synthesis of green fluorescent protein (GFP) from an inducible plasmid in the absence of the antibiotic. A second class of mutations, recovered only during evolution in higher sublethal concentrations of the antibiotic, deleted the C-terminal end of the ATP synthase shaft. This mutation confers basal-level resistance to kanamycin while showing a strong growth defect in the absence of the antibiotic. In conclusion, the early dynamics of the development of resistance to an aminoglycoside antibiotic is dependent on the levels of stress (concentration) imposed by the antibiotic, with the evolution of less costly variants only a matter of time. PMID:25281544

  1. Biology Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Describes laboratory procedures, demonstrations, and classroom materials, including "diet poker" (nutrition game); an experiment on enzyme characteristics; demonstrations of yeast anaerobic respiration and color preference in Calliphora larvae; method to extract eugenol from clove oil to show antibiotic properties; and Benedict's test.…

  2. Bactericidal antibiotics induce programmed metabolic toxicity

    Directory of Open Access Journals (Sweden)

    Aislinn D. Rowan

    2016-03-01

    Full Text Available The misuse of antibiotics has led to the development and spread of antibiotic resistance in clinically important pathogens. These resistant infections are having a significant impact on treatment outcomes and contribute to approximately 25,000 deaths in the U.S. annually. If additional therapeutic options are not identified, the number of annual deaths is predicted to rise to 317,000 in North America and 10,000,000 worldwide by 2050. Identifying therapeutic methodologies that utilize our antibiotic arsenal more effectively is one potential way to extend the useful lifespan of our current antibiotics. Recent studies have indicated that modulating metabolic activity is one possible strategy that can impact the efficacy of antibiotic therapy. In this review, we will address recent advances in our knowledge about the impacts of bacterial metabolism on antibiotic effectiveness and the impacts of antibiotics on bacterial metabolism. We will particularly focus on two studies, Lobritz, et al. (PNAS, 112(27: 8173-8180 and Belenky et al. (Cell Reports, 13(5: 968–980 that together demonstrate that bactericidal antibiotics induce metabolic perturbations that are linked to and required for bactericidal antibiotic toxicity.

  3. Antibiotic research and development: business as usual?

    Science.gov (United States)

    Harbarth, S; Theuretzbacher, U; Hackett, J

    2015-01-01

    The global burden of antibiotic resistance is tremendous and, without new anti-infective strategies, will continue to increase in the coming decades. Despite the growing need for new antibiotics, few pharmaceutical companies today retain active antibacterial drug discovery programmes. One reason is that it is scientifically challenging to discover new antibiotics that are active against the antibiotic-resistant bacteria of current clinical concern. However, the main hurdle is diminishing economic incentives. Increased global calls to minimize the overuse of antibiotics, the cost of meeting regulatory requirements and the low prices of currently marketed antibiotics are strong deterrents to antibacterial drug development programmes. New economic models that create incentives for the discovery of new antibiotics and yet reconcile these incentives with responsible antibiotic use are long overdue. DRIVE-AB is a €9.4 million public-private consortium, funded by the EU Innovative Medicines Initiative, that aims to define a standard for the responsible use of antibiotics and to develop, test and recommend new economic models to incentivize investment in producing new anti-infective agents. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Ileumycin, a new antibiotic against Glomerella Cingulata.

    Science.gov (United States)

    Kawakami, Y; Matsuwaka, S; Otani, T; Kondo, H; Nakamura, S

    1978-02-01

    A new antifungal antibiotic, named ileumycin, was isolated from culture broth of streptomyces H 698-SY2, which was identified as S. lavendulae. The antibiotic was recovered from the culture filtrate by adsorption on Amberlite XAD-II and elution with aqueous methanol and was further purified by ion-exchange column chromatography on SE-cellulose and followed by partition chromatography on silica gel. The antibiotic was named ileumycin, because isoleucine was detected in the acid hydrolyzate of the antibiotic. Ileumycin exhibited antimicrobial activity against only a few species of fungi.

  5. ASP Strategies and Appropriate Antibiotic Use

    Science.gov (United States)

    Lee, Brian R; Tribble, Alison; Handy, Lori; Gerber, Jeffrey S; Hersh, Adam L; Kronman, Matthew; Terrill, Cindy; Newland, Jason

    2017-01-01

    Abstract Background The Infectious Diseases Society of America (IDSA) recommends hospitals implement antimicrobial stewardship programs (ASP) in order to decrease inappropriate antibiotic use due to the rise in antibiotic-resistant infections. Data are limited on the extent to which different ASP strategies influence appropriate antibiotic use. Methods We conducted an online survey in 2016 of U.S. Children’s Hospitals to collect hospital-level information on dedicated ASP effort, ASP monitoring activities, use of audit-feedback, formulary restrictions, rapid diagnostics, etc. During the same period the ASP teams at these hospitals completed 3 point prevalence surveys that documented details on all admitted patients 0–17 years receiving any antibiotics, determined what ASP modifications could be made, and if the antibiotic was appropriate. We employed hierarchical, multivariable logit models to examine which ASP-related, hospital-level strategies were associated with appropriate antibiotic use. Results Thirty hospitals participated. A total of 6,921 patients were included, representing 10,068 total antibiotics. Of these orders, 8,554 (85.0%) were categorized as appropriate, though this varied across sites (range: 68-92%). Additionally, 78.2% of antibiotics did not have recommended modifications. Appropriate antibiotic use was significantly higher for hospitals that relied on rapid diagnostics (aOR: 1.6; P Terrill, Merck: Grant Investigator, Research grant Allergan: Grant Investigator, Research grant. J. Newland, Merck: Grant Investigator, Research grant. Allergan: Grant Investigator, Research grant

  6. Antibiotic Dosing in Continuous Renal Replacement Therapy.

    Science.gov (United States)

    Shaw, Alexander R; Mueller, Bruce A

    2017-07-01

    Appropriate antibiotic dosing is critical to improve outcomes in critically ill patients with sepsis. The addition of continuous renal replacement therapy makes achieving appropriate antibiotic dosing more difficult. The lack of continuous renal replacement therapy standardization results in treatment variability between patients and may influence whether appropriate antibiotic exposure is achieved. The aim of this study was to determine if continuous renal replacement therapy effluent flow rate impacts attaining appropriate antibiotic concentrations when conventional continuous renal replacement therapy antibiotic doses were used. This study used Monte Carlo simulations to evaluate the effect of effluent flow rate variance on pharmacodynamic target attainment for cefepime, ceftazidime, levofloxacin, meropenem, piperacillin, and tazobactam. Published demographic and pharmacokinetic parameters for each antibiotic were used to develop a pharmacokinetic model. Monte Carlo simulations of 5000 patients were evaluated for each antibiotic dosing regimen at the extremes of Kidney Disease: Improving Global Outcomes guidelines recommended effluent flow rates (20 and 35 mL/kg/h). The probability of target attainment was calculated using antibiotic-specific pharmacodynamic targets assessed over the first 72 hours of therapy. Most conventional published antibiotic dosing recommendations, except for levofloxacin, reach acceptable probability of target attainment rates when effluent rates of 20 or 35 mL/kg/h are used. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  7. Plasma-potentiated small molecules—possible alternative to antibiotics?

    Science.gov (United States)

    Bazaka, Kateryna; Bazaka, Olha; Levchenko, Igor; Xu, Shuyan; Ivanova, Elena P.; Keidar, Michael; (Ken Ostrikov, Kostya

    2017-09-01

    The efficacy of the existing arsenal of antibiotics is continuously compromised by their indiscriminative and often excessive use. The antibiotic arsenal can be expanded with agents that have different mechanisms of activity to conventional drugs, such as plant-derived natural antimicrobial small molecules, yet these often lack sufficient activity and selectivity to fulfill the antibiotics requirements and conventional thermochemical methods of their transient activation may not be compatible with biomedical applications. Here, non-equilibrium conditions of atmospheric-pressure plasma are used for rapid, single-step potentiation of activity of select terpenes without the use of chemicals or heating. Substantial potentiation of activity against Staphylococcus aureus cells in planktonic and biofilm states is observed in both inherently antibacterial terpenes, e.g. terpinen-4-ol, and compounds generally considered to have limited effect against S. aureus, e.g. γ-terpinene. The improved biological activity may arise, at least in part, from the changes in the physico-chemical properties of the terpenes induced by plasma-generated chemical species and physical effects, such as electric fields and UV irradiation. This activation approach is generic, and thus can potentially be applied to other molecules and their mixtures in an effort to expand the range of effective antimicrobial agents for deactivation of pathogenic organisms in hygiene, medical and food applications.

  8. Where antibiotic resistance mutations meet quorum-sensing

    Directory of Open Access Journals (Sweden)

    Rok Krašovec

    2014-06-01

    Full Text Available We do not need to rehearse the grim story of the global rise of antibiotic resistant microbes. But what if it were possible to control the rate with which antibiotic resistance evolves by de novo mutation? It seems that some bacteria may already do exactly that: they modify the rate at which they mutate to antibiotic resistance dependent on their biological environment. In our recent study [Krašovec, et al. Nat. Commun. (2014, 5, 3742] we find that this modification depends on the density of the bacterial population and cell-cell interactions (rather than, for instance, the level of stress. Specifically, the wild-type strains of Escherichia coli we used will, in minimal glucose media, modify their rate of mutation to rifampicin resistance according to the density of wild-type cells. Intriguingly, the higher the density, the lower the mutation rate (Figure 1. Why this novel density-dependent ‘mutation rate plasticity’ (DD-MRP occurs is a question at several levels. Answers are currently fragmentary, but involve the quorum-sensing gene luxS and its role in the activated methyl cycle.

  9. Microbiological and biochemical studies on certain antibiotic-resistant bacteria isolated from certain clinical specimens

    International Nuclear Information System (INIS)

    Nada, H.M.AL.M.

    2008-01-01

    Infection is a dynamic process involving invasion of the body by pathogenic microorganisms and reactions of the tissues to microorganisms and their toxins. Pathogenic microorganisms isolated from clinical samples are of great threat to human health.The outcome of an infection depends on the virulence of the pathogen and the relative degree of resistance or susceptibility to antimicrobial chemotherapy. Antimicrobial agents interfere with specific processes that are essential for growth and division.Development of antibiotic resistance in bacteria is a problem of great concern. The high prevalence of resistant bacteria seems to be related to uncontrolled usage of antibiotics. B-lactamases are the most common cause of bacterial resistance to B-lactam antimicrobial agents, and it is one of the most important reason for increasing the resistance in pathogenic bacteria against some antibiotics especially those acting on inhibition of cell wall synthesis. One hundred and seven clinical samples and specimens were collected from public, private hospitals and National Cancer Institute (NCI) in Cairo, Egypt. Out of them 72 cases positive for microbial infection. Twelve cases were showed mixed infection. Eighty four isolates of pathogenic bacteria and yeast were collected from single and mixed culture. Susceptibilities of the isolates to 20 different antimicrobial agents were determined according to Kirby-Bauer method. Nine multi-drug resistant gram-negative bacterial strains were identified by (Micro Scan WalkAway 96 SI System). Six of them urine isolates, 2 wound (pus) isolates and one sputum isolate. The identified strains were exposed to in-vitro gamma irradiation at dose level of 24.4 Gy, which is biologically equivalent to the fractionated multiple therapeutic dose used in the protocol of cancer treatment of some patients. The antimicrobial susceptibility of the nine multi-drug resistant strains were carried out by disk diffusion method before and after irradiation

  10. Microbiological and biochemical studies on certain antibiotic-resistant bacteria isolated from certain clinical specimens

    Energy Technology Data Exchange (ETDEWEB)

    Nada, H M.AL.M. [National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    Infection is a dynamic process involving invasion of the body by pathogenic microorganisms and reactions of the tissues to microorganisms and their toxins. Pathogenic microorganisms isolated from clinical samples are of great threat to human health.The outcome of an infection depends on the virulence of the pathogen and the relative degree of resistance or susceptibility to antimicrobial chemotherapy. Antimicrobial agents interfere with specific processes that are essential for growth and division.Development of antibiotic resistance in bacteria is a problem of great concern. The high prevalence of resistant bacteria seems to be related to uncontrolled usage of antibiotics. B-lactamases are the most common cause of bacterial resistance to B-lactam antimicrobial agents, and it is one of the most important reason for increasing the resistance in pathogenic bacteria against some antibiotics especially those acting on inhibition of cell wall synthesis. One hundred and seven clinical samples and specimens were collected from public, private hospitals and National Cancer Institute (NCI) in Cairo, Egypt. Out of them 72 cases positive for microbial infection. Twelve cases were showed mixed infection. Eighty four isolates of pathogenic bacteria and yeast were collected from single and mixed culture. Susceptibilities of the isolates to 20 different antimicrobial agents were determined according to Kirby-Bauer method. Nine multi-drug resistant gram-negative bacterial strains were identified by (Micro Scan WalkAway 96 SI System). Six of them urine isolates, 2 wound (pus) isolates and one sputum isolate. The identified strains were exposed to in-vitro gamma irradiation at dose level of 24.4 Gy, which is biologically equivalent to the fractionated multiple therapeutic dose used in the protocol of cancer treatment of some patients. The antimicrobial susceptibility of the nine multi-drug resistant strains were carried out by disk diffusion method before and after irradiation

  11. Dissemination of health information through social networks: twitter and antibiotics.

    Science.gov (United States)

    Scanfeld, Daniel; Scanfeld, Vanessa; Larson, Elaine L

    2010-04-01

    This study reviewed Twitter status updates mentioning "antibiotic(s)" to determine overarching categories and explore evidence of misunderstanding or misuse of antibiotics. One thousand Twitter status updates mentioning antibiotic(s) were randomly selected for content analysis and categorization. To explore cases of potential misunderstanding or misuse, these status updates were mined for co-occurrence of the following terms: "cold + antibiotic(s)," "extra + antibiotic(s)," "flu + antibiotic(s)," "leftover + antibiotic(s)," and "share + antibiotic(s)" and reviewed to confirm evidence of misuse or misunderstanding. Of the 1000 status updates, 971 were categorized into 11 groups: general use (n = 289), advice/information (n = 157), side effects/negative reactions (n = 113), diagnosis (n = 102), resistance (n = 92), misunderstanding and/or misuse (n = 55), positive reactions (n = 48), animals (n = 46), other (n = 42), wanting/needing (n = 19), and cost (n = 8). Cases of misunderstanding or abuse were identified for the following combinations: "flu + antibiotic(s)" (n = 345), "cold + antibiotic(s)" (n = 302), "leftover + antibiotic(s)" (n = 23), "share + antibiotic(s)" (n = 10), and "extra + antibiotic(s)" (n = 7). Social media sites offer means of health information sharing. Further study is warranted to explore how such networks may provide a venue to identify misuse or misunderstanding of antibiotics, promote positive behavior change, disseminate valid information, and explore how such tools can be used to gather real-time health data. 2010 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  12. World alliance against antibiotic resistance: The WAAAR declaration against antibiotic resistance.

    Science.gov (United States)

    Carlet, Jean

    2015-01-01

    We must change how antibiotics are used and adopt proactive strategies, similar to those used to save endangered species. Preservation of the efficacy of antibiotics and to stabilization of antibiotic-susceptible bacterial ecosystems should be global goals. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  13. Newly approved antibiotics and antibiotics reserved for resistant infections: Implications for emergency medicine.

    Science.gov (United States)

    Mazer-Amirshahi, Maryann; Pourmand, Ali; May, Larissa

    2017-01-01

    Millions of patients are evaluated every year in the emergency department (ED) for bacterial infections. Emergency physicians often diagnose and prescribe initial antibiotic therapy for a variety of bacterial infections, ranging from simple urinary tract infections to severe sepsis. In life-threatening infections, inappropriate choice of initial antibiotic has been shown to increase morbidity and mortality. As such, initiation of appropriate antibiotic therapy on the part of the emergency physician is critical. Increasing rates of antibiotic resistance, drug allergies, and antibiotic shortages further complicates the choice of antibiotics. Patients may have a history of prior resistant infections or culture data indicating that common first-line antibiotics used in the ED may be ineffective. In recent years, there have been several new antibiotic approvals as well as renewed interest in second and third line antibiotics because of the aforementioned concerns. In addition, several newly approved antibiotics have the advantage of being administered once weekly or even as a single infusion, which has the potential to decrease hospitalizations and healthcare costs. This article reviews newly approved antibiotics and antibiotics used to treat resistant infections with a focus on implications for emergency medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment

    DEFF Research Database (Denmark)

    Pruden, Amy; Larsson, D.G. Joakim; Amézquita, Alejandro

    2013-01-01

    Background: There is growing concern worldwide about the role of polluted soil and water environments in the development and dissemination of antibiotic resistance. Objective: Our aim in this study was to identify management options for reducing the spread of antibiotics and antibiotic resistance...

  15. 1H NMR analysis of the heteroassociation of antitumor antibiotics novotrone and actinomycin D in aqueous solution

    International Nuclear Information System (INIS)

    Evstigneev, M.P.; Rozvadovskaya, A.O.; Kisurkin, D.V.; Dehvis, D.B.; Veselkov, A.N.

    2004-01-01

    The heteroassociation of antitumor antibiotics novotrone (NOV) and actinomycin D (AMD) in aqueous solution has been studied by one- and two-dimensional 1 H-NMR spectroscopy (500 MHz) in order to elucidate the molecular mechanism of the action of antibiotics in combination. It has been shown that heterocomplexes become predominant in the mixed solution at r > 12. It is concluded that aromatic antibiotics (e. g. novotrone and actinomycin D) may form energetically stable heteroassociation complexes in aqueous solution and hence affect their medical-biological activity

  16. Perioperative antibiotics for prevention of acute endophthalmitis after cataract surgery

    Science.gov (United States)

    Gower, Emily W; Lindsley, Kristina; Tulenko, Samantha E; Nanji, Afshan A; Leyngold, Ilya; McDonnell, Peter J

    2017-01-01

    antibiotics alone (risk ratio (RR) 0.33, 95% confidence interval (CI) 0.12 to 0.92 (periocular penicillin and topical chloramphenicol-sulfadimidine; 6618 participants; moderate-certainty evidence); and RR 0.20, 95% CI 0.04 to 0.91 (intracameral cefuroxime and topical levofloxacin; 8101 participants; high-certainty evidence)). One study, which compared fixed versus separate instillation of gatifloxacin and prednisolone, was not sufficiently powered to detect differences in endophthalmitis between groups (very low-certainty evidence). Another study found no evidence of a difference in endophthalmitis when comparing subconjunctival versus retrobulbar antibiotic injections (RR 0.85, 95% CI 0.55 to 1.32; 77,015 participants; moderate-certainty evidence). Two studies reported any visual acuity outcome; one study, which compared fixed versus separate instillation of gatifloxacin and prednisolone, reported only that mean visual acuity was the same for both groups at 20 days postoperation. In the other study, the difference in the proportion of eyes with final visual acuity greater than 20/40 following endophthalmitis between groups receiving intracameral cefuroxime with or without topical levofloxacin compared with no intracameral cefuroxime was uncertain (RR 0.69, 95% CI 0.22 to 2.11; 29 participants; moderate-certainty evidence). Only one study reported adverse events (1 of 129 eyes had pupillary membrane in front of the intraocular lens and 8 eyes showed posterior capsule opacity). No study reported outcomes related to quality of life or economic outcomes. Authors’ conclusions Multiple measures for preventing endophthalmitis following cataract surgery have been studied. High-certainty evidence shows that injection with cefuroxime with or without topical levofloxacin lowers the chance of endophthalmitis after surgery, and there is moderate-certainty evidence to suggest that using antibiotic eye drops in addition to antibiotic injection probably lowers the chance of

  17. Antibiotic Susceptibility Patterns of Bacterial Isolates from Pus Samples in a Tertiary Care Hospital of Punjab, India

    Directory of Open Access Journals (Sweden)

    Rugira Trojan

    2016-01-01

    Full Text Available We determined the prevalence and antibiotic susceptibilities patterns of bacterial isolates from pus samples collected from patients in a tertiary care hospital of Punjab, India. E. coli was the most prevalent pathogen (51.2% followed by Staphylococcus aureus (21%, Klebsiella pneumoniae (11.6%, Pseudomonas aeruginosa (5.8%, Citrobacter spp. (3.5%, Acinetobacter baumannii (2.3%, Proteus mirabilis (2.3%, and Streptococcus spp. (2.3%. E. coli, K. pneumoniae, A. baumannii, and Citrobacter isolates were resistant to multiple antibiotics including higher generation cephalosporins. S. aureus and Streptococcus isolates were sensitive to cloxacillin and vancomycin. However, P. aeruginosa, P. mirabilis, and Streptococcus isolates were found to be less resistant to the spectrum of antibiotics tested. Overall, our findings indicate the prevalence of resistance to different classes of antibiotics in bacterial isolates from pus infections and hence highlight the need for effective surveillance, regulator reporting, and antibiogram-guided antibiotic prescription.

  18. Antibiotic interaction with phospholipid monolayers

    International Nuclear Information System (INIS)

    Gambinossi, F.; Mecheri, B.; Caminati, G.; Nocentini, M.; Puggelli, M.; Gabrielli, G.

    2002-01-01

    We studied the interactions of tetracycline (TC) antibiotic molecules with phospholipid monolayers with the two-fold aim of elucidating the mechanism of action and providing a first step for the realization of bio-mimetic sensors for such drugs by means of the Langmuir-Blodgett technique. We examined spreading monolayers of three phospholipids in the presence of tetracycline in the subphase by means of surface pressure-area and surface potential-area isotherms as a function of bulk pH. We selected phospholipids with hydrophobic chains of the same length but polar head groups differing either in dimensions and protonation equilibria, i.e. dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidic acid (DPPA). The interaction of tetracycline with the three phospholipids was found to be highly dependent on the electric charge of the antibiotic and on the ionization state of the lipid. Significant interactions are established between the negatively charged form of dipalmitoylphosphatidic acid and the zwitterionic form of tetracycline. The drug was found to migrate at the interface where it is adsorbed underneath or/and among the head groups, depending on the surface pressure of the film, whereas penetration through the hydrophobic layer was excluded for all the three phospholipids

  19. [Health economics and antibiotic therapy].

    Science.gov (United States)

    Leclercq, P; Bigdéli, M

    1995-01-01

    In the field of antibiotic therapy, particularly the methods of economic evaluation hold one's attention within the wide range of health economics' applications. Several tools allow a comparison of the outcomes of alternative strategies and thereby guide choices to the most appropriate solutions. After a brief recall of the methods classically used to evaluate health care strategy, the authors stress the importance and difficulty of fixing and applying a correct and satisfactory procedure for evaluation. An evaluation example of antibiotic therapy allows to illustrate the application of the principles confronting a field in which competition is intense and economic stakes stay large--a fact which naturally yields to seek after objective decision making criteria. The health care policies drawn by public authorities as well as the marketing strategies of the health sector trade are partly based on such evaluations. If these techniques are not intended for the practitioner in the first place, they should not be indifferent to him since they influence health authorities and thereby indirectly affect the therapeutic freedom of the physician.

  20. Antibiotic interaction with phospholipid monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Gambinossi, F.; Mecheri, B.; Caminati, G.; Nocentini, M.; Puggelli, M.; Gabrielli, G

    2002-12-01

    We studied the interactions of tetracycline (TC) antibiotic molecules with phospholipid monolayers with the two-fold aim of elucidating the mechanism of action and providing a first step for the realization of bio-mimetic sensors for such drugs by means of the Langmuir-Blodgett technique. We examined spreading monolayers of three phospholipids in the presence of tetracycline in the subphase by means of surface pressure-area and surface potential-area isotherms as a function of bulk pH. We selected phospholipids with hydrophobic chains of the same length but polar head groups differing either in dimensions and protonation equilibria, i.e. dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidic acid (DPPA). The interaction of tetracycline with the three phospholipids was found to be highly dependent on the electric charge of the antibiotic and on the ionization state of the lipid. Significant interactions are established between the negatively charged form of dipalmitoylphosphatidic acid and the zwitterionic form of tetracycline. The drug was found to migrate at the interface where it is adsorbed underneath or/and among the head groups, depending on the surface pressure of the film, whereas penetration through the hydrophobic layer was excluded for all the three phospholipids.