WorldWideScience

Sample records for multiple access channels

  1. Low-sampling-rate M-ary multiple access UWB communications in multipath channels

    KAUST Repository

    Alkhodary, Mohammad T.

    2015-08-31

    The desirable characteristics of ultra-wideband (UWB) technology are challenged by formidable sampling frequency, performance degradation in the presence of multi-user interference, and complexity of the receiver due to the channel estimation process. In this paper, a low-rate-sampling technique is used to implement M-ary multiple access UWB communications, in both the detection and channel estimation stages. A novel approach is used for multiple-access-interference (MAI) cancelation for the purpose of channel estimation. Results show reasonable performance of the proposed receiver for different number of users operating many times below Nyquist rate.

  2. Low-sampling-rate M-ary multiple access UWB communications in multipath channels

    KAUST Repository

    Alkhodary, Mohammad T.; Ballal, Tarig; Al-Naffouri, Tareq Y.; Muqaibel, Ali H.

    2015-01-01

    The desirable characteristics of ultra-wideband (UWB) technology are challenged by formidable sampling frequency, performance degradation in the presence of multi-user interference, and complexity of the receiver due to the channel estimation process. In this paper, a low-rate-sampling technique is used to implement M-ary multiple access UWB communications, in both the detection and channel estimation stages. A novel approach is used for multiple-access-interference (MAI) cancelation for the purpose of channel estimation. Results show reasonable performance of the proposed receiver for different number of users operating many times below Nyquist rate.

  3. On Buffer-Aided Multiple-Access Relay Channel

    DEFF Research Database (Denmark)

    Liu, Rongkuan; Popovski, Petar; Wang, Gang

    2016-01-01

    This letter treats uplink scenario where M user equipments (UEs) send to a base station (BS), possibly via a common relay station (RS) that is equipped with a buffer. This is a multiple-access relay channel aided by a buffer. We devise a protocol in which the transmission mode is selected...... entirely at the BS, while simultaneously a number of UEs sends new messages to the BS. The results show that the adaptive selection of direct and buffer-aided relay transmissions leads to significant average throughput gains....

  4. Iterative Pilot-Layer Aided Channel Estimation with Emphasis on Interleave-Division Multiple Access Systems

    OpenAIRE

    Schoeneich Hendrik; Hoeher Peter Adam

    2006-01-01

    Channel estimation schemes suitable for interleave-division multiple access (IDMA) systems are presented. Training and data are superimposed. Training-based and semiblind linear channel estimators are derived and their performance is discussed and compared. Monte Carlo simulation results are presented showing that the derived channel estimators in conjunction with a superimposed pilot sequence and chip-by-chip processing are able to track fast-fading frequency-selective channels. As opposed ...

  5. Nonadditivity of quantum capacities of quantum multiple-access channels and the butterfly network

    International Nuclear Information System (INIS)

    Huang Peng; He Guangqiang; Zhu Jun; Zeng Guihua

    2011-01-01

    Multipartite quantum information transmission without additional classical resources is investigated. We show purely quantum superadditivity of quantum capacity regions of quantum memoryless multiple-access (MA) channels, which are not entanglement breaking. Also, we find that the superadditivity holds when the MA channel extends to the quantum butterfly network, which can achieve quantum network coding. The present widespread effects for the channels which enable entanglement distribution have not been revealed for multipartite scenarios.

  6. Particle Filtering for Multiple Access DS/CDMA Systems DS/CDMA Channel Estimation

    Directory of Open Access Journals (Sweden)

    Rafael Oliveira Ribeiro

    2013-09-01

    Full Text Available This article discusses computational implementation aspects and performance of a Bayesian methodology, namely particle filter (PF. The PF channel estimation technique is directly applied to the channel coefficients estimation of DS/CDMA systems. Simulation results for non-line-of-sight (NLOS Rayleigh fading channel propagation have indicated that the bootstrap PF estimator is capable to provide RMSE in the range of [10-3 ; 10-2] for a wide range of multiple access interference (MAI levels and signal-noise ratio (SNR, and still be able to offer robustness to near-far ratio (NFR effect.

  7. Iterative Pilot-Layer Aided Channel Estimation with Emphasis on Interleave-Division Multiple Access Systems

    Directory of Open Access Journals (Sweden)

    Schoeneich Hendrik

    2006-01-01

    Full Text Available Channel estimation schemes suitable for interleave-division multiple access (IDMA systems are presented. Training and data are superimposed. Training-based and semiblind linear channel estimators are derived and their performance is discussed and compared. Monte Carlo simulation results are presented showing that the derived channel estimators in conjunction with a superimposed pilot sequence and chip-by-chip processing are able to track fast-fading frequency-selective channels. As opposed to conventional channel estimation techniques, the BER performance even improves with increasing Doppler spread for typical system parameters. An error performance close to the case of perfect channel knowledge can be achieved with high power efficiency.

  8. Capacity Bounds for the Gaussian IM-DD Optical Multiple-Access Channel

    KAUST Repository

    Chaaban, Anas; Al-Ebraheemy, Omer M. S.; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2017-01-01

    Optical wireless communications (OWC) is a promising technology for closing the mismatch between the growing number of connected devices and the limited wireless network capabilities. Similar to downlink, uplink can also benefit from OWC for establishing connectivity between such devices and an optical access point. In this context, the incoherent intensitymodulation and direct-detection (IM-DD) scheme is desirable in practice. Hence, it is important to understand the fundamental limits of communication rates over an OWC uplink employing IM-DD, i.e., the channel capacity. This uplink, modeled as a Gaussian multiple-access channel (MAC) for indoors OWC, is studied in this paper, under the IM-DD constraints which form the main difference with the standard Gaussian MAC commonly studied in the radio-frequency context. Capacity region outer and inner bounds for this channel are derived. The bounds are fairly close at high signal-to-noise ratio (SNR), where a truncated- Gaussian input distribution achieves the capacity region within a constant gap. Furthermore, the bounds coincide at low SNR showing the optimality of on-off keying combined with successive cancellation decoding in this regime. At moderate SNR, an optimized uniformly-spaced discrete input distribution achieves fairly good performance.

  9. Capacity Bounds for the Gaussian IM-DD Optical Multiple-Access Channel

    KAUST Repository

    Chaaban, Anas

    2017-03-18

    Optical wireless communications (OWC) is a promising technology for closing the mismatch between the growing number of connected devices and the limited wireless network capabilities. Similar to downlink, uplink can also benefit from OWC for establishing connectivity between such devices and an optical access point. In this context, the incoherent intensitymodulation and direct-detection (IM-DD) scheme is desirable in practice. Hence, it is important to understand the fundamental limits of communication rates over an OWC uplink employing IM-DD, i.e., the channel capacity. This uplink, modeled as a Gaussian multiple-access channel (MAC) for indoors OWC, is studied in this paper, under the IM-DD constraints which form the main difference with the standard Gaussian MAC commonly studied in the radio-frequency context. Capacity region outer and inner bounds for this channel are derived. The bounds are fairly close at high signal-to-noise ratio (SNR), where a truncated- Gaussian input distribution achieves the capacity region within a constant gap. Furthermore, the bounds coincide at low SNR showing the optimality of on-off keying combined with successive cancellation decoding in this regime. At moderate SNR, an optimized uniformly-spaced discrete input distribution achieves fairly good performance.

  10. Analysis of Coded FHSS Systems with Multiple Access Interference over Generalized Fading Channels

    Directory of Open Access Journals (Sweden)

    Salam A. Zummo

    2009-02-01

    Full Text Available We study the effect of interference on the performance of coded FHSS systems. This is achieved by modeling the physical channel in these systems as a block fading channel. In the derivation of the bit error probability over Nakagami fading channels, we use the exact statistics of the multiple access interference (MAI in FHSS systems. Due to the mathematically intractable expression of the Rician distribution, we use the Gaussian approximation to derive the error probability of coded FHSS over Rician fading channel. The effect of pilot-aided channel estimation is studied for Rician fading channels using the Gaussian approximation. From this, the optimal hopping rate in coded FHSS is approximated. Results show that the performance loss due to interference increases as the hopping rate decreases.

  11. Delay-limited capacity of fading multiple access and broadcast channels in the low power regime

    KAUST Repository

    Rezki, Zouheir

    2015-09-11

    We study delay-limited (also called zero-outage) capacity region of the fading multi-access channel (MAC) with Gaussian noise and perfect channel state information (CSI) at the receiver and at the transmitters (CSI-TR), in the low-power regime. We show that for fading channels where the MAC capacity region is strictly positive, it has a multidimensional rectangle structure and thus is simply characterized by single user capacity points. More specifically, we show that at low power, the boundary surface of the capacity region shrinks to a single point corresponding to the sum-rate maximizer and that the coordinates of this point coincide with single user capacity bounds. Using the duality of the Gaussian MAC and broadcast channels (BC), we show that time-sharing (or time division multiple access (TDMA)) is asymptotically optimal. © 2015 IEEE.

  12. Secure Degrees of Freedom Regions of Multiple Access and Interference Channels: The Polytope Structure

    OpenAIRE

    Xie, Jianwei; Ulukus, Sennur

    2014-01-01

    The sum secure degrees of freedom (s.d.o.f.) of two fundamental multi-user network structures, the K-user Gaussian multiple access (MAC) wiretap channel and the K-user interference channel (IC) with secrecy constraints, have been determined recently as K(K-1)/(K(K-1)+1) [1,2] and K(K-1)/(2K-1) [3,4], respectively. In this paper, we determine the entire s.d.o.f. regions of these two channel models. The converse for the MAC follows from a middle step in the converse of [1,2]. The converse for t...

  13. Performance analysis of quantum access network using code division multiple access model

    International Nuclear Information System (INIS)

    Hu Linxi; Yang Can; He Guangqiang

    2017-01-01

    A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of the code. Recently, the chaotic phase shifters were proposed to guarantee the orthogonality by different chaotic signals and spread the spectral content of the quantum states. In this letter, we propose to implement the code division multiple access quantum network by using chaotic phase shifters and synchronization. Due to the orthogonality of the different chaotic phase shifter, every pair of users can faithfully transmit quantum information through a common channel and have little crosstalk between different users. Meanwhile, the broadband spectra of chaotic signals efficiently help the quantum states to defend against channel loss and noise. (paper)

  14. Performance analysis of 2D asynchronous hard-limiting optical code-division multiple access system through atmospheric scattering channel

    Science.gov (United States)

    Zhao, Yaqin; Zhong, Xin; Wu, Di; Zhang, Ye; Ren, Guanghui; Wu, Zhilu

    2013-09-01

    Optical code-division multiple access (OCDMA) systems usually allocate orthogonal or quasi-orthogonal codes to the active users. When transmitting through atmospheric scattering channel, the coding pulses are broadened and the orthogonality of the codes is worsened. In truly asynchronous case, namely both the chips and the bits are asynchronous among each active user, the pulse broadening affects the system performance a lot. In this paper, we evaluate the performance of a 2D asynchronous hard-limiting wireless OCDMA system through atmospheric scattering channel. The probability density function of multiple access interference in truly asynchronous case is given. The bit error rate decreases as the ratio of the chip period to the root mean square delay spread increases and the channel limits the bit rate to different levels when the chip period varies.

  15. Opportunistic spectrum access in cognitive radio based on channel switching

    KAUST Repository

    Gaaloul, Fakhreddine; Yang, Hongchuan; Radaydeh, Redha Mahmoud Mesleh; Alouini, Mohamed-Slim

    2012-01-01

    This paper investigates the performance of a cognitive radio transceiver that can monitor multiple channels and opportunistically use any one of them should it be available. In our work, we propose and compare two different opportunistic channel access schemes. The first scheme applies when the secondary user (SU) has access to only one channel. The second scheme applies when the SU has access to multiple channels but can at a given time monitor and access only one channel. Two switching strategies, namely the switch and examine and the switch and stay strategies, are proposed. For these proposed access schemes, we investigate their performance by deriving the analytical expression of the novel metric of the average access duration and the average waiting time and based on these two metrics a time average SU throughput formula is proposed to predict the performance of the secondary cognitive system. © 2012 ICST.

  16. Channel capacity of TDD-OFDM-MIMO for multiple access points in a wireless single-frequency-network

    DEFF Research Database (Denmark)

    Takatori, Y.; Fitzek, Frank; Tsunekawa, K.

    2005-01-01

    MIMO data transmission scheme, which combines Single-Frequency-Network (SFN) with TDD-OFDM-MIMO applied for wireless LAN networks. In our proposal, we advocate to use SFN for multiple access points (MAP) MIMO data transmission. The goal of this approach is to achieve very high channel capacity in both......The multiple-input-multiple-output (MIMO) technique is the most attractive candidate to improve the spectrum efficiency in the next generation wireless communication systems. However, the efficiency of MIMO techniques reduces in the line of sight (LOS) environments. In this paper, we propose a new...

  17. Implementation of Multiple Access Techniques Applicable for Maritime Satellite Communications

    Directory of Open Access Journals (Sweden)

    Stojce Dimov Ilcev

    2013-12-01

    Full Text Available In this paper are introduced fundamentals, characteristics, advantages and disadvantages of Multiple Access (MA employed as transmission techniques in the Maritime Mobile Satellite Communications (MMSC between ships and Coast Earth Station (CES via Geostationary Earth Orbit (GEO or Not-GEO satellite constellations. In fixed satellite communication, as a rule, especially in MMSC many users are active at the same time. The problem of simultaneous communications between many single or multipoint mobile satellite users can be solved by using MA technique, such as Frequency Division Multiple Access (FDMA, Time Division Multiple Access (TDMA, Code Division Multiple Access (CDMA, Space Division Multiple Access (SDMA and Random (Packet Division Multiple Access (RDMA. Since the resources of the systems such as the transmitting power and the bandwidth are limited, it is advisable to use the channels with complete charge and to create a different MA to the channel. This generates a problem of summation and separation of signals in the transmission and reception parts, respectively. Deciding this problem consists in the development of orthogonal channels of transmission in order to divide signals from various users unambiguously on the reception part.

  18. On Low-Complexity Full-diversity Detection In Multi-User MIMO Multiple-Access Channels

    KAUST Repository

    Ismail, Amr

    2014-01-28

    Multiple-input multiple-output (MIMO) techniques are becoming commonplace in recent wireless communication standards. This newly introduced dimension (i.e., space) can be efficiently used to mitigate the interference in the multi-user MIMO context. In this paper, we focus on the uplink of a MIMO multiple access channel (MAC) where perfect channel state information (CSI) is only available at the destination. We provide new sufficient conditions for a wide range of space-time block codes (STBC)s to achieve full-diversity under partial interference cancellation group decoding (PICGD) with or without successive interference cancellation (SIC) for completely blind users. Interference cancellation (IC) schemes for two and three users are then provided and shown to satisfy the full-diversity criteria. Beside the complexity reduction due to the fact that PICGD enables separate decoding of distinct users without sacrificing the diversity gain, further reduction of the decoding complexity may be obtained. In fact, thanks to the structure of the proposed schemes, the real and imaginary parts of each user\\'s symbols may be decoupled without any loss of performance. Our new IC scheme is shown to outperform recently proposed two-user IC scheme especially for high spectral efficiency while requiring significantly less decoding complexity.

  19. On Low-Complexity Full-diversity Detection In Multi-User MIMO Multiple-Access Channels

    KAUST Repository

    Ismail, Amr; Alouini, Mohamed-Slim

    2014-01-01

    Multiple-input multiple-output (MIMO) techniques are becoming commonplace in recent wireless communication standards. This newly introduced dimension (i.e., space) can be efficiently used to mitigate the interference in the multi-user MIMO context. In this paper, we focus on the uplink of a MIMO multiple access channel (MAC) where perfect channel state information (CSI) is only available at the destination. We provide new sufficient conditions for a wide range of space-time block codes (STBC)s to achieve full-diversity under partial interference cancellation group decoding (PICGD) with or without successive interference cancellation (SIC) for completely blind users. Interference cancellation (IC) schemes for two and three users are then provided and shown to satisfy the full-diversity criteria. Beside the complexity reduction due to the fact that PICGD enables separate decoding of distinct users without sacrificing the diversity gain, further reduction of the decoding complexity may be obtained. In fact, thanks to the structure of the proposed schemes, the real and imaginary parts of each user's symbols may be decoupled without any loss of performance. Our new IC scheme is shown to outperform recently proposed two-user IC scheme especially for high spectral efficiency while requiring significantly less decoding complexity.

  20. Wavelet based multicarrier code division multiple access ...

    African Journals Online (AJOL)

    This paper presents the study on Wavelet transform based Multicarrier Code Division Multiple Access (MC-CDMA) system for a downlink wireless channel. The performance of the system is studied for Additive White Gaussian Noise Channel (AWGN) and slowly varying multipath channels. The bit error rate (BER) versus ...

  1. Achievable Rate of a Cognitive MIMO Multiple Access Channel With Multi-Secondary Users

    KAUST Repository

    Sboui, Lokman; Ghazzai, Hakim; Rezki, Zouheir; Alouini, Mohamed-Slim

    2015-01-01

    We study the secondary sum-rate of an underlay cognitive multiple access channel consisting of a primary user and multiple secondary users (SUs) communicating with a common destination. We propose a particular linear precoding and SU selection scheme that maximize the cognitive sum-rate. This scheme is based on space alignment strategy allowing SUs to share the spectrum without interfering with each other. We derive the optimal power allocation for each selected SU after applying perfect or imperfect successive interference cancellation. Numerical results show that the proposed scheme provides a significant sum-rate improvement as the number of SUs increases. In addition, it achieves almost the same performance as an exhaustive search selection, mainly in low and high power ranges. © 1997-2012 IEEE.

  2. Achievable Rate of a Cognitive MIMO Multiple Access Channel With Multi-Secondary Users

    KAUST Repository

    Sboui, Lokman

    2015-03-01

    We study the secondary sum-rate of an underlay cognitive multiple access channel consisting of a primary user and multiple secondary users (SUs) communicating with a common destination. We propose a particular linear precoding and SU selection scheme that maximize the cognitive sum-rate. This scheme is based on space alignment strategy allowing SUs to share the spectrum without interfering with each other. We derive the optimal power allocation for each selected SU after applying perfect or imperfect successive interference cancellation. Numerical results show that the proposed scheme provides a significant sum-rate improvement as the number of SUs increases. In addition, it achieves almost the same performance as an exhaustive search selection, mainly in low and high power ranges. © 1997-2012 IEEE.

  3. Hopping control channel MAC protocol for opportunistic spectrum access networks

    Institute of Scientific and Technical Information of China (English)

    FU Jing-tuan; JI Hong; MAO Xu

    2010-01-01

    Opportunistic spectrum access (OSA) is considered as a promising approach to mitigate spectrum scarcity by allowing unlicensed users to exploit spectrum opportunities in licensed frequency bands. Derived from the existing channel-hopping multiple access (CHMA) protocol,we introduce a hopping control channel medium access control (MAC) protocol in the context of OSA networks. In our proposed protocol,all nodes in the network follow a common channel-hopping sequence; every frequency channel can be used as control channel and data channel. Considering primary users' occupancy of the channel,we use a primary user (PU) detection model to calculate the channel availability for unlicensed users' access. Then,a discrete Markov chain analytical model is applied to describe the channel states and deduce the system throughput. Through simulation,we present numerical results to demonstrate the throughput performance of our protocol and thus validate our work.

  4. Quantum internet using code division multiple access

    Science.gov (United States)

    Zhang, Jing; Liu, Yu-xi; Özdemir, Şahin Kaya; Wu, Re-Bing; Gao, Feifei; Wang, Xiang-Bin; Yang, Lan; Nori, Franco

    2013-01-01

    A crucial open problem inS large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels. PMID:23860488

  5. Parity-Check Network Coding for Multiple Access Relay Channel in Wireless Sensor Cooperative Communications

    Directory of Open Access Journals (Sweden)

    Du Bing

    2010-01-01

    Full Text Available A recently developed theory suggests that network coding is a generalization of source coding and channel coding and thus yields a significant performance improvement in terms of throughput and spatial diversity. This paper proposes a cooperative design of a parity-check network coding scheme in the context of a two-source multiple access relay channel (MARC model, a common compact model in hierarchical wireless sensor networks (WSNs. The scheme uses Low-Density Parity-Check (LDPC as the surrogate to build up a layered structure which encapsulates the multiple constituent LDPC codes in the source and relay nodes. Specifically, the relay node decodes the messages from two sources, which are used to generate extra parity-check bits by a random network coding procedure to fill up the rate gap between Source-Relay and Source-Destination transmissions. Then, we derived the key algebraic relationships among multidimensional LDPC constituent codes as one of the constraints for code profile optimization. These extra check bits are sent to the destination to realize a cooperative diversity as well as to approach MARC decode-and-forward (DF capacity.

  6. Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network

    International Nuclear Information System (INIS)

    Grudka, Andrzej; Horodecki, Pawel

    2010-01-01

    We analyze quantum network primitives which are entanglement breaking. We show superadditivity of quantum and classical capacity regions for quantum multiple-access channels and the quantum butterfly network. Since the effects are especially visible at high noise they suggest that quantum information effects may be particularly helpful in the case of the networks with occasional high noise rates. The present effects provide a qualitative borderline between superadditivities of bipartite and multipartite systems.

  7. Chip-interleaved optical code division multiple access relying on a photon-counting iterative successive interference canceller for free-space optical channels.

    Science.gov (United States)

    Zhou, Xiaolin; Zheng, Xiaowei; Zhang, Rong; Hanzo, Lajos

    2013-07-01

    In this paper, we design a novel Poisson photon-counting based iterative successive interference cancellation (SIC) scheme for transmission over free-space optical (FSO) channels in the presence of both multiple access interference (MAI) as well as Gamma-Gamma atmospheric turbulence fading, shot-noise and background light. Our simulation results demonstrate that the proposed scheme exhibits a strong MAI suppression capability. Importantly, an order of magnitude of BER improvements may be achieved compared to the conventional chip-level optical code-division multiple-access (OCDMA) photon-counting detector.

  8. Performance analysis for a chaos-based code-division multiple access system in wide-band channel

    Directory of Open Access Journals (Sweden)

    Ciprian Doru Giurcăneanu

    2015-08-01

    Full Text Available Code-division multiple access technology is widely used in telecommunications and its performance has been extensively investigated in the past. Theoretical results for the case of wide-band transmission channel were not available until recently. The novel formulae which have been published in 2014 can have an important impact on the future of wireless multiuser communications, but limitations come from the Gaussian approximations used in their derivation. In this Letter, the authors obtain more accurate expressions of the bit error rate (BER for the case when the model of the wide-band channel is two-ray, with Rayleigh fading. In the authors’ approach, the spreading sequences are assumed to be generated by logistic map given by Chebyshev polynomial function of order two. Their theoretical and experimental results show clearly that the previous results on BER, which rely on the crude Gaussian approximation, are over-pessimistic.

  9. Characterization and Optimization of LDPC Codes for the 2-User Gaussian Multiple Access Channel

    Directory of Open Access Journals (Sweden)

    Declercq David

    2007-01-01

    Full Text Available We address the problem of designing good LDPC codes for the Gaussian multiple access channel (MAC. The framework we choose is to design multiuser LDPC codes with joint belief propagation decoding on the joint graph of the 2-user case. Our main result compared to existing work is to express analytically EXIT functions of the multiuser decoder with two different approximations of the density evolution. This allows us to propose a very simple linear programming optimization for the complicated problem of LDPC code design with joint multiuser decoding. The stability condition for our case is derived and used in the optimization constraints. The codes that we obtain for the 2-user case are quite good for various rates, especially if we consider the very simple optimization procedure.

  10. Multiple channel programmable coincidence counter

    Science.gov (United States)

    Arnone, Gaetano J.

    1990-01-01

    A programmable digital coincidence counter having multiple channels and featuring minimal dead time. Neutron detectors supply electrical pulses to a synchronizing circuit which in turn inputs derandomized pulses to an adding circuit. A random access memory circuit connected as a programmable length shift register receives and shifts the sum of the pulses, and outputs to a serializer. A counter is input by the adding circuit and downcounted by the seralizer, one pulse at a time. The decoded contents of the counter after each decrement is output to scalers.

  11. Multiplicative properties of quantum channels

    Science.gov (United States)

    Rahaman, Mizanur

    2017-08-01

    In this paper, we study the multiplicative behaviour of quantum channels, mathematically described by trace preserving, completely positive maps on matrix algebras. It turns out that the multiplicative domain of a unital quantum channel has a close connection to its spectral properties. A structure theorem (theorem 2.5), which reveals the automorphic property of an arbitrary unital quantum channel on a subalgebra, is presented. Various classes of quantum channels (irreducible, primitive, etc) are then analysed in terms of this stabilising subalgebra. The notion of the multiplicative index of a unital quantum channel is introduced, which measures the number of times a unital channel needs to be composed with itself for the multiplicative algebra to stabilise. We show that the maps that have trivial multiplicative domains are dense in completely bounded norm topology in the set of all unital completely positive maps. Some applications in quantum information theory are discussed.

  12. Iterative Fusion of Distributed Decisions over the Gaussian Multiple-Access Channel Using Concatenated BCH-LDGM Codes

    Directory of Open Access Journals (Sweden)

    Crespo PedroM

    2011-01-01

    Full Text Available This paper focuses on the data fusion scenario where nodes sense and transmit the data generated by a source to a common destination, which estimates the original information from more accurately than in the case of a single sensor. This work joins the upsurge of research interest in this topic by addressing the setup where the sensed information is transmitted over a Gaussian Multiple-Access Channel (MAC. We use Low Density Generator Matrix (LDGM codes in order to keep the correlation between the transmitted codewords, which leads to an improved received Signal-to-Noise Ratio (SNR thanks to the constructive signal addition at the receiver front-end. At reception, we propose a joint decoder and estimator that exchanges soft information between the LDGM decoders and a data fusion stage. An error-correcting Bose, Ray-Chaudhuri, Hocquenghem (BCH code is further applied suppress the error floor derived from the ambiguity of the MAC channel when dealing with correlated sources. Simulation results are presented for several values of and diverse LDGM and BCH codes, based on which we conclude that the proposed scheme outperforms significantly (by up to 6.3 dB the suboptimum limit assuming separation between Slepian-Wolf source coding and capacity-achieving channel coding.

  13. On the capacity of multiple access and broadcast fading channels with full channel state information at low SNR

    KAUST Repository

    Rezki, Zouheir

    2014-01-01

    We study the throughput capacity region of the Gaussian multi-access (MAC) fading channel with perfect channel state information (CSI) at the receiver and at the transmitters, at low power regime. We show that it has a multidimensional rectangle structure and thus is simply characterized by single user capacity points.More specifically, we show that at low power regime, the boundary surface of the capacity region shrinks to a single point corresponding to the sum rate maximizer and that the coordinates of this point coincide with single user capacity bounds. Inspired from this result, we propose an on-off scheme, compute its achievable rate, and show that this scheme achieves single user capacity bounds of the MAC channel for a wide class of fading channels at asymptotically low power regime. We argue that this class of fading encompasses all known wireless channels for which the capacity region of the MAC channel has even a simpler expression in terms of users\\' average power constraints only. Using the duality of Gaussian MAC and broadcast channels (BC), we deduce a simple characterization of the BC capacity region at low power regime and show that for a class of fading channels (including Rayleigh fading), time-sharing is asymptotically optimal. © 2014 IEEE.

  14. Multiple access chaotic digital communication based on generalized synchronization

    International Nuclear Information System (INIS)

    Lu Junguo

    2005-01-01

    A novel method for multiple access chaotic digital communication based on the concept of chaos generalized synchronization and the on-line least square method is proposed. This method can be used for transmitting multiple digital information signals concurrently. We illustrate the method using a Lorenz system driving a Chua's circuit and then examine the robustness of the proposed method with respect to noise in communication channel

  15. On the capacity of multiple access and broadcast fading Channels with full channel state information at low power regime

    KAUST Repository

    Rezki, Zouheir

    2013-07-01

    We study the throughput capacity region of the Gaussian multi-access (MAC) fading channel with perfect channel state information (CSI) at the receiver and at the transmitters (CSI-TR), at low power regime. We show that it has a multidimensional rectangle structure and thus is simply characterized by single user capacity points. More specifically, we show that at low power regime, the boundary surface of the capacity region shrinks to a single point corresponding to the sum-rate maximizer and that the coordinates of this point coincide with single user capacity bounds. Using the duality of Gaussian MAC and broadcast channels (BC), we provide a simple characterization of the BC capacity region at low power regime. © 2013 IEEE.

  16. Channel Access Algorithm Design for Automatic Identification System

    Institute of Scientific and Technical Information of China (English)

    Oh Sang-heon; Kim Seung-pum; Hwang Dong-hwan; Park Chan-sik; Lee Sang-jeong

    2003-01-01

    The Automatic Identification System (AIS) is a maritime equipment to allow an efficient exchange of the navigational data between ships and between ships and shore stations. It utilizes a channel access algorithm which can quickly resolve conflicts without any intervention from control stations. In this paper, a design of channel access algorithm for the AIS is presented. The input/output relationship of each access algorithm module is defined by drawing the state transition diagram, dataflow diagram and flowchart based on the technical standard, ITU-R M.1371. In order to verify the designed channel access algorithm, the simulator was developed using the C/C++ programming language. The results show that the proposed channel access algorithm can properly allocate transmission slots and meet the operational performance requirements specified by the technical standard.

  17. EPICS: Channel Access security design

    International Nuclear Information System (INIS)

    Kraimer, M.; Hill, J.

    1994-05-01

    This document presents the design for implementing the requirements specified in: EPICS -- Channel Access Security -- functional requirements, Ned. D. Arnold, 03/09/92. Use of the access security system is described along with a summary of the functional requirements. The programmer's interface is given. Security protocol is described and finally aids for reading the access security code are provided

  18. Capacity bounds for the 2-user Gaussian IM-DD optical multiple-access channel

    KAUST Repository

    Al-Ebraheemy, Omer M. S.

    2016-11-01

    Optical wireless communications (OWC) is a potential solution for coping with the mismatch between the users growing demand for higher data-rates and the wireless network capabilities. In this paper, a multi-user OWC scenario is studied from an in formation-theoretic perspective. The studied network consists of two users communicating simultaneously with one access point using OWC, thus establishing an optical uplink channel. The capacity of this network is an important metric which reflects the highest possible communication rates that can be achieved over this channel. Capacity outer and inner bounds are derived, and are shown to be fairly tight in the high signal-to-noise ratio regime. © 2016 IEEE.

  19. Channel access: A software bus for the LAACS

    International Nuclear Information System (INIS)

    Hill, J.O.

    1990-01-01

    The host processor for a code running within a distributed process control system is often predetermined by constraints built into the software architecture of the control system. Input/output (I/O) channels directly connected to the host processors are usually easier to access in software than channels on remote processors. It is often difficult to modernize selective parts of a control system's software while leaving the other parts unchanged. Likewise, software developed at one laboratory is often difficult to integrate into a control system developed at another laboratory. Software that runs in one machine or operating-system architecture is often unable to communicate with control-system software running on a different platform. For the Los Alamos Accelerator Control System (LAACS) we have attempted to address the above difficulties with a software communication facility which we call Channel Access. Channel Access provides a 'software bus' that allows programs to be connected through a network to I/O channels on real-time processors in a manner similar to the way in which hardware modules are integrated within a standardized hardware bus such as CAMAC or VME. We have already placed an operator interface on Channel Access and we are currently designing alarm, archiving and sequencing tools as well. Numerous application-specific programs use Channel Access. This paper describes the unique feature of this approach and its performance as an integral part of the Los Alamos Accelerator Control System. (orig.)

  20. Multiple access protocol for supporting multimedia services in wireless ATM networks

    DEFF Research Database (Denmark)

    Liu, Hong; Dittmann, Lars; Gliese, Ulrik Bo

    1999-01-01

    The furture broadband wireless asynchronous transfer mode (ATM) networks must provide seamless extension of multimedia services from the wireline ATM networks. This requires an effecient wireless access protocol to fulfill varying Quality-og-Service (QoS) requirements for multimedia applications....... In this paper, we propose a multiple access protocol using centralized and distributed channel access control techniques to provide QoS guarantees for multimedia services by taking advantage of the characteristics of different kinds of ATM traffics. Multimedia traffic, including constant bit rate (CBR...

  1. Enhancing Sensing and Channel Access in Cognitive Radio Networks

    KAUST Repository

    Hamza, Doha R.

    2014-06-18

    Cognitive radio technology is a promising technology to solve the wireless spectrum scarcity problem by intelligently allowing secondary, or unlicensed, users access to the primary, licensed, users\\' frequency bands. Cognitive technology involves two main tasks: 1) sensing the wireless medium to assess the presence of the primary users and 2) designing secondary spectrum access techniques that maximize the secondary users\\' benefits while maintaining the primary users\\' privileged status. On the spectrum sensing side, we make two contributions. First, we maximize a utility function representing the secondary throughput while constraining the collision probability with the primary below a certain value. We optimize therein the channel sensing time, the sensing decision threshold, the channel probing time, together with the channel sensing order for wideband primary channels. Second, we design a cooperative spectrum sensing technique termed sensing with equal gain combining whereby cognitive radios simultaneously transmit their sensing results to the fusion center over multipath fading reporting channels. The proposed scheme is shown to outperform orthogonal reporting systems in terms of achievable secondary throughput and to be robust against phase and synchronization errors. On the spectrum access side, we make four contributions. First, we design a secondary scheduling scheme with the goal of minimizing the secondary queueing delay under constraints on the average secondary transmit power and the maximum tolerable primary outage probability. Second, we design another secondary scheduling scheme based on the spectrum sensing results and the primary automatic repeat request feedback. The optimal medium access probabilities are obtained via maximizing the secondary throughput subject to constraints that guarantee quality of service parameters for the primary. Third, we propose a three-message superposition coding scheme to maximize the secondary throughput without

  2. Knowledge-Based Multiple Access Protocol in Broadband Wireless ATM Networks

    DEFF Research Database (Denmark)

    Liu, Hong; Gliese, Ulrik Bo; Dittmann, Lars

    1999-01-01

    In this paper, we propose a knowledge-based multiple access protocol for the extension of wireline ATM to wireless networks. The objective is to enable effecient transmission of all kinds of ATM traffic in the wireless channel with guaranteed QoS.The proposed protocol utilixes knowledge of the main...... guaranteed QoS requirements to a variety of ATM applications....

  3. Reduced-complexity adaptive multi-channel assignment for shared access points in over-loaded small-cell networks

    KAUST Repository

    Radaydeh, Redha Mahmoud

    2013-06-01

    This paper proposes a reduced-complexity downlink multi-channel assignment scheme when feedback links are capacity-limited. The system model treats the case when multiple access points are allocated to serve scheduled users in over-loaded (i.e. dense) pico/femtocell networks. It assumes that the deployed access points can be shared simultaneously and employ isotropic antenna arrays of arbitrary sizes. Moreover, they transmit their data on a common physical channel and can not coordinate their transmissions. On the other hand, each scheduled user can be served by single transmit channel from each active access point at a time, and it lacks coordination with concurrent active users. The scheme operates according to the occupancy of available transmit channels, wherein extensively occupied access points are avoided adaptively, while reducing the load of processing. The operation is linked to a target performance via controlling the observed aggregate interference from the projected set of serving points. Through the analysis, results for the scheduled user outage performance, and the average number of active access points are presented. Numerical and simulations studies clarify the gains of the proposed scheme for different operating conditions. © 2013 IEEE.

  4. Reduced-complexity adaptive multi-channel assignment for shared access points in over-loaded small-cell networks

    KAUST Repository

    Radaydeh, Redha Mahmoud; Qaraqe, Khalid A.; Alouini, Mohamed-Slim

    2013-01-01

    This paper proposes a reduced-complexity downlink multi-channel assignment scheme when feedback links are capacity-limited. The system model treats the case when multiple access points are allocated to serve scheduled users in over-loaded (i.e. dense) pico/femtocell networks. It assumes that the deployed access points can be shared simultaneously and employ isotropic antenna arrays of arbitrary sizes. Moreover, they transmit their data on a common physical channel and can not coordinate their transmissions. On the other hand, each scheduled user can be served by single transmit channel from each active access point at a time, and it lacks coordination with concurrent active users. The scheme operates according to the occupancy of available transmit channels, wherein extensively occupied access points are avoided adaptively, while reducing the load of processing. The operation is linked to a target performance via controlling the observed aggregate interference from the projected set of serving points. Through the analysis, results for the scheduled user outage performance, and the average number of active access points are presented. Numerical and simulations studies clarify the gains of the proposed scheme for different operating conditions. © 2013 IEEE.

  5. Optical Code-Division Multiple Access: Challenges and Solutions

    Science.gov (United States)

    Chen, Lawrence R.

    2003-02-01

    Optical code-division multiple-access (OCDMA) is a technique well-suited for providing the required photonic connectivity in local access networks. Although the principles of OCDMA have been known for many years, it has never delivered on its potential. In this paper, we will describe the key challenges and impediments that have prevented OCDMA from delivering on its potential, as well as discuss possible solutions. We focus on the limitations of one-dimensional codes and the benefit of exploiting the additional degrees of freedom in using multiple dimensions for defining the codes. We discuss the advantages of using differential detection in order to implement bipolar communications. We then show how two-dimensional wavelength-time codes can be appropriately combined with differential detection in order to achieve high performance OCDMA systems with a large number of users operating with good BER performance for a large aggregate capacity. We also discuss the impact of channel coding techniques, for example forward error correction or turbo coding, on BER performance.

  6. CAFE, a modern C++ interface to the EPICS channel access library

    International Nuclear Information System (INIS)

    Chrin, J.; Sloan, M.C.

    2012-01-01

    CAFE (Channel Access interface) is a C++ library that provides a modern, multifaceted interface to the EPICS-based control system that we may find in particle accelerators for instance. CAFE makes extensive use of templates and containers with multiple STL-compatible access methods to enhance efficiency, flexibility and performance. Stability and robustness are accomplished by ensuring that connectivity to EPICS channels remains in a well defined state in every eventuality, and results of all synchronous and asynchronous operations are captured and reported with integrity. CAFE presents the user with a number of options for writing and retrieving data to and from the control system. In addition to basic read and write operations, a further abstraction layer provides transparency to more intricate functionalities involving logical sets of data; such 'group' objects are easily instantiated through an XML-based configuration mechanism. CAFE's suitability for use in a broad spectrum of applications is demonstrated. These range from high performance Qt GUI (Graphical User Interface) control widgets, to event processing agents that propagate data through the Object Managements Group's Data Distribution Service (OMG-DDS), to script-like frameworks such as MATLAB. The methodology for the modular use of CAFE serves to improve maintainability by enforcing a logical boundary between the channel access components and the programming extensions of the application framework at hand. (authors)

  7. Multiple Access Interference Reduction Using Received Response Code Sequence for DS-CDMA UWB System

    Science.gov (United States)

    Toh, Keat Beng; Tachikawa, Shin'ichi

    This paper proposes a combination of novel Received Response (RR) sequence at the transmitter and a Matched Filter-RAKE (MF-RAKE) combining scheme receiver system for the Direct Sequence-Code Division Multiple Access Ultra Wideband (DS-CDMA UWB) multipath channel model. This paper also demonstrates the effectiveness of the RR sequence in Multiple Access Interference (MAI) reduction for the DS-CDMA UWB system. It suggests that by using conventional binary code sequence such as the M sequence or the Gold sequence, there is a possibility of generating extra MAI in the UWB system. Therefore, it is quite difficult to collect the energy efficiently although the RAKE reception method is applied at the receiver. The main purpose of the proposed system is to overcome the performance degradation for UWB transmission due to the occurrence of MAI during multiple accessing in the DS-CDMA UWB system. The proposed system improves the system performance by improving the RAKE reception performance using the RR sequence which can reduce the MAI effect significantly. Simulation results verify that significant improvement can be obtained by the proposed system in the UWB multipath channel models.

  8. IQ imbalance tolerable parallel-channel DMT transmission for coherent optical OFDMA access network

    Science.gov (United States)

    Jung, Sang-Min; Mun, Kyoung-Hak; Jung, Sun-Young; Han, Sang-Kook

    2016-12-01

    Phase diversity of coherent optical communication provides spectrally efficient higher-order modulation for optical communications. However, in-phase/quadrature (IQ) imbalance in coherent optical communication degrades transmission performance by introducing unwanted signal distortions. In a coherent optical orthogonal frequency division multiple access (OFDMA) passive optical network (PON), IQ imbalance-induced signal distortions degrade transmission performance by interferences of mirror subcarriers, inter-symbol interference (ISI), and inter-channel interference (ICI). We propose parallel-channel discrete multitone (DMT) transmission to mitigate transceiver IQ imbalance-induced signal distortions in coherent orthogonal frequency division multiplexing (OFDM) transmissions. We experimentally demonstrate the effectiveness of parallel-channel DMT transmission compared with that of OFDM transmission in the presence of IQ imbalance.

  9. Adaptation of AMO-FBMC-OQAM in optical access network for accommodating asynchronous multiple access in OFDM-based uplink transmission

    Science.gov (United States)

    Jung, Sun-Young; Jung, Sang-Min; Han, Sang-Kook

    2015-01-01

    Exponentially expanding various applications in company with proliferation of mobile devices make mobile traffic exploded annually. For future access network, bandwidth efficient and asynchronous signals converged transmission technique is required in optical network to meet a huge bandwidth demand, while integrating various services and satisfying multiple access in perceived network resource. Orthogonal frequency division multiplexing (OFDM) is highly bandwidth efficient parallel transmission technique based on orthogonal subcarriers. OFDM has been widely studied in wired-/wireless communication and became a Long term evolution (LTE) standard. Consequently, OFDM also has been actively researched in optical network. However, OFDM is vulnerable frequency and phase offset essentially because of its sinc-shaped side lobes, therefore tight synchronism is necessary to maintain orthogonality. Moreover, redundant cyclic prefix (CP) is required in dispersive channel. Additionally, side lobes act as interference among users in multiple access. Thus, it practically hinders from supporting integration of various services and multiple access based on OFDM optical transmission In this paper, adaptively modulated optical filter bank multicarrier system with offset QAM (AMO-FBMC-OQAM) is introduced and experimentally investigated in uplink optical transmission to relax multiple access interference (MAI), while improving bandwidth efficiency. Side lobes are effectively suppressed by using FBMC, therefore the system becomes robust to path difference and imbalance among optical network units (ONUs), which increase bandwidth efficiency by reducing redundancy. In comparison with OFDM, a signal performance and an efficiency of frequency utilization are improved in the same experimental condition. It enables optical network to effectively support heterogeneous services and multiple access.

  10. An optimal probabilistic multiple-access scheme for cognitive radios

    KAUST Repository

    Hamza, Doha R.; Aï ssa, Sonia

    2012-01-01

    We study a time-slotted multiple-access system with a primary user (PU) and a secondary user (SU) sharing the same channel resource. The SU senses the channel at the beginning of the slot. If found free, it transmits with probability 1. If busy, it transmits with a certain access probability that is a function of its queue length and whether it has a new packet arrival. Both users, i.e., the PU and the SU, transmit with a fixed transmission rate by employing a truncated channel inversion power control scheme. We consider the case of erroneous sensing. The goal of the SU is to optimize its transmission scheduling policy to minimize its queueing delay under constraints on its average transmit power and the maximum tolerable primary outage probability caused by the miss detection of the PU. We consider two schemes regarding the secondary's reaction to transmission errors. Under the so-called delay-sensitive (DS) scheme, the packet received in error is removed from the queue to minimize delay, whereas under the delay-tolerant (DT) scheme, the said packet is kept in the buffer and is retransmitted until correct reception. Using the latter scheme, there is a probability of buffer loss that is also constrained to be lower than a certain specified value. We also consider the case when the PU maintains an infinite buffer to store its packets. In the latter case, we modify the SU access scheme to guarantee the stability of the PU queue. We show that the performance significantly changes if the realistic situation of a primary queue is considered. In all cases, although the delay minimization problem is nonconvex, we show that the access policies can be efficiently obtained using linear programming and grid search over one or two parameters. © 1967-2012 IEEE.

  11. An optimal probabilistic multiple-access scheme for cognitive radios

    KAUST Repository

    Hamza, Doha R.

    2012-09-01

    We study a time-slotted multiple-access system with a primary user (PU) and a secondary user (SU) sharing the same channel resource. The SU senses the channel at the beginning of the slot. If found free, it transmits with probability 1. If busy, it transmits with a certain access probability that is a function of its queue length and whether it has a new packet arrival. Both users, i.e., the PU and the SU, transmit with a fixed transmission rate by employing a truncated channel inversion power control scheme. We consider the case of erroneous sensing. The goal of the SU is to optimize its transmission scheduling policy to minimize its queueing delay under constraints on its average transmit power and the maximum tolerable primary outage probability caused by the miss detection of the PU. We consider two schemes regarding the secondary\\'s reaction to transmission errors. Under the so-called delay-sensitive (DS) scheme, the packet received in error is removed from the queue to minimize delay, whereas under the delay-tolerant (DT) scheme, the said packet is kept in the buffer and is retransmitted until correct reception. Using the latter scheme, there is a probability of buffer loss that is also constrained to be lower than a certain specified value. We also consider the case when the PU maintains an infinite buffer to store its packets. In the latter case, we modify the SU access scheme to guarantee the stability of the PU queue. We show that the performance significantly changes if the realistic situation of a primary queue is considered. In all cases, although the delay minimization problem is nonconvex, we show that the access policies can be efficiently obtained using linear programming and grid search over one or two parameters. © 1967-2012 IEEE.

  12. Channel Access Client Toolbox for Matlab

    International Nuclear Information System (INIS)

    2002-01-01

    This paper reports on MATLAB Channel Access (MCA) Toolbox--MATLAB [1] interface to EPICS Channel Access (CA) client library. We are developing the toolbox for SPEAR3 accelerator controls, but it is of general use for accelerator and experimental physics applications programming. It is packaged as a MATLAB toolbox to allow easy development of complex CA client applications entirely in MATLAB. The benefits include: the ability to calculate and display parameters that use EPICS process variables as inputs, availability of MATLAB graphics tools for user interface design, and integration with the MATLABbased accelerator modeling software - Accelerator Toolbox [2-4]. Another purpose of this paper is to propose a feasible path to a synergy between accelerator control systems and accelerator simulation codes, the idea known as on-line accelerator model

  13. High security chaotic multiple access scheme for visible light communication systems with advanced encryption standard interleaving

    Science.gov (United States)

    Qiu, Junchao; Zhang, Lin; Li, Diyang; Liu, Xingcheng

    2016-06-01

    Chaotic sequences can be applied to realize multiple user access and improve the system security for a visible light communication (VLC) system. However, since the map patterns of chaotic sequences are usually well known, eavesdroppers can possibly derive the key parameters of chaotic sequences and subsequently retrieve the information. We design an advanced encryption standard (AES) interleaving aided multiple user access scheme to enhance the security of a chaotic code division multiple access-based visible light communication (C-CDMA-VLC) system. We propose to spread the information with chaotic sequences, and then the spread information is interleaved by an AES algorithm and transmitted over VLC channels. Since the computation complexity of performing inverse operations to deinterleave the information is high, the eavesdroppers in a high speed VLC system cannot retrieve the information in real time; thus, the system security will be enhanced. Moreover, we build a mathematical model for the AES-aided VLC system and derive the theoretical information leakage to analyze the system security. The simulations are performed over VLC channels, and the results demonstrate the effectiveness and high security of our presented AES interleaving aided chaotic CDMA-VLC system.

  14. Parametric modeling for damped sinusoids from multiple channels

    DEFF Research Database (Denmark)

    Zhou, Zhenhua; So, Hing Cheung; Christensen, Mads Græsbøll

    2013-01-01

    frequencies and damping factors are then computed with the multi-channel weighted linear prediction method. The estimated sinusoidal poles are then matched to each channel according to the extreme value theory of distribution of random fields. Simulations are performed to show the performance advantages......The problem of parametric modeling for noisy damped sinusoidal signals from multiple channels is addressed. Utilizing the shift invariance property of the signal subspace, the number of distinct sinusoidal poles in the multiple channels is first determined. With the estimated number, the distinct...... of the proposed multi-channel sinusoidal modeling methodology compared with existing methods....

  15. A USER-DEPENDENT PERFECT-SCHEDULING MULTIPLE ACCESS PROTOCOL FOR VOICE-DATA INTEGRATION IN WIRELESS NETWORKDS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel Multiple Access Control(MAC) protocol-User-dependent Perfect-scheduling Multiple Access(UPMA) protocol,which supports joint transmission of voice and data packets,is proposed.By this protocol,the bandwidth can be allocated dynamically to the uplink and downlink traffic with on-demand assignment and the transmission of Mobile Terminals(MTs) can be perfectly scheduled by means of polling.Meanwhile.a unique frame stucture is designed to guarantee Quality of Service(QoS) in voice traffic supporting.An effective colision resolution algorthm is also proposed to guarantee rapid channel access for activated MTs.Finally,performance of UPMA protocol is evaluated by simulation and compared with MPRMA protocol.Simulation results show that UPMA protocol has better performance.

  16. A USER-DEPENDENT PERFECT-SCHEDULING MULTIPLE ACCESS PROTOCOL FOR VOICE-DATA INTEGRATION IN WIRELESS NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Zhou Yajian; Li Jiandong; Liu Kai

    2002-01-01

    A novel Multiple Access Control (MAC) protocol - User-dependent Perfect-scheduling Multiple Access (UPMA) protocol, which supports joint transmission of voice and data packets,is proposed. By this protocol, the bandwidth can be allocated dynamically to the uplink and downlink traffic with on-demand assignment and the transmission of Mobile Terminals (MTs)can be perfectly scheduled by means of polling. Meanwhile, a unique frame structure is designed to guarantee Quality of Service (QoS) in voice traffic supporting. An effective collision resolution algorithm is also proposed to guarantee rapid channel access for activated MTs. Finally, performance of UPMA protocol is evaluated by simulation and compared with MPRMA protocol.Simulation results show that UPMA protocol has better performance.

  17. A Systematic Scheme for Multiple Access in Ethernet Passive Optical Access Networks

    Science.gov (United States)

    Ma, Maode; Zhu, Yongqing; Hiang Cheng, Tee

    2005-11-01

    While backbone networks have experienced substantial changes in the last decade, access networks have not changed much. Recently, passive optical networks (PONs) seem to be ready for commercial deployment as access networks, due to the maturity of a number of enabling technologies. Among the PON technologies, Ethernet PON (EPON) standardized by the IEEE 802.3ah Ethernet in the First Mile (EFM) Task Force is the most attractive one because of its high speed, low cost, familiarity, interoperability, and low overhead. In this paper, we consider the issue of upstream channel sharing in the EPONs. We propose a novel multiple-access control scheme to provide bandwidth-guaranteed service for high-demand customers, while providing best effort service to low-demand customers according to the service level agreement (SLA). The analytical and simulation results prove that the proposed scheme performs best in what it is designed to do compared to another well-known scheme that has not considered providing differentiated services. With business customers preferring premium services with guaranteed bandwidth and residential users preferring low-cost best effort services, our scheme could benefit both groups of subscribers, as well as the operators.

  18. Web services interface to EPICS channel access

    Institute of Scientific and Technical Information of China (English)

    DUAN Lei; SHEN Liren

    2008-01-01

    Web services is used in Experimental Physics and Industrial Control System (EPICS). Combined with EPICS Channel Access protocol, Web services' high usability, platform independence and language independence can be used to design a fully transparent and uniform software interface layer, which helps us complete channel data acquisition, modification and monitoring functions. This software interface layer, a cross-platform of cross-language,has good interopcrability and reusability.

  19. Web services interface to EPICS channel access

    International Nuclear Information System (INIS)

    Duan Lei; Shen Liren

    2008-01-01

    Web services is used in Experimental Physics and Industrial Control System (EPICS). Combined with EPICS Channel Access protocol, Web services high usability, platform independence and language independence can be used to design a fully transparent and uniform software interface layer, which helps us complete channel data acquisition, modification and monitoring functions. This software interface layer, a cross-platform of cross-language, has good interoperability and reusability. (authors)

  20. Asymptotic performance modelling of DCF protocol with prioritized channel access

    Science.gov (United States)

    Choi, Woo-Yong

    2017-11-01

    Recently, the modification of the DCF (Distributed Coordination Function) protocol by the prioritized channel access was proposed to resolve the problem that the DCF performance worsens exponentially as more nodes exist in IEEE 802.11 wireless LANs. In this paper, an asymptotic analytical performance model is presented to analyze the MAC performance of the DCF protocol with the prioritized channel access.

  1. Mixing stream and datagram traffic on satellite: A FIFO Order-based Demand Assignment (FODA) Time Division Multiple Access (TDMA) scheme

    Science.gov (United States)

    Beltrame, R.; Bonito, A. B.; Celandroni, N.; Ferro, E.

    1985-11-01

    A FIFO Order based Demand Assignment (FODA) access scheme was designed to handle packetized data and voice traffic in a multiple access satellite broadcast channel of Mbits band. The channel is shared by as many as 64 simultaneously active stations in a range of 255 addressable stations. A sophisticated traffic environment is assumed, including different types of service requirements and an arbitrary load distribution among the stations. The results of 2Mbit/sec simulation tests for an existing hardware environment are presented.

  2. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.

    Science.gov (United States)

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun

    2015-12-03

    Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  3. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chunyang Lei

    2015-12-01

    Full Text Available Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT, Machine-to-Machine (M2M communications, Vehicular-to-Vehicular (V2V communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  4. Effective capacity of multiple antenna channels: Correlation and keyhole

    KAUST Repository

    Zhong, Caijun

    2012-01-01

    In this study, the authors derive the effective capacity limits for multiple antenna channels which quantify the maximum achievable rate with consideration of link-layer delay-bound violation probability. Both correlated multiple-input single-output and multiple-input multiple-output keyhole channels are studied. Based on the closed-form exact expressions for the effective capacity of both channels, the authors look into the asymptotic high and low signal-to-noise ratio regimes, and derive simple expressions to gain more insights. The impact of spatial correlation on effective capacity is also characterised with the aid of a majorisation theory result. It is revealed that antenna correlation reduces the effective capacity of the channels and a stringent quality-of-service requirement causes a severe reduction in the effective capacity but can be alleviated by increasing the number of antennas. © 2012 The Institution of Engineering and Technology.

  5. Measuring Balance Across Multiple Radar Receiver Channels.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.; Bickel, Douglas L.

    2018-03-01

    When radar receivers employ multiple channels, the general intent is for the receive channels to be as alike as possible, if not as ideal as possible. This is usually done via prudent hardware design, supplemented by system calibration. Towards this end, we require a quality metric for ascertaining the goodness of a radar channel, and the degree of match to sibling channels. We propose a relevant and useable metric to do just that. Acknowledgements This report was the result of an unfunded research and development activity.

  6. Multiple Access Communications

    DEFF Research Database (Denmark)

    This book constitutes the proceedings of the 9th International Workshop on Multiple Access Communications, MACOM 2016, held in Aalborg, Denmark, in November 2016. The 10 full papers presented in this volume were carefully reviewed and selected from 12 submissions. They were organized in topical...

  7. Three-Way Channels With Multiple Unicast Sessions: Capacity Approximation via Network Transformation

    KAUST Repository

    Chaaban, Anas

    2016-09-28

    A network of three nodes mutually communicating with each other is studied. This multi-way network is a suitable model for three-user device-to-device communications. The main goal of this paper is to characterize the capacity region of the underlying Gaussian three-way channel (3WC) within a constant gap. To this end, a capacity outer bound is derived using cut-set bounds and genie-aided bounds. For achievability, the 3WC is first transformed into an equivalent star channel. This latter is then decomposed into a set of “successive” sub-channels, leading to a sub-channel allocation problem. Using backward decoding, interference neutralization, and known results on the capacity of the star-channel relying of physical-layer network coding, an achievable rate region for the 3WC is obtained. It is then shown that the achievable rate region is within a constant gap of the developed outer bound, leading to the desired capacity approximation. Interestingly, in contrast to the Gaussian two-way channel (TWC), adaptation is necessary in the 3WC. Furthermore, message splitting is another ingredient of the developed scheme for the 3WC, which is not required in the TWC. The two setups are, however, similar in terms of their sum-capacity pre-log, which is equal to 2. Finally, some interesting networks and their approximate capacities are recovered as special cases of the 3WC, such as the cooperative broadcast channel and multiple access channel.

  8. Analysis of stationary power/amplitude distributions for multiple channels of sampled FBGs.

    Science.gov (United States)

    Xing, Ya; Zou, Xihua; Pan, Wei; Yan, Lianshan; Luo, Bin; Shao, Liyang

    2015-08-10

    Stationary power/amplitude distributions for multiple channels of the sampled fiber Bragg grating (SFBG) along the grating length are analyzed. Unlike a uniform FBG, the SFBG has multiple channels in the reflection spectrum, not a single channel. Thus, the stationary power/amplitude distributions for these multiple channels are analyzed by using two different theoretical models. In the first model, the SFBG is regarded as a set of grating sections and non-grating sections, which are alternately stacked. A step-like distribution is obtained for the corresponding power/amplitude of each channel along the grating length. While, in the second model, the SFBG is decomposed into multiple uniform "ghost" gratings, and a continuous distribution is obtained for each ghost grating (i.e., each channel). After a comparison, the distributions obtained in the two models are identical, and the equivalence between the two models is demonstrated. In addition, the impacts of the duty cycle on the power/amplitude distributions of multiple channels of SFBG are presented.

  9. Price competition and equilibrium analysis in multiple hybrid channel supply chain

    Science.gov (United States)

    Kuang, Guihua; Wang, Aihu; Sha, Jin

    2017-06-01

    The amazing boom of Internet and logistics industry prompts more and more enterprises to sell commodity through multiple channels. Such market conditions make the participants of multiple hybrid channel supply chain compete each other in traditional and direct channel at the same time. This paper builds a two-echelon supply chain model with a single manufacturer and a single retailer who both can choose different channel or channel combination for their own sales, then, discusses the price competition and calculates the equilibrium price under different sales channel selection combinations. Our analysis shows that no matter the manufacturer and retailer choose same or different channel price to compete, the equilibrium price does not necessarily exist the equilibrium price in the multiple hybrid channel supply chain and wholesale price change is not always able to coordinate supply chain completely. We also present the sufficient and necessary conditions for the existence of equilibrium price and coordination wholesale price.

  10. Spiking neural P systems with multiple channels.

    Science.gov (United States)

    Peng, Hong; Yang, Jinyu; Wang, Jun; Wang, Tao; Sun, Zhang; Song, Xiaoxiao; Luo, Xiaohui; Huang, Xiangnian

    2017-11-01

    Spiking neural P systems (SNP systems, in short) are a class of distributed parallel computing systems inspired from the neurophysiological behavior of biological spiking neurons. In this paper, we investigate a new variant of SNP systems in which each neuron has one or more synaptic channels, called spiking neural P systems with multiple channels (SNP-MC systems, in short). The spiking rules with channel label are introduced to handle the firing mechanism of neurons, where the channel labels indicate synaptic channels of transmitting the generated spikes. The computation power of SNP-MC systems is investigated. Specifically, we prove that SNP-MC systems are Turing universal as both number generating and number accepting devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Multiple-Channel Security Architecture and its Implementation over SSL

    Directory of Open Access Journals (Sweden)

    Song Yong

    2006-01-01

    Full Text Available This paper presents multiple-channel SSL (MC-SSL, an architecture and protocol for protecting client-server communications. In contrast to SSL, which provides a single end-to-end secure channel, MC-SSL enables applications to employ multiple channels, each with its own cipher suite and data-flow direction. Our approach also allows for several partially trusted application proxies. The main advantages of MC-SSL over SSL are (a support for end-to-end security in the presence of partially trusted proxies, and (b selective data protection for achieving computational efficiency important to resource-constrained clients and heavily loaded servers.

  12. Theoretical analysis and simulation of a code division multiple access system (cdma for secure signal transmission in wideband channels

    Directory of Open Access Journals (Sweden)

    Stevan M. Berber

    2014-06-01

    Code Division Multiple Access (CDMA technique which allows communications of multiple users in the same communication system. This is achieved in such a way that each user is assigned a unique code sequence, which is used at the receiver side to discover the information dedicated to that user. These systems belong to the group of communication systems for direct sequence spread spectrum systems. Traditionally, CDMA systems use binary orthogonal spreading codes. In this paper, a mathematical model and simulation of a CDMA system based on the application of non-binary, precisely speaking, chaotic spreading sequences. In their nature, these sequences belong to random sequences with infinite periodicity, and due to that they are appropriate for applications in the systems that provide enhanced security against interception and secrecy in signal transmission. Numerous papers are dedicated to the development of CDMA systems in flat fading channels. This paper presents the results of these systems analysis for the case when frequency selective fading is present in the channel. In addition, the paper investigates a possibility of using interleaving techniques to mitigate fading in a wideband channel with the frequency selective fading. Basic structure of a CDMA communication system and its operation In this paper, a CDMA system block schematic is ppresented and the function of all blocks is explained. Notation  to be used in the paper is introduced. Chaotic sequences are defined and explained in accordance with the method of their generation. A wideband channel with frequency selective fading is defined by its impulse response function. Theoretical analysis of a CDMA system with flat fading in a narrowband channel A narrowband channel and flat fading are defined. A mathematical analysis of the system is conducted by presenting the signal expressions at vital points in the transmitter and receiver. The expression of the signal at the output of the sequence correlator is

  13. EPICS channel access using websocket

    International Nuclear Information System (INIS)

    Uchiyama, A.; Furukawa, K.; Higurashi, Y.

    2012-01-01

    Web technology is useful as a means of widely disseminating accelerator and beam status information. For this purpose, WebOPI was implemented by SNS as a web-based system using Ajax (asynchronous JavaScript and XML) with EPICS. On the other hand, it is often necessary to control the accelerator from different locations as well as the central control room during beam operation and maintenance. However, it is not realistic to replace the GUI-based operator interface (OPI) with a Web-based system using Ajax technology because of interactive performance issue. Therefore, as a next generation OPI over the web using EPICS Channel Access (CA), we developed a client system based on WebSocket, which is a new protocol provided by the Internet Engineering Task Force (IETF) for Web-based systems. WebSocket is a web technology that provides bidirectional, full-duplex communication channels over a single TCP connection. By utilizing Node.js and the WebSocket access library called Socket.IO, a WebSocket server was implemented. Node.js is a server-side JavaScript language built on the Google V8 JavaScript Engine. In order to construct the WebSocket server as an EPICS CA client, an add-on for Node.js was developed in C/C++ using the EPICS CA library, which is included in the EPICS base. As a result, for accelerator operation, Web-based client systems became available not only in the central control room but also with various types of equipment. (author)

  14. MMOSS-I: a CANDU multiple-channel thermosyphoning flow stability model

    Energy Technology Data Exchange (ETDEWEB)

    Gulshani, P [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Huynh, H [Hydro-Quebec, Montreal, PQ (Canada)

    1996-12-31

    This paper presents a multiple-channel flow stability model, dubbed MMOSS, developed to predict the conditions for the onset of flow oscillations in a CANDU-type multiple-channel heat transport system under thermosyphoning conditions. The model generalizes that developed previously to account for the effects of any channel flow reversal. Two-phase thermosyphoning conditions are predicted by thermalhydraulic codes for some postulated accident scenarios in CANDU. Two-phase thermosyphoning experiments in the multiple-channel RD-14M facility have indicated that pass-to-pass out-of-phase oscillations in the loop conditions caused the flow in some of the heated channels to undergo sustained reversal in direction. This channel flow reversal had significant effects on the channel and loop conditions. It is, therefore, important to understand the nature of the oscillations and be able to predict the conditions for the onset of the oscillations or for stable flow in RD-14M and the reactor. For stable flow conditions, oscillation-induced channel flow reversal is not expected. MMOSS was developed for a figure-of-eight system with any number of channels. The system characteristic equation was derived from a linearization of the conservation equations. In this paper, the MMOSS characteristic equation is solved for a system of N identical channel assemblies. The resulting model is called MMOSS-I. This simplification provides valuable physical insight and reasonably accurate results. MMOSS-I and a previously-developed steady-state model THERMOSYPHON are used to predict thermosyphoning flow stability maps for RD-14M and the Gentilly 2 reactor. (author). 11 refs., 7 figs.

  15. Multiple-Access Quantum-Classical Networks

    Science.gov (United States)

    Razavi, Mohsen

    2011-10-01

    A multi-user network that supports both classical and quantum communication is proposed. By relying on optical code-division multiple access techniques, this system offers simultaneous key exchange between multiple pairs of network users. A lower bound on the secure key generation rate will be derived for decoy-state quantum key distribution protocols.

  16. Switch Based Opportunistic Spectrum Access for General Primary User Traffic Model

    KAUST Repository

    Gaaloul, Fakhreddine

    2012-06-18

    This letter studies cognitive radio transceiver that can opportunistically use the available channels of primary user (PU). Specifically, we investigate and compare two different opportunistic channel access schemes. The first scheme applies when the secondary user (SU) has access to only one channel. The second scheme, based on channel switching mechanism, applies when the SU has access to multiple channels but can at a given time monitor and access only one channel. For these access schemes, we derive the exact analytical results for the novel performance metrics of average access time and average waiting time under general PU traffic models.

  17. Switch Based Opportunistic Spectrum Access for General Primary User Traffic Model

    KAUST Repository

    Gaaloul, Fakhreddine; Alouini, Mohamed-Slim; Radaydeh, Redha M.; Yang, Hong-Chuan

    2012-01-01

    This letter studies cognitive radio transceiver that can opportunistically use the available channels of primary user (PU). Specifically, we investigate and compare two different opportunistic channel access schemes. The first scheme applies when the secondary user (SU) has access to only one channel. The second scheme, based on channel switching mechanism, applies when the SU has access to multiple channels but can at a given time monitor and access only one channel. For these access schemes, we derive the exact analytical results for the novel performance metrics of average access time and average waiting time under general PU traffic models.

  18. Cross-Layer Framework for Fine-Grained Channel Access in Next Generation High-Density WiFi Networks

    Institute of Scientific and Technical Information of China (English)

    ZHAO Haitao; ZHANG Shaojie; Emiliano Garcia-Palacios

    2016-01-01

    Densely deployed WiFi networks will play a crucial role in providing the capacity for next generation mobile internet.However,due to increasing interference,overlapped channels in WiFi networks and throughput efficiency degradation,densely deployed WiFi networks is not a guarantee to obtain higher throughput.An emergent challenge is how to efficiently utilize scarce spectrum resources,by matching physical layer resources to traffic demand.In this aspect,access control allocation strategies play a pivotal role but remain too coarse-grained.As a solution,this research proposes a flexible framework for fine-grained channel width adaptation and multi-channel access in WiFi networks.This approach,named SFCA (Subcarrier Fine-grained Channel Access),adopts DOFDM (Discontinuous Orthogonal Frequency Division Multiplexing) at the PHY layer.It allocates the frequency resource with a subcarrier granularity,which facilitates the channel width adaptation for multi-channel access and thus brings more flexibility and higher frequency efficiency.The MAC layer uses a frequencytime domain backoff scheme,which combines the popular time-domain BEB scheme with a frequency-domain backoff to decrease access collision,resulting in higher access probability for the contending nodes.SFCA is compared with FICA (an established access scheme) showing significant outperformance.Finally we present results for next generation 802.11 ac WiFi networks.

  19. Effect of modifying the screw access channels of zirconia implant abutment on the cement flow pattern and retention of zirconia restorations.

    Science.gov (United States)

    Wadhwani, Chandur; Chung, Kwok-Hung

    2014-07-01

    The effect of managing the screw access channels of zirconia implant abutments in the esthetic zone has not been extensively evaluated. The purpose of this study was to determine the effect of an insert placed within the screw access channel of an anterior zirconia implant abutment on the amount of cement retained within the restoration-abutment system and on the dislodging force. Thirty-six paired zirconia abutments and restorations were fabricated by computer-aided design and computer-aided manufacturing and were divided into 3 groups: open abutment, with the screw access channel unfilled; closed abutment, with the screw access channel sealed; and insert abutment, with a thin, tubular metal insert projection continuous with the screw head and placed into the abutment screw access channel. The restorations were cemented to the abutments with preweighed eugenol-free zinc oxide cement (TempBond NE). Excess cement was removed, and the weight of the cement that remained in the restoration-abutment system was measured. Vertical tensile dislodging forces were recorded at a crosshead speed of 5 mm/min after incubation in a 37°C water bath for 24 hours. The specimens were examined for the cement flow pattern into the screw access channel after dislodgement. Data were analyzed with ANOVA, followed by multiple comparisons by using the Tukey honestly significant difference test (α = .05). The mean (standard deviation) of retentive force values ranged from 108.1 ± 29.9 N to 148.3 ± 21.0 N. The retentive force values differed significantly between the insert abutment and both the open abutment (P abutment groups (P abutment and insert abutment being greater than closed abutment (P abutment with a metal insert significantly affected both the cement retained within the abutment itself and the retention capabilities of the zirconia restoration cemented with TempBond NE cement. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier

  20. The Importance of Providing Multiple-Channel Sections in Dredging Activities to Improve Fish Habitat Environments

    Directory of Open Access Journals (Sweden)

    Hung-Pin Chiu

    2016-01-01

    Full Text Available After Typhoon Morakot, dredging engineering was conducted while taking the safety of humans and structures into consideration, but partial stream reaches were formed in the multiple-channel sections in Cishan Stream because of anthropogenic and natural influences. This study mainly explores the distribution of each fish species in both the multiple- and single-channel sections in the Cishan Stream. Parts of the environments did not exhibit significant differences according to a one-way ANOVA comparing the multiple- and single-channel sections, but certain areas of the multiple-channel sections had more diverse habitats. Each fish species was widely distributed by non-metric multidimensional scaling in the multiple-channel sections as compared to those in the single-channel sections. In addition, according to the principal component analysis, each fish species has a preferred environment, and all of them have a wide choice of habitat environments in the multiple-channel sections. Finally, the existence of multiple-channel sections could significantly affect the existence of the fish species under consideration in this study. However, no environmental factors were found to have an influence on fish species in the single-channel sections, with the exception of Rhinogobius nantaiensis. The results show that providing multiple-channel sections in dredging activities could improve fish habitat environments.

  1. Effective capacity of multiple antenna channels: Correlation and keyhole

    KAUST Repository

    Zhong, Caijun; Ratnarajah, Tharm; Wong, Kaikit; Alouini, Mohamed-Slim

    2012-01-01

    In this study, the authors derive the effective capacity limits for multiple antenna channels which quantify the maximum achievable rate with consideration of link-layer delay-bound violation probability. Both correlated multiple-input single

  2. Method for Evaluation of Outage Probability on Random Access Channel in Mobile Communication Systems

    Science.gov (United States)

    Kollár, Martin

    2012-05-01

    In order to access the cell in all mobile communication technologies a so called random-access procedure is used. For example in GSM this is represented by sending the CHANNEL REQUEST message from Mobile Station (MS) to Base Transceiver Station (BTS) which is consequently forwarded as an CHANNEL REQUIRED message to the Base Station Controller (BSC). If the BTS decodes some noise on the Random Access Channel (RACH) as random access by mistake (so- called ‘phantom RACH') then it is a question of pure coincidence which èstablishment cause’ the BTS thinks to have recognized. A typical invalid channel access request or phantom RACH is characterized by an IMMEDIATE ASSIGNMENT procedure (assignment of an SDCCH or TCH) which is not followed by sending an ESTABLISH INDICATION from MS to BTS. In this paper a mathematical model for evaluation of the Power RACH Busy Threshold (RACHBT) in order to guaranty in advance determined outage probability on RACH is described and discussed as well. It focuses on Global System for Mobile Communications (GSM) however the obtained results can be generalized on remaining mobile technologies (ie WCDMA and LTE).

  3. Experimentation of Eigenvector Dynamics in a Multiple Input Multiple Output Channel in the 5GHz Band

    DEFF Research Database (Denmark)

    Brown, Tim; Eggers, Patrick Claus F.; Katz, Marcos

    2005-01-01

    Much research has been carried out on the production of both physical and non physical Multiple Input Multiple Output channel models with regard to increased channel capacity as well as analysis of eigenvalues through the use of singular value decomposition. Little attention has been paid...... to the analysis of vector dynamics in terms of how the state of eigenvectors will change as a mobile is moving through a changing physical environment. This is important in terms of being able to track the orthogonal eigenmodes at system level, while also relieving the burden of tracking of the full channel...

  4. Presentation of the paper “Open access repositories as channel of publication scientific grey literature”

    OpenAIRE

    Ferreras Fernández, Tránsito; García-Peñalvo, Francisco José; Merlo Vega, José Antonio

    2015-01-01

    This is the presentation of the paper entitled “Open access repositories as channel of publication scientific grey literature” in the TEEM 2015 International Conference held in Porto (Portugal) in October 7-9, 2015. In this paper we describe how the open access repositories are valid channels for the publication of scientific grey literature. Technological development facilitates the communication of scientific knowledge, allowing expand distribution channels and significantly reducing tra...

  5. A New Hybrid Channel Access Scheme for Ad Hoc Networks

    National Research Council Canada - National Science Library

    Wang, Yu; Garcia-Luna-Aceves, J. J

    2002-01-01

    Many contention-based channel access schemes have been proposed for multi-hop ad hoc networks in the recent past, and they can be divided into two categories, sender-initiated and receiver-initiated...

  6. New strategies for collision resolution of multi-access channel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Multi-access protocol is one of the commonlyapplied access control protocols,in which commonchannels is shared by multi-users(as shown inFig.1).In recent years,this protocol has been suc-cessfully applied to various communication sys-tems[1].Typical examples are satellite communica-tion system,mobile communication system,localarea net work(LAN)and metropolitan area net work(MAN).There are chiefly three kinds of Multi-ac-cess channel models,i.e.fixed allocation model,self-adjusting allocation model and rando...

  7. Channel Estimation and Optimal Power Allocation for a Multiple-Antenna OFDM System

    Directory of Open Access Journals (Sweden)

    Yao Kung

    2002-01-01

    Full Text Available We propose combining channel estimation and optimal power allocation approaches for a multiple-antenna orthogonal frequency division multiplexing (OFDM system in high-speed transmission applications. We develop a least-square channel estimation approach, derive the performance bound of the estimator, and investigate the optimal training sequences for initial channel acquisition. Based on the channel estimates, the optimal power allocation solution which maximizes the bandwidth efficiency is derived under power and quality of service (Qos (symbol error rate constraints. It is shown that combining channel tracking and adaptive power allocation can dramatically enhance the outage capacity of an OFDM multiple-antenna system when severing fading occurs.

  8. Improved Iterative Decoding of Network-Channel Codes for Multiple-Access Relay Channel.

    Science.gov (United States)

    Majumder, Saikat; Verma, Shrish

    2015-01-01

    Cooperative communication using relay nodes is one of the most effective means of exploiting space diversity for low cost nodes in wireless network. In cooperative communication, users, besides communicating their own information, also relay the information of other users. In this paper we investigate a scheme where cooperation is achieved using a common relay node which performs network coding to provide space diversity for two information nodes transmitting to a base station. We propose a scheme which uses Reed-Solomon error correcting code for encoding the information bit at the user nodes and convolutional code as network code, instead of XOR based network coding. Based on this encoder, we propose iterative soft decoding of joint network-channel code by treating it as a concatenated Reed-Solomon convolutional code. Simulation results show significant improvement in performance compared to existing scheme based on compound codes.

  9. ADNP-CSMA Random Multiple Access protocol application with the function of monitoring in Ad Hoc network

    Directory of Open Access Journals (Sweden)

    Zhan Gang

    2016-01-01

    Full Text Available In Ad Hoc networks,the net work of mobile nodes exchange information with their wireless transceiver equipment,the network throughput is in increased,compared to other such multiple hops network.Moreover along with the rapid development of modern information,communication business also will be increase.However,the access and adaptive of previous CSMA protocol are insufficient.According to these properties,this paper presents a kind of adaptive dual clock with monitoring function P-CSMA random multiple access protocol(ADNP-CSMA,and discusses two kinds of P-CSMA.ACK with monitoring function is introduced to maintain the stability of the whole system,and the introduction of dual clock mechanism reduces the channel of idle period.It calculate the system throughput expression through the method of average period,and the simulation results show that the system is constant in the case of high load throughput.

  10. The RNA Exosome Channeling and Direct Access Conformations Have Distinct In Vivo Functions

    Directory of Open Access Journals (Sweden)

    Jaeil Han

    2016-09-01

    Full Text Available The RNA exosome is a 3′–5′ ribonuclease complex that is composed of nine core subunits and an essential catalytic subunit, Rrp44. Two distinct conformations of Rrp44 were revealed in previous structural studies, suggesting that Rrp44 may change its conformation to exert its function. In the channeling conformation, (Rrp44ch, RNA accesses the active site after traversing the central channel of the RNA exosome, whereas in the other conformation, (Rrp44da, RNA gains direct access to the active site. Here, we show that the Rrp44da exosome is important for nuclear function of the RNA exosome. Defects caused by disrupting the direct access conformation are distinct from those caused by channel-occluding mutations, indicating specific functions for each conformation. Our genetic analyses provide in vivo evidence that the RNA exosome employs a direct-access route to recruit specific substrates, indicating that the RNA exosome uses alternative conformations to act on different RNA substrates.

  11. Le Chatelier's principle with multiple relaxation channels

    Science.gov (United States)

    Gilmore, R.; Levine, R. D.

    1986-05-01

    Le Chatelier's principle is discussed within the constrained variational approach to thermodynamics. The formulation is general enough to encompass systems not in thermal (or chemical) equilibrium. Particular attention is given to systems with multiple constraints which can be relaxed. The moderation of the initial perturbation increases as additional constraints are removed. This result is studied in particular when the (coupled) relaxation channels have widely different time scales. A series of inequalities is derived which describes the successive moderation as each successive relaxation channel opens up. These inequalities are interpreted within the metric-geometry representation of thermodynamics.

  12. Experience with ActiveX control for simple channel access

    International Nuclear Information System (INIS)

    Timossi, C.; Nishimura, H.; McDonald, J.

    2003-01-01

    Accelerator control system applications at Berkeley Lab's Advanced Light Source (ALS) are typically deployed on operator consoles running Microsoft Windows 2000 and utilize EPICS[2]channel access for data access. In an effort to accommodate the wide variety of Windows based development tools and developers with little experience in network programming, ActiveX controls have been deployed on the operator stations. Use of ActiveX controls for use in the accelerator control environment has been presented previously[1]. Here we report on some of our experiences with the use and development of these controls

  13. Adaptive Code Division Multiple Access Protocol for Wireless Network-on-Chip Architectures

    Science.gov (United States)

    Vijayakumaran, Vineeth

    Massive levels of integration following Moore's Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn't need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol

  14. FODA: a novel efficient multiple access protocol for highly dynamic self-organizing networks

    Science.gov (United States)

    Li, Hantao; Liu, Kai; Zhang, Jun

    2005-11-01

    Based on the concept of contention reservation for polling transmission and collision prevention strategy for collision resolution, a fair on-demand access (FODA) protocol for supporting node mobility and multihop architecture in highly dynamic self-organizing networks is proposed. In the protocol, a distributed clustering network architecture formed by self-organizing algorithm and a main idea of reserving channel resources to get polling service are adopted, so that the hidden terminal (HT) and exposed terminal (ET) problems existed in traffic transmission due to multihop architecture and wireless transmission can be eliminated completely. In addition, an improved collision prevention scheme based on binary countdown algorithm (BCA), called fair collision prevention (FCP) algorithm, is proposed to greatly eliminate unfair phenomena existed in contention access of newly active ordinary nodes and completely resolve access collisions. Finally, the performance comparison of the FODA protocol with carrier sense multiple access with collision avoidance (CSMA/CA) and polling protocols by OPNET simulation are presented. Simulation results show that the FODA protocol can overcome the disadvantages of CSMA/CA and polling protocols, and achieve higher throughput, lower average message delay and less average message dropping rate.

  15. Asynchronous, Decentralized DS-CDMA Using Feedback-Controlled Spreading Sequences for Time-Dispersive Channels

    Science.gov (United States)

    Miyatake, Teruhiko; Chiba, Kazuki; Hamamura, Masanori; Tachikawa, Shin'ichi

    We propose a novel asynchronous direct-sequence codedivision multiple access (DS-CDMA) using feedback-controlled spreading sequences (FCSSs) (FCSS/DS-CDMA). At the receiver of FCSS/DS-CDMA, the code-orthogonalizing filter (COF) produces a spreading sequence, and the receiver returns the spreading sequence to the transmitter. Then the transmitter uses the spreading sequence as its updated version. The performance of FCSS/DS-CDMA is evaluated over time-dispersive channels. The results indicate that FCSS/DS-CDMA greatly suppresses both the intersymbol interference (ISI) and multiple access interference (MAI) over time-invariant channels. FCSS/DS-CDMA is applicable to the decentralized multiple access.

  16. H∞ Channel Estimation for DS-CDMA Systems: A Partial Difference Equation Approach

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2013-01-01

    Full Text Available In the communications literature, a number of different algorithms have been proposed for channel estimation problems with the statistics of the channel noise and observation noise exactly known. In practical systems, however, the channel parameters are often estimated using training sequences which lead to the statistics of the channel noise difficult to obtain. Moreover, the received signals are corrupted not only by the ambient noises but also by multiple-access interferences, so the statistics of observation noises is also difficult to obtain. In this paper, we will investigate the H∞ channel estimation problem for direct-sequence code-division multiple-access (DS-CDMA communication systems with time-varying multipath fading channels. The channel estimator is designed by applying a partial difference equation approach together with the innovation analysis theory. This method can give a sufficient and necessary condition for the existence of an H∞ channel estimator.

  17. Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Shree Krishna Sharma

    2016-01-01

    Full Text Available The advances in multiple access techniques has been one of the key drivers in moving from one cellular generation to another. Starting from the first generation, several multiple access techniques have been explored in different generations and various emerging multiplexing/multiple access techniques are being investigated for the next generation of cellular networks. In this context, this paper first provides a detailed review on the existing Space Division Multiple Access (SDMA related works. Subsequently, it highlights the main features and the drawbacks of various existing and emerging multiplexing/multiple access techniques. Finally, we propose a novel concept of clustered orthogonal signature division multiple access for the next generation of cellular networks. The proposed concept envisions to employ joint antenna coding in order to enhance the orthogonality of SDMA beams with the objective of enhancing the spectral efficiency of future cellular networks.

  18. Hermitian symmetry free optical-single-carrier frequency division multiple access for visible light communication

    Science.gov (United States)

    Azim, Ali W.; Le Guennec, Yannis; Maury, Ghislaine

    2018-05-01

    Optical-orthogonal frequency division multiplexing (O-OFDM) is an effective scheme for visible light communications (VLC), offering a candid extension to multiple access (MA) scenarios, i.e., O-OFDMA. However, O-OFDMA exhibits high peak-to-average power ratio (PAPR), which exacerbates the non-linear distortions from the light emitting diode (LED). To overcome high PAPR while sustaining MA, optical-single-carrier frequency-division multiple access (O-SCFDMA) is used. For both O-OFDMA and O-SCFDMA, Hermitian symmetry (HS) constraint is imposed in frequency-domain (FD) to obtain a real-valued time-domain (TD) signal for intensity modulation-direct detection (IM-DD) implementation of VLC. Howbeit, HS results in an increase of PAPR for O-SCFDMA. In this regard, we propose HS free (HSF) O-SCFDMA (HSFO-SCFDMA). We compare HSFO-SCFDMA with several approaches in key parameters, such as, bit error rate (BER), optical power penalty, PAPR, quantization, electrical power efficiency and system complexity. BER performance and optical power penalty is evaluated considering multipath VLC channel and taking into account the bandwidth limitation of LED in combination with its optimized driver. It is illustrated that HSFO-SCFDMA outperforms other alternatives.

  19. Performance evaluation of modulation and multiple access schemes in ultraviolet optical wireless connections for two atmosphere thickness cases.

    Science.gov (United States)

    Raptis, Nikos; Pikasis, Evangelos; Syvridis, Dimitris

    2016-08-01

    The exploitation of optical wireless communication channels in a non-line-of-sight regime is studied for point-to-point and networking configurations considering the use of light-emitting diodes. Two environments with different scattering center densities are considered, assuming operation at 265 nm. The bit error rate performance of both pulsed and multicarrier modulation schemes is examined, using numerical approaches. In the networking scenario, a central node only receives data, one node transmits useful data, and the rest of them act as interferers. The performance of the desirable node's transmissions is evaluated. The access to the medium is controlled by a code division multiple access scheme.

  20. Wireless Energy Harvesting Using Signals from Multiple Fading Channels

    KAUST Repository

    Chen, Yunfei

    2017-08-01

    In this paper, we study the average, the probability density function and the cumulative distribution function of the harvested power. In the study, the signals are transmitted from multiple sources. The channels are assumed to be either Rician fading or Gamma-shadowed Rician fading. The received signals are then harvested by using either a single harvester for simultaneous transmissions or multiple harvesters for transmissions at different frequencies, antennas or time slots. Both linear and nonlinear models for the energy harvester at the receiver are examined. Numerical results are presented to show that, when a large amount of harvested power is required, a single harvester or the linear range of a practical nonlinear harvester are more efficient, to avoid power outage. Further, the power transfer strategy can be optimized for fixed total power. Specifically, for Rayleigh fading, the optimal strategy is to put the total power at the source with the best channel condition and switch off all other sources, while for general Rician fading, the optimum magnitudes and phases of the transmitting waveforms depend on the channel parameters.

  1. Multiple-Symbol Decision-Feedback Space-Time Differential Decoding in Fading Channels

    Directory of Open Access Journals (Sweden)

    Wang Xiaodong

    2002-01-01

    Full Text Available Space-time differential coding (STDC is an effective technique for exploiting transmitter diversity while it does not require the channel state information at the receiver. However, like conventional differential modulation schemes, it exhibits an error floor in fading channels. In this paper, we develop an STDC decoding technique based on multiple-symbol detection and decision-feedback, which makes use of the second-order statistic of the fading processes and has a very low computational complexity. This decoding method can significantly lower the error floor of the conventional STDC decoding algorithm, especially in fast fading channels. The application of the proposed multiple-symbol decision-feedback STDC decoding technique in orthogonal frequency-division multiplexing (OFDM system is also discussed.

  2. A New Time-Hopping Multiple Access Communication System Simulator: Application to Ultra-Wideband

    Directory of Open Access Journals (Sweden)

    José M. Páez-Borrallo

    2005-03-01

    Full Text Available Time-hopping ultra-wideband technology presents some very attractive features for future indoor wireless systems in terms of achievable transmission rate and multiple access capabilities. This paper develops an algorithm to design time-hopping system simulators specially suitable for ultra-wideband, which takes advantage of some of the specific characteristics of this kind of systems. The algorithm allows an improvement of both the time capabilities and the achievable sampling rate and can be used to research into the influence of different parameters on the performance of the system. An additional result is the validation of a new general performance formula for time-hopping ultra-wideband systems with multipath channels.

  3. Development of EPICS channel access embedded ActiveX components for GUI development

    International Nuclear Information System (INIS)

    Roy, A.; Bhole, R.B.; Pal, S.

    2012-01-01

    The paper describes the integration of Experimental Physics and Industrial Control System (EPICS) Channel Access (CA) protocol and Microsoft ActiveX technology towards developing a generalize operator interface (OPI) building facility for Windows platform. EPICS is used as the development architecture of the control system in Superconducting Cyclotron (SCC). Considering the operators' familiarity and compatibility with third party software, it was decided to use MS-Windows platform at operator interface level in SCC during commission. Microsoft Visual Basic (VB) is used on trial basis as OPI building platform to incorporate user specific features e.g. file system access for data storage and analysis, user authentication at OPI level etc. A set of EPICS Channel Access embedded ActiveX components is developed to ease the programming complexity and reduce developmental time of the OPI for Windows platform. OPIs, developed using these components and containing hundreds of process parameters, are being used reliably over a considerable period of time. (author)

  4. Improved Interference-Free Channel Allocation in Coordinated Multiuser Multi-Antenna Open-Access Small Cells

    KAUST Repository

    Radaydeh, Redha; Zafar, Ammar; Al-Qahtani, Fawaz; Alouini, Mohamed-Slim

    2016-01-01

    This paper investigates low-complexity joint interference avoidance and desired link improvement for single channel allocation in multiuser multi-antenna access points (APs) for open-access small cells. It is considered that an active user is equipped with an atenna array that can be used to suppress interference sources but not to provide spatial diversity. On the other hand, the operation of APs can be coordinated to meet design requirements, and each of which can unconditionally utilize assigned physical channels. Moreover, each AP is equipped with uncorrelated antennas that can be reused simultaneously to serve many active users. The analysis provides new approaches to exploit physical channels, transmit antennas, and APs to mitigate interference, while providing the best possible link gain to an active user through the most suitable interference-free channel. The event of concurrent service requests placed by active users on a specific interference-free channel is discussed for either interference avoidance through identifying unshared channels or desired link improvement via multiuser scheduling. The applicability of the approaches to balance downlink loads is explained, and practical scenarios due to imperfect identification of interference-free channels and/or scheduled user are thoroughly investigated. The developed results are applicable for any statistical and geometric models of the allocated channel to an active user as well as channel conditions of interference users. They can be used to study various performance measures. Numerical and simulation results are presented to explain some outcomes of this work.

  5. Improved Interference-Free Channel Allocation in Coordinated Multiuser Multi-Antenna Open-Access Small Cells

    KAUST Repository

    Radaydeh, Redha

    2016-02-16

    This paper investigates low-complexity joint interference avoidance and desired link improvement for single channel allocation in multiuser multi-antenna access points (APs) for open-access small cells. It is considered that an active user is equipped with an atenna array that can be used to suppress interference sources but not to provide spatial diversity. On the other hand, the operation of APs can be coordinated to meet design requirements, and each of which can unconditionally utilize assigned physical channels. Moreover, each AP is equipped with uncorrelated antennas that can be reused simultaneously to serve many active users. The analysis provides new approaches to exploit physical channels, transmit antennas, and APs to mitigate interference, while providing the best possible link gain to an active user through the most suitable interference-free channel. The event of concurrent service requests placed by active users on a specific interference-free channel is discussed for either interference avoidance through identifying unshared channels or desired link improvement via multiuser scheduling. The applicability of the approaches to balance downlink loads is explained, and practical scenarios due to imperfect identification of interference-free channels and/or scheduled user are thoroughly investigated. The developed results are applicable for any statistical and geometric models of the allocated channel to an active user as well as channel conditions of interference users. They can be used to study various performance measures. Numerical and simulation results are presented to explain some outcomes of this work.

  6. Optical code division multiple access fundamentals and applications

    CERN Document Server

    Prucnal, Paul R

    2005-01-01

    Code-division multiple access (CDMA) technology has been widely adopted in cell phones. Its astonishing success has led many to evaluate the promise of this technology for optical networks. This field has come to be known as Optical CDMA (OCDMA). Surveying the field from its infancy to the current state, Optical Code Division Multiple Access: Fundamentals and Applications offers the first comprehensive treatment of OCDMA from technology to systems.The book opens with a historical perspective, demonstrating the growth and development of the technologies that would eventually evolve into today's

  7. Stability Properties of Network Diversity Multiple Access with Multiple-Antenna Reception and Imperfect Collision Multiplicity Estimation

    Directory of Open Access Journals (Sweden)

    Ramiro Samano-Robles

    2013-01-01

    Full Text Available In NDMA (network diversity multiple access, protocol-controlled retransmissions are used to create a virtual MIMO (multiple-input multiple-output system, where collisions can be resolved via source separation. By using this retransmission diversity approach for collision resolution, NDMA is the family of random access protocols with the highest potential throughput. However, several issues remain open today in the modeling and design of this type of protocol, particularly in terms of dynamic stable performance and backlog delay. This paper attempts to partially fill this gap by proposing a Markov model for the study of the dynamic-stable performance of a symmetrical and non-blind NDMA protocol assisted by a multiple-antenna receiver. The model is useful in the study of stability aspects in terms of the backlog-user distribution and average backlog delay. It also allows for the investigation of the different states of the system and the transition probabilities between them. Unlike previous works, the proposed approach considers the imperfect estimation of the collision multiplicity, which is a crucial process to the performance of NDMA. The results suggest that NDMA improves not only the throughput performance over previous solutions, but also the average number of backlogged users, the average backlog delay and, in general, the stability of random access protocols. It is also shown that when multiuser detection conditions degrade, ALOHA-type backlog retransmission becomes relevant to the stable operation of NDMA.

  8. Throughput Fairness Enhancement Using Differentiated Channel Access in Heterogeneous Sensor Networks

    Directory of Open Access Journals (Sweden)

    James Jong Hyuk Park

    2011-06-01

    Full Text Available Nowadays, with wireless sensor networks (WSNs being widely applied to diverse applications, heterogeneous sensor networks (HSNs, which can simultaneously support multiple sensing tasks in a common sensor field, are being considered as the general form of WSN system deployment. In HSNs, each application generates data packets with a different size, thereby resulting in fairness issues in terms of the network performance. In this paper, we present the design and performance evaluation of a differentiated channel access scheme (abbreviated to DiffCA to resolve the fairness problem in HSNs. DiffCA achieves fair performance among the application groups by providing each node with an additional backoff counter, whose value varies according to the size of the packets. A mathematical model based on the discrete time Markov chain is presented and is analyzed to measure the performance of DiffCA. The numerical results show that the performance degradation of disadvantaged application groups can be effectively compensated for by DiffCA. Simulation results are given to verify the accuracy of the numerical model.

  9. Throughput fairness enhancement using differentiated channel access in heterogeneous sensor networks.

    Science.gov (United States)

    Kim, Eui-Jik; Shon, Taeshik; Park, James Jong Hyuk; Jeong, Young-Sik

    2011-01-01

    Nowadays, with wireless sensor networks (WSNs) being widely applied to diverse applications, heterogeneous sensor networks (HSNs), which can simultaneously support multiple sensing tasks in a common sensor field, are being considered as the general form of WSN system deployment. In HSNs, each application generates data packets with a different size, thereby resulting in fairness issues in terms of the network performance. In this paper, we present the design and performance evaluation of a differentiated channel access scheme (abbreviated to DiffCA) to resolve the fairness problem in HSNs. DiffCA achieves fair performance among the application groups by providing each node with an additional backoff counter, whose value varies according to the size of the packets. A mathematical model based on the discrete time Markov chain is presented and is analyzed to measure the performance of DiffCA. The numerical results show that the performance degradation of disadvantaged application groups can be effectively compensated for by DiffCA. Simulation results are given to verify the accuracy of the numerical model.

  10. Adaptation of the Electra Radio to Support Multiple Receive Channels

    Science.gov (United States)

    Satorius, Edgar H.; Shah, Biren N.; Bruvold, Kristoffer N.; Bell, David J.

    2011-01-01

    Proposed future Mars missions plan communication between multiple assets (rovers). This paper presents the results of a study carried out to assess the potential adaptation of the Electra radio to a multi-channel transceiver. The basic concept is a Frequency Division multiplexing (FDM) communications scheme wherein different receiver architectures are examined. Options considered include: (1) multiple IF slices, A/D and FPGAs each programmed with an Electra baseband modem; (2) common IF but multiple A/Ds and FPGAs and (3) common IF, single A/D and single or multiple FPGAs programmed to accommodate the FDM signals. These options represent the usual tradeoff between analog and digital complexity. Given the space application, a common IF is preferable; however, multiple users present dynamic range challenges (e.g., near-far constraints) that would favor multiple IF slices (Option 1). Vice versa, with a common IF and multiple A/Ds (Option 2), individual AGC control of the A/Ds would be an important consideration. Option 3 would require a common AGC control strategy and would entail multiple digital down conversion paths within the FPGA. In this paper, both FDM parameters as well as the different Electra design options will be examined. In particular, signal channel spacing as a function of user data rates and transmit powers will be evaluated. In addition, tradeoffs between the different Electra design options will be presented with the ultimate goal of defining an augmented Electra radio architecture for potential future missions.

  11. Image transmission in multicore-fiber code-division multiple access network

    Science.gov (United States)

    Yang, Guu-Chang; Kwong, Wing C.

    1997-01-01

    Recently, two-dimensional (2-D) signature patterns were proposed to encode binary digitized image pixels in optical code-division multiple-access (CDMA) networks with 'multicore' fiber. The new technology enables parallel transmission and simultaneous access of 2-D images in multiple-access environment, where these signature patterns are defined as optical orthogonal signature pattern codes (OOSPCs). However, previous work on OOSPCs assumed that the weight of each signature pattern was the same. In this paper, we construct a new family of OOSPCs with the removal of this assumption. Since varying the weight of a user's signature pattern affects that user's performance, this approach is useful for CDMA optical systems with multiple performance requirements.

  12. Ergodic channel capacity of spatial correlated multiple-input multiple-output free space optical links using multipulse pulse-position modulation

    Science.gov (United States)

    Wang, Huiqin; Wang, Xue; Cao, Minghua

    2017-02-01

    The spatial correlation extensively exists in the multiple-input multiple-output (MIMO) free space optical (FSO) communication systems due to the channel fading and the antenna space limitation. Wilkinson's method was utilized to investigate the impact of spatial correlation on the MIMO FSO communication system employing multipulse pulse-position modulation. Simulation results show that the existence of spatial correlation reduces the ergodic channel capacity, and the reception diversity is more competent to resist this kind of performance degradation.

  13. Orthogonal frequency division multiple access fundamentals and applications

    CERN Document Server

    Jiang, Tao; Zhang, Yan

    2010-01-01

    Supported by the expert-level advice of pioneering researchers, Orthogonal Frequency Division Multiple Access Fundamentals and Applications provides a comprehensive and accessible introduction to the foundations and applications of one of the most promising access technologies for current and future wireless networks. It includes authoritative coverage of the history, fundamental principles, key techniques, and critical design issues of OFDM systems. Covering various techniques of effective resource management for OFDM/OFDMA-based wireless communication systems, this cutting-edge reference:Add

  14. Channel access delay and buffer distribution of two-user opportunistic scheduling schemes in wireless networks

    KAUST Repository

    Hossain, Md Jahangir

    2010-07-01

    In our earlier works, we proposed rate adaptive hierarchical modulation-assisted two-best user opportunistic scheduling (TBS) and hybrid two-user scheduling (HTS) schemes. The proposed schemes are innovative in the sense that they include a second user in the transmission opportunistically using hierarchical modulations. As such the frequency of information access of the users increases without any degradation of the system spectral efficiency (SSE) compared to the classical opportunistic scheduling scheme. In this paper, we analyze channel access delay of an incoming packet at the base station (BS) buffer when our proposed TBS and HTS schemes are employed at the BS. Specifically, using a queuing analytic model we derive channel access delay as well as buffer distribution of the packets that wait at BS buffer for down-link (DL) transmission. We compare performance of the TBS and HTS schemes with that of the classical single user opportunistic schemes namely, absolute carrier-to-noise ratio (CNR)-based single user scheduling (ASS) and normalized CNR-based single user scheduling (NSS). For an independent and identically distributed (i.i.d.) fading environment, our proposed scheme can improve packet\\'s access delay performance compared to the ASS. Selected numerical results in an independent but non-identically distributed (i.n.d.) fading environment show that our proposed HTS achieves overall good channel access delay performance. © 2010 IEEE.

  15. Color coded multiple access scheme for bidirectional multiuser visible light communications in smart home technologies

    Science.gov (United States)

    Tiwari, Samrat Vikramaditya; Sewaiwar, Atul; Chung, Yeon-Ho

    2015-10-01

    In optical wireless communications, multiple channel transmission is an attractive solution to enhancing capacity and system performance. A new modulation scheme called color coded multiple access (CCMA) for bidirectional multiuser visible light communications (VLC) is presented for smart home applications. The proposed scheme uses red, green and blue (RGB) light emitting diodes (LED) for downlink and phosphor based white LED (P-LED) for uplink to establish a bidirectional VLC and also employs orthogonal codes to support multiple users and devices. The downlink transmission for data user devices and smart home devices is provided using red and green colors from the RGB LEDs, respectively, while uplink transmission from both types of devices is performed using the blue color from P-LEDs. Simulations are conducted to verify the performance of the proposed scheme. It is found that the proposed bidirectional multiuser scheme is efficient in terms of data rate and performance. In addition, since the proposed scheme uses RGB signals for downlink data transmission, it provides flicker-free illumination that would lend itself to multiuser VLC system for smart home applications.

  16. Time division multiple access for vehicular communications

    CERN Document Server

    Omar, Hassan Aboubakr

    2014-01-01

    This brief focuses on medium access control (MAC) in vehicular ad hoc networks (VANETs), and presents VeMAC, a novel MAC scheme based on distributed time division multiple access (TDMA) for VANETs. The performance of VeMAC is evaluated via mathematical analysis and computer simulations in comparison with other existing MAC protocols, including the IEEE 802.11p standard. This brief aims at proposing TDMA as a suitable MAC scheme for VANETs, which can support the quality-of-service requirements of high priority VANET applications.

  17. Free-space optical code-division multiple-access system design

    Science.gov (United States)

    Jeromin, Lori L.; Kaufmann, John E.; Bucher, Edward A.

    1993-08-01

    This paper describes an optical direct-detection multiple access communications system for free-space satellite networks utilizing code-division multiple-access (CDMA) and forward error correction (FEC) coding. System performance is characterized by how many simultaneous users operating at data rate R can be accommodated in a signaling bandwidth W. The performance of two CDMA schemes, optical orthogonal codes (OOC) with FEC and orthogonal convolutional codes (OCC), is calculated and compared to information-theoretic capacity bounds. The calculations include the effects of background and detector noise as well as nonzero transmitter extinction ratio and power imbalance among users. A system design for 10 kbps multiple-access communications between low-earth orbit satellites is given. With near- term receiver technology and representative system losses, a 15 W peak-power transmitter provides 10-6 BER performance with seven interfering users and full moon background in the receiver FOV. The receiver employs an array of discrete wide-area avalanche photodiodes (APD) for wide field of view coverage. Issues of user acquisition and synchronization, implementation technology, and system scalability are also discussed.

  18. Multiple-channel detection of cellular activities by ion-sensitive transistors

    Science.gov (United States)

    Machida, Satoru; Shimada, Hideto; Motoyama, Yumi

    2018-04-01

    An ion-sensitive field-effect transistor to record cellular activities was demonstrated. This field-effect transistor (bio transistor) includes cultured cells on the gate insulator instead of gate electrode. The bio transistor converts a change in potential underneath the cells into variation of the drain current when ion channels open. The bio transistor has high detection sensitivity to even minute variations in potential utilizing a subthreshold swing region. To open ion channels, a reagent solution (acetylcholine) was added to a human-originating cell cultured on the bio transistor. The drain current was successfully decreased with the addition of acetylcholine. Moreover, we attempted to detect the opening of ion channels using a multiple-channel measurement circuit containing several bio transistors. As a consequence, the drain current distinctly decreased only after the addition of acetylcholine. We confirmed that this measurement system including bio transistors enables to observation of cellular activities sensitively and simultaneously.

  19. Stochastic geometry model for multi-channel fog radio access networks

    KAUST Repository

    Emara, Mostafa

    2017-06-29

    Cache-enabled base station (BS) densification, denoted as a fog radio access network (F-RAN), is foreseen as a key component of 5G cellular networks. F-RAN enables storing popular files at the network edge (i.e., BS caches), which empowers local communication and alleviates traffic congestions at the core/backhaul network. The hitting probability, which is the probability of successfully transmitting popular files request from the network edge, is a fundamental key performance indicator (KPI) for F-RAN. This paper develops a scheduling aware mathematical framework, based on stochastic geometry, to characterize the hitting probability of F-RAN in a multi-channel environment. To this end, we assess and compare the performance of two caching distribution schemes, namely, uniform caching and Zipf caching. The numerical results show that the commonly used single channel environment leads to pessimistic assessment for the hitting probability of F-RAN. Furthermore, the numerical results manifest the superiority of the Zipf caching scheme and quantify the hitting probability gains in terms of the number of channels and cache size.

  20. Dynamic analysis of multiple nuclear-coupled boiling channels based on a multi-point reactor model

    International Nuclear Information System (INIS)

    Lee, J.D.; Pan Chin

    2005-01-01

    This work investigates the non-linear dynamics and stabilities of a multiple nuclear-coupled boiling channel system based on a multi-point reactor model using the Galerkin nodal approximation method. The nodal approximation method for the multiple boiling channels developed by Lee and Pan [Lee, J.D., Pan, C., 1999. Dynamics of multiple parallel boiling channel systems with forced flows. Nucl. Eng. Des. 192, 31-44] is extended to address the two-phase flow dynamics in the present study. The multi-point reactor model, modified from Uehiro et al. [Uehiro, M., Rao, Y.F., Fukuda, K., 1996. Linear stability analysis on instabilities of in-phase and out-of-phase modes in boiling water reactors. J. Nucl. Sci. Technol. 33, 628-635], is employed to study a multiple-channel system with unequal steady-state neutron density distribution. Stability maps, non-linear dynamics and effects of major parameters on the multiple nuclear-coupled boiling channel system subject to a constant total flow rate are examined. This study finds that the void-reactivity feedback and neutron interactions among subcores are coupled and their competing effects may influence the system stability under different operating conditions. For those cases with strong neutron interaction conditions, by strengthening the void-reactivity feedback, the nuclear-coupled effect on the non-linear dynamics may induce two unstable oscillation modes, the supercritical Hopf bifurcation and the subcritical Hopf bifurcation. Moreover, for those cases with weak neutron interactions, by quadrupling the void-reactivity feedback coefficient, period-doubling and complex chaotic oscillations may appear in a three-channel system under some specific operating conditions. A unique type of complex chaotic attractor may evolve from the Rossler attractor because of the coupled channel-to-channel thermal-hydraulic and subcore-to-subcore neutron interactions. Such a complex chaotic attractor has the imbedding dimension of 5 and the

  1. On Multiple Users Scheduling Using Superposition Coding over Rayleigh Fading Channels

    KAUST Repository

    Zafar, Ammar

    2013-02-20

    In this letter, numerical results are provided to analyze the gains of multiple users scheduling via superposition coding with successive interference cancellation in comparison with the conventional single user scheduling in Rayleigh blockfading broadcast channels. The information-theoretic optimal power, rate and decoding order allocation for the superposition coding scheme are considered and the corresponding histogram for the optimal number of scheduled users is evaluated. Results show that at optimality there is a high probability that only two or three users are scheduled per channel transmission block. Numerical results for the gains of multiple users scheduling in terms of the long term throughput under hard and proportional fairness as well as for fixed merit weights for the users are also provided. These results show that the performance gain of multiple users scheduling over single user scheduling increases when the total number of users in the network increases, and it can exceed 10% for high number of users

  2. Entrance channel systematics of pre-scission neutron multiplicities

    International Nuclear Information System (INIS)

    Shareef, M.; Prasad, E.; Chatterjee, A.

    2016-01-01

    Statistical model analysis has been performed for the available neutron multiplicity (ν_p_r_e) data in the literature. Larger ν_p_r_e values for more symmetric reactions have been observed in comparison with asymmetric reactions forming the same compound nucleus, in most cases. A reverse trend has also been noticed in a few cases. A systematic entrance channel dependence of fission timescale is brought out in this work. Fission timescales calculated using the experimental ν_p_r_e values fall into two distinct groups according to the entrance channel mass asymmetry of the reaction with respect to the Businaro-Gallone critical mass asymmetry. The difference in the delay between these two groups ranges between 20 and 100 zs, which is larger than that reported in some cases. (orig.)

  3. A new access scheme in OFDMA systems

    Institute of Scientific and Technical Information of China (English)

    GU Xue-lin; YAN Wei; TIAN Hui; ZHANG Ping

    2006-01-01

    This article presents a dynamic random access scheme for orthogonal frequency division multiple access (OFDMA) systems. The key features of the proposed scheme are:it is a combination of both the distributed and the centralized schemes, it can accommodate several delay sensitivity classes,and it can adjust the number of random access channels in a media access control (MAC) frame and the access probability according to the outcome of Mobile Terminals access attempts in previous MAC frames. For floating populated packet-based networks, the proposed scheme possibly leads to high average user satisfaction.

  4. Rendering Intelligence at Physical Layer for Smart Addressing and Multiple Access

    DEFF Research Database (Denmark)

    Sanyal, Rajarshi; Prasad, Ramjee; Cianca, Ernestina

    2010-01-01

    addressing of a node. For a typical closed user group type of network, we propose a multiple access mechanism and network topology which will not only eliminate the need of intelligent core network equipments in the network area , but to use this intelligent physical layer to directly reach any node over......The primary objective of this work is to propose a technique of wireless communication, where we render intelligence to the physical layer. We aim to realize a physical layer that can take part in some processes which is otherwise confined to higher layer signalling activities, like for example...... the fundamentals behind the proposed multiple access scheme and draws out the benefits compared to the existing multiple access processes based on cellular approach....

  5. Reduced feedback selective cluster index scheduling with user pre-selection for next-generation multi-input multi-output orthogonal frequency division multiple access system

    OpenAIRE

    Nicolaou, M; Doufexi, A; Armour, SMD; Sun, Y

    2011-01-01

    The joint use of opportunistic scheduling and orthogonal frequency division multiple access (OFDMA) provide significant gains in environments of low mobility and scatter for which channel variations are low. The downside of opportunistic scheduling in multicarrier systems such as OFDMA, lies in the substantial uplink overhead required to feed back by the mobile stations (MSs) describing users' instantaneous link conditions. This study presents a novel approach towards multicarrier opportunist...

  6. Resonance properties of tidal channels with multiple retention basisn: role of adjacent sea

    NARCIS (Netherlands)

    Roos, Pieter C.; Schuttelaars, H.M.

    2015-01-01

    We present an idealised model of the tidal response in a main channel with multiple secondary basins, co-oscillating with an adjacent sea. The sea is represented as a semi-infinite strip of finite width, anywhere between the limits of a channel extension (narrow) and a half-plane (wide). The sea

  7. Adaptive multi-channel downlink assignment for overloaded spectrum-shared multi-antenna overlaid cellular networks

    KAUST Repository

    Radaydeh, Redha Mahmoud

    2012-10-19

    Overlaid cellular technology has been considered as a promising candidate to enhance the capacity and extend the coverage of cellular networks, particularly indoors. The deployment of small cells (e.g. femtocells and/or picocells) in an overlaid setup is expected to reduce the operational power and to function satisfactorily with the existing cellular architecture. Among the possible deployments of small-cell access points is to manage many of them to serve specific spatial locations, while reusing the available spectrum universally. This contribution considers the aforementioned scenario with the objective to serve as many active users as possible when the available downlink spectrum is overloaded. The case study is motivated by the importance of realizing universal resource sharing in overlaid networks, while reducing the load of distributing available resources, satisfying downlink multi-channel assignment, controlling the aggregate level of interference, and maintaining desired design/operation requirements. These objectives need to be achieved in distributed manner in each spatial space with as low processing load as possible when the feedback links are capacity-limited, multiple small-cell access points can be shared, and data exchange between access points can not be coordinated. This contribution is summarized as follows. An adaptive downlink multi-channel assignment scheme when multiple co-channel and shared small-cell access points are allocated to serve active users is proposed. It is assumed that the deployed access points employ isotropic antenna arrays of arbitrary sizes, operate using the open-access strategy, and transmit on shared physical channels simultaneously. Moreover, each active user can be served by a single transmit channel per each access point at a time, and can sense the concurrent interference level associated with each transmit antenna channel non-coherently. The proposed scheme aims to identify a suitable subset of transmit channels

  8. Low-Complexity Interference-Free Downlink Channel Assignment with Improved Performance in Coordinated Small Cells

    KAUST Repository

    Radaydeh, Redha M.

    2015-05-01

    This paper proposes a low-complexity interference-free channel assignment scheme with improved desired downlink performance in coordinated multi-antenna small-coverage access points (APs) that employ the open-access control strategy. The adopted system treats the case when each user can be granted an access to one of the available channels at a time. Moreover, each receive terminal can suppress a limited number of resolvable interfering sources via its highly-correlated receive array. On the other hand, the operation of the deployed APs can be coordinated to serve active users, and the availability of multiple physical channels and the use of uncorrelated transmit antennas at each AP are exploited to improve the performance of supported users. The analysis provides new approaches to use the transmit antenna array at each AP, the multiple physical channels, the receive antenna array at each user in order to identify interference-free channels per each user, and then to select a downlink channel that provides the best possible improved performance. The event of concurrent interference-free channel identification by different users is also treated to further improve the desired link associated with the scheduled user. The analysis considers the practical scenario of imperfect identification of interference-free channel by an active user and/or the imperfectness in scheduling concurrent users requests on the same channel. The developed formulations can be used to study any performance metric and they are applicable for any statistical and geometric channel models. © 2015 IEEE.

  9. Trellis Tone Modulation Multiple-Access for Peer Discovery in D2D Networks

    Directory of Open Access Journals (Sweden)

    Chiwoo Lim

    2018-04-01

    Full Text Available In this paper, a new non-orthogonal multiple-access scheme, trellis tone modulation multiple-access (TTMMA, is proposed for peer discovery of distributed device-to-device (D2D communication. The range and capacity of discovery are important performance metrics in peer discovery. The proposed trellis tone modulation uses single-tone transmission and achieves a long discovery range due to its low Peak-to-Average Power Ratio (PAPR. The TTMMA also exploits non-orthogonal resource assignment to increase the discovery capacity. For the multi-user detection of superposed multiple-access signals, a message-passing algorithm with supplementary schemes are proposed. With TTMMA and its message-passing demodulation, approximately 1.5 times the number of devices are discovered compared to the conventional frequency division multiple-access (FDMA-based discovery.

  10. Lowering data retention voltage in static random access memory array by post fabrication self-improvement of cell stability by multiple stress application

    Science.gov (United States)

    Mizutani, Tomoko; Takeuchi, Kiyoshi; Saraya, Takuya; Kobayashi, Masaharu; Hiramoto, Toshiro

    2018-04-01

    We propose a new version of the post fabrication static random access memory (SRAM) self-improvement technique, which utilizes multiple stress application. It is demonstrated that, using a device matrix array (DMA) test element group (TEG) with intrinsic channel fully depleted (FD) silicon-on-thin-buried-oxide (SOTB) six-transistor (6T) SRAM cells fabricated by the 65 nm technology, the lowering of data retention voltage (DRV) is more effectively achieved than using the previously proposed single stress technique.

  11. Radio Access Sharing Strategies for Multiple Operators in Cellular Networks

    DEFF Research Database (Denmark)

    Popovska Avramova, Andrijana; Iversen, Villy Bæk

    2015-01-01

    deployments (required for coverage enhancement), increased base station utilization, and reduced overall power consumption. Today, network sharing in the radio access part is passive and limited to cell sites. With the introduction of Cloud Radio Access Network and Software Defined Networking adoption...... to the radio access network, the possibility for sharing baseband processing and radio spectrum becomes an important aspect of network sharing. This paper investigates strategies for active sharing of radio access among multiple operators, and analyses the individual benefits depending on the sharing degree...

  12. Secret-key agreement over spatially correlated fast-fading multiple-antenna channels with public discussion

    KAUST Repository

    Zorgui, Marwen

    2015-06-14

    We consider secret-key agreement with public discussion over multiple-input multiple-output (MIMO) Rayleigh fast-fading channels under correlated environment. We assume that transmit, legitimate receiver and eavesdropper antennas are correlated. The legitimate receiver and the eavesdropper are assumed to have perfect channel knowledge while the transmitter has only knowledge of the correlation matrices. First, we derive the expression of the secret-key capacity under the considered setup. Then, we prove that the optimal transmit strategy achieving the secret-key capacity consists in transmitting independent Gaussian signals along the eingenvectors of the transmit correlation matrix. The powers allocated to each channel mode are determined as the solution to a numerical optimization problem that we derive. A necessary and sufficient condition for beamforming (i.e., transmitting along the strongest channel mode) to be capacity-achieving is derived. Finally, we analyze the impact of correlation matrices on the system performance and provide closed-form expressions of the gain/loss due to correlation in the high power regime.

  13. Maximum-Likelihood Sequence Detection of Multiple Antenna Systems over Dispersive Channels via Sphere Decoding

    Directory of Open Access Journals (Sweden)

    Hassibi Babak

    2002-01-01

    Full Text Available Multiple antenna systems are capable of providing high data rate transmissions over wireless channels. When the channels are dispersive, the signal at each receive antenna is a combination of both the current and past symbols sent from all transmit antennas corrupted by noise. The optimal receiver is a maximum-likelihood sequence detector and is often considered to be practically infeasible due to high computational complexity (exponential in number of antennas and channel memory. Therefore, in practice, one often settles for a less complex suboptimal receiver structure, typically with an equalizer meant to suppress both the intersymbol and interuser interference, followed by the decoder. We propose a sphere decoding for the sequence detection in multiple antenna communication systems over dispersive channels. The sphere decoding provides the maximum-likelihood estimate with computational complexity comparable to the standard space-time decision-feedback equalizing (DFE algorithms. The performance and complexity of the sphere decoding are compared with the DFE algorithm by means of simulations.

  14. Four-channel high speed synchronized acquisition multiple trigger storage measurement system

    International Nuclear Information System (INIS)

    Guo Jian; Wang Wenlian; Zhang Zhijie

    2010-01-01

    A new storage measurement system based on the CPLD, MCU and FLASH (large-capacity flash memory) is proposed. The large capacity storage characteristic of the FLASH MEMORY is used to realize multi channel synchronized acquisition and the function of multiple records and read once. The function of multi channel synchronization, high speed data acquisition, the triggering several times, and the adjustability of working parameters expands the application of storage measurement system. The storage measurement system can be used in a variety of pressure and temperature test in explosion field. (authors)

  15. On the average complexity of sphere decoding in lattice space-time coded multiple-input multiple-output channel

    KAUST Repository

    Abediseid, Walid

    2012-12-21

    The exact average complexity analysis of the basic sphere decoder for general space-time codes applied to multiple-input multiple-output (MIMO) wireless channel is known to be difficult. In this work, we shed the light on the computational complexity of sphere decoding for the quasi- static, lattice space-time (LAST) coded MIMO channel. Specifically, we drive an upper bound of the tail distribution of the decoder\\'s computational complexity. We show that when the computational complexity exceeds a certain limit, this upper bound becomes dominated by the outage probability achieved by LAST coding and sphere decoding schemes. We then calculate the minimum average computational complexity that is required by the decoder to achieve near optimal performance in terms of the system parameters. Our results indicate that there exists a cut-off rate (multiplexing gain) for which the average complexity remains bounded. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Channel selection for simultaneous and proportional myoelectric prosthesis control of multiple degrees-of-freedom

    Science.gov (United States)

    Hwang, Han-Jeong; Hahne, Janne Mathias; Müller, Klaus-Robert

    2014-10-01

    Objective. Recent studies have shown the possibility of simultaneous and proportional control of electrically powered upper-limb prostheses, but there has been little investigation on optimal channel selection. The objective of this study is to find a robust channel selection method and the channel subsets most suitable for simultaneous and proportional myoelectric prosthesis control of multiple degrees-of-freedom (DoFs). Approach. Ten able-bodied subjects and one person with congenital upper-limb deficiency took part in this study, and performed wrist movements with various combinations of two DoFs (flexion/extension and radial/ulnar deviation). During the experiment, high density electromyographic (EMG) signals and the actual wrist angles were recorded with an 8 × 24 electrode array and a motion tracking system, respectively. The wrist angles were estimated from EMG features with ridge regression using the subsets of channels chosen by three different channel selection methods: (1) least absolute shrinkage and selection operator (LASSO), (2) sequential feature selection (SFS), and (3) uniform selection (UNI). Main results. SFS generally showed higher estimation accuracy than LASSO and UNI, but LASSO always outperformed SFS in terms of robustness, such as noise addition, channel shift and training data reduction. It was also confirmed that about 95% of the original performance obtained using all channels can be retained with only 12 bipolar channels individually selected by LASSO and SFS. Significance. From the analysis results, it can be concluded that LASSO is a promising channel selection method for accurate simultaneous and proportional prosthesis control. We expect that our results will provide a useful guideline to select optimal channel subsets when developing clinical myoelectric prosthesis control systems based on continuous movements with multiple DoFs.

  17. Random access with adaptive packet aggregation in LTE/LTE-A.

    Science.gov (United States)

    Zhou, Kaijie; Nikaein, Navid

    While random access presents a promising solution for efficient uplink channel access, the preamble collision rate can significantly increase when massive number of devices simultaneously access the channel. To address this issue and improve the reliability of the random access, an adaptive packet aggregation method is proposed. With the proposed method, a device does not trigger a random access for every single packet. Instead, it starts a random access when the number of aggregated packets reaches a given threshold. This method reduces the packet collision rate at the expense of an extra latency, which is used to accumulate multiple packets into a single transmission unit. Therefore, the tradeoff between packet loss rate and channel access latency has to be carefully selected. We use semi-Markov model to derive the packet loss rate and channel access latency as functions of packet aggregation number. Hence, the optimal amount of aggregated packets can be found, which keeps the loss rate below the desired value while minimizing the access latency. We also apply for the idea of packet aggregation for power saving, where a device aggregates as many packets as possible until the latency constraint is reached. Simulations are carried out to evaluate our methods. We find that the packet loss rate and/or power consumption are significantly reduced with the proposed method.

  18. Chip-Level Channel Equalization in WCDMA Downlink

    Directory of Open Access Journals (Sweden)

    Kari Hooli

    2002-08-01

    Full Text Available The most important third generation (3G cellular communications standard is based on wideband CDMA (WCDMA. Receivers based on TDMA style channel equalization at the chip level have been proposed for a WCDMA downlink employing long spreading sequences to ensure adequate performance even with a high number of active users. These receivers equalize the channel prior to despreading, thus restoring the orthogonality of users and resulting in multiple-access interference (MAI suppression. In this paper, an overview of chip-level channel equalizers is delivered with special attention to adaptation methods suitable for the WCDMA downlink. Numerical examples on the equalizers′ performance are given in Rayleigh fading frequency-selective channels.

  19. Small Terminal MIMO Channels with User Interaction

    DEFF Research Database (Denmark)

    Pedersen, Gert Frølund; Andersen, Jørgen Bach; Eggers, Patrick Claus F.

    2007-01-01

    This paper gives an overview of results obtained from measurements of different types of multiple-input multiple-output (MIMO) channels. For the indoor case measurements were made at 5.8 GHz from access points (APs) to mobile stations (MSs) at different places in a large open office type room. Th...... an investigation of the potentials for communication between cars approaching as well as in convoy and from inside and outside the car....

  20. Performance of Downlink UTRAN LTE under Control Channel Constraints

    DEFF Research Database (Denmark)

    López Villa, Dimas; Úbeda Castellanos, Carlos; Kovács, István Z.

    2008-01-01

    Dynamic time-frequency domain packet scheduling algorithms in the shared channel of downlink orthogonal Frequency Division Multiple Access (OFDMA) systems have been shown to achieve high multi-user diversity scheduling gains. However, the flexibility is obtained at the cost of additional control ...

  1. Multiuser TOA Estimation Algorithm in DS-CDMA Sparse Channel for Radiolocation

    Science.gov (United States)

    Kim, Sunwoo

    This letter considers multiuser time delay estimation in a sparse channel environment for radiolocation. The generalized successive interference cancellation (GSIC) algorithm is used to eliminate the multiple access interference (MAI). To adapt GSIC to sparse channels the alternating maximization (AM) algorithm is considered, and the continuous time delay of each path is estimated without requiring a priori known data sequences.

  2. Characterization of dual-polarization LTE radio over a free-space optical turbulence channel.

    Science.gov (United States)

    Bohata, J; Zvanovec, S; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2015-08-10

    A dual polarization (DP) radio over a free-space optical (FSO) communication link using a long-term evolution (LTE) radio signal is proposed and analyzed under different turbulence channel conditions. Radio signal transmission over the DP FSO channel is experimentally verified by means of error vector magnitude (EVM) statistics. We demonstrate that such a system, employing a 64 quadrature amplitude modulation at the frequency bands of 800 MHz and 2.6 GHz, evinces reliability with LTE signal over the FSO channel is a potential solution for last-mile access or backbone networks, when using multiple-input multiple-output based DP signals.

  3. LabVIEW Library to EPICS Channel Access

    CERN Document Server

    Liyu, Andrei; Thompson, Dave H

    2005-01-01

    The Spallation Neutron Source (SNS) accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The accelerator complex consists of a 1 GeV linear accelerator, an accumulator ring and associated transport lines. The SNS diagnostics platform is PC-based and will run Windows for its OS and LabVIEW as its programming language. Data acquisition hardware will be based on PCI cards. There will be about 300 rack-mounted computers. The Channel Access (CA) protocol of the Experimental Physics and Industrial Control System (EPICS) is the SNS control system communication standard. This paper describes the approaches, implementation, and features of LabVIEW library to CA for Windows, Linux, and Mac OS X. We also discuss how the library implements the asynchronous CA monitor routine using LabVIEW's occurrence mechanism instead of a callback function (which is not available in LabVIEW). The library is used to acquire accelerator data and applications have been ...

  4. Correlation functions with fusion-channel multiplicity in W3 Toda field theory

    International Nuclear Information System (INIS)

    Belavin, Vladimir; Estienne, Benoit; Foda, Omar; Santachiara, Raoul

    2016-01-01

    Current studies of W N Toda field theory focus on correlation functions such that the W N highest-weight representations in the fusion channels are multiplicity-free. In this work, we study W 3 Toda 4-point functions with multiplicity in the fusion channel. The conformal blocks of these 4-point functions involve matrix elements of a fully-degenerate primary field with a highest-weight in the adjoint representation of sl 3 , and a fully-degenerate primary field with a highest-weight in the fundamental representation of sl 3 . We show that, when the fusion rules do not involve multiplicities, the matrix elements of the fully-degenerate adjoint field, between two arbitrary descendant states, can be computed explicitly, on equal footing with the matrix elements of the semi-degenerate fundamental field. Using null-state conditions, we obtain a fourth-order Fuchsian differential equation for the conformal blocks. Using Okubo theory, we show that, due to the presence of multiplicities, this differential equation belongs to a class of Fuchsian equations that is different from those that have appeared so far in W N theories. We solve this equation, compute its monodromy group, and construct the monodromy-invariant correlation functions. This computation shows in detail how the ambiguities that are caused by the presence of multiplicities are fixed by requiring monodromy-invariance.

  5. A 16-channel reconfigurable OCDMA/DWDM system using continuous phase-shift SSFBGs

    OpenAIRE

    Chun, Tian; Zhang, Zhaowei; Ibsen, M.; Petropoulos, P.; Richardson, D.J.

    2007-01-01

    We demonstrate a reconfigurable 16-channel optical code-division multiple access (OCDMA)/dense wavelength division multiplexing (DWDM) system (4 OCDMA times 4 DWDM times 625 Mb/s) based on novel 31-chip, 40 Gchip/s quaternary phase coding gratings operating at a channel spacing of just 50 GHz. The system performance is studied for cases of both fixed and code-reconfigurable decoders. Error-free performance is achieved in both cases and for all 16 channels.

  6. An upper bound for codes for the noisy two-access binary adder channel

    NARCIS (Netherlands)

    Tilborg, van H.C.A.

    1986-01-01

    Using earlier methods a combinatorial upper bound is derived for|C|. cdot |D|, where(C,D)is adelta-decodable code pair for the noisy two-access binary adder channel. Asymptotically, this bound reduces toR_{1}=R_{2} leq frac{3}{2} + elog_{2} e - (frac{1}{2} + e) log_{2} (1 + 2e)= frac{1}{2} - e +

  7. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key

  8. Optimality of Multichannel Myopic Sensing in the Presence of Sensing Error for Opportunistic Spectrum Access

    Directory of Open Access Journals (Sweden)

    Xiaofeng Jiang

    2013-01-01

    Full Text Available The optimization problem for the performance of opportunistic spectrum access is considered in this study. A user, with the limited sensing capacity, has opportunistic access to a communication system with multiple channels. The user can only choose several channels to sense and decides whether to access these channels based on the sensing information in each time slot. Meanwhile, the presence of sensing error is considered. A reward is obtained when the user accesses a channel. The objective is to maximize the expected (discounted or average reward accrued over an infinite horizon. This problem can be formulated as a partially observable Markov decision process. This study shows the optimality of the simple and robust myopic policy which focuses on maximizing the immediate reward. The results show that the myopic policy is optimal in the case of practical interest.

  9. MULTIPLE ACCESS POINTS WITHIN THE ONLINE CLASSROOM: WHERE STUDENTS LOOK FOR INFORMATION

    Directory of Open Access Journals (Sweden)

    John STEELE

    2017-01-01

    Full Text Available The purpose of this study is to examine the impact of information placement within the confines of the online classroom architecture. Also reviewed was the impact of other variables such as course design, teaching presence and student patterns in looking for information. The sample population included students from a major online university in their first year course sequence. Students were tasked with completing a survey at the end of the course, indicating their preference for accessing information within the online classroom. The qualitative data indicated that student preference is to receive information from multiple access points and sources within the online classroom architecture. Students also expressed a desire to have information delivered through the usage of technology such as email and text messaging. In addition to receiving information from multiple sources, the qualitative data indicated students were satisfied overall, with the current ways in which they received and accessed information within the online classroom setting. Major findings suggest that instructors teaching within the online classroom should have multiple data access points within the classroom architecture. Furthermore, instructors should use a variety of communication venues to enhance the ability for students to access and receive information pertinent to the course.

  10. Experimental demonstration of 2.5 Gbit/S incoherent two-dimensional optical code division multiple access system

    International Nuclear Information System (INIS)

    Glesk, I.; Baby, V.; Bres, C.-S.; Xu, L.; Rand, D.; Prucnal, P.R.

    2004-01-01

    We demonstrated error-free operation of 4 simultaneous users in a fast frequency-hopping time-spreading optical code division multiple access system operating at 2.5 Gbit/s a Star architecture. Effective power penalty was ≤0.5dB. Novel optical code division multiple access receiver based on Terahertz Optical Asymmetric Demultiplexer was demonstrated to eliminate multiple access interference (Authors)

  11. On the performance of dual-hop systems with multiple antennas: Effects of spatial correlation, keyhole, and co-channel interference

    KAUST Repository

    Yang, Liang

    2012-12-01

    In this paper, taking into account realistic propagation conditions, namely, spatial correlation, keyhole channels, and unequal-power co-channel interference, we investigate the performance of a wireless relay network where all the nodes are equipped with multiple antennas. Considering channel state information assisted amplify-and-forward protocol, we present analytical expressions for the symbol error rate (SER) and outage probability. More specifically, we first derive the SER expressions of a relay system with orthogonal space-time block coding (OSTBC) over correlated/keyhole fading channels. We also analyze the outage probability of interference corrupted relay systems with maximal ratio combing (MRC) at the receiver as well as multiple-input multiple-output MRC (MIMO MRC). Numerical results are given to illustrate and verify the analytical results. © 2012 IEEE.

  12. On the performance of dual-hop systems with multiple antennas: Effects of spatial correlation, keyhole, and co-channel interference

    KAUST Repository

    Yang, Liang; Alouini, Mohamed-Slim; Qaraqe, Khalid A.; Liu, Weiping

    2012-01-01

    In this paper, taking into account realistic propagation conditions, namely, spatial correlation, keyhole channels, and unequal-power co-channel interference, we investigate the performance of a wireless relay network where all the nodes are equipped with multiple antennas. Considering channel state information assisted amplify-and-forward protocol, we present analytical expressions for the symbol error rate (SER) and outage probability. More specifically, we first derive the SER expressions of a relay system with orthogonal space-time block coding (OSTBC) over correlated/keyhole fading channels. We also analyze the outage probability of interference corrupted relay systems with maximal ratio combing (MRC) at the receiver as well as multiple-input multiple-output MRC (MIMO MRC). Numerical results are given to illustrate and verify the analytical results. © 2012 IEEE.

  13. Optimal Policy of Cross-Layer Design for Channel Access and Transmission Rate Adaptation in Cognitive Radio Networks

    Science.gov (United States)

    He, Hao; Wang, Jun; Zhu, Jiang; Li, Shaoqian

    2010-12-01

    In this paper, we investigate the cross-layer design of joint channel access and transmission rate adaptation in CR networks with multiple channels for both centralized and decentralized cases. Our target is to maximize the throughput of CR network under transmission power constraint by taking spectrum sensing errors into account. In centralized case, this problem is formulated as a special constrained Markov decision process (CMDP), which can be solved by standard linear programming (LP) method. As the complexity of finding the optimal policy by LP increases exponentially with the size of action space and state space, we further apply action set reduction and state aggregation to reduce the complexity without loss of optimality. Meanwhile, for the convenience of implementation, we also consider the pure policy design and analyze the corresponding characteristics. In decentralized case, where only local information is available and there is no coordination among the CR users, we prove the existence of the constrained Nash equilibrium and obtain the optimal decentralized policy. Finally, in the case that the traffic load parameters of the licensed users are unknown for the CR users, we propose two methods to estimate the parameters for two different cases. Numerical results validate the theoretic analysis.

  14. Optimal Policy of Cross-Layer Design for Channel Access and Transmission Rate Adaptation in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Jiang Zhu

    2010-01-01

    Full Text Available In this paper, we investigate the cross-layer design of joint channel access and transmission rate adaptation in CR networks with multiple channels for both centralized and decentralized cases. Our target is to maximize the throughput of CR network under transmission power constraint by taking spectrum sensing errors into account. In centralized case, this problem is formulated as a special constrained Markov decision process (CMDP, which can be solved by standard linear programming (LP method. As the complexity of finding the optimal policy by LP increases exponentially with the size of action space and state space, we further apply action set reduction and state aggregation to reduce the complexity without loss of optimality. Meanwhile, for the convenience of implementation, we also consider the pure policy design and analyze the corresponding characteristics. In decentralized case, where only local information is available and there is no coordination among the CR users, we prove the existence of the constrained Nash equilibrium and obtain the optimal decentralized policy. Finally, in the case that the traffic load parameters of the licensed users are unknown for the CR users, we propose two methods to estimate the parameters for two different cases. Numerical results validate the theoretic analysis.

  15. Multiple-photon disambiguation on stripline-anode Micro-Channel Plates

    Energy Technology Data Exchange (ETDEWEB)

    Jocher, Glenn R., E-mail: glenn.jocher@ultralytics.com [Ultralytics LLC, Arlington, VA 22203 (United States); Wetstein, Matthew J., E-mail: mwetstein@uchicago.edu [Iowa State University, Department of Physics and Astronomy, 12 Physics Hall, Ames, IA 50011 (United States); Adams, Bernhard, E-mail: badams@incomusa.com [Incom, Inc., 294 Southbridge Road, Charlton, MA 01507 (United States); Nishimura, Kurtis, E-mail: kurtis.nishimura@ultralytics.com [Ultralytics LLC, Arlington, VA 22203 (United States); Usman, Shawn M., E-mail: shawn.usman@nga.mil [Research Directorate, National Geospatial-Intelligence Agency, 7500 GEOINT Dr., Springfield, VA 22150 (United States); Department of Geography and Geoinformation Science, George Mason University, Fairfax, VA 22030 (United States)

    2016-06-21

    Large-Area Picosecond Photo-Detectors (LAPPDs) show great potential for expanding the performance envelope of Micro-Channel Plates (MCPs) to areas of up to 20×20 cm and larger. Such scaling introduces new challenges, including how to meet the electronics readout burden of ever larger area MCPs. One solution is to replace the traditional grid anode used for readout with a microwave stripline anode, thus allowing the channel count to scale with MCP width rather than area. However, stripline anodes introduce new issues not commonly dealt with in grid-anodes, especially as their length increases. One of these issues is the near simultaneous arrival of multiple photons on the detector, creating possible confusion about how to reconstruct their arrival times and positions. We propose a maximum a posteriori solution to the problem and verify its performance in simulated scintillator and water-Cherenkov detectors.

  16. Limitation on the amount of accessible information in a quantum channel

    International Nuclear Information System (INIS)

    Schumacher, B.; Westmoreland, M.; Wootters, W.K.

    1996-01-01

    We prove a new result limiting the amount of accessible information in a quantum channel. This generalizes Kholevo close-quote s theorem and implies it as a simple corollary. Our proof uses the strong subadditivity of the von Neumann entropy functional S(ρ) and a specific physical analysis of the measurement process. The result presented here has application in information obtained from open-quote open-quote weak close-quote close-quote measurements, such as those sometimes considered in quantum cryptography. copyright 1996 The American Physical Society

  17. Secure Multiple-Antenna Block-Fading Wiretap Channels with Limited CSI Feedback

    KAUST Repository

    Hyadi, Amal

    2017-07-18

    In this paper, we investigate the ergodic secrecy capacity of a block-fading wiretap channel with limited channel knowledge at the transmitter. We consider that the legitimate receiver, the eavesdropper and the transmitter are equipped with multiple antennas and that the receiving nodes are aware of their respective channel matrices. The transmitter, on the other hand, is only provided by a B-bit feedback of the main channel state information. The feedback bits are sent by the legitimate receiver, at the beginning of each fading block, over an error-free public link with limited capacity. The statistics of the main and the eavesdropper channel state information are known at all nodes. Assuming an average transmit power constraint, we establish upper and lower bounds on the ergodic secrecy capacity. Then, we present a framework to design the optimal codebooks for feedback and transmission. In addition, we show that the proposed lower and upper bounds coincide asymptotically as the capacity of the feedback link becomes large, i.e. $B \\ ightarrow \\\\infty$ ; hence, fully characterizing the ergodic secrecy capacity in this case. Besides, we analyze the asymptotic behavior of the presented secrecy rates, at high Signal-to-Noise Ratio (SNR), and evaluate the gap between the bounds.

  18. Secure Multiple-Antenna Block-Fading Wiretap Channels with Limited CSI Feedback

    KAUST Repository

    Hyadi, Amal; Rezki, Zouheir; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, we investigate the ergodic secrecy capacity of a block-fading wiretap channel with limited channel knowledge at the transmitter. We consider that the legitimate receiver, the eavesdropper and the transmitter are equipped with multiple antennas and that the receiving nodes are aware of their respective channel matrices. The transmitter, on the other hand, is only provided by a B-bit feedback of the main channel state information. The feedback bits are sent by the legitimate receiver, at the beginning of each fading block, over an error-free public link with limited capacity. The statistics of the main and the eavesdropper channel state information are known at all nodes. Assuming an average transmit power constraint, we establish upper and lower bounds on the ergodic secrecy capacity. Then, we present a framework to design the optimal codebooks for feedback and transmission. In addition, we show that the proposed lower and upper bounds coincide asymptotically as the capacity of the feedback link becomes large, i.e. $B \\rightarrow \\infty$ ; hence, fully characterizing the ergodic secrecy capacity in this case. Besides, we analyze the asymptotic behavior of the presented secrecy rates, at high Signal-to-Noise Ratio (SNR), and evaluate the gap between the bounds.

  19. Electro-optical time gating based on Mach-Zehnder modulator for multiple access interference elimination in optical code-division multiple access networks

    Science.gov (United States)

    Chen, Yinfang; Wang, Rong; Fang, Tao; Pu, Tao; Xiang, Peng; Zheng, Jilin; Zhu, Huatao

    2014-05-01

    An electro-optical time gating technique, which is based on an electrical return-to-zero (RZ) pulse driven Mach-Zehnder modulator (MZM) for eliminating multiple access interference (MAI) in optical code-division multiple access (OCDMA) networks is proposed. This technique is successfully simulated in an eight-user two-dimensional wavelength-hopping time-spreading system, as well as in a three-user temporal phase encoding system. Results show that in both systems the MAI noise is efficiently removed and the average received power penalty improved. Both achieve error-free transmissions at a bit rate of 2.5 Gb/s. In addition, we also individually discuss effects of parameters in two systems, such as the extinction ratio of the MZM, the duty cycle of the driven RZ pulse, and the time misalignment between the driven pulse and the decoded autocorrelation peak, on the output bit error rate performance. Our work shows that employing a common MZM as a thresholder provides another probability and an interesting cost-effective choice for a smart size, low energy, and less complex thresholding technique for integrated detection in OCDMA networks.

  20. Delay-limited capacity of fading multiple access and broadcast channels in the low power regime

    KAUST Repository

    Rezki, Zouheir; Alouini, Mohamed-Slim

    2015-01-01

    show that for fading channels where the MAC capacity region is strictly positive, it has a multidimensional rectangle structure and thus is simply characterized by single user capacity points. More specifically, we show that at low power, the boundary

  1. Channel Access and Power Control for Mobile Crowdsourcing in Device-to-Device Underlaid Cellular Networks

    Directory of Open Access Journals (Sweden)

    Yue Ma

    2018-01-01

    Full Text Available With the access of a myriad of smart handheld devices in cellular networks, mobile crowdsourcing becomes increasingly popular, which can leverage omnipresent mobile devices to promote the complicated crowdsourcing tasks. Device-to-device (D2D communication is highly desired in mobile crowdsourcing when cellular communications are costly. The D2D cellular network is more preferable for mobile crowdsourcing than conventional cellular network. Therefore, this paper addresses the channel access and power control problem in the D2D underlaid cellular networks. We propose a novel semidistributed network-assisted power and a channel access control scheme for D2D user equipment (DUE pieces. It can control the interference from DUE pieces to the cellular user accurately and has low information feedback overhead. For the proposed scheme, the stochastic geometry tool is employed and analytic expressions are derived for the coverage probabilities of both the cellular link and D2D links. We analyze the impact of key system parameters on the proposed scheme. The Pareto optimal access threshold maximizing the total area spectral efficiency is obtained. Unlike the existing works, the performances of the cellular link and D2D links are both considered. Simulation results show that the proposed method can improve the total area spectral efficiency significantly compared to existing schemes.

  2. Scalable Lunar Surface Networks and Adaptive Orbit Access

    Science.gov (United States)

    Wang, Xudong

    2015-01-01

    Teranovi Technologies, Inc., has developed innovative network architecture, protocols, and algorithms for both lunar surface and orbit access networks. A key component of the overall architecture is a medium access control (MAC) protocol that includes a novel mechanism of overlaying time division multiple access (TDMA) and carrier sense multiple access with collision avoidance (CSMA/CA), ensuring scalable throughput and quality of service. The new MAC protocol is compatible with legacy Institute of Electrical and Electronics Engineers (IEEE) 802.11 networks. Advanced features include efficiency power management, adaptive channel width adjustment, and error control capability. A hybrid routing protocol combines the advantages of ad hoc on-demand distance vector (AODV) routing and disruption/delay-tolerant network (DTN) routing. Performance is significantly better than AODV or DTN and will be particularly effective for wireless networks with intermittent links, such as lunar and planetary surface networks and orbit access networks.

  3. Effects of Voltage-Gated K+ Channel on Cell Proliferation in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Objective. To study the effects and underlying mechanisms of voltage-gated K+ channels on the proliferation of multiple myeloma cells. Methods. RPMI-8226 MM cell line was used for the experiments. Voltage-gated K+ currents and the resting potential were recorded by whole-cell patch-clamp technique. RT-PCR detected Kv channel mRNA expression. Cell viability was analyzed with MTT assay. Cell counting system was employed to monitor cell proliferation. DNA contents and cell volume were analyzed by flow cytometry. Results. Currents recorded in RPMI-8226 cells were confirmed to be voltage-gated K+ channels. A high level of Kv1.3 mRNA was detected but no Kv3.1 mRNA was detected in RPMI-8226 cells. Voltage-gated K+ channel blocker 4-aminopyridine (4-AP (2 mM depolarized the resting potential from −42 ± 1.7 mV to −31.8 ± 2.8 mV (P0.05. Conclusions. In RPMI-8226, voltage-gated K+ channels are involved in proliferation and cell cycle progression its influence on the resting potential and cell volume may be responsible for this process; the inhibitory effect of the voltage-gated K+ channel blocker on RPMI-8226 cell proliferation is a phase-specific event.

  4. Service time analysis of secondary packet transmission with opportunistic channel access

    KAUST Repository

    Usman, Muneer; Yang, Hongchuan; Alouini, Mohamed-Slim

    2014-01-01

    Cognitive radio transceiver can opportunistically access the underutilized channels of primary systems for new wireless services. The secondary transmission may be interrupted by the primary user's transmission. To facilitate the delay analysis of such secondary packet transmission, we study the resulting extended delivery time for a fixed-size secondary packet that includes both transmission time and waiting time. In particular we derive the exact distribution functions of extended delivery time of secondary transmission for both continuous sensing and periodic sensing cases. Selected numerical results are presented for illustrating the mathematical formulation.

  5. Service time analysis of secondary packet transmission with opportunistic channel access

    KAUST Repository

    Usman, Muneer

    2014-09-01

    Cognitive radio transceiver can opportunistically access the underutilized channels of primary systems for new wireless services. The secondary transmission may be interrupted by the primary user\\'s transmission. To facilitate the delay analysis of such secondary packet transmission, we study the resulting extended delivery time for a fixed-size secondary packet that includes both transmission time and waiting time. In particular we derive the exact distribution functions of extended delivery time of secondary transmission for both continuous sensing and periodic sensing cases. Selected numerical results are presented for illustrating the mathematical formulation.

  6. Feedback power control strategies in wireless sensor networks with joint channel decoding.

    Science.gov (United States)

    Abrardo, Andrea; Ferrari, Gianluigi; Martalò, Marco; Perna, Fabio

    2009-01-01

    In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD). In particular, upon the derivation of the feasible signal-to-noise ratio (SNR) region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i) a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP), and (ii) an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as "balanced SNR" and "unbalanced SNR," respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO) scenario, where the sensors observe noisy versions of a common binary information sequence and the AP's goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm.

  7. Feedback Power Control Strategies inWireless Sensor Networks with Joint Channel Decoding

    Directory of Open Access Journals (Sweden)

    Fabio Perna

    2009-11-01

    Full Text Available In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD. In particular, upon the derivation of the feasible signal-to-noise ratio (SNR region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP, and (ii an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as “balanced SNR” and “unbalanced SNR,” respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO scenario, where the sensors observe noisy versions of a common binary information sequence and the AP’s goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm.

  8. Partial Interference and Its Performance Impact on Wireless Multiple Access Networks

    Directory of Open Access Journals (Sweden)

    Lau WingCheong

    2010-01-01

    Full Text Available To determine the capacity of wireless multiple access networks, the interference among the wireless links must be accurately modeled. In this paper, we formalize the notion of the partial interference phenomenon observed in many recent wireless measurement studies and establish analytical models with tractable solutions for various types of wireless multiple access networks. In particular, we characterize the stability region of IEEE 802.11 networks under partial interference with two potentially unsaturated links numerically. We also provide a closed-form solution for the stability region of slotted ALOHA networks under partial interference with two potentially unsaturated links and obtain a partial characterization of the boundary of the stability region for the general M-link case. Finally, we derive a closed-form approximated solution for the stability region for general M-link slotted ALOHA system under partial interference effects. Based on our results, we demonstrate that it is important to model the partial interference effects while analyzing wireless multiple access networks. This is because such considerations can result in not only significant quantitative differences in the predicted system capacity but also fundamental qualitative changes in the shape of the stability region of the systems.

  9. Multiple-channel ultra-violet absorbance detector for two-dimensional chromatographic separations.

    Science.gov (United States)

    Lynch, Kyle B; Yang, Yu; Ren, Jiangtao; Liu, Shaorong

    2018-05-01

    In recent years, much research has gone into developing online comprehensive two-dimensional liquid chromatographic systems allowing for high peak capacities in comparable separation times to that of one-dimensional liquid chromatographic systems. However, the speed requirements in the second dimension (2nd-D) still remain one challenge for complex biological samples due to the current configuration of two column/two detector systems. Utilization of multiple 2nd-D columns can mitigate this challenge. To adapt this approach, we need a multiple channel detector. Here we develop a versatile multichannel ultraviolet (UV) light absorbance detector that is capable of simultaneously monitoring separations in 12 columns. The detector consists of a deuterium lighthouse, a flow cell assembly (a 13-channel flow cell fitted with a 13-photodiode-detection system), and a data acquisition and monitoring terminal. Through the use of a custom high optical quality furcated fiber to improve light transmission, precise machining of a flow cell to reduce background stray light through precision alignment, and sensitive electronic circuitry to reduce electronic noise through an active low pass filter, the background noise level is measured in the tens of µAU. We obtain a linear dynamic range of close to three orders of magnitude. Compared to a commercialized multichannel UV light absorbance detector like the Waters 2488 UV/Vis, our device provides an increase in channel detection while residing within the same noise region and linear range. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Channel-aware multi-user uplink transmission scheme for SIMO-OFDM systems

    Institute of Scientific and Technical Information of China (English)

    PAN ChengKang; CAI YueMing; XU YouYun

    2009-01-01

    The problem of medium access control (MAC) in wireless single-Input multiple-output-orthogonal frequency division multiplexing (SIMO-OFOM) systems is addressed.Traditional random access protocols have low overheads and inferior performance.Centralized methods have superior performance and high overheads.To achieve the tradeoff between overhead and performance,we propose a channelaware uplink transmission (CaUT) scheme for SIMO-OFDM systems.In CaUT,users transmit requestto-send (RTS) at some subcarriers whose channel gains are above a predetermined threshold.Using the channel state information provided by RTS,access point performs user selection with receive beamforming to decide which users can access and then broadcasts the selection results via clear-to-send (CTS) to users.We present a distributed power control scheme by using a simple fixed modulation mode.We optimize the modulation order and channel gain thresholds to maximize the separable packets subject to the bit-error-rate (BER) and temporal fairness requirements and the Individual average transmit power constraints.The performance of CaUT scheme is analyzed analytically and evaluated by simulations.Simulation results show that CaUT can achieve more significant throughput performance than traditional random access protocols.

  11. Optically transparent multiple access networks employing incoherent spectral codes

    NARCIS (Netherlands)

    Huiszoon, B.

    2008-01-01

    This Ph.D. thesis is divided into 7 chapters to provide the reader an overview of the main results achieved in di®erent sub-topics of the study towards optically transparent multiple access networks employing incoherent spectral codes taking into account wireless transmission aspects. The work

  12. Correlation functions with fusion-channel multiplicity in W{sub 3} Toda field theory

    Energy Technology Data Exchange (ETDEWEB)

    Belavin, Vladimir [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky Avenue 53, 119991 Moscow (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, 127994 Moscow (Russian Federation); Estienne, Benoit [LPTHE, CNRS and Université Pierre et Marie Curie,Sorbonne Universités, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Foda, Omar [School of Mathematics and Statistics, University of Melbourne,Parkville, Victoria 3010 (Australia); Santachiara, Raoul [LPTMS, CNRS (UMR 8626), Université Paris-Saclay,15 rue Georges Clémenceau, 91405 Orsay (France)

    2016-06-22

    Current studies of W{sub N} Toda field theory focus on correlation functions such that the W{sub N} highest-weight representations in the fusion channels are multiplicity-free. In this work, we study W{sub 3} Toda 4-point functions with multiplicity in the fusion channel. The conformal blocks of these 4-point functions involve matrix elements of a fully-degenerate primary field with a highest-weight in the adjoint representation of sl{sub 3}, and a fully-degenerate primary field with a highest-weight in the fundamental representation of sl{sub 3}. We show that, when the fusion rules do not involve multiplicities, the matrix elements of the fully-degenerate adjoint field, between two arbitrary descendant states, can be computed explicitly, on equal footing with the matrix elements of the semi-degenerate fundamental field. Using null-state conditions, we obtain a fourth-order Fuchsian differential equation for the conformal blocks. Using Okubo theory, we show that, due to the presence of multiplicities, this differential equation belongs to a class of Fuchsian equations that is different from those that have appeared so far in W{sub N} theories. We solve this equation, compute its monodromy group, and construct the monodromy-invariant correlation functions. This computation shows in detail how the ambiguities that are caused by the presence of multiplicities are fixed by requiring monodromy-invariance.

  13. A comparison of Frequency Domain Multiple Access (FDMA) and Time Domain Multiple Access (TDMA) approaches to satellite service for low data rate Earth stations

    Science.gov (United States)

    Stevens, G.

    1983-01-01

    A technological and economic assessment is made of providing low data rate service to small earth stations by satellite at Ka-band. Various Frequency Domain Multiple Access (FDMA) and Time Domain Multiple Access (TDMA) scenarios are examined and compared on the basis of cost to the end user. Very small stations (1 to 2 meters in diameter) are found not to be viable alternatives to available terrestrial services. However, medium size (3 to 5 meters) earth stations appear to be very competitive if a minimum throughput of about 1.5 Mbs is maintained. This constrains the use of such terminals to large users and shared use by smaller users. No advantage was found to the use of FDMA. TDMA had a slight advantage from a total system viewpoint and a very significant advantage in the space segment (about 1/3 the required payload weight for an equivalent capacity).

  14. Design of pulse waveform for waveform division multiple access UWB wireless communication system.

    Science.gov (United States)

    Yin, Zhendong; Wang, Zhirui; Liu, Xiaohui; Wu, Zhilu

    2014-01-01

    A new multiple access scheme, Waveform Division Multiple Access (WDMA) based on the orthogonal wavelet function, is presented. After studying the correlation properties of different categories of single wavelet functions, the one with the best correlation property will be chosen as the foundation for combined waveform. In the communication system, each user is assigned to different combined orthogonal waveform. Demonstrated by simulation, combined waveform is more suitable than single wavelet function to be a communication medium in WDMA system. Due to the excellent orthogonality, the bit error rate (BER) of multiuser with combined waveforms is so close to that of single user in a synchronous system. That is to say, the multiple access interference (MAI) is almost eliminated. Furthermore, even in an asynchronous system without multiuser detection after matched filters, the result is still pretty ideal and satisfactory by using the third combination mode that will be mentioned in the study.

  15. Interference-Assisted Techniques for Transmission and Multiple Access in Optical Communications

    Science.gov (United States)

    Guan, Xun

    Optical communications can be in wired or wireless form. Fiber optics communication (FOC) connects transmitters and receivers with optical fiber. Benefiting from its high bandwidth, low cost per volume and stability, it gains a significant market share in long-haul networks, access networks and data centers. Meanwhile, optical wireless communication (OWC) is also emerging as a crucial player in the communication market. In OWC, free-space optical communication (FSO) and visible light communication (VLC) are being studied and commercially deployed extensively. Interference is a common phenomenon in multi-user communication systems. In both FOC and OWC, interference has long been treated as a detrimental effect. However, it could also be beneficial to system applications. The effort of harnessing interference has spurred numerous innovations. Interesting examples are physical-layer network coding (PNC) and non-orthogonal multiple access (NOMA). The first part of this thesis in on the topic of PNC. PNC was firstly proposed in wireless communication to improve the throughput of a two-way relay network (TWRN). As a variation of network coding (NC), PNC turns the common channel interference (CCI) as a natural network coding operation. In this thesis, PNC is introduced into optical communication. Three schemes are proposed in different scenarios. Firstly, PNC is applied to a coherent optical orthogonal frequency division multiplexing (CO-OFDM) system so as to improve the throughput of the multicast network. The optical signal to noise ratio (OSNR) penalty is quite low. Secondly, we investigate the application of PNC in an OFDM passive optical network (OFDM-PON) supporting heterogeneous services. It is found that only minor receiver power penalties are observed to realize PNC-based virtual private networks (VPN), both in the wired service part and the wireless service part in an OFDM-PON with heterogeneous services. Thirdly, we innovate relay-based visible light

  16. Distributed magnetic field positioning system using code division multiple access

    Science.gov (United States)

    Prigge, Eric A. (Inventor)

    2003-01-01

    An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.

  17. Polarization division multiple access with polarization modulation for LOS wireless communications

    Directory of Open Access Journals (Sweden)

    Cao Bin

    2011-01-01

    Full Text Available Abstract In this paper, we discuss a potential multiple access and modulation scheme based on polarized states (PS of electromagnetic (EM waves for line-of-sight (LOS communications. The proposed scheme is theoretic different from the existing polar modulation for EDGE and WCDMA systems. We propose the detailed bit representation (modulation and multiple access scheme using PS. Because of the inflexibility of polarization information in the time and frequency domains, as well as independence of frequency and space, the polarization information can be used independently for wireless communications, i.e., another independent resource domain that can be utilized. Due to the independence between the PS and the specific features of signals (such as waveform, bandwidth and data rate, the discussed polarization division multiple access (PDMA and polarization modulation (PM are expected to improve the spectrum utilization effectively. It is proved that the polarization filtering technique can be adopted in the PDMA-PM wireless communications to separate the multiuser signals and demodulate the bit information representing by PS for desired user. Some theoretical analysis is done to demonstrate the feasibility of the proposed scheme, and the simulation results are made to evaluate the performance of the suggested system.

  18. Spectrum scanning and reserve channel methods for link maintenance in cognitive radio systems

    OpenAIRE

    Subramani, S; Armour, SMD; Kaleshi, D; Fan, Z

    2008-01-01

    Underutilization of the limited spectrum sparked the need for dynamic spectrum access and flexible spectrum policies. Accurate estimation of spectrum occupancy is an essential step for spectrum access in distributed networks. This paper analyzes a bidirectional and dual scanning method that scans multiple spectrum bands to find a suitable free-channel. Moreover, secondary users' access to available spectrum could be interrupted by the arrival of primary spectrum users, forcing the well-behave...

  19. Key issues of multiple access technique for LEO satellite communication systems

    Institute of Scientific and Technical Information of China (English)

    温萍萍; 顾学迈

    2004-01-01

    The large carrier frequency shift caused by the high-speed movement of satellite (Doppler effects) and the propagation delay on the up-down link are very critical issues in an LEO satellite communication system, which affects both the selection and the implementation of a suitable access method. A Doppler based multiple access technique is used here to control the flow and an MPRMA-HS protocol is proposed for the application in LEO satellite communication systems. The extended simulation trials prove that the proposed scheme seems to be a very promising access method.

  20. Multiple-state based power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-01-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in wireless mesh networks (WMNs). In this paper, we present asynchronous multiple-state based power control for MRMC WMNs. First, WMN is represented as a set of disjoint...

  1. Phase unwinding for dictionary compression with multiple channel transmission in magnetic resonance fingerprinting.

    Science.gov (United States)

    Lattanzi, Riccardo; Zhang, Bei; Knoll, Florian; Assländer, Jakob; Cloos, Martijn A

    2018-06-01

    Magnetic Resonance Fingerprinting reconstructions can become computationally intractable with multiple transmit channels, if the B 1 + phases are included in the dictionary. We describe a general method that allows to omit the transmit phases. We show that this enables straightforward implementation of dictionary compression to further reduce the problem dimensionality. We merged the raw data of each RF source into a single k-space dataset, extracted the transceiver phases from the corresponding reconstructed images and used them to unwind the phase in each time frame. All phase-unwound time frames were combined in a single set before performing SVD-based compression. We conducted synthetic, phantom and in-vivo experiments to demonstrate the feasibility of SVD-based compression in the case of two-channel transmission. Unwinding the phases before SVD-based compression yielded artifact-free parameter maps. For fully sampled acquisitions, parameters were accurate with as few as 6 compressed time frames. SVD-based compression performed well in-vivo with highly under-sampled acquisitions using 16 compressed time frames, which reduced reconstruction time from 750 to 25min. Our method reduces the dimensions of the dictionary atoms and enables to implement any fingerprint compression strategy in the case of multiple transmit channels. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Employing optical code division multiple access technology in the all fiber loop vibration sensor system

    Science.gov (United States)

    Tseng, Shin-Pin; Yen, Chih-Ta; Syu, Rong-Shun; Cheng, Hsu-Chih

    2013-12-01

    This study proposes a spectral amplitude coding-optical code division multiple access (SAC-OCDMA) framework to access the vibration frequency of a test object on the all fiber loop vibration sensor (AFLVS). Each user possesses an individual SAC, and fiber Bragg grating (FBG) encoders/decoders using multiple FBG arrays were adopted, providing excellent orthogonal properties in the frequency domain. The system also mitigates multiple access interference (MAI) among users. When an optical fiber is bent to a point exceeding the critical radius, the fiber loop sensor becomes sensitive to external physical parameters (e.g., temperature, strain, and vibration). The AFLVS involves placing a fiber loop with a specific radius on a designed vibration platform.

  3. Rank-Constrained Beamforming for MIMO Cognitive Interference Channel

    Directory of Open Access Journals (Sweden)

    Duoying Zhang

    2016-01-01

    Full Text Available This paper considers the spectrum sharing multiple-input multiple-output (MIMO cognitive interference channel, in which multiple primary users (PUs coexist with multiple secondary users (SUs. Interference alignment (IA approach is introduced that guarantees that secondary users access the licensed spectrum without causing harmful interference to the PUs. A rank-constrained beamforming design is proposed where the rank of the interferences and the desired signals is concerned. The standard interferences metric for the primary link, that is, interference temperature, is investigated and redesigned. The work provides a further improvement that optimizes the dimension of the interferences in the cognitive interference channel, instead of the power of the interference leakage. Due to the nonconvexity of the rank, the developed optimization problems are further approximated as convex form and are solved via choosing the transmitter precoder and receiver subspace iteratively. Numerical results show that the proposed designs can improve the achievable degree of freedom (DoF of the primary links and provide the considerable sum rate for both secondary and primary transmissions under the rank constraints.

  4. Performance Analysis of Simple Channel Feedback Schemes for a Practical OFDMA System

    DEFF Research Database (Denmark)

    Pedersen, Klaus, I.; Kolding, Troels; Kovacs, Istvan

    2009-01-01

    In this paper, we evaluate the tradeoff between the amount of uplink channel feedback information and the orthogonal frequency-division multiple access (OFDMA) downlink performance with opportunistic frequency-domain packet scheduling. Three candidate channel feedback schemes are investigated......, including practical aspects, such as the effects of terminal measurement errors, bandwidth measurement granularity, quantization, and uplink signaling delays. The performance is evaluated by means of system-level simulations with detailed modeling of various radio resource-management algorithms, etc. Our...... results show that the optimal tradeoff between the channel feedback and the downlink OFDMA system performance depends on the radio channel frequency coherence bandwidth. We conclude that the so-called average best-M scheme is the most attractive channel feedback solution, where only the average channel...

  5. Multiple Speech Source Separation Using Inter-Channel Correlation and Relaxed Sparsity

    Directory of Open Access Journals (Sweden)

    Maoshen Jia

    2018-01-01

    Full Text Available In this work, a multiple speech source separation method using inter-channel correlation and relaxed sparsity is proposed. A B-format microphone with four spatially located channels is adopted due to the size of the microphone array to preserve the spatial parameter integrity of the original signal. Specifically, we firstly measure the proportion of overlapped components among multiple sources and find that there exist many overlapped time-frequency (TF components with increasing source number. Then, considering the relaxed sparsity of speech sources, we propose a dynamic threshold-based separation approach of sparse components where the threshold is determined by the inter-channel correlation among the recording signals. After conducting a statistical analysis of the number of active sources at each TF instant, a form of relaxed sparsity called the half-K assumption is proposed so that the active source number in a certain TF bin does not exceed half the total number of simultaneously occurring sources. By applying the half-K assumption, the non-sparse components are recovered by regarding the extracted sparse components as a guide, combined with vector decomposition and matrix factorization. Eventually, the final TF coefficients of each source are recovered by the synthesis of sparse and non-sparse components. The proposed method has been evaluated using up to six simultaneous speech sources under both anechoic and reverberant conditions. Both objective and subjective evaluations validated that the perceptual quality of the separated speech by the proposed approach outperforms existing blind source separation (BSS approaches. Besides, it is robust to different speeches whilst confirming all the separated speeches with similar perceptual quality.

  6. Resonance properties of tidal channels with multiple retention basins: role of adjacent sea

    Science.gov (United States)

    Roos, Pieter C.; Schuttelaars, Henk M.

    2015-03-01

    We present an idealised model of the tidal response in a main channel with multiple secondary basins, co-oscillating with an adjacent sea. The sea is represented as a semi-infinite strip of finite width, anywhere between the limits of a channel extension (narrow) and a half-plane (wide). The sea geometry controls the extent to which radiative damping takes place and hence the type of conditions that effectively apply at the channel mouth. These conditions range between the two extremes of prescribing elevation (deep sea limit) and prescribing the incoming wave (sea as channel extension of the same depth, as done in an earlier study). The closer to this first extreme, the stronger the oscillations in the secondary basins may feed back onto the channel mouth and thus produce an amplified or weakened response in the system as a whole. The possibly resonant response is explained by analysing the additional waves that emerge on either side of the entrance of the secondary basin. Finally, we show that the simultaneous presence of two secondary basins may amplify or weaken the accumulated responses to these basins individually.

  7. On the Ergodic Secret-Key Agreement over Spatially Correlated Multiple-Antenna Channels with Public Discussion

    KAUST Repository

    Zorgui, Marwen

    2015-09-28

    We consider secret-key agreement with public discussion over multiple-input multiple-output (MIMO) Rayleigh fast-fading channels under correlated environment. We assume that transmit, legitimate receiver and eavesdropper antennas are correlated. The legitimate receiver and the eavesdropper are assumed to have perfect channel knowledge while the transmitter has only knowledge of the correlation matrices. First, we derive the expression of the secret-key capacity under the considered setup. We prove that the optimal transmit strategy achieving the secret-key capacity consists in transmitting independent Gaussian signals along the eingenvectors of the transmit correlation matrix. The powers allocated to each channel mode are determined as the solution to a numerical optimization problem. A necessary and sufficient condition for beamforming (i.e., transmitting along the strongest channel mode) to be capacity-achieving is derived. Moreover, we analyze the impact of correlation matrices on the system performance. Finally, we study the system’s performance in the two extreme power regimes. In the high-power regime, we provide closed-form expressions of the gain/loss due to correlation. In the low signal-to-noise ratio (SNR) regime, we investigate the energy efficiency of the system by determining the minimum energy required for sharing a secret-key bit and the wideband slope while highlighting the impact of correlation matrices.

  8. Single-word multiple-bit upsets in static random access devices

    International Nuclear Information System (INIS)

    Koga, R.; Pinkerton, S.D.; Lie, T.J.; Crawford, K.B.

    1993-01-01

    Energetic ions and protons can cause single event upsets (SEUs) in static random access memory (SRAM) cells. In some cases multiple bits may be upset as the result of a single event. Space-borne electronics systems incorporating high-density SRAM are vulnerable to single-word multiple-bit upsets (SMUs). The authors review here recent observations of SMU, present the results of a systematic investigation of the physical cell arrangements employed in several currently available SRAM device types, and discuss implications for the occurrence and mitigation of SMU

  9. Multiple spatial frequency channels in human visual perceptual memory.

    Science.gov (United States)

    Nemes, V A; Whitaker, D; Heron, J; McKeefry, D J

    2011-12-08

    Current models of short-term visual perceptual memory invoke mechanisms that are closely allied to low-level perceptual discrimination mechanisms. The purpose of this study was to investigate the extent to which human visual perceptual memory for spatial frequency is based upon multiple, spatially tuned channels similar to those found in the earliest stages of visual processing. To this end we measured how performance on a delayed spatial frequency discrimination paradigm was affected by the introduction of interfering or 'memory masking' stimuli of variable spatial frequency during the delay period. Masking stimuli were shown to induce shifts in the points of subjective equality (PSE) when their spatial frequencies were within a bandwidth of 1.2 octaves of the reference spatial frequency. When mask spatial frequencies differed by more than this value, there was no change in the PSE from baseline levels. This selective pattern of masking was observed for different spatial frequencies and demonstrates the existence of multiple, spatially tuned mechanisms in visual perceptual memory. Memory masking effects were also found to occur for horizontal separations of up to 6 deg between the masking and test stimuli and lacked any orientation selectivity. These findings add further support to the view that low-level sensory processing mechanisms form the basis for the retention of spatial frequency information in perceptual memory. However, the broad range of transfer of memory masking effects across spatial location and other dimensions indicates more long range, long duration interactions between spatial frequency channels that are likely to rely contributions from neural processes located in higher visual areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. VKCDB: Voltage-gated potassium channel database

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2004-01-01

    Full Text Available Abstract Background The family of voltage-gated potassium channels comprises a functionally diverse group of membrane proteins. They help maintain and regulate the potassium ion-based component of the membrane potential and are thus central to many critical physiological processes. VKCDB (Voltage-gated potassium [K] Channel DataBase is a database of structural and functional data on these channels. It is designed as a resource for research on the molecular basis of voltage-gated potassium channel function. Description Voltage-gated potassium channel sequences were identified by using BLASTP to search GENBANK and SWISSPROT. Annotations for all voltage-gated potassium channels were selectively parsed and integrated into VKCDB. Electrophysiological and pharmacological data for the channels were collected from published journal articles. Transmembrane domain predictions by TMHMM and PHD are included for each VKCDB entry. Multiple sequence alignments of conserved domains of channels of the four Kv families and the KCNQ family are also included. Currently VKCDB contains 346 channel entries. It can be browsed and searched using a set of functionally relevant categories. Protein sequences can also be searched using a local BLAST engine. Conclusions VKCDB is a resource for comparative studies of voltage-gated potassium channels. The methods used to construct VKCDB are general; they can be used to create specialized databases for other protein families. VKCDB is accessible at http://vkcdb.biology.ualberta.ca.

  11. Shared access protocol (SAP) in femtocell channel resources for cellular coverage enhancement

    KAUST Repository

    Magableh, Amer M.

    2012-12-01

    Femtocells are promising techniques employed in cellular systems to enhance the indoor coverage, especially in areas with high density and high traffic rates. In this paper, we propose an efficient resource utilization protocol, named shared access protocol (SAP), that enables the unlicensed macro-cell user equipments (MC-UE) to communicate with partially closed access femtocell base stations and hence, improves and enhances the overall system performance in closed environments. For the proposed system model, we obtain, in closed-form, the main signal-to-interference plus noise ratio (SINR) characteristics, including the probability density function (PDF) and the cumulative distribution function (CDF). In addition, these expressions are further used to derive several performance metrics in closed-form, such as, the average bit error rate (BER), outage probability, and the average channel capacity for the proposed SAP herein. Furthermore, Monte-carlo simulations as well as numerical results are provided showing a good match that ensures and confirms the correctness of the derived expressions. © 2012 IEEE.

  12. Holistic hybrid (Omni-channel) approach to retailing and customer experience: A review, conceptual framework and future research directions

    OpenAIRE

    Hickman, Ellie

    2015-01-01

    The manner in which customers shop is evolving and there has been an increase in customers shopping online and in physical shops using a multi-channel approach (Hsiao, Yen & Li, 2012). Customers now shop using mobile phones, tablets and have access to shopping sources 24 hours a day. Multi-channel shopping is where customers use multiple channels such as online, in-store, catalogues or mobile devices to purchase products or services (Zhang et al., 2010). Research has shown that multi-channel ...

  13. Overlay Cognitive Radios With Channel-Aware Adaptive Link Selection and Buffer-Aided Relaying

    KAUST Repository

    Shaqfeh, Mohammad

    2015-08-01

    The aim of this work is to maximize the long-term average achievable rate region of a primary and a secondary source-destination pairs operating in an overlay setup over block-fading channels. To achieve this objective, we propose an opportunistic strategy to grant channel access to the primary and secondary sources based on the channel conditions in order to exploit the available multiple-link diversity gains in the system. The secondary source has causal knowledge of the primary messages and it acts as a relay of the primary source in return for getting access to the channel. To maximize the gains of relaying, the relay and destination are equipped with buffers to enable the use of channel-aware adaptive link selection. We propose and optimize different link selection policies and characterize their expected achievable rates. Also, we provide several numerical results to demonstrate the evident mutual benefits of buffer-aided cooperation and adaptive link selection to the primary and the secondary source-destination pairs. © 1972-2012 IEEE.

  14. Overlay Cognitive Radios With Channel-Aware Adaptive Link Selection and Buffer-Aided Relaying

    KAUST Repository

    Shaqfeh, Mohammad; Zafar, Ammar; Alnuweiri, Hussein; Alouini, Mohamed-Slim

    2015-01-01

    The aim of this work is to maximize the long-term average achievable rate region of a primary and a secondary source-destination pairs operating in an overlay setup over block-fading channels. To achieve this objective, we propose an opportunistic strategy to grant channel access to the primary and secondary sources based on the channel conditions in order to exploit the available multiple-link diversity gains in the system. The secondary source has causal knowledge of the primary messages and it acts as a relay of the primary source in return for getting access to the channel. To maximize the gains of relaying, the relay and destination are equipped with buffers to enable the use of channel-aware adaptive link selection. We propose and optimize different link selection policies and characterize their expected achievable rates. Also, we provide several numerical results to demonstrate the evident mutual benefits of buffer-aided cooperation and adaptive link selection to the primary and the secondary source-destination pairs. © 1972-2012 IEEE.

  15. Channel access schemes and fiber optic configurations for integrated-services local area networks. Ph.D. Thesis

    Science.gov (United States)

    Nassehi, M. Mehdi

    1987-01-01

    Local Area Networks are in common use for data communications and have enjoyed great success. Recently, there is a growing interest in using a single network to support many applications in addition to traditional data traffic. These additional applications introduce new requirements in terms of volume of traffic and real-time delivery of data which are not met by existing networks. To satisfy these requirements, a high-bandwidth tranmission medium, such as fiber optics, and a distributed channel access scheme for the efficient sharing of the bandwidth among the various applications are needed. As far as the throughput-delay requirements of the various application are concerned, a network structure along with a distributed channel access are proposed which incorporate appropriate scheduling policies for the transmission of outstanding messages on the network. A dynamic scheduling policy was devised which outperforms all existing policies in terms of minimizing the expected cost per message. A broadcast mechanism was devised for the efficient dissemination of all relevant information. Fiber optic technology is considered for the high-bandwidth transmisison medium.

  16. High-speed multiple-channel analog to digital data-acquisition module for microprocessor systems

    International Nuclear Information System (INIS)

    Ethridge, C.D.

    1977-01-01

    Intelligent data acquisition and instrumentation systems established by the incorporation of microprocessor technology require high-speed analog to digital conversion of multiple-channel input signals. Sophisticated data systems or subsystems are enabled by the microprocessor software flexibility to establish adaptive input data procedures. These adaptive procedures are enhanced by versatile interface circuitry which is software controlled

  17. Pulse patterning effect in optical pulse division multiplexing for flexible single wavelength multiple access optical network

    Science.gov (United States)

    Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook

    2018-05-01

    A demand for high spectral efficiency requires multiple access within a single wavelength, but the uplink signals are significantly degraded because of optical beat interference (OBI) in intensity modulation/direct detection system. An optical pulse division multiplexing (OPDM) technique was proposed that could effectively reduce the OBI via a simple method as long as near-orthogonality is satisfied, but the condition was strict, and thus, the number of multiplexing units was very limited. We propose pulse pattern enhanced OPDM (e-OPDM) to reduce the OBI and improve the flexibility in multiple access within a single wavelength. The performance of the e-OPDM and patterning effect are experimentally verified after 23-km single mode fiber transmission. By employing pulse patterning in OPDM, the tight requirement was relaxed by extending the optical delay dynamic range. This could support more number of access with reduced OBI, which could eventually enhance a multiple access function.

  18. Tidal Channel Diatom Assemblages Reflect within Wetland Environmental Conditions and Land Use at Multiple Scales

    Science.gov (United States)

    We characterized regional patterns of the tidal channel benthic diatom community and examined the relative importance of local wetland and surrounding landscape level factors measured at multiple scales in structuring this assemblage. Surrounding land cover was characterized at ...

  19. A high speed dual-gain preamplifier system with multiple channels

    International Nuclear Information System (INIS)

    Zhao Lei; Liu Shubin; Xian Ze; An Qi

    2008-01-01

    In this paper, a multiple-channel high speed preamplifier module with dual-gain is presented, together with its design principle, test methods and performance parameter. By proper choice of the chips and careful circuit design, the preamplifier accomplishes a fine performance in high speed analog signal processing. The 3 dB bandwidth is above 440 MHz for gain factor of 2 and 280 MHz for gain factor of 8, with the leading edge time of less than 2 ns. The preamplifier module has been used in the research project of β-delayed neutron emission of radionuclides in neutron-rich region. (authors)

  20. Non-Orthogonal Multiple Access for Ubiquitous Wireless Sensor Networks.

    Science.gov (United States)

    Anwar, Asim; Seet, Boon-Chong; Ding, Zhiguo

    2018-02-08

    Ubiquitous wireless sensor networks (UWSNs) have become a critical technology for enabling smart cities and other ubiquitous monitoring applications. Their deployment, however, can be seriously hampered by the spectrum available to the sheer number of sensors for communication. To support the communication needs of UWSNs without requiring more spectrum resources, the power-domain non-orthogonal multiple access (NOMA) technique originally proposed for 5th Generation (5G) cellular networks is investigated for UWSNs for the first time in this paper. However, unlike 5G networks that operate in the licensed spectrum, UWSNs mostly operate in unlicensed spectrum where sensors also experience cross-technology interferences from other devices sharing the same spectrum. In this paper, we model the interferences from various sources at the sensors using stochastic geometry framework. To evaluate the performance, we derive a theorem and present new closed form expression for the outage probability of the sensors in a downlink scenario under interference limited environment. In addition, diversity analysis for the ordered NOMA users is performed. Based on the derived outage probability, we evaluate the average link throughput and energy consumption efficiency of NOMA against conventional orthogonal multiple access (OMA) technique in UWSNs. Further, the required computational complexity for the NOMA users is presented.

  1. A Multiple-Reception Access Protocol with Interruptions with Mixed Priorities in CDMA Networks

    Institute of Scientific and Technical Information of China (English)

    Lu Xiaowen; Zhu Jinkang

    2003-01-01

    A novel access protocol called Multiple-Reception Access Protocol (MRAP) and its modification MRAP/WI are proposed. In this protocol, all colliding users with a common code can be identified by the base station due to the offset of arrival time Thus they can retransmit access requests under the base station's control. Furthermore new arrivals with higher priority level can interrupt the lower retransmission in order to reduce its access delay although it increases the lower priority's delay. Simulation results of MRAP and MRAP/WI are given in order to highlight the superior performance of the proposed approach.

  2. Minimum Symbol Error Rate Detection in Single-Input Multiple-Output Channels with Markov Noise

    DEFF Research Database (Denmark)

    Christensen, Lars P.B.

    2005-01-01

    Minimum symbol error rate detection in Single-Input Multiple- Output(SIMO) channels with Markov noise is presented. The special case of zero-mean Gauss-Markov noise is examined closer as it only requires knowledge of the second-order moments. In this special case, it is shown that optimal detection...

  3. Statistical mechanical analysis of the linear vector channel in digital communication

    International Nuclear Information System (INIS)

    Takeda, Koujin; Hatabu, Atsushi; Kabashima, Yoshiyuki

    2007-01-01

    A statistical mechanical framework to analyze linear vector channel models in digital wireless communication is proposed for a large system. The framework is a generalization of that proposed for code-division multiple-access systems in Takeda et al (2006 Europhys. Lett. 76 1193) and enables the analysis of the system in which the elements of the channel transfer matrix are statistically correlated with each other. The significance of the proposed scheme is demonstrated by assessing the performance of an existing model of multi-input multi-output communication systems

  4. Multiuser chirp modulation for underwater acoustic channel based on VTRM

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    2017-05-01

    Full Text Available In this paper, an ascheme is proposed for multiuser underwater acoustic communication by using the multi-chirp rate signals. It differs from the well known TDMA (Time Division Multiple Access, FDMA (Frequency Division Multiple Access or CDMA (Code Division Multiple Access, by assigning each users with different chirp-rate carriers instead of the time, frequency or PN code. Multi-chirp rate signals can be separated from each other by FrFT (Fractional Fourier Transform, which can be regarded as the chirp-based decomposing, and superior to the match filter in the underwater acoustic channel. VTRM (Virtual Time Reverse Mirror is applied into the system to alleviate the ISI caused by the multipatch and make the equalization more simple. Results of computer simulations and pool experiments prove that the proposed multiuser underwater acoustic communication based on the multi-chirp rate exhibit well performance. Outfield experments carrie out in Xiamen Port show that using about 10 kHz bandwidth, four users could communicate at the same time with 425 bps with low BER and can match the UAC application.

  5. Impact of optical hard limiter on the performance of an optical overlapped-code division multiple access system

    Science.gov (United States)

    Inaty, Elie; Raad, Robert; Tablieh, Nicole

    2011-08-01

    Throughout this paper, a closed form expression of the multiple access interference (MAI) limited bit error rate (BER) is provided for the multiwavelength optical code-division multiple-access system when the system is working above the nominal transmission rate limit imposed by the passive encoding-decoding operation. This system is known in literature as the optical overlapped code division multiple access (OV-CDMA) system. A unified analytical framework is presented emphasizing the impact of optical hard limiter (OHL) on the BER performance of such a system. Results show that the performance of the OV-CDMA system may be highly improved when using OHL preprocessing at the receiver side.

  6. Multiple channel space lattice focusing and features of its use in applied RF linac

    International Nuclear Information System (INIS)

    Kushin, V.; Plotnikov, S.; Zarubin, A.; Bondarev, B.; Durkin, A.

    2000-01-01

    Nowadays the use of multiple channel accelerator systems is well known with some hundred channels helps us to increase total beam intensity proportional to the number of channels while the divergence of the total beam is roughly equal to the divergence of single channel. The accelerator structure for multiple beam linac must provide both transversal and longitudinal stability for every small beam taking into account Coulomb interactions of all the micro beams. The most convenient for accelerator structures with 100 and more beams are the systems that use RF focusing such as RFQ, APF and DTL with rectangular profiles. The common disadvantage of all those systems is connected with decreasing of focusing forces of RF field with particle velocity increase. Our analysis shows that the disadvantage may be overcome in structures with rectangular profiles. For this purpose some additional thin (3-5 mm) focusing electrodes called space lattices (SL) must be arranged within accelerator gaps. The distance between these electrodes is chosen roughly equal to the thickness of additional electrodes. The number of the electrodes must be increased with length of accelerator gaps and may be equal n=1,2...6 and even more. The arrangement of n thin electrodes in accelerator gaps helps us to reach qualitative change of accelerator structure parameters. Firstly, they make n times amplification of the sign-alternate component of RF focusing field without appreciable influence to phasing action of accelerating field. Secondly, introducing of additional electrodes that divide the gap on n small accelerator gaps provides beams shielding from each other within the region of beam acceleration in RF fields between drift tubes. The analysis shows that if n=4-6, it is possible to reach transversal stability of all particles independently of their input phases in RF field. On the other hand, the analysis shows that adiabatic change of synchronous phase at the input stage of acceleration helps us

  7. Access to DIII-D data located in multiple files and multiple locations

    International Nuclear Information System (INIS)

    McHarg, B.B. Jr.

    1993-10-01

    The General Atomics DIII-D tokamak fusion experiment is now collecting over 80 MB of data per discharge once every 10 min, and that quantity is expected to double within the next year. The size of the data files, even in compressed format, is becoming increasingly difficult to handle. Data is also being acquired now on a variety of UNIX systems as well as MicroVAX and MODCOMP computer systems. The existing computers collect all the data into a single shot file, and this data collection is taking an ever increasing amount of time as the total quantity of data increases. Data is not available to experimenters until it has been collected into the shot file, which is in conflict with the substantial need for data examination on a timely basis between shots. The experimenters are also spread over many different types of computer systems (possibly located at other sites). To improve data availability and handling, software has been developed to allow individual computer systems to create their own shot files locally. The data interface routine PTDATA that is used to access DIII-D data has been modified so that a user's code on any computer can access data from any computer where that data might be located. This data access is transparent to the user. Breaking up the shot file into separate files in multiple locations also impacts software used for data archiving, data management, and data restoration

  8. Estimation of channel impulse response and FPGA simulation

    Directory of Open Access Journals (Sweden)

    YU Longjie

    2015-02-01

    Full Text Available Wideband code division multiple access (WCDMA is a 3G wireless communication network.The common pilot channel in downlink of WCDMA provides an effective method to estimate the channel impulse response.In this paper,universal software radio peripheral (USRP is utilized to sample and process WCDMA signal which is emitted by China Unicom base station.Firstly,the received signal is pre-processed with filtering and down-sampling.Secondly,fast algorithm of WCDMA cell search is fulfilled.Thirdly,frequency shift caused by USRP′s crystal oscillator is checked and compensated.Eventually,channel impulse response is estimated.In this paper,MATLAB is used to describe the above algorithm and field programmable gate array (FPGA is used to simulate algorithm.In the process of simulation,pipeline and IP core multiplexing are introduced.In the case of 32 MHz clock frequency,FPGA simulation time is 80.861 ms.Simulation results show that FPGA is able to estimate the channel impulse response quickly and accurately with less hardware resources.

  9. Sum-Rate Enhancement in Multiuser MIMO Decode-and-Forward Relay Broadcasting Channel with Energy Harvesting Relays

    KAUST Repository

    Benkhelifa, Fatma

    2016-09-20

    In this paper, we consider a multiuser multipleinput multiple-output (MIMO) decode-and-forward (DF) relay broadcasting channel (BC) with single source, multiple energy harvesting (EH) relays and multiple destinations. All the nodes are equipped with multiple antennas. The EH and information decoding (ID) tasks at the relays and destinations are separated over the time, which is termed as the time switching (TS) scheme. As optimal solutions for the sum-rate maximization problems of BC channels and the MIMO interference channels are hard to obtain, the end-to-end sum rate maximization problem of a multiuser MIMO DF relay BC channel is even harder. In this paper, we propose to tackle a simplified problem where we employ the block diagonalization (BD) procedure at the source, and we mitigate the interference between the relaydestination channels using an algorithm similar to the BD method. In order to show the relevance of our low complex proposed solution, we compare it to the minimum mean-square error (MMSE) solution that was shown in the literature to be equivalent to the solution of the sum-rate maximization in MIMO broadcasting interfering channels. We also investigate the time division multiple access (TDMA) solution which separates all the information transmissions from the source to the relays and from the relays to the destinations over time. We provide numerical results to show the relevance of our proposed solution, in comparison with the no co-channel interference (CCI) case, the TDMA based solution and the MMSE based solution.

  10. Sum-Rate Enhancement in Multiuser MIMO Decode-and-Forward Relay Broadcasting Channel with Energy Harvesting Relays

    KAUST Repository

    Benkhelifa, Fatma; Salem, Ahmed Sultan; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we consider a multiuser multipleinput multiple-output (MIMO) decode-and-forward (DF) relay broadcasting channel (BC) with single source, multiple energy harvesting (EH) relays and multiple destinations. All the nodes are equipped with multiple antennas. The EH and information decoding (ID) tasks at the relays and destinations are separated over the time, which is termed as the time switching (TS) scheme. As optimal solutions for the sum-rate maximization problems of BC channels and the MIMO interference channels are hard to obtain, the end-to-end sum rate maximization problem of a multiuser MIMO DF relay BC channel is even harder. In this paper, we propose to tackle a simplified problem where we employ the block diagonalization (BD) procedure at the source, and we mitigate the interference between the relaydestination channels using an algorithm similar to the BD method. In order to show the relevance of our low complex proposed solution, we compare it to the minimum mean-square error (MMSE) solution that was shown in the literature to be equivalent to the solution of the sum-rate maximization in MIMO broadcasting interfering channels. We also investigate the time division multiple access (TDMA) solution which separates all the information transmissions from the source to the relays and from the relays to the destinations over time. We provide numerical results to show the relevance of our proposed solution, in comparison with the no co-channel interference (CCI) case, the TDMA based solution and the MMSE based solution.

  11. Coenzyme Q Biosynthesis: Evidence for a Substrate Access Channel in the FAD-Dependent Monooxygenase Coq6.

    Directory of Open Access Journals (Sweden)

    Alexandre Ismail

    2016-01-01

    Full Text Available Coq6 is an enzyme involved in the biosynthesis of coenzyme Q, a polyisoprenylated benzoquinone lipid essential to the function of the mitochondrial respiratory chain. In the yeast Saccharomyces cerevisiae, this putative flavin-dependent monooxygenase is proposed to hydroxylate the benzene ring of coenzyme Q (ubiquinone precursor at position C5. We show here through biochemical studies that Coq6 is a flavoprotein using FAD as a cofactor. Homology models of the Coq6-FAD complex are constructed and studied through molecular dynamics and substrate docking calculations of 3-hexaprenyl-4-hydroxyphenol (4-HP6, a bulky hydrophobic model substrate. We identify a putative access channel for Coq6 in a wild type model and propose in silico mutations positioned at its entrance capable of partially (G248R and L382E single mutations or completely (a G248R-L382E double-mutation blocking access to the channel for the substrate. Further in vivo assays support the computational predictions, thus explaining the decreased activities or inactivation of the mutated enzymes. This work provides the first detailed structural information of an important and highly conserved enzyme of ubiquinone biosynthesis.

  12. Primary user localisation and uplink resource allocation in orthogonal frequency division multiple access cognitive radio systems

    KAUST Repository

    Nam, Haewoon

    2015-05-21

    In cognitive radio networks, secondary users (SUs) can share spectrum with primary users (PUs) under the condition that no interference is caused to the PUs. To evaluate the interference imposed to the PUs, the cognitive systems discussed in the literature usually assume that the channel state information (CSI) of the link from a secondary transmitter to a primary receiver (interference link) is known at the secondary transmitter. However, this assumption may often be impractical in cognitive radio systems, since the PUs need to be oblivious to the presence of the SUs. The authors first discuss PU localisation and then introduce an uplink resource allocation algorithm for orthogonal frequency division multiple access-based cognitive radio systems, where relative location information between primary and SUs is used instead of CSI of the interference link to estimate the interference. Numerical and simulation results show that it is indeed effective to use location information as a part of resource allocation and thus a near-optimal capacity is achieved. © The Institution of Engineering and Technology 2015.

  13. Downlink Non-Orthogonal Multiple Access (NOMA) in Poisson Networks

    KAUST Repository

    Ali, Konpal S.

    2018-03-21

    A network model is considered where Poisson distributed base stations transmit to $N$ power-domain non-orthogonal multiple access (NOMA) users (UEs) each that employ successive interference cancellation (SIC) for decoding. We propose three models for the clustering of NOMA UEs and consider two different ordering techniques for the NOMA UEs: mean signal power-based and instantaneous signal-to-intercell-interference-and-noise-ratio-based. For each technique, we present a signal-to-interference-and-noise ratio analysis for the coverage of the typical UE. We plot the rate region for the two-user case and show that neither ordering technique is consistently superior to the other. We propose two efficient algorithms for finding a feasible resource allocation that maximize the cell sum rate $\\\\mathcal{R}_{\\ m tot}$, for general $N$, constrained to: 1) a minimum rate $\\\\mathcal{T}$ for each UE, 2) identical rates for all UEs. We show the existence of: 1) an optimum $N$ that maximizes the constrained $\\\\mathcal{R}_{\\ m tot}$ given a set of network parameters, 2) a critical SIC level necessary for NOMA to outperform orthogonal multiple access. The results highlight the importance in choosing the network parameters $N$, the constraints, and the ordering technique to balance the $\\\\mathcal{R}_{\\ m tot}$ and fairness requirements. We also show that interference-aware UE clustering can significantly improve performance.

  14. Downlink Non-Orthogonal Multiple Access (NOMA) in Poisson Networks

    KAUST Repository

    Ali, Konpal S.; Haenggi, Martin; Elsawy, Hesham; Chaaban, Anas; Alouini, Mohamed-Slim

    2018-01-01

    A network model is considered where Poisson distributed base stations transmit to $N$ power-domain non-orthogonal multiple access (NOMA) users (UEs) each that employ successive interference cancellation (SIC) for decoding. We propose three models for the clustering of NOMA UEs and consider two different ordering techniques for the NOMA UEs: mean signal power-based and instantaneous signal-to-intercell-interference-and-noise-ratio-based. For each technique, we present a signal-to-interference-and-noise ratio analysis for the coverage of the typical UE. We plot the rate region for the two-user case and show that neither ordering technique is consistently superior to the other. We propose two efficient algorithms for finding a feasible resource allocation that maximize the cell sum rate $\\mathcal{R}_{\\rm tot}$, for general $N$, constrained to: 1) a minimum rate $\\mathcal{T}$ for each UE, 2) identical rates for all UEs. We show the existence of: 1) an optimum $N$ that maximizes the constrained $\\mathcal{R}_{\\rm tot}$ given a set of network parameters, 2) a critical SIC level necessary for NOMA to outperform orthogonal multiple access. The results highlight the importance in choosing the network parameters $N$, the constraints, and the ordering technique to balance the $\\mathcal{R}_{\\rm tot}$ and fairness requirements. We also show that interference-aware UE clustering can significantly improve performance.

  15. On the Secrecy Capacity of the Multiple-Antenna Wiretap Channel with Limited CSI Feedback

    KAUST Repository

    Hyadi, Amal; Rezki, Zouheir; Alouini, Mohamed-Slim

    2015-01-01

    We study the ergodic secrecy capacity of a block fading wiretap channel when there are multiple antennas at the transmitter, the legitimate receiver and the eavesdropper. We consider that the receivers are aware of their respective channel matrices while the transmitter is only provided by a B-bits feedback of the main channel state information. The feedback bits are sent by the legitimate receiver, at the beginning of each fading block, over an error free public link with limited capacity. Assuming an average transmit power constraint, we provide an upper and a lower bounds on the ergodic secrecy capacity. Then, we present a framework to design the optimal codebooks for feedback and transmission. In addition, we show that the proposed lower and upper bounds coincide asymptotically as the capacity of the feedback link becomes large; hence, fully characterizing the secrecy capacity in this case.

  16. On the Secrecy Capacity of the Multiple-Antenna Wiretap Channel with Limited CSI Feedback

    KAUST Repository

    Hyadi, Amal

    2015-12-01

    We study the ergodic secrecy capacity of a block fading wiretap channel when there are multiple antennas at the transmitter, the legitimate receiver and the eavesdropper. We consider that the receivers are aware of their respective channel matrices while the transmitter is only provided by a B-bits feedback of the main channel state information. The feedback bits are sent by the legitimate receiver, at the beginning of each fading block, over an error free public link with limited capacity. Assuming an average transmit power constraint, we provide an upper and a lower bounds on the ergodic secrecy capacity. Then, we present a framework to design the optimal codebooks for feedback and transmission. In addition, we show that the proposed lower and upper bounds coincide asymptotically as the capacity of the feedback link becomes large; hence, fully characterizing the secrecy capacity in this case.

  17. Polarization diversity scheme on spectral polarization coding optical code-division multiple-access network

    Science.gov (United States)

    Yen, Chih-Ta; Huang, Jen-Fa; Chang, Yao-Tang; Chen, Bo-Hau

    2010-12-01

    We present an experiment demonstrating the spectral-polarization coding optical code-division multiple-access system introduced with a nonideal state of polarization (SOP) matching conditions. In the proposed system, the encoding and double balanced-detection processes are implemented using a polarization-diversity scheme. Because of the quasiorthogonality of Hadamard codes combining with array waveguide grating routers and a polarization beam splitter, the proposed codec pair can encode-decode multiple code words of Hadamard code while retaining the ability for multiple-access interference cancellation. The experimental results demonstrate that when the system is maintained with an orthogonal SOP for each user, an effective reduction in the phase-induced intensity noise is obtained. The analytical SNR values are found to overstate the experimental results by around 2 dB when the received effective power is large. This is mainly limited by insertion losses of components and a nonflattened optical light source. Furthermore, the matching conditions can be improved by decreasing nonideal influences.

  18. ASIC3 Channels Integrate Agmatine and Multiple Inflammatory Signals through the Nonproton Ligand Sensing Domain

    Directory of Open Access Journals (Sweden)

    Cao Hui

    2010-12-01

    Full Text Available Abstract Background Acid-sensing ion channels (ASICs have long been known to sense extracellular protons and contribute to sensory perception. Peripheral ASIC3 channels represent natural sensors of acidic and inflammatory pain. We recently reported the use of a synthetic compound, 2-guanidine-4-methylquinazoline (GMQ, to identify a novel nonproton sensing domain in the ASIC3 channel, and proposed that, based on its structural similarity with GMQ, the arginine metabolite agmatine (AGM may be an endogenous nonproton ligand for ASIC3 channels. Results Here, we present further evidence for the physiological correlation between AGM and ASIC3. Among arginine metabolites, only AGM and its analog arcaine (ARC activated ASIC3 channels at neutral pH in a sustained manner similar to GMQ. In addition to the homomeric ASIC3 channels, AGM also activated heteromeric ASIC3 plus ASIC1b channels, extending its potential physiological relevance. Importantly, the process of activation by AGM was highly sensitive to mild acidosis, hyperosmolarity, arachidonic acid (AA, lactic acid and reduced extracellular Ca2+. AGM-induced ASIC3 channel activation was not through the chelation of extracellular Ca2+ as occurs with increased lactate, but rather through a direct interaction with the newly identified nonproton ligand sensing domain. Finally, AGM cooperated with the multiple inflammatory signals to cause pain-related behaviors in an ASIC3-dependent manner. Conclusions Nonproton ligand sensing domain might represent a novel mechanism for activation or sensitization of ASIC3 channels underlying inflammatory pain-sensing under in vivo conditions.

  19. Severe plastic deformation of copper and Al-Cu alloy using multiple channel-die compression

    International Nuclear Information System (INIS)

    Parimi, A.K.; Robi, P.S.; Dwivedy, S.K.

    2011-01-01

    Research highlights: → SPD of copper and Al-Cu alloy by multiple channel-die compression tests.→ Extensive grain refinement resulting in nano-sized grains after SPD. → Investigation of micro-structure using optical microscope and SEM. → Shear band formation as the failure mechanism in the two phase Al-Cu alloy. → Difficulty in obtaining SPD for Al-Cu alloy in this method. -- Abstract: Severe plastic deformation studies of copper and Al-Cu alloy by multiple channel-die compression tests were investigated. The materials were tested under plane strain condition by maintaining a constant strain rate of 0.001/s. Extensive grain refinement was observed resulting in nano-sized grains after severe plastic deformation with concomitant increase in flow stress and hardness. The microstructural investigation of the severely deformed materials was investigated using optical microscope and scanning electron microscope. Shear band formation was identified as the failure mechanism in the two phase Al-Cu alloy. The results indicate difficulty in obtaining severe plastic deformation for alloys having two phase micro-structure.

  20. A Robust Parametric Technique for Multipath Channel Estimation in the Uplink of a DS-CDMA System

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The problem of estimating the multipath channel parameters of a new user entering the uplink of an asynchronous direct sequence-code division multiple access (DS-CDMA system is addressed. The problem is described via a least squares (LS cost function with a rich structure. This cost function, which is nonlinear with respect to the time delays and linear with respect to the gains of the multipath channel, is proved to be approximately decoupled in terms of the path delays. Due to this structure, an iterative procedure of 1D searches is adequate for time delays estimation. The resulting method is computationally efficient, does not require any specific pilot signal, and performs well for a small number of training symbols. Simulation results show that the proposed technique offers a better estimation accuracy compared to existing related methods, and is robust to multiple access interference.

  1. Performance analysis of multiple interference suppression over asynchronous/synchronous optical code-division multiple-access system based on complementary/prime/shifted coding scheme

    Science.gov (United States)

    Nieh, Ta-Chun; Yang, Chao-Chin; Huang, Jen-Fa

    2011-08-01

    A complete complementary/prime/shifted prime (CPS) code family for the optical code-division multiple-access (OCDMA) system is proposed. Based on the ability of complete complementary (CC) code, the multiple-access interference (MAI) can be suppressed and eliminated via spectral amplitude coding (SAC) OCDMA system under asynchronous/synchronous transmission. By utilizing the shifted prime (SP) code in the SAC scheme, the hardware implementation of encoder/decoder can be simplified with a reduced number of optical components, such as arrayed waveguide grating (AWG) and fiber Bragg grating (FBG). This system has a superior performance as compared to previous bipolar-bipolar coding OCDMA systems.

  2. Ion Transport in Confined Geometries below the Nanoscale: Access Resistance Dominates Protein Channel Conductance in Diluted Solutions.

    Science.gov (United States)

    Alcaraz, Antonio; López, M Lidón; Queralt-Martín, María; Aguilella, Vicente M

    2017-10-24

    Synthetic nanopores and mesoscopic protein channels have common traits like the importance of electrostatic interactions between the permeating ions and the nanochannel. Ion transport at the nanoscale occurs under confinement conditions so that the usual assumptions made in microfluidics are challenged, among others, by interfacial effects such as access resistance (AR). Here, we show that a sound interpretation of electrophysiological measurements in terms of channel ion selective properties requires the consideration of interfacial effects, up to the point that they dominate protein channel conductance in diluted solutions. We measure AR in a large ion channel, the bacterial porin OmpF, by means of single-channel conductance measurements in electrolyte solutions containing varying concentrations of high molecular weight PEG, sterically excluded from the pore. Comparison of experiments performed in charged and neutral planar membranes shows that lipid surface charges modify the ion distribution and determine the value of AR, indicating that lipid molecules are more than passive scaffolds even in the case of large transmembrane proteins. We also found that AR may reach up to 80% of the total channel conductance in diluted solutions, where electrophysiological recordings register essentially the AR of the system and depend marginally on the pore characteristics. These findings may have implications for several low aspect ratio biological channels that perform their physiological function in a low ionic strength and macromolecule crowded environment, just the two conditions enhancing the AR contribution.

  3. Enhancement mode GaN-based multiple-submicron channel array gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors

    Science.gov (United States)

    Lee, Ching-Ting; Wang, Chun-Chi

    2018-04-01

    To study the function of channel width in multiple-submicron channel array, we fabricated the enhancement mode GaN-based gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors (MOS-HEMTs) with a channel width of 450 nm and 195 nm, respectively. In view of the enhanced gate controllability in a narrower fin-channel structure, the transconductance was improved from 115 mS/mm to 151 mS/mm, the unit gain cutoff frequency was improved from 6.2 GHz to 6.8 GHz, and the maximum oscillation frequency was improved from 12.1 GHz to 13.1 GHz of the devices with a channel width of 195 nm, compared with the devices with a channel width of 450 nm.

  4. Code division multiple-access techniques in optical fiber networks. II - Systems performance analysis

    Science.gov (United States)

    Salehi, Jawad A.; Brackett, Charles A.

    1989-08-01

    A technique based on optical orthogonal codes was presented by Salehi (1989) to establish a fiber-optic code-division multiple-access (FO-CDMA) communications system. The results are used to derive the bit error rate of the proposed FO-CDMA system as a function of data rate, code length, code weight, number of users, and receiver threshold. The performance characteristics for a variety of system parameters are discussed. A means of reducing the effective multiple-access interference signal by placing an optical hard-limiter at the front end of the desired optical correlator is presented. Performance calculations are shown for the FO-CDMA with an ideal optical hard-limiter, and it is shown that using a optical hard-limiter would, in general, improve system performance.

  5. Low-Complexity Full-Diversity Detection in Two-User MIMO X Channels

    KAUST Repository

    Ismail, Amr

    2014-01-26

    Several interference cancellation (IC) schemes have been recently proposed to suppress multi-user interference for various network configurations (e.g., multiple access and X channels). However, most of these schemes trade-off diversity for implementation complexity or vice-versa. In this paper, we propose a full-diversity interference cancellation scheme in a multiple-input multiple-output (MIMO) X channel with two sources and two destinations while maintaining low decoding complexity. We provide sufficient conditions for a wide range of space-time block codes (STBCs) to achieve full-diversity gain under the so-called partial interference cancellation group decoding (PICGD) in the configuration of interest. A systematic construction is then proposed to achieve full-diversity. The constructed scheme is compared to recently proposed IC scheme in terms of performance and decoding complexity. Our IC scheme outperforms the recently proposed scheme in the case it provides higher transmission rate, while it loses slightly in the case of equal rates. In terms of decoding complexity, both schemes are equivalent.

  6. Low-Complexity Full-Diversity Detection in Two-User MIMO X Channels

    KAUST Repository

    Ismail, Amr; Abediseid, Walid; Alouini, Mohamed-Slim

    2014-01-01

    Several interference cancellation (IC) schemes have been recently proposed to suppress multi-user interference for various network configurations (e.g., multiple access and X channels). However, most of these schemes trade-off diversity for implementation complexity or vice-versa. In this paper, we propose a full-diversity interference cancellation scheme in a multiple-input multiple-output (MIMO) X channel with two sources and two destinations while maintaining low decoding complexity. We provide sufficient conditions for a wide range of space-time block codes (STBCs) to achieve full-diversity gain under the so-called partial interference cancellation group decoding (PICGD) in the configuration of interest. A systematic construction is then proposed to achieve full-diversity. The constructed scheme is compared to recently proposed IC scheme in terms of performance and decoding complexity. Our IC scheme outperforms the recently proposed scheme in the case it provides higher transmission rate, while it loses slightly in the case of equal rates. In terms of decoding complexity, both schemes are equivalent.

  7. Multiple particle emission after 11Li beta-decay: exploring new decay channels

    International Nuclear Information System (INIS)

    Madurga, M.; Borge, M. J. G.; Fynbo, H. O. U.; Prezado, Y.; Tengblad, O.; Jonson, B.; Nyman, G.; Riisager, K.

    2007-01-01

    We present here a study of the three-body, nα 6 He particle break-up of 11 Be(10.6) following 11 Li β-decay. The emitted charged particles were detected in coincidence using a cubic set-up of highly segmented silicon detectors, allowing us to measure simultaneously energy and trajectory. The three body break-up of 11 Be(10.5) through the intermediate state 10 Be(9.6) was modeled using the multiple-level single-channel R-Matrix formalism

  8. Implementation of Multiple Access Techniques Applicable for Maritime Satellite Communications

    OpenAIRE

    Stojce Dimov Ilcev

    2013-01-01

    In this paper are introduced fundamentals, characteristics, advantages and disadvantages of Multiple Access (MA) employed as transmission techniques in the Maritime Mobile Satellite Communications (MMSC) between ships and Coast Earth Station (CES) via Geostationary Earth Orbit (GEO) or Not-GEO satellite constellations. In fixed satellite communication, as a rule, especially in MMSC many users are active at the same time. The problem of simultaneous communications between many single or multip...

  9. Analysis and Transceiver Design for the MIMO Broadcast Channel

    CERN Document Server

    Hunger, Raphael

    2013-01-01

    This book deals with the optimization-based joint design of the transmit and receive filters in   MIMO broadcast channel in which the user terminals may be equipped with several antenna elements. Furthermore, the maximum performance of the system in the high power regime as well as the set of all feasible quality-of-service requirements is analyzed. First, a fundamental duality is derived that holds between the MIMO broadcast channel and virtual MIMO multiple access channel. This duality construct allows for the efficient solution of problems originally posed in the broadcast channel in the dual domain where a possibly hidden convexity can often be revealed. On the basis of the established duality result, the gradient-projection algorithm is introduced as a tool to solve constrained optimization problems to global optimality under certain conditions. The gradient-projection tool is then applied to solving the weighted sum rate maximization problem which is a central optimization that arises in any network u...

  10. Pilot-Assisted Channel Estimation for Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization

    Science.gov (United States)

    Shima, Tomoyuki; Tomeba, Hiromichi; Adachi, Fumiyuki

    Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of time-domain spreading and orthogonal frequency division multiplexing (OFDM). In orthogonal MC DS-CDMA, the frequency diversity gain can be obtained by applying frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion to a block of OFDM symbols and can improve the bit error rate (BER) performance in a severe frequency-selective fading channel. FDE requires an accurate estimate of the channel gain. The channel gain can be estimated by removing the pilot modulation in the frequency domain. In this paper, we propose a pilot-assisted channel estimation suitable for orthogonal MC DS-CDMA with FDE and evaluate, by computer simulation, the BER performance in a frequency-selective Rayleigh fading channel.

  11. On the Achievable Rate-Regions for the Gaussian Two-way Diamond Channels

    Directory of Open Access Journals (Sweden)

    F. Askarian

    2015-12-01

    Full Text Available In this channel,we study rate region of a Gaussian two-way diamond channel which operates in half-duplex mode. In this channel, two transceiver (TR nodes exchange their messages with the help of two relay nodes. We consider a special case of the Gaussian two-way diamond channels which is called Compute-and-Forward Multiple Access Channel (CF-MAC. In the CF-MAC, the TR nodes transmit their messages to the relay nodes which are followed by a simultaneous communication from the relay nodes to the TRs. Adopting rate splitting method in the terminal encoders and then using Compute-and-Forward (CF relaying and decoding the sum of messages at the relay nodes, an achievable rate region for this channel is obtained. To this end, we use a superposition coding based on lattice codes. Using numerical results, we show that our proposed scheme has better performance than other similar methods and achieves a tighter gap to the outer bound.

  12. Optical code-division multiple-access protocol with selective retransmission

    Science.gov (United States)

    Mohamed, Mohamed A. A.; Shalaby, Hossam M. H.; El-Badawy, El-Sayed A.

    2006-05-01

    An optical code-division multiple-access (OCDMA) protocol based on selective retransmission technique is proposed. The protocol is modeled using a detailed state diagram and is analyzed using equilibrium point analysis (EPA). Both traditional throughput and average delay are used to examine its performance for several network parameters. In addition, the performance of the proposed protocol is compared to that of the R3T protocol, which is based on a go-back-n technique. Our results show that a higher performance is achieved by the proposed protocol at the expense of system complexity.

  13. Channel Estimation and Optimal Training Design for Correlated MIMO Two-Way Relay Systems in Colored Environment

    OpenAIRE

    Wang, Rui; Tao, Meixia; Mehrpouyan, Hani; Hua, Yingbo

    2014-01-01

    In this paper, while considering the impact of antenna correlation and the interference from neighboring users, we analyze channel estimation and training sequence design for multi-input multi-output (MIMO) two-way relay (TWR) systems. To this end, we propose to decompose the bidirectional transmission links into two phases, i.e., the multiple access (MAC) phase and the broadcasting (BC) phase. By considering the Kronecker-structured channel model, we derive the optimal linear minimum mean-sq...

  14. IN SITU density measurements oozy bottom of the access channel to the port of Santos, Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Minardi, P.S.P.

    1988-09-01

    The density of the bottom sediment of the access channel to the port of Santos, Sao Paulo, Brazil was measured. The in situ measurements aimed at verifying the use for navigation purposes of the layers with densities equal to or smaller than 1200 kg/m 3 . (F.E.). 3 refs, 55 figs, 3 tabs

  15. Applications of Multi-Channel Safety Authentication Protocols in Wireless Networks.

    Science.gov (United States)

    Chen, Young-Long; Liau, Ren-Hau; Chang, Liang-Yu

    2016-01-01

    People can use their web browser or mobile devices to access web services and applications which are built into these servers. Users have to input their identity and password to login the server. The identity and password may be appropriated by hackers when the network environment is not safe. The multiple secure authentication protocol can improve the security of the network environment. Mobile devices can be used to pass the authentication messages through Wi-Fi or 3G networks to serve as a second communication channel. The content of the message number is not considered in a multiple secure authentication protocol. The more excessive transmission of messages would be easier to collect and decode by hackers. In this paper, we propose two schemes which allow the server to validate the user and reduce the number of messages using the XOR operation. Our schemes can improve the security of the authentication protocol. The experimental results show that our proposed authentication protocols are more secure and effective. In regard to applications of second authentication communication channels for a smart access control system, identity identification and E-wallet, our proposed authentication protocols can ensure the safety of person and property, and achieve more effective security management mechanisms.

  16. An orthogonal wavelet division multiple-access processor architecture for LTE-advanced wireless/radio-over-fiber systems over heterogeneous networks

    Science.gov (United States)

    Mahapatra, Chinmaya; Leung, Victor CM; Stouraitis, Thanos

    2014-12-01

    The increase in internet traffic, number of users, and availability of mobile devices poses a challenge to wireless technologies. In long-term evolution (LTE) advanced system, heterogeneous networks (HetNet) using centralized coordinated multipoint (CoMP) transmitting radio over optical fibers (LTE A-ROF) have provided a feasible way of satisfying user demands. In this paper, an orthogonal wavelet division multiple-access (OWDMA) processor architecture is proposed, which is shown to be better suited to LTE advanced systems as compared to orthogonal frequency division multiple access (OFDMA) as in LTE systems 3GPP rel.8 (3GPP, http://www.3gpp.org/DynaReport/36300.htm). ROF systems are a viable alternative to satisfy large data demands; hence, the performance in ROF systems is also evaluated. To validate the architecture, the circuit is designed and synthesized on a Xilinx vertex-6 field-programmable gate array (FPGA). The synthesis results show that the circuit performs with a clock period as short as 7.036 ns (i.e., a maximum clock frequency of 142.13 MHz) for transform size of 512. A pipelined version of the architecture reduces the power consumption by approximately 89%. We compare our architecture with similar available architectures for resource utilization and timing and provide performance comparison with OFDMA systems for various quality metrics of communication systems. The OWDMA architecture is found to perform better than OFDMA for bit error rate (BER) performance versus signal-to-noise ratio (SNR) in wireless channel as well as ROF media. It also gives higher throughput and mitigates the bad effect of peak-to-average-power ratio (PAPR).

  17. An information-guided channel-hopping scheme for block-fading channels with estimation errors

    KAUST Repository

    Yang, Yuli

    2010-12-01

    Information-guided channel-hopping technique employing multiple transmit antennas was previously proposed for supporting high data rate transmission over fading channels. This scheme achieves higher data rates than some mature schemes, such as the well-known cyclic transmit antenna selection and space-time block coding, by exploiting the independence character of multiple channels, which effectively results in having an additional information transmitting channel. Moreover, maximum likelihood decoding may be performed by simply decoupling the signals conveyed by the different mapping methods. In this paper, we investigate the achievable spectral efficiency of this scheme in the case of having channel estimation errors, with optimum pilot overhead for minimum meansquare error channel estimation, when transmitting over blockfading channels. Our numerical results further substantiate the robustness of the presented scheme, even with imperfect channel state information. ©2010 IEEE.

  18. Space-Time Coded MC-CDMA: Blind Channel Estimation, Identifiability, and Receiver Design

    Directory of Open Access Journals (Sweden)

    Li Hongbin

    2002-01-01

    Full Text Available Integrating the strengths of multicarrier (MC modulation and code division multiple access (CDMA, MC-CDMA systems are of great interest for future broadband transmissions. This paper considers the problem of channel identification and signal combining/detection schemes for MC-CDMA systems equipped with multiple transmit antennas and space-time (ST coding. In particular, a subspace based blind channel identification algorithm is presented. Identifiability conditions are examined and specified which guarantee unique and perfect (up to a scalar channel estimation when knowledge of the noise subspace is available. Several popular single-user based signal combining schemes, namely the maximum ratio combining (MRC and the equal gain combining (EGC, which are often utilized in conventional single-transmit-antenna based MC-CDMA systems, are extended to the current ST-coded MC-CDMA (STC-MC-CDMA system to perform joint combining and decoding. In addition, a linear multiuser minimum mean-squared error (MMSE detection scheme is also presented, which is shown to outperform the MRC and EGC at some increased computational complexity. Numerical examples are presented to evaluate and compare the proposed channel identification and signal detection/combining techniques.

  19. A distributed Synchronous reservation multiple access control protocol for mobile Ad hoc networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yanling; SUN Xianpu; LI Jiandong

    2007-01-01

    This study proposes a new multiple access control protocol named distributed synchronous reservation multiple access control protocol.in which the hidden and exposed terminal problems are solved,and the quality of service(QoS)requirements for real-time traffic are guaranteed.The protocol is founded on time division multiplex address and a different type of traffic is assigned to difierent priority,according to which a node should compete for and reserve the free slots in a different method.Moreover,there is a reservation acknowledgement process before data transmit in each reserved slot,so that the intruded terminal problem is solved.The throughput and average packets drop probability of this protocol are analyzed and simulated in a fully connected network.the results of which indicate that this protocol is efficient enough to support the real-time traffic.and it is more suitable to MANETs.

  20. The Effects of Noncontingent Access to Single-versus Multiple-Stimulus Sets on Self-Injurious Behavior.

    Science.gov (United States)

    DeLeon, Iser G.; Anders, Bonita M.; Rodriguez-Catter, Vanessa; Neidert, Pamela L.

    2000-01-01

    The automatically reinforced self-injury of a girl (age 11) with autism was treated by providing noncontingent access to a single set of preferred toys during 30-minute sessions. Rotating toy sets after 10 minutes or providing access to multiple toy sets resulted in reductions that lasted the entire 30 minutes. (Contains four references.)…

  1. Wired and wireless convergent extended-reach optical access network using direct-detection of all-optical OFDM super-channel signal.

    Science.gov (United States)

    Chow, C W; Yeh, C H; Sung, J Y; Hsu, C W

    2014-12-15

    We propose and demonstrate the feasibility of using all-optical orthogonal frequency division multiplexing (AO-OFDM) for the convergent optical wired and wireless access networks. AO-OFDM relies on all-optically generated orthogonal subcarriers; hence, high data rate (> 100 Gb/s) can be easily achieved without hitting the speed limit of electronic digital-to-analog and analog-to-digital converters (DAC/ADC). A proof-of-concept convergent access network using AO-OFDM super-channel (SC) is demonstrated supporting 40 - 100 Gb/s wired and gigabit/s 100 GHz millimeter-wave (MMW) ROF transmissions.

  2. Low Access Delay Anti-Collision Algorithm for Reader in RFID systems

    DEFF Research Database (Denmark)

    Galiotto, Carlo; Marchetti, Nicola; Prasad, Neeli R.

    2010-01-01

    Radio Frequency Identification (RFID) is a technology which is spreading more and more as a medium to identify, locate and track assets through the productive chain. As all the wireless communication devices sharing the same transmission channel, RFID readers and tags experience collisions whenever...... deployed over the same area. In this work, the RFID reader collision problem is studied and a centralized scheduling-based algorithm is proposed as possible candidate solution, especially for those scenarios involving static or low mobility readers. Taking into account the circuitry limitations of the tags......, which do not allow to use frequency or code division multiple access schemes in the RFID systems, this paper proposes an algorithm aiming to prevent the readers collisions, while keeping the access delay of the readers to the channel possibly low. The simulation results show that this algorithm performs...

  3. Performance of Non-Orthogonal Multiple Access (NOMA) in mmWave wireless communications for 5G networks

    DEFF Research Database (Denmark)

    Marcano, Andrea; Christiansen, Henrik Lehrmann

    2017-01-01

    Among the key technologies that have been identified as capacity boosters for fifth generation - 5G - mobile networks, are millimeter wave (mmWave) transmissions and non-orthogonal multiple access (NOMA). The large amount of spectrum available at mmWave frequencies combined with a more effective...... use of available resources, helps improving the overall capacity. NOMA, unlike orthogonal multiple access (OMA) methods, allows sharing the same frequency resources at the same time, by implementing adaptive power allocation. In this paper we present a performance analysis of NOMA in mmWave cells...

  4. Performance enhancement of optical code-division multiple-access systems using transposed modified Walsh code

    Science.gov (United States)

    Sikder, Somali; Ghosh, Shila

    2018-02-01

    This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.

  5. Power Allocation in Multiple Access Networks: Implementation Aspects via Verhulst and Perron-Frobenius Models

    Directory of Open Access Journals (Sweden)

    Fábio Engel de Camargo

    2012-11-01

    Full Text Available In this work, the Verhulst model and the Perron-Frobenius theorem are applied on the power control problem which is a concern in multiple access communication networks due to the multiple access interference. This paper deals with the performance versus complexity tradeoff of both power control algorithm (PCA, as well as highlights the computational cost aspects regarding the implementability of distributed PCA (DPCA version for both algorithms. As a proof-of-concept the DPCA implementation is carried out deploying a commercial point-floating DSP platform. Numerical results in terms of DSP cycles and computational time as well indicate a feasibility of implementing the PCA-Verhulst model in 2G and 3G cellular systems; b high computational cost for the PCA-Perron-Frobenius model.

  6. Performance Analysis of Direct-Sequence Code-Division Multiple-Access Communications with Asymmetric Quadrature Phase-Shift-Keying Modulation

    Science.gov (United States)

    Wang, C.-W.; Stark, W.

    2005-01-01

    This article considers a quaternary direct-sequence code-division multiple-access (DS-CDMA) communication system with asymmetric quadrature phase-shift-keying (AQPSK) modulation for unequal error protection (UEP) capability. Both time synchronous and asynchronous cases are investigated. An expression for the probability distribution of the multiple-access interference is derived. The exact bit-error performance and the approximate performance using a Gaussian approximation and random signature sequences are evaluated by extending the techniques used for uniform quadrature phase-shift-keying (QPSK) and binary phase-shift-keying (BPSK) DS-CDMA systems. Finally, a general system model with unequal user power and the near-far problem is considered and analyzed. The results show that, for a system with UEP capability, the less protected data bits are more sensitive to the near-far effect that occurs in a multiple-access environment than are the more protected bits.

  7. IDMA-Based MAC Protocol for Satellite Networks with Consideration on Channel Quality

    Directory of Open Access Journals (Sweden)

    Gongliang Liu

    2014-01-01

    Full Text Available In order to overcome the shortcomings of existing medium access control (MAC protocols based on TDMA or CDMA in satellite networks, interleave division multiple access (IDMA technique is introduced into satellite communication networks. Therefore, a novel wide-band IDMA MAC protocol based on channel quality is proposed in this paper, consisting of a dynamic power allocation algorithm, a rate adaptation algorithm, and a call admission control (CAC scheme. Firstly, the power allocation algorithm combining the technique of IDMA SINR-evolution and channel quality prediction is developed to guarantee high power efficiency even in terrible channel conditions. Secondly, the effective rate adaptation algorithm, based on accurate channel information per timeslot and by the means of rate degradation, can be realized. What is more, based on channel quality prediction, the CAC scheme, combining the new power allocation algorithm, rate scheduling, and buffering strategies together, is proposed for the emerging IDMA systems, which can support a variety of traffic types, and offering quality of service (QoS requirements corresponding to different priority levels. Simulation results show that the new wide-band IDMA MAC protocol can make accurate estimation of available resource considering the effect of multiuser detection (MUD and QoS requirements of multimedia traffic, leading to low outage probability as well as high overall system throughput.

  8. Segmentized Clear Channel Assessment for IEEE 802.15.4 Networks.

    Science.gov (United States)

    Son, Kyou Jung; Hong, Sung Hyeuck; Moon, Seong-Pil; Chang, Tae Gyu; Cho, Hanjin

    2016-06-03

    This paper proposed segmentized clear channel assessment (CCA) which increases the performance of IEEE 802.15.4 networks by improving carrier sense multiple access with collision avoidance (CSMA/CA). Improving CSMA/CA is important because the low-power consumption feature and throughput performance of IEEE 802.15.4 are greatly affected by CSMA/CA behavior. To improve the performance of CSMA/CA, this paper focused on increasing the chance to transmit a packet by assessing precise channel status. The previous method used in CCA, which is employed by CSMA/CA, assesses the channel by measuring the energy level of the channel. However, this method shows limited channel assessing behavior, which comes from simple threshold dependent channel busy evaluation. The proposed method solves this limited channel decision problem by dividing CCA into two groups. Two groups of CCA compare their energy levels to get precise channel status. To evaluate the performance of the segmentized CCA method, a Markov chain model has been developed. The validation of analytic results is confirmed by comparing them with simulation results. Additionally, simulation results show the proposed method is improving a maximum 8.76% of throughput and decreasing a maximum 3.9% of the average number of CCAs per packet transmission than the IEEE 802.15.4 CCA method.

  9. Energy efficiency for cloud-radio access networks with imperfect channel state information

    KAUST Repository

    Al-Oquibi, Bayan

    2016-12-24

    The advent of smartphones and tablets over the past several years has resulted in a drastic increase of global carbon footprint, due to the explosive growth of data traffic. Improving energy efficiency (EE) becomes, therefore, a crucial design metric in next generation wireless systems (5G). Cloud radio access network (C-RAN), a promising 5G network architecture, provides an efficient framework for improving the EE performance, by means of coordinating the transmission across the network. This paper considers a C-RAN system formed by several clusters of remote radio heads (RRHs), each serving a predetermined set of mobile users (MUs), and assumes imperfect channel state information (CSI). The network performance becomes therefore a function of the intra-cluster and inter-cluster interference, as well as the channel estimation error. The paper optimizes the transmit power of each RRH in order to maximize the network global EE subject to MU service rate requirements and RRHs maximum power constraints. The paper proposes solving the optimization problem using a heuristic algorithm based on techniques from optimization theory via a two-stage iterative solution. Simulation results show that the proposed power allocation algorithm provides an appreciable performance improvement as compared to the conventional systems with maximum power transmission strategy. They further highlight the convergence of the proposed algorithm for different networks scenarios.

  10. Gigabit Ethernet signal transmission using asynchronous optical code division multiple access.

    Science.gov (United States)

    Ma, Philip Y; Fok, Mable P; Shastri, Bhavin J; Wu, Ben; Prucnal, Paul R

    2015-12-15

    We propose and experimentally demonstrate a novel architecture for interfacing and transmitting a Gigabit Ethernet (GbE) signal using asynchronous incoherent optical code division multiple access (OCDMA). This is the first such asynchronous incoherent OCDMA system carrying GbE data being demonstrated to be working among multi-users where each user is operating with an independent clock/data rate and is granted random access to the network. Three major components, the GbE interface, the OCDMA transmitter, and the OCDMA receiver are discussed in detail. The performance of the system is studied and characterized through measuring eye diagrams, bit-error rate and packet loss rate in real-time file transfer. Our Letter also addresses the near-far problem and realizes asynchronous transmission and detection of signal.

  11. Highly Efficient Multi Channel Packet Forwarding with Round Robin Intermittent Periodic Transmit for Multihop Wireless Backhaul Networks

    Science.gov (United States)

    Furukawa, Hiroshi

    2017-01-01

    Round Robin based Intermittent Periodic Transmit (RR-IPT) has been proposed which achieves highly efficient multi-hop relays in multi-hop wireless backhaul networks (MWBN) where relay nodes are 2-dimensionally deployed. This paper newly investigates multi-channel packet scheduling and forwarding scheme for RR-IPT. Downlink traffic is forwarded by RR-IPT via one of the channels, while uplink traffic and part of downlink are accommodated in the other channel. By comparing IPT and carrier sense multiple access with collision avoidance (CSMA/CA) for uplink/downlink packet forwarding channel, IPT is more effective in reducing packet loss rate whereas CSMA/CA is better in terms of system throughput and packet delay improvement. PMID:29137164

  12. CCSDS Advanced Orbiting Systems Virtual Channel Access Service for QoS MACHETE Model

    Science.gov (United States)

    Jennings, Esther H.; Segui, John S.

    2011-01-01

    To support various communications requirements imposed by different missions, interplanetary communication protocols need to be designed, validated, and evaluated carefully. Multimission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in "Simulator of Space Communication Networks" (NPO-41373), NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. By building abstract behavioral models of network protocols, one can validate performance after identifying the appropriate metrics of interest. The innovators have extended the MACHETE model library to include a generic link-layer Virtual Channel (VC) model supporting quality-of-service (QoS) controls based on IP streams. The main purpose of this generic Virtual Channel model addition was to interface fine-grain flow-based QoS (quality of service) between the network and MAC layers of the QualNet simulator, a commercial component of MACHETE. This software model adds the capability of mapping IP streams, based on header fields, to virtual channel numbers, allowing extended QoS handling at link layer. This feature further refines the QoS v existing at the network layer. QoS at the network layer (e.g. diffserv) supports few QoS classes, so data from one class will be aggregated together; differentiating between flows internal to a class/priority is not supported. By adding QoS classification capability between network and MAC layers through VC, one maps multiple VCs onto the same physical link. Users then specify different VC weights, and different queuing and scheduling policies at the link layer. This VC model supports system performance analysis of various virtual channel link-layer QoS queuing schemes independent of the network-layer QoS systems.

  13. Ligand Access Channels in Cytochrome P450 Enzymes: A Review

    Directory of Open Access Journals (Sweden)

    Philippe Urban

    2018-05-01

    Full Text Available Quantitative structure-activity relationships may bring invaluable information on structural elements of both enzymes and substrates that, together, govern substrate specificity. Buried active sites in cytochrome P450 enzymes are connected to the solvent by a network of channels exiting at the distal surface of the protein. This review presents different in silico tools that were developed to uncover such channels in P450 crystal structures. It also lists some of the experimental evidence that actually suggest that these predicted channels might indeed play a critical role in modulating P450 functions. Amino acid residues at the entrance of the channels may participate to a first global ligand recognition of ligands by P450 enzymes before they reach the buried active site. Moreover, different P450 enzymes show different networks of predicted channels. The plasticity of P450 structures is also important to take into account when looking at how channels might play their role.

  14. Channel electron multipliers

    International Nuclear Information System (INIS)

    Seidman, A.; Avrahami, Z.; Sheinfux, B.; Grinberg, J.

    1976-01-01

    A channel electron multiplier is described having a tubular wall coated with a secondary-electron emitting material and including an electric field for accelerating the electrons, the electric field comprising a plurality of low-resistive conductive rings each alternating with a high-resistive insulating ring. The thickness of the low-resistive rings is many times larger than that of the high-resistive rings, being in the order of tens of microns for the low-resistive rings and at least one order of magnitude lower for the high-resistive rings; and the diameter of the channel tubular walls is also many times larger than the thickness of the high-resistive rings. Both single-channel and multiple-channel electron multipliers are described. A very important advantage, particularly in making multiple-channel multipliers, is the simplicity of the procedure that may be used in constructing such multipliers. Other operational advantages are described

  15. Directional Medium Access Control (MAC Protocols in Wireless Ad Hoc and Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    David Tung Chong Wong

    2015-06-01

    Full Text Available This survey paper presents the state-of-the-art directional medium access control (MAC protocols in wireless ad hoc and sensor networks (WAHSNs. The key benefits of directional antennas over omni-directional antennas are longer communication range, less multipath interference, more spatial reuse, more secure communications, higher throughput and reduced latency. However, directional antennas lead to single-/multi-channel directional hidden/exposed terminals, deafness and neighborhood, head-of-line blocking, and MAC-layer capture which need to be overcome. Addressing these problems and benefits for directional antennas to MAC protocols leads to many classes of directional MAC protocols in WAHSNs. These classes of directional MAC protocols presented in this survey paper include single-channel, multi-channel, cooperative and cognitive directional MACs. Single-channel directional MAC protocols can be classified as contention-based or non-contention-based or hybrid-based, while multi-channel directional MAC protocols commonly use a common control channel for control packets/tones and one or more data channels for directional data transmissions. Cooperative directional MAC protocols improve throughput in WAHSNs via directional multi-rate/single-relay/multiple-relay/two frequency channels/polarization, while cognitive directional MAC protocols leverage on conventional directional MAC protocols with new twists to address dynamic spectrum access. All of these directional MAC protocols are the pillars for the design of future directional MAC protocols in WAHSNs.

  16. Estimating the two-particle $K$-matrix for multiple partial waves and decay channels from finite-volume energies

    DEFF Research Database (Denmark)

    Morningstar, Colin; Bulava, John; Singha, Bijit

    2017-01-01

    An implementation of estimating the two-to-two $K$-matrix from finite-volume energies based on the L\\"uscher formalism and involving a Hermitian matrix known as the "box matrix" is described. The method includes higher partial waves and multiple decay channels. Two fitting procedures for estimating...

  17. Evaluation channel performance in multichannel environments

    NARCIS (Netherlands)

    Gensler, S.; Dekimpe, M.; Skiera, B.

    2007-01-01

    Evaluating channel performance is crucial for actively managing multiple sales channels, and requires understanding the customers' channel preferences. Two key components of channel performance are (i) the existing customers' intrinsic loyalty to a particular channel and (ii) the channel's ability

  18. Optical code-division multiple-access networks

    Science.gov (United States)

    Andonovic, Ivan; Huang, Wei

    1999-04-01

    This review details the approaches adopted to implement classical code division multiple access (CDMA) principles directly in the optical domain, resulting in all optical derivatives of electronic systems. There are a number of ways of realizing all-optical CDMA systems, classified as incoherent and coherent based on spreading in the time and frequency dimensions. The review covers the basic principles of optical CDMA (OCDMA), the nature of the codes used in these approaches and the resultant limitations on system performance with respect to the number of stations (code cardinality), the number of simultaneous users (correlation characteristics of the families of codes), concluding with consideration of network implementation issues. The latest developments will be presented with respect to the integration of conventional time spread codes, used in the bulk of the demonstrations of these networks to date, with wavelength division concepts, commonplace in optical networking. Similarly, implementations based on coherent correlation with the aid of a local oscillator will be detailed and comparisons between approaches will be drawn. Conclusions regarding the viability of these approaches allowing the goal of a large, asynchronous high capacity optical network to be realized will be made.

  19. Secret-Sharing over Multiple-Antenna Channels with Transmit Correlation

    KAUST Repository

    Zorgui, Marwen

    2015-01-07

    We consider secret-key agreement with public discussion over Rayleigh fastfading channels with transmit correlation. The legitimate receiver and the eavesdropper are assumed to have perfect channel knowledge while the transmitter has only knowledge of the transmit correlation matrix. First, We derive the expression of the key capacity under the considered setup. Then, we show that the optimal transmit strategy achieving the key capacity consists in transmitting Gaussian signals along the eingenvectors of the channel covariance matrix. The powers allocated to each channel mode are determined as the solution of a numerical optimization problem that we derive. We also provide a waterfilling interpretation of the optimal power allocation. Finally, we develop a necessary and sufficient condition for beamforming to be optimal, i.e., transmitting along the strongest channel mode only is key capacity-achieving.

  20. Secret-Sharing over Multiple-Antenna Channels with Transmit Correlation

    KAUST Repository

    Zorgui, Marwen; Rezki, Zouheir; Alomair, Basel; Alouini, Mohamed-Slim

    2015-01-01

    We consider secret-key agreement with public discussion over Rayleigh fastfading channels with transmit correlation. The legitimate receiver and the eavesdropper are assumed to have perfect channel knowledge while the transmitter has only knowledge of the transmit correlation matrix. First, We derive the expression of the key capacity under the considered setup. Then, we show that the optimal transmit strategy achieving the key capacity consists in transmitting Gaussian signals along the eingenvectors of the channel covariance matrix. The powers allocated to each channel mode are determined as the solution of a numerical optimization problem that we derive. We also provide a waterfilling interpretation of the optimal power allocation. Finally, we develop a necessary and sufficient condition for beamforming to be optimal, i.e., transmitting along the strongest channel mode only is key capacity-achieving.

  1. Beat Noise Cancellation in 2-D Optical Code-Division Multiple-Access Systems Using Optical Hard-Limiter Array

    Science.gov (United States)

    Dang, Ngoc T.; Pham, Anh T.; Cheng, Zixue

    We analyze the beat noise cancellation in two-dimensional optical code-division multiple-access (2-D OCDMA) systems using an optical hard-limiter (OHL) array. The Gaussian shape of optical pulse is assumed and the impact of pulse propagation is considered. We also take into account the receiver noise and multiple access interference (MAI) in the analysis. The numerical results show that, when OHL array is employed, the system performance is greatly improved compared with the cases without OHL array. Also, parameters needed for practical system design are comprehensively analyzed.

  2. Reduction of the near-far effect in mobile communication systems with Code-Division Multiple-Access

    Science.gov (United States)

    Purchla, Magdalena

    2006-02-01

    In this paper the basic methods for reducing Multiple Access Interference (MAI) and combating the near-far effect in Direct-Sequence Code-Division Multiple-Access (DS-CDMA) mobile communication systems are presented. MAI and the near-far effect are inevitable in DS-CDMA systems with quasi-orthogonal spreading sequences. An effective method of reducing MAI can increase the capacity of the system that is why so many researchers are working in this field. In this article three most important techniques of decreasing MAI are presented: power control, multiuser detection and space-time processing. There is a short introduction to each topic and one or more examples found in literature of algorithms suitable for practical applications (although not all algorithms are yet used in existing systems).

  3. A Multiple-Channel Sub-Band Transient Detection System

    Energy Technology Data Exchange (ETDEWEB)

    David A. Smith

    1998-11-01

    We have developed a unique multiple-channel sub-band transient detection system to record transient electromagnetic signals in carrier-dominated radio environments; the system has been used to make unique observations of weak, transient HF signals. The detection system has made these observations possible through improved sensitivity compared to conventional broadband transient detection systems; the sensitivity improvement is estimated to be at least 20 dB. The increase in sensitivity has been achieved through subdivision of the band of interest (an 18 MHz tunable bandwidth) into eight sub-band independent detection channels, each with a 400 kHz bandwidth and its own criteria. The system generates a system trigger signal when a predetermined number of channels (typically five) trigger within a predetermined window of time (typically 100 ~s). Events are recorded with a broadband data acquisition system sampling at 50 or 100 Msample/s, so despite the fact that the detection system operates on portions of the signal confined to narrow bands, data acquisition is broadband. Between May and September of 1994, the system was used to detect and record over six thousand transient events in the frequency band from 3 to 30 MHz. Approximately 500 of the events have been characterized as paired bursts of radio noise with individual durations of 2 to 10 ps and separations between the bursts of 5 to 160 ps. The paired transients are typically 5 to 40 dB brighter than the background electromagnetic spectrum between carrier signals. We have termed these events SubIonospheric Pulse Pairs (SIPPS) and presently have no explanation as to their source. Our observations of SIPPS resemble observations of TransIonospheric Pulse Pairs (TIPPs) recorded by the Blackboard instrument on the ALEXIS satellite; the source of TIPP events is also unknown. Most of the recorded SIPP events do not exhibit frequency dispersion, implying propagation along a line-of-sight (groundwave) path; but seven of

  4. The design of an ultra-thin and multiple channels optical receiving antenna system with freeform lenses

    Science.gov (United States)

    Zhang, Lingyun; Cheng, Dewen; Hu, Yuan; Song, Weitao; Wang, Yongtian

    2014-11-01

    Visible Light Communications (VLC) has become an emerging area of research since it can provide higher data transmission speed and wider bandwidth. The white LEDs are very important components of the VLC system, because it has the advantages of higher brightness, lower power consumption, and a longer lifetime. More importantly, their intensity and color are modulatable. Besides the light source, the optical antenna system also plays a very important role in the VLC system since it determines the optical gain, effective working area and transmission rate of the VLC system. In this paper, we propose to design an ultra-thin and multiple channels optical antenna system by tiling multiple off-axis lenses, each of which consists of two reflective and two refractive freeform surfaces. The tiling of multiple systems and detectors but with different band filters makes it possible to design a wavelength division multiplexing VLC system to highly improve the system capacity. The field of view of the designed antenna system is 30°, the entrance pupil diameter is 1.5mm, and the thickness of the system is under 4mm. The design methods are presented and the results are discussed in the last section of this paper. Besides the optical gain is analyzed and calculated. The antenna system can be tiled up to four channels but without the increase of thickness.

  5. 2-Step Maximum Likelihood Channel Estimation for Multicode DS-CDMA with Frequency-Domain Equalization

    Science.gov (United States)

    Kojima, Yohei; Takeda, Kazuaki; Adachi, Fumiyuki

    Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can provide better downlink bit error rate (BER) performance of direct sequence code division multiple access (DS-CDMA) than the conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. In this paper, we propose a new 2-step maximum likelihood channel estimation (MLCE) for DS-CDMA with FDE in a very slow frequency-selective fading environment. The 1st step uses the conventional pilot-assisted MMSE-CE and the 2nd step carries out the MLCE using decision feedback from the 1st step. The BER performance improvement achieved by 2-step MLCE over pilot assisted MMSE-CE is confirmed by computer simulation.

  6. Microfluidic CODES: a scalable multiplexed electronic sensor for orthogonal detection of particles in microfluidic channels.

    Science.gov (United States)

    Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih

    2016-04-21

    Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings.

  7. A Perspective on the MIMO Wiretap Channel

    KAUST Repository

    Oggier, Frederique; Hassibi, Babak

    2015-01-01

    A wiretap channel is a communication channel between a transmitter Alice and a legitimate receiver Bob, in the presence of an eavesdropper Eve. The goal of communication is to achieve reliability between Alice and Bob, but also confidentiality despite Eve’s presence. Wiretap channels are declined in all kinds of flavors, depending on the underlying channels used by the three players: discrete memoryless channels, additive Gaussian noise channels, or fading channels, to name a few. In this survey, we focus on the case where the three players use multiple-antenna channels with Gaussian noise to communicate. After summarizing known results for multiple-input–multiple-output (MIMO) channels, both in terms of achievable reliable data rate (capacity) and code design, we introduce the MIMO wiretap channel. We then state the MIMO wiretap capacity, summarize the idea of the proof(s) behind this result, and comment on the insights given by the proofs on the physical meaning of the secrecy capacity. We finally discuss design criteria for MIMO wiretap codes.

  8. A Perspective on the MIMO Wiretap Channel

    KAUST Repository

    Oggier, Frederique

    2015-10-01

    A wiretap channel is a communication channel between a transmitter Alice and a legitimate receiver Bob, in the presence of an eavesdropper Eve. The goal of communication is to achieve reliability between Alice and Bob, but also confidentiality despite Eve’s presence. Wiretap channels are declined in all kinds of flavors, depending on the underlying channels used by the three players: discrete memoryless channels, additive Gaussian noise channels, or fading channels, to name a few. In this survey, we focus on the case where the three players use multiple-antenna channels with Gaussian noise to communicate. After summarizing known results for multiple-input–multiple-output (MIMO) channels, both in terms of achievable reliable data rate (capacity) and code design, we introduce the MIMO wiretap channel. We then state the MIMO wiretap capacity, summarize the idea of the proof(s) behind this result, and comment on the insights given by the proofs on the physical meaning of the secrecy capacity. We finally discuss design criteria for MIMO wiretap codes.

  9. Iterative MMSE Detection for MIMO/BLAST DS-CDMA Systems in Frequency Selective Fading Channels - Achieving High Performance in Fully Loaded Systems

    Science.gov (United States)

    Silva, João Carlos; Souto, Nuno; Cercas, Francisco; Dinis, Rui

    A MMSE (Minimum Mean Square Error) DS-CDMA (Direct Sequence-Code Division Multiple Access) receiver coupled with a low-complexity iterative interference suppression algorithm was devised for a MIMO/BLAST (Multiple Input, Multiple Output / Bell Laboratories Layered Space Time) system in order to improve system performance, considering frequency selective fading channels. The scheme is compared against the simple MMSE receiver, for both QPSK and 16QAM modulations, under SISO (Single Input, Single Output) and MIMO systems, the latter with 2Tx by 2Rx and 4Tx by 4Rx (MIMO order 2 and 4 respectively) antennas. To assess its performance in an existing system, the uncoded UMTS HSDPA (High Speed Downlink Packet Access) standard was considered.

  10. Optimal power allocation of a single transmitter-multiple receivers channel in a cognitive sensor network

    KAUST Repository

    Ayala Solares, Jose Roberto

    2012-08-01

    The optimal transmit power of a wireless sensor network with one transmitter and multiple receivers in a cognitive radio environment while satisfying independent peak, independent average, sum of peak and sum of average transmission rate constraints is derived. A suboptimal scheme is proposed to overcome the frequency of outages for the independent peak transmission rate constraint. In all cases, numerical results are provided for Rayleigh fading channels. © 2012 IEEE.

  11. Performance Analysis of a New Coded TH-CDMA Scheme in Dispersive Infrared Channel with Additive Gaussian Noise

    Science.gov (United States)

    Hamdi, Mazda; Kenari, Masoumeh Nasiri

    2013-06-01

    We consider a time-hopping based multiple access scheme introduced in [1] for communication over dispersive infrared links, and evaluate its performance for correlator and matched filter receivers. In the investigated time-hopping code division multiple access (TH-CDMA) method, the transmitter benefits a low rate convolutional encoder. In this method, the bit interval is divided into Nc chips and the output of the encoder along with a PN sequence assigned to the user determines the position of the chip in which the optical pulse is transmitted. We evaluate the multiple access performance of the system for correlation receiver considering background noise which is modeled as White Gaussian noise due to its large intensity. For the correlation receiver, the results show that for a fixed processing gain, at high transmit power, where the multiple access interference has the dominant effect, the performance improves by the coding gain. But at low transmit power, in which the increase of coding gain leads to the decrease of the chip time, and consequently, to more corruption due to the channel dispersion, there exists an optimum value for the coding gain. However, for the matched filter, the performance always improves by the coding gain. The results show that the matched filter receiver outperforms the correlation receiver in the considered cases. Our results show that, for the same bandwidth and bit rate, the proposed system excels other multiple access techniques, like conventional CDMA and time hopping scheme.

  12. Lexical access changes in patients with multiple sclerosis: a two-year follow-up study.

    Science.gov (United States)

    Sepulcre, Jorge; Peraita, Herminia; Goni, Joaquin; Arrondo, Gonzalo; Martincorena, Inigo; Duque, Beatriz; Velez de Mendizabal, Nieves; Masdeu, Joseph C; Villoslada, Pablo

    2011-02-01

    The aim of the study was to analyze lexical access strategies in patients with multiple sclerosis (MS) and their changes over time. We studied lexical access strategies during semantic and phonemic verbal fluency tests and also confrontation naming in a 2-year prospective cohort of 45 MS patients and 20 healthy controls. At baseline, switching lexical access strategy (both in semantic and in phonemic verbal fluency tests) and confrontation naming were significantly impaired in MS patients compared with controls. After 2 years follow-up, switching score decreased, and cluster size increased over time in semantic verbal fluency tasks, suggesting a failure in the retrieval of lexical information rather than an impairment of the lexical pool. In conclusion, these findings underline the significant presence of lexical access problems in patients with MS and could point out their key role in the alterations of high-level communications abilities in MS.

  13. Above the nominal limit performance evaluation of multiwavelength optical code-division multiple-access systems

    Science.gov (United States)

    Inaty, Elie; Raad, Robert; Fortier, Paul; Shalaby, Hossam M. H.

    2009-03-01

    We provide an analysis for the performance of a multiwavelength optical code-division multiple-access (MW-OCDMA) network when the system is working above the nominal transmission rate limit imposed by passive encoding-decoding operation. We address the problem of overlapping in such a system and how it can directly affect the bit error rate (BER). A unified mathematical framework is presented under the assumption of one-coincidence sequences with nonrepeating wavelengths. A closed form expression of the multiple access interference limited BER is provided as a function of different system parameters. Results show that the performance of the MW-OCDMA system can be critically affected when working above the nominal limit, an event that can happen when the network operates at a high transmission rate. In addition, the impact of the derived error probability on the performance of two newly proposed medium access control (MAC) protocols, the S-ALOHA and the R3T, is also investigated. It is shown that for low transmission rates, the S-ALOHA is better than the R3T, while the R3T is better at very high transmission rates. In general, it is postulated that the R3T protocol suffers a higher delay mainly because of the presence of additional modes.

  14. Performance of Generalized Multicarrier DS-CDMA over Nakagami-$m$ Fading Channels

    OpenAIRE

    Yang, L-L.; Hanzo, L.

    2002-01-01

    A class of generalized multicarrier direct sequence code-division multiple-access (MC DS-CDMA) schemes is defined and its performance is considered over multipath Nakagamifading channels. The spacing between two adjacent subcarriers of the generalized MC DS-CDMA is a variable, allowing us to gain insight into the effects of the spacing on the bit error rate (BER) performance of MC DS-CDMA systems. This generalized MC DS-CDMA scheme includes the subclasses of multitone DS-CDMA and orthogonal M...

  15. Indoor MIMO Channel Measurement and Modeling

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ødum; Andersen, Jørgen Bach

    2005-01-01

    Forming accurate models of the multiple input multiple output (MIMO) channel is essential both for simulation as well as understanding of the basic properties of the channel. This paper investigates different known models using measurements obtained with a 16x32 MIMO channel sounder for the 5.8GHz...... band. The measurements were carried out in various indoor scenarios including both temporal and spatial aspects of channel changes. The models considered include the so-called Kronecker model, a model proposed by Weichselberger et. al., and a model involving the full covariance matrix, the most...

  16. Therapeutic effects of visual standard channel combined with F4.8 visual puncture super-mini percutaneous nephrolithotomy on multiple renal calculi.

    Science.gov (United States)

    Cui, Zhenyu; Gao, Yanjun; Yang, Wenzeng; Zhao, Chunli; Ma, Tao; Shi, Xiaoqiang

    2018-01-01

    To evaluate the therapeutic effects of visual standard channel combined with F4.8 visual puncture super-mini percutaneous nephrolithotomy (SMP) on multiple renal calculi. The clinical data of 46 patients with multiple renal calculi treated in Affiliated Hospital of Hebei University from October 2015 to September 2016 were retrospectively analyzed. There were 28 males and 18 females aged from 25 to 65 years old, with an average of 42.6. The stone diameters were 3.0-5.2 cm, (4.3 ± 0.8) cm on average. F4.8 visual puncture-assisted balloon expansion was used to establish a standard channel. After visible stones were removed through nephroscopy combined with ultrasound lithotripsy, the stones of other parts were treated through F4.8 visual puncture SMP with holmium laser. Indices such as the total time of channel establishment, surgical time, decreased value of hemoglobin, phase-I stone clearance rate and surgical complications were summarized. Single standard channel was successfully established in all cases with the assistance of F4.8 visual puncture, of whom 24 were combined with a single microchannel, 16 were combined with double microchannels, and six were combined with three microchannels. All patients were placed with nephrostomy tube which was not placed in the microchannels. Both F5 double J tubes were placed after surgery. The time for establishing a standard channel through F4.8 visual puncture was (6.8 ± 1.8) min, and that for establishing a single F4.8 visual puncture microchannel was (4.5 ± 0.9) min. The surgical time was (92 ± 15) min. The phase-I stone clearance rate was 91.3% (42/46), and the decreased value of hemoglobin was (12.21 ± 2.5) g/L. There were 8 cases of postoperative fever which was relieved after anti-inflammatory treatment. Four cases had 0.5-0.8 cm of stone residue in the lower calyx, and all stones were discharged one month after surgery by in vitro shock wave lithotripsy combined with position nephrolithotomy, without stone

  17. An access technology delivery protocol for children with severe and multiple disabilities: a case demonstration.

    Science.gov (United States)

    Mumford, Leslie; Lam, Rachel; Wright, Virginia; Chau, Tom

    2014-08-01

    This study applied response efficiency theory to create the Access Technology Delivery Protocol (ATDP), a child and family-centred collaborative approach to the implementation of access technologies. We conducted a descriptive, mixed methods case study to demonstrate the ATDP method with a 12-year-old boy with no reliable means of access to an external device. Evaluations of response efficiency, satisfaction, goal attainment, technology use and participation were made after 8 and 16 weeks of training with a custom smile-based access technology. At the 16 week mark, the new access technology offered better response quality; teacher satisfaction was high; average technology usage was 3-4 times per week for up to 1 h each time; switch sensitivity and specificity reached 78% and 64%, respectively, and participation scores increased by 38%. This case supports further development and testing of the ATDP with additional children with multiple or severe disabilities.

  18. Design and Implementation of a Web-based Monitoring System by using EPICS Channel Access Protocol

    International Nuclear Information System (INIS)

    An, Eun Mi; Song, Yong Gi

    2009-01-01

    Proton Engineering Frontier Project (PEFP) has developed a 20MeV proton accelerator, and established a distributed control system based on EPICS for sub-system components such as vacuum unit, beam diagnostics, and power supply system. The control system includes a real-time monitoring and alarm functions. From the aspect of a efficient maintenance of a control system and a additional extension of subsystems, EPICS software framework was adopted. In addition, a control system should be capable of providing an easy access for users and a real-time monitoring on a user screen. Therefore, we have implemented a new web-based monitoring server with several libraries. By adding DB module, the new IOC web monitoring system makes it possible to monitor the system through the web. By integrating EPICS Channel Access (CA) and Database libraries into a Database module, the web-based monitoring system makes it possible to monitor the sub-system status through user's internet browser. In this study, we developed a web based monitoring system by using EPICS IOC (Input Output Controller) with IBM server

  19. Optical Code-Division Multiple-Access and Wavelength Division Multiplexing: Hybrid Scheme Review

    OpenAIRE

    P. Susthitha Menon; Sahbudin Shaari; Isaac A.M. Ashour; Hesham A. Bakarman

    2012-01-01

    Problem statement: Hybrid Optical Code-Division Multiple-Access (OCDMA) and Wavelength-Division Multiplexing (WDM) have flourished as successful schemes for expanding the transmission capacity as well as enhancing the security for OCDMA. However, a comprehensive review related to this hybrid system are lacking currently. Approach: The purpose of this paper is to review the literature on OCDMA-WDM overlay systems, including our hybrid approach of one-dimensional coding of SAC OCDMA with WDM si...

  20. Strict optical orthogonal codes for purely asynchronous code-division multiple-access applications

    Science.gov (United States)

    Zhang, Jian-Guo

    1996-12-01

    Strict optical orthogonal codes are presented for purely asynchronous optical code-division multiple-access (CDMA) applications. The proposed code can strictly guarantee the peaks of its cross-correlation functions and the sidelobes of any of its autocorrelation functions to have a value of 1 in purely asynchronous data communications. The basic theory of the proposed codes is given. An experiment on optical CDMA systems is also demonstrated to verify the characteristics of the proposed code.

  1. A Fairness-Based Access Control Scheme to Optimize IPTV Fast Channel Changing

    Directory of Open Access Journals (Sweden)

    Junyu Lai

    2014-01-01

    Full Text Available IPTV services are typically featured with a longer channel changing delay compared to the conventional TV systems. The major contributor to this lies in the time spent on intraframe (I-frame acquisition during channel changing. Currently, most widely adopted fast channel changing (FCC methods rely on promptly transmitting to the client (conducting the channel changing a retained I-frame of the targeted channel as a separate unicasting stream. However, this I-frame acceleration mechanism has an inherent scalability problem due to the explosions of channel changing requests during commercial breaks. In this paper, we propose a fairness-based admission control (FAC scheme for the original I-frame acceleration mechanism to enhance its scalability by decreasing the bandwidth demands. Based on the channel changing history of every client, the FAC scheme can intelligently decide whether or not to conduct the I-frame acceleration for each channel change request. Comprehensive simulation experiments demonstrate the potential of our proposed FAC scheme to effectively optimize the scalability of the I-frame acceleration mechanism, particularly in commercial breaks. Meanwhile, the FAC scheme only slightly increases the average channel changing delay by temporarily disabling FCC (i.e., I-frame acceleration for the clients who are addicted to frequent channel zapping.

  2. Fundamental Limits of Parallel Optical Wireless Channels: Capacity Results and Outage Formulation

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2016-01-01

    Multi-channel (MC) optical wireless communication (OWC) systems employing wave-division multiplexing for outdoors free-space optical communications, or multi-user timedivision multiple access for indoors visible-light communications, e.g., can be modeled as parallel channels. Multi-input multioutput OWC systems can also be transformed, possibly with some performance loss, to parallel channels using pre-/postcoding. Studying the performance of such MC-OWC systems requires characterizing the capacity of the underlying parallel channels. In this paper, upper and lower bounds on the capacity of constant parallel OWC channels with a total average intensity constraint are derived. Then, the paper focuses on finding intensity allocations that maximize the lower bounds given channel-state information at the transmitter (CSIT). Due to its nonconvexity, the KKT conditions are used to describe a list of candidate allocations. Instead searching exhaustively for the best solution, low-complexity near-optimal algorithms are proposed. The resulting optimized lower bound nearly coincides with capacity at high signal-to-noise ratio (SNR). Under a quasi-static channel model and in the absence of CSIT, outage probability upper and lower bounds are derived. Those bounds also meet at high SNR, thus characterizing the outage capacity in this regime. Finally, the results are extended to a system with both average and peak intensity constraints.

  3. Fundamental Limits of Parallel Optical Wireless Channels: Capacity Results and Outage Formulation

    KAUST Repository

    Chaaban, Anas

    2016-10-26

    Multi-channel (MC) optical wireless communication (OWC) systems employing wave-division multiplexing for outdoors free-space optical communications, or multi-user timedivision multiple access for indoors visible-light communications, e.g., can be modeled as parallel channels. Multi-input multioutput OWC systems can also be transformed, possibly with some performance loss, to parallel channels using pre-/postcoding. Studying the performance of such MC-OWC systems requires characterizing the capacity of the underlying parallel channels. In this paper, upper and lower bounds on the capacity of constant parallel OWC channels with a total average intensity constraint are derived. Then, the paper focuses on finding intensity allocations that maximize the lower bounds given channel-state information at the transmitter (CSIT). Due to its nonconvexity, the KKT conditions are used to describe a list of candidate allocations. Instead searching exhaustively for the best solution, low-complexity near-optimal algorithms are proposed. The resulting optimized lower bound nearly coincides with capacity at high signal-to-noise ratio (SNR). Under a quasi-static channel model and in the absence of CSIT, outage probability upper and lower bounds are derived. Those bounds also meet at high SNR, thus characterizing the outage capacity in this regime. Finally, the results are extended to a system with both average and peak intensity constraints.

  4. Reducing BER of spectral-amplitude coding optical code-division multiple-access systems by single photodiode detection technique

    Science.gov (United States)

    Al-Khafaji, H. M. R.; Aljunid, S. A.; Amphawan, A.; Fadhil, H. A.; Safar, A. M.

    2013-03-01

    In this paper, we present a single photodiode detection (SPD) technique for spectral-amplitude coding optical code-division multiple-access (SAC-OCDMA) systems. The proposed technique eliminates both phase-induced intensity noise (PIIN) and multiple-access interference (MAI) in the optical domain. Analytical results show that for 35 simultaneous users transmitting at data rate of 622 Mbps, the bit-error rate (BER) = 1.4x10^-28 for SPD technique is much better compared to 9.3x10^-6 and 9.6x10^-3 for the modified-AND as well as the AND detection techniques, respectively. Moreover, we verified the improved performance afforded by the proposed technique using data transmission simulations.

  5. System performances of optical space code-division multiple-access-based fiber-optic two-dimensional parallel data link.

    Science.gov (United States)

    Nakamura, M; Kitayama, K

    1998-05-10

    Optical space code-division multiple access is a scheme to multiplex and link data between two-dimensional processors such as smart pixels and spatial light modulators or arrays of optical sources like vertical-cavity surface-emitting lasers. We examine the multiplexing characteristics of optical space code-division multiple access by using optical orthogonal signature patterns. The probability density function of interference noise in interfering optical orthogonal signature patterns is calculated. The bit-error rate is derived from the result and plotted as a function of receiver threshold, code length, code weight, and number of users. Furthermore, we propose a prethresholding method to suppress the interference noise, and we experimentally verify that the method works effectively in improving system performance.

  6. Investigation Of Information Sources And Communication Channels ...

    African Journals Online (AJOL)

    Investigation Of Information Sources And Communication Channels In Ipm Rice ... the information accessibility of farmer groups seems as empowerment strategy. ... information sources and communication channels, in order of importance, ...

  7. Effective use of multibeam antenna and space-time multiple access technology in modern mobile communication systems

    OpenAIRE

    Moskalets, N. V.

    2015-01-01

    A possibility for efficient use of radio-frequency spectrum and of corresponding increase in productivity of mobile communication system with space-time multiple access obtained by use of multibeam antenna of base station is considered.

  8. Medium Access Control for Opportunistic Concurrent Transmissions under Shadowing Channels

    Directory of Open Access Journals (Sweden)

    Seung Min Hur

    2009-06-01

    Full Text Available We study the problem of how to alleviate the exposed terminal effect in multihop wireless networks in the presence of log-normal shadowing channels. Assuming node location information, we propose an extension of the IEEE 802.11 MAC protocol that schedules concurrent transmissions in the presence of log-normal shadowing, thus mitigating the exposed terminal problem and improving network throughput and delay performance. We observe considerable improvements in throughput and delay achieved over the IEEE 802.11 MAC under various network topologies and channel conditions in ns-2 simulations, which justify the importance of considering channel randomness in MAC protocol design for multihop wireless networks.

  9. Medium Access Control for Opportunistic Concurrent Transmissions under Shadowing Channels.

    Science.gov (United States)

    Son, In Keun; Mao, Shiwen; Hur, Seung Min

    2009-01-01

    We study the problem of how to alleviate the exposed terminal effect in multi-hop wireless networks in the presence of log-normal shadowing channels. Assuming node location information, we propose an extension of the IEEE 802.11 MAC protocol that sched-ules concurrent transmissions in the presence of log-normal shadowing, thus mitigating the exposed terminal problem and improving network throughput and delay performance. We observe considerable improvements in throughput and delay achieved over the IEEE 802.11 MAC under various network topologies and channel conditions in ns-2 simulations, which justify the importance of considering channel randomness in MAC protocol design for multi-hop wireless networks.

  10. Multiple flow profiles for two-phase flow in single microfluidic channels through site-selective channel coating.

    Science.gov (United States)

    Logtenberg, Hella; Lopez-Martinez, Maria J; Feringa, Ben L; Browne, Wesley R; Verpoorte, Elisabeth

    2011-06-21

    An approach to control two-phase flow systems in a poly(dimethylsiloxane) (PDMS) microfluidic device using spatially selective surface modification is demonstrated. Side-by-side flows of ethanol : water solutions containing different polymers are used to selectively modify both sides of a channel by laminar flow patterning. Introduction of air pockets during modification allows for control over the length of the channel section that is modified. This approach makes it possible to achieve slug flow and side-by-side flow of water : 1-octanol simultaneously within the same PDMS channel, without the need of additional structural elements. A key finding is that conditioning of the PDMS channels with 1-octanol before polymer deposition is crucial to achieving stable side-by-side flows.

  11. Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network

    Directory of Open Access Journals (Sweden)

    Sangil Choi

    2016-12-01

    Full Text Available Wireless mesh networks (WMNs have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM. In addition, MICA achieves much lower throughput variation among the destination nodes than MCM.

  12. Power adaptive multi-filter carrierless amplitude and phase access scheme for visible light communication network

    Science.gov (United States)

    Li, Wei; Huang, Zhitong; Li, Haoyue; Ji, Yuefeng

    2018-04-01

    Visible light communication (VLC) is a promising candidate for short-range broadband access due to its integration of advantages for both optical communication and wireless communication, whereas multi-user access is a key problem because of the intra-cell and inter-cell interferences. In addition, the non-flat channel effect results in higher losses for users in high frequency bands, which leads to unfair qualities. To solve those issues, we propose a power adaptive multi-filter carrierless amplitude and phase access (PA-MF-CAPA) scheme, and in the first step of this scheme, the MF-CAPA scheme utilizing multiple filters as different CAP dimensions is used to realize multi-user access. The character of orthogonality among the filters in different dimensions can mitigate the effect of intra-cell and inter-cell interferences. Moreover, the MF-CAPA scheme provides different channels modulated on the same frequency bands, which further increases the transmission rate. Then, the power adaptive procedure based on MF-CAPA scheme is presented to realize quality fairness. As demonstrated in our experiments, the MF-CAPA scheme yields an improved throughput compared with multi-band CAP access scheme, and the PA-MF-CAPA scheme enhances the quality fairness and further improves the throughput compared with the MF-CAPA scheme.

  13. Radar channel balancing with commutation

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  14. Performance analysis of commercial multiple-input-multiple-output access point in distributed antenna system.

    Science.gov (United States)

    Fan, Yuting; Aighobahi, Anthony E; Gomes, Nathan J; Xu, Kun; Li, Jianqiang

    2015-03-23

    In this paper, we experimentally investigate the throughput of IEEE 802.11n 2x2 multiple-input-multiple-output (MIMO) signals in a radio-over-fiber-based distributed antenna system (DAS) with different fiber lengths and power imbalance. Both a MIMO-supported access point (AP) and a spatial-diversity-supported AP were separately employed in the experiments. Throughput measurements were carried out with wireless users at different locations in a typical office environment. For the different fiber length effect, the results indicate that MIMO signals can maintain high throughput when the fiber length difference between the two remote antenna units (RAUs) is under 100 m and falls quickly when the length difference is greater. For the spatial diversity signals, high throughput can be maintained even when the difference is 150 m. On the other hand, the separation of the MIMO antennas allows additional freedom in placing the antennas in strategic locations for overall improved system performance, although it may also lead to received power imbalance problems. The results show that the throughput performance drops in specific positions when the received power imbalance is above around 13 dB. Hence, there is a trade-off between the extent of the wireless coverage for moderate bit-rates and the area over which peak bit-rates can be achieved.

  15. Universal core model for multiple-gate field-effect transistors with short channel and quantum mechanical effects

    Science.gov (United States)

    Shin, Yong Hyeon; Bae, Min Soo; Park, Chuntaek; Park, Joung Won; Park, Hyunwoo; Lee, Yong Ju; Yun, Ilgu

    2018-06-01

    A universal core model for multiple-gate (MG) field-effect transistors (FETs) with short channel effects (SCEs) and quantum mechanical effects (QMEs) is proposed. By using a Young’s approximation based solution for one-dimensional Poisson’s equations the total inversion charge density (Q inv ) in the channel is modeled for double-gate (DG) and surrounding-gate SG (SG) FETs, following which a universal charge model is derived based on the similarity of the solutions, including for quadruple-gate (QG) FETs. For triple-gate (TG) FETs, the average of DG and QG FETs are used. A SCEs model is also proposed considering the potential difference between the channel’s surface and center. Finally, a QMEs model for MG FETs is developed using the quantum correction compact model. The proposed universal core model is validated on commercially available three-dimensional ATLAS numerical simulations.

  16. Impact of Co-Channel Interference on the Outage Performance Under Multiple Type II Relay Environments

    KAUST Repository

    Choi, Seyeong; Alouini, Mohamed-Slim; Nam, Sung Sik

    2017-01-01

    In this paper, through an exact analysis of the outage probability, we investigate the impact of co-channel interference (CCI) on the outage performance of type II (or user equipment) relay under multiple-relay environments considering the selection combining-based relay selection scheme with the decode-and-forward protocol. We consider the signal to interference plus noise ratio (SINR) over both independent and identically distributed and independent but non-identically distributed fading channels. To fully take into account the effect of CCI, we adopt a more practical parameter such as the CCI coefficient. The major difficulty in the analysis resides in the determination of the statistics of the output SINR. To settle this problem, we first present the general but relatively simplified expressions for the statistics and then the related outage probability in closed-form. Furthermore, to consider more practical scenario, based on the fact that the number of participating relays can be random, we investigate the average outage probability by averaging the number of participating relays.

  17. Impact of Co-Channel Interference on the Outage Performance Under Multiple Type II Relay Environments

    KAUST Repository

    Choi, Seyeong

    2017-11-15

    In this paper, through an exact analysis of the outage probability, we investigate the impact of co-channel interference (CCI) on the outage performance of type II (or user equipment) relay under multiple-relay environments considering the selection combining-based relay selection scheme with the decode-and-forward protocol. We consider the signal to interference plus noise ratio (SINR) over both independent and identically distributed and independent but non-identically distributed fading channels. To fully take into account the effect of CCI, we adopt a more practical parameter such as the CCI coefficient. The major difficulty in the analysis resides in the determination of the statistics of the output SINR. To settle this problem, we first present the general but relatively simplified expressions for the statistics and then the related outage probability in closed-form. Furthermore, to consider more practical scenario, based on the fact that the number of participating relays can be random, we investigate the average outage probability by averaging the number of participating relays.

  18. Average Likelihood Methods of Classification of Code Division Multiple Access (CDMA)

    Science.gov (United States)

    2016-05-01

    subject to code matrices that follows the structure given by (113). [⃗ yR y⃗I ] = √ Es 2L [ GR1 −GI1 GI2 GR2 ] [ QR −QI QI QR ] [⃗ bR b⃗I ] + [⃗ nR n⃗I... QR ] [⃗ b+ b⃗− ] + [⃗ n+ n⃗− ] (115) The average likelihood for type 4 CDMA (116) is a special case of type 1 CDMA with twice the code length and...AVERAGE LIKELIHOOD METHODS OF CLASSIFICATION OF CODE DIVISION MULTIPLE ACCESS (CDMA) MAY 2016 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE

  19. Channel Asymmetry in Cellular OFDMA-TDD Networks

    Directory of Open Access Journals (Sweden)

    Agyapong Patrick

    2008-01-01

    Full Text Available Abstract This paper studies time division duplex- (TDD- specific interference issues in orthogonal frequency division multiple access- (OFDMA- TDD cellular networks arising from various uplink (UL/downlink (DL traffic asymmetries, considering both line-of-sight (LOS and non-LOS (NLOS conditions among base stations (BSs. The study explores aspects both of channel allocation and user scheduling. In particular, a comparison is drawn between the fixed slot allocation (FSA technique and a dynamic channel allocation (DCA technique for different UL/DL loads. For the latter, random time slot opposing (RTSO is assumed due to its simplicity and its low signaling overhead. Both channel allocation techniques do not obviate the need for user scheduling algorithms, therefore, a greedy and a fair scheduling approach are applied to both the RTSO and the FSA. The systems are evaluated based on spectral efficiency, subcarrier utilization, and user outage. The results show that RTSO networks with DL-favored traffic asymmetries outperform FSA networks for all considered metrics and are robust to LOS between BSs. In addition, it is demonstrated that the greedy scheduling algorithm only offers a marginal increase in spectral efficiency as compared to the fair scheduling algorithm, while the latter exhibits up to 20% lower outage.

  20. A satellite mobile communication system based on Band-Limited Quasi-Synchronous Code Division Multiple Access (BLQS-CDMA)

    Science.gov (United States)

    Degaudenzi, R.; Elia, C.; Viola, R.

    1990-01-01

    Discussed here is a new approach to code division multiple access applied to a mobile system for voice (and data) services based on Band Limited Quasi Synchronous Code Division Multiple Access (BLQS-CDMA). The system requires users to be chip synchronized to reduce the contribution of self-interference and to make use of voice activation in order to increase the satellite power efficiency. In order to achieve spectral efficiency, Nyquist chip pulse shaping is used with no detection performance impairment. The synchronization problems are solved in the forward link by distributing a master code, whereas carrier forced activation and closed loop control techniques have been adopted in the return link. System performance sensitivity to nonlinear amplification and timing/frequency synchronization errors are analyzed.

  1. Acoustic MIMO communications in a very shallow water channel

    Science.gov (United States)

    Zhou, Yuehai; Cao, Xiuling; Tong, Feng

    2015-12-01

    Underwater acoustic channels pose significant difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple input multiple output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.

  2. Two-phase flow instability and bifurcation analysis of inclined multiple uniformly heated channels - 15107

    International Nuclear Information System (INIS)

    Mishra, A.M.; Paul, S.; Singh, S.; Panday, V.

    2015-01-01

    In this paper the two-phase flow instability analysis of multiple heated channels with various inclinations is studied. In addition, the bifurcation analysis is also carried out to capture the nonlinear dynamics of the system and to identify the regions in parameter space for which subcritical and supercritical bifurcations exist. In order to carry out the analysis, the system is mathematically represented by nonlinear Partial Differential Equation (PDE) for mass, momentum and energy in single as well as two-phase region. Then converted into Ordinary Differential Equation (ODE) using weighted residual method. Also, coupling equation is being used under the assumption that pressure drop in each channel is the same and the total mass flow rate is equal to sum of the individual mass flow rates. The homogeneous equilibrium model is used for the analysis. Stability Map is obtained in terms of phase change number (Npch) and Subcooling Number (Nsb) by solving a set of nonlinear, coupled algebraic equations obtained at equilibrium using Newton Raphson Method. MATLAB Code is verified by comparing it with results obtained by Matcont (Open source software) under same parametric values. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter space to obtain the actual damped and growing oscillations in the channel inlet flow velocity which confirms the stability region across the stability map. Generalized Hopf (GH) points are observed for different inclinations, they are also points for subcritical and supercritical bifurcations. (authors)

  3. Nociceptive TRP Channels: Sensory Detectors and Transducers in Multiple Pain Pathologies

    Directory of Open Access Journals (Sweden)

    Aaron D. Mickle

    2016-11-01

    Full Text Available Specialized receptors belonging to the transient receptor potential (TRP family of ligand-gated ion channels constitute the critical detectors and transducers of pain-causing stimuli. Nociceptive TRP channels are predominantly expressed by distinct subsets of sensory neurons of the peripheral nervous system. Several of these TRP channels are also expressed in neurons of the central nervous system, and in non-neuronal cells that communicate with sensory nerves. Nociceptive TRPs are activated by specific physico-chemical stimuli to provide the excitatory trigger in neurons. In addition, decades of research has identified a large number of immune and neuromodulators as mediators of nociceptive TRP channel activation during injury, inflammatory and other pathological conditions. These findings have led to aggressive targeting of TRP channels for the development of new-generation analgesics. This review summarizes the complex activation and/or modulation of nociceptive TRP channels under pathophysiological conditions, and how these changes underlie acute and chronic pain conditions. Furthermore, development of small-molecule antagonists for several TRP channels as analgesics, and the positive and negative outcomes of these drugs in clinical trials are discussed. Understanding the diverse functional and modulatory properties of nociceptive TRP channels is critical to function-based drug targeting for the development of evidence-based and efficacious new generation analgesics.

  4. Public Television Channels in New York City: The First Six Months.

    Science.gov (United States)

    Calhoun, Richard

    The end results of the first six months of public access cable television (CATV) channels in New York City were in some ways disappointing. Franchise agreements for each of New York's two CATV systems called for two public-access channels to be in operation by July 1, 1971, one year after the date of the franchise awards. The channels were to be…

  5. Accurate Sybil Attack Detection Based on Fine-Grained Physical Channel Information

    Directory of Open Access Journals (Sweden)

    Chundong Wang

    2018-03-01

    Full Text Available With the development of the Internet-of-Things (IoT, wireless network security has more and more attention paid to it. The Sybil attack is one of the famous wireless attacks that can forge wireless devices to steal information from clients. These forged devices may constantly attack target access points to crush the wireless network. In this paper, we propose a novel Sybil attack detection based on Channel State Information (CSI. This detection algorithm can tell whether the static devices are Sybil attackers by combining a self-adaptive multiple signal classification algorithm with the Received Signal Strength Indicator (RSSI. Moreover, we develop a novel tracing scheme to cluster the channel characteristics of mobile devices and detect dynamic attackers that change their channel characteristics in an error area. Finally, we experiment on mobile and commercial WiFi devices. Our algorithm can effectively distinguish the Sybil devices. The experimental results show that our Sybil attack detection system achieves high accuracy for both static and dynamic scenarios. Therefore, combining the phase and similarity of channel features, the multi-dimensional analysis of CSI can effectively detect Sybil nodes and improve the security of wireless networks.

  6. Accurate Sybil Attack Detection Based on Fine-Grained Physical Channel Information.

    Science.gov (United States)

    Wang, Chundong; Zhu, Likun; Gong, Liangyi; Zhao, Zhentang; Yang, Lei; Liu, Zheli; Cheng, Xiaochun

    2018-03-15

    With the development of the Internet-of-Things (IoT), wireless network security has more and more attention paid to it. The Sybil attack is one of the famous wireless attacks that can forge wireless devices to steal information from clients. These forged devices may constantly attack target access points to crush the wireless network. In this paper, we propose a novel Sybil attack detection based on Channel State Information (CSI). This detection algorithm can tell whether the static devices are Sybil attackers by combining a self-adaptive multiple signal classification algorithm with the Received Signal Strength Indicator (RSSI). Moreover, we develop a novel tracing scheme to cluster the channel characteristics of mobile devices and detect dynamic attackers that change their channel characteristics in an error area. Finally, we experiment on mobile and commercial WiFi devices. Our algorithm can effectively distinguish the Sybil devices. The experimental results show that our Sybil attack detection system achieves high accuracy for both static and dynamic scenarios. Therefore, combining the phase and similarity of channel features, the multi-dimensional analysis of CSI can effectively detect Sybil nodes and improve the security of wireless networks.

  7. Groundwater controls on river channel pattern

    Science.gov (United States)

    Bätz, Nico; Colombini, Pauline; Cherubini, Paolo; Lane, Stuart N.

    2017-04-01

    Braided rivers are characterized by high rates of morphological change. However, despite the potential for frequent disturbance, vegetated patches may develop within this system and influence long-term channel dynamics and channel patterns through the "engineering effects" of vegetation. The stabilizing effect of developing vegetation on morphological change has been widely shown by flume experiments and (historic) aerial pictures analysis. Thus, there is a balance between disturbance and stabilization, mediated through vegetation, that may determine the long-term geomorphic and biogeomorphic evolution of the river. It follows that with a change in disturbance frequency relative to the rate of vegetation establishment, a systematic geomorphological shift could occur. Research has addressed how changes in disturbance frequency affect river channel pattern, but has rarely addressed the way in which the stabilizing effects of biogeomorphic succession interact with disturbance frequency to maintain a river in a more dynamic or a less dynamic state. Here, we quantify how the interplay between groundwater access, disturbance frequency and vegetation succession, drive changes in channel pattern. We studied this complex interplay on a transitional gravel-bed river system (braided, wandering, meandering) close to Geneva (Switzerland) - the Allondon River. Dendroecological analysis demonstrate that vegetation growth is driven by groundwater access. Groundwater access conditions the rate of vegetation stabilization at the sub-reach scale and, due to a reduction in flood-related disturbance frequency over the last 50 years, drives a change in channel pattern. Where groundwater is shallower, vegetation encroachment rates were high and as flood-related disturbance decreased, the river has shifted towards a meandering state. Where groundwater was deeper, vegetation growth was limited by water-access and thus vegetation encroachment rates were low. Even though there was a

  8. Timing-Free Blind Multiuser Detection for Multicarrier DS/CDMA Systems with Multiple Antennae

    Directory of Open Access Journals (Sweden)

    Stefano Buzzi

    2004-05-01

    Full Text Available The problem of blind multiuser detection for an asynchronous multicarrier DS-CDMA system employing multiple transmit and receive antennae over a Rayleigh fading channel is considered in this paper. The solutions that we develop require prior knowledge of the spreading code of the user to be decoded only, while no further information either on the user to be decoded or on the other active users is required. Several combining rules for the observables at the output of each receive antenna are proposed and assessed, and the implications of the different options are studied in depth in terms of both detection performance and computational complexity. A closed form expression is also derived for the conditional error probability and a lower bound for the near-far resistance is provided. Results confirm that the proposed blind receivers can cope with both multiple access interference suppression and channel estimation at the price of a limited performance loss as compared to the ideal linear receivers which assume perfect channel state information.

  9. Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system.

    Science.gov (United States)

    Wang, Xu; Hamanaka, Taro; Wada, Naoya; Kitayama, Ken-Ichi

    2005-07-11

    An optical thresholding technique based on super-continuum generation in dispersion flattened fiber is proposed and experimentally demonstrated to enable data-rate detection in optical code division multiple access networks. The proposed scheme exhibits an excellent discrimination between a desired signal and interference signals with features of pulse reshaping, low insertion loss, polarization independency as well as reasonable operation power.

  10. Characterization of encapsulated quantum dots via electron channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deitz, Julia I.; McComb, David W. [Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Carnevale, Santino D. [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); De Graef, Marc [Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Grassman, Tyler J., E-mail: grassman.5@osu.edu [Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2016-08-08

    A method for characterization of encapsulated epitaxial quantum dots (QD) in plan-view geometry using electron channeling contrast imaging (ECCI) is presented. The efficacy of the method, which requires minimal sample preparation, is demonstrated with proof-of-concept data from encapsulated (sub-surface) epitaxial InAs QDs within a GaAs matrix. Imaging of the QDs under multiple diffraction conditions is presented, establishing that ECCI can provide effectively identical visualization capabilities as conventional two-beam transmission electron microscopy. This method facilitates rapid, non-destructive characterization of sub-surface QDs giving immediate access to valuable nanostructural information.

  11. Cascaded holographic polymer reflection grating filters for optical-code-division multiple-access applications.

    Science.gov (United States)

    Kostuk, Raymond K; Maeda, Wendi; Chen, Chia-Hung; Djordjevic, Ivan; Vasic, Bane

    2005-12-10

    We evaluate the use of edge-illuminated holographic Bragg filters formed in phenanthrenequinone-doped poly(methyl methacrylate) for optical-code-division multiple-access (OCDMA) coding and decoding applications. Experimental cascaded Bragg filters are formed to select two different wavelengths with a fixed distance between the gratings and are directly coupled to a fiber-measurement system. The configuration and tolerances of the cascaded gratings are shown to be practical for time-wavelength OCDMA applications.

  12. Cross-layer design for radio resource allocation based on priority scheduling in OFDMA wireless access network

    Directory of Open Access Journals (Sweden)

    Chen Yen-Wen

    2011-01-01

    Full Text Available Abstract The orthogonal frequency-division multiple access (OFDMA system has the advantages of flexible subcarrier allocation and adaptive modulation with respect to channel conditions. However, transmission overhead is required in each frame to broadcast the arrangement of radio resources to all mobile stations within the coverage of the same base station. This overhead greatly affects the utilization of valuable radio resources. In this paper, a cross layer scheme is proposed to reduce the number of traffic bursts at the downlink of an OFDMA wireless access network so that the overhead of the media access protocol (MAP field can be minimized. The proposed scheme considers the priorities and the channel conditions of quality of service (QoS traffic streams to arrange for them to be sent with minimum bursts in a heuristic manner. In addition, the trade-off between the degradation of the modulation level and the reduction of traffic bursts is investigated. Simulation results show that the proposed scheme can effectively reduce the traffic bursts and, therefore, increase resource utilization.

  13. Numerical study of partitions effect on multiplicity of solutions in an infinite channel periodically heated from below

    International Nuclear Information System (INIS)

    Abourida, B.; Hasnaoui, M.

    2005-01-01

    Laminar natural convection in an infinite horizontal channel heated periodically from below and provided with thin adiabatic partitions on its lower wall, is investigated numerically. The effect of these partitions on the multiplicity of solutions and heat transfer characteristics in the computational domain is studied. The parameters of the study are the Rayleigh number (10 2 Ra 4.9 x 10 6 ) and the height of the partitions (0 B = h'/H' 1/2). The results obtained in the case of air (Pr = 0.72) as working fluid show that depending on the governing parameters, the existence of multiple solutions is possible. Important differences in terms of heat transfer are observed between two different solutions

  14. Constructing a two bands optical code-division multiple-access network of bipolar optical access codecs using Walsh-coded liquid crystal modulators

    Science.gov (United States)

    Yen, Chih-Ta; Huang, Jen-Fa; Chih, Ping-En

    2014-08-01

    We propose and experimentally demonstrated the two bands optical code-division multiple-access (OCDMA) network over bipolar Walsh-coded liquid-crystal modulators (LCMs) and driven by green light and red light lasers. Achieving system performance depends on the construction of a decoder that implements a true bipolar correlation using only unipolar signals and intensity detection for each band. We took advantage of the phase delay characteristics of LCMs to construct a prototype optical coder/decoder (codec). Matched and unmatched Walsh signature codes were evaluated to detect correlations among multiuser data in the access network. By using LCMs, a red and green laser light source was spectrally encoded and the summed light dots were complementary decoded. Favorable contrast on auto- and cross-correlations indicates that binary information symbols can be properly recovered using a balanced photodetector.

  15. Revisiting of Channel Access Mechanisms in Mobile Wireless Networks through Exploiting Physical Layer Technologies

    Directory of Open Access Journals (Sweden)

    Junmei Yao

    2018-01-01

    Full Text Available The wireless local area networks (WLANs have been widely deployed with the rapid development of mobile devices and have further been brought into new applications with infrastructure mobility due to the growth of unmanned aerial vehicles (UAVs. However, the WLANs still face persistent challenge on increasing the network throughput to meet the customer’s requirement and fight against the node mobility. Interference is a well-known issue that would degrade the network performance due to the broadcast characteristics of the wireless signals. Moreover, with infrastructure mobility, the interference becomes the key obstacle in pursuing the channel capacity. Legacy interference management mechanism through the channel access control in the MAC layer design of the 802.11 standard has some well-known drawbacks, such as exposed and hidden terminal problems, inefficient rate adaptation, and retransmission schemes, making the efficient interference management an everlasting research topic over the years. Recently, interference management through exploiting physical layer mechanisms has attracted much research interest and has been proven to be a promising way to improve the network throughput, especially under the infrastructure mobility scenarios which provides more indicators for node dynamics. In this paper, we introduce a series of representative physical layer techniques and analyze how they are exploited for interference management to improve the network performance. We also provide some discussions about the research challenges and give potential future research topics in this area.

  16. Multiuser receiver for DS-CDMA signals in multipath channels: an enhanced multisurface method.

    Science.gov (United States)

    Mahendra, Chetan; Puthusserypady, Sadasivan

    2006-11-01

    This paper deals with the problem of multiuser detection in direct-sequence code-division multiple-access (DS-CDMA) systems in multipath environments. The existing multiuser detectors can be divided into two categories: (1) low-complexity poor-performance linear detectors and (2) high-complexity good-performance nonlinear detectors. In particular, in channels where the orthogonality of the code sequences is destroyed by multipath, detectors with linear complexity perform much worse than the nonlinear detectors. In this paper, we propose an enhanced multisurface method (EMSM) for multiuser detection in multipath channels. EMSM is an intermediate piecewise linear detection scheme with a run-time complexity linear in the number of users. Its bit error rate performance is compared with existing linear detectors, a nonlinear radial basis function detector trained by the new support vector learning algorithm, and Verdu's optimal detector. Simulations in multipath channels, for both synchronous and asynchronous cases, indicate that it always outperforms all other linear detectors, performing nearly as well as nonlinear detectors.

  17. Support vector machine multiuser receiver for DS-CDMA signals in multipath channels.

    Science.gov (United States)

    Chen, S; Samingan, A K; Hanzo, L

    2001-01-01

    The problem of constructing an adaptive multiuser detector (MUD) is considered for direct sequence code division multiple access (DS-CDMA) signals transmitted through multipath channels. The emerging learning technique, called support vector machines (SVM), is proposed as a method of obtaining a nonlinear MUD from a relatively small training data block. Computer simulation is used to study this SVM MUD, and the results show that it can closely match the performance of the optimal Bayesian one-shot detector. Comparisons with an adaptive radial basis function (RBF) MUD trained by an unsupervised clustering algorithm are discussed.

  18. Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation.

    Science.gov (United States)

    Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton

    2012-07-30

    A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU).

  19. Aperiodic linear networked control considering variable channel delays: application to robots coordination.

    Science.gov (United States)

    Santos, Carlos; Espinosa, Felipe; Santiso, Enrique; Mazo, Manuel

    2015-05-27

    One of the main challenges in wireless cyber-physical systems is to reduce the load of the communication channel while preserving the control performance. In this way, communication resources are liberated for other applications sharing the channel bandwidth. The main contribution of this work is the design of a remote control solution based on an aperiodic and adaptive triggering mechanism considering the current network delay of multiple robotics units. Working with the actual network delay instead of the maximum one leads to abandoning this conservative assumption, since the triggering condition is fixed depending on the current state of the network. This way, the controller manages the usage of the wireless channel in order to reduce the channel delay and to improve the availability of the communication resources. The communication standard under study is the widespread IEEE 802.11g, whose channel delay is clearly uncertain. First, the adaptive self-triggered control is validated through the TrueTime simulation tool configured for the mentioned WiFi standard. Implementation results applying the aperiodic linear control laws on four P3-DX robots are also included. Both of them demonstrate the advantage of this solution in terms of network accessing and control performance with respect to periodic and non-adaptive self-triggered alternatives.

  20. Aperiodic Linear Networked Control Considering Variable Channel Delays: Application to Robots Coordination

    Directory of Open Access Journals (Sweden)

    Carlos Santos

    2015-05-01

    Full Text Available One of the main challenges in wireless cyber-physical systems is to reduce the load of the communication channel while preserving the control performance. In this way, communication resources are liberated for other applications sharing the channel bandwidth. The main contribution of this work is the design of a remote control solution based on an aperiodic and adaptive triggering mechanism considering the current network delay of multiple robotics units. Working with the actual network delay instead of the maximum one leads to abandoning this conservative assumption, since the triggering condition is fixed depending on the current state of the network. This way, the controller manages the usage of the wireless channel in order to reduce the channel delay and to improve the availability of the communication resources. The communication standard under study is the widespread IEEE 802.11g, whose channel delay is clearly uncertain. First, the adaptive self-triggered control is validated through the TrueTime simulation tool configured for the mentioned WiFi standard. Implementation results applying the aperiodic linear control laws on four P3-DX robots are also included. Both of them demonstrate the advantage of this solution in terms of network accessing and control performance with respect to periodic and non-adaptive self-triggered alternatives.

  1. A Triply Selective MIMO Channel Simulator Using GPUs

    Directory of Open Access Journals (Sweden)

    R. Carrasco-Alvarez

    2018-01-01

    Full Text Available A methodology for implementing a triply selective multiple-input multiple-output (MIMO simulator based on graphics processing units (GPUs is presented. The resulting simulator is based on the implementation of multiple double-selective single-input single-output (SISO channel generators, where the multiple inputs and the multiple received signals have been transformed in order to supply the corresponding space correlation of the channel under consideration. A direct consequence of this approach is the flexibility provided, which allows different propagation statistics to each SISO channel to be specified and thus more complex environments to be replicated. It is shown that under some specific constraints, the statistics of the triply selective MIMO simulator are the same as those reported in the state of art. Simulation results show the computational time improvement achieved, up to 650-fold for an 8 × 8 MIMO channel simulator when compared with sequential implementations. In addition to the computational improvement, the proposed simulator offers flexibility for testing a variety of scenarios in vehicle-to-vehicle (V2V and vehicle-to-infrastructure (V2I systems.

  2. Degree of anisotropy as an automated indicator of rip channels in high resolution bathymetric models

    Science.gov (United States)

    Trimble, S. M.; Houser, C.; Bishop, M. P.

    2017-12-01

    A rip current is a concentrated seaward flow of water that forms in the surf zone of a beach as a result of alongshore variations in wave breaking. Rips can carry swimmers swiftly into deep water, and they are responsible for hundreds of fatal drownings and thousands of rescues worldwide each year. These currents form regularly alongside hard structures like piers and jetties, and can also form along sandy coasts when there is a three dimensional bar morphology. This latter rip type tends to be variable in strength and location, making them arguably the most dangerous to swimmers and most difficult to identify. These currents form in characteristic rip channels in surf zone bathymetry, in which the primary axis of self-similarity is oriented shore-normal. This paper demonstrates a new method for automating identification of such rip channels in bathymetric digital surface models (DSMs) using bathymetric data collected by various remote sensing methods. Degree of anisotropy is used to detect rip channels and distinguishes between sandbars, rip channels, and other beach features. This has implications for coastal geomorphology theory and safety practices. As technological advances increase access and accuracy of topobathy mapping methods in the surf zone, frequent nearshore bathymetric DSMs could be more easily captured and processed, then analyzed with this method to result in localized, automated, and frequent detection of rip channels. This could ultimately reduce rip-related fatalities worldwide (i) in present mitigation, by identifying the present location of rip channels, (ii) in forecasting, by tracking the channel's evolution through multiple DSMs, and (iii) in rip education by improving local lifeguard knowledge of the rip hazard. Although this paper on applies analysis of degree of anisotropy to the identification of rip channels, this parameter can be applied to multiple facets of barrier island morphological analysis.

  3. Ant Colony Optimization Algorithm for Centralized Dynamic Channel Allocation in Multi-Cell OFDMA Systems

    Science.gov (United States)

    Kim, Hyo-Su; Kim, Dong-Hoi

    The dynamic channel allocation (DCA) scheme in multi-cell systems causes serious inter-cell interference (ICI) problem to some existing calls when channels for new calls are allocated. Such a problem can be addressed by advanced centralized DCA design that is able to minimize ICI. Thus, in this paper, a centralized DCA is developed for the downlink of multi-cell orthogonal frequency division multiple access (OFDMA) systems with full spectral reuse. However, in practice, as the search space of channel assignment for centralized DCA scheme in multi-cell systems grows exponentially with the increase of the number of required calls, channels, and cells, it becomes an NP-hard problem and is currently too complicated to find an optimum channel allocation. In this paper, we propose an ant colony optimization (ACO) based DCA scheme using a low-complexity ACO algorithm which is a kind of heuristic algorithm in order to solve the aforementioned problem. Simulation results demonstrate significant performance improvements compared to the existing schemes in terms of the grade of service (GoS) performance and the forced termination probability of existing calls without degrading the system performance of the average throughput.

  4. Efficient traffic grooming with dynamic ONU grouping for multiple-OLT-based access network

    Science.gov (United States)

    Zhang, Shizong; Gu, Rentao; Ji, Yuefeng; Wang, Hongxiang

    2015-12-01

    Fast bandwidth growth urges large-scale high-density access scenarios, where the multiple Passive Optical Networking (PON) system clustered deployment can be adopted as an appropriate solution to fulfill the huge bandwidth demands, especially for a future 5G mobile network. However, the lack of interaction between different optical line terminals (OLTs) results in part of the bandwidth resources waste. To increase the bandwidth efficiency, as well as reduce bandwidth pressure at the edge of a network, we propose a centralized flexible PON architecture based on Time- and Wavelength-Division Multiplexing PON (TWDM PON). It can provide flexible affiliation for optical network units (ONUs) and different OLTs to support access network traffic localization. Specifically, a dynamic ONU grouping algorithm (DGA) is provided to obtain the minimal OLT outbound traffic. Simulation results show that DGA obtains an average 25.23% traffic gain increment under different OLT numbers within a small ONU number situation, and the traffic gain will increase dramatically with the increment of the ONU number. As the DGA can be deployed easily as an application running above the centralized control plane, the proposed architecture can be helpful to improve the network efficiency for future traffic-intensive access scenarios.

  5. On the low SNR capacity of MIMO fading channels with imperfect channel state information

    KAUST Repository

    Benkhelifa, Fatma

    2014-06-01

    The capacity of multiple-input multiple-output (MIMO) Rayleigh fading channels with full knowledge of channel state information (CSI) at both the transmitter and the receiver (CSI-TR) has been shown recently to scale at low signal-to-noise ratio (SNR) essentially as SNR log(1/SNR), independently of the number of transmit and receive antennas. In this paper, we investigate the ergodic capacity of MIMO Rayleigh fading channel with estimated channel state information at the transmitter (CSI-T) and possibly imperfect channel state information at the receiver (CSI-R). Our framework can be seen as a generalization of previous works as it can capture the perfect CSI-TR as a special case when the estimation error variance goes to zero. In this paper, we mainly focus on the low SNR regime, and we show that the capacity scales as (1-α) SNR log(1/SNR), where α is the estimation error variance. This characterization shows the loss of performance due to error estimation over the perfect channel state information at both the transmitter and the receiver. As a by-product of our new analysis, we show that our framework can be also extended to characterize the capacity of MIMO Rician fading channels at low SNR with possibly imperfect CSI-T and CSI-R. © 1972-2012 IEEE.

  6. On the low SNR capacity of MIMO fading channels with imperfect channel state information

    KAUST Repository

    Benkhelifa, Fatma

    2014-05-01

    The capacity of Multiple Input Multiple Output (MIMO) Rayleigh fading channels with full knowledge of channel state information (CSI) at both the transmitter and the receiver (CSI-TR) has been shown recently to scale at low Signal-to-Noise Ratio (SNR) essentially as SNR log(1=SNR), independently of the number of transmit and receive antennas. In this paper, we investigate the ergodic capacity of MIMO Rayleigh fading channel with estimated channel state information at the transmitter (CSI-T) and possibly imperfect channel state information at the receiver (CSI-R). Our framework can be seen as a generalization of previous works as it can capture the perfect CSI-TR as a special case when the estimation error variance goes to zero. In our work, we mainly focus on the low SNR regime and we show that the capacity scales as (1-α) SNR log(1=SNR), where α is the estimation error variance. This characterization shows the loss of performance due to error estimation over the perfect channel state information at both the transmitter and the receiver. As a by-product of our new analysis, we show that our framework can also be extended to characterize the capacity of MIMO Rician fading channels at low SNR with possibly imperfect CSI-T and CSI-R. © 2014 IFIP.

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2012-09-13 to 2012-09-25 (NCEI Accession 0157385)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157385 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2013-09-10 to 2013-10-02 (NCEI Accession 0157366)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157366 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2013-05-08 to 2013-05-28 (NCEI Accession 0157373)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157373 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2013-04-19 to 2013-05-08 (NCEI Accession 0157305)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157305 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2012-09-27 to 2012-10-04 (NCEI Accession 0157267)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157267 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2013-02-03 to 2013-02-13 (NCEI Accession 0157382)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157382 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2012-10-23 to 2012-11-09 (NCEI Accession 0157241)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157241 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  14. Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs

    Directory of Open Access Journals (Sweden)

    Sanggil Yeoum

    2017-05-01

    Full Text Available Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs. While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes.

  15. A 16-channel real-time digital processor for pulse-shape discrimination in multiplicity assay

    International Nuclear Information System (INIS)

    Joyce, Malcolm J.; Aspinall, M.D.; Cave, F.D.; Lavietes, A.

    2013-06-01

    In recent years, real-time neutron/γ-ray pulse-shape discrimination has become feasible for use with scintillator-based detectors that respond extremely quickly, on the order of 25 ns in terms of pulse width, and their application to a variety of nuclear material assays has been reported. For the in-situ analysis of nuclear materials, measurements are often based on the multiplicity assessment of spontaneous fission events. An example of this is the 240 Pu eff assessment stemming from long-established techniques developed for 3 He-based neutron coincidence counters when 3 He was abundant and cheap. However, such measurements when using scintillator detectors can be plagued by low detection efficiencies and low orders of coincidence (often limited to triples) if the number of detectors in use is similarly limited to 3-4 detectors. Conversely, an array of >10 detector modules arranged to optimize efficiency and multiplicity sensitivity, shifts the emphasis in terms of performance requirement to the real-time digital analyzer and, critically, to the scope remaining in the temporal processing window of these systems. In this paper we report on the design, development and commissioning of a bespoke, 16-channel real-time pulse-shape discrimination analyzer specified for the materials assay challenge summarized above. The analyzer incorporates 16 dedicated and independent high-voltage supplies along with 16 independent digital processing channels offering pulse-shape discrimination at a rate of 3 x 10 6 events per second. These functions are configured from a dedicated graphical user interface, and all settings can be adjusted on-the-fly with the analyzer effectively configured one-time-only (where desired) for subsequent plug-and-play connection, for example to a fuel bundle organic scintillation detector array. (authors)

  16. Bit Error Rate Analysis for MC-CDMA Systems in Nakagami- Fading Channels

    Directory of Open Access Journals (Sweden)

    Li Zexian

    2004-01-01

    Full Text Available Multicarrier code division multiple access (MC-CDMA is a promising technique that combines orthogonal frequency division multiplexing (OFDM with CDMA. In this paper, based on an alternative expression for the -function, characteristic function and Gaussian approximation, we present a new practical technique for determining the bit error rate (BER of multiuser MC-CDMA systems in frequency-selective Nakagami- fading channels. The results are applicable to systems employing coherent demodulation with maximal ratio combining (MRC or equal gain combining (EGC. The analysis assumes that different subcarriers experience independent fading channels, which are not necessarily identically distributed. The final average BER is expressed in the form of a single finite range integral and an integrand composed of tabulated functions which can be easily computed numerically. The accuracy of the proposed approach is demonstrated with computer simulations.

  17. Filter multiplexing by use of spatial Code Division Multiple Access approach.

    Science.gov (United States)

    Solomon, Jonathan; Zalevsky, Zeev; Mendlovic, David; Monreal, Javier Garcia

    2003-02-10

    The increasing popularity of optical communication has also brought a demand for a broader bandwidth. The trend, naturally, was to implement methods from traditional electronic communication. One of the most effective traditional methods is Code Division Multiple Access. In this research, we suggest the use of this approach for spatial coding applied to images. The approach is to multiplex several filters into one plane while keeping their mutual orthogonality. It is shown that if the filters are limited by their bandwidth, the output of all the filters can be sampled in the original image resolution and fully recovered through an all-optical setup. The theoretical analysis of such a setup is verified in an experimental demonstration.

  18. Channel coding for underwater acoustic single-carrier CDMA communication system

    Science.gov (United States)

    Liu, Lanjun; Zhang, Yonglei; Zhang, Pengcheng; Zhou, Lin; Niu, Jiong

    2017-01-01

    CDMA is an effective multiple access protocol for underwater acoustic networks, and channel coding can effectively reduce the bit error rate (BER) of the underwater acoustic communication system. For the requirements of underwater acoustic mobile networks based on CDMA, an underwater acoustic single-carrier CDMA communication system (UWA/SCCDMA) based on the direct-sequence spread spectrum is proposed, and its channel coding scheme is studied based on convolution, RA, Turbo and LDPC coding respectively. The implementation steps of the Viterbi algorithm of convolutional coding, BP and minimum sum algorithms of RA coding, Log-MAP and SOVA algorithms of Turbo coding, and sum-product algorithm of LDPC coding are given. An UWA/SCCDMA simulation system based on Matlab is designed. Simulation results show that the UWA/SCCDMA based on RA, Turbo and LDPC coding have good performance such that the communication BER is all less than 10-6 in the underwater acoustic channel with low signal to noise ratio (SNR) from -12 dB to -10dB, which is about 2 orders of magnitude lower than that of the convolutional coding. The system based on Turbo coding with Log-MAP algorithm has the best performance.

  19. Diagonal Eigenvalue Unity (DEU) code for spectral amplitude coding-optical code division multiple access

    Science.gov (United States)

    Ahmed, Hassan Yousif; Nisar, K. S.

    2013-08-01

    Code with ideal in-phase cross correlation (CC) and practical code length to support high number of users are required in spectral amplitude coding-optical code division multiple access (SAC-OCDMA) systems. SAC systems are getting more attractive in the field of OCDMA because of its ability to eliminate the influence of multiple access interference (MAI) and also suppress the effect of phase induced intensity noise (PIIN). In this paper, we have proposed new Diagonal Eigenvalue Unity (DEU) code families with ideal in-phase CC based on Jordan block matrix with simple algebraic ways. Four sets of DEU code families based on the code weight W and number of users N for the combination (even, even), (even, odd), (odd, odd) and (odd, even) are constructed. This combination gives DEU code more flexibility in selection of code weight and number of users. These features made this code a compelling candidate for future optical communication systems. Numerical results show that the proposed DEU system outperforms reported codes. In addition, simulation results taken from a commercial optical systems simulator, Virtual Photonic Instrument (VPI™) shown that, using point to multipoint transmission in passive optical network (PON), DEU has better performance and could support long span with high data rate.

  20. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Kramer Gerhard

    2009-01-01

    Full Text Available Abstract This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom ( are derived for the degraded case with one receiver. Schemes to achieve the for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable is given for the general case.

  1. Estimation of MIMO channel capacity from phase-noise impaired measurements

    DEFF Research Database (Denmark)

    Pedersen, Troels; Yin, Xuefeng; Fleury, Bernard Henri

    2008-01-01

    Due to the significantly reduced cost and effort for system calibration time-division multiplexing (TDM) is a commonly used technique to switch between the transmit and receive antennas in multiple-input multiple-output (MIMO) radio channel sounding. Nonetheless, Baum et al. [1], [2] have shown t...... matrix. It is shown by means of Monte Carlo simulations assuming a measurementbased phase noise model, that the MIMO channel capacity can be estimated accurately for signal to noise ratios up to about 35 dB......Due to the significantly reduced cost and effort for system calibration time-division multiplexing (TDM) is a commonly used technique to switch between the transmit and receive antennas in multiple-input multiple-output (MIMO) radio channel sounding. Nonetheless, Baum et al. [1], [2] have shown...... that phase noise of the transmitter and receiver local oscillators, when it is assumed to be a white Gaussian random process, can cause large errors of the estimated channel capacity of a low-rank MIMO channel when the standard channel matrix estimator is used. Experimental evidence shows that consecutive...

  2. Nonorthogonal multiple access and carrierless amplitude phase modulation for flexible multiuser provisioning in 5G mobile networks

    NARCIS (Netherlands)

    Altabas, J.A.; Rommel, S.; Puerta, R.; Izquierdo, D.; Ignacio Garces, J.; Antonio Lazaro, J.; Vegas Olmos, J.J.; Tafur Monroy, I.

    2017-01-01

    In this paper, a combined nonorthogonal multiple access (NOMA) and multiband carrierless amplitude phase modulation (multiCAP) scheme is proposed for capacity enhancement of and flexible resource provisioning in 5G mobile networks. The proposed scheme is experimentally evaluated over a W-band

  3. Analysis of Traffic Parameter Estimation and Its Impacts on Wireless Channel

    Institute of Scientific and Technical Information of China (English)

    徐玉滨; 沙学军; 强蔚

    2004-01-01

    Wide band or broadband access was paid much attention with the development of radio transmission technique. The wireless access control procedure play an important role in this type of system and efficiency of control algorithm has a great impact on throughput of channel resource. Based on wide band network control model and the characteristics of radio channel, this paper proposed a channel traffic estimation method and then performed a dynamic parameter control procedure and give detail analysis on estimation error and its impact on channel throughput and delay performance. Computation and simulation of system performance show a positive solution on system design.

  4. Multiple Description Coding for Closed Loop Systems over Erasure Channels

    DEFF Research Database (Denmark)

    Østergaard, Jan; Quevedo, Daniel

    2013-01-01

    In this paper, we consider robust source coding in closed-loop systems. In particular, we consider a (possibly) unstable LTI system, which is to be stabilized via a network. The network has random delays and erasures on the data-rate limited (digital) forward channel between the encoder (controller......) and the decoder (plant). The feedback channel from the decoder to the encoder is assumed noiseless. Since the forward channel is digital, we need to employ quantization.We combine two techniques to enhance the reliability of the system. First, in order to guarantee that the system remains stable during packet...... by showing that the system can be cast as a Markov jump linear system....

  5. Switched-based interference reduction scheme for open-access overlaid cellular networks

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh

    2012-06-01

    Femtocells have been proposed to enhance the spatial coverage and system capacity of existing cellular networks. However, this technology may result in significant performance loss due to the increase in co-channel interference, particularly when coordination between access points is infeasible. This paper targets interference management in such overlaid networks. It is assumed that the femtocells employ the open-access strategy to reduce cross-tier interference, and can share resources concurrently. It is also assumed that each end user (EU) can access one channel at a time, and transfer limited feedback. To reduce the effect of co-tier interference in the absence of the desired EU channel state information (CSI) at the serving access point as well as coordination between active access points, a switched scheme based on the interference levels associated with available channels is proposed. Through the analysis, the scheme modes of operation in under-loaded and over-loaded channels are studied, from which the statistics of the resulting interference power are quantified. The impact of the proposed scheme on the received desired power is thoroughly discussed. In addition, the effect of the switching threshold on the achieved performance of the desired EU is investigated. The results clarify that the proposed scheme can improve the performance while reducing the number of examined channels and feedback load. © 2012 IEEE.

  6. Post-Coma Persons with Extensive Multiple Disabilities Use Microswitch Technology to Access Selected Stimulus Events or Operate a Radio Device

    Science.gov (United States)

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Alberti, Gloria; Oliva, Doretta; Megna, Gianfranco; Iliceto, Carla; Damiani, Sabino; Ricci, Irene; Spica, Antonella

    2011-01-01

    The present two studies extended research evidence on the use of microswitch technology by post-coma persons with multiple disabilities. Specifically, Study I examined whether three adults with a diagnosis of minimally conscious state and multiple disabilities could use microswitches as tools to access brief, selected stimulus events. Study II…

  7. Tunable M-channel filter based on Thue-Morse heterostructures containing meta materials

    Directory of Open Access Journals (Sweden)

    H Pashaei Adl

    2015-01-01

    Full Text Available In this paper the tunable M-channel filters based on Thue-Morse heterostructures consisting of single -negative materials has been studied. The results showed that the number of resonance modes inside the zero- gap increases as the number of heterogenous interface, M, increases. The number of resonance modes inside the zero- gap is equal to that of heterogenous interface M, and it can be used as M channels filter. This result provides a feasible method to adjust the channel number of multiple-channel filters. When losses are involved, the results showed that the electric fields of the resonance modes decay largely with the increase of the number of heterogenous interface and damping factors. Besides, the relationship between the quality factor of multiple-channel filters and the number of heterogenous interface M is linear, and the quality factor of multiple-channel filters decreases with the increase of the damping factor. These results provide feasible methods to adjust the quality factor of multiple-channel filters

  8. Low SNR capacity for MIMO Rician and Rayleigh-product fading channels with single co-channel interferer and noise

    KAUST Repository

    Zhong, Caijun

    2010-09-01

    This paper studies the ergodic capacity of multiple-input multiple-output (MIMO) systems with a single co-channel interferer in the low signal-to-noise-ratio (SNR) regime. Two MIMO models namely Rician and Rayleigh-product channels are investigated. Exact analytical expressions for the minimum energy per information bit, {Eb/N0min, and wideband slope, S0, are derived for both channels. Our results show that the minimum energy per information bit is the same for both channels while their wideband slopes differ significantly. Further, the impact of the numbers of transmit and receive antennas, the Rician K factor, the channel mean matrix and the interference-to-noise-ratio (INR) on the capacity, is addressed. Results indicate that interference degrades the capacity by increasing the required minimum energy per information bit and reducing the wideband slope. Simulation results validate our analytical results. © 2010 IEEE.

  9. Multichannel analyzer using the direct-memory-access channel in a personal computer; Mnogokanal`nyj analizator v personal`nom komp`yutere, ispol`zuyushchij kanal pryamogo dostupa k pamyati

    Energy Technology Data Exchange (ETDEWEB)

    Georgiev, G; Vankov, I; Dimitrov, L [Incn. Yadernykh Issledovanij i Yadernoj Ehnergetiki Bolgarskoj Akademii Nuk, Sofiya (Bulgaria); Peev, I [Firma TOIVEL, Sofiya (Bulgaria)

    1996-12-31

    Paper describes a multichannel analyzer of the spectrometry data developed on the basis of a personal computer memory and a controlled channel of direct access. Analyzer software covering a driver and program of spectrum display control is studied. 2 figs.

  10. 最小化长传播时延对无线网络多址接入协议的影响(英文)

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A multiple access protocol is proposed to greatly improve multiple access performance of wireless networks with long propagation delay. All the nodes with packets to send can make rapid successful reservation in access reservation mini-slots, which is adaptively adjusted according to current traffic load and idle channel resources. A Central Control Node (CCN) coordinates channel reservation and allocates on-demand channel resources to the successfully accessed nodes on two channels. Each node can employ on...

  11. Multiple Intimate Partner Violence Experiences: Knowledge, Access, Utilization and Barriers to Utilization of Resources by Women of the African Diaspora.

    Science.gov (United States)

    Sabri, Bushra; Huerta, Julia; Alexander, Kamila A; St Vil, Noelle M; Campbell, Jacquelyn C; Callwood, Gloria B

    2015-11-01

    This study examined knowledge, access, utilization, and barriers to use of resources among Black women exposed to multiple types of intimate partner violence in Baltimore, Maryland and the U.S. Virgin Islands (USVI). We analyzed quantitative survey data collected by 163 women recruited from primary care, prenatal or family planning clinics in Baltimore and the USVI. In addition we analyzed qualitative data from in-depth interviews with 11 women. Quantitative data were analyzed using descriptive statistics and qualitative data were analyzed using thematic analysis. A substantial proportion of Black women with multiple types of violence experiences lacked knowledge of, did not have access to, and did not use resources. Barriers to resource use were identified at the individual, relationship, and community levels. There is need for programs to develop awareness, promote access and utilization of resources, and eliminate barriers to resource use among abused Black women.

  12. Performance analysis of spectral-phase-encoded optical code-division multiple-access system regarding the incorrectly decoded signal as a nonstationary random process

    Science.gov (United States)

    Yan, Meng; Yao, Minyu; Zhang, Hongming

    2005-11-01

    The performance of a spectral-phase-encoded (SPE) optical code-division multiple-access (OCDMA) system is analyzed. Regarding the incorrectly decoded signal (IDS) as a nonstationary random process, we derive a novel probability distribution for it. The probability distribution of the IDS is considered a chi-squared distribution with degrees of freedom r=1, which is more reasonable and accurate than in previous work. The bit error rate (BER) of an SPE OCDMA system under multiple-access interference is evaluated. Numerical results show that the system can sustain very low BER even when there are multiple simultaneous users, and as the code length becomes longer or the initial pulse becomes shorter, the system performs better.

  13. Allocation and management issues in multiple-transaction open access transmission networks

    Science.gov (United States)

    Tao, Shu

    This thesis focuses on some key issues related to allocation and management by the independent grid operator (IGO) of unbundled services in multiple-transaction open access transmission networks. The three unbundled services addressed in the thesis are transmission real power losses, reactive power support requirements from generation sources, and transmission congestion management. We develop the general framework that explicitly represents multiple transactions undertaken simultaneously in the transmission grid. This framework serves as the basis for formulating various problems treated in the thesis. We use this comprehensive framework to develop a physical-flow-based mechanism to allocate the total transmission losses to each transaction using the system. An important property of the allocation scheme is its capability to effectively deal with counter flows that result in the presence of specific transactions. Using the loss allocation results as the basis, we construct the equivalent loss compensation concept and apply it to develop flexible and effective procedures for compensating losses in multiple-transaction networks. We present a new physical-flow-based mechanism for allocating the reactive power support requirements provided by generators in multiple-transaction networks. The allocatable reactive support requirements are formulated as the sum of two specific components---the voltage magnitude variation component and the voltage angle variation component. The formulation utilizes the multiple-transaction framework and makes use of certain simplifying approximations. The formulation leads to a natural allocation as a function of the amount of each transaction. The physical interpretation of each allocation as a sensitivity of the reactive output of a generator is discussed. We propose a congestion management allocation scheme for multiple-transaction networks. The proposed scheme determines the allocation of congestion among the transactions on a physical

  14. Course on Ionic Channels

    CERN Document Server

    1986-01-01

    This book is based on a series of lectures for a course on ionic channels held in Santiago, Chile, on November 17-20, 1984. It is intended as a tutorial guide on the properties, function, modulation, and reconstitution of ionic channels, and it should be accessible to graduate students taking their first steps in this field. In the presentation there has been a deliberate emphasis on the spe­ cific methodologies used toward the understanding of the workings and function of channels. Thus, in the first section, we learn to "read" single­ channel records: how to interpret them in the theoretical frame of kinetic models, which information can be extracted from gating currents in re­ lation to the closing and opening processes, and how ion transport through an open channel can be explained in terms of fluctuating energy barriers. The importance of assessing unequivocally the origin and purity of mem­ brane preparations and the use of membrane vesicles and optical tech­ niques in the stUGY of ionic channels a...

  15. Computerized microfluidic cell culture using elastomeric channels and Braille displays.

    Science.gov (United States)

    Gu, Wei; Zhu, Xiaoyue; Futai, Nobuyuki; Cho, Brenda S; Takayama, Shuichi

    2004-11-09

    Computer-controlled microfluidics would advance many types of cellular assays and microscale tissue engineering studies wherever spatiotemporal changes in fluidics need to be defined. However, this goal has been elusive because of the limited availability of integrated, programmable pumps and valves. This paper demonstrates how a refreshable Braille display, with its grid of 320 vertically moving pins, can power integrated pumps and valves through localized deformations of channel networks within elastic silicone rubber. The resulting computerized fluidic control is able to switch among: (i) rapid and efficient mixing between streams, (ii) multiple laminar flows with minimal mixing between streams, and (iii) segmented plug-flow of immiscible fluids within the same channel architecture. The same control method is used to precisely seed cells, compartmentalize them into distinct subpopulations through channel reconfiguration, and culture each cell subpopulation for up to 3 weeks under perfusion. These reliable microscale cell cultures showed gradients of cellular behavior from C2C12 myoblasts along channel lengths, as well as differences in cell density of undifferentiated myoblasts and differentiation patterns, both programmable through different flow rates of serum-containing media. This technology will allow future microscale tissue or cell studies to be more accessible, especially for high-throughput, complex, and long-term experiments. The microfluidic actuation method described is versatile and computer programmable, yet simple, well packaged, and portable enough for personal use.

  16. The Over-Barrier Resonant States and Multi-Channel Scattering in Multiple Quantum Wells

    Directory of Open Access Journals (Sweden)

    A Polupanov

    2016-09-01

    Full Text Available We demonstrate an explicit numerical method for accurate calculation of the scattering matrix and its poles, and apply this method to describe the multi-channel scattering in the multiple quantum-wells structures. The S-matrix is continued analytically to the unphysical region of complex energy values. Results of calculations show that there exist one or more S-matrix poles, corresponding to the over-barrier resonant states critical for the effect of the absolute reflection of holes in the energy range where only the heavy ones may propagate over barriers in a structure. Light- and heavy-hole states are described by the Luttinger Hamiltonian matrix. In contrast to the single quantum-well case, at some parameters of a multiple quantum-wells structure the number of S-matrix poles may exceed that of the absolute reflection peaks, and at different values of parameters the absolute reflection peak corresponds to different resonant states. The imaginary parts of the S-matrix poles and hence the lifetimes of resonant states as well as the widths of resonant peaks of absolute reflection depend drastically on the quantum-well potential depth. In the case of shallow quantum wells there is in fact a long-living over-barrier resonant hole state.

  17. Mode Switching for the Multi-Antenna Broadcast Channel Based on Delay and Channel Quantization

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2009-01-01

    Full Text Available Imperfect channel state information degrades the performance of multiple-input multiple-output (MIMO communications; its effects on single-user (SU and multiuser (MU MIMO transmissions are quite different. In particular, MU-MIMO suffers from residual interuser interference due to imperfect channel state information while SU-MIMO only suffers from a power loss. This paper compares the throughput loss of both SU and MU-MIMO in the broadcast channel due to delay and channel quantization. Accurate closed-form approximations are derived for achievable rates for both SU and MU-MIMO. It is shown that SU-MIMO is relatively robust to delayed and quantized channel information, while MU-MIMO with zero-forcing precoding loses its spatial multiplexing gain with a fixed delay or fixed codebook size. Based on derived achievable rates, a mode switching algorithm is proposed, which switches between SU and MU-MIMO modes to improve the spectral efficiency based on average signal-to-noise ratio (SNR, normalized Doppler frequency, and the channel quantization codebook size. The operating regions for SU and MU modes with different delays and codebook sizes are determined, and they can be used to select the preferred mode. It is shown that the MU mode is active only when the normalized Doppler frequency is very small, and the codebook size is large.

  18. Mitigation of Control Channel Jamming via Combinatorial Key Distribution

    Science.gov (United States)

    Falahati, Abolfazl; Azarafrooz, Mahdi

    The problem of countering control channel jamming against internal adversaries in wireless ad hoc networks is addressed. Using combinatorial key distribution, a new method to secure the control channel access is introduced. This method, utilizes the established keys in the key establishment phase to hide the location of control channels without the need for a secure BS. This is in obtained by combination of a collision free one-way function and a combinatorial key establishment method. The proposed scheme can be considered as a special case of the ALOHA random access schemes which uses the common established keys as its seeds to generate the pattern of transmission.

  19. Low-overhead interference mitigation scheme for collaborative channel assignment in overloaded multiantenna femtocells

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh

    2012-09-01

    This paper proposes a collaborative-based scheme for a transmit antenna channel assignment in overloaded multiantenna femtocells, with the aim of reducing the overhead load. It is assumed that multiple femtocell access points (FAPs) are deployed to sequentially allocate the available resources to scheduled users while reducing the interference experienced by each active user. The FAPs operate concurrently and each of them is allocated an orthogonal channel and employs a transmit array of arbitrary size. The suitable FAP and its associated transmit channel are then identified based on the noncoherently predicted interference power levels on available channels when feedback links are capacity limited. The effect of possible FAP failure or infeasibility to collaborate is characterized for different operating conditions. The applicability of the proposed scheme for specific cases, such as the use of directional antennas in each FAP or shared channels among different FAPs, is also discussed. For arbitrary statistical models of interference power levels on different channels, the average numbers of collaboration requests and examined transmit antenna channels are quantified. Moreover, the statistics of the resulting interference power are derived, which are then used to study various system performance measures. The effect of the interference threshold on the aforementioned measures for processing load and achieved performance is investigated. Numerical and simulations results are presented to support the analytical development and to clarify the tradeoff between the achieved performance enhancement using the proposed scheme and the required processing load for different operating scenarios. © 1967-2012 IEEE.

  20. Low-overhead interference mitigation scheme for collaborative channel assignment in overloaded multiantenna femtocells

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh; Alouini, Mohamed-Slim

    2012-01-01

    This paper proposes a collaborative-based scheme for a transmit antenna channel assignment in overloaded multiantenna femtocells, with the aim of reducing the overhead load. It is assumed that multiple femtocell access points (FAPs) are deployed to sequentially allocate the available resources to scheduled users while reducing the interference experienced by each active user. The FAPs operate concurrently and each of them is allocated an orthogonal channel and employs a transmit array of arbitrary size. The suitable FAP and its associated transmit channel are then identified based on the noncoherently predicted interference power levels on available channels when feedback links are capacity limited. The effect of possible FAP failure or infeasibility to collaborate is characterized for different operating conditions. The applicability of the proposed scheme for specific cases, such as the use of directional antennas in each FAP or shared channels among different FAPs, is also discussed. For arbitrary statistical models of interference power levels on different channels, the average numbers of collaboration requests and examined transmit antenna channels are quantified. Moreover, the statistics of the resulting interference power are derived, which are then used to study various system performance measures. The effect of the interference threshold on the aforementioned measures for processing load and achieved performance is investigated. Numerical and simulations results are presented to support the analytical development and to clarify the tradeoff between the achieved performance enhancement using the proposed scheme and the required processing load for different operating scenarios. © 1967-2012 IEEE.

  1. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Shlomo Shamai (Shitz

    2009-01-01

    Full Text Available This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom (s.d.o.f. are derived for the degraded case with one receiver. Schemes to achieve the s.d.o.f. for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable s.d.o.f. is given for the general case.

  2. The Diversity-Multiplexing Tradeoff of Secret-Key Agreement over Multiple-Antenna Channels

    KAUST Repository

    Zorgui, Marwen; Rezki, Zouheir; Alomair, Basel; Alouini, Mohamed-Slim

    2015-01-01

    We study the problem of secret-key agreement between two legitimate parties, Alice and Bob, in presence an of eavesdropper Eve. There is a public channel with unlimited capacity that is available to the legitimate parties and is also observed by Eve. Our focus is on Rayleigh fading quasi-static channels. The legitimate receiver and the eavesdropper are assumed to have perfect channel knowledge of their channels. We study the system in the high-power regime. First, we define the secret-key diversity gain and the secret-key multiplexing gain. Second, we establish the secret-key diversity multiplexing tradeoff (DMT) under no channel state information (CSI) at the transmitter (CSI-T). The eavesdropper is shown to “steal” only transmit antennas. We show that, likewise the DMT without secrecy constraint, the secret-key DMT is the same either with or without full channel state information at the transmitter. This insensitivity of secret-key DMT toward CSI-T features a fundamental difference between secret-key agreement and the wiretap channel, in which secret DMT depends heavily on CSI-T. Finally, we present several secret-key DMT-achieving schemes in case of full CSI-T. We argue that secret DMT-achieving schemes are also key DMT-achieving. Moreover, we show formally that artificial noise (AN), likewise zero-forcing (ZF), is DMT-achieving. We also show that the public feedback channel improves the outage performance without having any effect on the DMT.

  3. The Diversity-Multiplexing Tradeoff of Secret-Key Agreement over Multiple-Antenna Channels

    KAUST Repository

    Zorgui, Marwen

    2015-10-26

    We study the problem of secret-key agreement between two legitimate parties, Alice and Bob, in presence an of eavesdropper Eve. There is a public channel with unlimited capacity that is available to the legitimate parties and is also observed by Eve. Our focus is on Rayleigh fading quasi-static channels. The legitimate receiver and the eavesdropper are assumed to have perfect channel knowledge of their channels. We study the system in the high-power regime. First, we define the secret-key diversity gain and the secret-key multiplexing gain. Second, we establish the secret-key diversity multiplexing tradeoff (DMT) under no channel state information (CSI) at the transmitter (CSI-T). The eavesdropper is shown to “steal” only transmit antennas. We show that, likewise the DMT without secrecy constraint, the secret-key DMT is the same either with or without full channel state information at the transmitter. This insensitivity of secret-key DMT toward CSI-T features a fundamental difference between secret-key agreement and the wiretap channel, in which secret DMT depends heavily on CSI-T. Finally, we present several secret-key DMT-achieving schemes in case of full CSI-T. We argue that secret DMT-achieving schemes are also key DMT-achieving. Moreover, we show formally that artificial noise (AN), likewise zero-forcing (ZF), is DMT-achieving. We also show that the public feedback channel improves the outage performance without having any effect on the DMT.

  4. WATER TEMPERATURE and other data from MULTIPLE SHIPS from 1983-01-01 to 1992-12-31 (NODC Accession 9400224)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains data collected as part of Shipboard Environmental data Acquisition System (SEAS) II program. The cruises were conducted using multiple ships....

  5. Hydraulic Profiling of a Parallel Channel Type Reactor Core

    International Nuclear Information System (INIS)

    Seo, Kyong-Won; Hwang, Dae-Hyun; Lee, Chung-Chan

    2006-01-01

    An advanced reactor core which consisted of closed multiple parallel channels was optimized to maximize the thermal margin of the core. The closed multiple parallel channel configurations have different characteristics to the open channels of conventional PWRs. The channels, usually assemblies, are isolated hydraulically from each other and there is no cross flow between channels. The distribution of inlet flow rate between channels is a very important design parameter in the core because distribution of inlet flow is directly proportional to a margin for a certain hydraulic parameter. The thermal hydraulic parameter may be the boiling margin, maximum fuel temperature, and critical heat flux. The inlet flow distribution of the core was optimized for the boiling margins by grouping the inlet orifices by several hydraulic regions. The procedure is called a hydraulic profiling

  6. L-Type Calcium Channels Modulation by Estradiol.

    Science.gov (United States)

    Vega-Vela, Nelson E; Osorio, Daniel; Avila-Rodriguez, Marco; Gonzalez, Janneth; García-Segura, Luis Miguel; Echeverria, Valentina; Barreto, George E

    2017-09-01

    Voltage-gated calcium channels are key regulators of brain function, and their dysfunction has been associated with multiple conditions and neurodegenerative diseases because they couple membrane depolarization to the influx of calcium-and other processes such as gene expression-in excitable cells. L-type calcium channels, one of the three major classes and probably the best characterized of the voltage-gated calcium channels, act as an essential calcium binding proteins with a significant biological relevance. It is well known that estradiol can activate rapidly brain signaling pathways and modulatory/regulatory proteins through non-genomic (or non-transcriptional) mechanisms, which lead to an increase of intracellular calcium that activate multiple kinases and signaling cascades, in the same way as L-type calcium channels responses. In this context, estrogens-L-type calcium channels signaling raises intracellular calcium levels and activates the same signaling cascades in the brain probably through estrogen receptor-independent modulatory mechanisms. In this review, we discuss the available literature on this area, which seems to suggest that estradiol exerts dual effects/modulation on these channels in a concentration-dependent manner (as a potentiator of these channels in pM concentrations and as an inhibitor in nM concentrations). Indeed, estradiol may orchestrate multiple neurotrophic responses, which open a new avenue for the development of novel estrogen-based therapies to alleviate different neuropathologies. We also highlight that it is essential to determine through computational and/or experimental approaches the interaction between estradiol and L-type calcium channels to assist these developments, which is an interesting area of research that deserves a closer look in future biomedical research.

  7. Multiagent Reinforcement Learning Dynamic Spectrum Access in Cognitive Radios

    Directory of Open Access Journals (Sweden)

    Wu Chun

    2014-02-01

    Full Text Available A multiuser independent Q-learning method which does not need information interaction is proposed for multiuser dynamic spectrum accessing in cognitive radios. The method adopts self-learning paradigm, in which each CR user performs reinforcement learning only through observing individual performance reward without spending communication resource on information interaction with others. The reward is defined suitably to present channel quality and channel conflict status. The learning strategy of sufficient exploration, preference for good channel, and punishment for channel conflict is designed to implement multiuser dynamic spectrum accessing. In two users two channels scenario, a fast learning algorithm is proposed and the convergence to maximal whole reward is proved. The simulation results show that, with the proposed method, the CR system can obtain convergence of Nash equilibrium with large probability and achieve great performance of whole reward.

  8. Propagation channel characterization, parameter estimation, and modeling for wireless communications

    CERN Document Server

    Yin, Xuefeng

    2016-01-01

    Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are ...

  9. Sniffer Channel Selection for Monitoring Wireless LANs

    Science.gov (United States)

    Song, Yuan; Chen, Xian; Kim, Yoo-Ah; Wang, Bing; Chen, Guanling

    Wireless sniffers are often used to monitor APs in wireless LANs (WLANs) for network management, fault detection, traffic characterization, and optimizing deployment. It is cost effective to deploy single-radio sniffers that can monitor multiple nearby APs. However, since nearby APs often operate on orthogonal channels, a sniffer needs to switch among multiple channels to monitor its nearby APs. In this paper, we formulate and solve two optimization problems on sniffer channel selection. Both problems require that each AP be monitored by at least one sniffer. In addition, one optimization problem requires minimizing the maximum number of channels that a sniffer listens to, and the other requires minimizing the total number of channels that the sniffers listen to. We propose a novel LP-relaxation based algorithm, and two simple greedy heuristics for the above two optimization problems. Through simulation, we demonstrate that all the algorithms are effective in achieving their optimization goals, and the LP-based algorithm outperforms the greedy heuristics.

  10. Spatial Modulation in the Underwater Acoustic Communication Channel

    National Research Council Canada - National Science Library

    Kilfoyle, Daniel

    2000-01-01

    .... The technique, termed spatial modulation, seeks to control the spatial distribution of signal energy such that multiple parallel communication channels are supported by the single, physical ocean channel...

  11. Authentication over Noisy Channels

    OpenAIRE

    Lai, Lifeng; Gamal, Hesham El; Poor, H. Vincent

    2008-01-01

    In this work, message authentication over noisy channels is studied. The model developed in this paper is the authentication theory counterpart of Wyner's wiretap channel model. Two types of opponent attacks, namely impersonation attacks and substitution attacks, are investigated for both single message and multiple message authentication scenarios. For each scenario, information theoretic lower and upper bounds on the opponent's success probability are derived. Remarkably, in both scenarios,...

  12. Unsupervised Idealization of Ion Channel Recordings by Minimum Description Length

    DEFF Research Database (Denmark)

    Gnanasambandam, Radhakrishnan; Nielsen, Morten S; Nicolai, Christopher

    2017-01-01

    and characterize an idealization algorithm based on Rissanen's Minimum Description Length (MDL) Principle. This method uses minimal assumptions and idealizes ion channel recordings without requiring a detailed user input or a priori assumptions about channel conductance and kinetics. Furthermore, we demonstrate...... that correlation analysis of conductance steps can resolve properties of single ion channels in recordings contaminated by signals from multiple channels. We first validated our methods on simulated data defined with a range of different signal-to-noise levels, and then showed that our algorithm can recover...... channel currents and their substates from recordings with multiple channels, even under conditions of high noise. We then tested the MDL algorithm on real experimental data from human PIEZO1 channels and found that our method revealed the presence of substates with alternate conductances....

  13. Mitigation of Beat Noise in Time Wavelength Optical Code-Division Multiple-Access Systems

    Science.gov (United States)

    Bazan, Taher M.; Harle, David; Andonovic, Ivan

    2006-11-01

    This paper presents an analysis of two methods for enhancing the performance of two-dimensional time wavelength Optical code-division multiple-access systems by mitigating the effects of beat noise. The first methodology makes use of an optical hard limiter (OHL) in the receiver prior to the optical correlator; a general formula for the error probability as a function of crosstalk level for systems adopting OHLs is given, and the implications of the OHL's nonideal transfer characteristics are then examined. The second approach adopts pulse position modulation, and system performance is estimated and compared to that associated with on off keying.

  14. Electronic trade effect of marketing channels

    OpenAIRE

    Lovreta Stipe; Stojković Dragan

    2009-01-01

    E-commerce has caused many significant changes in marketing channels. Consumers had obtained multiple benefits from e-commerce. In addition, it has increased the level of competition in marketing channels. However, the focus of this paper is multichannel strategy and integration of physical (store) and electronic marketing channels. E-commerce has induced dynamic development of multichannel strategy. This strategy has evolved as a consequence of multichannel consumer orientation. In developed...

  15. A discriminator with a current-sum multiplicity output for the PHENIX multiplicity vertex detector

    International Nuclear Information System (INIS)

    Smith, R.S.; Kennedy, E.J.; Jackson, R.G.

    1996-01-01

    A current output multiplicity discriminator for use in the front-end electronics (FEE) of the Multiplicity Vertex Detector (MVD) for the PHENIX detector at RHIC has been fabricated in the a 1.2-micro CMOS, n-well process. The discriminator is capable of triggering on input signals ranging from 0.25 MIP to 5 MIP. Frequency response of the discriminator is such that the circuit is capable of generating an output for every bunch crossing (105 ns) of the RHIC collider. Channel-to-channel threshold matching was adjustable to ± 4 mV. One channel of multiplicity discriminator occupied an area of 85 micro x 630 micro and consumed 515 microW from a single 5-V supply. Details of the design and results from prototype device testing are presented

  16. Six-channel adaptive fibre-optic interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Romashko, R V; Bezruk, M N; Kamshilin, A A; Kulchin, Yurii N

    2012-06-30

    We have proposed and analysed a scheme for the multiplexing of orthogonal dynamic holograms in photorefractive crystals which ensures almost zero cross talk between the holographic channels upon phase demodulation. A six-channel adaptive fibre-optic interferometer was built, and the detection limit for small phase fluctuations in the channels of the interferometer was determined to be 2.1 Multiplication-Sign 10{sup -8} rad W{sup 1/2} Hz{sup -1/2}. The channel multiplexing capacity of the interferometer was estimated. The formation of 70 channels such that their optical fields completely overlap in the crystal reduces the relative detection limit in the working channel by just 10 %. We found conditions under which the maximum cross talk between the channels was within the intrinsic noise level in the channels (-47 dB).

  17. On the secrecy capacity of the MISO wiretap channel under imperfect channel estimation

    KAUST Repository

    Rezki, Zouheir; Alomair, Basel; Alouini, Mohamed-Slim

    2014-01-01

    We consider a wiretap channel consisting of a source with multiple antennas, a legitimate receiver and an eavesdropper with a single antenna each. The channels between the source and the receivers undergo fast fading. We assume that the transmitter, in addition to the statistics of both channels, is only aware of a noisy version of the CSI to the legitimate receiver referred to as main channel. The legitimate receiver is aware of both its instantaneous channel gain and the transmitter's estimate of the main channel. On the other hand, the eavesdropper's receiver, in addition to its instantaneous channel realization, is aware of the actual main CSI and the transmitter's estimate as well. While the capacity of this channel is still open even with perfect CSI at the transmitter, we provide in this paper upper and lower bounds on the secrecy capacity. The upper bound is tighter than the one corresponding to perfect main CSI and the gap between the two upper bounds is characterized in function of the channel estimation error variance, at high-SNR. Furthermore, we show that our upper and lower bounds coincide in the case of no main CSI providing a trivial secrecy capacity.

  18. Temperature, salinity, nutrients, and meteorological data collected from 1926 to 1991 aboard multiple platforms in Caspian Sea (NODC Accession 0072200)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0072200 contains temperature, salinity, nutrients, and meteorological data collected from 1926 to 1991 aboard multiple platforms in Caspian Sea.

  19. An Adaptive Time-Spread Multiple-Access Policy for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Konstantinos Oikonomou

    2007-05-01

    Full Text Available Sensor networks require a simple and efficient medium access control policy achieving high system throughput with no or limited control overhead in order to increase the network lifetime by minimizing the energy consumed during transmission attempts. Time-spread multiple-access (TSMA policies that have been proposed for ad hoc network environments, can also be employed in sensor networks, since no control overhead is introduced. However, they do not take advantage of any cross-layer information in order to exploit the idiosyncrasies of the particular sensor network environment such as the presence of typically static nodes and a common destination for the forwarded data. An adaptive probabilistic TSMA-based policy, that is proposed and analyzed in this paper, exploits these idiosyncrasies and achieves higher system throughput than the existing TSMA-based policies without any need for extra control overhead. As it is analytically shown in this paper, the proposed policy always outperforms the existing TSMA-based policies, if certain parameter values are properly set; the analysis also provides for these proper values. It is also shown that the proposed policy is characterized by a certain convergence period and that high system throughput is achieved for long convergence periods. The claims and expectations of the provided analysis are supported by simulation results presented in this paper.

  20. White matter damage impairs access to consciousness in multiple sclerosis.

    Science.gov (United States)

    Reuter, Françoise; Del Cul, Antoine; Malikova, Irina; Naccache, Lionel; Confort-Gouny, Sylviane; Cohen, Laurent; Cherif, André Ali; Cozzone, Patrick J; Pelletier, Jean; Ranjeva, Jean-Philippe; Dehaene, Stanislas; Audoin, Bertrand

    2009-01-15

    Global neuronal workspace theory predicts that damage to long-distance white matter (WM) tracts should impair access to consciousness during the perception of brief stimuli. To address this issue, we studied visual backward masking in 18 patients at the very first clinical stage of multiple sclerosis (MS), a neurological disease characterized by extensive WM damage, and in 18 matched healthy subjects. In our masking paradigm, the visibility of a digit stimulus increases non-linearly as a function of the interval duration between this target and a subsequent mask. In order to characterize quantitatively, for each subject, the transition between non-conscious and conscious perception of the stimulus, we used non-linear regression to fit a sigmoid curve to objective performance and subjective visibility reports as a function of target-mask delay. The delay corresponding to the inflexion point of the sigmoid, where visibility suddenly increases, was termed the "non-linear transition threshold" and used as a summary measure of masking efficiency. Objective and subjective non-linear transition thresholds were highly correlated across subjects in both groups, and were higher in patients compared to controls. In patients, variations in the non-linear transition threshold were inversely correlated to the Magnetization transfer ratio (MTR) values inside the right dorsolateral prefrontal WM, the right occipito-frontal fasciculus and the left cerebellum. This study provides clinical evidence of a relationship between impairments of conscious access and integrity of large WM bundles, particularly involving prefrontal cortex, as predicted by global neuronal workspace theory.

  1. Training sequence design for MIMO channels : An application-oriented approach

    NARCIS (Netherlands)

    Katselis, D.; Rojas, C.R.; Bengtsson, M.; Bjornson, E.; Bombois, X.; Shariati, N.; Jansson, M.; Hjalmarsson, H.

    2013-01-01

    In this paper, the problem of training optimization for estimating a multiple-input multiple-output (MIMO) flat fading channel in the presence of spatially and temporally correlated Gaussian noise is studied in an application-oriented setup. So far, the problem of MIMO channel estimation has mostly

  2. On the Capacity of the 2-User IM-DD Optical Broadcast Channel

    KAUST Repository

    Chaaban, Anas

    2016-02-26

    The capacity of the intensity-modulation directdetection (IM-DD) optical broadcast channel (OBC) is investigated. The OBC is modeled as a Gaussian channel with input-independent noise and both average and peak input constraints. Outer and inner bounds on the capacity region are derived. The outer bounds are based on Bergmans\\' approach. The inner bounds are based on superposition coding with either truncated-Gaussian or discrete input distributions. By comparing the bounds, we observe that the truncated- Gaussian distribution is nearly optimal at high signal-to-noise ratio (SNR). At low SNR on the other hand, on-off keying (OOK) combined with time-division multiple-access (TDMA) is optimal; it achieves any point on the boundary of the developed outer bound. This is interesting in practice since both OOK and TDMA have low complexity. At moderate SNR (typically [0; 8] dB), a discrete input distribution with a small alphabet size achieves a fairly good performance. © 2015 IEEE.

  3. Mathematic Model of Digital Control System with PID Regulator and Regular Step of Quantization with Information Transfer via the Channel of Plural Access

    Science.gov (United States)

    Abramov, G. V.; Emeljanov, A. E.; Ivashin, A. L.

    Theoretical bases for modeling a digital control system with information transfer via the channel of plural access and a regular quantization cycle are submitted. The theory of dynamic systems with random changes of the structure including elements of the Markov random processes theory is used for a mathematical description of a network control system. The characteristics of similar control systems are received. Experimental research of the given control systems is carried out.

  4. A Novel Medium Access Control for Ad hoc Networks Based on OFDM System

    Institute of Scientific and Technical Information of China (English)

    YU Yi-fan; YIN Chang-chuan; YUE Guang-xin

    2005-01-01

    Recently, hosts of Medium Access Control (MAC) protocols for Ad hoc radio networks have been proposed to solve the hidden terminal problem and exposed terminal problem. However most of them take into no account the interactions between physical (PHY) system and MAC protocol. Therefore, the current MAC protocols are either inefficient in the networks with mobile nodes and fading channel or difficult in hardware implementation. In this paper, we present a novel media access control for Ad hoc networks that integrates a media access control protocol termed as Dual Busy Tone Multiple Access (DBTMA) into Orthogonal Frequency Division Multiplexing (OFDM) system proposed in IEEE 802.11a standard. The analysis presented in the paper indicates that the proposed MAC scheme achieves performance improvement over IEEE 802.11 protocol about 25%~80% especially in the environment with high mobility and deep fading. The complexity of the proposed scheme is also lower than other implementation of similar busy tone solution. Furthermore, it is compatible with IEEE 802.11a networks.

  5. Performance improvement of switched-based interference mitigation for channel assignment in over-loaded small-cell networks

    KAUST Repository

    Gaaloul, Fakhreddine

    2013-05-01

    This paper proposes adequate methods to improve the interference mitigation capability of a recently investigated switched-based interference reduction scheme for single downlink channel assignment in over-loaded small-cell networks. The model assumes that the available orthogonal channels for small cells are distributed among access points in close vicinity, where each access point knows its allocated channels a priori. Each cell has a single antenna, employs the open access strategy, and can reuse its allocated channels simultaneously, while scheduling concurrent service requests. Moreover, the access points can not coordinate their transmissions, and can receive limited feedback from active users. The paper presents low-complexity schemes to identify a suitable channel to serve the scheduled user by maintaining the interference power level within a tolerable range. They attempt to either complement the switched-based scheme by minimum interference channel selection or adopt different interference thresholds on available channels, while reducing the channel examination load. The optimal thresholds for interference mitigation at the desired receive station are quantified for various performance criteria. The performance and processing load of the proposed schemes are obtained analytically, and then compared to those of the single-threshold scheme via numerical and simulation results. © 2002-2012 IEEE.

  6. Dynamic Cognitive Self-Organized TDMA for Medium Access Control in Real-Time Vehicle to Vehicle Communications

    Directory of Open Access Journals (Sweden)

    Mario Manzano

    2013-01-01

    Full Text Available The emergence of intelligent transport systems has brought out a new set of requirements on wireless communication. To cope with these requirements, several proposals are currently under discussion. In this highly mobile environment, the design of a prompt, efficient, flexible, and reliable medium access control, able to cover the specific constraints of the named real-time communications applications, is still unsolved. This paper presents the original proposal integrating Non-Cooperative Cognitive Time Division Multiple Access (NCC-TDMA based on Cognitive Radio (CR techniques to obtain a mechanism which complies with the requirements of real-time communications. Though the proposed MAC uses a slotted channel, it can be adapted to operate on the physical layer of different standards. The authors’ analysis considers the IEEE WAVE and 802.11p as the standards of reference. The mechanism also offers other advantages, such as avoiding signalling and the adaptation capacity to channel conditions and interferences. The solution is applied to the problem of units merging a convoy. Comparison results between NCC-TDMA and Slotted-Aloha are included.

  7. P-channel differential multiple-time programmable memory cells by laterally coupled floating metal gate fin field-effect transistors

    Science.gov (United States)

    Wang, Tai-Min; Chien, Wei-Yu; Hsu, Chia-Ling; Lin, Chrong Jung; King, Ya-Chin

    2018-04-01

    In this paper, we present a new differential p-channel multiple-time programmable (MTP) memory cell that is fully compatible with advanced 16 nm CMOS fin field-effect transistors (FinFET) logic processes. This differential MTP cell stores complementary data in floating gates coupled by a slot contact structure, which make different read currents possible on a single cell. In nanoscale CMOS FinFET logic processes, the gate dielectric layer becomes too thin to retain charges inside floating gates for nonvolatile data storage. By using a differential architecture, the sensing window of the cell can be extended and maintained by an advanced blanket boost scheme. The charge retention problem in floating gate cells can be improved by periodic restoring lost charges when significant read window narrowing occurs. In addition to high programming efficiency, this p-channel MTP cells also exhibit good cycling endurance as well as disturbance immunity. The blanket boost scheme can remedy the charge loss problem under thin gate dielectrics.

  8. Distributed Medium Access Control with SDMA Support for WLANs

    Science.gov (United States)

    Zhou, Sheng; Niu, Zhisheng

    With simultaneous multi-user transmissions, spatial division multiple access (SDMA) provides substantial throughput gain over the single user transmission. However, its implementation in WLANs with contention-based IEEE 802.11 MAC remains challenging. Problems such as coordinating and synchronizing the multiple users need to be solved in a distributed way. In this paper, we propose a distributed MAC protocol for WLANs with SDMA support. A dual-mode CTS responding mechanism is designed to accomplish the channel estimation and user synchronization required for SDMA. We analytically study the throughput performance of the proposed MAC, and dynamic parameter adjustment is designed to enhance the protocol efficiency. In addition, the proposed MAC protocol does not rely on specific physical layer realizations, and can work on legacy IEEE 802.11 equipment with slight software updates. Simulation results show that the proposed MAC outperforms IEEE 802.11 significantly, and that the dynamic parameter adjustment can effectively track the load variation in the network.

  9. A virtually blind spectrum efficient channel estimation technique for mimo-ofdm system

    International Nuclear Information System (INIS)

    Ullah, M.O.

    2015-01-01

    Multiple-Input Multiple-Output antennas in conjunction with Orthogonal Frequency-Division Multiplexing is a dominant air interface for 4G and 5G cellular communication systems. Additionally, MIMO- OFDM based air interface is the foundation for latest wireless Local Area Networks, wireless Personal Area Networks, and digital multimedia broadcasting. Whether it is a single antenna or a multi-antenna OFDM system, accurate channel estimation is required for coherent reception. Training-based channel estimation methods require multiple pilot symbols and therefore waste a significant portion of channel bandwidth. This paper describes a virtually blind spectrum efficient channel estimation scheme for MIMO-OFDM systems which operates well below the Nyquist criterion. (author)

  10. Multiple-animal MR imaging using a 3T clinical scanner and multi-channel coil for volumetric analysis in a mouse tumor model

    International Nuclear Information System (INIS)

    Mitsuda, Minoru; Yamaguchi, Masayuki; Furuta, Toshihiro; Fujii, Hirofumi; Nabetani, Akira; Hirayama, Akira; Nozaki, Atsushi; Niitsu, Mamoru

    2011-01-01

    Multiple small-animal magnetic resonance (MR) imaging to measure tumor volume may increase the throughput of preclinical cancer research assessing tumor response to novel therapies. We used a clinical scanner and multi-channel coil to evaluate the usefulness of this imaging to assess experimental tumor volume in mice. We performed a phantom study to assess 2-dimensional (2D) geometric distortion using 9-cm spherical and 32-cell (8 x 4 one-cm 2 grids) phantoms using a 3-tesla clinical MR scanner and dedicated multi-channel coil composed of 16 5-cm circular coils. Employing the multi-channel coil, we simultaneously scanned 6 or 8 mice bearing sarcoma 180 tumors. We estimated tumor volume from the sum of the product of tumor area and slice thickness on 2D spin-echo images (repetition time/echo time, 3500/16 ms; in-plane resolution, 0.195 x 0.195 x 1 mm 3 ). After MR acquisition, we excised and weighed tumors, calculated reference tumor volumes from actual tumor weight assuming a density of 1.05 g/cm 3 , and assessed the correlation between the estimated and reference volumes using Pearson's test. Two-dimensional geometric distortion was acceptable below 5% in the 9-cm spherical phantom and in every cell in the 32-cell phantom. We scanned up to 8 mice simultaneously using the multi-channel coil and found 11 tumors larger than 0.1 g in 12 mice. Tumor volumes were 1.04±0.73 estimated by MR imaging and 1.04±0.80 cm 3 by reference volume (average±standard deviation) and highly correlated (correlation coefficient, 0.995; P<0.01, Pearson's test). Use of multiple small-animal MR imaging employing a clinical scanner and multi-channel coil enabled accurate assessment of experimental tumor volume in a large number of mice and may facilitate high throughput monitoring of tumor response to therapy in preclinical research. (author)

  11. The Art of Multi-channel Hypermedia Application Development

    NARCIS (Netherlands)

    Synodinos, Dionysios G.; Avgeriou, Paris

    2003-01-01

    The plethora of networked devices and platforms that continuously come to light, as well as the emergence of alternative ways to access the internet, have increased the demand for multi-channel access to hypermedia applications. Researchers and practitioners nowadays not only have to deal with the

  12. Thermodynamics of competitive molecular channel transport: application to artificial nuclear pores.

    Science.gov (United States)

    Bauer, Wolfgang R; Nadler, Walter

    2010-12-13

    In an analytical model channel transport is analyzed as a function of key parameters, determining efficiency and selectivity of particle transport in a competitive molecular environment. These key parameters are the concentration of particles, solvent-channel exchange dynamics, as well as particle-in-channel- and interparticle interaction. These parameters are explicitly related to translocation dynamics and channel occupation probability. Slowing down the exchange dynamics at the channel ends, or elevating the particle concentration reduces the in-channel binding strength necessary to maintain maximum transport. Optimized in-channel interaction may even shift from binding to repulsion. A simple equation gives the interrelation of access dynamics and concentration at this transition point. The model is readily transferred to competitive transport of different species, each of them having their individual in-channel affinity. Combinations of channel affinities are determined which differentially favor selectivity of certain species on the cost of others. Selectivity for a species increases if its in-channel binding enhances the species' translocation probability when compared to that of the other species. Selectivity increases particularly for a wide binding site, long channels, and fast access dynamics. Recent experiments on competitive transport of in-channel binding and inert molecules through artificial nuclear pores serve as a paradigm for our model. It explains qualitatively and quantitatively how binding molecules are favored for transport at the cost of the transport of inert molecules.

  13. Impact of sensing errors on the queueing delay and transmit power in cognitive radio access

    KAUST Repository

    Hamza, Doha R.; Aissa, Sonia

    2011-01-01

    We study a multiple-access system with a primary user (PU) and a secondary user (SU) utilizing the same frequency band and communicating with a common receiver. Both users transmit with a fixed transmission rate by employing a channel inversion power control scheme. The SU transmits with a certain probability that depends on the sensing outcome, its queue length and whether it has a new packet arrival. We consider the case of erroneous sensing. The goal of the SU is to find the optimal transmission scheduling policy so as to minimize its queueing delay under constraints on its average transmit power and the maximum tolerable primary outage probability caused by miss-detection. The access probabilities are obtained efficiently using linear programming. © 2011 IEEE.

  14. Impact of sensing errors on the queueing delay and transmit power in cognitive radio access

    KAUST Repository

    Hamza, Doha R.

    2011-03-01

    We study a multiple-access system with a primary user (PU) and a secondary user (SU) utilizing the same frequency band and communicating with a common receiver. Both users transmit with a fixed transmission rate by employing a channel inversion power control scheme. The SU transmits with a certain probability that depends on the sensing outcome, its queue length and whether it has a new packet arrival. We consider the case of erroneous sensing. The goal of the SU is to find the optimal transmission scheduling policy so as to minimize its queueing delay under constraints on its average transmit power and the maximum tolerable primary outage probability caused by miss-detection. The access probabilities are obtained efficiently using linear programming. © 2011 IEEE.

  15. Source coherence impairments in a direct detection direct sequence optical code-division multiple-access system.

    Science.gov (United States)

    Fsaifes, Ihsan; Lepers, Catherine; Lourdiane, Mounia; Gallion, Philippe; Beugin, Vincent; Guignard, Philippe

    2007-02-01

    We demonstrate that direct sequence optical code- division multiple-access (DS-OCDMA) encoders and decoders using sampled fiber Bragg gratings (S-FBGs) behave as multipath interferometers. In that case, chip pulses of the prime sequence codes generated by spreading in time-coherent data pulses can result from multiple reflections in the interferometers that can superimpose within a chip time duration. We show that the autocorrelation function has to be considered as the sum of complex amplitudes of the combined chip as the laser source coherence time is much greater than the integration time of the photodetector. To reduce the sensitivity of the DS-OCDMA system to the coherence time of the laser source, we analyze the use of sparse and nonperiodic quadratic congruence and extended quadratic congruence codes.

  16. Source coherence impairments in a direct detection direct sequence optical code-division multiple-access system

    Science.gov (United States)

    Fsaifes, Ihsan; Lepers, Catherine; Lourdiane, Mounia; Gallion, Philippe; Beugin, Vincent; Guignard, Philippe

    2007-02-01

    We demonstrate that direct sequence optical code- division multiple-access (DS-OCDMA) encoders and decoders using sampled fiber Bragg gratings (S-FBGs) behave as multipath interferometers. In that case, chip pulses of the prime sequence codes generated by spreading in time-coherent data pulses can result from multiple reflections in the interferometers that can superimpose within a chip time duration. We show that the autocorrelation function has to be considered as the sum of complex amplitudes of the combined chip as the laser source coherence time is much greater than the integration time of the photodetector. To reduce the sensitivity of the DS-OCDMA system to the coherence time of the laser source, we analyze the use of sparse and nonperiodic quadratic congruence and extended quadratic congruence codes.

  17. Is channel segmentation necessary to reach a multiethnic population with weight-related health promotion? An analysis of use and perception of communication channels

    NARCIS (Netherlands)

    Hartman, M.A.; Nierkens, V.; Cremer, S.W.; Verhoeff, A.; Stronks, K.

    2015-01-01

    Objective. To explore similarities and differences in the use and perception of communication channels to access weight-related health promotion among women in three ethnic minority groups. The ultimate aim was to determine whether similar channels might reach ethnic minority women in general or

  18. Is channel segmentation necessary to reach a multiethnic population with weight-related health promotion? An analysis of use and perception of communication channels

    NARCIS (Netherlands)

    Hartman, Marieke A.; Nierkens, Vera; Cremer, Stephan W.; Verhoeff, Arnoud; Stronks, Karien

    2015-01-01

    To explore similarities and differences in the use and perception of communication channels to access weight-related health promotion among women in three ethnic minority groups. The ultimate aim was to determine whether similar channels might reach ethnic minority women in general or whether

  19. On the secrecy capacity of the MISO wiretap channel under imperfect channel estimation

    KAUST Repository

    Rezki, Zouheir

    2014-12-01

    We consider a wiretap channel consisting of a source with multiple antennas, a legitimate receiver and an eavesdropper with a single antenna each. The channels between the source and the receivers undergo fast fading. We assume that the transmitter, in addition to the statistics of both channels, is only aware of a noisy version of the CSI to the legitimate receiver referred to as main channel. The legitimate receiver is aware of both its instantaneous channel gain and the transmitter\\'s estimate of the main channel. On the other hand, the eavesdropper\\'s receiver, in addition to its instantaneous channel realization, is aware of the actual main CSI and the transmitter\\'s estimate as well. While the capacity of this channel is still open even with perfect CSI at the transmitter, we provide in this paper upper and lower bounds on the secrecy capacity. The upper bound is tighter than the one corresponding to perfect main CSI and the gap between the two upper bounds is characterized in function of the channel estimation error variance, at high-SNR. Furthermore, we show that our upper and lower bounds coincide in the case of no main CSI providing a trivial secrecy capacity.

  20. Price leadership within a marketing channel: A cointegration study

    NARCIS (Netherlands)

    Kuiper, W.E.; Meulenberg, M.T.G.

    2004-01-01

    Building upon a multiple-product channel structure, this paper develops a model to test channel price leadership on the basis of time series observations on retail and wholesale prices and using absence of double marginalisation as a criterion for channel price leadership. The model studies

  1. From membrane tension to channel gating: A principal energy transfer mechanism for mechanosensitive channels.

    Science.gov (United States)

    Zhang, Xuejun C; Liu, Zhenfeng; Li, Jie

    2016-11-01

    Mechanosensitive (MS) channels are evolutionarily conserved membrane proteins that play essential roles in multiple cellular processes, including sensing mechanical forces and regulating osmotic pressure. Bacterial MscL and MscS are two prototypes of MS channels. Numerous structural studies, in combination with biochemical and cellular data, provide valuable insights into the mechanism of energy transfer from membrane tension to gating of the channel. We discuss these data in a unified two-state model of thermodynamics. In addition, we propose a lipid diffusion-mediated mechanism to explain the adaptation phenomenon of MscS. © 2016 The Protein Society.

  2. Multi-channel EEG-based sleep stage classification with joint collaborative representation and multiple kernel learning.

    Science.gov (United States)

    Shi, Jun; Liu, Xiao; Li, Yan; Zhang, Qi; Li, Yingjie; Ying, Shihui

    2015-10-30

    Electroencephalography (EEG) based sleep staging is commonly used in clinical routine. Feature extraction and representation plays a crucial role in EEG-based automatic classification of sleep stages. Sparse representation (SR) is a state-of-the-art unsupervised feature learning method suitable for EEG feature representation. Collaborative representation (CR) is an effective data coding method used as a classifier. Here we use CR as a data representation method to learn features from the EEG signal. A joint collaboration model is established to develop a multi-view learning algorithm, and generate joint CR (JCR) codes to fuse and represent multi-channel EEG signals. A two-stage multi-view learning-based sleep staging framework is then constructed, in which JCR and joint sparse representation (JSR) algorithms first fuse and learning the feature representation from multi-channel EEG signals, respectively. Multi-view JCR and JSR features are then integrated and sleep stages recognized by a multiple kernel extreme learning machine (MK-ELM) algorithm with grid search. The proposed two-stage multi-view learning algorithm achieves superior performance for sleep staging. With a K-means clustering based dictionary, the mean classification accuracy, sensitivity and specificity are 81.10 ± 0.15%, 71.42 ± 0.66% and 94.57 ± 0.07%, respectively; while with the dictionary learned using the submodular optimization method, they are 80.29 ± 0.22%, 71.26 ± 0.78% and 94.38 ± 0.10%, respectively. The two-stage multi-view learning based sleep staging framework outperforms all other classification methods compared in this work, while JCR is superior to JSR. The proposed multi-view learning framework has the potential for sleep staging based on multi-channel or multi-modality polysomnography signals. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Tunneling and Origin of Large Access Resistance in Layered-Crystal Organic Transistors

    Science.gov (United States)

    Hamai, Takamasa; Arai, Shunto; Minemawari, Hiromi; Inoue, Satoru; Kumai, Reiji; Hasegawa, Tatsuo

    2017-11-01

    Layered crystallinity of organic semiconductors is crucial to obtaining high-performance organic thin-film transistors (OTFTs), as it allows both smooth-channel-gate-insulator interface formation and efficient two-dimensional carrier transport along the interface. However, the role of vertical transport across the crystalline molecular layers in device operations has not been a crucial subject so far. Here, we show that the interlayer carrier transport causes unusual nonlinear current-voltage characteristics and enormous access resistance in extremely high-quality single-crystal OTFTs based on 2-decyl-7-phenyl[1]-benzothieno[3 ,2 -b ][1]benzothiophene (Ph -BTBT -C10 ) that involve inherent multiple semiconducting π -conjugated layers interposed, respectively, by electrically inert alkyl-chain layers. The output characteristics present layer-number (n )-dependent nonlinearity that becomes more evident at larger n (1 ≤n ≤15 ), demonstrating tunneling across multiple alkyl-chain layers. The n -dependent device mobility and four-probe measurements reveal that the alkyl-chain layers generate a large access resistance that suppresses the device mobility from the intrinsic value of about 20 cm2 V-1 s-1 . Our findings clarify the reason why device characteristics are distributed in single-crystal OTFTs.

  4. Multiple Coaxial Catheter System for Reliable Access in Interventional Stroke Therapy

    International Nuclear Information System (INIS)

    Kulcsar, Zsolt; Yilmaz, Hasan; Bonvin, Christophe; Lovblad, Karl O.; Ruefenacht, Daniel A.

    2010-01-01

    In some patients with acute cerebral vessel occlusion, navigating mechanical thrombectomy systems is difficult due to tortuous anatomy of the aortic arch, carotid arteries, or vertebral arteries. Our purpose was to describe a multiple coaxial catheter system used for mechanical revascularization that helps navigation and manipulations in tortuous vessels. A triple or quadruple coaxial catheter system was built in 28 consecutive cases presenting with acute ischemic stroke. All cases were treated by mechanical thrombectomy with the Penumbra System. In cases of unsuccessful thrombo-aspiration, additional thrombolysis or angioplasty with stent placement was used for improving recanalization. The catheter system consisted of an outermost 8-Fr and an intermediate 6-Fr guiding catheter, containing the inner Penumbra reperfusion catheters. The largest, 4.1-Fr, reperfusion catheter was navigated over a Prowler Select Plus microcatheter. The catheter system provided access to reach the cerebral lesions and provided stability for the mechanically demanding manipulations of thromboaspiration and stent navigation in all cases. Apart from their mechanical role, the specific parts of the system could also provide access to different types of interventions, like carotid stenting through the 8-Fr guiding catheter and intracranial stenting and thrombolysis through the Prowler Select Plus microcatheter. In this series, there were no complications related to the catheter system. In conclusion, building up a triple or quadruple coaxial system proved to be safe and efficient in our experience for the mechanical thrombectomy treatment of acute ischemic stroke.

  5. Channel erosion in a rapidly urbanizing region of Tijuana, Mexico: Enlargement downstream of channel hardpoints

    Science.gov (United States)

    Taniguchi, Kristine; Biggs, Trent; Langendoen, Eddy; Castillo, Carlos; Gudiño, Napoleon; Yuan, Yongping; Liden, Douglas

    2016-04-01

    Urban-induced erosion in Tijuana, Mexico, has led to excessive sediment deposition in the Tijuana Estuary in the United States. Urban areas in developing countries, in contrast to developed countries, are characterized by much lower proportions of vegetation and impervious surfaces due to limited access to urban services such as road paving and landscaping, and larger proportions of exposed soils. In developing countries, traditional watershed scale variables such as impervious surfaces may not be good predictors of channel enlargement. In this research, we surveyed the stream channel network of an erodible tributary of the Tijuana River Watershed, Los Laureles Canyon, at 125 locations, including repeat surveys from 2008. Structure from Motion (SfM) and 3D photo-reconstruction techniques were used to create digital terrain models of stream reaches upstream and downstream of channel hardpoints. Channels are unstable downstream of hardpoints, with incision up to 2 meters and widening up to 12 meters. Coordinated channelization is essential to avoid piece-meal approaches that lead to channel degradation. Watershed impervious area is not a good predictor of channel erosion due to the overriding importance of hardpoints and likely to the high sediment supply from the unpaved roads which prevents channel erosion throughout the stream network.

  6. Measurements of stimulated-Raman-scattering-induced tilt in spectral-amplitude-coding optical code-division multiple-access systems

    Science.gov (United States)

    Al-Qazwini, Zaineb A. T.; Abdullah, Mohamad K.; Mokhtar, Makhfudzah B.

    2009-01-01

    We measure the stimulated Raman scattering (SRS)-induced tilt in spectral-amplitude-coding optical code-division multiple-access (SAC-OCDMA) systems as a function of system main parameters (transmission distance, power per chip, and number of users) via computer simulations. The results show that SRS-induced tilt significantly increases as transmission distance, power per chip, or number of users grows.

  7. Downlink Channel Estimation in Cellular Systems with Antenna Arrays at Base Stations Using Channel Probing with Feedback

    Directory of Open Access Journals (Sweden)

    Biguesh Mehrzad

    2004-01-01

    Full Text Available In mobile communication systems with multisensor antennas at base stations, downlink channel estimation plays a key role because accurate channel estimates are needed for transmit beamforming. One efficient approach to this problem is channel probing with feedback. In this method, the base station array transmits probing (training signals. The channel is then estimated from feedback reports provided by the users. This paper studies the performance of the channel probing method with feedback using a multisensor base station antenna array and single-sensor users. The least squares (LS, linear minimum mean square error (LMMSE, and a new scaled LS (SLS approaches to the channel estimation are studied. Optimal choice of probing signals is investigated for each of these techniques and their channel estimation performances are analyzed. In the case of multiple LS channel estimates, the best linear unbiased estimation (BLUE scheme for their linear combining is developed and studied.

  8. Access Request Trustworthiness in Weighted Access Control Framework

    Institute of Scientific and Technical Information of China (English)

    WANG Lun-wei; LIAO Xiang-ke; WANG Huai-min

    2005-01-01

    Weighted factor is given to access control policies to express the importance of policy and its effect on access control decision. According to this weighted access control framework, a trustworthiness model for access request is also given. In this model, we give the measure of trustworthiness factor to access request, by using some idea of uncertainty reasoning of expert system, present and prove the parallel propagation formula of request trustworthiness factor among multiple policies, and get the final trustworthiness factor to decide whether authorizing. In this model, authorization decision is given according to the calculation of request trustworthiness factor, which is more understandable, more suitable for real requirement and more powerful for security enhancement than traditional methods. Meanwhile the finer access control granularity is another advantage.

  9. Robust Transceiver Design for Multiuser MIMO Downlink with Channel Uncertainties

    Science.gov (United States)

    Miao, Wei; Li, Yunzhou; Chen, Xiang; Zhou, Shidong; Wang, Jing

    This letter addresses the problem of robust transceiver design for the multiuser multiple-input-multiple-output (MIMO) downlink where the channel state information at the base station (BS) is imperfect. A stochastic approach which minimizes the expectation of the total mean square error (MSE) of the downlink conditioned on the channel estimates under a total transmit power constraint is adopted. The iterative algorithm reported in [2] is improved to handle the proposed robust optimization problem. Simulation results show that our proposed robust scheme effectively reduces the performance loss due to channel uncertainties and outperforms existing methods, especially when the channel errors of the users are different.

  10. Correlations between channel probabilities in collisional dissociation of D3+

    International Nuclear Information System (INIS)

    Abraham, S.; Nir, D.; Rosner, B.

    1984-01-01

    Measurements of the dissociation of D 3 + ions at 300--600 keV under single- and multiple-collision conditions in Ar- and H 2 -gas targets have been performed. A complete separation of all dissociation channels was achieved, including the neutral channels, which were resolved using a fine-mesh technique. Data analysis in the multiple-collision regime confirms the validity of the rate equations governing the charge exchange processes. In the single-collision region the analysis yields constant relations between channel probabilities. Data rearrangement shows probability factorization and suggests that collisional dissociation is a two-stage process, a fast electron exchange followed by rearrangement and branching to the exit channels

  11. Is channel segmentation necessary to reach a multiethnic population with weight-related health promotion? An analysis of use and perception of communication channels.

    Science.gov (United States)

    Hartman, Marieke A; Nierkens, Vera; Cremer, Stephan W; Verhoeff, Arnoud; Stronks, Karien

    2015-01-01

    To explore similarities and differences in the use and perception of communication channels to access weight-related health promotion among women in three ethnic minority groups. The ultimate aim was to determine whether similar channels might reach ethnic minority women in general or whether segmentation to ethnic groups would be required. Eight ethnically homogeneous focus groups were conducted among 48 women of Ghanaian, Antillean/Aruban, or Afro-Surinamese background living in Amsterdam. Our questions concerned which communication channels they usually used to access weight-related health advice or information about programs and whose information they most valued. The content analysis of data was performed. The participants mentioned four channels - regular and traditional health care, general or ethnically specific media, multiethnic and ethnic gatherings, and interpersonal communication with peers in the Netherlands and with people in the home country. Ghanaian women emphasized ethnically specific channels (e.g., traditional health care, Ghanaian churches). They were comfortable with these channels and trusted them. They mentioned fewer general channels - mainly limited to health care - and if discussed, negative perceptions were expressed. Antillean women mentioned the use of ethnically specific channels (e.g., communication with Antilleans in the home country) on balance with general audience-oriented channels (e.g., regular health care). Perceptions were mixed. Surinamese participants discussed, in a positive manner, the use of general audience-oriented channels, while they said they did not use traditional health care or advice from Surinam. Local language proficiency, time resided in the Netherlands, and approaches and messages received seemed to explain channel use and perception. The predominant differences in channel use and perception among the ethnic groups indicate a need for channel segmentation to reach a multiethnic target group with weight

  12. A Unified Framework of the Performance Evaluation of Optical Time-Wavelength Code-Division Multiple-Access Systems

    Science.gov (United States)

    Inaty, Elie

    In this paper, we provide an analysis to the performance of optical time-wavelength code-division multiple-access (OTW-CDMA) network when the system is working above the nominal transmission rate limit imposed by the passive encoding-decoding operation. We address the problem of overlapping in such a system and how it can directly affect the bit error rate (BER). A unified mathematical framework is presented under the assumption of one coincidence sequences with non-repeating wavelengths. A closed form expression of the multiple access interference limited BER is provided as a function of different system parameters. Results show that the performance of OTW-CDMA system may be critically affected when working above the nominal limit; an event that may happen when the network operates at high transmission rate. In addition, the impact of the derived error probability on the performance of two newly proposed MAC protocols, the S-ALOHA and the R3T, is also investigated. It is shown that for low transmission rates, the S-ALOHA is better than the R3T; while the R3T is better at very high transmission rates. However, in general it is postulated that the R3T protocol suffers a higher delay mainly because of the presence of additional modes.

  13. 47 CFR 76.971 - Commercial leased access terms and conditions.

    Science.gov (United States)

    2010-10-01

    ... operators that have not satisfied their statutory leased access requirements shall accommodate part-time..., educational and governmental access programming, provided that the operator's franchise agreement requires it... leased commercial channels. Cable operators may impose reasonable insurance requirements on leased access...

  14. Equivalence of Linear MMSE Detection in DS-CDMA and MC-CDMA Systems over Time and Frequency Selective Channels

    Directory of Open Access Journals (Sweden)

    Tamer A. Kadous

    2003-01-01

    Full Text Available The goal of this paper is to compare the performance of the linear minimum mean square error (MMSE detector for a class of code division multiple access (CDMA systems in time and frequency selective channels. Specifically, we consider direct sequence (DS-CDMA, multicarrier (MC-CDMA, and the MC-DS-CDMA systems. Two key tools are used in our development. First, a general time-frequency framework that includes the different CDMA systems as special cases. Second, the duality between time and frequency domains that is used to derive equivalences between the different CDMA systems operating over purely frequency selective and purely time selective channels. We then combine the insights obtained from these special cases to assess the performance of CDMA systems over time and frequency selective channels. We provide sufficient conditions for the codes employed by the CDMA systems for the equivalences to hold. Numerical results are presented to illustrate the results.

  15. An Efficient Code-Timing Estimator for DS-CDMA Systems over Resolvable Multipath Channels

    Directory of Open Access Journals (Sweden)

    Jian Li

    2005-04-01

    Full Text Available We consider the problem of training-based code-timing estimation for the asynchronous direct-sequence code-division multiple-access (DS-CDMA system. We propose a modified large-sample maximum-likelihood (MLSML estimator that can be used for the code-timing estimation for the DS-CDMA systems over the resolvable multipath channels in closed form. Simulation results show that MLSML can be used to provide a high correct acquisition probability and a high estimation accuracy. Simulation results also show that MLSML can have very good near-far resistant capability due to employing a data model similar to that for adaptive array processing where strong interferences can be suppressed.

  16. Measuring Temperature-Dependent Propagating Disturbances in Coronal Fan Loops Using Multiple SDO-AIA Channels and Surfing Transform Technique

    Science.gov (United States)

    Uritskiy, Vadim M.; Davila, Joseph M.; Viall, Nicholeen M.; Ofman, Leon

    2013-01-01

    A set of co-aligned high resolution images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) is used to investigate propagating disturbances (PDs) in warm fan loops at the periphery of a non-flaring active region NOAA AR 11082. To measure PD speeds at multiple coronal temperatures, a new data analysis methodology is proposed enabling quantitative description of sub visual coronal motions with low signal-to-noise ratios of the order of 0.1. The technique operates with a set of one-dimensional surfing signals extracted from position-timeplots of several AIA channels through a modified version of Radon transform. The signals are used to evaluate a two-dimensional power spectral density distribution in the frequency - velocity space which exhibits a resonance in the presence of quasi-periodic PDs. By applying this analysis to the same fan loop structures observed in several AIA channels, we found that the traveling velocity of PDs increases with the temperature of the coronal plasma following the square root dependence predicted for the slow mode magneto-acoustic wave which seems to be the dominating wave mode in the studied loop structures. This result extends recent observations by Kiddie et al. (2012) to a more general class of fan loop systems not associated with sunspots and demonstrating consistent slow mode activity in up to four AIA channels.

  17. Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kok-Keong Loo

    2011-05-01

    Full Text Available The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.

  18. Multi-channel multi-radio using 802.11 based media access for sink nodes in wireless sensor networks.

    Science.gov (United States)

    Campbell, Carlene E-A; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong

    2011-01-01

    The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.

  19. Thermodynamics of competitive molecular channel transport: application to artificial nuclear pores.

    Directory of Open Access Journals (Sweden)

    Wolfgang R Bauer

    Full Text Available In an analytical model channel transport is analyzed as a function of key parameters, determining efficiency and selectivity of particle transport in a competitive molecular environment. These key parameters are the concentration of particles, solvent-channel exchange dynamics, as well as particle-in-channel- and interparticle interaction. These parameters are explicitly related to translocation dynamics and channel occupation probability. Slowing down the exchange dynamics at the channel ends, or elevating the particle concentration reduces the in-channel binding strength necessary to maintain maximum transport. Optimized in-channel interaction may even shift from binding to repulsion. A simple equation gives the interrelation of access dynamics and concentration at this transition point. The model is readily transferred to competitive transport of different species, each of them having their individual in-channel affinity. Combinations of channel affinities are determined which differentially favor selectivity of certain species on the cost of others. Selectivity for a species increases if its in-channel binding enhances the species' translocation probability when compared to that of the other species. Selectivity increases particularly for a wide binding site, long channels, and fast access dynamics. Recent experiments on competitive transport of in-channel binding and inert molecules through artificial nuclear pores serve as a paradigm for our model. It explains qualitatively and quantitatively how binding molecules are favored for transport at the cost of the transport of inert molecules.

  20. Research on an uplink carrier sense multiple access algorithm of large indoor visible light communication networks based on an optical hard core point process.

    Science.gov (United States)

    Nan, Zhufen; Chi, Xuefen

    2016-12-20

    The IEEE 802.15.7 protocol suggests that it could coordinate the channel access process based on the competitive method of carrier sensing. However, the directionality of light and randomness of diffuse reflection would give rise to a serious imperfect carrier sense (ICS) problem [e.g., hidden node (HN) problem and exposed node (EN) problem], which brings great challenges in realizing the optical carrier sense multiple access (CSMA) mechanism. In this paper, the carrier sense process implemented by diffuse reflection light is modeled as the choice of independent sets. We establish an ICS model with the presence of ENs and HNs for the multi-point to multi-point visible light communication (VLC) uplink communications system. Considering the severe optical ICS problem, an optical hard core point process (OHCPP) is developed, which characterizes the optical CSMA for the indoor VLC uplink communications system. Due to the limited coverage of the transmitted optical signal, in our OHCPP, the ENs within the transmitters' carrier sense region could be retained provided that they could not corrupt the ongoing communications. Moreover, because of the directionality of both light emitting diode (LED) transmitters and receivers, theoretical analysis of the HN problem becomes difficult. In this paper, we derive the closed-form expression for approximating the outage probability and transmission capacity of VLC networks with the presence of HNs and ENs. Simulation results validate the analysis and also show the existence of an optimal physical carrier-sensing threshold that maximizes the transmission capacity for a given emission angle of LED.

  1. Ultrafast all-optical code-division multiple-access networks

    Science.gov (United States)

    Kwong, Wing C.; Prucnal, Paul R.; Liu, Yanming

    1992-12-01

    In optical code-division multiple access (CDMA), the architecture of optical encoders/decoders is another important factor that needs to be considered, besides the correlation properties of those already extensively studied optical codes. The architecture of optical encoders/decoders affects, for example, the amount of power loss and length of optical delays that are associated with code sequence generation and correlation, which, in turn, affect the power budget, size, and cost of an optical CDMA system. Various CDMA coding architectures are studied in the paper. In contrast to the encoders/decoders used in prime networks (i.e., prime encodes/decoders), which generate, select, and correlate code sequences by a parallel combination of fiber-optic delay-lines, and in 2n networks (i.e., 2n encoders/decoders), which generate and correlate code sequences by a serial combination of 2 X 2 passive couplers and fiber delays with sequence selection performed in a parallel fashion, the modified 2n encoders/decoders generate, select, and correlate code sequences by a serial combination of directional couplers and delays. The power and delay- length requirements of the modified 2n encoders/decoders are compared to that of the prime and 2n encoders/decoders. A 100 Mbit/s optical CDMA experiment in free space demonstrating the feasibility of the all-serial coding architecture using a serial combination of 50/50 beam splitters and retroreflectors at 10 Tchip/s (i.e., 100,000 chip/bit) with 100 fs laser pulses is reported.

  2. Three-Way Channels With Multiple Unicast Sessions: Capacity Approximation via Network Transformation

    KAUST Repository

    Chaaban, Anas; Maier, Henning; Sezgin, Aydin; Mathar, Rudolf

    2016-01-01

    of the underlying Gaussian three-way channel (3WC) within a constant gap. To this end, a capacity outer bound is derived using cut-set bounds and genie-aided bounds. For achievability, the 3WC is first transformed into an equivalent star channel. This latter

  3. Energy-Efficient Channel Estimation in MIMO Systems

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The emergence of MIMO communications systems as practical high-data-rate wireless communications systems has created several technical challenges to be met. On the one hand, there is potential for enhancing system performance in terms of capacity and diversity. On the other hand, the presence of multiple transceivers at both ends has created additional cost in terms of hardware and energy consumption. For coherent detection as well as to do optimization such as water filling and beamforming, it is essential that the MIMO channel is known. However, due to the presence of multiple transceivers at both the transmitter and receiver, the channel estimation problem is more complicated and costly compared to a SISO system. Several solutions have been proposed to minimize the computational cost, and hence the energy spent in channel estimation of MIMO systems. We present a novel method of minimizing the overall energy consumption. Unlike existing methods, we consider the energy spent during the channel estimation phase which includes transmission of training symbols, storage of those symbols at the receiver, and also channel estimation at the receiver. We develop a model that is independent of the hardware or software used for channel estimation, and use a divide-and-conquer strategy to minimize the overall energy consumption.

  4. A Novel Dynamic Spectrum Access Framework Based on Reinforcement Learning for Cognitive Radio Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yun Lin

    2016-10-01

    Full Text Available Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel.

  5. Multiple-Antenna Interference Cancellation for WLAN with MAC Interference Avoidance in Open Access Networks

    Directory of Open Access Journals (Sweden)

    Alexandr M. Kuzminskiy

    2007-10-01

    Full Text Available The potential of multiantenna interference cancellation receiver algorithms for increasing the uplink throughput in WLAN systems such as 802.11 is investigated. The medium access control (MAC in such systems is based on carrier sensing multiple-access with collision avoidance (CSMA/CA, which itself is a powerful tool for the mitigation of intrasystem interference. However, due to the spatial dependence of received signal strengths, it is possible for the collision avoidance mechanism to fail, resulting in packet collisions at the receiver and a reduction in system throughput. The CSMA/CA MAC protocol can be complemented in such scenarios by interference cancellation (IC algorithms at the physical (PHY layer. The corresponding gains in throughput are a result of the complex interplay between the PHY and MAC layers. It is shown that semiblind interference cancellation techniques are essential for mitigating the impact of interference bursts, in particular since these are typically asynchronous with respect to the desired signal burst. Semiblind IC algorithms based on second- and higher-order statistics are compared to the conventional no-IC and training-based IC techniques in an open access network (OAN scenario involving home and visiting users. It is found that the semiblind IC algorithms significantly outperform the other techniques due to the bursty and asynchronous nature of the interference caused by the MAC interference avoidance scheme.

  6. Multiple-Antenna Interference Cancellation for WLAN with MAC Interference Avoidance in Open Access Networks

    Directory of Open Access Journals (Sweden)

    Kuzminskiy Alexandr M

    2007-01-01

    Full Text Available The potential of multiantenna interference cancellation receiver algorithms for increasing the uplink throughput in WLAN systems such as 802.11 is investigated. The medium access control (MAC in such systems is based on carrier sensing multiple-access with collision avoidance (CSMA/CA, which itself is a powerful tool for the mitigation of intrasystem interference. However, due to the spatial dependence of received signal strengths, it is possible for the collision avoidance mechanism to fail, resulting in packet collisions at the receiver and a reduction in system throughput. The CSMA/CA MAC protocol can be complemented in such scenarios by interference cancellation (IC algorithms at the physical (PHY layer. The corresponding gains in throughput are a result of the complex interplay between the PHY and MAC layers. It is shown that semiblind interference cancellation techniques are essential for mitigating the impact of interference bursts, in particular since these are typically asynchronous with respect to the desired signal burst. Semiblind IC algorithms based on second- and higher-order statistics are compared to the conventional no-IC and training-based IC techniques in an open access network (OAN scenario involving home and visiting users. It is found that the semiblind IC algorithms significantly outperform the other techniques due to the bursty and asynchronous nature of the interference caused by the MAC interference avoidance scheme.

  7. D-BLAST OFDM with Channel Estimation

    Directory of Open Access Journals (Sweden)

    Du Jianxuan

    2004-01-01

    Full Text Available Multiple-input and multiple-output (MIMO systems formed by multiple transmit and receive antennas can improve performance and increase capacity of wireless communication systems. Diagonal Bell Laboratories Layered Space-Time (D-BLAST structure offers a low-complexity solution for realizing the attractive capacity of MIMO systems. However, for broadband wireless communications, channel is frequency-selective and orthogonal frequency division multiplexing (OFDM has to be used with MIMO techniques to reduce system complexity. In this paper, we investigate D-BLAST for MIMO-OFDM systems. We develop a layerwise channel estimation algorithm which is robust to channel variation by exploiting the characteristic of the D-BLAST structure. Further improvement is made by subspace tracking to considerably reduce the error floor. Simulation results show that the layerwise estimators require 1 dB less signal-to-noise ratio (SNR than the traditional blockwise estimator for a word error rate (WER of when Doppler frequency is 40 Hz. Among the layerwise estimators, the subspace-tracking estimator provides a 0.8 dB gain for WER with 200 Hz Doppler frequency compared with the DFT-based estimator.

  8. On the secrecy capacity of the broadcast wiretap channel with imperfect channel state information

    KAUST Repository

    Hyadi, Amal

    2014-12-01

    In this paper, we consider secure broadcasting over fast fading channels. Assuming imperfect main channel state information (CSI) at the transmitter, we first provide an upper and a lower bounds on the ergodic secrecy capacity when a common message is broadcasted to multiple legitimate receivers in the presence of one eavesdropper. For this case, we show that the secrecy rate is limited by the legitimate receiver having, on average, the worst main channel link. Then, we present an expression for the achievable secrecy sum-rate when each legitimate receiver is interested in an independent message. The special cases of high SNR, perfect and no-main CSI are also analyzed. Numerical results are presented to illustrate the obtained results for the case of independent but not necessarily identically distributed Rayleigh fading channels.

  9. Modeling the Effects of Connecting Side Channels to the Long Tom River, Oregon

    Science.gov (United States)

    Appleby, C.; McDowell, P. F.

    2015-12-01

    The lower Long Tom River is a heavily managed, highly modified stream in the southwestern Willamette Valley with many opportunities for habitat improvements and river restoration. In the 1940s and 1950s, the US Army Corps of Engineers dramatically altered this river system by constructing the Fern Ridge Dam and three, large drop structures, converting the River from a highly sinuous channel to a straight, channelized stream that is interrupted by these grade control structures, and removed the majority of the riparian vegetation. As a result, juvenile spring Chinook salmon are no longer found in the Watershed and the local population of coastal cutthroat trout face limited aquatic habitat. When the river was channelized, long sections of the historical channel were left abandoned on the floodplain. Reconnecting these historical channels as side channels may improve the quality and quantity of aquatic habitat and could allow fish passage around current barriers. However, such construction may also lead to undesirable threats to infrastructure and farmland. This study uses multiple HEC-RAS models to determine the impact of reconnecting two historical channels to the lower Long Tom River by quantifying the change in area of flood inundation and identifying infrastructure in jeapordy given current and post-restoration conditions for 1.5, 5, 10, and 25-year flood discharges. Bathymetric data from ADCP and RTK-GPS surveys has been combined with LiDAR-derived topographic data to create continuous elevation models. Several types of side channel connections are modeled in order to determine which type of connection will result in both the greatest quantity of accessible habitat and the fewest threats to public and private property. In the future, this study will also consider the change in the quantity of physical salmonid habitat and map the areas prone to sedimentation and erosion using CEASAR and PHABSIM tools.

  10. LOCA simulation tests in the RD-12 loop with multiple heat channels

    International Nuclear Information System (INIS)

    Ardron, K.H.; McGee, G.R.; Hawley, E.H.

    1985-11-01

    A series of tests has been performed in the RD-12 loop to study the bahaviour of a CANDU-type, primary heat transport system (PHTS) during the blowdown and injection phases of a loss-of-coolant accident (LOCA). Specifically, the tests were used to investigate flow stagnation and refilling of the core following a LOCA. RD-12 is a pressurized water loop with the basic geometry of a CANDU reactor PHTS, but at approximately 1/125 volume scale. The loop consists of U-tube steam generators, pumps, headers, feeders, and heated channels arranged in the symmetrical figure-of-eight configuration of the CANDU PHTS. In the LOCA simulation tests, the loop contained four horizontal heated channels, each containing a seven-element assembly of indirectly heated, fuel-rod simulators. The channels were nominally identical, and were arranged in parallel pairs between the headers in each half-circuit. Tests were carried out using various restricting orifices to represent pipe breaks of different sizes. The break sizes were specifically chosen such that stagnation conditions in the heated channels would be likely to occur. In some tests, the primary pumps were programmed to run down over a 100-s period to simulate a LOCA with simultaneous loss of pump power. Test results showed that, for certain break sizes, periods of low flow occurred in the channels in one half of the loop, leading to flow stratification and sheath temperature excursions. This report reviews the results of two of the tests, and discusses possible mechanisms that may have led to the low channel flow conditions observed in some cases. Plans for future experiments in the larger scale RD-14 facility are outlined. 5 refs

  11. Approximating the constellation constrained capacity of the MIMO channel with discrete input

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Forchhammer, Søren; Larsen, Knud J.

    2015-01-01

    In this paper the capacity of a Multiple Input Multiple Output (MIMO) channel is considered, subject to average power constraint, for multi-dimensional discrete input, in the case when no channel state information is available at the transmitter. We prove that when the constellation size grows, t...... for the equivalent orthogonal channel, obtained by the singular value decomposition. Furthermore, lower bounds on the constrained capacity are derived for the cases of square and tall MIMO matrix, by optimizing the constellation for the equivalent channel, obtained by QR decomposition....

  12. Decision-Directed Recursive Least Squares MIMO Channels Tracking

    Directory of Open Access Journals (Sweden)

    Karami Ebrahim

    2006-01-01

    Full Text Available A new approach for joint data estimation and channel tracking for multiple-input multiple-output (MIMO channels is proposed based on the decision-directed recursive least squares (DD-RLS algorithm. RLS algorithm is commonly used for equalization and its application in channel estimation is a novel idea. In this paper, after defining the weighted least squares cost function it is minimized and eventually the RLS MIMO channel estimation algorithm is derived. The proposed algorithm combined with the decision-directed algorithm (DDA is then extended for the blind mode operation. From the computational complexity point of view being versus the number of transmitter and receiver antennas, the proposed algorithm is very efficient. Through various simulations, the mean square error (MSE of the tracking of the proposed algorithm for different joint detection algorithms is compared with Kalman filtering approach which is one of the most well-known channel tracking algorithms. It is shown that the performance of the proposed algorithm is very close to Kalman estimator and that in the blind mode operation it presents a better performance with much lower complexity irrespective of the need to know the channel model.

  13. Achievable Rates of Secure Transmission in Gaussian MISO Channel with Imperfect Main Channel Estimation

    KAUST Repository

    Zhou, Xinyu; Rezki, Zouheir; Alomair, Basel; Alouini, Mohamed-Slim

    2016-01-01

    A Gaussian multiple-input single-output (MISO) fading channel is considered. We assume that the transmitter, in addition to the statistics of all channel gains, is aware instantaneously of a noisy version of the channel to the legitimate receiver. On the other hand, the legitimate receiver is aware instantaneously of its channel to the transmitter, whereas the eavesdropper instantaneously knows all channel gains. We evaluate an achievable rate using a Gaussian input without indexing an auxiliary random variable. A sufficient condition for beamforming to be optimal is provided. When the number of transmit antennas is large, beamforming also turns out to be optimal. In this case, the maximum achievable rate can be expressed in a simple closed form and scales with the logarithm of the number of transmit antennas. Furthermore, in the case when a noisy estimate of the eavesdropper’s channel is also available at the transmitter, we introduce the SNR difference and the SNR ratio criterions and derive the related optimal transmission strategies and the corresponding achievable rates.

  14. Achievable Rates of Secure Transmission in Gaussian MISO Channel with Imperfect Main Channel Estimation

    KAUST Repository

    Zhou, Xinyu

    2016-03-15

    A Gaussian multiple-input single-output (MISO) fading channel is considered. We assume that the transmitter, in addition to the statistics of all channel gains, is aware instantaneously of a noisy version of the channel to the legitimate receiver. On the other hand, the legitimate receiver is aware instantaneously of its channel to the transmitter, whereas the eavesdropper instantaneously knows all channel gains. We evaluate an achievable rate using a Gaussian input without indexing an auxiliary random variable. A sufficient condition for beamforming to be optimal is provided. When the number of transmit antennas is large, beamforming also turns out to be optimal. In this case, the maximum achievable rate can be expressed in a simple closed form and scales with the logarithm of the number of transmit antennas. Furthermore, in the case when a noisy estimate of the eavesdropper’s channel is also available at the transmitter, we introduce the SNR difference and the SNR ratio criterions and derive the related optimal transmission strategies and the corresponding achievable rates.

  15. Multichannel scaler with fast channel advance

    International Nuclear Information System (INIS)

    Murphy, D.M.

    1985-01-01

    A multichannel scaler has been constructed which is capable of running as fast as 250 ns per channel. It is compact, low power and requires no special construction techniques. Readout is into a memory accessible by a microprocessor. (orig.)

  16. Multiple and Periodic Measurement of RBC Aggregation and ESR in Parallel Microfluidic Channels under On-Off Blood Flow Control

    Directory of Open Access Journals (Sweden)

    Yang Jun Kang

    2018-06-01

    Full Text Available Red blood cell (RBC aggregation causes to alter hemodynamic behaviors at low flow-rate regions of post-capillary venules. Additionally, it is significantly elevated in inflammatory or pathophysiological conditions. In this study, multiple and periodic measurements of RBC aggregation and erythrocyte sedimentation rate (ESR are suggested by sucking blood from a pipette tip into parallel microfluidic channels, and quantifying image intensity, especially through single experiment. Here, a microfluidic device was prepared from a master mold using the xurography technique rather than micro-electro-mechanical-system fabrication techniques. In order to consider variations of RBC aggregation in microfluidic channels due to continuous ESR in the conical pipette tip, two indices (aggregation index (AI and erythrocyte-sedimentation-rate aggregation index (EAI are evaluated by using temporal variations of microscopic, image-based intensity. The proposed method is employed to evaluate the effect of hematocrit and dextran solution on RBC aggregation under continuous ESR in the conical pipette tip. As a result, EAI displays a significantly linear relationship with modified conventional ESR measurement obtained by quantifying time constants. In addition, EAI varies linearly within a specific concentration of dextran solution. In conclusion, the proposed method is able to measure RBC aggregation under continuous ESR in the conical pipette tip. Furthermore, the method provides multiple data of RBC aggregation and ESR through a single experiment. A future study will involve employing the proposed method to evaluate biophysical properties of blood samples collected from cardiovascular diseases.

  17. Electronic trade effect of marketing channels

    Directory of Open Access Journals (Sweden)

    Lovreta Stipe

    2009-01-01

    Full Text Available E-commerce has caused many significant changes in marketing channels. Consumers had obtained multiple benefits from e-commerce. In addition, it has increased the level of competition in marketing channels. However, the focus of this paper is multichannel strategy and integration of physical (store and electronic marketing channels. E-commerce has induced dynamic development of multichannel strategy. This strategy has evolved as a consequence of multichannel consumer orientation. In developed economies, consumers are multichannel entities and active marketers aim to meet their requirements by creating multichannel offer.

  18. D1.7 -- Intermediate Report on the WHERE2 Channel Model

    DEFF Research Database (Denmark)

    Corre, Yoann; Laaraiedh, Mohamed; Pedersen, Troels

    are considered: the radio access technologies and the environments. As such, investigations with respect to narrowband, wideband and ultra wideband channel characterization in multi-link scenarios are reported. Furthermore, indoor and indoor-to-outdoor environments are considered. The channel variability due...

  19. Enhancing Access to Land Remote Sensing Data through Mainstream Social Media Channels

    Science.gov (United States)

    Sohre, T.; Maiersperger, T.

    2011-12-01

    Social media tools are changing the way that people discover information, communicate, and collaborate. Government agencies supporting the Land Remote Sensing user community have begun taking advantage of standard social media tools and capabilities. National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) data centers have started providing outreach utilizing services including Facebook, Twitter, and YouTube videos. Really Simple Syndication (RSS) Feeds have become more standard means of sharing information, and a DataCasting tool was created as a NASA Technology Infusion effort to make RSS-based technology for accessing Earth Science information available. The United States Geological Survey (USGS) has also started using social media to allow the community access to news feeds and real-time earthquake alerts; listen to podcasts; get updates on new USGS publications, videos, and photographs; and more. Twitter feeds have been implemented in 2011 for the USGS Land Cover and Landsat user communities. In early 2011, the NASA Land Processes Distributed Active Archive Center (LP DAAC) user working group suggested the investigation of concepts for creating and distributing "bundles" of data, which would aggregate theme-based data sets from multiple sources. The LP DAAC is planning to explore the use of standard social bookmarking tools to support community developed bundles through the use of tools such as Delicious, Digg, or StumbleUpon. This concept would allow science users to organize and discover common links to data resources based on community developed tags, or a folksonomy. There are challenges that will need to be addressed such as maintaining the quality of tags but a social bookmarking system may have advantages over traditional search engines or formal ontologies for identifying and labeling various data sets relevant to a theme. As classification is done by the community of scientists who understand the data, the tagged data sets

  20. Multi-channel imaging cytometry with a single detector

    Science.gov (United States)

    Locknar, Sarah; Barton, John; Entwistle, Mark; Carver, Gary; Johnson, Robert

    2018-02-01

    Multi-channel microscopy and multi-channel flow cytometry generate high bit data streams. Multiple channels (both spectral and spatial) are important in diagnosing diseased tissue and identifying individual cells. Omega Optical has developed techniques for mapping multiple channels into the time domain for detection by a single high gain, high bandwidth detector. This approach is based on pulsed laser excitation and a serial array of optical fibers coated with spectral reflectors such that up to 15 wavelength bins are sequentially detected by a single-element detector within 2.5 μs. Our multichannel microscopy system uses firmware running on dedicated DSP and FPGA chips to synchronize the laser, scanning mirrors, and sampling clock. The signals are digitized by an NI board into 14 bits at 60MHz - allowing for 232 by 174 pixel fields in up to 15 channels with 10x over sampling. Our multi-channel imaging cytometry design adds channels for forward scattering and back scattering to the fluorescence spectral channels. All channels are detected within the 2.5 μs - which is compatible with fast cytometry. Going forward, we plan to digitize at 16 bits with an A-toD chip attached to a custom board. Processing these digital signals in custom firmware would allow an on-board graphics processing unit to display imaging flow cytometry data over configurable scanning line lengths. The scatter channels can be used to trigger data buffering when a cell is present in the beam. This approach enables a low cost mechanically robust imaging cytometer.

  1. Superimposed Training-Based Channel Estimation for MIMO Relay Networks

    Directory of Open Access Journals (Sweden)

    Xiaoyan Xu

    2012-01-01

    Full Text Available We introduce the superimposed training strategy into the multiple-input multiple-output (MIMO amplify-and-forward (AF one-way relay network (OWRN to perform the individual channel estimation at the destination. Through the superposition of a group of additional training vectors at the relay subject to power allocation, the separated estimates of the source-relay and relay-destination channels can be obtained directly at the destination, and the accordance with the two-hop AF strategy can be guaranteed at the same time. The closed-form Bayesian Cramér-Rao lower bound (CRLB is derived for the estimation of two sets of flat-fading MIMO channel under random channel parameters and further exploited to design the optimal training vectors. A specific suboptimal channel estimation algorithm is applied in the MIMO AF OWRN using the optimal training sequences, and the normalized mean square error performance for the estimation is provided to verify the Bayesian CRLB results.

  2. Iterative Sparse Channel Estimation and Decoding for Underwater MIMO-OFDM

    Directory of Open Access Journals (Sweden)

    Berger ChristianR

    2010-01-01

    Full Text Available We propose a block-by-block iterative receiver for underwater MIMO-OFDM that couples channel estimation with multiple-input multiple-output (MIMO detection and low-density parity-check (LDPC channel decoding. In particular, the channel estimator is based on a compressive sensing technique to exploit the channel sparsity, the MIMO detector consists of a hybrid use of successive interference cancellation and soft minimum mean-square error (MMSE equalization, and channel coding uses nonbinary LDPC codes. Various feedback strategies from the channel decoder to the channel estimator are studied, including full feedback of hard or soft symbol decisions, as well as their threshold-controlled versions. We study the receiver performance using numerical simulation and experimental data collected from the RACE08 and SPACE08 experiments. We find that iterative receiver processing including sparse channel estimation leads to impressive performance gains. These gains are more pronounced when the number of available pilots to estimate the channel is decreased, for example, when a fixed number of pilots is split between an increasing number of parallel data streams in MIMO transmission. For the various feedback strategies for iterative channel estimation, we observe that soft decision feedback slightly outperforms hard decision feedback.

  3. Wavelength-encoding/temporal-spreading optical code division multiple-access system with in-fiber chirped moiré gratings.

    Science.gov (United States)

    Chen, L R; Smith, P W; de Sterke, C M

    1999-07-20

    We propose an optical code division multiple-access (OCDMA) system that uses in-fiber chirped moiré gratings (CMG's) for encoding and decoding of broadband pulses. In reflection the wavelength-selective and dispersive nature of CMG's can be used to implement wavelength-encoding/temporal-spreading OCDMA. We give examples of codes designed around the constraints imposed by the encoding devices and present numerical simulations that demonstrate the proposed concept.

  4. Dense Clustered Multi-Channel Wireless Sensor Cloud

    Directory of Open Access Journals (Sweden)

    Sivaramakrishnan Sivakumar

    2015-08-01

    Full Text Available Dense Wireless Sensor Network Clouds have an inherent issue of latency and packet drops with regards to data collection. Though there is extensive literature that tries to address these issues through either scheduling, channel contention or a combination of the two, the problem still largely exists. In this paper, a Clustered Multi-Channel Scheduling Protocol (CMSP is designed that creates a Voronoi partition of a dense network. Each partition is assigned a channel, and a scheduling scheme is adopted to collect data within the Voronoi partitions. This scheme collects data from the partitions concurrently and then passes it to the base station. CMSP is compared using simulation with other multi-channel protocols like Tree-based Multi-Channel, Multi-Channel MAC and Multi-frequency Media Access Control for wireless sensor networks. Results indicate CMSP has higher throughput and data delivery ratio at a lower power consumption due to network partitioning and hierarchical scheduling that minimizes load on the network.

  5. A New Prime Code for Synchronous Optical Code Division Multiple-Access Networks

    Directory of Open Access Journals (Sweden)

    Huda Saleh Abbas

    2018-01-01

    Full Text Available A new spreading code based on a prime code for synchronous optical code-division multiple-access networks that can be used in monitoring applications has been proposed. The new code is referred to as “extended grouped new modified prime code.” This new code has the ability to support more terminal devices than other prime codes. In addition, it patches subsequences with “0s” leading to lower power consumption. The proposed code has an improved cross-correlation resulting in enhanced BER performance. The code construction and parameters are provided. The operating performance, using incoherent on-off keying modulation and incoherent pulse position modulation systems, has been analyzed. The performance of the code was compared with other prime codes. The results demonstrate an improved performance, and a BER floor of 10−9 was achieved.

  6. The elusive character of discontinuous deep-water channels: New insights from Lucia Chica channel system, offshore California

    Science.gov (United States)

    Maier, K.L.; Fildani, A.; Paull, C.K.; Graham, S.A.; McHargue, T.R.; Caress, D.W.; McGann, M.

    2011-01-01

    New high-resolution autonomous underwater vehicle (AUV) seafloor images, with 1 m lateral resolution and 0.3 m vertical resolution, reveal unexpected seafloor rugosity and low-relief (thalwegs were interpreted originally from lower-resolution images, but newly acquired AUV data indicate that a single sinuous channel fed a series of discontinuous lower-relief channels. These discontinuous channels were created by at least four avulsion events. Channel relief, defined as the height from the thalweg to the levee crest, controls avulsions and overall stratigraphic architecture of the depositional area. Flowstripped turbidity currents separated into and reactivated multiple channels to create a distributary pattern and developed discontinuous trains of cyclic scours and megaflutes, which may be erosional precursors to continuous channels. The diverse features now imaged in the Lucia Chica channel system (offshore California) are likely common in modern and ancient systems with similar overall morphologies, but have not been previously mapped with lower-resolution detection methods in any of these systems. ?? 2011 Geological Society of America.

  7. Ion channel regulation by phosphoinositides analyzed with VSPs – PI(4,5P2 affinity, phosphoinositide selectivity, and PI(4,5P2 pool accessibility

    Directory of Open Access Journals (Sweden)

    Alexandra eRjasanow

    2015-06-01

    Full Text Available The activity of many proteins depends on the phosphoinositide (PI content of the membrane. E.g., dynamic changes of the concentration of PI(4,5P2 are cellular signals that regulate ion channels. The susceptibility of a channel to such dynamics depends on its affinity for PI(4,5P2. Yet, measuring affinities for endogenous PIs has not been possible directly, but has relied largely on the response to soluble analogs, which may not quantitatively reflect binding to native lipids.Voltage-sensitive phosphatases (VSPs turn over PI(4,5P2 to PI(4P when activated by depolarization. In combination with voltage-clamp electrophysiology VSPs are useful tools for rapid and reversible depletion of PI(4,5P2. Because cellular PI(4,5P2 is resynthesized rapidly, steady state PI(4,5P2 changes with the degree of VSP activation and thus depends on membrane potential.Here we show that titration of endogenous PI(4,5P2 with Ci-VSP allows for the quantification of relative PI(4,5P2 affinities of ion channels. The sensitivity of inward rectifier and voltage-gated K+ channels to Ci-VSP allowed for comparison of PI(4,5P2 affinities within and across channel subfamilies and detected changes of affinity in mutant channels. The results also reveal that VSPs are useful only for PI effectors with high binding specificity among PI isoforms, because PI(4,5P2 depletion occurs at constant overall PI level. Thus, Kir6.2, a channel activated by PI(4,5P2 and PI(4P was insensitive to VSP.Surprisingly, despite comparable PI(4,5P2 affinity as determined by Ci-VSP, the Kv7 and Kir channel families strongly differed in their sensitivity to receptor-mediated depletion of PI(4,5P2. While Kv7 members were highly sensitive to activation of PLC by Gq-coupled receptors, Kir channels were insensitive even when PI(4,5P2 affinity was lowered by mutation. We hypothesize that different channels may be associated with distinct pools of PI(4,5P2 that differ in their accessibility to PLC and VSPs.

  8. W-band radio-over-fiber propagation of two optically encoded wavelength channels

    Science.gov (United States)

    Eghbal, Morad Khosravi; Shadaram, Mehdi

    2018-01-01

    We propose a W-band wavelength-division multiplexing (WDM)-over-optical code-division multiple access radio-over-fiber system. This system offers capacity expansion by increasing the working frequency to millimeter wave region and by introducing optical encoding and multiwavelength multiplexing. The system's functionality is investigated by software modeling, and the results are presented. The generated signals are data modulated at 10 Gb/s and optically encoded for two wavelength channels and transmitted with a 20-km length of fiber. The received signals are optically decoded and detected. Also, encoding has improved the bit error rate (BER) versus the received optical power margin for the WDM setting by about 4 dB. In addition, the eye-diagram shows that the difference between received optical power levels at the BER of 10-12 to 10-3 is about 1.3% between two encoded channels. This method of capacity improvement is significantly important for the next generation of mobile communication, where millimeter wave signals will be widely used to deliver data to small cells.

  9. Ergodic Capacity for the SIMO Nakagami- Channel

    Directory of Open Access Journals (Sweden)

    Vagenas EfstathiosD

    2009-01-01

    Full Text Available This paper presents closed-form expressions for the ergodic channel capacity of SIMO (single-input and multiple output wireless systems operating in a Nakagami- fading channel. As the performance of SIMO channel is closely related to the diversity combining techniques, we present closed-form expressions for the capacity of maximal ratio combining (MRC, equal gain combining (EGC, selection combining (SC, and switch and stay (SSC diversity systems operating in Nakagami- fading channels. Also, the ergodic capacity of a SIMO system in a Nakagami- fading channel without any diversity technique is derived. The latter scenario is further investigated for a large amount of receive antennas. Finally, numerical results are presented for illustration.

  10. Measurements of MIMO Indoor Channels at 1800 MHz with Multiple Indoor and Outdoor Base Stations

    Directory of Open Access Journals (Sweden)

    Jaldén Niklas

    2007-01-01

    Full Text Available This paper proposes several configurations for multiple base stations in indoor MIMO systems and compares their performance. The results are based on channel measurements realized with a MIMO testbed. The receiver was moved along several routes and floors on an office building. Both outdoor and indoor locations are considered for the transmitters or base stations, which allow the analysis of not only indoor but also outdoor-to-indoor environment. The use of 2 base stations with different system level combinations of the two is analyzed. We show that the configuration with base station selection provides almost as good performance as a full water-filling scheme when the 2 base stations are placed at different locations. Also the spatial correlation properties for the different configurations are analyzed and the importance of considering path loss when evaluating capacity is highlighted.

  11. The Blind Identification of Multi-Inputs and Multi-Outputs Shallow-Water Acoustic Channel

    International Nuclear Information System (INIS)

    Li, R Y; Zhou, J H; Wang, L

    2006-01-01

    Blind channel identification/estimation is very important for object detection, trace, localization in the ocean acoustics. Time domain blind identification algorithm requiring exact length of the channel being identification. Due to the characteristics of the shallow-water channel, the length of channel impulse response sequence is uncertain, Hence a frequency domain method for the blind MIMO (Multiple-Input Multiple-Output) underwater identification based on higher order statistics (HOS) is used to estimate the original acoustic channel from received signals on hydrophones only, with the low signal to noise ratio (SNR). The simulation results in the acoustic environment proved this work is effective and efficient for blind identification of the shallow-water acoustic channel

  12. Equal Access but Unequal Outcomes

    DEFF Research Database (Denmark)

    Jæger, Mads Meier

    2009-01-01

    with respect to Danish children's choice of secondary education. Denmark is well-suited for this study because access to secondary education is particularly meritocratic. The empirical analysis shows that all three channels through which cultural capital affects educational success are important....

  13. Customer Engagement Tool (Multi Channel Communication)

    Data.gov (United States)

    Social Security Administration — Add new infrastructure within SSA's Enterprise Architecture to allow interactions over multiple, yet to be defined, channels. Possibilities include: Provide a portal...

  14. Optical code division multiple access secure communications systems with rapid reconfigurable polarization shift key user code

    Science.gov (United States)

    Gao, Kaiqiang; Wu, Chongqing; Sheng, Xinzhi; Shang, Chao; Liu, Lanlan; Wang, Jian

    2015-09-01

    An optical code division multiple access (OCDMA) secure communications system scheme with rapid reconfigurable polarization shift key (Pol-SK) bipolar user code is proposed and demonstrated. Compared to fix code OCDMA, by constantly changing the user code, the performance of anti-eavesdropping is greatly improved. The Pol-SK OCDMA experiment with a 10 Gchip/s user code and a 1.25 Gb/s user data of payload has been realized, which means this scheme has better tolerance and could be easily realized.

  15. Statistics of α-μ Random Variables and Their Applications inWireless Multihop Relaying and Multiple Scattering Channels

    KAUST Repository

    Wang, Kezhi

    2015-06-01

    Exact results for the probability density function (PDF) and cumulative distribution function (CDF) of the sum of ratios of products (SRP) and the sum of products (SP) of independent α-μ random variables (RVs) are derived. They are in the form of 1-D integral based on the existing works on the products and ratios of α-μ RVs. In the derivation, generalized Gamma (GG) ratio approximation (GGRA) is proposed to approximate SRP. Gamma ratio approximation (GRA) is proposed to approximate SRP and the ratio of sums of products (RSP). GG approximation (GGA) and Gamma approximation (GA) are used to approximate SP. The proposed results of the SRP can be used to calculate the outage probability (OP) for wireless multihop relaying systems or multiple scattering channels with interference. The proposed results of the SP can be used to calculate the OP for these systems without interference. In addition, the proposed approximate result of the RSP can be used to calculate the OP of the signal-To-interference ratio (SIR) in a multiple scattering system with interference. © 1967-2012 IEEE.

  16. Statistics of α-μ Random Variables and Their Applications inWireless Multihop Relaying and Multiple Scattering Channels

    KAUST Repository

    Wang, Kezhi; Wang, Tian; Chen, Yunfei; Alouini, Mohamed-Slim

    2015-01-01

    Exact results for the probability density function (PDF) and cumulative distribution function (CDF) of the sum of ratios of products (SRP) and the sum of products (SP) of independent α-μ random variables (RVs) are derived. They are in the form of 1-D integral based on the existing works on the products and ratios of α-μ RVs. In the derivation, generalized Gamma (GG) ratio approximation (GGRA) is proposed to approximate SRP. Gamma ratio approximation (GRA) is proposed to approximate SRP and the ratio of sums of products (RSP). GG approximation (GGA) and Gamma approximation (GA) are used to approximate SP. The proposed results of the SRP can be used to calculate the outage probability (OP) for wireless multihop relaying systems or multiple scattering channels with interference. The proposed results of the SP can be used to calculate the OP for these systems without interference. In addition, the proposed approximate result of the RSP can be used to calculate the OP of the signal-To-interference ratio (SIR) in a multiple scattering system with interference. © 1967-2012 IEEE.

  17. Visualizing multi-channel networks

    DEFF Research Database (Denmark)

    Antemijczuk, Paweł; Magiera, Marta; Jørgensen, Sune Lehmann

    2014-01-01

    In this paper, we propose a visualization to illustrate social interactions, built from multiple distinct channels of communication. The visualization displays a summary of dense personal information in a compact graphical notation. The starting point is an abstract drawing of a spider’s web. Below...

  18. Cytoplasmic Domains and Voltage-Dependent Potassium Channel Gating

    Science.gov (United States)

    Barros, Francisco; Domínguez, Pedro; de la Peña, Pilar

    2012-01-01

    The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered. PMID:22470342

  19. G-Channel Restoration for RWB CFA with Double-Exposed W Channel.

    Science.gov (United States)

    Park, Chulhee; Song, Ki Sun; Kang, Moon Gi

    2017-02-05

    In this paper, we propose a green (G)-channel restoration for a red-white-blue (RWB) color filter array (CFA) image sensor using the dual sampling technique. By using white (W) pixels instead of G pixels, the RWB CFA provides high-sensitivity imaging and an improved signal-to-noise ratio compared to the Bayer CFA. However, owing to this high sensitivity, the W pixel values become rapidly over-saturated before the red-blue (RB) pixel values reach the appropriate levels. Because the missing G color information included in the W channel cannot be restored with a saturated W, multiple captures with dual sampling are necessary to solve this early W-pixel saturation problem. Each W pixel has a different exposure time when compared to those of the R and B pixels, because the W pixels are double-exposed. Therefore, a RWB-to-RGB color conversion method is required in order to restore the G color information, using a double-exposed W channel. The proposed G-channel restoration algorithm restores G color information from the W channel by considering the energy difference caused by the different exposure times. Using the proposed method, the RGB full-color image can be obtained while maintaining the high-sensitivity characteristic of the W pixels.

  20. Multiple Hierarchies and Organizational Control

    Science.gov (United States)

    Evans, Peter B.

    1975-01-01

    Uses a control-loss model to explore the effects of multiple channels in formal organizations, and presents an argument for the superior control properties of dual hierarchies. Two variant forms of multiple hierarchies are considered. (Author)

  1. Joint Linear Processing for an Amplify-and-Forward MIMO Relay Channel with Imperfect Channel State Information

    Directory of Open Access Journals (Sweden)

    Vandendorpe Luc

    2010-01-01

    Full Text Available The problem of jointly optimizing the source precoder, relay transceiver, and destination equalizer has been considered in this paper for a multiple-input-multiple-output (MIMO amplify-and-forward (AF relay channel, where the channel estimates of all links are assumed to be imperfect. The considered joint optimization problem is nonconvex and does not offer closed-form solutions. However, it has been shown that the optimization of one variable when others are fixed is a convex optimization problem which can be efficiently solved using interior-point algorithms. In this context, an iterative technique with the guaranteed convergence has been proposed for the AF MIMO relay channel that includes the direct link. It has been also shown that, for the double-hop relay case without the receive-side antenna correlations in each hop, the global optimality can be confirmed since the structures of the source precoder, relay transceiver, and destination equalizer have closed forms and the remaining joint power allocation can be solved using Geometric Programming (GP technique under high signal-to-noise ratio (SNR approximation. In the latter case, the performance of the iterative technique and the GP method has been compared with simulations to ensure that the iterative approach gives reasonably good solutions with an acceptable complexity. Moreover, simulation results verify the robustness of the proposed design when compared to the nonrobust design that assumes estimated channels as actual channels.

  2. Wideband MIMO Channel Capacity Analysis in Multiprobe Anechoic Chamber Setups

    DEFF Research Database (Denmark)

    Fan, Wei; Kyosti, Pekka; Nielsen, Jesper Ødum

    2016-01-01

    been used to determine the test area size for a limited number of probes. However, it is desirable that the test area size is defined in terms of data rate deviation of the simulated channel in the laboratory from that of the target channel model. This paper reports MIMO capacity analysis results...... for wideband spatio-temporal channel models, with emphasis on the impact of spatial correlation at the transmit (Tx) side, the channel model, and the spatial correlation at the Rx side on the capacity simulation accuracy. Simulation results show that the number of probes is irrelevant to capacity simulation......This paper discusses over the air (OTA) testing for multiple input multiple output (MIMO) capable terminals with emphasis on wideband MIMO channel capacity analysis in a multi-probe anechoic chamber setup. In the literature, the spatial correlation simulation accuracy at the receiver (Rx) side has...

  3. Optimizing the wireless power transfer over MIMO Channels

    Science.gov (United States)

    Wiedmann, Karsten; Weber, Tobias

    2017-09-01

    In this paper, the optimization of the power transfer over wireless channels having multiple-inputs and multiple-outputs (MIMO) is studied. Therefore, the transmitter, the receiver and the MIMO channel are modeled as multiports. The power transfer efficiency is described by a Rayleigh quotient, which is a function of the channel's scattering parameters and the incident waves from both transmitter and receiver side. This way, the power transfer efficiency can be maximized analytically by solving a generalized eigenvalue problem, which is deduced from the Rayleigh quotient. As a result, the maximum power transfer efficiency achievable over a given MIMO channel is obtained. This maximum can be used as a performance bound in order to benchmark wireless power transfer systems. Furthermore, the optimal operating point which achieves this maximum will be obtained. The optimal operating point will be described by the complex amplitudes of the optimal incident and reflected waves of the MIMO channel. This supports the design of the optimal transmitter and receiver multiports. The proposed method applies for arbitrary MIMO channels, taking transmitter-side and/or receiver-side cross-couplings in both near- and farfield scenarios into consideration. Special cases are briefly discussed in this paper in order to illustrate the method.

  4. Optimizing the wireless power transfer over MIMO Channels

    Directory of Open Access Journals (Sweden)

    K. Wiedmann

    2017-09-01

    Full Text Available In this paper, the optimization of the power transfer over wireless channels having multiple-inputs and multiple-outputs (MIMO is studied. Therefore, the transmitter, the receiver and the MIMO channel are modeled as multiports. The power transfer efficiency is described by a Rayleigh quotient, which is a function of the channel's scattering parameters and the incident waves from both transmitter and receiver side. This way, the power transfer efficiency can be maximized analytically by solving a generalized eigenvalue problem, which is deduced from the Rayleigh quotient. As a result, the maximum power transfer efficiency achievable over a given MIMO channel is obtained. This maximum can be used as a performance bound in order to benchmark wireless power transfer systems. Furthermore, the optimal operating point which achieves this maximum will be obtained. The optimal operating point will be described by the complex amplitudes of the optimal incident and reflected waves of the MIMO channel. This supports the design of the optimal transmitter and receiver multiports. The proposed method applies for arbitrary MIMO channels, taking transmitter-side and/or receiver-side cross-couplings in both near- and farfield scenarios into consideration. Special cases are briefly discussed in this paper in order to illustrate the method.

  5. Reconfigurable virtual electrowetting channels.

    Science.gov (United States)

    Banerjee, Ananda; Kreit, Eric; Liu, Yuguang; Heikenfeld, Jason; Papautsky, Ian

    2012-02-21

    Lab-on-a-chip systems rely on several microfluidic paradigms. The first uses a fixed layout of continuous microfluidic channels. Such lab-on-a-chip systems are almost always application specific and far from a true "laboratory." The second involves electrowetting droplet movement (digital microfluidics), and allows two-dimensional computer control of fluidic transport and mixing. The merging of the two paradigms in the form of programmable electrowetting channels takes advantage of both the "continuous" functionality of rigid channels based on which a large number of applications have been developed to date and the "programmable" functionality of digital microfluidics that permits electrical control of on-chip functions. In this work, we demonstrate for the first time programmable formation of virtual microfluidic channels and their continuous operation with pressure driven flows using an electrowetting platform. Experimental, theoretical, and numerical analyses of virtual channel formation with biologically relevant electrolyte solutions and electrically-programmable reconfiguration are presented. We demonstrate that the "wall-less" virtual channels can be formed reliably and rapidly, with propagation rates of 3.5-3.8 mm s(-1). Pressure driven transport in these virtual channels at flow rates up to 100 μL min(-1) is achievable without distortion of the channel shape. We further demonstrate that these virtual channels can be switched on-demand between multiple inputs and outputs. Ultimately, we envision a platform that would provide rapid prototyping of microfluidic concepts and would be capable of a vast library of functions and benefitting applications from clinical diagnostics in resource-limited environments to rapid system prototyping to high throughput pharmaceutical applications.

  6. Multi-rate control over AWGN channels via analog joint source-channel coding

    KAUST Repository

    Khina, Anatoly; Pettersson, Gustav M.; Kostina, Victoria; Hassibi, Babak

    2017-01-01

    We consider the problem of controlling an unstable plant over an additive white Gaussian noise (AWGN) channel with a transmit power constraint, where the signaling rate of communication is larger than the sampling rate (for generating observations and applying control inputs) of the underlying plant. Such a situation is quite common since sampling is done at a rate that captures the dynamics of the plant and which is often much lower than the rate that can be communicated. This setting offers the opportunity of improving the system performance by employing multiple channel uses to convey a single message (output plant observation or control input). Common ways of doing so are through either repeating the message, or by quantizing it to a number of bits and then transmitting a channel coded version of the bits whose length is commensurate with the number of channel uses per sampled message. We argue that such “separated source and channel coding” can be suboptimal and propose to perform joint source-channel coding. Since the block length is short we obviate the need to go to the digital domain altogether and instead consider analog joint source-channel coding. For the case where the communication signaling rate is twice the sampling rate, we employ the Archimedean bi-spiral-based Shannon-Kotel'nikov analog maps to show significant improvement in stability margins and linear-quadratic Gaussian (LQG) costs over simple schemes that employ repetition.

  7. Multi-rate control over AWGN channels via analog joint source-channel coding

    KAUST Repository

    Khina, Anatoly

    2017-01-05

    We consider the problem of controlling an unstable plant over an additive white Gaussian noise (AWGN) channel with a transmit power constraint, where the signaling rate of communication is larger than the sampling rate (for generating observations and applying control inputs) of the underlying plant. Such a situation is quite common since sampling is done at a rate that captures the dynamics of the plant and which is often much lower than the rate that can be communicated. This setting offers the opportunity of improving the system performance by employing multiple channel uses to convey a single message (output plant observation or control input). Common ways of doing so are through either repeating the message, or by quantizing it to a number of bits and then transmitting a channel coded version of the bits whose length is commensurate with the number of channel uses per sampled message. We argue that such “separated source and channel coding” can be suboptimal and propose to perform joint source-channel coding. Since the block length is short we obviate the need to go to the digital domain altogether and instead consider analog joint source-channel coding. For the case where the communication signaling rate is twice the sampling rate, we employ the Archimedean bi-spiral-based Shannon-Kotel\\'nikov analog maps to show significant improvement in stability margins and linear-quadratic Gaussian (LQG) costs over simple schemes that employ repetition.

  8. PRESSURE - WATER and Other Data from MULTIPLE SHIPS and Other Platforms From World-Wide Distribution from 19950101 to 19951231 (NODC Accession 9600078)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The accession contains Salinity Temperature and Depth (STD) data in the (TESAC) format. This contains one year data that was sent as radio messages from multiple...

  9. Stress wave communication in concrete: I. Characterization of a smart aggregate based concrete channel

    International Nuclear Information System (INIS)

    Siu, Sam; Wu, Wenhao; Zhi Ding; Ji, Qing; Song, Gangbing

    2014-01-01

    In this paper, we explore the characteristics of a concrete block as a communication medium with piezoelectric transducers. Lead zirconate titanate (PZT) is a piezoceramic material used in smart materials intended for structural health monitoring (SHM). Additionally, a PZT based smart aggregate (SA) is capable of implementing stress wave communications which is utilized for investigating the properties of an SA based concrete channel. Our experiments characterize single-input single-output and multiple-input multiple-output (MIMO) concrete channels in order to determine the potential capacity limits of SAs for stress wave communication. We first provide estimates and validate the concrete channel response. Followed by a theoretical upper bound for data rate capacity of our two channels, demonstrating a near-twofold increase in channel capacity by utilizing multiple transceivers to form an MIMO system. Our channel modeling techniques and results are also helpful to researchers using SAs with regards to SHM, energy harvesting and stress wave communications. (paper)

  10. Kir 4.1 inward rectifier potassium channel is upregulated in astrocytes in a murine multiple sclerosis model.

    Science.gov (United States)

    Mercado, Francisco; Almanza, Angélica; Rubio, Nazario; Soto, Enrique

    2018-06-11

    Multiple sclerosis (MS) is a high prevalence degenerative disease characterized at the cellular level by glial and neuronal cell death. The causes of cell death during the disease course are not fully understood. In this work we demonstrate that in a MS model induced by Theiler's murine encephalomyelitis virus (TMEV) infection, the inward rectifier (Kir) 4.1 potassium channel subunit is overexpressed in astrocytes. In voltage clamp experiments the inward current density from TMEV-infected astrocytes was significantly larger than in mock-infected ones. The cRNA hybridization analysis from mock- and TMEV-infected cells showed an upregulation of a potassium transport channel coding sequence. We validated this mRNA increase by RT-PCR and quantitative PCR using Kir 4.1 specific primers. Western blotting experiments confirmed the upregulation of Kir 4.1, and alignment between sequences provided the demonstration that the over-expressed gene encodes for a Kir family member. Flow cytometry showed that the Kir 4.1 protein is located mainly in the cell membrane in mock and TMEV-infected astrocytes. Our results demonstrate an increase in K + inward current in TMEV-infected glial cells, this increment may reduce the neuronal depolarization, contributing to cell resilience mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Comparison of neural network applications for channel assignment in cellular TDMA networks and dynamically sectored PCS networks

    Science.gov (United States)

    Hortos, William S.

    1997-04-01

    The use of artificial neural networks (NNs) to address the channel assignment problem (CAP) for cellular time-division multiple access and code-division multiple access networks has previously been investigated by this author and many others. The investigations to date have been based on a hexagonal cell structure established by omnidirectional antennas at the base stations. No account was taken of the use of spatial isolation enabled by directional antennas to reduce interference between mobiles. Any reduction in interference translates into increased capacity and consequently alters the performance of the NNs. Previous studies have sought to improve the performance of Hopfield- Tank network algorithms and self-organizing feature map algorithms applied primarily to static channel assignment (SCA) for cellular networks that handle uniformly distributed, stationary traffic in each cell for a single type of service. The resulting algorithms minimize energy functions representing interference constraint and ad hoc conditions that promote convergence to optimal solutions. While the structures of the derived neural network algorithms (NNAs) offer the potential advantages of inherent parallelism and adaptability to changing system conditions, this potential has yet to be fulfilled the CAP for emerging mobile networks. The next-generation communication infrastructures must accommodate dynamic operating conditions. Macrocell topologies are being refined to microcells and picocells that can be dynamically sectored by adaptively controlled, directional antennas and programmable transceivers. These networks must support the time-varying demands for personal communication services (PCS) that simultaneously carry voice, data and video and, thus, require new dynamic channel assignment (DCA) algorithms. This paper examines the impact of dynamic cell sectoring and geometric conditioning on NNAs developed for SCA in omnicell networks with stationary traffic to improve the metrics

  12. Efficient Bayesian Compressed Sensing-based Channel Estimation Techniques for Massive MIMO-OFDM Systems

    OpenAIRE

    Al-Salihi, Hayder Qahtan Kshash; Nakhai, Mohammad Reza

    2017-01-01

    Efficient and highly accurate channel state information (CSI) at the base station (BS) is essential to achieve the potential benefits of massive multiple input multiple output (MIMO) systems. However, the achievable accuracy that is attainable is limited in practice due to the problem of pilot contamination. It has recently been shown that compressed sensing (CS) techniques can address the pilot contamination problem. However, CS-based channel estimation requires prior knowledge of channel sp...

  13. On the performance of shared access control strategy for femtocells

    KAUST Repository

    Magableh, Amer M.

    2013-02-18

    Femtocells can be employed in cellular systems to enhance the indoor coverage, especially in the areas with high capacity growing demands and high traffic rates. In this paper, we propose an efficient resource utilization protocol, named as shared access protocol (SAP), to enable the unauthorized macrocell user equipment to communicate with partially closed-access femtocell base station to improve and enhance the system performance. The system model considers a femtocell that is equipped with a total of N separated antennas or channels to multiplex independent traffic. Then, a set of N1 channels is used for closed access only by the authorized users, and the remaining set of channel resources can be used for open access by either authorized or unauthorized users upon their demands and spatial locations. For this system model, we obtain the signal-to-interference ratio characteristics, such as the distribution and the moment generating function, in closed forms for two fading models of indoor and outdoor environments. The signal-tointerference ratio statistics are then used to derive some important performance measures of the proposed SAP in closed form, such as the average bit error rate, outage probability, and average channel capacity for the two fading models under consideration. Numerical results for the obtained expressions are provided and supported by Monte Carlo simulations to validate the analytical development and study the effectiveness of the proposed SAP under different conditions. Copyright © 2012 John Wiley and Sons, Ltd.

  14. Two-Channel Kondo Effect in a Modified Single Electron Transistor

    Science.gov (United States)

    Oreg, Yuval; Goldhaber-Gordon, David

    2003-04-01

    We suggest a simple system of two electron droplets which should display two-channel Kondo behavior at experimentally accessible temperatures. Stabilization of the two-channel Kondo fixed point requires fine control of the electrochemical potential in each droplet, which can be achieved by adjusting voltages on nearby gate electrodes. We study the conditions for obtaining this type of two-channel Kondo behavior, discuss the experimentally observable consequences, and explore the gener­alization to the multichannel Kondo case.

  15. WATER TEMPERATURE and Other Data from MULTIPLE SHIPS From NE Atlantic (limit-40 W) and Others from 19500831 to 19881231 (NODC Accession 9200060)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains contains chlorophyll data collected from 1958-1988 using multiple ships. Marine pigments, productivity, and associated chemistry data were...

  16. Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks

    Science.gov (United States)

    Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.

    2011-01-01

    In this paper, we propose a scheme for the optimal allocation of power, source coding rate, and channel coding rate for each of the nodes of a wireless Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network. The optimization is quality-driven, i.e. the received quality of the video that is transmitted by the nodes is optimized. The scheme takes into account the fact that the sensor nodes may be imaging scenes with varying levels of motion. Nodes that image low-motion scenes will require a lower source coding rate, so they will be able to allocate a greater portion of the total available bit rate to channel coding. Stronger channel coding will mean that such nodes will be able to transmit at lower power. This will both increase battery life and reduce interference to other nodes. Two optimization criteria are considered. One that minimizes the average video distortion of the nodes and one that minimizes the maximum distortion among the nodes. The transmission powers are allowed to take continuous values, whereas the source and channel coding rates can assume only discrete values. Thus, the resulting optimization problem lies in the field of mixed-integer optimization tasks and is solved using Particle Swarm Optimization. Our experimental results show the importance of considering the characteristics of the video sequences when determining the transmission power, source coding rate and channel coding rate for the nodes of the visual sensor network.

  17. Metasurface for multi-channel terahertz beam splitters and polarization rotators

    Science.gov (United States)

    Zang, XiaoFei; Gong, HanHong; Li, Zhen; Xie, JingYa; Cheng, QingQing; Chen, Lin; Shkurinov, Alexander P.; Zhu, YiMing; Zhuang, SongLin

    2018-04-01

    Terahertz beam splitters and polarization rotators are two typical devices with wide applications ranging from terahertz communication to system integration. However, they are faced with severe challenges in manipulating THz waves in multiple channels, which is desirable for system integration and device miniaturization. Here, we propose a method to design ultra-thin multi-channel THz beam splitters and polarization rotators simultaneously. The reflected beams are divided into four beams with nearly the same density under illumination of linear-polarized THz waves, while the polarization of reflected beams in each channel is modulated with a rotation angle or invariable with respect to the incident THz waves, leading to the multi-channel polarization rotator (multiple polarization rotation in the reflective channels) and beam splitter, respectively. Reflective metasurfaces, created by patterning metal-rods with different orientations on a polyimide film, were fabricated and measured to demonstrate these characteristics. The proposed approach provides an efficient way of controlling polarization of THz waves in various channels, which significantly simplifies THz functional devices and the experimental system.

  18. A Novel Simulator of Nonstationary Random MIMO Channels in Rayleigh Fading Scenarios

    Directory of Open Access Journals (Sweden)

    Qiuming Zhu

    2016-01-01

    Full Text Available For simulations of nonstationary multiple-input multiple-output (MIMO Rayleigh fading channels in time-variant scattering environments, a novel channel simulator is proposed based on the superposition of chirp signals. This new method has the advantages of low complexity and implementation simplicity as the sum of sinusoids (SOS method. In order to reproduce realistic time varying statistics for dynamic channels, an efficient parameter computation method is also proposed for updating the frequency parameters of employed chirp signals. Simulation results indicate that the proposed simulator is effective in generating nonstationary MIMO channels with close approximation of the time-variant statistical characteristics in accordance with the expected theoretical counterparts.

  19. Cognitive Spectrum Efficient Multiple Access Technique using Relay Systems

    DEFF Research Database (Denmark)

    Frederiksen, Flemming Bjerge; Prasad, Ramjee

    2007-01-01

    Methods to enhance the use of the frequency spectrum by automatical spectrum sensing plus spectrum sharing in a cognitive radio technology context will be presented and discussed in this paper. Ideas to increase the coverage of cellular systems by relay channels, relay stations and collaborate...

  20. Radio frequency channel coding made easy

    CERN Document Server

    Faruque, Saleh

    2016-01-01

    This book introduces Radio Frequency Channel Coding to a broad audience. The author blends theory and practice to bring readers up-to-date in key concepts, underlying principles and practical applications of wireless communications. The presentation is designed to be easily accessible, minimizing mathematics and maximizing visuals.

  1. Molecular mechanism of voltage sensing in voltage-gated proton channels

    Science.gov (United States)

    Rebolledo, Santiago; Perez, Marta E.

    2013-01-01

    Voltage-gated proton (Hv) channels play an essential role in phagocytic cells by generating a hyperpolarizing proton current that electrically compensates for the depolarizing current generated by the NADPH oxidase during the respiratory burst, thereby ensuring a sustained production of reactive oxygen species by the NADPH oxidase in phagocytes to neutralize engulfed bacteria. Despite the importance of the voltage-dependent Hv current, it is at present unclear which residues in Hv channels are responsible for the voltage activation. Here we show that individual neutralizations of three charged residues in the fourth transmembrane domain, S4, all reduce the voltage dependence of activation. In addition, we show that the middle S4 charged residue moves from a position accessible from the cytosolic solution to a position accessible from the extracellular solution, suggesting that this residue moves across most of the membrane electric field during voltage activation of Hv channels. Our results show for the first time that the charge movement of these three S4 charges accounts for almost all of the measured gating charge in Hv channels. PMID:23401575

  2. Awareness and Use of Open Access Scholarly Publications by ...

    African Journals Online (AJOL)

    The study investigated the awareness and use of Open Access scholarly publications by postgraduate students of Faculty of Science in Ahmadu Bello University Zaria (ABU), Kaduna State, Nigeria. The study was guided by four research objectives namely to determine the channels of awareness of Open Access ...

  3. Spatial-Temporal Correlation Properties of the 3GPP Spatial Channel Model and the Kronecker MIMO Channel Model

    Directory of Open Access Journals (Sweden)

    Cheng-Xiang Wang

    2007-02-01

    Full Text Available The performance of multiple-input multiple-output (MIMO systems is greatly influenced by the spatial-temporal correlation properties of the underlying MIMO channels. This paper investigates the spatial-temporal correlation characteristics of the spatial channel model (SCM in the Third Generation Partnership Project (3GPP and the Kronecker-based stochastic model (KBSM at three levels, namely, the cluster level, link level, and system level. The KBSM has both the spatial separability and spatial-temporal separability at all the three levels. The spatial-temporal separability is observed for the SCM only at the system level, but not at the cluster and link levels. The SCM shows the spatial separability at the link and system levels, but not at the cluster level since its spatial correlation is related to the joint distribution of the angle of arrival (AoA and angle of departure (AoD. The KBSM with the Gaussian-shaped power azimuth spectrum (PAS is found to fit best the 3GPP SCM in terms of the spatial correlations. Despite its simplicity and analytical tractability, the KBSM is restricted to model only the average spatial-temporal behavior of MIMO channels. The SCM provides more insights of the variations of different MIMO channel realizations, but the implementation complexity is relatively high.

  4. Asynchronous Free-Space Optical CDMA Communications System for Last-mile Access Network

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Raddo, Thiago R.; Sanches, Anderson L.

    2016-01-01

    We propose a new hybrid asynchronous OCDMA-FSO communications system for access network solutions. New ABER expressions are derived under gamma-gamma scintillation channels, where all users can surprisingly achieve error-free transmissions when FEC is employed.......We propose a new hybrid asynchronous OCDMA-FSO communications system for access network solutions. New ABER expressions are derived under gamma-gamma scintillation channels, where all users can surprisingly achieve error-free transmissions when FEC is employed....

  5. Spatial Correlation of PAN UWB-MIMO Channel Including User Dynamics

    DEFF Research Database (Denmark)

    Wang, Yu; Kovacs, Istvan Zsolt; Pedersen, Gert Frølund

    . It is found the channel shows spatial correlated wideband power, and spatial uncorrelated complex channel coefficients at different frequencies and delays with respect to a correlation coefficient threshold of 0.7. The Kronecker model is proved not suitable for the investigated scenarios. The MIMO UWB channel......In this paper we present and analyze spatial correlation properties of indoor 4x2 MIMO UWB channels in personal area network (PAN) scenarios. The presented results are based on measurement of radio links between an access point like device and a hand held or belt mounted device with dynamic user...

  6. Construction and validation of a homology model of the human voltage-gated proton channel hHV1.

    Science.gov (United States)

    Kulleperuma, Kethika; Smith, Susan M E; Morgan, Deri; Musset, Boris; Holyoake, John; Chakrabarti, Nilmadhab; Cherny, Vladimir V; DeCoursey, Thomas E; Pomès, Régis

    2013-04-01

    The topological similarity of voltage-gated proton channels (H(V)1s) to the voltage-sensing domain (VSD) of other voltage-gated ion channels raises the central question of whether H(V)1s have a similar structure. We present the construction and validation of a homology model of the human H(V)1 (hH(V)1). Multiple structural alignment was used to construct structural models of the open (proton-conducting) state of hH(V)1 by exploiting the homology of hH(V)1 with VSDs of K(+) and Na(+) channels of known three-dimensional structure. The comparative assessment of structural stability of the homology models and their VSD templates was performed using massively repeated molecular dynamics simulations in which the proteins were allowed to relax from their initial conformation in an explicit membrane mimetic. The analysis of structural deviations from the initial conformation based on up to 125 repeats of 100-ns simulations for each system reveals structural features consistently retained in the homology models and leads to a consensus structural model for hH(V)1 in which well-defined external and internal salt-bridge networks stabilize the open state. The structural and electrostatic properties of this open-state model are compatible with proton translocation and offer an explanation for the reversal of charge selectivity in neutral mutants of Asp(112). Furthermore, these structural properties are consistent with experimental accessibility data, providing a valuable basis for further structural and functional studies of hH(V)1. Each Arg residue in the S4 helix of hH(V)1 was replaced by His to test accessibility using Zn(2+) as a probe. The two outermost Arg residues in S4 were accessible to external solution, whereas the innermost one was accessible only to the internal solution. Both modeling and experimental data indicate that in the open state, Arg(211), the third Arg residue in the S4 helix in hH(V)1, remains accessible to the internal solution and is located near the

  7. Estimating the two-particle K-matrix for multiple partial waves and decay channels from finite-volume energies

    Directory of Open Access Journals (Sweden)

    Colin Morningstar

    2017-11-01

    Full Text Available An implementation of estimating the two-to-two K-matrix from finite-volume energies based on the Lüscher formalism and involving a Hermitian matrix known as the “box matrix” is described. The method includes higher partial waves and multiple decay channels. Two fitting procedures for estimating the K-matrix parameters, which properly incorporate all statistical covariances, are discussed. Formulas and software for handling total spins up to S=2 and orbital angular momenta up to L=6 are obtained for total momenta in several directions. First tests involving ρ-meson decay to two pions include the L=3 and L=5 partial waves, and the contributions from these higher waves are found to be negligible in the elastic energy range.

  8. Optimal Power Allocation for Downstream xDSL With Per-Modem Total Power Constraints: Broadcast Channel Optimal Spectrum Balancing (BC-OSB)

    Science.gov (United States)

    Le Nir, Vincent; Moonen, Marc; Verlinden, Jan; Guenach, Mamoun

    2009-02-01

    Recently, the duality between Multiple Input Multiple Output (MIMO) Multiple Access Channels (MAC) and MIMO Broadcast Channels (BC) has been established under a total power constraint. The same set of rates for MAC can be achieved in BC exploiting the MAC-BC duality formulas while preserving the total power constraint. In this paper, we describe the BC optimal power allo- cation applying this duality in a downstream x-Digital Subscriber Lines (xDSL) context under a total power constraint for all modems over all tones. Then, a new algorithm called BC-Optimal Spectrum Balancing (BC-OSB) is devised for a more realistic power allocation under per-modem total power constraints. The capacity region of the primal BC problem under per-modem total power constraints is found by the dual optimization problem for the BC under per-modem total power constraints which can be rewritten as a dual optimization problem in the MAC by means of a precoder matrix based on the Lagrange multipliers. We show that the duality gap between the two problems is zero. The multi-user power allocation problem has been solved for interference channels and MAC using the OSB algorithm. In this paper we solve the problem of multi-user power allocation for the BC case using the OSB algorithm as well and we derive a computational efficient algorithm that will be referred to as BC-OSB. Simulation results are provided for two VDSL2 scenarios: the first one with Differential-Mode (DM) transmission only and the second one with both DM and Phantom- Mode (PM) transmissions.

  9. Multi-carrier Communications over Time-varying Acoustic Channels

    Science.gov (United States)

    Aval, Yashar M.

    Acoustic communication is an enabling technology for many autonomous undersea systems, such as those used for ocean monitoring, offshore oil and gas industry, aquaculture, or port security. There are three main challenges in achieving reliable high-rate underwater communication: the bandwidth of acoustic channels is extremely limited, the propagation delays are long, and the Doppler distortions are more pronounced than those found in wireless radio channels. In this dissertation we focus on assessing the fundamental limitations of acoustic communication, and designing efficient signal processing methods that cam overcome these limitations. We address the fundamental question of acoustic channel capacity (achievable rate) for single-input-multi-output (SIMO) acoustic channels using a per-path Rician fading model, and focusing on two scenarios: narrowband channels where the channel statistics can be approximated as frequency- independent, and wideband channels where the nominal path loss is frequency-dependent. In each scenario, we compare several candidate power allocation techniques, and show that assigning uniform power across all frequencies for the first scenario, and assigning uniform power across a selected frequency-band for the second scenario, are the best practical choices in most cases, because the long propagation delay renders the feedback information outdated for power allocation based on the estimated channel response. We quantify our results using the channel information extracted form the 2010 Mobile Acoustic Communications Experiment (MACE'10). Next, we focus on achieving reliable high-rate communication over underwater acoustic channels. Specifically, we investigate orthogonal frequency division multiplexing (OFDM) as the state-of-the-art technique for dealing with frequency-selective multipath channels, and propose a class of methods that compensate for the time-variation of the underwater acoustic channel. These methods are based on multiple

  10. Achievable Rate of Spectrum Sharing Cognitive Radio Multiple-Antenna Channels

    KAUST Repository

    Sboui, Lokman; Ghazzai, Hakim; Rezki, Zouheir; Alouini, Mohamed-Slim

    2015-01-01

    to communicate with a common receiver. The proposed scheme exploits, at the same time, the free eigenmodes of the primary channel after a space alignment procedure and the interference threshold tolerated by the PU. At the common receiver, we adopt a Successive

  11. Optimization of Training Signal Transmission for Estimating MIMO Channel under Antenna Mutual Coupling Conditions

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2010-01-01

    Full Text Available This paper reports investigations on the effect of antenna mutual coupling on performance of training-based Multiple-Input Multiple-Output (MIMO channel estimation. The influence of mutual coupling is assessed for two training-based channel estimation methods, Scaled Least Square (SLS and Minimum Mean Square Error (MMSE. It is shown that the accuracy of MIMO channel estimation is governed by the sum of eigenvalues of channel correlation matrix which in turn is influenced by the mutual coupling in transmitting and receiving array antennas. A water-filling-based procedure is proposed to optimize the training signal transmission to minimize the MIMO channel estimation errors.

  12. Semi-blind identification of wideband MIMO channels via stochastic sampling

    OpenAIRE

    Andrieu, Christophe; Piechocki, Robert J.; McGeehan, Joe P.; Armour, Simon M.

    2003-01-01

    In this paper we address the problem of wide-band multiple-input multiple-output (MIMO) channel (multidimensional time invariant FIR filter) identification using Markov chains Monte Carlo methods. Towards this end we develop a novel stochastic sampling technique that produces a sequence of multidimensional channel samples. The method is semi-blind in the sense that it uses a very short training sequence. In such a framework the problem is no longer analytically tractable; hence we resort to s...

  13. Secret Sharing over Fast-Fading MIMO Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Bloch Matthieu

    2009-01-01

    Full Text Available Secret sharing over the fast-fading MIMO wiretap channel is considered. A source and a destination try to share secret information over a fast-fading MIMO channel in the presence of an eavesdropper who also makes channel observations that are different from but correlated to those made by the destination. An interactive, authenticated public channel with unlimited capacity is available to the source and destination for the secret sharing process. This situation is a special case of the "channel model with wiretapper" considered by Ahlswede and Csiszár. An extension of their result to continuous channel alphabets is employed to evaluate the key capacity of the fast-fading MIMO wiretap channel. The effects of spatial dimensionality provided by the use of multiple antennas at the source, destination, and eavesdropper are then investigated.

  14. The minimum yield in channeling

    International Nuclear Information System (INIS)

    Uguzzoni, A.; Gaertner, K.; Lulli, G.; Andersen, J.U.

    2000-01-01

    A first estimate of the minimum yield was obtained from Lindhard's theory, with the assumption of a statistical equilibrium in the transverse phase-space of channeled particles guided by a continuum axial potential. However, computer simulations have shown that this estimate should be corrected by a fairly large factor, C (approximately equal to 2.5), called the Barrett factor. We have shown earlier that the concept of a statistical equilibrium can be applied to understand this result, with the introduction of a constraint in phase-space due to planar channeling of axially channeled particles. Here we present an extended test of these ideas on the basis of computer simulation of the trajectories of 2 MeV α particles in Si. In particular, the gradual trend towards a full statistical equilibrium is studied. We also discuss the introduction of this modification of standard channeling theory into descriptions of the multiple scattering of channeled particles (dechanneling) by a master equation and show that the calculated minimum yields are in very good agreement with the results of a full computer simulation

  15. Adaptive Space-Time-Spreading-Assisted Wideband CDMA Systems Communicating over Dispersive Nakagami- Fading Channels

    Directory of Open Access Journals (Sweden)

    Yang Lie-Liang

    2005-01-01

    Full Text Available In this contribution, the performance of wideband code-division multiple-access (W-CDMA systems using space-time-spreading- (STS- based transmit diversity is investigated, when frequency-selective Nakagami- fading channels, multiuser interference, and background noise are considered. The analysis and numerical results suggest that the achievable diversity order is the product of the frequency-selective diversity order and the transmit diversity order. Furthermore, both the transmit diversity and the frequency-selective diversity have the same order of importance. Since W-CDMA signals are subjected to frequency-selective fading, the number of resolvable paths at the receiver may vary over a wide range depending on the transmission environment encountered. It can be shown that, for wireless channels where the frequency selectivity is sufficiently high, transmit diversity may be not necessitated. Under this case, multiple transmission antennas can be leveraged into an increased bitrate. Therefore, an adaptive STS-based transmission scheme is then proposed for improving the throughput of W-CDMA systems. Our numerical results demonstrate that this adaptive STS-based transmission scheme is capable of significantly improving the effective throughput of W-CDMA systems. Specifically, the studied W-CDMA system's bitrate can be increased by a factor of three at the modest cost of requiring an extra 0.4 dB or 1.2 dB transmitted power in the context of the investigated urban or suburban areas, respectively.

  16. Improving antivenom availability and accessibility: science, technology, and beyond.

    Science.gov (United States)

    Gutiérrez, José María

    2012-09-15

    Snakebite envenomings constitute a serious and neglected public health problem. Despite the fact that effective treatment exists, i.e. administration of animal-derived antivenoms, the availability and accessibility of these life-saving immunobiologicals is deficitary in various parts of the world, particularly in sub-Saharan Africa and some regions of Asia. This article discusses some of the problems that need to be circumvented in order to improve the availability and accessibility of antivenoms. The conglomerate of antivenom manufacturers is highly heterogeneous in terms of technological base, qualification of staff, implementation of Good Manufacturing Practices (GMPs), and volume of production. Therefore, improvements in antivenom quality and availability should be based on strategies tailored to the situation of each region or country; in this context, three different scenarios are discussed. Accessibility of antivenoms demands concerted efforts at multiple levels, including raising the awareness of public health authorities on the relevance of the problem, implementing innovative antivenom purchasing schemes, strengthening national distribution channels on the basis of robust epidemiological information, improving the cold chain and the provision of health services in remote rural settings, supporting the correct use of antivenoms, and promoting the involvement of local community organizations in various aspects of prevention and management. These tasks should be envisaged in terms of synergistic, interprogrammatic and intersectorial interventions, with the participation of many players. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Electron angular distribution axial channeling

    International Nuclear Information System (INIS)

    Khokonov, A.Kh.; Khokonov, M.Kh.

    1989-01-01

    Angular distributions of ultra-relativistic electrons are calculated in the assumption about presence of statistical equilibrium. Analysis is based on numerical solution of Fokker-Planck type kinetic equation. It is shown that in contrast to case of amorphous medium, the multiple scattering at axial channeling of negative particles results in self-focusing of the initial beam particles and due to it number of electrons moving at an angles to the chain, which are smaller, than critical angle of channeling, may increase by several times as compared to the initial one

  18. Interference-Aware OFDM Receiver for Channels with Sparse Common Supports

    DEFF Research Database (Denmark)

    Barbu, Oana-Elena; Manchón, Carles Navarro; Badiu, Mihai Alin

    2017-01-01

    We design an algorithm for OFDM receivers operating in co-channel interference conditions, where the serving and interfering transmitters are synchronized in time. The channel estimation problem is formulated as one of sparse signal reconstruction using multiple measurement vectors. The proposed...

  19. Teaching Individuals with Profound Multiple Disabilities to Access Preferred Stimuli with Multiple Microswitches

    Science.gov (United States)

    Tam, Gee May; Phillips, Katrina J.; Mudford, Oliver C.

    2011-01-01

    We replicated and extended previous research on microswitch facilitated choice making by individuals with profound multiple disabilities. Following an assessment of stimulus preferences, we taught 6 adults with profound multiple disabilities to emit 2 different responses to activate highly preferred stimuli. All participants learnt to activate…

  20. PERFORMANCE OF THE ZERO FORCING PRECODING MIMO BROADCAST SYSTEMS WITH CHANNEL ESTIMATION ERRORS

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Liu Zhanli; Wang Yan; You Xiaohu

    2007-01-01

    In this paper, the effect of channel estimation errors upon the Zero Forcing (ZF) precoding Multiple Input Multiple Output Broadcast (MIMO BC) systems was studied. Based on the two kinds of Gaussian estimation error models, the performance analysis is conducted under different power allocation strategies. Analysis and simulation show that if the covariance of channel estimation errors is independent of the received Signal to Noise Ratio (SNR), imperfect channel knowledge deteriorates the sum capacity and the Bit Error Rate (BER) performance severely. However, under the situation of orthogonal training and the Minimum Mean Square Error (MMSE) channel estimation, the sum capacity and BER performance are consistent with those of the perfect Channel State Information (CSI)with only a performance degradation.