WorldWideScience

Sample records for multiple 3-d seismic

  1. E3D, 3-D Elastic Seismic Wave Propagation Code

    Larsen, S.; Harris, D.; Schultz, C.; Maddix, D.; Bakowsky, T.; Bent, L.

    2004-01-01

    1 - Description of program or function: E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output. 2 - Methods: The software simulates wave propagation by solving the elasto-dynamic formulation of the full wave equation on a staggered grid. The solution scheme is 4-order accurate in space, 2-order accurate in time

  2. 3D seismic surveys for shallow targets

    Lawton, D.C.; Stewart, R.R.; Bertram, M.B. [Calgary Univ., AB (Canada). Dept. of Geoscience, Consortium for Research in Elastic Wave Exploration Seismology

    2008-07-01

    Although 3D seismic surveys are generally used to map deep hydrocarbon plays, this study demonstrated that they can be useful for characterizing shallow targets, such as oilsands deposits. A high-resolution 3D seismic survey was undertaken to map shallow stratigraphy near Calgary, Alberta. The project demonstrated the efficacy of reflection seismic surveys for shallow targets ranging from 100 to 500 metres. The purpose of the program was to map shallow stratigraphy and structure to depths of up to 500m, and to investigate shallow aquifers in the study area. The results of the survey illustrated the opportunity that 3D seismic surveys provide for mapping shallow reflectors and the acquisition geometry needed to image them. Applications include mapping the distribution of shallow aquifers, delineating shallow coals and investigating oilsands deposits. 2 refs., 5 figs.

  3. 3D Seismic Imaging using Marchenko Methods

    Lomas, A.; Curtis, A.

    2017-12-01

    Marchenko methods are novel, data driven techniques that allow seismic wavefields from sources and receivers on the Earth's surface to be redatumed to construct wavefields with sources in the subsurface - including complex multiply-reflected waves, and without the need for a complex reference model. In turn, this allows subsurface images to be constructed at any such subsurface redatuming points (image or virtual receiver points). Such images are then free of artefacts from multiply-scattered waves that usually contaminate migrated seismic images. Marchenko algorithms require as input the same information as standard migration methods: the full reflection response from sources and receivers at the Earth's surface, and an estimate of the first arriving wave between the chosen image point and the surface. The latter can be calculated using a smooth velocity model estimated using standard methods. The algorithm iteratively calculates a signal that focuses at the image point to create a virtual source at that point, and this can be used to retrieve the signal between the virtual source and the surface. A feature of these methods is that the retrieved signals are naturally decomposed into up- and down-going components. That is, we obtain both the signal that initially propagated upwards from the virtual source and arrived at the surface, separated from the signal that initially propagated downwards. Figure (a) shows a 3D subsurface model with a variable density but a constant velocity (3000m/s). Along the surface of this model (z=0) in both the x and y directions are co-located sources and receivers at 20-meter intervals. The redatumed signal in figure (b) has been calculated using Marchenko methods from a virtual source (1200m, 500m and 400m) to the surface. For comparison the true solution is given in figure (c), and shows a good match when compared to figure (b). While these 2D redatuming and imaging methods are still in their infancy having first been developed in

  4. Seismic processing using Parallel 3D FMM

    Borlaug, Idar

    2007-01-01

    This thesis develops and tests 3D Fast Marching Method (FMM) algorithm and apply these to seismic simulations. The FMM is a general method for monotonically advancing fronts, originally developed by Sethian. It calculates the first arrival time for an advancing front or wave. FMM methods are used for a variety of applications including, fatigue cracks in materials, lymph node segmentation in CT images, computing skeletons and centerlines in 3D objects and for finding salt formations in seismi...

  5. Tectonic history in the Fort Worth Basin, north Texas, derived from well-log integration with multiple 3D seismic reflection surveys: implications for paleo and present-day seismicity in the basin

    Magnani, M. B.; Hornbach, M. J.

    2016-12-01

    Oil and gas exploration and production in the Fort Worth Basin (FWB) in north Texas have accelerated in the last 10 years due to the success of unconventional gas production. Here, hydraulic fracturing wastewater is disposed via re-injection into deep wells that penetrate Ordovician carbonate formations. The rise in wastewater injection has coincided with a marked rise in earthquake rates, suggesting a causal relationship between industry practices and seismicity. Most studies addressing this relationship in intraplate regions like the FWB focus on current seismicity, which provides an a-posteriori assessment of the processes involved. 3D seismic reflection data contribute complementary information on the existence, distribution, orientation and long-term deformation history of faults that can potentially become reactivated by the injection process. Here we present new insights into the tectonic evolution of faults in the FWB using multiple 3D seismic reflection surveys in the basin, west of the Dallas Fort-Worth Metroplex, where high-volume wastewater injection wells have increased most significantly in number in the past few years. The datasets image with remarkable clarity the 3,300 m-thick sedimentary rocks of the basin, from the crystalline basement to the Cretaceous cover, with particular detail of the Paleozoic section. The data, interpreted using coincident and nearby wells to correlate seismic reflections with stratigraphic markers, allow us to identify faults, extract their orientation, length and displacements at several geologic time intervals, and therefore, reconstruct the long-term deformation history. Throughout the basin, the data show that all seismically detectable faults were active during the Mississippian and Pennsylvanian, but that displacement amounts drop below data resolution ( 7 m) in the post-Pennsylvanian deposits. These results indicate that faults have been inactive for at least the past 300 Ma, until the recent 2008 surge in

  6. Redatuming of sparse 3D seismic data

    Tegtmeier, S.

    2007-01-01

    The purpose of a seismic survey is to produce an image of the subsurface providing an overview of the earth's discontinuities. The aim of seismic processing is to recreate this image. The seismic method is especially well suited for the exploration and the monitoring of hydrocarbon reservoirs. A

  7. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas

  8. AxiSEM3D: broadband seismic wavefields in 3-D aspherical Earth models

    Leng, K.; Nissen-Meyer, T.; Zad, K. H.; van Driel, M.; Al-Attar, D.

    2017-12-01

    Seismology is the primary tool for data-informed inference of Earth structure and dynamics. Simulating seismic wave propagation at a global scale is fundamental to seismology, but remains as one of most challenging problems in scientific computing, because of both the multiscale nature of Earth's interior and the observable frequency band of seismic data. We present a novel numerical method to simulate global seismic wave propagation in realistic 3-D Earth models. Our method, named AxiSEM3D, is a hybrid of spectral element method and pseudospectral method. It reduces the azimuthal dimension of wavefields by means of a global Fourier series parameterization, of which the number of terms can be locally adapted to the inherent azimuthal smoothness of the wavefields. AxiSEM3D allows not only for material heterogeneities, such as velocity, density, anisotropy and attenuation, but also for finite undulations on radial discontinuities, both solid-solid and solid-fluid, and thereby a variety of aspherical Earth features such as ellipticity, topography, variable crustal thickness, and core-mantle boundary topography. Such interface undulations are equivalently interpreted as material perturbations of the contiguous media, based on the "particle relabelling transformation". Efficiency comparisons show that AxiSEM3D can be 1 to 3 orders of magnitude faster than conventional 3-D methods, with the speedup increasing with simulation frequency and decreasing with model complexity, but for all realistic structures the speedup remains at least one order of magnitude. The observable frequency range of global seismic data (up to 1 Hz) has been covered for wavefield modelling upon a 3-D Earth model with reasonable computing resources. We show an application of surface wave modelling within a state-of-the-art global crustal model (Crust1.0), with the synthetics compared to real data. The high-performance C++ code is released at github.com/AxiSEM3D/AxiSEM3D.

  9. Frozen Gaussian approximation for 3D seismic tomography

    Chai, Lihui; Tong, Ping; Yang, Xu

    2018-05-01

    Three-dimensional (3D) wave-equation-based seismic tomography is computationally challenging in large scales and high-frequency regime. In this paper, we apply the frozen Gaussian approximation (FGA) method to compute 3D sensitivity kernels and seismic tomography of high-frequency. Rather than standard ray theory used in seismic inversion (e.g. Kirchhoff migration and Gaussian beam migration), FGA is used to compute the 3D high-frequency sensitivity kernels for travel-time or full waveform inversions. Specifically, we reformulate the equations of the forward and adjoint wavefields for the purpose of convenience to apply FGA, and with this reformulation, one can efficiently compute the Green’s functions whose convolutions with source time function produce wavefields needed for the construction of 3D kernels. Moreover, a fast summation method is proposed based on local fast Fourier transform which greatly improves the speed of reconstruction as the last step of FGA algorithm. We apply FGA to both the travel-time adjoint tomography and full waveform inversion (FWI) on synthetic crosswell seismic data with dominant frequencies as high as those of real crosswell data, and confirm again that FWI requires a more sophisticated initial velocity model for the convergence than travel-time adjoint tomography. We also numerically test the accuracy of applying FGA to local earthquake tomography. This study paves the way to directly apply wave-equation-based seismic tomography methods into real data around their dominant frequencies.

  10. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    Frantzeskakis, Theofanis; Konstantaras, Anthony

    2015-04-01

    During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis

  11. 3D and 4D Seismic Technics Today

    Marcin Marian

    2004-09-01

    Full Text Available Years ago, exploration was done through surface observations and „divining rods“ – now, it is done by satellites, microprocessors, remote sensing, and supercomputers. In the 1970´ s, the exploration success rate was 14 percent, today, it is nearly 29 percent. Not so long ago, three – dimension (3D seismic diagnostic techniques helped recover 25-50 percent of the oil in place – now, 4D seismic helps recover up to 70 percent of the oil in place. 3D and 4D seismic and earth imaging systems also help in understanding the subsurface flow of other fluids, such as groundwater and pollutants.Seismic surveys – a technique in which sound waves are bounced off underground rock struktures to reveal possible oil and gas bearing formation – are now standard fare for the modern petroleum industry. But today’s seismic methods are best at locating „structural traps“ where faults or folds in the underground rock have created zones where oil can become trapped.

  12. The business impact and value of 3-D seismic

    Aylor, W.K.

    1996-01-01

    3-D Seismic has had a profound and lasting impact on the hydrocarbon exploration and production industry. It is a technology which is often excellent at assessing the risk associated with trap definition, seal and reservoir distribution, the very parameters which are the most critical to optimizing the economics associated with E and P projects. This paper discusses Amoco Corporation's experience with 3-D Seismic when used for new field rate acceleration, older field extension, and wildcat exploration. Its emphasis is on assessing the value added by 3-D by reviewing recent E and P experiences in a post-appraisal mode and then in applying the lessons learned from these analyses and case histories to potential new projects. This work is significant because it first assesses the impact 3-D has had on a large number of business situations at Amoco; that is, it is based on data collected on159 3-D surveys acquired at Amoco between 1991--1994. Second, it uses the data collected from these surveys and applies the business improvements observed in the data to typical international business opportunities to quantify, in expected value $ terms, the value that the technology brings to an average project. Finally, it looks at project economics not only from an oil company perspective, but from the standpoint of a host government, with a discussion of insights and implications of the data, economics and techniques utilized

  13. Surface 3-D reflection seismics - implementation at the Olkiluoto site

    Saksa, P.; Lehtimaeki, T.; Heikkinen, E. [Poeyry Environment Oy, Vantaa (Finland)

    2007-03-15

    Posiva Oy takes care of the final disposal of spent nuclear fuel in Finland. In year 2001 Olkiluoto was selected for the site of final disposal. Construction of the underground research facility, ONKALO, is going on at the Olkiluoto site. The aim of this work was to study the possibilities for surface 3-D seismics and to review experiences for design before field work. The physical parameters and geometric properties of the site, as well as efficient survey layout and source arrangements, were considered in this work. Reflection seismics is most used geophysical investigation method in oil exploration and earth studies in sedimentary environment. Recently method has also been applied in crystalline bedrock for ore exploration and nuclear waste disposal site investigations. The advantage of the method is high accuracy combined with large depth of investigation. The principles of seismic 2-D and 3-D soundings are well known and advanced. 3-D sounding is a straightforward expansion of 2-D line based surveying. In investigation of crystalline bedrock, the high frequency wave sources and receivers, their right use in measurements and careful processing procedure (refraction static corrections in particular) are important. Using the site parameters in 2-D numerical modeling, two cases of faulted thin layer at depths of 200, 400 and 600 meters were studied. The first case was a layer with vertical dislocation (a ramp) and the other a layer having limited width of dislocated part. Central frequencies were 100, 200, 400 and 700 Hz. Results indicate that 10 - 20 m dislocation is recognizable, but for depths greater than 600 m, over 20 meters is required. Width of the dislocated part will affect the detectability of vertical displacement. At depths of 200 m and 400 m 10 - 50 m wide parts appear as point-like scatterers, wider areas have more continuity. Dislocations larger than 20 m can be seen. From depth of 600 m over 100 m wide parts are discernible, narrower are visible

  14. Surface 3-D reflection seismics - implementation at the Olkiluoto site

    Saksa, P.; Lehtimaeki, T.; Heikkinen, E.

    2007-03-01

    Posiva Oy takes care of the final disposal of spent nuclear fuel in Finland. In year 2001 Olkiluoto was selected for the site of final disposal. Construction of the underground research facility, ONKALO, is going on at the Olkiluoto site. The aim of this work was to study the possibilities for surface 3-D seismics and to review experiences for design before field work. The physical parameters and geometric properties of the site, as well as efficient survey layout and source arrangements, were considered in this work. Reflection seismics is most used geophysical investigation method in oil exploration and earth studies in sedimentary environment. Recently method has also been applied in crystalline bedrock for ore exploration and nuclear waste disposal site investigations. The advantage of the method is high accuracy combined with large depth of investigation. The principles of seismic 2-D and 3-D soundings are well known and advanced. 3-D sounding is a straightforward expansion of 2-D line based surveying. In investigation of crystalline bedrock, the high frequency wave sources and receivers, their right use in measurements and careful processing procedure (refraction static corrections in particular) are important. Using the site parameters in 2-D numerical modeling, two cases of faulted thin layer at depths of 200, 400 and 600 meters were studied. The first case was a layer with vertical dislocation (a ramp) and the other a layer having limited width of dislocated part. Central frequencies were 100, 200, 400 and 700 Hz. Results indicate that 10 - 20 m dislocation is recognizable, but for depths greater than 600 m, over 20 meters is required. Width of the dislocated part will affect the detectability of vertical displacement. At depths of 200 m and 400 m 10 - 50 m wide parts appear as point-like scatterers, wider areas have more continuity. Dislocations larger than 20 m can be seen. From depth of 600 m over 100 m wide parts are discernible, narrower are visible

  15. Teaching seismic methods using interactive 3D Earth globe

    Weeraratne, D. S.; Rogers, D. B.

    2011-12-01

    Instructional techniques for study of seismology are greatly enhanced by three dimensional (3D) visualization. Seismic rays that pass through the Earth's interior are typically viewed in 2D slices of the Earth's interior. Here we present the use of a 3D Earth globe manufactured by Real World Globes. This globe displays a dry-erase high resolution glossy topography and bathymetry from the Smith and Sandwell data archives at its surface for interactive measurements and hands-on marking of many seismic observations such as earthquake locations, source-receiver distances, surface wave propagation, great circle paths, ocean circulation patterns, airplane trajectories, etc.. A new interactive feature (designed collaboratively with geoscientists) allows cut away and disassembly of sections of the exterior shell revealing a full cross section depicting the Earth's interior layers displayed to scale with a dry-erase work board. The interior panel spins to any azimuth and provides a depth measurement scale to allow exact measurements and marking of earthquake depths, true seismic ray path propagation, ray path bottoming depths, shadow zones, and diffraction patterns. A demo of this globe and example activities will be presented.

  16. ONKALO 3D tunnel seismic investigations at Olkiluoto in 2009

    Cosma, C.; Enescu, N.; Balu, L.; Jacome, M.

    2011-02-01

    POSIVA Oy conducts bedrock investigations at the spent nuclear fuel final disposal site at Olkiluoto, in western Finland. The excavation of the access tunnel to the repository hosts the ONKALO underground rock characterization facility. The investigations carried out at ONKALO focus on the bedrock and groundwater conditions prevailing on the final disposal site and how construction work affects them. Tunnel seismic investigations were carried out in July 2009, as an extension of similar work performed in December 2007. The main objective of the tunnel seismic investigations have been to demonstrate the possibility to detect, locate and image cost effectively steeply and gently dipping fractures, at the side and/or below the tunnel and to characterize the volume of rock surrounding a 250 m long segment of the ONKALO tunnel. The survey was conducted at a depth of 350 m, over a 240 m long line of 3-components receivers, spaced at 3m intervals. Seismic signals were produced along two lines, on the tunnel wall and floor, with source points spaced at 1m. A timedistributed swept-impact, the Vibsist-250 hydraulic source, was used. The source was hosted on a mini excavator. Receiver holes approximately 0.4 m deep were drilled prior to the survey, horizontally into the tunnel wall. One of the procedures used for data stacking and migration is based on a proprietary method combining the DMO (Dip Move Out) correction and an expression of the Radon Transform. Horizontal and vertical migrated profiles were computed both for the P wave and S wave reflected wave fields. A true 3D migration technique (Image Point migration) was used to create 3D migrated sections oriented to incremental azimuths around the tunnel, the result being a cylindrical imaging volume. A general conclusion is that seismic surveys along the tunnel can economically be used for rock mass characterization. High quality results can be obtained by operations in tunnel working conditions, provided that due

  17. 3D Seismic Imaging over a Potential Collapse Structure

    Gritto, Roland; O'Connell, Daniel; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    The Middle-East has seen a recent boom in construction including the planning and development of complete new sub-sections of metropolitan areas. Before planning and construction can commence, however, the development areas need to be investigated to determine their suitability for the planned project. Subsurface parameters such as the type of material (soil/rock), thickness of top soil or rock layers, depth and elastic parameters of basement, for example, comprise important information needed before a decision concerning the suitability of the site for construction can be made. A similar problem arises in environmental impact studies, when subsurface parameters are needed to assess the geological heterogeneity of the subsurface. Environmental impact studies are typically required for each construction project, particularly for the scale of the aforementioned building boom in the Middle East. The current study was conducted in Qatar at the location of a future highway interchange to evaluate a suite of 3D seismic techniques in their effectiveness to interrogate the subsurface for the presence of karst-like collapse structures. The survey comprised an area of approximately 10,000 m2 and consisted of 550 source- and 192 receiver locations. The seismic source was an accelerated weight drop while the geophones consisted of 3-component 10 Hz velocity sensors. At present, we analyzed over 100,000 P-wave phase arrivals and performed high-resolution 3-D tomographic imaging of the shallow subsurface. Furthermore, dispersion analysis of recorded surface waves will be performed to obtain S-wave velocity profiles of the subsurface. Both results, in conjunction with density estimates, will be utilized to determine the elastic moduli of the subsurface rock layers.

  18. Impact of mesh and DEM resolutions in SEM simulation of 3D seismic response

    Khan, Saad; van der Meijde, M.; van der Werff, H.M.A.; Shafique, Muhammad

    2017-01-01

    This study shows that the resolution of a digital elevation model (DEM) and model mesh strongly influences 3D simulations of seismic response. Topographic heterogeneity scatters seismic waves and causes variation in seismic response (am-plification and deamplification of seismic amplitudes) at the

  19. 3D Frequency-Domain Seismic Inversion with Controlled Sloppiness

    Herrmann, F.; van Leeuwen, T.

    2014-01-01

    Seismic waveform inversion aims at obtaining detailed estimates of subsurface medium parameters, such as the spatial distribution of soundspeed, from multiexperiment seismic data. A formulation of this inverse problem in the frequency domain leads to an optimization problem constrained by a

  20. 3D Frequency-Domain Seismic Inversion with Controlled Sloppiness.

    T. van Leeuwen (Tristan); F.J. Herrmann

    2014-01-01

    htmlabstractSeismic waveform inversion aims at obtaining detailed estimates of subsurface medium parameters, such as the spatial distribution of soundspeed, from multiexperiment seismic data. A formulation of this inverse problem in the frequency domain leads to an optimization problem constrained

  1. 3-D seismic velocity and attenuation structures in the geothermal field

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  2. Faults survey by 3D reflection seismics; Sanjigen hanshaho jishin tansa ni yoru danso chosa

    Tsuchiya, T; Ejiri, T; Yamada, N; Narita, N; Aso, H; Takano, H; Matsumura, M [Dia Consultants Company, Tokyo (Japan)

    1996-10-01

    This paper describes fault survey by 3D seismic reflection exploration. Survey has been conducted mainly at flat land area without pavement not in urban area in Japan. Subsurface structure is complicated with intersecting multiple faults. In this area, a lot of geological investigations have been done prior to the seismic reflection exploration. Fairly certain images of faults have been obtained. However, there were still unknown structures. Survey was conducted at an area of 170m{times}280m in the CDP range. Measurements were carried out by using 100 g of dynamite per seismic generation point combined with 40 Hz velocity geophones. Fixed distribution consisting of lattice points of 12{times}12 was adopted as an observation method. In and around the lattice, a great number of explosions were carried out. The CDP stacking method and the method of migration after stacking were used for the data processing. The 3D structures of six horizons and five faults could be interpreted. Interpreted horizons were well agreed with the logging results. 3 figs.

  3. "Handling" seismic hazard: 3D printing of California Faults

    Kyriakopoulos, C.; Potter, M.; Richards-Dinger, K. B.

    2017-12-01

    As earth scientists, we face the challenge of how to explain and represent our work and achievements to the general public. Nowadays, this problem is partially alleviated by the use of modern visualization tools such as advanced scientific software (Paraview.org), high resolution monitors, elaborate video simulations, and even 3D Virtual Reality goggles. However, the ability to manipulate and examine a physical object in 3D is still an important tool to connect better with the public. For that reason, we are presenting a scaled 3D printed version of the complex network of earthquake faults active in California based on that used by the Uniform California Earthquake Rupture Forecast 3 (UCERF3) (Field et al., 2013). We start from the fault geometry in the UCERF3.1 deformation model files. These files contain information such as the coordinates of the surface traces of the faults, dip angle, and depth extent. The fault specified in the above files are triangulated at 1km resolution and exported as a facet (.fac) file. The facet file is later imported into the Trelis 15.1 mesh generator (csimsoft.com). We use Trelis to perform the following three operations: First, we scale down the model so that 100 mm corresponds to 100km. Second, we "thicken" the walls of the faults; wall thickness of at least 1mm is necessary in 3D printing. We thicken fault geometry by 1mm on each side of the faults for a total of 2mm thickness. Third, we break down the model into parts that will fit the printing bed size ( 25 x 20mm). Finally, each part is exported in stereolithography format (.stl). For our project, we are using the 3D printing facility within the Creat'R Lab in the UC Riverside Orbach Science Library. The 3D printer is a MakerBot Replicator Desktop, 5th Generation. The resolution of print is 0.2mm (Standard quality). The printing material is the MakerBot PLA Filament, 1.75 mm diameter, large Spool, green. The most complex part of the display model requires approximately 17

  4. Marine biota sightings during 3D marine seismic surveys

    Oliveira, Joao Luiz Martinez de; Uller, George A. [CGG do Brasil, Rio de Janeiro, RJ (Brazil); Derntl, Jose Renato; Ribeiro, Camila Castroviejo da Silva; Pereira, Edisio [GEOCOOP Cooperativa de Trabalho, Rio de Janeiro, RJ (Brazil); Miranda, Cristina Maschio de [Nautilus Cooperativa de Trabalho (Brazil); Ferraz, Alexandre Almeida; Costa, Leandro Damiao Soares da [Okeanos Consultoria e Meio Ambiente Ltda. (Brazil)

    2004-07-01

    This work intends to make a correlation between the presence of the marine biota and the seismic source activity (air guns) during seismic surveys, in Campos (BM-C-25 and BM-C-16) and Santos (BM-S-3) Basin, since July 2003 until March 2004. Environmental data were acquired onboard of the Seismic Vessel CGG Harmattan by a team of four oceanographers (environmental technicians), working on the highest place of the Vessel to record and identify the animals whenever was possible. The data were recorded in forms where fields about the biotic and environmental aspects were filled. In 212 days of observations, 2580,1 hours of sighting's effort were recorded; the air guns worked during 37,6% of the time of the effort. These efforts were made during the daylight reaching an average value of 11,35 hours/day. Sightings were divided into the suborders Odontocetes and Mysticetes, and others (fishes, turtles and non identified mammals). 175 sightings were recorded, being 54% when the air gun was off (24% Mysticetes, 56% Odontocetes, 20% others). Similarly, when the air gun was working, 46% of the records were made (24% Mysticetes, 61% Odontocetes, 6% others); the major concentration (58%) of individuals was inside the 1000 m radius around the ship, followed by 14% of the individuals occurring between 3001-4000 m radius away from the ship. The analysis of the data suggests a non-evasive behavior related to the working of the seismic source, corroborating the results reached by other publications using the data collected onboard CGG Vessels. (author)

  5. Time-lapse seismic - repeatability versus usefulness and 2D versus 3D

    Landro, M.

    2017-12-01

    Time-lapse seismic has developed rapidly over the past decades, especially for monitoring of oil and gas reservoirs and subsurface storage of CO2. I will review and discuss some of the critical enabling factors for the commercial success of this technology. It was early realized that how well we are able to repeat our seismic experiment is crucial. However, it is always a question of detectability versus repeatability. For marine seismic, there are several factors limiting the repeatability: Weather conditions, positioning of sources and receivers and so on. I will discuss recent improvements in both acquisition and processing methods over the last decade. It is well known that repeated 3D seismic data is the most accurate tool for reservoir monitoring purposes. However, several examples show that 2D seismic data may be used for monitoring purposes despite lower repeatability. I will use examples from an underground blow out in the North Sea, and repeated 2D seismic lines acquired before and after the Tohoku earthquake in 2011 to illustrate this. A major challenge when using repeated 2D seismic for subsurface monitoring purposes is the lack of 3D calibration points and significantly less amount of data. For marine seismic acquisition, feathering issues and crossline dip effects become more critical compared to 3D seismic acquisition. Furthermore, the uncertainties arising from a non-ideal 2D seismic acquisition are hard to assess, since the 3D subsurface geometry has not been mapped. One way to shed more light on this challenge is to use 3D time lapse seismic modeling testing various crossline dips or geometries. Other ways are to use alternative data sources, such as bathymetry, time lapse gravity or electromagnetic data. The end result for all time-lapse monitoring projects is an interpretation associated with uncertainties, and for the 2D case these uncertainties are often large. The purpose of this talk is to discuss how to reduces and control these

  6. Fast multifrequency focal beam analysis for 3D seismic acquisition geometry

    Wei, W.; Fu, L.; Blacquiere, G.

    2012-01-01

    A method for the efficient computation of multifrequency focal beams for 3D seismic acquisition geometry analysis has been developed. By computing them for all the frequency components of seismic data, single-frequency focal beams can be extended to multifrequency focal beams. However, this

  7. 3-D pneumatic seismic isolation of nuclear power plants

    Beliaev, V.S.; Vinogradov, V.V.; Kostarev, V.V.; Kuzmitchev, V.P.; Privalov, S.A.; Siro, V.A.; Krylova, I.N.; Dolgaya, A.A.; Uzdin, A.M.; Vasiliev, A.V.

    2002-01-01

    This paper describes the work carried at the Russian Federation Research Center of Fundamental Engineering (RCFE), in development of innovative pneumatic multicomponent low-frequency seismic isolation bearings for advanced nuclear power plants.This device incorporates both supporting spherical elements, which provide displacements in the horizontal direction, and pneumatic dampers with rubber diaphragms for displacement in the vertical direction. To decrease the relative displacements of the isolated object the system uses viscoelastic dampers. Damping devices had been specially elaborated for the reactor building seismic isolation system as a result of substantial advances in the design and operation of the HD-type hydrodampers, created at the CKTI VIBROSEISM. The procedures developed have been used for comparison of the test and computer data on model isolated steel structure (MISS) and isolated rigid mass (IRM) isolators produced by ENEA and KAERI. Most recent work has concentrated on the development of mathematical models of isolators and isolated nuclear structures. Force-deformation characteristics of the HDRB model had been calculated on the basis of a special method of non-linear elastic theory using the continual transformations method. (author)

  8. Seismic waves in 3-D: from mantle asymmetries to reliable seismic hazard assessment

    Panza, Giuliano F.; Romanelli, Fabio

    2014-10-01

    A global cross-section of the Earth parallel to the tectonic equator (TE) path, the great circle representing the equator of net lithosphere rotation, shows a difference in shear wave velocities between the western and eastern flanks of the three major oceanic rift basins. The low-velocity layer in the upper asthenosphere, at a depth range of 120 to 200 km, is assumed to represent the decoupling between the lithosphere and the underlying mantle. Along the TE-perturbed (TE-pert) path, a ubiquitous LVZ, about 1,000-km-wide and 100-km-thick, occurs in the asthenosphere. The existence of the TE-pert is a necessary prerequisite for the existence of a continuous global flow within the Earth. Ground-shaking scenarios were constructed using a scenario-based method for seismic hazard analysis (NDSHA), using realistic and duly validated synthetic time series, and generating a data bank of several thousands of seismograms that account for source, propagation, and site effects. Accordingly, with basic self-organized criticality concepts, NDSHA permits the integration of available information provided by the most updated seismological, geological, geophysical, and geotechnical databases for the site of interest, as well as advanced physical modeling techniques, to provide a reliable and robust background for the development of a design basis for cultural heritage and civil infrastructures. Estimates of seismic hazard obtained using the NDSHA and standard probabilistic approaches are compared for the Italian territory, and a case-study is discussed. In order to enable a reliable estimation of the ground motion response to an earthquake, three-dimensional velocity models have to be considered, resulting in a new, very efficient, analytical procedure for computing the broadband seismic wave-field in a 3-D anelastic Earth model.

  9. Utilization of multiple frequencies in 3D nonlinear microwave imaging

    Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob

    2012-01-01

    The use of multiple frequencies in a nonlinear microwave algorithm is considered. Using multiple frequencies allows for obtaining the improved resolution available at the higher frequencies while retaining the regularizing effects of the lower frequencies. However, a number of different challenges...... at lower frequencies are used as starting guesses for reconstructions at higher frequencies. The performance is illustrated using simulated 2-D data and data obtained with the 3-D DTU microwave imaging system....

  10. Automatic Generation of 3D Building Models with Multiple Roofs

    Kenichi Sugihara; Yoshitugu Hayashi

    2008-01-01

    Based on building footprints (building polygons) on digital maps, we are proposing the GIS and CG integrated system that automatically generates 3D building models with multiple roofs. Most building polygons' edges meet at right angles (orthogonal polygon). The integrated system partitions orthogonal building polygons into a set of rectangles and places rectangular roofs and box-shaped building bodies on these rectangles. In order to partition an orthogonal polygon, we proposed a useful polygon expression in deciding from which vertex a dividing line is drawn. In this paper, we propose a new scheme for partitioning building polygons and show the process of creating 3D roof models.

  11. AUTOMATIC 3D MAPPING USING MULTIPLE UNCALIBRATED CLOSE RANGE IMAGES

    M. Rafiei

    2013-09-01

    Full Text Available Automatic three-dimensions modeling of the real world is an important research topic in the geomatics and computer vision fields for many years. By development of commercial digital cameras and modern image processing techniques, close range photogrammetry is vastly utilized in many fields such as structure measurements, topographic surveying, architectural and archeological surveying, etc. A non-contact photogrammetry provides methods to determine 3D locations of objects from two-dimensional (2D images. Problem of estimating the locations of 3D points from multiple images, often involves simultaneously estimating both 3D geometry (structure and camera pose (motion, it is commonly known as structure from motion (SfM. In this research a step by step approach to generate the 3D point cloud of a scene is considered. After taking images with a camera, we should detect corresponding points in each two views. Here an efficient SIFT method is used for image matching for large baselines. After that, we must retrieve the camera motion and 3D position of the matched feature points up to a projective transformation (projective reconstruction. Lacking additional information on the camera or the scene makes the parallel lines to be unparalleled. The results of SfM computation are much more useful if a metric reconstruction is obtained. Therefor multiple views Euclidean reconstruction applied and discussed. To refine and achieve the precise 3D points we use more general and useful approach, namely bundle adjustment. At the end two real cases have been considered to reconstruct (an excavation and a tower.

  12. 3D seismic data de-noising and reconstruction using Multichannel Time Slice Singular Spectrum Analysis

    Rekapalli, Rajesh; Tiwari, R. K.; Sen, Mrinal K.; Vedanti, Nimisha

    2017-05-01

    Noises and data gaps complicate the seismic data processing and subsequently cause difficulties in the geological interpretation. We discuss a recent development and application of the Multi-channel Time Slice Singular Spectrum Analysis (MTSSSA) for 3D seismic data de-noising in time domain. In addition, L1 norm based simultaneous data gap filling of 3D seismic data using MTSSSA also discussed. We discriminated the noises from single individual time slices of 3D volumes by analyzing Eigen triplets of the trajectory matrix. We first tested the efficacy of the method on 3D synthetic seismic data contaminated with noise and then applied to the post stack seismic reflection data acquired from the Sleipner CO2 storage site (pre and post CO2 injection) from Norway. Our analysis suggests that the MTSSSA algorithm is efficient to enhance the S/N for better identification of amplitude anomalies along with simultaneous data gap filling. The bright spots identified in the de-noised data indicate upward migration of CO2 towards the top of the Utsira formation. The reflections identified applying MTSSSA to pre and post injection data correlate well with the geology of the Southern Viking Graben (SVG).

  13. Near-surface 3D reflections seismic survey; Sanjigen senso hanshaho jishin tansa

    Nakahigashi, H; Mitsui, H; Nakano, O; Kobayashi, T [DIA Consultants Co. Ltd., Tokyo (Japan)

    1997-05-27

    Faults are being actively investigated across Japan since the Great Hanshin-Awaji Earthquake. Discussed in this report is the application of the 3D near-surface reflection seismic survey in big cities. Data from trenching and drilling is used for the geological interpretation of the surroundings of a fault, and the reflection seismic survey is used to identify the position, etc., of the fault. In this article, when the results obtained from the experimental field are examined, it is found that the conventional 2D imaging reflection survey betrays the limit of its capability when the geological structure is complicated, that the 3D reflection seismic survey, on the contrary, is capable of high-precision imaging and, when augmented by drilling, etc., becomes capable of a more detailed interpretation, and that it also contributes effectively to the improvement of local disaster prevention in big cities. Using as the model the Tachikawa fault that runs near JR Tachikawa Station, embodiment of the 3D reflection seismic survey is reviewed. For the acquisition of data excellent in quality in a 3D reflection seismic survey conducted utilizing the roads in the sector chosen for experiment in the urban area, the shock generating points and receiving points should be positioned by taking into account the parameters in the bin arranging process so that the mid-points will be regularly distributed on the surface. 3 refs., 11 figs., 1 tab.

  14. Automatic detection of karstic sinkholes in seismic 3D images using circular Hough transform

    Parchkoohi, Mostafa Heydari; Farajkhah, Nasser Keshavarz; Delshad, Meysam Salimi

    2015-01-01

    More than 30% of hydrocarbon reservoirs are reported in carbonates that mostly include evidence of fractures and karstification. Generally, the detection of karstic sinkholes prognosticate good quality hydrocarbon reservoirs where looser sediments fill the holes penetrating hard limestone and the overburden pressure on infill sediments is mostly tolerated by their sturdier surrounding structure. They are also useful for the detection of erosional surfaces in seismic stratigraphic studies and imply possible relative sea level fall at the time of establishment. Karstic sinkholes are identified straightforwardly by using seismic geometric attributes (e.g. coherency, curvature) in which lateral variations are much more emphasized with respect to the original 3D seismic image. Then, seismic interpreters rely on their visual skills and experience in detecting roughly round objects in seismic attribute maps. In this paper, we introduce an image processing workflow to enhance selective edges in seismic attribute volumes stemming from karstic sinkholes and finally locate them in a high quality 3D seismic image by using circular Hough transform. Afterwards, we present a case study from an on-shore oilfield in southwest Iran, in which the proposed algorithm is applied and karstic sinkholes are traced. (paper)

  15. FIT3D toolbox: multiple view geometry and 3D reconstruction for Matlab

    Esteban, I.; Dijk, J.; Groen, F.

    2010-01-01

    FIT3D is a Toolbox built for Matlab that aims at unifying and distributing a set of tools that will allow the researcher to obtain a complete 3D model from a set of calibrated images. In this paper we motivate and present the structure of the toolbox in a tutorial and example based approach. Given

  16. 3-D cross-gradient joint inversion of seismic refraction and DC resistivity data

    Shi, Zhanjie; Hobbs, Richard W.; Moorkamp, Max; Tian, Gang; Jiang, Lu

    2017-06-01

    We present a 3-D cross-gradient joint inversion algorithm for seismic refraction and DC resistivity data. The structural similarity between seismic slowness and resistivity models is enforced by a cross-gradient term in the objective function that also includes misfit and regularization terms. A limited memory quasi-Newton approach is used to perform the optimization of the objective function. To validate the proposed methodology and its implementation, tests were performed on a typical archaeological geophysical synthetic model. The results show that the inversion model and physical parameters estimated by our joint inversion method are more consistent with the true model than those from single inversion algorithm. Moreover, our approach appears to be more robust in conditions of noise. Finally, the 3-D cross-gradient joint inversion algorithm was applied to the field data from Lin_an ancient city site in Hangzhou of China. The 3-D cross-gradient joint inversion models are consistent with the archaeological excavation results of the ancient city wall remains. However, by single inversion, seismic slowness model does not show the anomaly of city wall remains and resistivity model does not fit well with the archaeological excavation results. Through these comparisons, we conclude that the proposed algorithm can be used to jointly invert 3-D seismic refraction and DC resistivity data to reduce the uncertainty brought by single inversion scheme.

  17. 3-D seismic characterization of submarine landslides on a Miocene carbonate platform (Luconia Province, Malaysia)

    Zampetti, V.; Schlager, W.; van Konijnenburg, J.H; Everts, A.J.

    2004-01-01

    3-D seismic reflection data and a variance cube are used to determine the architecture and investigate the triggering processes of submarine landslides affecting the flanks of a Miocene carbonate platform in the Luconia Province, Malaysia. The slide masses exhibit, in time-slice displays, chaotic,

  18. A Geo-referenced 3D model of the Juan de Fuca Slab and associated seismicity

    Blair, J.L.; McCrory, P.A.; Oppenheimer, D.H.; Waldhauser, F.

    2011-01-01

    We present a Geographic Information System (GIS) of a new 3-dimensional (3D) model of the subducted Juan de Fuca Plate beneath western North America and associated seismicity of the Cascadia subduction system. The geo-referenced 3D model was constructed from weighted control points that integrate depth information from hypocenter locations and regional seismic velocity studies. We used the 3D model to differentiate earthquakes that occur above the Juan de Fuca Plate surface from earthquakes that occur below the plate surface. This GIS project of the Cascadia subduction system supersedes the one previously published by McCrory and others (2006). Our new slab model updates the model with new constraints. The most significant updates to the model include: (1) weighted control points to incorporate spatial uncertainty, (2) an additional gridded slab surface based on the Generic Mapping Tools (GMT) Surface program which constructs surfaces based on splines in tension (see expanded description below), (3) double-differenced hypocenter locations in northern California to better constrain slab location there, and (4) revised slab shape based on new hypocenter profiles that incorporate routine depth uncertainties as well as data from new seismic-reflection and seismic-refraction studies. We also provide a 3D fly-through animation of the model for use as a visualization tool.

  19. Gas Hydrate Characterization from a 3D Seismic Dataset in the Eastern Deepwater Gulf of Mexico

    McConnell, Dan

    2017-10-26

    The presence of a gas hydrate petroleum system and seismic attributes derived from 3D seismic data are used for the identification and characterization of gas hydrate deposits in the deepwater eastern Gulf of Mexico. In the central deepwater Gulf of Mexico (GoM), logging while drilling (LWD) data provided insight to the amplitude response of gas hydrate saturation in sands, which could be used to characterize complex gas hydrate deposits in other sandy deposits. In this study, a large 3D seismic data set from equivalent and distal Plio-Pleistocene sandy channel deposits in the deepwater eastern Gulf of Mexico is screened for direct hydrocarbon indicators for gas hydrate saturated sands.

  20. ) A Feasibility Study for High Resolution 3D Seismic In The Deep Offshore Nigeria

    Enuma, C.; Hope, R.; Mila, F.; Maurel, L.

    2003-01-01

    The conventional Exploration 3D seismic in the Deep Offshore Nigeria is typically acquired with 4000m-6000m cable length at 6-8 depth and with flip-flop shooting, providing a shot point interval of 50m. the average resulting frequency content is typically between 10-60hz which is adequate for exploration interpretation. It has become common in the last few years. E.g. in Angola and the Gulf of Mexico, to re-acquire High Resolution 3D seismic, after a discovery, to improve definition of turbidite systems and accuracy of reservoir geometry for optimized delineation drilling. This feasibility study which was carried out in three different steps was due to the question on whether HR-Seismic should be acquired over TotalFinaElf AKPO discovery for optimized delineation drilling

  1. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    James Reeves

    2005-01-31

    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  2. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    Gao, Dengliang

    2013-03-01

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  3. 3D Filament Network Segmentation with Multiple Active Contours

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-03-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.

  4. 3D seismic Unterhaching 2009 within hydrothermal exploration and modelling; 3D-Seismik Unterhaching 2009 im Rahmen hydrothermaler Exploration und Modellierung

    Lueschen, Ewald; Dussel, Michael; Thomas, Ruediger; Schulz, Ruediger [Leibniz-Institut fuer Angewandte Geophysik (LIAG), Hannover (Germany)

    2011-10-24

    Within the exploration of hydrothermal reservoirs, results of 3D reflexion-seismic measurements are presented. These measurements were performed in June / July 2009 according to the vibroseis method on an area of 26.3 square kilometers in the area Unterhaching (Federal Republic of Germany). The 3D seismic survey exhibits much more complex structures than previously known by 2D seismic lines. Subsequent to sinistral transtension (active in the Cretaceous to the Eocene) a short transpression impetus was performed. This is evident from graduated normal faults as well as staggered reverse fault structures and inversion structures in the Upper Jurassic. Top and base of the 600-650 m mighty Malm are well resolved. Brittle fault structures are formed linearly at the top Malm but rounded and chaotic within the Malm. This can be explained by a radical karstification / hydrothermal solution. Several circular structures are interpreted as karstified incursion structures. The seismic facies of the Malm is characterized by a shift from relatively transparent zones, layered fields, scatters and fault zones. This is an expression of smaller and larger reefs, lagoons and reef debris. Reefs are characterized by several seismic attributes. Striking low-velocity zones are oriented along the main fault zones and can be interpreted as zones that are relieved by gap porosity. Azimuth variable processing gives evidence for preferred orientations of fractures on the seismic scale. By means of the 3D seismic diverse geothermal exploration targets can be defined.

  5. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    Lestari, Titik, E-mail: t2klestari@gmail.com [Meteorological Climatological and Geophysical Agency (MCGA), Jalan Angkasa I No.2 Kemayoran, Jakarta Pusat, 10720 (Indonesia); Faculty of Earth Science and Technology, Bandung Institute of Technology, Jalan Ganesa No.10, Bandung 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Bandung Institute of Technology, Jalan Ganesa 10 Bandung 40132 (Indonesia)

    2015-04-24

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  6. Underground gas storage Lobodice geological model development based on 3D seismic interpretation

    Kopal, L.

    2015-01-01

    Aquifer type underground gas storage (UGS) Lobodice was developed in the Central Moravian part of Carpathian foredeep in Czech Republic 50 years ago. In order to improve knowledge about UGS geological structure 3D seismic survey was performed in 2009. Reservoir is rather shallow (400 - 500 m below surface) it is located in complicated locality so limitations for field acquisition phase were abundant. This article describes process work flow from 3D seismic field data acquisition to geological model creation. The outcomes of this work flow define geometry of UGS reservoir, its tectonics, structure spill point, cap rock and sealing features of the structure. Improving of geological knowledge about the reservoir enables less risky new well localization for UGS withdrawal rate increasing. (authors)

  7. Multi-hole seismic modeling in 3-D space and cross-hole seismic tomography analysis for boulder detection

    Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu

    2016-11-01

    A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.

  8. Present-Day Mars' Seismicity Predicted From 3-D Thermal Evolution Models of Interior Dynamics

    Plesa, A.-C.; Knapmeyer, M.; Golombek, M. P.; Breuer, D.; Grott, M.; Kawamura, T.; Lognonné, P.; Tosi, N.; Weber, R. C.

    2018-03-01

    The Interior Exploration using Seismic Investigations, Geodesy and Heat Transport mission, to be launched in 2018, will perform a comprehensive geophysical investigation of Mars in situ. The Seismic Experiment for Interior Structure package aims to detect global and regional seismic events and in turn offer constraints on core size, crustal thickness, and core, mantle, and crustal composition. In this study, we estimate the present-day amount and distribution of seismicity using 3-D numerical thermal evolution models of Mars, taking into account contributions from convective stresses as well as from stresses associated with cooling and planetary contraction. Defining the seismogenic lithosphere by an isotherm and assuming two end-member cases of 573 K and the 1073 K, we determine the seismogenic lithosphere thickness. Assuming a seismic efficiency between 0.025 and 1, this thickness is used to estimate the total annual seismic moment budget, and our models show values between 5.7 × 1016 and 3.9 × 1019 Nm.

  9. Pliocene paleoenvironment evolution as interpreted from 3D-seismic data in the southern North Sea, Dutch offshore sector

    Kuhlmann, G.; Wong, T.E.

    2008-01-01

    A high-resolution 3D-seismic survey from the Dutch offshore sector has been interpreted and subsequently correlated with existing regional seismo-stratigraphic concepts derived from conventional 2D-seismic data sets. The interpreted 13 seismic units have been related to a newly established

  10. A workflow for sub-/seismic structure and deformation quantification of 3-D reflection seismic data sets across different scales

    Krawczyk, C.M.; Lohr, T.; Oncken, O. [GFZ Potsdam (Germany); Tanner, D.C. [Goettingen Univ. (Germany). GZG; Endres, H. [RWTH Aachen (Germany)]|[TEEC, Isernhagen (Germany); Trappe, H.; Kukla, P. [TEEC, Isernhagen (Germany)

    2007-09-13

    The evolution of a sedimentary basin is mostly affected by deformation. Large-scale, subsurface deformation is typically identified by seismic data, sub-seismic small-scale fractures by well data. Between these two methods, we lack a deeper understanding of how deformation scales. We analysed a 3-D reflection seismic data set in the North German Basin, in order to determine the magnitude and distribution of deformation and its accumulation in space and time. A five-step approach is introduced for quantitative deformation and fracture prediction. An increased resolution of subtle tectonic lineaments is achieved by coherency processing, allowing to unravel the kinematics in the North German Basin from structural interpretation. Extensional events during basin initiation and later inversion are evident. 3-D retrodeformation shows major-strain magnitudes between 0-20% up to 1.3 km away from a fault trace, and variable deviations of associated extensional fractures. Good correlation of FMI data, strain distribution from retro-deformation and from geostatistic tools (see also Trappe et al., this volume) allows the validation of the results and makes the prediction of small-scale faults/fractures possible. The temporal component will be gained in the future by analogue models. The suggested workflow is applicable to reflection seismic surveys and yields in great detail both the tectonic history of a region as well as predictions for hydrocarbon plays or deep groundwater or geothermal reservoirs. (orig.)

  11. Global and Regional 3D Tomography for Improved Seismic Event Location and Uncertainty in Explosion Monitoring

    Downey, N.; Begnaud, M. L.; Hipp, J. R.; Ballard, S.; Young, C. S.; Encarnacao, A. V.

    2017-12-01

    The SALSA3D global 3D velocity model of the Earth was developed to improve the accuracy and precision of seismic travel time predictions for a wide suite of regional and teleseismic phases. Recently, the global SALSA3D model was updated to include additional body wave phases including mantle phases, core phases, reflections off the core-mantle boundary and underside reflections off the surface of the Earth. We show that this update improves travel time predictions and leads directly to significant improvements in the accuracy and precision of seismic event locations as compared to locations computed using standard 1D velocity models like ak135, or 2½D models like RSTT. A key feature of our inversions is that path-specific model uncertainty of travel time predictions are calculated using the full 3D model covariance matrix computed during tomography, which results in more realistic uncertainty ellipses that directly reflect tomographic data coverage. Application of this method can also be done at a regional scale: we present a velocity model with uncertainty obtained using data obtained from the University of Utah Seismograph Stations. These results show a reduction in travel-time residuals for re-located events compared with those obtained using previously published models.

  12. Depth geological model building: application to the 3D high resolution 'ANDRA' seismic block

    Mari, J.L.; Yven, B.

    2012-01-01

    Document available in extended abstract form only. 3D seismic blocks and logging data, mainly acoustic and density logs, are often used for geological model building in time. The geological model must be then converted from time to depth. Geostatistical approach for time-to-depth conversion of seismic horizons is often used in many geo-modelling projects. From a geostatistical point of view, the time-to-depth conversion of seismic horizons is a classical estimation problem involving one or more secondary variables. Bayesian approach [1] provides an excellent estimator which is more general than the traditional kriging with external drift(s) and fits very well to the needs for time-to-depth conversion of seismic horizons. The time-to-depth conversion of the selected seismic horizons is used to compute a time-to-depth conversion model at the time sampling rate (1 ms). The 3D depth conversion model allows the computation of an interval velocity block which is compared with the acoustic impedance block to estimate a density block as QC. Non realistic density values are edited and the interval velocity block as well as the depth conversion model is updated. The proposed procedure has been applied on a 3D data set. The dataset comes from a High Resolution 3D seismic survey recorded in France at the boundary of the Meuse and Haute-Marne departments in the vicinity of the Andra Center (National radioactive waste management Agency). The 3D design is a cross spread. The active spread is composed of 12 receiver lines with 120 stations each. The source lines are perpendicular to the receiver lines. The receiver and source line spacings are respectively 80 m and 120 m. The receiver and source point spacings are 20 m. The source is a Vibroseis source generating a signal in the 14 - 140 Hz frequency bandwidth.. The bin size is 10 x 10 m 2 . The nominal fold is 60. A conventional seismic sequence was applied to the data set. It includes amplitude recovery, deconvolution and wave

  13. 3-D acquisition geometry analysis : Incorporating information from multiples

    Kumar, A.; Blacquiere, G.; Verschuur, D.J.

    2014-01-01

    Recent advances in survey design have led to conventional common-midpoint-based analysis being replaced by the subsurface-based seismic acquisition analysis and design, with the emphasis on advance techniques of illumination analysis. Amongst them are wave-equation-based seismic illumination

  14. A global database of seismically and non-seismically triggered landslides for 2D/3D numerical modeling

    Domej, Gisela; Bourdeau, Céline; Lenti, Luca; Pluta, Kacper

    2017-04-01

    Landsliding is a worldwide common phenomenon. Every year, and ranging in size from very small to enormous, landslides cause all too often loss of life and disastrous damage to infrastructure, property and the environment. One main reason for more frequent catastrophes is the growth of population on the Earth which entails extending urbanization to areas at risk. Landslides are triggered by a variety and combination of causes, among which the role of water and seismic activity appear to have the most serious consequences. In this regard, seismic shaking is of particular interest since topographic elevation as well as the landslide mass itself can trap waves and hence amplify incoming surface waves - a phenomenon known as "site effects". Research on the topic of landsliding due to seismic and non-seismic activity is extensive and a broad spectrum of methods for modeling slope deformation is available. Those methods range from pseudo-static and rigid-block based models to numerical models. The majority is limited to 2D modeling since more sophisticated approaches in 3D are still under development or calibration. However, the effect of lateral confinement as well as the mechanical properties of the adjacent bedrock might be of great importance because they may enhance the focusing of trapped waves in the landslide mass. A database was created to study 3D landslide geometries. It currently contains 277 distinct seismically and non-seismically triggered landslides spread all around the globe whose rupture bodies were measured in all available details. Therefore a specific methodology was developed to maintain predefined standards, to keep the bias as low as possible and to set up a query tool to explore the database. Besides geometry, additional information such as location, date, triggering factors, material, sliding mechanisms, event chronology, consequences, related literature, among other things are stored for every case. The aim of the database is to enable

  15. Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting

    Christopher Liner

    2012-05-31

    The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2

  16. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.

    1996-12-17

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.

  17. Fast 3D elastic micro-seismic source location using new GPU features

    Xue, Qingfeng; Wang, Yibo; Chang, Xu

    2016-12-01

    In this paper, we describe new GPU features and their applications in passive seismic - micro-seismic location. Locating micro-seismic events is quite important in seismic exploration, especially when searching for unconventional oil and gas resources. Different from the traditional ray-based methods, the wave equation method, such as the method we use in our paper, has a remarkable advantage in adapting to low signal-to-noise ratio conditions and does not need a person to select the data. However, because it has a conspicuous deficiency due to its computation cost, these methods are not widely used in industrial fields. To make the method useful, we implement imaging-like wave equation micro-seismic location in a 3D elastic media and use GPU to accelerate our algorithm. We also introduce some new GPU features into the implementation to solve the data transfer and GPU utilization problems. Numerical and field data experiments show that our method can achieve a more than 30% performance improvement in GPU implementation just by using these new features.

  18. Local seismic hazard assessment in explosive volcanic settings by 3D numerical analyses

    Razzano, Roberto; Pagliaroli, Alessandro; Moscatelli, Massimiliano; Gaudiosi, Iolanda; Avalle, Alessandra; Giallini, Silvia; Marcini, Marco; Polpetta, Federica; Simionato, Maurizio; Sirianni, Pietro; Sottili, Gianluca; Vignaroli, Gianluca; Bellanova, Jessica; Calamita, Giuseppe; Perrone, Angela; Piscitelli, Sabatino

    2017-04-01

    This work deals with the assessment of local seismic response in the explosive volcanic settings by reconstructing the subsoil model of the Stracciacappa maar (Sabatini Volcanic District, central Italy), whose pyroclastic succession records eruptive phases ended about 0.09 Ma ago. Heterogeneous characteristics of the Stracciacappa maar (stratification, structural setting, lithotypes, and thickness variation of depositional units) make it an ideal case history for understanding mechanisms and processes leading to modifications of amplitude-frequency-duration of seismic waves generated at earthquake sources and propagating through volcanic settings. New geological map and cross sections, constrained with recently acquired geotechnical and geophysical data, illustrate the complex geometric relationships among different depositional units forming the maar. A composite interfingering between internal lacustrine sediments and epiclastic debris, sourced from the rim, fills the crater floor; a 45 meters thick continuous coring borehole was drilled in the maar with sampling of undisturbed samples. Electrical Resistivity Tomography surveys and 2D passive seismic arrays were also carried out for constraining the geological model and the velocity profile of the S-waves, respectively. Single station noise measurements were collected in order to define natural amplification frequencies. Finally, the nonlinear cyclic soil behaviour was investigated through simple shear tests on the undisturbed samples. The collected dataset was used to define the subsoil model for 3D finite difference site response numerical analyses by using FLAC 3D software (ITASCA). Moreover, 1D and 2D numerical analyses were carried out for comparison purposes. Two different scenarios were selected as input motions: a moderate magnitude (volcanic event) and a high magnitude (tectonic event). Both earthquake scenarios revealed significant ground motion amplification (up to 15 in terms of spectral acceleration

  19. Non-periodic homogenization of 3-D elastic media for the seismic wave equation

    Cupillard, Paul; Capdeville, Yann

    2018-05-01

    Because seismic waves have a limited frequency spectrum, the velocity structure of the Earth that can be extracted from seismic records has a limited resolution. As a consequence, one obtains smooth images from waveform inversion, although the Earth holds discontinuities and small scales of various natures. Within the last decade, the non-periodic homogenization method shed light on how seismic waves interact with small geological heterogeneities and `see' upscaled properties. This theory enables us to compute long-wave equivalent density and elastic coefficients of any media, with no constraint on the size, the shape and the contrast of the heterogeneities. In particular, the homogenization leads to the apparent, structure-induced anisotropy. In this paper, we implement this method in 3-D and show 3-D tests for the very first time. The non-periodic homogenization relies on an asymptotic expansion of the displacement and the stress involved in the elastic wave equation. Limiting ourselves to the order 0, we show that the practical computation of an upscaled elastic tensor basically requires (i) to solve an elastostatic problem and (ii) to low-pass filter the strain and the stress associated with the obtained solution. The elastostatic problem consists in finding the displacements due to local unit strains acting in all directions within the medium to upscale. This is solved using a parallel, highly optimized finite-element code. As for the filtering, we rely on the finite-element quadrature to perform the convolution in the space domain. We end up with an efficient numerical tool that we apply on various 3-D models to test the accuracy and the benefit of the homogenization. In the case of a finely layered model, our method agrees with results derived from Backus. In a more challenging model composed by a million of small cubes, waveforms computed in the homogenized medium fit reference waveforms very well. Both direct phases and complex diffracted waves are

  20. Multiple height calibration artefact for 3D microscopy

    De Chiffre, Leonardo; Carli, Lorenzo; Eriksen, Rasmus Solmer

    2011-01-01

    A novel artefact for calibration of the height in 3D microscopy is presented. The artefact comprises three steps having a common vertical axis, which allows z-coordinate calibration at different magnifications without requiring repositioning. The artefact is suitable for transferring traceability...... to 3D techniques at the micrometer and nanometer scale, e.g. 3D SEM, confocal microscopes etc. Two different series of samples were fabricated using EDM with three steps of 2–5–7μm, and 20–50–70μm, respectively, from a 3mm diameter carbide wire. The artefact steps were calibrated on a stylus instrument...

  1. Seismic Response of 3D Steel Buildings considering the Effect of PR Connections and Gravity Frames

    Alfredo Reyes-Salazar

    2014-01-01

    Full Text Available The nonlinear seismic responses of 3D steel buildings with perimeter moment resisting frames (PMRF and interior gravity frames (IGF are studied explicitly considering the contribution of the IGF. The effect on the structural response of the stiffness of the beam-to-column connections of the IGF, which is usually neglected, is also studied. It is commonly believed that the flexibility of shear connections is negligible and that 2D models can be used to properly represent 3D real structures. The results of the study indicate, however, that the moments developed on columns of IGF can be considerable and that modeling buildings as plane frames may result in very conservative designs. The contribution of IGF to the lateral structural resistance may be significant. The contribution increases when their connections are assumed to be partially restrained (PR. The incremented participation of IGF when the stiffness of their connections is considered helps to counteract the no conservative effect that results in practice when lateral seismic loads are not considered in IGF while designing steel buildings with PMRF. Thus, if the structural system under consideration is used, the three-dimensional model should be used in seismic analysis and the IGF and the stiffness of their connections should be considered as part of the lateral resistance system.

  2. 3D seismic denoising based on a low-redundancy curvelet transform

    Cao, Jingjie; Zhao, Jingtao; Hu, Zhiying

    2015-01-01

    Contamination of seismic signal with noise is one of the main challenges during seismic data processing. Several methods exist for eliminating different types of noises, but optimal random noise attenuation remains difficult. Based on multi-scale, multi-directional locality of curvelet transform, the curvelet thresholding method is a relatively new method for random noise elimination. However, the high redundancy of a 3D curvelet transform makes its computational time and memory for massive data processing costly. To improve the efficiency of the curvelet thresholding denoising, a low-redundancy curvelet transform was introduced. The redundancy of the low-redundancy curvelet transform is approximately one-quarter of the original transform and the tightness of the original transform is also kept, thus the low-redundancy curvelet transform calls for less memory and computational resource compared with the original one. Numerical results on 3D synthetic and field data demonstrate that the low-redundancy curvelet denoising consumes one-quarter of the CPU time compared with the original curvelet transform using iterative thresholding denoising when comparable results are obtained. Thus, the low-redundancy curvelet transform is a good candidate for massive seismic denoising. (paper)

  3. Seismic Response of 3D Steel Buildings considering the Effect of PR Connections and Gravity Frames

    Haldar, Achintya; López-Barraza, Arturo; Rivera-Salas, J. Luz

    2014-01-01

    The nonlinear seismic responses of 3D steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF) are studied explicitly considering the contribution of the IGF. The effect on the structural response of the stiffness of the beam-to-column connections of the IGF, which is usually neglected, is also studied. It is commonly believed that the flexibility of shear connections is negligible and that 2D models can be used to properly represent 3D real structures. The results of the study indicate, however, that the moments developed on columns of IGF can be considerable and that modeling buildings as plane frames may result in very conservative designs. The contribution of IGF to the lateral structural resistance may be significant. The contribution increases when their connections are assumed to be partially restrained (PR). The incremented participation of IGF when the stiffness of their connections is considered helps to counteract the no conservative effect that results in practice when lateral seismic loads are not considered in IGF while designing steel buildings with PMRF. Thus, if the structural system under consideration is used, the three-dimensional model should be used in seismic analysis and the IGF and the stiffness of their connections should be considered as part of the lateral resistance system. PMID:24995357

  4. 3D seismic acquisition design and the processing : a strike survey at the Zafar and Mashal prospective structures, south Caspian basin

    Christine, Krohn; Tom, Steinhilber; Judy, Amery-Ryland; Emin, Jafarov

    2002-01-01

    Full text : The Zafar-Mashal block is a large exploration contract area in the deep-water sector of the south Caspian Sea, offshore Azerbaijan. This is the second ExxonMobil-affiliate-operated 3D seismic program in Azerbaijan. Pre-survey data quality evaluation of the existing 3D data set at Nakhchivan and 2D seismic lines over Zafar-Mashal raised concerns about imaging problems. Technical solutions were proposed and tested with ray-trace modeling and acquistion of a 2D seismic test program, which included lines oriented in the dip and strike directions relative to the subsurface structure. Processing results demonstrate that with strike orientation, multiples appear more hyperbolic and have a better velocity discrimination compared to the primary reflectors. Removal of multiples by radon filtering is more effective for the strike survey, especially for attenuating the water-bottom multiples and reducing the peg-leg multiples off shallow reflectors. Radon filtering helped to tighten the semblance velocities down to 6 seconds and in some places below. In areas where the primary velocity trend is slow due to presence of shallow gas, multiples remain difficult to differentiate and remove. Problems also remain where mud volcanoes and high impedance, shallow reflectors reduce or eliminate primary seismic signature. Higher signal-to-noise ratios are gained for a survey acquired in the strike direction because of improved multiple mitigation and an increased amount of data included in the 3D migration

  5. From 3D to 4D seismic tomography at El Hierro Island (Canary Islands, Spain)

    Garcia-Yeguas, A.; Koulakov, I.; Jakovlev, A.; Ibáñez, J. M.

    2012-04-01

    In this work we are going to show the advantages of a dynamic tomography 4D, versus a static image 3D related with a volcanic reactivation and eruption at El Hierro island (Canary Islands, Spain). In this process a high number of earthquakes before and during the eruptive processes have been registered. We are going to show a 3D image as an average of the velocity structure and then the characteristics and physical properties on the medium, including the presence or not of magma. This image will be complemented with its evolution along the time, observing its volcanic dynamic and its influence over the medium properties, including its power as an important element on early warnings protocols. After more than forty years of quiet at Canary Islands, since 1971 with Teneguía eruption at La Palma Island, and more than 200 years on El Hierro Island (The last eruption known at El Hierro took place in 1793, volcán de Lomo Negro), on 19th July on 2011 the Spanish seismic national network, administered by IGN (Instituto Geográfico Nacional), detected an increase of local seismic activity below El Hierro island (Canary Islands, Spain). Since this moment an intense swarm took place, with more than 11000 events, until 11th December, with magnitudes (MLg) from 0.2 to 4.4. In this period two eruptive processes have been declared in front of the South coast of El Hierro island, and they have not finished yet. This seismic swarm has allowed carrying out a 3D seismic tomography, using P and S waves traveltimes. It has showed a low velocity from the North to the South. On the other hand, we have performed a 4D seismic tomography, taking the events occurred at different intervals of time. We can observe the evolution of the negative anomaly along the time, from the North to the South, where has taken place La Restinga submarine eruption. 4D seismic tomography is an innovative and powerful tool able to show the evolution in time of a volcanic process.

  6. Automated 3D reconstruction of interiors with multiple scan views

    Sequeira, Vitor; Ng, Kia C.; Wolfart, Erik; Goncalves, Joao G. M.; Hogg, David C.

    1998-12-01

    This paper presents two integrated solutions for realistic 3D model acquisition and reconstruction; an early prototype, in the form of a push trolley, and a later prototype in the form of an autonomous robot. The systems encompass all hardware and software required, from laser and video data acquisition, processing and output of texture-mapped 3D models in VRML format, to batteries for power supply and wireless network communications. The autonomous version is also equipped with a mobile platform and other sensors for the purpose of automatic navigation. The applications for such a system range from real estate and tourism (e.g., showing a 3D computer model of a property to a potential buyer or tenant) or as tool for content creation (e.g., creating 3D models of heritage buildings or producing broadcast quality virtual studios). The system can also be used in industrial environments as a reverse engineering tool to update the design of a plant, or as a 3D photo-archive for insurance purposes. The system is Internet compatible: the photo-realistic models can be accessed via the Internet and manipulated interactively in 3D using a common Web browser with a VRML plug-in. Further information and example reconstructed models are available on- line via the RESOLV web-page at http://www.scs.leeds.ac.uk/resolv/.

  7. Parallel 3D Simulation of Seismic Wave Propagation in the Structure of Nobi Plain, Central Japan

    Kotani, A.; Furumura, T.; Hirahara, K.

    2003-12-01

    We performed large-scale parallel simulations of the seismic wave propagation to understand the complex wave behavior in the 3D basin structure of the Nobi Plain, which is one of the high population cities in central Japan. In this area, many large earthquakes occurred in the past, such as the 1891 Nobi earthquake (M8.0), the 1944 Tonankai earthquake (M7.9) and the 1945 Mikawa earthquake (M6.8). In order to mitigate the potential disasters for future earthquakes, 3D subsurface structure of Nobi Plain has recently been investigated by local governments. We referred to this model together with bouguer anomaly data to construct a detail 3D basin structure model for Nobi plain, and conducted computer simulations of ground motions. We first evaluated the ground motions for two small earthquakes (M4~5); one occurred just beneath the basin edge at west, and the other occurred at south. The ground motions from these earthquakes were well recorded by the strong motion networks; K-net, Kik-net, and seismic intensity instruments operated by local governments. We compare the observed seismograms with simulations to validate the 3D model. For the 3D simulation we sliced the 3D model into a number of layers to assign to many processors for concurrent computing. The equation of motions are solved using a high order (32nd) staggered-grid FDM in horizontal directions, and a conventional (4th-order) FDM in vertical direction with the MPI inter-processor communications between neighbor region. The simulation model is 128km by 128km by 43km, which is discritized at variable grid size of 62.5-125m in horizontal directions and of 31.25-62.5m in vertical direction. We assigned a minimum shear wave velocity is Vs=0.4km/s, at the top of the sedimentary basin. The seismic sources for the small events are approximated by double-couple point source and we simulate the seismic wave propagation at maximum frequency of 2Hz. We used the Earth Simulator (JAMSTEC, Yokohama Inst) to conduct such

  8. 3D seismic imaging of the subsurface for underground construction and drilling

    Juhlin, Christopher

    2014-01-01

    3D seismic imaging of underground structure has been carried out in various parts of the world for various purposes. Examples shown below were introduced in the presentation. - CO 2 storage in Ketzin, Germany; - Mine planning at the Millennium Uranium Deposit in Canada; - Planned Forsmark spent nuclear fuel repository in Sweden; - Exploring the Scandinavian Mountain Belt by Deep Drilling: the COSC drilling project in Sweden. The author explained that seismic methods provide the highest resolution images (5-10 m) of deeper (1-5 km) sub-surfaces in the sedimentary environment, but further improvement is required in crystalline rock environments, and the integration of geology, geophysics, and drilling will provide an optimal interpretation. (author)

  9. Source Inversion of Seismic Events Associated with the Sinkhole at Napoleonville Salt Dome, Louisiana using a 3D Velocity Model

    Nayak, Avinash; Dreger, Douglas S.

    2018-05-01

    salt dome at slightly shallower depth ˜0.35-0.65 km, with preferred isotropic volume-increase MT solutions. We find that GFs computed using the 3D velocity model generally result in better fits to the data than GFs computed using 1D velocity models, especially for the smaller amplitude tangential and vertical components, and result in better resolution of event locations. The dominant seismicity during 24-30 July 2012 is characterized by steady occurrence of seismic events with similar locations and MT solutions at a near-characteristic inter-event time. The steady activity is sometimes interrupted by tremor-like sequences of multiple events in rapid succession, followed by quiet periods of little of no seismic activity, in turn followed by the resumption of seismicity with a reduced seismic moment-release rate. The dominant volume-increase MT solutions and the steady features of the seismicity indicate a crack-valve-type source mechanism possibly driven by pressurized natural gas.

  10. Intriguing Success in 3D Seismic Acquisition in Ecologically Critical Lawachara National Park of Bangladesh

    Bakht, Delawar; Siddique, Mohammad; Masud, Mohammad

    2010-09-15

    In-depth environmental studies were conducted in 2008 by a multi-disciplinary team of international and national specialists of SMEC International for Chevron Bangladesh for obtaining Environmental Clearance for 3D seismic acquisition in Moulvibazar Gas Field. This included Lawachara National Park which was declared as an ecologically critical area in 1996. Exclusive monitoring of potential impact mitigation mechanism identified through EIA studies resulted in to completing the project with intriguing success. This has displayed a glaring example of sharing expertise leading to successful initiative in technology transfer in the developing country like Bangladesh currently in dire quest of harnessing natural gas.

  11. Quantitative elastic migration. Applications to 3D borehole seismic surveys; Migration elastique quantitative. Applications a la sismique de puits 3D

    Clochard, V.

    1998-12-02

    3D VSP imaging is nowadays a strategic requirement by petroleum companies. It is used to precise in details the geology close to the well. Because of the lack of redundancy and limited coverage in the data. this kind of technology is more restrictive than surface seismic which allows an investigation at a higher scale. Our contribution was to develop an elastic quantitative imagine (GRT migration) which can be applied to 3 components borehole dataset. The method is similar to the Kirchhoff migration using sophistical weighting of the seismic amplitudes. In reality. GRT migration uses pre-calculated Green functions (travel time. amplitude. polarization). The maps are obtained by 3D ray tracing (wavefront construction) in the velocity model. The migration algorithm works with elementary and independent tasks. which is useful to process different kind of dataset (fixed or moving geophone antenna). The study has been followed with validations using asymptotic analytical solution. The ability of reconstruction in 3D borehole survey has been tested in the Overthrust synthetic model. The application to a real circular 3D VSP shows various problems like velocity model building, anisotropy factor and the preprocessing (deconvolution. wave mode separation) which can destroy seismic amplitudes. An isotropic 3 components preprocessing of the whole dataset allows a better lateral reconstruction. The choice of a big migration aperture can help the reconstruction of strong geological dip in spite of migration smiles. Finally, the methodology can be applied to PS converted waves. (author)

  12. SEISVIZ3D: Stereoscopic system for the representation of seismic data - Interpretation and Immersion

    von Hartmann, Hartwig; Rilling, Stefan; Bogen, Manfred; Thomas, Rüdiger

    2015-04-01

    The seismic method is a valuable tool for getting 3D-images from the subsurface. Seismic data acquisition today is not only a topic for oil and gas exploration but is used also for geothermal exploration, inspections of nuclear waste sites and for scientific investigations. The system presented in this contribution may also have an impact on the visualization of 3D-data of other geophysical methods. 3D-seismic data can be displayed in different ways to give a spatial impression of the subsurface.They are a combination of individual vertical cuts, possibly linked to a cubical portion of the data volume, and the stereoscopic view of the seismic data. By these methods, the spatial perception for the structures and thus of the processes in the subsurface should be increased. Stereoscopic techniques are e. g. implemented in the CAVE and the WALL, both of which require a lot of space and high technical effort. The aim of the interpretation system shown here is stereoscopic visualization of seismic data at the workplace, i.e. at the personal workstation and monitor. The system was developed with following criteria in mind: • Fast rendering of large amounts of data so that a continuous view of the data when changing the viewing angle and the data section is possible, • defining areas in stereoscopic view to translate the spatial impression directly into an interpretation, • the development of an appropriate user interface, including head-tracking, for handling the increased degrees of freedom, • the possibility of collaboration, i.e. teamwork and idea exchange with the simultaneous viewing of a scene at remote locations. The possibilities offered by the use of a stereoscopic system do not replace a conventional interpretation workflow. Rather they have to be implemented into it as an additional step. The amplitude distribution of the seismic data is a challenge for the stereoscopic display because the opacity level and the scaling and selection of the data have to

  13. tomo3d: a new 3-D joint refraction and reflection travel-time tomography code for active-source seismic data

    Meléndez, A.; Korenaga, J.; Sallares, V.; Ranero, C. R.

    2012-12-01

    We present the development state of tomo3d, a code for three-dimensional refraction and reflection travel-time tomography of wide-angle seismic data based on the previous two-dimensional version of the code, tomo2d. The core of both forward and inverse problems is inherited from the 2-D version. The ray tracing is performed by a hybrid method combining the graph and bending methods. The graph method finds an ordered array of discrete model nodes, which satisfies Fermat's principle, that is, whose corresponding travel time is a global minimum within the space of discrete nodal connections. The bending method is then applied to produce a more accurate ray path by using the nodes as support points for an interpolation with beta-splines. Travel time tomography is formulated as an iterative linearized inversion, and each step is solved using an LSQR algorithm. In order to avoid the singularity of the sensitivity kernel and to reduce the instability of inversion, regularization parameters are introduced in the inversion in the form of smoothing and damping constraints. Velocity models are built as 3-D meshes, and velocity values at intermediate locations are obtained by trilinear interpolation within the corresponding pseudo-cubic cell. Meshes are sheared to account for topographic relief. A floating reflector is represented by a 2-D grid, and depths at intermediate locations are calculated by bilinear interpolation within the corresponding square cell. The trade-off between the resolution of the final model and the associated computational cost is controlled by the relation between the selected forward star for the graph method (i.e. the number of nodes that each node considers as its neighbors) and the refinement of the velocity mesh. Including reflected phases is advantageous because it provides a better coverage and allows us to define the geometry of those geological interfaces with velocity contrasts sharp enough to be observed on record sections. The code also

  14. Estimating the composition of gas hydrate using 3D seismic data from Penghu Canyon, offshore Taiwan

    Sourav Kumar Sahoo

    2018-01-01

    Full Text Available Direct measurements of gas composition by drilling at a few hundred meters below seafloor can be costly, and a remote sensing method may be preferable. The hydrate occurrence is seismically shown by a bottom-simulating reflection (BSR which is generally indicative of the base of the hydrate stability zone. With a good temperature profile from the seafloor to the depth of the BSR, a near-correct hydrate phase diagram can be calculated, which can be directly related to the hydrate composition. However, in the areas with high topographic anomalies of seafloor, the temperature profile is usually poorly defined, with scattered data. Here we used a remote method to reduce such scattering. We derived gas composition of hydrate in stability zone and reduced the scattering by considering depth-dependent geothermal conductivity and topographic corrections. Using 3D seismic data at the Penghu canyon, offshore SW Taiwan, we corrected for topographic focusing through 3D numerical thermal modeling. A temperature profile was fitted with a depth-dependent geothermal gradient, considering the increasing thermal conductivity with depth. Using a pore-water salinity of 2%, we constructed a gas hydrate phase model composed of 99% methane and 1% ethane to derive a temperature depth profile consistent with the seafloor temperature from in-situ measurements, and geochemical analyses of the pore fluids. The high methane content suggests predominantly biogenic source. The derived regional geothermal gradient is 40°C km-1. This method can be applied to other comparable marine environment to better constrain the composition of gas hydrate from BSR in a seismic data, in absence of direct sampling.

  15. Hydrocarbon Seeps Formations: a Study Using 3-D Seismic Attributes in Combination with Satellite Data

    Garcia-Pineda, O. G.; MacDonald, I. R.; Shedd, W.

    2011-12-01

    Analyzing the magnitude of oil discharges from natural hydrocarbon seeps is important in improving our understanding of carbon contribution as oil migrates from deeper sediments to the water column, and then eventually to the atmosphere. Liquid hydrocarbon seepage in the deep water of the Gulf of Mexico (GOM) is associated with deep cutting faults, associated with vertical salt movement, that provide conduits for the upward migration of oil and gas. Seeps transform surface geology and generate prominent geophysical targets that can be identified on 3-D seismic data as seafloor amplitude anomalies maps that correlate with the underlying deep fault systems. Using 3D seismic data, detailed mapping of the northern GOM has identified more than 21,000 geophysical anomalies across the basin. In addition to seismic data, Synthetic Aperture Radar (SAR) images have proven to be a reliable tool for localizing natural seepage of oil. We used a Texture Classifier Neural Network Algorithm (TCNNA) to process more than 1200 SAR images collected over the GOM. We quantified more than 900 individual seep formations distributed along the continental shelf and in deep water. Comparison of the geophysical anomalies with the SAR oil slick targets shows good general agreement between the distributions of the two indicators. However, there are far fewer active oil slicks than geophysical anomalies, most of which are probably associated with gas seepage. By examining several sites where the location of active venting can be determined by submersibles observations, we found that the active oily vents are often spatially offset from the most intense geophysical targets (i.e. GC600, GC767, GC204, etc). In addition to the displacement of the oil by deep sea currents, we propose that during the 100K years of activity, the location of the vents on the seafloor probably migrate as carbonate cementation reduces the permeability of the upper sediment. Many of the geophysical targets may represent

  16. Moment Tensor Inversion with 3D sensor configuration of Mining Induced Seismicity (Kiruna mine, Sweden)

    Ma, Ju; Dineva, Savka; Cesca, Simone; Heimann, Sebastian

    2018-03-01

    Mining induced seismicity is an undesired consequence of mining operations, which poses significant hazard to miners and infrastructures and requires an accurate analysis of the rupture process. Seismic moment tensors of mining-induced events help to understand the nature of mining-induced seismicity by providing information about the relationship between the mining, stress redistribution and instabilities in the rock mass. In this work, we adapt and test a waveform-based inversion method on high frequency data recorded by a dense underground seismic system in one of the largest underground mines in the world (Kiruna mine, Sweden). Stable algorithm for moment tensor inversion for comparatively small mining induced earthquakes, resolving both the double couple and full moment tensor with high frequency data is very challenging. Moreover, the application to underground mining system requires accounting for the 3D geometry of the monitoring system. We construct a Green's function database using a homogeneous velocity model, but assuming a 3D distribution of potential sources and receivers. We first perform a set of moment tensor inversions using synthetic data to test the effects of different factors on moment tensor inversion stability and source parameters accuracy, including the network spatial coverage, the number of sensors and the signal-to-noise ratio. The influence of the accuracy of the input source parameters on the inversion results is also tested. Those tests show that an accurate selection of the inversion parameters allows resolving the moment tensor also in presence of realistic seismic noise conditions. Finally, the moment tensor inversion methodology is applied to 8 events chosen from mining block #33/34 at Kiruna mine. Source parameters including scalar moment, magnitude, double couple, compensated linear vector dipole and isotropic contributions as well as the strike, dip, rake configurations of the double couple term were obtained. The orientations

  17. 3D absolute hypocentral determination - 13 years of seismicity in Ecuadorian subduction zone

    Font, Yvonne; Segovia, Monica; Theunissen, Thomas

    2010-05-01

    In Ecuador, the Nazca plate is subducting beneath the North Andean Block. This subduction triggered, during the last century, 4 major earthquakes of magnitude greater than 7.7. Between 1994 and 2007, the Geophysical Institute (Escuela National Politecnica, Quito) recorded about 40 000 events in whole Ecuador ranging from Mb 1.5 to 6.9. Unfortunately, the local network shows great density discrepancy between the Coastal and Andean regions where numerous stations were installed to survey volcanic activity. Consequently, seismicity in and around the interplate seismogenic zone - producer of the most destructive earthquakes and tsunamis - is not well constrained. This study aims to improve the location of 13 years seismicity occurred during an interseismic period in order to better localize the seismic deformation and gaps. The first step consists in the construction of a 3D "georealistic" velocity model. Because local tomography cannot provide satisfactory model, we combined all local crustal/lithospheric information on the geometry and velocity properties of different geological units. Those information cover the oceanic Nazca plate and sedimentary coverture the subducting plate dip angle; the North Andean Block margin composed of accreted oceanic plateaus (the Moho depth is approximated using gravity modeling); the metamorphic volcanic chain (oceanic nature for the occidental cordillera and inter-andean valley, continental one for the oriental cordillera); The continental Guyana shield and sedimentary basins. The resulting 3D velocity model extends from 2°N to 6.5°S and 277°E to 283°E and reaches a depth of 300 km. It is discretized in constant velocity blocks of 12 x 12 x 3 km in x, y and z, respectively. The second step consists in selecting an adequate sub-set of seismic stations in order to correct the effect of station density disequilibrium between coastal and volcanic regions. Consequently, we only keep the most representative volcanic stations in terms

  18. 3D elastic inversion of vertical seismic profiles in horizontally stratified media; Inversion elastique 3D de profils sismiques verticaux en milieux stratifies horizontalement

    Petit, J.L.

    1997-07-21

    This thesis is devoted to the inversion of VSP (vertical seismic profile) seismic data in order to determine the elastic properties of horizontally stratified media. The VSP records are computed using the full wave elastic modelling in isotropic and transversely isotropic media using Hankel transform, a finite difference scheme and an inverse Hankel transform algorithm, and the propagation equations are determined and numerically solved; the importance of considering a 3D wave propagation model instead of a 1 D one is emphasized. The theoretical VSP inverse problem is then considered, with the seismic waveform inversion set as a least-squares problem, consisting in recovering the distribution of physical parameters which minimize the misfit between calculated and observed VSP. The corresponding problem requires the knowledge of the source function

  19. Complex Crustal Structure Beneath Western Turkey Revealed by 3D Seismic Full Waveform Inversion (FWI)

    Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas

    2016-04-01

    We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ Technological Research Council of Turkey (TUBITAK Project No: ÇAYDAG-114Y066), and EU-HORIZON-2020: COST Actions: Earth System Science and Environmental Management: ES1401 - Time Dependent Seismology (TIDES).

  20. 3-D seismic response of a base-isolated fast reactor

    Kitamura, S.; Morishita, M.; Iwata, K.

    1992-01-01

    This paper describes a 3-D response analysis methodology development and its application to a base-isolated fast breeder reactor (FBR) plant. At first, studies on application of a base-isolation system to an FBR plant were performed to identify a range of appropriate characteristics of the system. A response analysis method was developed based on mathematical models for the restoring force characteristics of several types of the systems. A series of shaking table tests using a small scale model was carried out to verify the analysis method. A good agreement was seen between the test and analysis results in terms of the horizontal and vertical responses. Parametric studies were then made to assess the effects of various factors which might be influential to the seismic response of the system. Moreover, the method was applied to evaluate three-dimensional response of the base-isolated FBR. (author)

  1. Frontally confined versus frontally emergent submarine landslides: A 3D seismic characterisation

    Frey-Martinez, Jose; Cartwright, Joe; James, David [3DLab. School of Earth, Ocean and Planetary Sciences, Cardiff University, P.O. Box 914, Cardiff CF10 3YE (United Kingdom)

    2006-06-15

    Three-dimensional (3D) seismic data from the continental margin offshore Israel (Eastern Mediterranean) have been used to analyse the compressional structures within the toe regions of two major buried submarine landslides: the ISC and the T20. Both landslides are developed within a Plio-Pleistocene slope succession composed predominately of claystones, limestones and siltstones. The high spatial resolution provided by the seismic data has allowed a detailed analysis of the geometries and deformational structures within the toe regions of the two landslides, and this has been used to develop a mechanical model for their development. Importantly, it has been recognised that submarine landslides may be divided into two main types according to their form of frontal emplacement: frontally confined and frontally emergent. In the former, the landslide undergoes a restricted downslope translation and does not overrun the undeformed downslope strata. In the latter, much larger downslope translation occurs because the landslide is able to ramp up from its original basal shear surface and translate in an unconfined manner over the seafloor. We propose that these two types of submarine landslides are end members of a continuum of gravity-driven slope failure processes, which extends from landslides where the headscarp is completely evacuated, to landslides where the material remains entirely within the headscarp. The differentiation of these two end members is of critical importance as their respective mechanisms of formation, downslope propagation and emplacement are significantly different, and hence need to be taken into consideration when analysing their respective kinematics. (author)

  2. 3D Power Line Extraction from Multiple Aerial Images

    Jaehong Oh

    2017-09-01

    Full Text Available Power lines are cables that carry electrical power from a power plant to an electrical substation. They must be connected between the tower structures in such a way that ensures minimum tension and sufficient clearance from the ground. Power lines can stretch and sag with the changing weather, eventually exceeding the planned tolerances. The excessive sags can then cause serious accidents, while hindering the durability of the power lines. We used photogrammetric techniques with a low-cost drone to achieve efficient 3D mapping of power lines that are often difficult to approach. Unlike the conventional image-to-object space approach, we used the object-to-image space approach using cubic grid points. We processed four strips of aerial images to automatically extract the power line points in the object space. Experimental results showed that the approach could successfully extract the positions of the power line points for power line generation and sag measurement with the elevation accuracy of a few centimeters.

  3. Multiple-point statistical simulation for hydrogeological models: 3-D training image development and conditioning strategies

    Høyer, Anne-Sophie; Vignoli, Giulio; Mejer Hansen, Thomas; Thanh Vu, Le; Keefer, Donald A.; Jørgensen, Flemming

    2017-12-01

    Most studies on the application of geostatistical simulations based on multiple-point statistics (MPS) to hydrogeological modelling focus on relatively fine-scale models and concentrate on the estimation of facies-level structural uncertainty. Much less attention is paid to the use of input data and optimal construction of training images. For instance, even though the training image should capture a set of spatial geological characteristics to guide the simulations, the majority of the research still relies on 2-D or quasi-3-D training images. In the present study, we demonstrate a novel strategy for 3-D MPS modelling characterized by (i) realistic 3-D training images and (ii) an effective workflow for incorporating a diverse group of geological and geophysical data sets. The study covers an area of 2810 km2 in the southern part of Denmark. MPS simulations are performed on a subset of the geological succession (the lower to middle Miocene sediments) which is characterized by relatively uniform structures and dominated by sand and clay. The simulated domain is large and each of the geostatistical realizations contains approximately 45 million voxels with size 100 m × 100 m × 5 m. Data used for the modelling include water well logs, high-resolution seismic data, and a previously published 3-D geological model. We apply a series of different strategies for the simulations based on data quality, and develop a novel method to effectively create observed spatial trends. The training image is constructed as a relatively small 3-D voxel model covering an area of 90 km2. We use an iterative training image development strategy and find that even slight modifications in the training image create significant changes in simulations. Thus, this study shows how to include both the geological environment and the type and quality of input information in order to achieve optimal results from MPS modelling. We present a practical workflow to build the training image and

  4. Multiple intersecting cohesive discontinuities in 3D reservoir geomechanics

    Das, K. C.; Sandha, S.S.; Carol, Ignacio; Vargas, P.E.; Gonzalez, Nubia Aurora; Rodrigues, E.; Segura Segarra, José María; Lakshmikantha, Ramasesha Mookanahallipatna; Mello,, U.

    2013-01-01

    Reservoir Geomechanics is playing an increasingly important role in developing and producing hydrocarbon reserves. One of the main challenges in reservoir modeling is accurate and efficient simulation of arbitrary intersecting faults. In this paper, we propose a new formulation to model multiple intersecting cohesive discontinuities (faults) in reservoirs using the XFEM framework. This formulation involves construction of enrichment functions and computation of stiffness sub-matrices for bulk...

  5. High-resolution 3-D S-wave Tomography of upper crust structures in Yilan Plain from Ambient Seismic Noise

    Chen, Kai-Xun; Chen, Po-Fei; Liang, Wen-Tzong; Chen, Li-Wei; Gung, YuanCheng

    2015-04-01

    The Yilan Plain (YP) in NE Taiwan locates on the western YP of the Okinawa Trough and displays high geothermal gradients with abundant hot springs, likely resulting from magmatism associated with the back-arc spreading as attested by the offshore volcanic island (Kueishantao). YP features NS distinctive characteristics that the South YP exhibits thin top sedimentary layer, high on-land seismicity and significant SE movements, relative those of the northern counterpart. A dense network (~2.5 km station interval) of 89 Texan instruments was deployed in Aug. 2014, covering most of the YP and its vicinity. The ray path coverage density of each 0.015 degree cells are greater than 150 km that could provide the robustness assessment of tomographic results. We analyze ambient noise signals to invert a high-resolution 3D S-wave model for shallow velocity structures in and around YP. The aim is to investigate the velocity anomalies corresponding to geothermal resources and the NS geological distinctions aforementioned. We apply the Welch's method to generate empirical Rayleigh wave Green's functions between two stations records of continuous vertical components. The group velocities of thus derived functions are then obtained by the multiple-filter analysis technique measured at the frequency range between 0.25 and 1 Hz. Finally, we implement a wavelet-based multi-scale parameterization technique to construct 3D model of S-wave velocity. Our first month results exhibit low velocity in the plain, corresponding existing sediments, those of whole YP show low velocity offshore YP and those of high-resolution south YP reveal stark velocity contrast across the Sanshin fault. Key words: ambient seismic noises, Welch's method, S-wave, Yilan Plain

  6. 3D Space Shift from CityGML LoD3-Based Multiple Building Elements to a 3D Volumetric Object

    Shen Ying

    2017-01-01

    Full Text Available In contrast with photorealistic visualizations, urban landscape applications, and building information system (BIM, 3D volumetric presentations highlight specific calculations and applications of 3D building elements for 3D city planning and 3D cadastres. Knowing the precise volumetric quantities and the 3D boundary locations of 3D building spaces is a vital index which must remain constant during data processing because the values are related to space occupation, tenure, taxes, and valuation. To meet these requirements, this paper presents a five-step algorithm for performing a 3D building space shift. This algorithm is used to convert multiple building elements into a single 3D volumetric building object while maintaining the precise volume of the 3D space and without changing the 3D locations or displacing the building boundaries. As examples, this study used input data and building elements based on City Geography Markup Language (CityGML LoD3 models. This paper presents a method for 3D urban space and 3D property management with the goal of constructing a 3D volumetric object for an integral building using CityGML objects, by fusing the geometries of various building elements. The resulting objects possess true 3D geometry that can be represented by solid geometry and saved to a CityGML file for effective use in 3D urban planning and 3D cadastres.

  7. Hypocenter relocation along the Sunda arc in Indonesia, using a 3D seismic velocity model

    Nugraha, Andri Dian; Shiddiqi, Hasbi A.; Widiyantoro, Sri; Thurber, Clifford H.; Pesicek, Jeremy D.; Zhang, Haijiang; Wiyono, Samsul H.; Ramadhan, Mohamad; Wandano,; Irsyam, Mahsyur

    2018-01-01

    The tectonics of the Sunda arc region is characterized by the junction of the Eurasian and Indo‐Australian tectonic plates, causing complex dynamics to take place. High‐seismicity rates in the Indonesian region occur due to the interaction between these tectonic plates. The availability of a denser network of seismometers after the earthquakes of Mw">Mw 9.1 in 2004 and  Mw">Mw 8.6 in 2005 supports various seismic studies, one of which regards the precise relocation of the hypocenters. In this study, hypocenter relocation was performed using a teleseismic double‐difference (DD) relocation method (teletomoDD) combining arrival times of P and S waves from stations at local, regional, and teleseismic distances. The catalog data were taken from the Agency of Meteorology, Climatology, and Geophysics (BMKG) of Indonesia, and the International Seismological Centre (ISC) for the time period of April 2009 to May 2015. The 3D seismic‐wave velocity model with a grid size 1°×1°">1°×1° was used in the travel‐time calculations. Relocation results show a reduction in travel‐time residuals compared with the initial locations. The relocation results better illuminate subducted slabs and active faults in the region such as the Mentawai back thrust and the outer rise in the subduction zone south of Java. Focal mechanisms from the Global Centroid Moment Tensor catalog are analyzed in conjunction with the relocation results, and our synthesis of the results provides further insight into seismogenesis in the region.

  8. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    He, W.; Anderson, R.N.

    1998-08-25

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

  9. Architecture and growth history of a Miocene carbonate platform from 3D seismic reflection data; Luconia province, offshore Sarawak, Malaysia

    Zampetti, V.; Schlager, W.; van Konijnenburg, J.H; Everts, A.J.

    2004-01-01

    Using 3D seismic reflection data and wireline logs we reconstruct in detail the architecture and growth history of a Miocene carbonate platform in the Luconia province, offshore Sarawak, Malaysia. Platform growth started in the Late Oligocene to Early Miocene, by coalescence of isolated patch reefs.

  10. Estimating regional pore pressure distribution using 3D seismic velocities in the Dutch Central North Sea Graben

    Winthaegen, P.L.A.; Verweij, J.M.

    2003-01-01

    The application of the empirical Eaton method to calibrated sonic well information and 3D seismic interval velocity data in the southeastern part of the Central North Sea Graben, using the Japsen (Glob. Planet. Change 24 (2000) 189) normal velocitydepth trend, resulted in the identification of an

  11. 3D density model of the upper mantle of Asia based on inversion of gravity and seismic tomography data

    Kaban, Mikhail K.; Stolk, Ward; Tesauro, Magdala; El Khrepy, Sami; Al-Arifi, Nassir; Beekman, Fred; Cloetingh, Sierd A P L

    2016-01-01

    We construct a new-generation 3D density model of the upper mantle of Asia and its surrounding areas based on a joint interpretation of several data sets. A recent model of the crust combining nearly all available seismic data is employed to calculate the impact of the crust on the gravity anomalies

  12. Research on 3-D base isolation system applied to new power reactor 3-D seismic isolation device with rolling seal type air spring: Pt.2

    Junji Suhara; Ryoichiro Matsumoto; Shinsuke Oguri; Yasuo Okada; Kazuhiko Inoue; Kenji Takahashi

    2005-01-01

    A three dimensional seismic base isolation device was developed for heavy structures and buildings such as nuclear power reactor buildings. The device realizes 3-D isolation by combining a LRB (laminated rubber bearing) for horizontal isolation with an air spring for vertical isolation in series. In this study, scale models of the 3-D base isolation device were made and were tested to examine the dynamic properties and ultimate strengths of the device. The performance of the device under earthquake excitation was examined through shaking table tests of 1/7 scale models. As the results, it was confirmed that the device worked smoothly under the horizontal and vertical excitations, and that the theoretical formulae of the orifice damping could explain the test results. The high-pressure air springs of trial production were forced to burst to find out which factor influenced ultimate strength. It was confirmed from results of the burst test that the strength of the air spring depended upon the diameter of rolling part of the bellows and the number of layers of the reinforcing fibers. Judging from the results of the shaking table test and the burst test, the developed 3-D base isolation device was applicable to a nuclear power plant building. (authors)

  13. Evaluation of the 3D high resolution seismic method at the Tournemire site around the IPSN experimental station

    Cabrera Nunez, J.

    2003-01-01

    The IPSN experimental station of Tournemire is localized at a 200 m depth inside an abandoned railway tunnel dug in a Jurassic clayey formation. The a priori knowledge of the existing geologic structures of the clayey formations allows to test the reliability of the 3D high resolution seismic survey technique and its capability to detect these structures and discontinuities. This test study is reported in this technical note. It comprises several steps: a bibliographic synthesis and a state-of-the-art of the 3D seismic survey technique, the construction of a velocity model for the different strata of the site, a simulation of the possible seismic response of these strata with respect to the velocities chosen, the processing of the data and finally their interpretation. (J.S.)

  14. Investigating the Importance of 3D Structure & Topography in Seismic Deformation Modeling: Case Study of the April 2015 Nepal Earthquake

    Langer, L.; Gharti, H. N.; Tromp, J.

    2017-12-01

    In recent years, observations of deformation at plate boundaries have been greatly improved by the development of techniques in space geodesy. However, models of seismic deformation remain limited and are unable to account for realistic 3D structure in topography and material properties. We demonstrate the importance of 3D structure using a spectral-element method that incorporates fault geometry, topography, and heterogeneous material properties in a (non)linear viscoelastic domain. Our method is benchmarked against Okada's analytical technique and the PyLith software package. The April 2015 Nepal earthquake is used as a case study to examine whether 3D structure can affect the predictions of seismic deformation models. We find that the inclusion of topography has a significant effect on our results.

  15. Report from SG 1.2: use of 3-D seismic data in exploration, production and underground storage

    NONE

    2000-07-01

    The objective of this study was to investigate the experience gained from using 3D and 4D techniques in exploration, production and underground storage. The use of 3D seismic data is increasing and considerable progress in the application of such data has been achieved in recent years. 3D is now in extensive use in exploration, field and storage development planning and reservoir management. By using 4D (or time-lapse) seismic data from a given producing area, it is also possible to monitor gas movement as a function of time in a gas field or storage. This emerging technique is therefore very useful in reservoir management, in order to obtain increased recovery, higher production, and to reduce the risk of infill wells. These techniques can also be used for monitoring underground gas storage. The study gives recommendations on the use of 3D and 4D seismic in the gas industry. For this purpose, three specific questionnaires were proposed: the first one dedicated to exploration, development and production of gas fields (Production questionnaire), the second one dedicated to gas storages (Storage questionnaire) and the third one dedicated to the servicing companies. The main results are: - The benefit from 3D is clear for both producing and storage operators in improving structural shape, fault pattern and reservoir knowledge. The method usually saves wells and improve gas volume management. - 4D seismic is an emerging technique with high potential benefits for producers. Research in 4D must focus on the integration of seismic methodology and interpretation of results with production measurements in reservoir models. (author)

  16. pySeismicFMM: Python based Travel Time Calculation in Regular 2D and 3D Grids in Cartesian and Geographic Coordinates using Fast Marching Method

    Wilde-Piorko, M.; Polkowski, M.

    2016-12-01

    Seismic wave travel time calculation is the most common numerical operation in seismology. The most efficient is travel time calculation in 1D velocity model - for given source, receiver depths and angular distance time is calculated within fraction of a second. Unfortunately, in most cases 1D is not enough to encounter differentiating local and regional structures. Whenever possible travel time through 3D velocity model has to be calculated. It can be achieved using ray calculation or time propagation in space. While single ray path calculation is quick it is complicated to find the ray path that connects source with the receiver. Time propagation in space using Fast Marching Method seems more efficient in most cases, especially when there are multiple receivers. In this presentation final release of a Python module pySeismicFMM is presented - simple and very efficient tool for calculating travel time from sources to receivers. Calculation requires regular 2D or 3D velocity grid either in Cartesian or geographic coordinates. On desktop class computer calculation speed is 200k grid cells per second. Calculation has to be performed once for every source location and provides travel time to all receivers. pySeismicFMM is free and open source. Development of this tool is a part of authors PhD thesis. Source code of pySeismicFMM will be published before Fall Meeting. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  17. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  18. Fast 3D seismic wave simulations of 24 August 2016 Mw 6.0 central Italy earthquake for visual communication

    Emanuele Casarotti

    2016-12-01

    Full Text Available We present here the first application of the fast reacting framework for 3D simulations of seismic wave propagation generated by earthquakes in the Italian region with magnitude Mw 5. The driven motivation is to offer a visualization of the natural phenomenon to the general public but also to provide preliminary modeling to expert and civil protection operators. We report here a description of this framework during the emergency of 24 August 2016 Mw 6.0 central Italy Earthquake, a discussion on the accuracy of the simulation for this seismic event and a preliminary critical analysis of the visualization structure and of the reaction of the public.

  19. Task Assignment and Path Planning for Multiple Autonomous Underwater Vehicles Using 3D Dubins Curves †.

    Cai, Wenyu; Zhang, Meiyan; Zheng, Yahong Rosa

    2017-07-11

    This paper investigates the task assignment and path planning problem for multiple AUVs in three dimensional (3D) underwater wireless sensor networks where nonholonomic motion constraints of underwater AUVs in 3D space are considered. The multi-target task assignment and path planning problem is modeled by the Multiple Traveling Sales Person (MTSP) problem and the Genetic Algorithm (GA) is used to solve the MTSP problem with Euclidean distance as the cost function and the Tour Hop Balance (THB) or Tour Length Balance (TLB) constraints as the stop criterion. The resulting tour sequences are mapped to 2D Dubins curves in the X - Y plane, and then interpolated linearly to obtain the Z coordinates. We demonstrate that the linear interpolation fails to achieve G 1 continuity in the 3D Dubins path for multiple targets. Therefore, the interpolated 3D Dubins curves are checked against the AUV dynamics constraint and the ones satisfying the constraint are accepted to finalize the 3D Dubins curve selection. Simulation results demonstrate that the integration of the 3D Dubins curve with the MTSP model is successful and effective for solving the 3D target assignment and path planning problem.

  20. Task Assignment and Path Planning for Multiple Autonomous Underwater Vehicles Using 3D Dubins Curves †

    Wenyu Cai

    2017-07-01

    Full Text Available This paper investigates the task assignment and path planning problem for multiple AUVs in three dimensional (3D underwater wireless sensor networks where nonholonomic motion constraints of underwater AUVs in 3D space are considered. The multi-target task assignment and path planning problem is modeled by the Multiple Traveling Sales Person (MTSP problem and the Genetic Algorithm (GA is used to solve the MTSP problem with Euclidean distance as the cost function and the Tour Hop Balance (THB or Tour Length Balance (TLB constraints as the stop criterion. The resulting tour sequences are mapped to 2D Dubins curves in the X − Y plane, and then interpolated linearly to obtain the Z coordinates. We demonstrate that the linear interpolation fails to achieve G 1 continuity in the 3D Dubins path for multiple targets. Therefore, the interpolated 3D Dubins curves are checked against the AUV dynamics constraint and the ones satisfying the constraint are accepted to finalize the 3D Dubins curve selection. Simulation results demonstrate that the integration of the 3D Dubins curve with the MTSP model is successful and effective for solving the 3D target assignment and path planning problem.

  1. Low-Complexity Multiple Description Coding of Video Based on 3D Block Transforms

    Andrey Norkin

    2007-02-01

    Full Text Available The paper presents a multiple description (MD video coder based on three-dimensional (3D transforms. Two balanced descriptions are created from a video sequence. In the encoder, video sequence is represented in a form of coarse sequence approximation (shaper included in both descriptions and residual sequence (details which is split between two descriptions. The shaper is obtained by block-wise pruned 3D-DCT. The residual sequence is coded by 3D-DCT or hybrid, LOT+DCT, 3D-transform. The coding scheme is targeted to mobile devices. It has low computational complexity and improved robustness of transmission over unreliable networks. The coder is able to work at very low redundancies. The coding scheme is simple, yet it outperforms some MD coders based on motion-compensated prediction, especially in the low-redundancy region. The margin is up to 3 dB for reconstruction from one description.

  2. Integrated approach to 3-D seismic acquisition geometry analysis : Emphasizing the influence of the inhomogeneous subsurface

    van Veldhuizen, E.J.

    2006-01-01

    The seismic reflection method for imaging of the earth's interior is an essential part of the exploration and exploitation of hydrocarbon resources. A seismic survey should be designed such that the acquired data leads to a sufficiently accurate subsurface image. The survey geometry analysis method

  3. Characterization of gas hydrate distribution using conventional 3D seismic data in the Pearl River Mouth Basin, South China Sea

    Wang, Xiujuan; Qiang, Jin; Collett, Timothy S.; Shi, Hesheng; Yang, Shengxiong; Yan, Chengzhi; Li, Yuanping; Wang, Zhenzhen; Chen, Duanxin

    2016-01-01

    A new 3D seismic reflection data volume acquired in 2012 has allowed for the detailed mapping and characterization of gas hydrate distribution in the Pearl River Mouth Basin in the South China Sea. Previous studies of core and logging data showed that gas hydrate occurrence at high concentrations is controlled by the presence of relatively coarse-grained sediment and the upward migration of thermogenic gas from the deeper sediment section into the overlying gas hydrate stability zone (BGHSZ); however, the spatial distribution of the gas hydrate remains poorly defined. We used a constrained sparse spike inversion technique to generate acoustic-impedance images of the hydrate-bearing sedimentary section from the newly acquired 3D seismic data volume. High-amplitude reflections just above the bottom-simulating reflectors (BSRs) were interpreted to be associated with the accumulation of gas hydrate with elevated saturations. Enhanced seismic reflections below the BSRs were interpreted to indicate the presence of free gas. The base of the BGHSZ was established using the occurrence of BSRs. In areas absent of well-developed BSRs, the BGHSZ was calculated from a model using the inverted P-wave velocity and subsurface temperature data. Seismic attributes were also extracted along the BGHSZ that indicate variations reservoir properties and inferred hydrocarbon accumulations at each site. Gas hydrate saturations estimated from the inversion of acoustic impedance of conventional 3D seismic data, along with well-log-derived rock-physics models were also used to estimate gas hydrate saturations. Our analysis determined that the gas hydrate petroleum system varies significantly across the Pearl River Mouth Basin and that variability in sedimentary properties as a product of depositional processes and the upward migration of gas from deeper thermogenic sources control the distribution of gas hydrates in this basin.

  4. High-Resolution Printing of 3D Structures Using an Electrohydrodynamic Inkjet with Multiple Functional Inks.

    An, Byeong Wan; Kim, Kukjoo; Lee, Heejoo; Kim, So-Yun; Shim, Yulhui; Lee, Dae-Young; Song, Jun Yeob; Park, Jang-Ung

    2015-08-05

    Electrohydrodynamic-inkjet-printed high-resolution complex 3D structures with multiple functional inks are demonstrated. Printed 3D structures can have a variety of fine patterns, such as vertical or helix-shaped pillars and straight or rounded walls, with high aspect ratios (greater than ≈50) and narrow diameters (≈0.7 μm). Furthermore, the formation of freestanding, bridge-like Ag wire structures on plastic substrates suggests substantial potentials as high-precision, flexible 3D interconnects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Seismic moment tensor inversion using 3D velocity model and its application to the 2013 Lushan earthquake sequence

    Zhu, Lupei; Zhou, Xiaofeng

    2016-10-01

    Source inversion of small-magnitude events such as aftershocks or mine collapses requires use of relatively high frequency seismic waveforms which are strongly affected by small-scale heterogeneities in the crust. In this study, we developed a new inversion method called gCAP3D for determining general moment tensor of a seismic source using Green's functions of 3D models. It inherits the advantageous features of the ;Cut-and-Paste; (CAP) method to break a full seismogram into the Pnl and surface-wave segments and to allow time shift between observed and predicted waveforms. It uses grid search for 5 source parameters (relative strengths of the isotropic and compensated-linear-vector-dipole components and the strike, dip, and rake of the double-couple component) that minimize the waveform misfit. The scalar moment is estimated using the ratio of L2 norms of the data and synthetics. Focal depth can also be determined by repeating the inversion at different depths. We applied gCAP3D to the 2013 Ms 7.0 Lushan earthquake and its aftershocks using a 3D crustal-upper mantle velocity model derived from ambient noise tomography in the region. We first relocated the events using the double-difference method. We then used the finite-differences method and reciprocity principle to calculate Green's functions of the 3D model for 20 permanent broadband seismic stations within 200 km from the source region. We obtained moment tensors of the mainshock and 74 aftershocks ranging from Mw 5.2 to 3.4. The results show that the Lushan earthquake is a reverse faulting at a depth of 13-15 km on a plane dipping 40-47° to N46° W. Most of the aftershocks occurred off the main rupture plane and have similar focal mechanisms to the mainshock's, except in the proximity of the mainshock where the aftershocks' focal mechanisms display some variations.

  6. Absolute earthquake locations using 3-D versus 1-D velocity models below a local seismic network: example from the Pyrenees

    Theunissen, T.; Chevrot, S.; Sylvander, M.; Monteiller, V.; Calvet, M.; Villaseñor, A.; Benahmed, S.; Pauchet, H.; Grimaud, F.

    2018-03-01

    Local seismic networks are usually designed so that earthquakes are located inside them (primary azimuthal gap 180° and distance to the first station higher than 15 km). Errors on velocity models and accuracy of absolute earthquake locations are assessed based on a reference data set made of active seismic, quarry blasts and passive temporary experiments. Solutions and uncertainties are estimated using the probabilistic approach of the NonLinLoc (NLLoc) software based on Equal Differential Time. Some updates have been added to NLLoc to better focus on the final solution (outlier exclusion, multiscale grid search, S-phases weighting). Errors in the probabilistic approach are defined to take into account errors on velocity models and on arrival times. The seismicity in the final 3-D catalogue is located with a horizontal uncertainty of about 2.0 ± 1.9 km and a vertical uncertainty of about 3.0 ± 2.0 km.

  7. Seismic reflection imaging, accounting for primary and multiple reflections

    Wapenaar, Kees; van der Neut, Joost; Thorbecke, Jan; Broggini, Filippo; Slob, Evert; Snieder, Roel

    2015-04-01

    Imaging of seismic reflection data is usually based on the assumption that the seismic response consists of primary reflections only. Multiple reflections, i.e. waves that have reflected more than once, are treated as primaries and are imaged at wrong positions. There are two classes of multiple reflections, which we will call surface-related multiples and internal multiples. Surface-related multiples are those multiples that contain at least one reflection at the earth's surface, whereas internal multiples consist of waves that have reflected only at subsurface interfaces. Surface-related multiples are the strongest, but also relatively easy to deal with because the reflecting boundary (the earth's surface) is known. Internal multiples constitute a much more difficult problem for seismic imaging, because the positions and properties of the reflecting interfaces are not known. We are developing reflection imaging methodology which deals with internal multiples. Starting with the Marchenko equation for 1D inverse scattering problems, we derived 3D Marchenko-type equations, which relate reflection data at the surface to Green's functions between virtual sources anywhere in the subsurface and receivers at the surface. Based on these equations, we derived an iterative scheme by which these Green's functions can be retrieved from the reflection data at the surface. This iterative scheme requires an estimate of the direct wave of the Green's functions in a background medium. Note that this is precisely the same information that is also required by standard reflection imaging schemes. However, unlike in standard imaging, our iterative Marchenko scheme retrieves the multiple reflections of the Green's functions from the reflection data at the surface. For this, no knowledge of the positions and properties of the reflecting interfaces is required. Once the full Green's functions are retrieved, reflection imaging can be carried out by which the primaries and multiples are

  8. Numerical Simulations of 3D Seismic Data Final Report CRADA No. TC02095.0

    Friedmann, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kostov, C. [Schlumberger Cambridge Research (United Kingdom)

    2017-09-06

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of Califomia)/Lawrence-Livermore National Laboratory (LLNL) and Schlumberger Cambridge Research (SCR), to develop synthetic seismic data sets and supporting codes.

  9. 2D and 3D numerical modeling of seismic waves from explosion sources

    McLaughlin, K.L.; Stevens, J.L.; Barker, T.G.; Shkoller, B.; Day, S.M.

    1993-01-01

    Over the last decade, nonlinear and linear 2D axisymmetric finite difference codes have been used in conjunction with far-field seismic Green's functions to simulate seismic waves from a variety of sources. In this paper we briefly review some of the results and conclusions that have resulted from numerical simulations and explosion modeling in support of treaty verification research at S-CUBED in the last decade. We then describe in more detail the results from two recent projects. Our goal is to provide a flavor for the kinds of problems that can be examined with numerical methods for modeling excitation of seismic waves from explosions. Two classes of problems have been addressed; nonlinear and linear near-source interactions. In both classes of problems displacements and tractions are saved on a closed surface in the linear region and the representation theorem is used to propagate the seismic waves to the far-field

  10. Pliocene paleoenvironment evolution as interpreted from 3D-seismic data in the southern North Sea, Dutch offshore sector

    Kuhlmann, Gesa [Faculty of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht (Netherlands); Wong, Theo E. [Faculty of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht (Netherlands); TNO-NITG, National Geological Survey of the Netherlands, Princetonlaan 6, 3584 CB Utrecht (Netherlands)

    2008-02-15

    A high-resolution 3D-seismic survey from the Dutch offshore sector has been interpreted and subsequently correlated with existing regional seismo-stratigraphic concepts derived from conventional 2D-seismic data sets. The interpreted 13 seismic units have been related to a newly established chrono-stratigraphic framework [Kuhlmann et al., 2006a, b. Chronostratigraphy of Late Neogene sediments in the southern North Sea Basin and paleoenvironmental interpretations. Palaeogeography, Palaeoclimatology, Palaeoecology, 239, 426-455; Integrated chronostratigraphy of the Pliocene-Pleistocene interval and its relation to the regional stratigraphical stages in the southern North Sea region. Netherlands Journal of Geosciences-Geologie en Mijnbouw, 85(1), 19-35] resulting in up-dated age control for the seismic units. The generation of amplitude maps, time slices and isopach maps from the 3D-seismic data enabled detailed spatial and temporal reconstruction regarding the paleoenvironmental and climatological development as depicted by Kuhlmann et al. [2006a. Chronostratigraphy of Late Neogene sediments in the southern North Sea Basin and paleoenvironmental interpretations. Palaeogeography, Palaeoclimatology, Palaeoecology, 239, 426-455]. The lowermost seismic units S1-S4 comprise condensed Middle Miocene to Piacencian sediments, deposited under warm open marine conditions. These sediments show a uniform seismic facies of low-amplitude reflectors. The boundary of seismic unit S4-S5 (around 2.6 Ma) delineates a shift towards generally colder climate conditions that are connected to the onset of Northern Hemisphere Glaciation. Seismic unit S5 includes alternations of warmer and colder periods. During warmer periods, bottom currents generated elongated structures (2.5-4 km long, 300-500 m wide) on the horizon display. These layers show as well shallow gas accumulations with a more regional extent and are related to coarser-grained sediments sealed by clayey sediments of the cold

  11. Seismic behavior of NPP structures subjected to realistic 3D, inclined seismic motions, in variable layered soil/rock, on surface or embedded foundations

    Jeremić, B.; Tafazzoli, N.; Ancheta, T.; Orbović, N.; Blahoianu, A.

    2013-01-01

    Highlights: • Full 3D, inclined, incoherent seismic motions used for modeling SSI of an NPP. • Analyzed effects of variable and uniform soil/rock layering profiles on SSI. • Surface and embedded foundations were modeled and differences analyzed. - Abstract: Presented here is an investigation of the seismic response of a massive NPP structures due to full 3D, inclined, un-correlated input motions for different soil and rock profiles. Of particular interest are the effects of soil and rock layering on the response and the changes of input motions (frequency characteristics) due to such layering. In addition to rock/soil layering effects, investigated are also effects of foundation embedment on dynamic response. Significant differences were observed in dynamic response of containment and internal structure founded on surface and on embedded foundations. These differences were observed for both rock and soil profiles. Select results are used to present most interesting findings

  12. Capabilities of seismic and georadar 2D/3D imaging of shallow subsurface of transport route using the Seismobile system

    Pilecki, Zenon; Isakow, Zbigniew; Czarny, Rafał; Pilecka, Elżbieta; Harba, Paulina; Barnaś, Maciej

    2017-08-01

    In this work, the capabilities of the Seismobile system for shallow subsurface imaging of transport routes, such as roads, railways, and airport runways, in different geological conditions were presented. The Seismobile system combines the advantages of seismic profiling using landstreamer and georadar (GPR) profiling. It consists of up to four seismic measuring lines and carriage with a suspended GPR antenna. Shallow subsurface recognition may be achieved to a maximum width of 10.5 m for a distance of 3.5 m between the measurement lines. GPR measurement is performed in the axis of the construction. Seismobile allows the measurement time, labour and costs to be reduced due to easy technique of its installation, remote data transmission from geophones to accompanying measuring modules, automated location of the system based on GPS and a highly automated method of seismic wave excitation. In this paper, the results of field tests carried out in different geological conditions were presented. The methodologies of acquisition, processing and interpretation of seismic and GPR measurements were broadly described. Seismograms and its spectrum registered by Seismobile system were compared to the ones registered by Geode seismograph of Geometrix. Seismic data processing and interpretation software allows for the obtaining of 2D/3D models of P- and S-wave velocities. Combined seismic and GPR results achieved sufficient imaging of shallow subsurface to a depth of over a dozen metres. The obtained geophysical information correlated with geological information from the boreholes with good quality. The results of performed tests proved the efficiency of the Seismobile system in seismic and GPR imaging of a shallow subsurface of transport routes under compound conditions.

  13. [Multiple sclerosis management system 3D. Moving from documentation towards management of patients].

    Schultheiss, T; Kempcke, R; Kratzsch, F; Eulitz, M; Pette, M; Reichmann, H; Ziemssen, T

    2012-04-01

    The increasing therapeutic options for relapsing-remitting multiple sclerosis require a specific treatment and risk management to recognize the individual response as well as potential side effects. To switch from pure MS documentation to MS management by implementing a new multiple sclerosis management and documentation tool may be of importance. This article presents the novel computer-based patient management system "multiple sclerosis management system 3D" (MSDS 3D). MSDS 3D allows documentation and visualization of visit schedules and mandatory examinations via defined study modules by integration of data input from patients, attending physicians and MS nurses. It provides forms for the documentation of patient visits as well as clinical and diagnostic findings. Information is collected via interactive touch screens. A specific module which is part of MSDS 3D's current version allows the monthly monitoring of patients under treatment with natalizumab. A checklist covering clinical signs of progressive multifocal leukoencephalopathy (PML) and a detailed questionnaire about the handling of natalizumab in practice have additionally been added. The MS patient management system MSDS 3D has successfully been implemented and is currently being evaluated in a multi-centre setting. Advanced assessment of patient data may allow improvements in clinical practice and research work. The addition of a checklist and a questionnaire into the natalizumab module may support the recognition of PML during its early, treatable course.

  14. Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

    Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

    2010-03-31

    The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

  15. Reducing disk storage of full-3D seismic waveform tomography (F3DT) through lossy online compression

    Lindstrom, Peter; Chen, Po; Lee, En-Jui

    2016-08-01

    Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithm into our F3DT-SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.

  16. Complex 3D Vortex Lattice Formation by Phase-Engineered Multiple Beam Interference

    Jolly Xavier

    2012-01-01

    Full Text Available We present the computational results on the formation of diverse complex 3D vortex lattices by a designed superposition of multiple plane waves. Special combinations of multiples of three noncoplanar plane waves with a designed relative phase shift between one another are perturbed by a nonsingular beam to generate various complex 3D vortex lattice structures. The formation of complex gyrating lattice structures carrying designed vortices by means of relatively phase-engineered plane waves is also computationally investigated. The generated structures are configured with both periodic as well as transversely quasicrystallographic basis, while these whirling complex lattices possess a long-range order of designed symmetry in a given plane. Various computational analytical tools are used to verify the presence of engineered geometry of vortices in these complex 3D vortex lattices.

  17. 3-D Velocity Model of the Coachella Valley, Southern California Based on Explosive Shots from the Salton Seismic Imaging Project

    Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2014-12-01

    We have analyzed explosive shot data from the 2011 Salton Seismic Imaging Project (SSIP) across a 2-D seismic array and 5 profiles in the Coachella Valley to produce a 3-D P-wave velocity model that will be used in calculations of strong ground shaking. Accurate maps of seismicity and active faults rely both on detailed geological field mapping and a suitable velocity model to accurately locate earthquakes. Adjoint tomography of an older version of the SCEC 3-D velocity model shows that crustal heterogeneities strongly influence seismic wave propagation from moderate earthquakes (Tape et al., 2010). These authors improve the crustal model and subsequently simulate the details of ground motion at periods of 2 s and longer for hundreds of ray paths. Even with improvements such as the above, the current SCEC velocity model for the Salton Trough does not provide a match of the timing or waveforms of the horizontal S-wave motions, which Wei et al. (2013) interpret as caused by inaccuracies in the shallow velocity structure. They effectively demonstrate that the inclusion of shallow basin structure improves the fit in both travel times and waveforms. Our velocity model benefits from the inclusion of known location and times of a subset of 126 shots detonated over a 3-week period during the SSIP. This results in an improved velocity model particularly in the shallow crust. In addition, one of the main challenges in developing 3-D velocity models is an uneven stations-source distribution. To better overcome this challenge, we also include the first arrival times of the SSIP shots at the more widely spaced Southern California Seismic Network (SCSN) in our inversion, since the layout of the SSIP is complementary to the SCSN. References: Tape, C., et al., 2010, Seismic tomography of the Southern California crust based on spectral-element and adjoint methods: Geophysical Journal International, v. 180, no. 1, p. 433-462. Wei, S., et al., 2013, Complementary slip distributions

  18. Automated fault extraction and classification using 3-D seismic data for the Ekofisk field development

    Signer, C.; Nickel, M.; Randen, T.; Saeter, T.; Soenneland, H.H.

    1998-12-31

    Mapping of fractures is important for the prediction of fluid flow in many reservoir types. The fluid flow depends mainly on the efficiency of the reservoir seals. Improved spatial mapping of the open and closed fracture systems will allow a better prediction of the fluid flow pattern. The primary objectives of this paper is to present fracture characterization at the reservoir scale combined with seismic facies mapping. The complexity of the giant Ekofisk field on the Norwegian continental shelf provides an ideal framework for testing the validity and the applicability of an automated seismic fault and fracture detection and mapping tool. The mapping of the faults can be based on seismic attribute grids, which means that attribute-responses related to faults are extracted along key horizons which were interpreted in the reservoir interval. 3 refs., 3 figs.

  19. Seismic response of free standing fuel rack construction to 3-D floor motion

    Soler, A.I.; Singh, K.

    1983-01-01

    Seismic analysis of free standing submerged racks is complicated by the presence of water and structural non-linearities such as fuel assembly cell impact and floor interface friction. A direct time integration technique has been proposed to analyze this class of structures. Application of the time integration technique on a fourteen degree of freedom lumped mass model of the rack reveals some heretofore unpublished quirks in the structure's behavior. The method of analysis is utilized to compare the seismic response of some representative rack designs. Results show wide differences in the structural response, depending on the fabrication details of racks

  20. Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis

    Moraal, B.; Roosendaal, S.D.; Pouwels, P.J.W.; Vrenken, H.; van Schijndel, R.A.; Meier, D.S.; Guttmann, C.R.G.; Geurts, J.J.G.; Barkhof, F.

    2008-01-01

    To describe signal and contrast properties of an isotropic, single-slab 3D dataset [double inversion-recovery (DIR), fluid-attenuated inversion recovery (FLAIR), T2, and T1-weighted magnetization prepared rapid acquisition gradient-echo (MPRAGE)] and to evaluate its performance in detecting multiple

  1. Automatic treatment of multiple wound coils in 3D finite element problems including multiply connected regions

    Leonard, P.J.; Lai, H.C.; Eastham, J.F.; Al-Akayshee, Q.H. [Univ. of Bath (United Kingdom)

    1996-05-01

    This paper describes an efficient scheme for incorporating multiple wire wound coils into 3D finite element models. The scheme is based on the magnetic scalar representation with an additional basis for each coil. There are no restrictions on the topology of coils with respect to ferromagnetic and conductor regions. Reduced scalar regions and cuts are automatically generated.

  2. co-seismic grace gravity based 11-layered 3-d thrust fault model for ...

    30

    It honours co-seismic deformation of ocean surface, ocean ... has caused great damage (Sumatra earthquake 2004 Wikipedia) when the Indian Plate ..... Gokula, A P, Sastry R G (2015a) Gravitational attraction of a vertical pyramid model of flat ... Journal. 14, 1-21. Lay T, Kanamori H, Ammon CJ, Nettles M, Ward SN, Aster ...

  3. Construction method and application of 3D velocity model for evaluation of strong seismic motion and its cost performance

    Matsuyama, Hisanori; Fujiwara, Hiroyuki

    2014-01-01

    Based on experiences of making subsurface structure models for seismic strong motion evaluation, the advantages and disadvantages in terms of convenience and cost for several methods used to make such models were reported. As for the details, gravity and micro-tremor surveys were considered to be highly valid in terms of convenience and cost. However, stratigraphy and seismic velocity structure are required to make accurate 3-D subsurface structures. To realize these, methods for directly examining subsurface ground or using controlled tremor sources (at high cost) are needed. As a result, it was summarized that in modeling subsurface structures, some sort of plan including both types of methods is desirable and that several methods must be combined to match one's intended purposes and budget. (authors)

  4. Incorporating higher order WINKLER springs with 3-D finite element model of a reactor building for seismic SSI analysis

    Ermutlu, H.E.

    1993-01-01

    In order to fulfill the seismic safety requirements, in the frame of seismic requalification activities for NPP Muehleberg, Switzerland, detailed seismic analysis performed on the Reactor Building and the results are presented previously. The primary objective of the present investigation is to assess the seismic safety of the reinforced concrete structures of reactor building. To achieve this objective requires a rather detailed 3-D finite element modeling for the outer shell structures, the drywell, the reactor pools, the floor decks and finally, the basemat. This already is a complicated task, which enforces need for simplifications in modelling the reactor internals and the foundation soil. Accordingly, all internal parts are modelled by vertical sticks and the Soil Structure Interaction (SSI) effects are represented by sets of transitional and higher order rotational WINKLER springs, i.e. avoiding complicated finite element SSI analysis. As a matter of fact, the availability of the results of recent investigations carried out on the reactor building using diversive finite element SSI analysis methods allow to calibrate the WINKLER springs, ensuring that the overall SSI behaviour of the reactor building is maintained

  5. 3D seismic experiment in difficult area in Japan; Kokunai nanchiiki ni okeru sanjigen jishin tansa jikken

    Minegishi, M; Nakagami, K; Tanaka, H [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-05-27

    Difficult area in this context means an exploration-difficult area supposed to store oil/gas but retarded in exploration for the lack of knowledge about the geological structure due to poor quality of available seismic survey records. Discussed in this paper is a survey conducted into an area covering the southern part of Noshiro-shi, Akita-ken, and Yamamoto-cho, Yamamoto-gun, Akita-ken. An area size suitable for data collection at a target depth of 2500m is determined using an interpretation structure compiled on the basis of available well data and 2D seismic survey data. The plan for siting shock points and receiving points is modified case by case as restrictive factors come to the surface (resulting from the complicated hilly terrain, presence of pipes for agricultural water, etc.). The peculiarities of seismic waves in the terrain are studied through the interpretation of the available well data and 2D seismic survey data for the construction of a 3D velocity model for the confirmation of the appropriateness of the plan for siting shock points and receiving points. Efforts are exerted through enhanced coordination with the contractor to acquire data so that a technologically best design may be won within the limits of the budget. The quality of the data obtained from this experiment is in general better than those obtained from previous experiments, yet many problems remain to be settled in future studies about exploration-difficult areas. 4 refs., 4 figs., 1 tab.

  6. 3D seismic modeling and reverse‐time migration with the parallel Fourier method using non‐blocking collective communications

    Chu, Chunlei

    2009-01-01

    The major performance bottleneck of the parallel Fourier method on distributed memory systems is the network communication cost. In this study, we investigate the potential of using non‐blocking all‐to‐all communications to solve this problem by overlapping computation and communication. We present the runtime comparison of a 3D seismic modeling problem with the Fourier method using non‐blocking and blocking calls, respectively, on a Linux cluster. The data demonstrate that a performance improvement of up to 40% can be achieved by simply changing blocking all‐to‐all communication calls to non‐blocking ones to introduce the overlapping capability. A 3D reverse‐time migration result is also presented as an extension to the modeling work based on non‐blocking collective communications.

  7. 3D seismic expression of fluid migration and mud remobilization on the Gjallar Ridge, offshore mid-Norway

    Hansen, J.P.V.; Cartwright, J.A.; Huuse, M.

    2005-01-01

    This paper presents a three-dimensional (3D) seismic analysis of sediment remobilization and fluid migration in a 2000-km2 area above the Gjallar Ridge located in the Vøring Basin, offshore Norway. Three distinct types of mounded structures have been identified as resulting from focused fluid......-seated normal faults. Type B structures comprise relatively steep-sided mounds and are restricted to the pre-Miocene interval. They are often located above narrow zones of discontinuous low-amplitude reflections resembling gas chimneys. Some of the Type B structures are associated with stacked amplitude...

  8. The Ventersdorp Contact Reef model in the Kloof Gold Mine as derived from 3D seismics, geological mapping and exploration borehole datasets

    Manzi, MSD

    2014-02-01

    Full Text Available A model of the Ventersdorp Contact Reef (VCR) orebody at Kloof Gold Mine was derived by integrating 3D reflection seismic data with information derived from underground mine mapping and exploration drilling. The study incorporated the depth...

  9. Multiple photoionization following 3d5/2-shell threshold ionization of

    Matsui, T; Yoshii, H; Tsukamoto, K; Kawakita, S; Murakami, E; Adachi, J; Yagishita, A; Morioka, Y; Hayaishi, T

    2004-01-01

    Multiple photoionization of Xe near the 3d 5/2 -shell threshold photoionization region is studied by threshold electron-ion coincidence spectroscopy. The coincidence spectra of Xe 3+ to Xe 7+ ions exhibit characteristic profiles associated with multi-step post-collision interactions in Auger cascades following 3d 5/2 -shell threshold photoionization. The Auger cascade decay channels leading to the formation of multiply charged ions are deduced from the energies of the profile peaks, which increase gradually with increasing charge state. The formation of Xe 3+ to Xe 5+ ions is found to arise from cascades of normal Auger decays, whereas the formation of Xe 6+ and Xe 7+ ions involves double Auger decays. The branching ratio of double to normal Auger decays is estimated to be 0.25 (±0.1) for the decays following the creation of 3d 5/2 -hole states in Xe

  10. 3D indoor modeling using a hand-held embedded system with multiple laser range scanners

    Hu, Shaoxing; Wang, Duhu; Xu, Shike

    2016-10-01

    Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.

  11. High-resolution 3D seismic reflection imaging across active faults and its impact on seismic hazard estimation in the Tokyo metropolitan area

    Ishiyama, Tatsuya; Sato, Hiroshi; Abe, Susumu; Kawasaki, Shinji; Kato, Naoko

    2016-10-01

    We collected and interpreted high-resolution 3D seismic reflection data across a hypothesized fault scarp, along the largest active fault that could generate hazardous earthquakes in the Tokyo metropolitan area. The processed and interpreted 3D seismic cube, linked with nearby borehole stratigraphy, suggests that a monocline that deforms lower Pleistocene units is unconformably overlain by middle Pleistocene conglomerates. Judging from structural patterns and vertical separation on the lower-middle Pleistocene units and the ground surface, the hypothesized scarp was interpreted as a terrace riser rather than as a manifestation of late Pleistocene structural growth resulting from repeated fault activity. Devastating earthquake scenarios had been predicted along the fault in question based on its proximity to the metropolitan area, however our new results lead to a significant decrease in estimated fault length and consequently in the estimated magnitude of future earthquakes associated with reactivation. This suggests a greatly reduced seismic hazard in the Tokyo metropolitan area from earthquakes generated by active intraplate crustal faults.

  12. Efficient realization of 3D joint inversion of seismic and magnetotelluric data with cross gradient structure constraint

    Luo, H.; Zhang, H.; Gao, J.

    2016-12-01

    Seismic and magnetotelluric (MT) imaging methods are generally used to characterize subsurface structures at various scales. The two methods are complementary to each other and the integration of them is helpful for more reliably determining the resistivity and velocity models of the target region. Because of the difficulty in finding empirical relationship between resistivity and velocity parameters, Gallardo and Meju [2003] proposed a joint inversion method enforcing resistivity and velocity models consistent in structure, which is realized by minimizing cross gradients between two models. However, it is extremely challenging to combine two different inversion systems together along with the cross gradient constraints. For this reason, Gallardo [2007] proposed a joint inversion scheme that decouples the seismic and MT inversion systems by iteratively performing seismic and MT inversions as well as cross gradient minimization separately. This scheme avoids the complexity of combining two different systems together but it suffers the issue of balancing between data fitting and structure constraint. In this study, we have developed a new joint inversion scheme that avoids the problem encountered by the scheme of Gallardo [2007]. In the new scheme, seismic and MT inversions are still separately performed but the cross gradient minimization is also constrained by model perturbations from separate inversions. In this way, the new scheme still avoids the complexity of combining two different systems together and at the same time the balance between data fitting and structure consistency constraint can be enforced. We have tested our joint inversion algorithm for both 2D and 3D cases. Synthetic tests show that joint inversion better reconstructed the velocity and resistivity models than separate inversions. Compared to separate inversions, joint inversion can remove artifacts in the resistivity model and can improve the resolution for deeper resistivity structures. We

  13. Well log and seismic data analysis for complex pore-structure carbonate reservoir using 3D rock physics templates

    Li, Hongbing; Zhang, Jiajia

    2018-04-01

    The pore structure in heterogeneous carbonate rock is usually very complex. This complex pore system makes the relationship between the velocity and porosity of the rock highly scattered, so that for the classical two-dimensional rock physics template (2D RPT) it is not enough to accurately describe the quantitative relationship between the rock elastic parameters of this kind of reservoir and its porosity and water saturation. Therefore it is possible to attribute the effect of pore type to that of the porosity or water saturation, and leads to great deviations when applying such a 2D RPT to predict the porosity and water saturation in seismic reservoir prediction and hydrocarbon detection. This paper first presents a method to establish a new three-dimensional rock physics template (3D RPT) by integrating the Gassmann equations and the porous rock physics model, and use it to characterize the quantitative relation between rock elastic properties and the reservoir parameters including the pore aspect ratio, porosity and water saturation, and to predict these parameters from the known elastic properties. The test results on the real logging and seismic inversion data show that the 3D RPT can accurately describe the variations of elastic properties with the porosity, water saturation and pore-structure parameters, and effectively improve the accuracy of reservoir parameters prediction.

  14. Combining 3D seismic tomography and ground-penetrating radar to reveal the structure of a megalithic burial tomb

    Mendes, Manuela; Caldeira, Bento; Borges, José

    2017-04-01

    This work describes a case study concerning a prehistoric buried tomb (around 3000 years B.C.) located near Évora (Portugal). This monument is a tomb completely buried with only five visible irregular small stones distributed in a circle of 3 meter in diameter. A multi-approach combining 3D seismic tomography and ground-penetrating radar (GPR) have been applied to identify hidden elements and arrangement of the stones, required prior to any excavation work. The methodology for the 3D seismic data acquisition involves a total of 24 shots recorded by four lines, with twelve fixed receivers each one. For the GPR survey was used a 400 MHz antenna which moves along parallel lines with 50 cm separation, over a 30x30 m2 area that contains the buried tomb; the GPR unit was configured to a horizontal rate of 50 scans per meter (1024 samples/scan) and a time window of 60 ns. This multi-approach procedure allowed defining: (i) the housing of the tomb in the basement structure; (ii) the presence of a hidden corridor; (iii) the description of the internal structure of the walls of the tomb; (iv) the state of preservation of the monument. Acknowledgements: This work is co-financed by the European Union through the European Regional Development Fund under COMPETE 2020 (Operational Program for Competitiveness and Internationalization) through the ICT project (UID / GEO / 04683/2013) under the reference POCI-01-0145 -FEDER-007690.

  15. Rock formation characterization for carbon dioxide geosequestration: 3D seismic amplitude and coherency anomalies, and seismic petrophysical facies classification, Wellington and Anson-Bates Fields, Kansas, USA

    Ohl, Derek; Raef, Abdelmoneam

    2014-04-01

    Higher resolution rock formation characterization is of paramount priority, amid growing interest in injecting carbon dioxide, CO2, into subsurface rock formations of depeleting/depleted hydrocarbon reservoirs or saline aquifers in order to reduce emissions of greenhouse gases. In this paper, we present a case study for a Mississippian carbonate characterization integrating post-stack seismic attributes, well log porosities, and seismic petrophysical facies classification. We evaluated changes in petrophysical lithofacies and reveal structural facies-controls in the study area. Three cross-plot clusters in a plot of well log porosity and acoustic impedance corroborated a Neural Network petrophysical facies classification, which was based on training and validation utilizing three petrophysically-different wells and three volume seismic attributes, extracted from a time window including the wavelet of the reservoir-top reflection. Reworked lithofacies along small-throw faults has been revealed based on comparing coherency and seismic petrophysical facies. The main objective of this study is to put an emphasis on reservoir characterization that is both optimized for and subsequently benefiting from pilot tertiary CO2 carbon geosequestration in a depleting reservoir and also in the deeper saline aquifer of the Arbuckle Group, south central Kansas. The 3D seismic coherency attribute, we calculated from a window embracing the Mississippian top reflection event, indicated anomalous features that can be interpreted as a change in lithofacies or faulting effect. An Artificial Neural Network (ANN) lithofacies modeling has been used to better understand these subtle features, and also provide petrophysical classes, which will benefit flow-simulation modeling and/or time-lapse seismic monitoring feasibility analysis. This paper emphasizes the need of paying greater attention to small-scale features when embarking upon characterization of a reservoir or saline-aquifer for CO2

  16. Investigating Deep-Marine Sediment Waves in the Northern Gulf of Mexico Using 3D Seismic Data

    Wang, Z.; Gani, M. R.

    2016-12-01

    Deep-water depositional elements have been studied for decades using outcrop, flume tank, sidescan sonar, and seismic data. Even though they have been well recognized by researchers, the improvements in the quality of 3D seismic data with increasingly larger dimension allow detailed analysis of deep-water depositional elements with new insights. This study focuses on the deep-marine sediment waves in the northern Gulf of Mexico. By interpreting a 3D seismic dataset covering 635 km2 at Mississippi Canyon and Viosca Knoll areas, large sediment waves, generated by sediment gravity flows, were mapped and analyzed with various seismic attributes. A succession of sediment waves, approximately 100 m in thickness, is observed on the marine slope that tapers out at the toe of the slope. The individual sediment wave exhibits up to 500 m in wavelength and up to 20 m in height. The wave crests oriented northeast-southwest are broadly aligned parallel to the regional slope-strike, indicating their sediment gravity flow origin. The crestlines are straight or slightly sinuous, with sinuosity increasing downslope. Their anti-dune patterns likely imply the presence of supercritical flows. The sediment waves have a retrogradational stacking pattern. Seismic amplitude maps of each sediment wave revealed that after depositing the majority of sheet-like sands on the upper slope, sediment gravity flows started to form large sediment waves on the lower slope. The steep and narrow upcurrent flanks of the sediment waves always display higher amplitudes than the gentle and wide downcurrent flanks, indicating that the sands were likely preferentially trapped along the upcurrent flanks, whereas the muds spread along the downcurrent flanks. The formation of sediment waves likely requires a moderate sand-mud ratio, as suggested by these observations: (1) absence of sediment waves on the upper slope where the sands were mainly deposited as unconfined sheets with a high sand-mud ratio; (2

  17. New tools for subsurface imaging of 3D seismic Node data in hydrocarbon exploration =

    Benazzouz, Omar

    A aquisicao de dados sismicos de reflexao multicanal 3D/4D usando Ocean Bottom NODES de 4 componentes constitui atualmente um sector de importancia crescente no mercado da aquisicao de dados reflexao sismica marinha na industria petrolifera. Este tipo de dados permite obter imagens de sub-superficie de alta qualidade, com baixos niveis de ruido, banda larga, boa iluminacao azimutal, offsets longos, elevada resolucao e aquisicao de tanto ondas P como S. A aquisicao de dados e altamente repetitiva e portanto ideal para campanhas 4D. No entanto, existem diferencas significativas na geometria de aquisicao e amostragem do campo de ondas relativamente aos metodos convencionais com streamers rebocados a superficie, pelo que e necessario desenvolver de novas ferramentas para o processamento deste tipo de dados. Esta tese investiga tres aspectos do processamento de dados de OBSs/NODES ainda nao totalmente resolvidos de forma satisfatoria: a deriva aleatoria dos relogios internos, o posicionamento de precisao dos OBSs e a implementacao de algoritmos de migracao prestack 3D em profundidade eficientes para obtencao de imagens precisas de subsuperficie. Foram desenvolvidos novos procedimentos para resolver estas situacoes, que foram aplicados a dados sinteticos e a dados reais. Foi desenvolvido um novo metodo para deteccao e correccao de deriva aleatoria dos relogios internos, usando derivadas de ordem elevada. Foi ainda desenvolvido um novo metodo de posicionamento de precisao de OBSs usando multilateracao e foram criadas ferramentas de interpolacao/extrapolacao dos modelos de velocidades 3D de forma a cobrirem a extensao total area de aquisicao. Foram implementados algoritmos robustos de filtragem para preparar o campo de velocidades para o tracado de raios e minimizar os artefactos na migracao Krichhoff pre-stack 3D em profundidade. Os resultados obtidos mostram um melhoramento significativo em todas as situacoes analisadas. Foi desenvolvido o software necessario para o

  18. Development of a State-Wide 3-D Seismic Tomography Velocity Model for California

    Thurber, C. H.; Lin, G.; Zhang, H.; Hauksson, E.; Shearer, P.; Waldhauser, F.; Hardebeck, J.; Brocher, T.

    2007-12-01

    We report on progress towards the development of a state-wide tomographic model of the P-wave velocity for the crust and uppermost mantle of California. The dataset combines first arrival times from earthquakes and quarry blasts recorded on regional network stations and travel times of first arrivals from explosions and airguns recorded on profile receivers and network stations. The principal active-source datasets are Geysers-San Pablo Bay, Imperial Valley, Livermore, W. Mojave, Gilroy-Coyote Lake, Shasta region, Great Valley, Morro Bay, Mono Craters-Long Valley, PACE, S. Sierras, LARSE 1 and 2, Loma Prieta, BASIX, San Francisco Peninsula and Parkfield. Our beta-version model is coarse (uniform 30 km horizontal and variable vertical gridding) but is able to image the principal features in previous separate regional models for northern and southern California, such as the high-velocity subducting Gorda Plate, upper to middle crustal velocity highs beneath the Sierra Nevada and much of the Coast Ranges, the deep low-velocity basins of the Great Valley, Ventura, and Los Angeles, and a high- velocity body in the lower crust underlying the Great Valley. The new state-wide model has improved areal coverage compared to the previous models, and extends to greater depth due to the data at large epicentral distances. We plan a series of steps to improve the model. We are enlarging and calibrating the active-source dataset as we obtain additional picks from investigators and perform quality control analyses on the existing and new picks. We will also be adding data from more quarry blasts, mainly in northern California, following an identification and calibration procedure similar to Lin et al. (2006). Composite event construction (Lin et al., in press) will be carried out for northern California for use in conventional tomography. A major contribution of the state-wide model is the identification of earthquakes yielding arrival times at both the Northern California Seismic

  19. 3D upper crustal seismic structure across Santorini volcanic field: Constraints on magmatic and tectonic interactions

    Heath, B.; Hooft, E. E. E.; Toomey, D. R.; Papazachos, C. V.; Walls, K.; Paulatto, M.; Morgan, J. V.; Nomikou, P.; Warner, M.

    2017-12-01

    To investigate magmatic-tectonic interactions at an arc volcano, we collected a dense, active-source, seismic dataset across the Santorini Volcano, Greece, with 90 ocean bottom seismometers, 65 land seismometers, and 14,300 marine sound sources. We use over 140,000 travel-time picks to obtain a P-wave tomography model of the upper crustal structure of the Santorini volcano and surrounding tectonically extended region. Regionally, the shallow (Bouguer gravity anomalies and preliminary shallow attenuation results (using waveform amplitudes and t* values). We find regional Pliocene and younger faults bounding basement grabens and horsts to be predominately oriented in a NE-SW direction with Santorini itself located in a graben bounded by faults striking in this direction. In contrast, volcanic vents and dikes expressed at the surface seem to strike about 20° clockwise relative to these regional faults. In the northern caldera of Santorini, a 4-km wide region of anomalously low velocities and high attenuation directly overlies an inferred source of 2011-2012 inflation (4-4.5 km depth), however it is located at shallower depths ( 1-2km). The imaged low-velocity anomaly may correspond to hydrothermal activity (due to increased porosity and alteration) and/or brecciation from a prior episode of caldera collapse. It is bounded by anomalously fast velocities (at 1-2 km depth) that parallel the regional fault orientation and are correspondingly rotated 20° to surface dikes. At 4-5 km depth beneath the northern caldera basin, low-velocity anomalies and attenuated seismic arrivals provide preliminary evidence for a magma body; the low-velocity anomaly is elongated in the same direction as regional volcanic vents. The difference in strike of volcanic and tectonic features indicates oblique extension and potential time-variation in the minimum stress direction.

  20. Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes

    Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

    2009-03-31

    Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications

  1. Understanding the paleo environment in the Danish North Sea using 2D and 3D seismic analyses

    Prins, Lasse K.; Clausen, Ole R.; Andresen, Katrine J.

    2017-04-01

    This study presents the first detailed and integrated mapping of buried Quaternary valleys, river systems and iceberg scourings from the Danish North Sea region. The mapped features coincide spatially but have very different characteristics and incision levels which allow us to constrain their relative timing and differentiate their environment of formation (subglacial, proglacial and marine). The results of the study bring new critical information regarding the paleoenvironment of the North Sea Basin during the latest Quaternary deglaciation period and our analysis provide a well-tested workflow for utilizing 2D and 3D seismic data in relation to paleogeographical reconstructions. Our analysis is based on interpretation of conventional 3D seismic and high-resolution sparker data from the Southern Danish Central Graben. The project forms part of the portfolio for the 'Danish Hydrocarbon Research and Technology Centre' and aims at building a high-resolution 3D geological-geotechnical model of the shallow subsurface by using geophysical data combined with geological and geotechnical data from shallow borings. One of the objectives is to map potential geohazards for offshore installations such as buried valleys and constrain their geotechnical properties. The central North Sea is known to have been covered by glaciers several times during the Quaternary with climate changing between arctic and boreal. Marine conditions periodically prevailed and large river systems mainly from central Europe dominated during periods of subaerial exposure. Hence, many buried erosional incisions, primarily tunnel valleys but also river systems, can be observed within the upper 200-400 meters of the Quaternary succession throughout the central North Sea region. A high-resolution mapping of the infill of the tunnel valleys and river systems have however not previously been presented. Our analysis shows that within the study area at least four generations of tunnel valley formation and

  2. INCREASING OIL RECOVERY THROUGH ADVANCED REPROCESSING OF 3D SEISMIC, GRANT CANYON AND BACON FLAT FIELDS, NYE COUNTY, NEVADA

    Eric H. Johnson; Don E. French

    2001-06-01

    Makoil, Inc., of Orange, California, with the support of the U.S. Department of Energy has reprocessed and reinterpreted the 3D seismic survey of the Grant Canyon area, Railroad Valley, Nye County, Nevada. The project was supported by Dept. of Energy Grant DE-FG26-00BC15257. The Grant Canyon survey covers an area of 11 square miles, and includes Grant Canyon and Bacon Flat oil fields. These fields have produced over 20 million barrels of oil since 1981, from debris slides of Devonian rocks that are beneath 3,500 to 5,000 ft of Tertiary syntectonic deposits that fill the basin of Railroad Valley. High-angle and low-angle normal faults complicate the trap geometry of the fields, and there is great variability in the acoustic characteristics of the overlying valley fill. These factors combine to create an area that is challenging to interpret from seismic reflection data. A 3D seismic survey acquired in 1992-93 by the operator of the fields has been used to identify development and wildcat locations with mixed success. Makoil believed that improved techniques of processing seismic data and additional well control could enhance the interpretation enough to improve the chances of success in the survey area. The project involved the acquisition of hardware and software for survey interpretation, survey reprocessing, and reinterpretation of the survey. SeisX, published by Paradigm Geophysical Ltd., was chosen as the interpretation software, and it was installed on a Dell Precision 610 computer work station with the Windows NT operating system. The hardware and software were selected based on cost, possible addition of compatible modeling software in the future, and the experience of consulting geophysicists in the Billings area. Installation of the software and integration of the hardware into the local office network was difficult at times but was accomplished with some technical support from Paradigm and Hewlett Packard, manufacturer of some of the network equipment. A

  3. INCREASING OIL RECOVERY THROUGH ADVANCED REPROCESSING OF 3D SEISMIC, GRANT CANYON AND BACON FLAT FIELDS, NYE COUNTY, NEVADA

    Johnson, Eric H.; French, Don E.

    2001-01-01

    Makoil, Inc., of Orange, California, with the support of the U.S. Department of Energy has reprocessed and reinterpreted the 3D seismic survey of the Grant Canyon area, Railroad Valley, Nye County, Nevada. The project was supported by Dept. of Energy Grant DE-FG26-00BC15257. The Grant Canyon survey covers an area of 11 square miles, and includes Grant Canyon and Bacon Flat oil fields. These fields have produced over 20 million barrels of oil since 1981, from debris slides of Devonian rocks that are beneath 3,500 to 5,000 ft of Tertiary syntectonic deposits that fill the basin of Railroad Valley. High-angle and low-angle normal faults complicate the trap geometry of the fields, and there is great variability in the acoustic characteristics of the overlying valley fill. These factors combine to create an area that is challenging to interpret from seismic reflection data. A 3D seismic survey acquired in 1992-93 by the operator of the fields has been used to identify development and wildcat locations with mixed success. Makoil believed that improved techniques of processing seismic data and additional well control could enhance the interpretation enough to improve the chances of success in the survey area. The project involved the acquisition of hardware and software for survey interpretation, survey reprocessing, and reinterpretation of the survey. SeisX, published by Paradigm Geophysical Ltd., was chosen as the interpretation software, and it was installed on a Dell Precision 610 computer work station with the Windows NT operating system. The hardware and software were selected based on cost, possible addition of compatible modeling software in the future, and the experience of consulting geophysicists in the Billings area. Installation of the software and integration of the hardware into the local office network was difficult at times but was accomplished with some technical support from Paradigm and Hewlett Packard, manufacturer of some of the network equipment. A

  4. Influence of Poroelasticity on the 3D Seismic Response of Complex Geological Media

    Wuttke Frank

    2017-06-01

    Full Text Available Elastic wave propagation in 3D poroelastic geological media with localized heterogeneities, such as an elastic inclusion and a canyon is investigated to visualize the modification of local site responses under consideration of water saturated geomaterial. The extended computational environment herein developed is a direct Boundary Integral Equation Method (BIEM, based on the frequency-dependent fundamental solution of the governing equation in poro-visco elastodynamics. Bardet’s model is introduced in the analysis as the computationally efficient viscoelastic isomorphism to Biot’s equations of dynamic poroelasticity, thus replacing the two-phase material by a complex valued single-phase one. The potential of Bardet’s analogue is illustrated for low frequency vibrations and all simulation results demonstrate the dependency of wave field developed along the free surface on the properties of the soil material.

  5. A microfluidic chip containing multiple 3D nanofibrous scaffolds for culturing human pluripotent stem cells

    Wertheim, Lior; Shapira, Assaf; Amir, Roey J.; Dvir, Tal

    2018-04-01

    In microfluidics-based lab-on-a-chip systems, which are used for investigating the effect of drugs and growth factors on cells, the latter are usually cultured within the device’s channels in two-dimensional, and not in their optimal three-dimensional (3D) microenvironment. Herein, we address this shortfall by designing a microfluidic system, comprised of two layers. The upper layer of the system consists of multiple channels generating a gradient of soluble factors. The lower layer is comprised of multiple wells, each deposited with 3D, nanofibrous scaffold. We first used a mathematical model to characterize the fluid flow within the system. We then show that induced pluripotent stem cells can be seeded within the 3D scaffolds and be exposed to a well-mixed gradient of soluble factors. We believe that utilizing such system may enable in the future to identify new differentiation factors, investigate drug toxicity, and eventually allow to perform analyses on patient-specific tissues, in order to fit the appropriate combination and concentration of drugs.

  6. An efficient implementation of 3D high-resolution imaging for large-scale seismic data with GPU/CPU heterogeneous parallel computing

    Xu, Jincheng; Liu, Wei; Wang, Jin; Liu, Linong; Zhang, Jianfeng

    2018-02-01

    De-absorption pre-stack time migration (QPSTM) compensates for the absorption and dispersion of seismic waves by introducing an effective Q parameter, thereby making it an effective tool for 3D, high-resolution imaging of seismic data. Although the optimal aperture obtained via stationary-phase migration reduces the computational cost of 3D QPSTM and yields 3D stationary-phase QPSTM, the associated computational efficiency is still the main problem in the processing of 3D, high-resolution images for real large-scale seismic data. In the current paper, we proposed a division method for large-scale, 3D seismic data to optimize the performance of stationary-phase QPSTM on clusters of graphics processing units (GPU). Then, we designed an imaging point parallel strategy to achieve an optimal parallel computing performance. Afterward, we adopted an asynchronous double buffering scheme for multi-stream to perform the GPU/CPU parallel computing. Moreover, several key optimization strategies of computation and storage based on the compute unified device architecture (CUDA) were adopted to accelerate the 3D stationary-phase QPSTM algorithm. Compared with the initial GPU code, the implementation of the key optimization steps, including thread optimization, shared memory optimization, register optimization and special function units (SFU), greatly improved the efficiency. A numerical example employing real large-scale, 3D seismic data showed that our scheme is nearly 80 times faster than the CPU-QPSTM algorithm. Our GPU/CPU heterogeneous parallel computing framework significant reduces the computational cost and facilitates 3D high-resolution imaging for large-scale seismic data.

  7. A Study on the Compatibility of 3-D Seismic Velocity Structures with Gravity Data of Taiwan

    Horng-Yuan Yen Hsien-Hsiang Hsieh

    2010-01-01

    Full Text Available The Bouguer anomaly of Taiwan has been revised in this study based on more accurate terrain data provided by the Taiwanese Digital Terrain Model compiled by the Taiwan Forestry Bureau. Three seismic velocity models, those determined by Rau and Wu (1995, Kim et al. (2005, and Wu et al. (2007 respectively, were selected for our study. We converted their velocity models to density models using the relationship between P-wave velocity and rock density proposed by Ludwig et al. (1970 and Barton (1986, and then calculated their corresponding gravity anomalies. According to the correlation coefficient between the Bouguer anomalies calculated from the velocity models and the revised Bouguer anomalies, the Kim et al. model was more compatible with gravity data than the other two velocity models. The differences between the revised gravity anomaly and the calculated gravity anomalies trend toward positive values at elevations higher than 2000 m. This indicates that the velocities at the shallower depths beneath the mountainous area of the three models are overdetermined, i.e., higher than the real velocities. This ratiocination implies that the crustal thickness beneath the Central Range is less than 55 km which was obtained from the velocity models.

  8. Seismic Experiment at North Arizona To Locate Washington Fault - 3D Field Test

    Hanafy, Sherif M

    2008-10-01

    No. of receivers in the inline direction: 80, Number of lines: 6, Receiver Interval: 1 m near the fault, 2 m away from the fault (Receivers 1 to 12 at 2 m intervals, receivers 12 to 51 at 1 m intervals, and receivers 51 to 80 at 2 m intervals), No. of shots in the inline direction: 40, Shot interval: 2 and 4 m (every other receiver location). Data Recording The data are recorded using two Bison equipment, each is 120 channels. We shot at all 240 shot locations and simultaneously recorded seismic traces at receivers 1 to 240 (using both Bisons), then we shot again at all 240 shot locations and we recorded at receivers 241 to 480. The data is rearranged to match the receiver order shown in Figure 3 where receiver 1 is at left-lower corner, receivers increase to 80 at right lower corner, then receiver 81 is back to left side at Y = 1.5 m, etc.

  9. EVALUATION OF SEISMIC PERFORMANCE OF RAMP TUNNEL STRUCTURE DURING LEVEL-2 EARTHQUAKE BY MASSIVE 3D NUMERICAL COMPUTATION

    Yamada, Takemine; Ichimura, Tsuyoshi; Hori, Muneo; Dobashi, Hiroshi; Ohbo, Naoto

    Quasi non-linear 3D FEM earthquake response analysises with level-2 earthquake are conducted for a ramp tunnel structure of Tokyo metropolitan express way central circular line the Yamate tunnel. Large-scale numerical computation with solid elements is highly required for examination of seismic response of large tunnel in case of level-2 earthquake. The results are obtained as follows: i) In level-2 earthquake, stress concentration in ramp tunnel becomes great near geological interface between two layers of high impedance contrast. ii) The response is not obtained as a superposition of two-dimensional responses which is an assumption in conventional design methods because the distribution of displacements in the direction of tunnel axis at cross-section of ramp tunnel structure near geological interface does not linearly distribute. iii) Evaluation of stress in addition to section force is desirable for the correct evaluation of the three-dimensional response of tunnel structure.

  10. Seismic fabric and 3-D structure of the southwestern intracontinental Palmyride fold belt, Syria

    Chaimov, T.A.; Barazangi, M. (Cornell Univ., Ithaca, NY (United States)); Al-Saad, D.; Sawaf, T.; Khaddour, M. (Ministry of Petroleum and Mineral Resources, Damascus (Syrian Arab Republic))

    1993-12-01

    The Palmyride fold belt, a 400 x 100 km transpressive belt in central Syria that is the northeastern arm of the Syrian arc, is the result of late Mesozoic and Cenozoic inversion of a late Paleozoic and Mesozoic, northeast-trending, linear intracontinental basin located within the northern Arabian platform. The southwestern Palmyrides, near the Dead Sea transform fault system and the Anti-Lebanon mountains, are characterized by short wavelength (5--10 km) en echelon folds separated by small intermontane basins that developed mainly in the Neogene to Holocene. A new three-dimensional data cube, 60 x 70 x 10 km, generated on a Landmark Graphics workstation and based on approximately 700 km of two-dimensional seismic reflection profiles, elucidates the structure of the upper 10 km of the crust in the southwestern Palmyrides. Visualization of the subsurface structure, which is represented by a prominent Upper Cretaceous reflection surface in the data cube, is augmented by topographical and Bouguer gravity data of the same region. Preexisting discontinuities, probable normal fault relicts of the Mesozoic Palmyride rift, likely controlled the development of individual Neogene thrusts. The new subsurface image shows important structural features not identified in outcrop. Short, west-northwest-trending transcurrent (or transfer) faults like the short, en echelon northeast-trending thrust faults and blind thrusts of the Palmyrides. A pervasive regional decollment is not observed, even though Triassic evaporites host local detachments. Unlike topographic relief, which only roughly resembles subsurface structures, the Bouguer gravity signature of the southwestern Palmyrides closely mimics underlying shallow geologic structures both on a large ([approximately]50 km wavelength) and a small ([approximately]5--10 km wavelength) scale. The structural analysis and many other recent studies of the region indicate minor right-lateral shear coupled with compression in the Palmyrides.

  11. Distributed 3D Source Localization from 2D DOA Measurements Using Multiple Linear Arrays

    Antonio Canclini

    2017-01-01

    Full Text Available This manuscript addresses the problem of 3D source localization from direction of arrivals (DOAs in wireless acoustic sensor networks. In this context, multiple sensors measure the DOA of the source, and a central node combines the measurements to yield the source location estimate. Traditional approaches require 3D DOA measurements; that is, each sensor estimates the azimuth and elevation of the source by means of a microphone array, typically in a planar or spherical configuration. The proposed methodology aims at reducing the hardware and computational costs by combining measurements related to 2D DOAs estimated from linear arrays arbitrarily displaced in the 3D space. Each sensor measures the DOA in the plane containing the array and the source. Measurements are then translated into an equivalent planar geometry, in which a set of coplanar equivalent arrays observe the source preserving the original DOAs. This formulation is exploited to define a cost function, whose minimization leads to the source location estimation. An extensive simulation campaign validates the proposed approach and compares its accuracy with state-of-the-art methodologies.

  12. Creation of 3D microsculptures in PMMA by multiple angle proton irradiation

    Andrea, T.; Rothermel, M.; Reinert, T.; Koal, T.; Butz, T.

    2011-01-01

    In recent years the technique of proton beam writing has established itself as a versatile method for the creation of microstructures in resist materials. While these structures can be almost arbitrary in two dimensions, the creation of genuine 3D structures remains a challenge. At the LIPSION accelerator facility a new approach has been developed which combines aspects of ion beam tomography, so far solely an analysis method, with proton beam writing. Key element is the targeted irradiation from multiple angles in order to obtain a much broader range of 3D microstructures than has hitherto been possible. PMMA columns with a diameter of ∼90 μm were used as raw material and placed in an upright position on top of a rotational axis. Using 2.25 MeV protons patterns corresponding to the silhouettes of the desired structures were written from two or more directions. In a subsequent step of chemical etching irradiated portions were dissolved, leaving behind the finished 3D sculpture. Various objects have been created. For the demonstration of the method a 70 μm high model of the Eiffel tower has been sculpted by irradiation from two angles. Using irradiation from three angles a 40 μm wide screw with right-handed thread could be crafted which might find applications in micromachining. Also, a cage structure with a pore size of ca. 20 μm was written with the intention to use it as a scaffold for the growth of biological cells.

  13. Challenges in 3D scanning: Focusing on Ears and Multiple View Stereopsis

    Jensen, Rasmus Ramsbøl

    It is the goal of this thesis to address some of the challenges in 3D scanning. This has been done with focus on direct in-ear scanning and on Multiple View Stereopsis. Seven papers have been produced over the course of the Ph.D., out of which, six have been included. Two papers concern volumetric...... segmentation based on Markov Random Fields. These have been formulated to address problems relating to noise ltering in direct in-ear scanning and Intracranial Volume estimation. Another two papers have been produced on the topic of recovering surface data based on a strong statistical prior. This was done...

  14. Rock property estimates using multiple seismic attributes and neural networks; Pegasus Field, West Texas

    Schuelke, J.S.; Quirein, J.A.; Sarg, J.F.

    1998-12-31

    This case study shows the benefit of using multiple seismic trace attributes and the pattern recognition capabilities of neural networks to predict reservoir architecture and porosity distribution in the Pegasus Field, West Texas. The study used the power of neural networks to integrate geologic, borehole and seismic data. Illustrated are the improvements between the new neural network approach and the more traditional method of seismic trace inversion for porosity estimation. Comprehensive statistical methods and interpretational/subjective measures are used in the prediction of porosity from seismic attributes. A 3-D volume of seismic derived porosity estimates for the Devonian reservoir provide a very detailed estimate of porosity, both spatially and vertically, for the field. The additional reservoir porosity detail provided, between the well control, allows for optimal placement of horizontal wells and improved field development. 6 refs., 2 figs.

  15. Understanding the seismic wave propagation inside and around an underground cavity from a 3D numerical survey

    Esterhazy, Sofi; Schneider, Felix; Perugia, Ilaria; Bokelmann, Götz

    2017-04-01

    Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as "resonance seismometry" - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and so far, there are only very few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in numerical modeling of wave propagation problems. Our numerical study includes the full elastic wave field in three dimensions. We consider the effects from an incoming plane wave as well as point source located in the surrounding of the cavity at the surface. While the former can be considered as passive source like a tele-seismic earthquake, the latter represents a man-made explosion or a viborseis as used for/in active seismic techniques. Further we want to demonstrate the specific characteristics of the scattered wave field from a P-waves and S-wave separately. For our simulations in 3D we use the discontinuous Galerkin Spectral Element Code SPEED developed by MOX (The Laboratory for Modeling and Scientific Computing, Department of Mathematics) and DICA (Department of Civil and Environmental Engineering) at the Politecnico di Milano. The computations are carried out on the Vienna Scientific Cluster (VSC). The accurate numerical modeling can facilitate the development of proper analysis techniques to detect the remnants of an

  16. 3-D thermal weight function method and multiple virtual crack extension technique for thermal shock problems

    Lu Yanlin; Zhou Xiao; Qu Jiadi; Dou Yikang; He Yinbiao

    2005-01-01

    An efficient scheme, 3-D thermal weight function (TWF) method, and a novel numerical technique, multiple virtual crack extension (MVCE) technique, were developed for determination of histories of transient stress intensity factor (SIF) distributions along 3-D crack fronts of a body subjected to thermal shock. The TWF is a universal function, which is dependent only on the crack configuration and body geometry. TWF is independent of time during thermal shock, so the whole history of transient SIF distributions along crack fronts can be directly calculated through integration of the products of TWF and transient temperatures and temperature gradients. The repeated determinations of the distributions of stresses (or displacements) fields for individual time instants are thus avoided in the TWF method. An expression of the basic equation for the 3-D universal weight function method for Mode I in an isotropic elastic body is derived. This equation can also be derived from Bueckner-Rice's 3-D WF formulations in the framework of transformation strain. It can be understood from this equation that the so-called thermal WF is in fact coincident with the mechanical WF except for some constants of elasticity. The details and formulations of the MVCE technique are given for elliptical cracks. The MVCE technique possesses several advantages. The specially selected linearly independent VCE modes can directly be used as shape functions for the interpolation of unknown SIFs. As a result, the coefficient matrix of the final system of equations in the MVCE method is a triple-diagonal matrix and the values of the coefficients on the main diagonal are large. The system of equations has good numerical properties. The number of linearly independent VCE modes that can be introduced in a problem is unlimited. Complex situations in which the SIFs vary dramatically along crack fronts can be numerically well simulated by the MVCE technique. An integrated system of programs for solving the

  17. 3-D Upper-Mantle Shear Velocity Model Beneath the Contiguous United States Based on Broadband Surface Wave from Ambient Seismic Noise

    Xie, Jun; Chu, Risheng; Yang, Yingjie

    2018-05-01

    Ambient noise seismic tomography has been widely used to study crustal and upper-mantle shear velocity structures. Most studies, however, concentrate on short period (structure on a continental scale. We use broadband Rayleigh wave phase velocities to obtain a 3-D V S structures beneath the contiguous United States at period band of 10-150 s. During the inversion, 1-D shear wave velocity profile is parameterized using B-spline at each grid point and is inverted with nonlinear Markov Chain Monte Carlo method. Then, a 3-D shear velocity model is constructed by assembling all the 1-D shear velocity profiles. Our model is overall consistent with existing models which are based on multiple datasets or data from earthquakes. Our model along with the other post-USArray models reveal lithosphere structures in the upper mantle, which are consistent with the geological tectonic background (e.g., the craton root and regional upwelling provinces). The model has comparable resolution on lithosphere structures compared with many published results and can be used for future detailed regional or continental studies and analysis.

  18. Global Compilation of InSAR Earthquake Source Models: Comparisons with Seismic Catalogues and the Effects of 3D Earth Structure

    Weston, J. M.; Ferreira, A. M.; Funning, G. J.

    2010-12-01

    should map epicentral locations accurately, this allows us to obtain a first independent estimate of epicentral location errors in the seismic catalogues. InSAR depths are systematically shallower than those in the EHB catalogue with differences of 5-10km; we discuss the possible reasons for these differences, which allow us to place constraints on the accuracy of both ICMT and EHB depth determinations. Finally, we carry out long-period surface-wave CMT inversions using four different 3D global tomographic models and two different forward modelling techniques to assess the effect of inaccurate wave propagation formulations and/or 3D Earth structure on the source parameter comparisons. We find that comparing InSAR source models with the range of seismic solutions that we obtain is a useful way to assess limitations in the earthquake models, notably in identifying inaccuracies in the retrieved earthquake slip distribution using InSAR. Moreover, we find that using more accurate formulations, together with the best fitting Earth models, further reduces differences between the seismic moment determined using InSAR and seismic data.

  19. Seismic and structural characterization of the fluid bypass system using 3D and partial stack seismic from passive margin: inside the plumbing system.

    Iacopini, David; Maestrelli, Daniele; Jihad, Ali; Bond, Clare; Bonini, Marco

    2017-04-01

    In recent years enormous attention has been paid to the understanding of the process and mechanism controlling the gas seepage and more generally the fluid expulsion affecting the earth system from onshore to offshore environment. This is because of their demonstrated impact to our environment, climate change and during subsea drilling operation. Several example from active and paleo system has been so far characterized and proposed using subsurface exploration, geophysical and geochemical monitoring technology approaches with the aims to explore what trigger and drive the overpressure necessary maintain the fluid/gas/material expulsion and what are the structure that act as a gateway for gaseous fluid and unconsolidated rock. In this contribution we explore a series of fluid escape structure (ranging from seepage pipes to large blowout pipes structure of km length) using 3D and partial stack seismic data from two distinctive passive margin from the north sea (Loyal field, West Shetland) and the Equatorial Brazil (Ceara' Basin). We will focuses on the characterization of the plumbing system internal architecture and, for selected example, exploring the AVO response (using partial stack) of the internal fluid/unconsolidated rock. The detailed seismic mapping and seismic attributes analysis of the conduit system helped us to recover some detail from the signal response of the chimney internal structures. We observed: (1) small to medium seeps and pipes following structural or sedimentary discontinuities (2) large pipes (probably incipient mud volcanoes) and blowup structures propagating upward irrespective of pre-existing fault by hydraulic fracturing and assisted by the buoyancy of a fluidised and mobilised mud-hydrocarbon mixture. The reflector termination observed inside the main conduits, the distribution of stacked bright reflectors and the AVO analysis suggests an evolution of mechanisms (involving mixture of gas, fluid and probably mud) during pipe birth and

  20. Object-based 3D geomodel with multiple constraints for early Pliocene fan delta in the south of Lake Albert Basin, Uganda

    Wei, Xu; Lei, Fang; Xinye, Zhang; Pengfei, Wang; Xiaoli, Yang; Xipu, Yang; Jun, Liu

    2017-01-01

    The early Pliocene fan delta complex developed in the south of Lake Albert Basin which is located at the northern end of the western branch in the East African Rift System. The stratigraphy of this succession is composed of distributary channels, overbank, mouthbar and lacustrine shales. Limited by the poor seismic quality and few wells, it is full of challenge to delineate the distribution area and patterns of reservoir sands. Sedimentary forward simulation and basin analogue were applied to analyze the spatial distribution of facies configuration and then a conceptual sedimentary model was constructed by combining with core, heavy mineral and palynology evidences. A 3D geological model of a 120 m thick stratigraphic succession was built using well logs and seismic surfaces based on the established sedimentary model. The facies modeling followed a hierarchical object-based approach conditioned to multiple trend constraints like channel intensity, channel azimuth and channel width. Lacustrine shales were modeled as background facies and then in turn eroded by distribute channels, overbank and mouthbar respectively. At the same time a body facies parameter was created to indicate the connectivity of the reservoir sands. The resultant 3D facies distributions showed that the distributary channels flowed from east bounding fault to west flank and overbank was adhered to the fringe of channels while mouthbar located at the end of channels. Furthermore, porosity and permeability were modeled using sequential Gaussian simulation (SGS) honoring core observations and petrophysical interpretation results. Despite the poor seismic is not supported to give enough information for fan delta sand distribution, creating a truly representative 3D geomodel is still able to be achieved. This paper highlights the integration of various data and comprehensive steps of building a consistent representative 3D geocellular fan delta model used for numeral simulation studies and field

  1. Intraplate Strain and the Seismic Cycle: Inferences from 3D Finite-Element Spherical Viscoelastic Models and GPS Data

    Fleitout, L.; Klein, E.; Vigny, C.; Garaud, J. D.

    2017-12-01

    The postseismic deformations affecting the subducting and overiding plates over thousands of kilometers after the Sumatra, Tohoku and Maule megaearthquakes have been measured precisely by GPS positioning. The characteristics of the postseismic deformation are very similar for the three earthquakes. Modeling using 3D finite element methodsleads to the conclusion that only viscous relaxation in an asthenosphere a few hundred kilometers thick with a viscosity of some 3. 1018Pas, can explain the far-field GPS data. A low viscosity channel along thedeep part of the slab interface helps to explain uplift over the volcanic arc. Viscoelastic models of the seismic cycle based on the mechanical models compatible with the postseismic data predict a continuous transitionbetween postseismic extension andthe compensating interseismic compression. The transition between the two regimes occurs sooner in areas close to the trench. The predictions of the models are compared to GPS data in South-America before Maule earthquake. The GPS time-series are corrected for deformations induced by hydrological loading deduced from the GRACE mission.A slight but welldefined general compression of the South American plate is evidenced between20 and 40 degrees south.Postseismic extension several decades after Valdivia earthquake is also conspicuous south of 40° South.At shorter distances from the trench, the zone of strong compression rate isbroader thanpredicted by elastic back-slip models.Although Chile appears like an ideal place to study deformations through the seismic cycle, similar patterns seem to prevail in other areas affected by megaearthquakes: In Asia, the Northward motion of the 'Sunda block' with respect to South China, or the convergence ratebetween Amour and Okhotsk plates infered from GPS data collected before the megaearthquake, are, at least in part, due to interseismic elastic compression of the lithosphere.

  2. Structure, Kinematics and Origin of Radial Faults: 3D Seismic Observations from the Santos Basin, offshore Brazil

    Coleman, Alexander; Jackson, Christopher A.-L.

    2017-04-01

    Salt stock growth is typically accompanied by the development of geometrically and kinematically complex fault networks in the surrounding country rock. The most common networks comprise radial faults; these are characterised by low displacement (stock into flanking strata. Radial faults are commonly observed in an arched, unpierced roof developed above a rising salt stock; in these cases, the faults are typically well-imaged seismically and likely form due to outer-arc extension during overburden stretching. Radial faults are also found at deeper structural levels, in strata flanking the diapir stem; in these cases, they are typically less well-imaged, thus their structure, kinematics and origin are less well understood. Furthermore, understanding the growth of radial faults may provide insights into hydrocarbon reservoir compartmentalisation and the evolution of neighbouring salt stocks. Here, we use high-quality 3D seismic reflection data from the Santos Basin, offshore Brazil to determine the structure and kinematics, and infer the likely origin of exceptionally well-imaged radial faults overlying and flanking a mature salt stock. Furthermore, we compare the geometric (e.g. throw, geometry, spacing, distribution etc.) and kinematic (e.g. timing of formation and duration of activity) characteristics of radial faults at both structural levels, allowing us to infer their temporal relationship and likely origins. We show that radial faults regardless of their structural level typically have aspect ratios of c. 1.8 - 2, are laterally-restricted in the vicinity of the salt, and have lengths of indices of c. 1, with low throw gradients of 0.05 - 0.1 at the upper tip indicate that radial faults were likely blind. Throws range from 5 - 80 ms, with throw-maxima within 1 - 2 radii of the salt diapir. However, we note that the position of the throw maxima is not at the same level for all radial faults. We propose that radial faults nucleate and initially grow as blind

  3. Multiple Description Coding Based on Optimized Redundancy Removal for 3D Depth Map

    Sen Han

    2016-06-01

    Full Text Available Multiple description (MD coding is a promising alternative for the robust transmission of information over error-prone channels. In 3D image technology, the depth map represents the distance between the camera and objects in the scene. Using the depth map combined with the existing multiview image, it can be efficient to synthesize images of any virtual viewpoint position, which can display more realistic 3D scenes. Differently from the conventional 2D texture image, the depth map contains a lot of spatial redundancy information, which is not necessary for view synthesis, but may result in the waste of compressed bits, especially when using MD coding for robust transmission. In this paper, we focus on the redundancy removal of MD coding based on the DCT (discrete cosine transform domain. In view of the characteristics of DCT coefficients, at the encoder, a Lagrange optimization approach is designed to determine the amounts of high frequency coefficients in the DCT domain to be removed. It is noted considering the low computing complexity that the entropy is adopted to estimate the bit rate in the optimization. Furthermore, at the decoder, adaptive zero-padding is applied to reconstruct the depth map when some information is lost. The experimental results have shown that compared to the corresponding scheme, the proposed method demonstrates better rate central and side distortion performance.

  4. Global and 3D spatial assessment of neuroinflammation in rodent models of Multiple Sclerosis.

    Shashank Gupta

    Full Text Available Multiple Sclerosis (MS is a progressive autoimmune inflammatory and demyelinating disease of the central nervous system (CNS. T cells play a key role in the progression of neuroinflammation in MS and also in the experimental autoimmune encephalomyelitis (EAE animal models for the disease. A technology for quantitative and 3 dimensional (3D spatial assessment of inflammation in this and other CNS inflammatory conditions is much needed. Here we present a procedure for 3D spatial assessment and global quantification of the development of neuroinflammation based on Optical Projection Tomography (OPT. Applying this approach to the analysis of rodent models of MS, we provide global quantitative data of the major inflammatory component as a function of the clinical course. Our data demonstrates a strong correlation between the development and progression of neuroinflammation and clinical disease in several mouse and a rat model of MS refining the information regarding the spatial dynamics of the inflammatory component in EAE. This method provides a powerful tool to investigate the effect of environmental and genetic forces and for assessing the therapeutic effects of drug therapy in animal models of MS and other neuroinflammatory/neurodegenerative disorders.

  5. Segmentation of multiple heart cavities in 3-D transesophageal ultrasound images.

    Haak, Alexander; Vegas-Sánchez-Ferrero, Gonzalo; Mulder, Harriët W; Ren, Ben; Kirişli, Hortense A; Metz, Coert; van Burken, Gerard; van Stralen, Marijn; Pluim, Josien P W; van der Steen, Antonius F W; van Walsum, Theo; Bosch, Johannes G

    2015-06-01

    Three-dimensional transesophageal echocardiography (TEE) is an excellent modality for real-time visualization of the heart and monitoring of interventions. To improve the usability of 3-D TEE for intervention monitoring and catheter guidance, automated segmentation is desired. However, 3-D TEE segmentation is still a challenging task due to the complex anatomy with multiple cavities, the limited TEE field of view, and typical ultrasound artifacts. We propose to segment all cavities within the TEE view with a multi-cavity active shape model (ASM) in conjunction with a tissue/blood classification based on a gamma mixture model (GMM). 3-D TEE image data of twenty patients were acquired with a Philips X7-2t matrix TEE probe. Tissue probability maps were estimated by a two-class (blood/tissue) GMM. A statistical shape model containing the left ventricle, right ventricle, left atrium, right atrium, and aorta was derived from computed tomography angiography (CTA) segmentations by principal component analysis. ASMs of the whole heart and individual cavities were generated and consecutively fitted to tissue probability maps. First, an average whole-heart model was aligned with the 3-D TEE based on three manually indicated anatomical landmarks. Second, pose and shape of the whole-heart ASM were fitted by a weighted update scheme excluding parts outside of the image sector. Third, pose and shape of ASM for individual heart cavities were initialized by the previous whole heart ASM and updated in a regularized manner to fit the tissue probability maps. The ASM segmentations were validated against manual outlines by two observers and CTA derived segmentations. Dice coefficients and point-to-surface distances were used to determine segmentation accuracy. ASM segmentations were successful in 19 of 20 cases. The median Dice coefficient for all successful segmentations versus the average observer ranged from 90% to 71% compared with an inter-observer range of 95% to 84%. The

  6. Application of high-precision 3D seismic technology to shale gas exploration: A case study of the large Jiaoshiba shale gas field in the Sichuan Basin

    Zuqing Chen

    2016-03-01

    Full Text Available The accumulation pattern of the marine shale gas in South China is different from that in North America. The former has generally thin reservoirs and complex preservation conditions, so it is difficult to make a fine description of the structural features of shale formations and to reflect accurately the distribution pattern of high-quality shale by using the conventional 2D and 3D seismic exploration technology, which has an adverse effect on the successful deployment of horizontal wells. In view of this, high-precision 3D seismic prospecting focusing on lithological survey was implemented to make an accurate description of the distribution of shale gas sweet spots so that commercial shale gas production can be obtained. Therefore, due to the complex seismic geological condition of Jiaoshiba area in Fuling, SE Sichuan Basin, the observation system of high-precision 3D seismic acquisition should have such features as wide-azimuth angles, small trace intervals, high folds, uniform vertical and horizontal coverage and long spread to meet the needs of the shale gas exploration in terms of structural interpretation, lithological interpretation and fracture prediction. Based on this idea, the first implemented high-precision 3D seismic exploration project in Jiaoshiba area played an important role in the discovery of the large Jiaoshiba shale gas field. Considering that the high-quality marine shale in the Sichuan Basin shows the characteristics of multi-layer development from the Silurian system to the Cambrian system, the strategy of shale gas stereoscopic exploration should be implemented to fully obtain the oil and gas information of the shallow, medium and deep strata from the high-precision 3D seismic data, and ultimately to expand the prospecting achievements in an all-round way to balance the high upstream exploration cost, and to continue to push the efficient shale gas exploration and development process in China.

  7. Investigation of karst collapse based on 3-D seismic technique and DDA method at Xieqiao coal mine, China

    Zuo, Jian-Ping; Chen, Zhong-Hui [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083 (China); Institute of Rock Mechanical and Fractals, China University of Mining and Technology, Beijing 100083 (China); Peng, Su-Ping; Li, Yong-Jun [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083 (China); Xie, He-Ping [Institute of Rock Mechanical and Fractals, China University of Mining and Technology, Beijing 100083 (China)

    2009-06-01

    Karst collapse is a serious geological problem in most of the coal mines in the north of China, but recently it has been found in the south as well. The present study is aimed at investigating subsidence mechanism and deformation field of a karst collapse column at Xieqiao, in the south of China. A method of three-dimensional (3-D) seismic technique has been successful in exploring the spatial morphology of the karst collapse at Xieqiao, and the discontinuous deformation analysis (DDA) method is used to calculate the deformation field and analyze the subsidence mechanism. The results indicated that DDA could approximately simulate and back analyze the subsidence process and strata deformation fields. The subsidence processes of the collapse column depend on the sizes of the karst caves. With the continuous expansion of the karst caves, a semi-elliptic stress field, local separation strata and fracture zone will be formed around the karst cave. Moreover, they will gradually expand upwards along the vertical direction. The paper also indicates that the subsidence failure stage may trigger a sudden collapse of the karst column because of the sudden energy release. Also, it will make a great impact on the vicinity working face so as to cause a rock burst. The effects of the friction angle of rock strata on the subsidence mechanism were reported firstly based on DDA. (author)

  8. Potential Geophysical Field Transformations and Combined 3D Modelling for Estimation the Seismic Site Effects on Example of Israel

    Eppelbaum, Lev; Meirova, Tatiana

    2015-04-01

    It is well-known that the local seismic site effects may have a significant contribution to the intensity of damage and destruction (e.g., Hough et al., 1990; Regnier et al., 2000; Bonnefoy-Claudet et al., 2006; Haase et al., 2010). The thicknesses of sediments, which play a large role in amplification, usually are derived from seismic velocities. At the same time, thickness of sediments may be determined (or defined) on the basis of 3D combined gravity-magnetic modeling joined with available geological materials, seismic data and borehole section examination. Final result of such investigation is a 3D physical-geological model (PGM) reflecting main geological peculiarities of the area under study. Such a combined study needs in application of a reliable 3D mathematical algorithm of computation together with advanced methodology of 3D modeling. For this analysis the developed GSFC software was selected. The GSFC (Geological Space Field Calculation) program was developed for solving a direct 3-D gravity and magnetic prospecting problem under complex geological conditions (Khesin et al., 1996; Eppelbaum and Khesin, 2004). This program has been designed for computing the field of Δg (Bouguer, free-air or observed value anomalies), ΔZ, ΔX, ΔY , ΔT , as well as second derivatives of the gravitational potential under conditions of rugged relief and inclined magnetization. The geological space can be approximated by (1) three-dimensional, (2) semi-infinite bodies and (3) those infinite along the strike closed, L.H. non-closed, R.H. on-closed and open). Geological bodies are approximated by horizontal polygonal prisms. The program has the following main advantages (besides abovementioned ones): (1) Simultaneous computing of gravity and magnetic fields; (2) Description of the terrain relief by irregularly placed characteristic points; (3) Computation of the effect of the earth-air boundary by the method of selection directly in the process of interpretation; (4

  9. Evaluation of geological conditions for coalbed methane occurrence based on 3D seismic information: a case study in Fowa region, Xinjing coal mine, China

    Li, Juanjuan; Li, Fanjia; Hu, Mingshun; Zhang, Wei; Pan, Dongming

    2017-04-01

    The research on geological conditions of coalbed methane (CBM) occurrence is of great significance for predicting the high abundance CBM rich region and gas outburst risk area pre-warning. The No. 3 coal seam, in Yangquan coalfield of Qinshui basin, is the research target studied by 3D seismic exploration technique. The geological factors which affect CBM occurrence are interpreted based on the 3D seismic information. First, the geological structure (faults, folds, and collapse columns) is found out by the 3D seismic structural interpretation and the information of buried depth and thickness of the coal seam is calculated by the seismic horizons. Second, 3D elastic impedance (EI) and natural gamma attribute volumes are generated by prestack EI inversion and multi-attribute probabilistic neural network (PNN) inversion techniques which reflect the information of coal structure types and lithology of the roof and floor. Then, the information of metamorphic degree of seam and hydrogeology conditions can be obtained by the geological data. Consequently, geological conditions of CBM occurrence in No. 3 coal seam are evaluated which will provide scientific reference for high abundance CBM rich region prediction and gas outburst risk area pre-warning.

  10. Numerical Modeling of 3D Seismic Wave Propagation around Yogyakarta, the Southern Part of Central Java, Indonesia, Using Spectral-Element Method on MPI-GPU Cluster

    Sudarmaji; Rudianto, Indra; Eka Nurcahya, Budi

    2018-04-01

    A strong tectonic earthquake with a magnitude of 5.9 Richter scale has been occurred in Yogyakarta and Central Java on May 26, 2006. The earthquake has caused severe damage in Yogyakarta and the southern part of Central Java, Indonesia. The understanding of seismic response of earthquake among ground shaking and the level of building damage is important. We present numerical modeling of 3D seismic wave propagation around Yogyakarta and the southern part of Central Java using spectral-element method on MPI-GPU (Graphics Processing Unit) computer cluster to observe its seismic response due to the earthquake. The homogeneous 3D realistic model is generated with detailed topography surface. The influences of free surface topography and layer discontinuity of the 3D model among the seismic response are observed. The seismic wave field is discretized using spectral-element method. The spectral-element method is solved on a mesh of hexahedral elements that is adapted to the free surface topography and the internal discontinuity of the model. To increase the data processing capabilities, the simulation is performed on a GPU cluster with implementation of MPI (Message Passing Interface).

  11. 3D geological to geophysical modelling and seismic wave propagation simulation: a case study from the Lalor Lake VMS (Volcanogenic Massive Sulphides) mining camp

    Miah, Khalid; Bellefleur, Gilles

    2014-05-01

    The global demand for base metals, uranium and precious metals has been pushing mineral explorations at greater depth. Seismic techniques and surveys have become essential in finding and extracting mineral rich ore bodies, especially for deep VMS mining camps. Geophysical parameters collected from borehole logs and laboratory measurements of core samples provide preliminary information about the nature and type of subsurface lithologic units. Alteration halos formed during the hydrothermal alteration process contain ore bodies, which are of primary interests among geologists and mining industries. It is known that the alteration halos are easier to detect than the ore bodies itself. Many 3D geological models are merely projection of 2D surface geology based on outcrop inspections and geochemical analysis of a small number of core samples collected from the area. Since a large scale 3D multicomponent seismic survey can be prohibitively expensive, performance analysis of such geological models can be helpful in reducing exploration costs. In this abstract, we discussed challenges and constraints encountered in geophysical modelling of ore bodies and surrounding geologic structures from the available coarse 3D geological models of the Lalor Lake mining camp, located in northern Manitoba, Canada. Ore bodies in the Lalor lake VMS camp are rich in gold, zinc, lead and copper, and have an approximate weight of 27 Mt. For better understanding of physical parameters of these known ore bodies and potentially unknown ones at greater depth, we constructed a fine resolution 3D seismic model with dimensions: 2000 m (width), 2000 m (height), and 1500 m (vertical depth). Seismic properties (P-wave, S-wave velocities, and density) were assigned based on a previous rock properties study of the same mining camp. 3D finite-difference elastic wave propagation simulation was performed in the model using appropriate parameters. The generated synthetic 3D seismic data was then compared to

  12. Seismic methods for the characterisation of reservoirs in developing old natural gas fields in Germany; 3D Seismische Verfahren zur Reservoircharakterisierung bei der Entwicklung alter Erdoelfelder in Deutschland

    Krajewski, P.; Stahl, E.; Bischoff, R. [Preussag Energie GmbH, Lingen (Germany); Guderian, K.; Hasse, G.; Schmiermann, I. [BEB Erdoel und Erdgas GmbH, Hannover (Germany); Groot, P. de [De Groot-Bril Earth Sciences BV, Enschede (Netherlands)

    1998-12-31

    Two examples are chosen to describe the possiblities and limitations of using 3D seismic data for the interpretation of structures and the seismic characterisation of reservoirs. New techniques of seismic classification offer a great deal of possibilities, especially if - as in the case of Ruehme - there is a sufficiency of data from many borehole locations which enables the training of algorithms.(orig.) [Deutsch] Anhand zweier Beispiele wurden die Moeglichkeiten aber auch die Grenzen des Einsatzes 3D seismischer Daten bei der strukturellen Interpretation und der seismischen Reservoircharakterisierung aufgezeigt. Neuartige Techniken der seismischen Klassifizierung erweitern die Moeglichkeiten dabei betraechtlich, insbesondere, wenn - wie beim Beispiel Ruehme - durch die vielen Bohrlokationen ausreichend Daten zum Trainieren der Algorithmen zur Verfuegung stehen. (orig.)

  13. Aspects of the Quaternary evolution of the Southern Kattegat and the central North Sea based on interpretation of 2D and 3D marine reflection seismic profiles

    Bendixen, Carina

    In this PhD study interpretation of 2D shallow seismic data in the Kattegat region (Pinger, Sparker and Innomar parametric sub-bottom profiler), 3D conventional seismic data in the central North Sea, combined with sediment core interpretation and radiocarbon dating has been carried out in order...... to outline the geological development of the southwestern part of the Kattegat region, from the Late Weichselian to Early Holocene and to investigate the potential of using 3D seismic in Quaternary geology. Within the study area of the Kattegat region Late Weichselian (Lateglacial - LG) sediments...... are widespread and seen as semi-transparent reflections. The LG deposits drape the surface of the underlying till and were deposited during a period of relative high sea level (highstand system tract). The following postglacial (PG - Holocene) sediments represent a full depositional sequence including lowstand...

  14. 3-D velocity structures, seismicity patterns, and their tectonic implications across the Andean Foreland of San Juan Argentina

    Asmerom, Biniam Beyene

    Three-dimensional velocity structures and seismicity patterns have been studied across the Andean Foreland of San Juan Argentina using data acquired by PANDA deployment. Distinct velocity variations are revealed between Precordillera in the west and Pie de Palo in the east. The low velocity anomaly beneath Precordillera is associated with the presence of thick sedimentary rocks and thick sediment cover of Matagusanos valley. Similarly, the high velocity anomaly east of Eastern Precordillera is correlated with the presence of basement rocks. These anomalies are observed from the station corrections of Joint Hypocentral Determination (JHD) analysis. A northeast trending west dipping high velocity anomaly is imaged beneath the southern half of Pie de Palo. This anomaly represents a Grenvillian suture zone formed when Pie de Palo collided with the Precordillera. Relocated seismicity using 3-D Vp and Vs models obtained in this study revealed crustal scale buried faults beneath the Eastern Precordillera and Sierra Pie de Palo. The fault defined by the seismicity extend down to a depth of ˜ 40 km and ~35 km beneath Precordillera and Pie de Palo, respectively, defining the lower bound of the brittle to ductile transition of the crust. These results confirm that present day active crustal thickening involves the entire crust in the tectonic process and results in thick-skinned deformation beneath both the Eastern Precordillera and Pie de Palo. Based on the seismicity pattern, geomorphology, and velocity structures, Sierra Pie de Palo, a basement uplift block, can be divided into two separate semi-blocks separated by a northeast trending fracture zone. The northern block is characterized by a well-defined west dipping fault and low Vp/Vs ratio particularly at a depth of 12 to 16 km, while the southern block shows a poorly-defined east dipping fault with high Vp/Vs ratio at a depth of 20 to 26 km. Spatial distribution of the well-relocated crustal earthquakes along these

  15. Multiple-aperture optical design for micro-level cameras using 3D-printing method

    Peng, Wei-Jei; Hsu, Wei-Yao; Cheng, Yuan-Chieh; Lin, Wen-Lung; Yu, Zong-Ru; Chou, Hsiao-Yu; Chen, Fong-Zhi; Fu, Chien-Chung; Wu, Chong-Syuan; Huang, Chao-Tsung

    2018-02-01

    The design of the ultra miniaturized camera using 3D-printing technology directly printed on to the complementary metal-oxide semiconductor (CMOS) imaging sensor is presented in this paper. The 3D printed micro-optics is manufactured using the femtosecond two-photon direct laser writing, and the figure error which could achieve submicron accuracy is suitable for the optical system. Because the size of the micro-level camera is approximately several hundreds of micrometers, the resolution is reduced much and highly limited by the Nyquist frequency of the pixel pitch. For improving the reduced resolution, one single-lens can be replaced by multiple-aperture lenses with dissimilar field of view (FOV), and then stitching sub-images with different FOV can achieve a high resolution within the central region of the image. The reason is that the angular resolution of the lens with smaller FOV is higher than that with larger FOV, and then the angular resolution of the central area can be several times than that of the outer area after stitching. For the same image circle, the image quality of the central area of the multi-lens system is significantly superior to that of a single-lens. The foveated image using stitching FOV breaks the limitation of the resolution for the ultra miniaturized imaging system, and then it can be applied such as biomedical endoscopy, optical sensing, and machine vision, et al. In this study, the ultra miniaturized camera with multi-aperture optics is designed and simulated for the optimum optical performance.

  16. Rock formation characterization for CO2-EOR and carbon geosequestration; 3D seismic amplitude and coherency anomalies, Wellington Field, Kansas, USA

    Ohl, D.; Raef, A.; Watnef, L.; Bhattacharya, S.

    2011-01-01

    In this paper, we present a workflow for a Mississipian carbonates characterization case-study integrating post-stack seismic attributes, well-logs porosities, and seismic modeling to explore relating changes in small-scale "lithofacies" properties and/or sub-seismic resolution faulting to key amplitude and coherency 3D seismic attributes. The main objective of this study is to put emphasis on reservoir characterization that is both optimized for and subsequently benefiting from pilot tertiary CO2-EOR in preparation for future carbon geosequestration in a depleting reservoir and a deep saline aquifer. The extracted 3D seismic coherency attribute indicated anomalous features that can be interpreted as a lithofacies change or a sub-seismic resolution faulting. A 2D finite difference modeling has been undertaken to understand and potentially build discriminant attributes to map structural and/or lithofacies anomalies of interest especially when embarking upon CO2-EOR and/or carbon sequestration monitoring and management projects. ?? 2011 Society of Exploration Geophysicists.

  17. Inverse Problem for 3D coupled Flow-Geomechanics Models and Induced Seismicity: Application to Subsurface Characterization and Seismicity Forecasting in Geologic CO2 Storage

    Castineira, D.; Jha, B.; Juanes, R.

    2016-12-01

    Carbon Capture and Sequestration (CCS) is regarded as a promising technology to mitigate rising CO2 concentrations in the atmosphere from industrial emissions. However, as a result of the inherent uncertainty that is present in geological structures, assessing the stability of geological faults and quantifying the potential for induced seismicity is a fundamental challenge for practical implementation of CCS. Here we present a formal framework for the solution of the inverse problem associated with coupled flow and geomechanics models of CO2 injection and subsurface storage. Our approach builds from the application of Gaussian Processes, MCMC and posterior predictive analysis to evaluate relevant earthquake attributes (earthquake time, location and magnitude) in 3D synthetic models of CO2 storage under geologic, observational and operational uncertainty. In our approach, we first conduct hundreds of simulations of a high-fidelity 3D computational model for CO2 injection into a deep saline aquifer, dominated by an anticline structure and a fault. This ensemble of realizations accounts for uncertainty in the model parameters (including fault geomechanical and rock properties) and observations (earthquake time, location and magnitude). We apply Gaussian processes (GP) to generate a valid surrogate that closely approximates the behavior of the high fidelity (and computationally intensive) model, and apply hyperparameter optimization and cross-validation techniques in the solution of this multidimensional data-fit problem. The net result of this process is the generation of a fast model that can be effectively used for Bayesian analysis. We then implement Markov chain Monte Carlo (MCMC) to determine the posterior distribution of the model uncertain parameters (given some prior distributions for those parameters and given the likelihood defined in this case by the GP model). Our results show that the resulting posterior distributions correctly converge towards the "true

  18. Multitemporal 3d Modelling for Cultural Heritage Emergency during Seismic Events: Damage Assesment of S. Agostino Church in Amatrice (ri)

    Chiabrando, F.; Di Lolli, A.; Patrucco, G.; Spanò, A.; Sammartano, G.; Teppati Losè, L.

    2017-05-01

    One of the challenging purposes that must be undertaken by applied geomatics, is the need of monitoring by documenting continuously over time the evolution of urban spaces. Nowadays, this is a subject of great interest and study, mainly in case of sudden emergency events that implicate urban areas and specific historical buildings of our heritage. The newest Geomatics technique solutions must enable the demands of damage documentation, risk assessment, management and data sharing as efficiently as possible, in relation to the danger condition, to the accessibility constraints of areas and to the tight deadlines needs. In August 24th 2016, the first earthquake hit the area of central Italy with a magnitude of 6.0; since then, the earth never stop shaking in a wide area in the middle of Italy. On 26th and 30th of October, two other big seismic events were recorded (magnitude 5.9 and 6.5) and the already damaged built heritage were struck again. Since the beginning of the emergency all the available resources (human and material) were deployed and the world of researchers is trying to furnish an effective contribute as well. Politecnico di Torino, in coordination with the national institutions, is deploying people, expertise and resources. The geomatics research group and the connected Disaster Recovery team (DIRECT - http://areeweb.polito.it/direct/) is part of this process and is working in deep contact and collaboration with the Remotely Piloted Aircraft Systems (RPAS) group of the Italian Firefighter. Starting from the first earthquake the late medieval religious complex of S. Agostino has been carefully monitored and detected, using a multi-perspective oblique imagery strategy with the aim to achieve 3D aerial and terrestrial models, in a multi-temporal perspective concerning three different time situation.

  19. MULTITEMPORAL 3D MODELLING FOR CULTURAL HERITAGE EMERGENCY DURING SEISMIC EVENTS: DAMAGE ASSESMENT OF S. AGOSTINO CHURCH IN AMATRICE (RI

    F. Chiabrando

    2017-05-01

    Full Text Available One of the challenging purposes that must be undertaken by applied geomatics, is the need of monitoring by documenting continuously over time the evolution of urban spaces. Nowadays, this is a subject of great interest and study, mainly in case of sudden emergency events that implicate urban areas and specific historical buildings of our heritage. The newest Geomatics technique solutions must enable the demands of damage documentation, risk assessment, management and data sharing as efficiently as possible, in relation to the danger condition, to the accessibility constraints of areas and to the tight deadlines needs. In August 24th 2016, the first earthquake hit the area of central Italy with a magnitude of 6.0; since then, the earth never stop shaking in a wide area in the middle of Italy. On 26th and 30th of October, two other big seismic events were recorded (magnitude 5.9 and 6.5 and the already damaged built heritage were struck again. Since the beginning of the emergency all the available resources (human and material were deployed and the world of researchers is trying to furnish an effective contribute as well. Politecnico di Torino, in coordination with the national institutions, is deploying people, expertise and resources. The geomatics research group and the connected Disaster Recovery team (DIRECT - http://areeweb.polito.it/direct/ is part of this process and is working in deep contact and collaboration with the Remotely Piloted Aircraft Systems (RPAS group of the Italian Firefighter. Starting from the first earthquake the late medieval religious complex of S. Agostino has been carefully monitored and detected, using a multi-perspective oblique imagery strategy with the aim to achieve 3D aerial and terrestrial models, in a multi-temporal perspective concerning three different time situation.

  20. Intracranial MRA: single volume vs. multiple thin slab 3D time-of-flight acquisition.

    Davis, W L; Warnock, S H; Harnsberger, H R; Parker, D L; Chen, C X

    1993-01-01

    Single volume three-dimensional (3D) time-of-flight (TOF) MR angiography is the most commonly used noninvasive method for evaluating the intracranial vasculature. The sensitivity of this technique to signal loss from flow saturation limits its utility. A recently developed multislab 3D TOF technique, MOTSA, is less affected by flow saturation and would therefore be expected to yield improved vessel visualization. To study this hypothesis, intracranial MR angiograms were obtained on 10 volunteers using three techniques: MOTSA, single volume 3D TOF using a standard 4.9 ms TE (3D TOFA), and single volume 3D TOF using a 6.8 ms TE (3D TOFB). All three sets of axial source images and maximum intensity projection (MIP) images were reviewed. Each exam was evaluated for the number of intracranial vessels visualized. A total of 502 vessel segments were studied with each technique. With use of the MIP images, 86% of selected vessels were visualized with MOTSA, 64% with 3D TOFA (TE = 4.9 ms), and 67% with TOFB (TE = 6.8 ms). Similarly, with the axial source images, 91% of selected vessels were visualized with MOTSA, 77% with 3D TOFA (TE = 4.9 ms), and 82% with 3D TOFB (TE = 6.8 ms). There is improved visualization of selected intracranial vessels in normal volunteers with MOTSA as compared with single volume 3D TOF. These improvements are believed to be primarily a result of decreased sensitivity to flow saturation seen with the MOTSA technique. No difference in overall vessel visualization was noted for the two single volume 3D TOF techniques.

  1. 3D seismic experiment in the Minaminoshiro area, Akita. Data processing; Akitaken Minaminoshiro chiiki ni okeru sanjigen jishin tansa jikken. Data shori

    Tanaka, H; Minegishi, M [Japan National Oil Corp., Tokyo (Japan). Technology Research Center; Nakagami, K [Japan Petroleum Exploration Co. Ltd., Tokyo (Japan)

    1997-10-22

    A 3D seismic experiment was carried out in the Minaminoshiro area in Akita Prefecture, an area difficult of performing seismic exploration. This paper reports progresses during data processing and future problems. The data processing has executed static correction of 3D refraction, 3D DMO correction, and an F-X prediction filter processing on the data in time domain in the 3D seismic exploration as acquired in a spread of 4 km times 5 km in the subject area. The result of the data processing verified existence of a folding structure and the Noshiro thrust fault groups in the east to west direction, and locations of the Sakagawa fault associated therewith. Seen particularly noticeably was a structure having a slope falling north-ward at 15 to 35 degrees in shallow and deep portions on the east side of the Sakagawa fault in the south to north direction. In addition, the Dogiri fault was identified, which has been though to exist in a direction crossing perpendicularly the Noshiro thrust fault groups. It is scheduled that spatial velocity will be analyzed, and data processing will be conducted for deep regions. 7 figs.

  2. Segmentation of multiple heart cavities in 3-D transesophageal ultrasound images

    Haak, A.; Vegas-Sanchez-Ferrero, G.; Mulder, H.W.; Ren, B.; Kirisli, H.A.; Metz, C.; van Burken, G.; van Stralen, M.; Pluim, J.P.W.; Steen, van der A.F.W.; Walsum, van T.; Bosch, J.G.

    Three-dimensional transesophageal echocardiography (TEE) is an excellent modality for real-time visualization of the heart and monitoring of interventions. To improve the usability of 3-D TEE for intervention monitoring and catheter guidance, automated segmentation is desired. However, 3-D TEE

  3. 3D liver segmentation using multiple region appearances and graph cuts

    Peng, Jialin, E-mail: 2004pjl@163.com; Zhang, Hongbo [College of Computer Science and Technology, Huaqiao University, Xiamen 361021 (China); Hu, Peijun; Lu, Fang; Kong, Dexing [College of Mathematics, Zhejiang University, Hangzhou 310027 (China); Peng, Zhiyi [Department of Radiology, First Affiliated Hospital, Zhejiang University, Hangzhou 310027 (China)

    2015-12-15

    Purpose: Efficient and accurate 3D liver segmentations from contrast-enhanced computed tomography (CT) images play an important role in therapeutic strategies for hepatic diseases. However, inhomogeneous appearances, ambiguous boundaries, and large variance in shape often make it a challenging task. The existence of liver abnormalities poses further difficulty. Despite the significant intensity difference, liver tumors should be segmented as part of the liver. This study aims to address these challenges, especially when the target livers contain subregions with distinct appearances. Methods: The authors propose a novel multiregion-appearance based approach with graph cuts to delineate the liver surface. For livers with multiple subregions, a geodesic distance based appearance selection scheme is introduced to utilize proper appearance constraint for each subregion. A special case of the proposed method, which uses only one appearance constraint to segment the liver, is also presented. The segmentation process is modeled with energy functions incorporating both boundary and region information. Rather than a simple fixed combination, an adaptive balancing weight is introduced and learned from training sets. The proposed method only calls initialization inside the liver surface. No additional constraints from user interaction are utilized. Results: The proposed method was validated on 50 3D CT images from three datasets, i.e., Medical Image Computing and Computer Assisted Intervention (MICCAI) training and testing set, and local dataset. On MICCAI testing set, the proposed method achieved a total score of 83.4 ± 3.1, outperforming nonexpert manual segmentation (average score of 75.0). When applying their method to MICCAI training set and local dataset, it yielded a mean Dice similarity coefficient (DSC) of 97.7% ± 0.5% and 97.5% ± 0.4%, respectively. These results demonstrated the accuracy of the method when applied to different computed tomography (CT) datasets

  4. Synthesizing monochromatic 3-D images by multiple-exposure rainbow holography with vertical area-partition approach

    翟宏琛; 王明伟; 刘福民; 母国光

    2002-01-01

    We report for the first time the theoretical analysis and experimental results of a white-light reconstructed monochromatic 3-D image synthesizing tomograms by multiple rainbow holo-graphy with vertical-area partition (VAP) approach. The theoretical and experimental results show that 3-D monochromatic image can be synthesized by recording the master hologram by VAP ap-proach without any distortions either in gray scale or in geometrical position. A 3-D monochromatic image synthesized from a series of medical tomograms is presented in this paper for the first time.

  5. Dynamical analysis of a PWR internals using super-elements in an integrated 3-D model model. Part 2: dynamical tests and seismic analysis

    Jesus Miranda, C.A. de.

    1992-01-01

    The results of the test analysis (frequencies) for the isolated super-elements and for the developed 3-D model of the internals core support structures of a PWR research reactor are presented. Once certified of the model effectiveness for this type of analysis the seismic spectral analysis was performed. From the results can be seen that the structures are rigid for this load, isolated or together with the other in the 3-D model, and there are no impacts among them during the earthquake (OBE). (author)

  6. Development of Radioactive Inventory Evaluation System using 3D Shape and Multiple Radiation Measurement

    Lee, Sang Chul; Kim, Won Seok; Han, Byong Su; Moon, Joo Hyun

    2013-01-01

    The increase of the operating NPPs and the superannuation of the equipment in NPPs cause a large amount of the metal radioactive waste. Presently the metal radioactive wastes are stored in the temporary storage facility in NPPs because of the delay of the construction of the final disposal facility. The radioactive level of general metal radioactive wastes is low, and the radioactive level can be lowered by the simple decontamination process. If the radioactive wastes are disposed as the industry waste, the disposal cost is diminished largely. For the disposal of the radioactive wastes as the industrial wastes, the radioactive level of the target wastes are evaluated. It is difficult to know the position of the source term for most of the metal radioactive and the source term is distributed non-homogeneously. And the self-shielding effect of the metal material makes the evaluation more difficult. In this study, the radioactive inventory evaluation system for the metal radioactive waste is developed. For the correction of the uncertainty of the position and the non-homogeneity of the source term, the 3D shape and multiple radiation measurement are used. The existing gamma-ray measurement system for the metal radioactive waste cannot reflect the position and the distribution of the source term and the effect of self-shielding. This evaluation system suggested in this system can calculate the reasonable value regarding to the position and the distribution of the source term and the effect of self-shielding. By the calculation of the partial inventory of the target metal waste, the advantage in the application of the clearance criteria can be obtained

  7. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach.

    Valverde, Sergi; Cabezas, Mariano; Roura, Eloy; González-Villà, Sandra; Pareto, Deborah; Vilanova, Joan C; Ramió-Torrentà, Lluís; Rovira, Àlex; Oliver, Arnau; Lladó, Xavier

    2017-07-15

    In this paper, we present a novel automated method for White Matter (WM) lesion segmentation of Multiple Sclerosis (MS) patient images. Our approach is based on a cascade of two 3D patch-wise convolutional neural networks (CNN). The first network is trained to be more sensitive revealing possible candidate lesion voxels while the second network is trained to reduce the number of misclassified voxels coming from the first network. This cascaded CNN architecture tends to learn well from a small (n≤35) set of labeled data of the same MRI contrast, which can be very interesting in practice, given the difficulty to obtain manual label annotations and the large amount of available unlabeled Magnetic Resonance Imaging (MRI) data. We evaluate the accuracy of the proposed method on the public MS lesion segmentation challenge MICCAI2008 dataset, comparing it with respect to other state-of-the-art MS lesion segmentation tools. Furthermore, the proposed method is also evaluated on two private MS clinical datasets, where the performance of our method is also compared with different recent public available state-of-the-art MS lesion segmentation methods. At the time of writing this paper, our method is the best ranked approach on the MICCAI2008 challenge, outperforming the rest of 60 participant methods when using all the available input modalities (T1-w, T2-w and FLAIR), while still in the top-rank (3rd position) when using only T1-w and FLAIR modalities. On clinical MS data, our approach exhibits a significant increase in the accuracy segmenting of WM lesions when compared with the rest of evaluated methods, highly correlating (r≥0.97) also with the expected lesion volume. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The analysis of the Tectonics - SSS - Seismicity System in the 3D-model of the Rasvumchorr Mine - Central Open Pit Natural and Technical System (Khibiny)

    Zhirov, Dmitry; Klimov, Sergey; Zhirova, Anzhela; Panteleev, Alexey; Rybin, Vadim

    2017-04-01

    Main hazardous factors during the operation of deposits represent tectonics (structural dislocation), strain and stress state (SSS), and seismicity. The cause and effect relationships in the Fault Tectonics - SSS - Seismicity system were analyzed using a 3D geological and structural Rasvumchorr Mine - Central Open Pit model. This natural and technical system (NTS) has resulted from the development of the world-class apatite-nepheline deposits the Apatite Circus and Rasvumchorr Plateau. The 3D model integrates various spatial data on the earth's surface topography before and after mining, geometry of mines and dumps, SSS measurements and rock pressure, seismicity, fault tectonics and etc. The analysis of the 3D model has clearly demonstrated the localization of three main seismic emanation zones in the areas of maximum anthropogenic variation of the initial rock state, and namely: ore pass zone under the Southern edge of the Central open pit, collapse and joining zone of the Rasvumchorr Mine and NW edge of the open pit, and zone under the Apatite Circus plate - collapse console. And, on the contrary, in the area of a large dump under the underground mine, a perennial seismic minimum zone was identified. The relation of the seismicity and fault tectonics was revealed only in three local sectors near come certain echelon fissures of the Main Fault(MF). No confinement of increased seismicity areas to the MF and other numerous echelon fissures is observed. The same picture occurs towards manifestations of rock pressure. Only an insignificant part of echelon fissures (including low rank of hierarchy) controls hazardous manifestations of rock pressure (dumps, strong deformations of the mine contour, etc.). It is shown that the anthropogenic factor (explosive, geometry and arrangement of mined spaces and collapse console), as well as the time factor significantly change orientation and structure (contrast and heterogeneity) of the stress fields. Time series of natural

  9. Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California

    NONE

    1996-10-01

    The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field.

  10. Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California

    1996-10-01

    The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field

  11. Integration of 2D and 3D reflection seismic data with deep boreholes in the Kevitsa Ni-Cu-PGE deposit, northern Finland

    Koivisto, Emilia; Malehmir, Alireza; Voipio, Teemu; Wijns, Chris

    2013-04-01

    Kevitsa is a large disseminated sulphide Ni-Cu-PGE deposit hosted by the Kevitsa mafic-ultramafic intrusion in northern Finland and dated as about 2.06 Ga old. The Geological Survey of Finland first discovered the Kevitsa deposit in 1987. Open pit mining by Kevitsa Mining Oy/First Quantum Minerals Ltd. commenced in June 2012. The final pit depth is planned to be 550-600 m. The estimated ore reserves of the Kevitsa intrusion are about 240 million tones (using a nickel cut-off grade of 0.1%). The expected life-of-mine is 20-30 years. More than 400 hundred holes have been drilled in the Kevitsa area, but most are concentrated close to the known deposit and do not provide a comprehensive understanding of the extent of the intrusion. The basal contact of the intrusion is penetrated by only about 30 drill holes, most of which are shallow. A better knowledge of the geometry of the intrusion would provide a framework for near-mine and deep exploration in the area. An exact knowledge on the basal contact of the intrusion would also provide an exploration target for the contact-type mineralization that is often more massive and richer in Ni-Cu. In December 2007, a series of 2D reflection seismic profiles was acquired in the Kevitsa area. It consisted of four connected survey lines between 6 and 11 km long. In 2010, the initial positive results of the 2D seismic survey led Kevitsa Mining Oy/First Quantum Minerals Ltd. to initiate a 3D reflection seismic survey. The 3D seismic survey is limited to the closer vicinity of the known deposit, while the 2D seismic survey was designed to provide a more regional view of the Kevitsa intrusive complex. The main aims of the 2D and 3D seismic surveys were to delineate the shape and extent of the ore-bearing Kevitsa intrusion and the geometry of some of the host rock and surrounding units, and extract information about the larger-scale structures and structures important for mine-planning purposes. The 2D and 3D seismic data were used to

  12. 3D Seismic Reflection Amplitude and Instantaneous Frequency Attributes in Mapping Thin Hydrocarbon Reservoir Lithofacies: Morrison NE Field and Morrison Field, Clark County, KS

    Raef, Abdelmoneam; Totten, Matthew; Vohs, Andrew; Linares, Aria

    2017-12-01

    Thin hydrocarbon reservoir facies pose resolution challenges and waveform-signature opportunities in seismic reservoir characterization and prospect identification. In this study, we present a case study, where instantaneous frequency variation in response to a thin hydrocarbon pay zone is analyzed and integrated with other independent information to explain drilling results and optimize future drilling decisions. In Morrison NE Field, some wells with poor economics have resulted from well-placement incognizant of reservoir heterogeneities. The study area in Clark County, Kanas, USA, has been covered by a surface 3D seismic reflection survey in 2010. The target horizon is the Viola limestone, which continues to produce from 7 of the 12 wells drilled within the survey area. Seismic attributes extraction and analyses were conducted with emphasis on instantaneous attributes and amplitude anomalies to better understand and predict reservoir heterogeneities and their control on hydrocarbon entrapment settings. We have identified a higher instantaneous frequency, lower amplitude seismic facies that is in good agreement with distinct lithofacies that exhibit better (higher porosity) reservoir properties, as inferred from well-log analysis and petrographic inspection of well cuttings. This study presents a pre-drilling, data-driven approach of identifying sub-resolution reservoir seismic facies in a carbonate formation. This workflow will assist in placing new development wells in other locations within the area. Our low amplitude high instantaneous frequency seismic reservoir facies have been corroborated by findings based on well logs, petrographic analysis data, and drilling results.

  13. Toward 3D-IPTV: design and implementation of a stereoscopic and multiple-perspective video streaming system

    Petrovic, Goran; Farin, Dirk; de With, Peter H. N.

    2008-02-01

    3D-Video systems allow a user to perceive depth in the viewed scene and to display the scene from arbitrary viewpoints interactively and on-demand. This paper presents a prototype implementation of a 3D-video streaming system using an IP network. The architecture of our streaming system is layered, where each information layer conveys a single coded video signal or coded scene-description data. We demonstrate the benefits of a layered architecture with two examples: (a) stereoscopic video streaming, (b) monoscopic video streaming with remote multiple-perspective rendering. Our implementation experiments confirm that prototyping 3D-video streaming systems is possible with today's software and hardware. Furthermore, our current operational prototype demonstrates that highly heterogeneous clients can coexist in the system, ranging from auto-stereoscopic 3D displays to resource-constrained mobile devices.

  14. New evidence for the serpentinization of the Palaeozoic basement of southeastern Sicily from joint 3-D seismic velocity and attenuation tomography

    Giampiccolo, E.; Brancato, A.; Manuella, F. C.; Carbone, S.; Gresta, S.; Scribano, V.

    2017-12-01

    In this study, we derived the first 3-D P-wave seismic attenuation images (QP) as well as new 3-D VP and VP/VS models for the crust in southeastern Sicily. We used a large data set of local seismic events occurring in the time span 1994-2013. The results of this tomographic study have important implications on the seismic behaviour of the region. Based on velocity and attenuation images, we identified distinct volumes characterized by different fluid content, which correlate well with seismicity distribution. Moreover, the obtained velocity and attenuation tomographies help us to provide a more complete picture of the crustal structure of the area. High VP, high QP and high VP/VS values have been obtained in the crustal basement, below a depth of 8 km, and may be interpreted as due to the presence of serpentinized peridotites. Accordingly, the new model for the degree of serpentinization, retrieved from VP values, shows that the basement has an average serpentinization value of 96 ± 3 vol.% at 8 km, decreasing to 44 ± 5 vol.% at about 18-20 km.

  15. Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Annual report, March 1, 1996--February 28, 1997

    Parra, J.O.; Collier, H.A.; Owen, T.E. [and others

    1997-06-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. They also may connect the borehole to remote zones of better reservoir characteristics. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based on the effects of such conditions on the propagation of acoustic and seismic waves in the rock. The project is a study directed toward the evaluation of acoustic logging and 3D-seismic measurement techniques as well as fluid flow and transport methods for mapping permeability anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems and associated fluid dynamics. The principal application of these measurement techniques and methods is to identify and investigate the propagation characteristics of acoustic and seismic waves in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to characterize the fracture permeability distribution using production data. This site is located in the overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two rigs running with many established drill hole locations. In addition, there are numerous vertical wells that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and MWD logs, gamma logs, etc.

  16. Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis

    Moraal, Bastiaan; Roosendaal, Stefan; Pouwels, Petra; Vrenken, Hugo; Schijndel, van Ronald; Meier, Dominik; Guttmann, Charles; Geurts, Jeroen; Barkhof, Frederik

    2008-01-01

    To describe signal and contrast properties of an isotropic, single-slab 3D dataset [double inversion- recovery (DIR), fluid-attenuated inversion recovery (FLAIR), T2, and T1-weighted magnetization prepared rapid acquisition gradient-echo (MPRAGE)] and to evaluate its performance in detecting

  17. Single-frame 3D human pose recovery from multiple views

    Hofmann, M.; Gavrila, D.M.

    2009-01-01

    We present a system for the estimation of unconstrained 3D human upper body pose from multi-camera single-frame views. Pose recovery starts with a shape detection stage where candidate poses are generated based on hierarchical exemplar matching in the individual camera views. The hierarchy used in

  18. Evaluation of Shear Strength of RC Beams with Multiple Interfaces Formed before Initial Setting Using 3D Printing Technology

    Kyeongjin Kim

    2017-11-01

    Full Text Available With the recent development of 3D printing technology, concrete materials are sometimes used in 3D printing. Concrete structures based on 3D printing have been characterized to have the form of multiple layer build-up. Unlike general concrete structures, therefore, the 3D-printed concrete can be regarded as an orthotropic material. The material property of the 3D-printed concrete’s interface between layers is expected to be far different from that of general concrete bodies since there are no aggregate interlocks and weak chemical bonding. Such a difference finally affects the structural performance of concrete structures even though the interfaces are formed before initial setting of the concrete. The current study mainly reviewed the changes in fracture energy (toughness with respect to various environmental conditions of such interface. Changes in fracture energies of interfaces between concrete layers were measured using low-speed Crack Mouth Opening Displacement (CMOD closed loop concrete fracture test. The experimental results indicated reduction in fracture energy as well as tensile strengths. To improve the tensile strength of interfaces, the use of bridging materials is suggested. Since it was assumed that reduction in fracture energy could be a cause of shear strength, to evaluate the reduced structural performance of concrete structure constructed with multiple interfaces by 3D printing technology, the shear strength of RC beam by 3D printing technology was predicted and compared with that of plain RC beam. Based on the fracture energy measured in this study, Modified Compression Field Theory (MCFT theory-applied Vector 2 program was employed to predict the degree of reduction in shear strength without considering stirrups. Reduction factors were presented based on the obtained results to predict the reduction in shear strength due to interfaces before initial setting of the concrete.

  19. 3D Simulation of Multiple Simultaneous Hydraulic Fractures with Different Initial Lengths in Rock

    Tang, X.; Rayudu, N. M.; Singh, G.

    2017-12-01

    Hydraulic fracturing is widely used technique for extracting shale gas. During this process, fractures with various initial lengths are induced in rock mass with hydraulic pressure. Understanding the mechanism of propagation and interaction between these induced hydraulic cracks is critical for optimizing the fracking process. In this work, numerical results are presented for investigating the effect of in-situ parameters and fluid properties on growth and interaction of multi simultaneous hydraulic fractures. A fully coupled 3D fracture simulator, TOUGH- GFEM is used for simulating the effect of different vital parameters, including in-situ stress, initial fracture length, fracture spacing, fluid viscosity and flow rate on induced hydraulic fractures growth. This TOUGH-GFEM simulator is based on 3D finite volume method (FVM) and partition of unity element method (PUM). Displacement correlation method (DCM) is used for calculating multi - mode (Mode I, II, III) stress intensity factors. Maximum principal stress criteria is used for crack propagation. Key words: hydraulic fracturing, TOUGH, partition of unity element method , displacement correlation method, 3D fracturing simulator

  20. Expression robust 3D face recognition via mesh-based histograms of multiple order surface differential quantities

    Li, Huibin

    2011-09-01

    This paper presents a mesh-based approach for 3D face recognition using a novel local shape descriptor and a SIFT-like matching process. Both maximum and minimum curvatures estimated in the 3D Gaussian scale space are employed to detect salient points. To comprehensively characterize 3D facial surfaces and their variations, we calculate weighted statistical distributions of multiple order surface differential quantities, including histogram of mesh gradient (HoG), histogram of shape index (HoS) and histogram of gradient of shape index (HoGS) within a local neighborhood of each salient point. The subsequent matching step then robustly associates corresponding points of two facial surfaces, leading to much more matched points between different scans of a same person than the ones of different persons. Experimental results on the Bosphorus dataset highlight the effectiveness of the proposed method and its robustness to facial expression variations. © 2011 IEEE.

  1. Multiple attenuation to reflection seismic data using Radon filter and Wave Equation Multiple Rejection (WEMR) method

    Erlangga, Mokhammad Puput [Geophysical Engineering, Institut Teknologi Bandung, Ganesha Street no.10 Basic Science B Buliding fl.2-3 Bandung, 40132, West Java Indonesia puput.erlangga@gmail.com (Indonesia)

    2015-04-16

    Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the τ-p domain based on move out difference between primary reflection and multiple reflection. However, in case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.

  2. Seismic qualification of multiple interconnected safety-related cabinets in a high seismic zone

    Khan, M.R.; Chen, W.H.W.; Wang, T.Y.

    1993-01-01

    Certain safety-related multiple, interconnected electrical cabinets and the devices contained therein are required to perform their intended safety functions during and after a design basis seismic event. In general, seismic testing is performed to ensure the structural integrity of the cabinets and the functionality of their associated devices. Constrained by the shake table capacity, seismic testing is usually performed only for a limited number of interconnected cabinets. Also, original shake table tests performed usually did not provide detailed response information at various locations inside the cabinets. For operational and maintenance purposes, doors and panels of some cabinets may need to be opened while the adjacent cabinets are required to remain functional. In addition, in-cabinet response spectra need to be generated for the seismic qualification of new devices and the replacement parts. Consequently, seismic analysis of safety-related multiple, interconnected cabinets is frequently required for configurations which are different from the original tested conditions. This paper presents results of seismic tests of three interconnected safety-related cabinets and finite element analyses performed to compare the analytical results with those obtained from the cabinet seismic tests. Parametric analyses are performed to determine how many panels and doors can be opened while the adjacent cabinets still remain functional. The study indicates that for cabinets located in a high seismic zone, the critical damping of the cabinet is significantly higher than 5% to 7% typically used in qualifying electrical equipment. For devices mounted on the cabinet doors to performed their intended safety function, it requires stiffening of doors and that these doors be properly bolted to the cabinet frame. It also shows that even though doors and panels bolted to the cabinet frame are the primary seismic resistant element of the cabinet, opening of a limited number of them

  3. Seismic attribute detection of faults and fluid pathways within an active strike-slip shear zone: New insights from high-resolution 3D P-Cable™ seismic data along the Hosgri Fault, offshore California

    Kluesner, Jared W.; Brothers, Daniel

    2016-01-01

    Poststack data conditioning and neural-network seismic attribute workflows are used to detect and visualize faulting and fluid migration pathways within a 13.7 km2 13.7 km2 3D P-Cable™ seismic volume located along the Hosgri Fault Zone offshore central California. The high-resolution 3D volume used in this study was collected in 2012 as part of Pacific Gas and Electric’s Central California Seismic Imaging Project. Three-dimensional seismic reflection data were acquired using a triple-plate boomer source (1.75 kJ) and a short-offset, 14-streamer, P-Cable system. The high-resolution seismic data were processed into a prestack time-migrated 3D volume and publically released in 2014. Postprocessing, we employed dip-steering (dip and azimuth) and structural filtering to enhance laterally continuous events and remove random noise and acquisition artifacts. In addition, the structural filtering was used to enhance laterally continuous edges, such as faults. Following data conditioning, neural-network based meta-attribute workflows were used to detect and visualize faults and probable fluid-migration pathways within the 3D seismic volume. The workflow used in this study clearly illustrates the utility of advanced attribute analysis applied to high-resolution 3D P-Cable data. For example, results from the fault attribute workflow reveal a network of splayed and convergent fault strands within an approximately 1.3 km wide shear zone that is characterized by distinctive sections of transpressional and transtensional dominance. Neural-network chimney attribute calculations indicate that fluids are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones. These results provide high-resolution, 3D constraints on the relationships between strike-slip fault mechanics, substrate deformation, and fluid migration along an active

  4. Data Processing Methods for 3D Seismic Imaging of Subsurface Volcanoes: Applications to the Tarim Flood Basalt.

    Wang, Lei; Tian, Wei; Shi, Yongmin

    2017-08-07

    The morphology and structure of plumbing systems can provide key information on the eruption rate and style of basalt lava fields. The most powerful way to study subsurface geo-bodies is to use industrial 3D reflection seismological imaging. However, strategies to image subsurface volcanoes are very different from that of oil and gas reservoirs. In this study, we process seismic data cubes from the Northern Tarim Basin, China, to illustrate how to visualize sills through opacity rendering techniques and how to image the conduits by time-slicing. In the first case, we isolated probes by the seismic horizons marking the contacts between sills and encasing strata, applying opacity rendering techniques to extract sills from the seismic cube. The resulting detailed sill morphology shows that the flow direction is from the dome center to the rim. In the second seismic cube, we use time-slices to image the conduits, which corresponds to marked discontinuities within the encasing rocks. A set of time-slices obtained at different depths show that the Tarim flood basalts erupted from central volcanoes, fed by separate pipe-like conduits.

  5. 2D and 3D seismic measurements to evaluate the collapse risk of an important prehistoric cave in soft carbonate rock

    Leucci, Giovanni; De Giorgi, Lara

    2015-02-01

    The southern part of the Apulia region (the Salento peninsula) has been the site of at least fifteen collapse events due to sinkholes in the last twenty years. The majority of these occurred in "soft" carbonate rocks (calcarenites). Man-made and/or natural cavities are sometimes assets of historical and archaeological significance. This paper provides a methodology for the evaluation of sinkhole hazard in "soft" carbonate rocks, combining seismic and mine engineering methods.Acase study of a natural cavity which is called Grotta delle Veneri is illustrated. For this example the approach was: i) 2D and 3D seismic methods to study the physical-mechanical characteristics of the rock mass that constitutes the roof of the cave; and ii) scaled span empirical analysis in order to evaluate the instability of the crown pillar's caves.

  6. 3D printing of tablets containing multiple drugs with defined release profiles.

    Khaled, Shaban A; Burley, Jonathan C; Alexander, Morgan R; Yang, Jing; Roberts, Clive J

    2015-10-30

    We have employed three-dimensional (3D) extrusion-based printing as a medicine manufacturing technique for the production of multi-active tablets with well-defined and separate controlled release profiles for three different drugs. This 'polypill' made by a 3D additive manufacture technique demonstrates that complex medication regimes can be combined in a single tablet and that it is viable to formulate and 'dial up' this single tablet for the particular needs of an individual. The tablets used to illustrate this concept incorporate an osmotic pump with the drug captopril and sustained release compartments with the drugs nifedipine and glipizide. This combination of medicines could potentially be used to treat diabetics suffering from hypertension. The room temperature extrusion process used to print the formulations used excipients commonly employed in the pharmaceutical industry. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and X-ray powder diffraction (XRPD) were used to assess drug-excipient interaction. The printed formulations were evaluated for drug release using USP dissolution testing. We found that the captopril portion showed the intended zero order drug release of an osmotic pump and noted that the nifedipine and glipizide portions showed either first order release or Korsmeyer-Peppas release kinetics dependent upon the active/excipient ratio used. Copyright © 2015. Published by Elsevier B.V.

  7. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim [Geology Programme, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (1–5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.

  8. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim

    2014-09-01

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (1-5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.

  9. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim

    2014-01-01

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (1–5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform

  10. Application of 3D seismic techniques to evaluate ore resources in the West Wits Line goldfield and portions of the West Rand goldfield, South Africa

    Manzi, MSD

    2012-09-01

    Full Text Available goldfield, derived from the depth-converted PSTM seismic section. Geochronological data and geology after Dan- kert and Hein (2010). WC164 Manzi et al. Downloaded 09 Sep 2012 to 41.132.206.56. Redistribution subject to SEG license or copyright; see Terms... Kirchhoff time migration to 1994 Leeudoorn data im- proved imaging of the VCR, faults, and stratigraphy when com- pared to the older poststack finite difference depth migration technique originally applied to the same data (Figures 3a?3d) Although PSTM...

  11. A new approach to global seismic tomography based on regularization by sparsity in a novel 3D spherical wavelet basis

    Loris, Ignace; Simons, Frederik J.; Daubechies, Ingrid; Nolet, Guust; Fornasier, Massimo; Vetter, Philip; Judd, Stephen; Voronin, Sergey; Vonesch, Cédric; Charléty, Jean

    2010-05-01

    Global seismic wavespeed models are routinely parameterized in terms of spherical harmonics, networks of tetrahedral nodes, rectangular voxels, or spherical splines. Up to now, Earth model parametrizations by wavelets on the three-dimensional ball remain uncommon. Here we propose such a procedure with the following three goals in mind: (1) The multiresolution character of a wavelet basis allows for the models to be represented with an effective spatial resolution that varies as a function of position within the Earth. (2) This property can be used to great advantage in the regularization of seismic inversion schemes by seeking the most sparse solution vector, in wavelet space, through iterative minimization of a combination of the ℓ2 (to fit the data) and ℓ1 norms (to promote sparsity in wavelet space). (3) With the continuing increase in high-quality seismic data, our focus is also on numerical efficiency and the ability to use parallel computing in reconstructing the model. In this presentation we propose a new wavelet basis to take advantage of these three properties. To form the numerical grid we begin with a surface tesselation known as the 'cubed sphere', a construction popular in fluid dynamics and computational seismology, coupled with an semi-regular radial subdivison that honors the major seismic discontinuities between the core-mantle boundary and the surface. This mapping first divides the volume of the mantle into six portions. In each 'chunk' two angular and one radial variable are used for parametrization. In the new variables standard 'cartesian' algorithms can more easily be used to perform the wavelet transform (or other common transforms). Edges between chunks are handled by special boundary filters. We highlight the benefits of this construction and use it to analyze the information present in several published seismic compressional-wavespeed models of the mantle, paying special attention to the statistics of wavelet and scaling coefficients

  12. Usefulness of 3D-PRESTO imaging in evaluating putaminal abnormality in parkinsonian variant of multiple system atrophy

    Sakurai, Keita; Kawaguchi, Takatsune; Kawai, Tatsuya; Ogino, Hiroyuki; Hara, Masaki; Shibamoto, Yuta; Okita, Kenji; Yamawaki, Takemori

    2010-01-01

    Principles of echo shifting with a train of observations (PRESTO) sequence has long echo time which emphasizes the effect of T2* relaxation time and contribute to its high sensitivity to the susceptibility change. The aim of our study was to evaluate the ability of 3D-PRESTO sequence in detecting putaminal hypointensity in patients with parkinsonian variant of multiple system atrophy (MSA-P) and in discriminating between MSA-P and Parkinson's disease (PD). The signal intensity of the putamen and localization of abnormality were evaluated on 3D-PRESTO, T2*-weighted (T2*W), and T2-weighted (T2W) sequences in ten patients with MSA-P, 14 with PD, and ten controls. The putaminal signal intensity was assessed in all sequences and graded relative to the palladium. Atrophy of the putamen and posterolateral hyperintensity rim on T2W sequence were also evaluated in MSA-P patients. Putaminal hypointensity was more often seen in MSA-P than PD and controls on 3D-PRESTO sequence (p = 0.002) as well as on T2*W sequence (p = 0.003). 3D-PRESTO sequence could reveal lower intensity better than T2*W sequence in four of ten MSA-P cases. Hemi- or bilateral putaminal hypointensity, atrophy, and posterolateral hyperintensity rim were recognized in 90%, 70%, and 70% of ten MSA-P cases, respectively. Three cases revealed hypointensity on 3D-PRESTO sequence without posterolateral hyperintensity rim. Putaminal signal changes occurred in the posterolateral part with a striking lateral to medial gradient in all nine cases with putaminal hypointensity (nine out of nine, 100%). 3D-PRESTO sequence appears to be useful for depicting putaminal hypointensity in MSA-P patients and in differentiating MSA-P from PD. (orig.)

  13. The comparison of DYNA3D to approximate solutions for a partially- full waste storage tank subjected to seismic loading

    Zaslawsky, M.; Kennedy, W.N.

    1992-01-01

    Mathematical solutions to the problem consisting of a partially-full waste tank subjected to seismic loading, embedded in soil, is classically difficult in that one has to address: soil-structure interaction, fluid-structure interaction, non-linear behavior of material, dynamic effects. Separating the problem and applying numerous assumptions will yield approximate solutions. This paper explores methods for generating these solutions accurately

  14. Performance evaluation of 2D and 3D deep learning approaches for automatic segmentation of multiple organs on CT images

    Zhou, Xiangrong; Yamada, Kazuma; Kojima, Takuya; Takayama, Ryosuke; Wang, Song; Zhou, Xinxin; Hara, Takeshi; Fujita, Hiroshi

    2018-02-01

    The purpose of this study is to evaluate and compare the performance of modern deep learning techniques for automatically recognizing and segmenting multiple organ regions on 3D CT images. CT image segmentation is one of the important task in medical image analysis and is still very challenging. Deep learning approaches have demonstrated the capability of scene recognition and semantic segmentation on nature images and have been used to address segmentation problems of medical images. Although several works showed promising results of CT image segmentation by using deep learning approaches, there is no comprehensive evaluation of segmentation performance of the deep learning on segmenting multiple organs on different portions of CT scans. In this paper, we evaluated and compared the segmentation performance of two different deep learning approaches that used 2D- and 3D deep convolutional neural networks (CNN) without- and with a pre-processing step. A conventional approach that presents the state-of-the-art performance of CT image segmentation without deep learning was also used for comparison. A dataset that includes 240 CT images scanned on different portions of human bodies was used for performance evaluation. The maximum number of 17 types of organ regions in each CT scan were segmented automatically and compared to the human annotations by using ratio of intersection over union (IU) as the criterion. The experimental results demonstrated the IUs of the segmentation results had a mean value of 79% and 67% by averaging 17 types of organs that segmented by a 3D- and 2D deep CNN, respectively. All the results of the deep learning approaches showed a better accuracy and robustness than the conventional segmentation method that used probabilistic atlas and graph-cut methods. The effectiveness and the usefulness of deep learning approaches were demonstrated for solving multiple organs segmentation problem on 3D CT images.

  15. 2D and 3D imaging of the metamorphic carbonates at Omalos plateau/polje, Crete, Greece by employing independent and joint inversion on resistivity and seismic data

    Pangratis Pangratis

    2012-07-01

    Full Text Available A geophysical survey carried out at Omalos plateau in Chania, Western Crete, Greece employed seismic as well as electrical tomography methods in order to image karstic structures and the metamorphic carbonates (Tripali unit and Plattenkalk group which are covered by post-Mesozoic deposits (terra rossa, clays, sands and gravels. The geoelectrical sections image the metamorphic carbonates which exhibit a highly irregular relief. At the central part of the plateau the thickness of post-Mesozoic deposits (terra rossa, clays, sands and gravels ranges from 40-130 m. A 3D resistivity image was generated by inverting resistivity data collected on a grid to the south west at the Omalos plateau. The 3D resistivity image delineated a karstic structure at a depth of 25 to 55 m. On the same grid the depth to the top of the karstified carbonates ranges from 25-70 m. This is also verified on the resistivity sections and seismic velocity sections along lines 5 and 7 of the above mentioned grid which are derived from the cross-gradients joint inversion.

  16. Thermo-Hydro-Micro-Mechanical 3D Modeling of a Fault Gouge During Co-seismic Slip

    Papachristos, E.; Stefanou, I.; Sulem, J.; Donze, F. V.

    2017-12-01

    A coupled Thermo-Hydro-Micro-Mechanical (THMM) model based on the Discrete Elements method (DEM) is presented for studying the evolving fault gouge properties during pre- and co-seismic slip. Modeling the behavior of the fault gouge at the microscale is expected to improve our understanding on the various mechanisms that lead to slip weakening and finally control the transition from aseismic to seismic slip.The gouge is considered as a granular material of spherical particles [1]. Upon loading, the interactions between particles follow a frictional behavior and explicit dynamics. Using regular triangulation, a pore network is defined by the physical pore space between the particles. The network is saturated by a compressible fluid, and flow takes place following Stoke's equations. Particles' movement leads to pore deformation and thus to local pore pressure increase. Forces exerted from the fluid onto the particles are calculated using mid-step velocities. The fluid forces are then added to the contact forces resulting from the mechanical interactions before the next step.The same semi-implicit, two way iterative coupling is used for the heat-exchange through conduction.Simple tests have been performed to verify the model against analytical solutions and experimental results. Furthermore, the model was used to study the effect of temperature on the evolution of effective stress in the system and to highlight the role of thermal pressurization during seismic slip [2, 3].The analyses are expected to give grounds for enhancing the current state-of-the-art constitutive models regarding fault friction and shed light on the evolution of fault zone propertiesduring seismic slip.[1] Omid Dorostkar, Robert A Guyer, Paul A Johnson, Chris Marone, and Jan Carmeliet. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach. Journal of Geophysical Research: Solid Earth, 122

  17. Global and 3D Spatial Assessment of Neuroinflammation in Rodent Models of Multiple Sclerosis

    Gupta, Shashank; Utoft, Regine Egeholm; Hasseldam, Henrik

    2013-01-01

    Multiple Sclerosis (MS) is a progressive autoimmune inflammatory and demyelinating disease of the central nervous system (CNS). T cells play a key role in the progression of neuroinflammation in MS and also in the experimental autoimmune encephalomyelitis (EAE) animal models for the disease. A te...

  18. Ultrahigh capacitance density for multiple ALD-grown MIM capacitor stacks in 3-D silicon

    Klootwijk, J.H.; Jinesh, K.B.; Dekkers, W.; Verhoeven, J.F.C.; Heuvel, van den F.C.; Kim, H.-D.; Blin, D.; Verheijen, M.A.; Weemaes, R.G.R.; Kaiser, M.; Ruigrok, J.J.M.; Roozeboom, F.

    2008-01-01

    "Trench" capacitors containing multiple metal-insulator-metal (MIM) layer stacks are realized by atomic-layer deposition (ALD), yielding an ultrahigh capacitance density of 440 nF/mm2 at a breakdown voltage VBD > 6 V. This capacitance density on silicon is at least 10 times higher than the values

  19. 3D seismic modeling in geothermal reservoirs with a distribution of steam patch sizes, permeabilities and saturations, including ductility of the rock frame

    Carcione, José M.; Poletto, Flavio; Farina, Biancamaria; Bellezza, Cinzia

    2018-06-01

    Seismic propagation in the upper part of the crust, where geothermal reservoirs are located, shows generally strong velocity dispersion and attenuation due to varying permeability and saturation conditions and is affected by the brittleness and/or ductility of the rocks, including zones of partial melting. From the elastic-plastic aspect, the seismic properties (seismic velocity, quality factor and density) depend on effective pressure and temperature. We describe the related effects with a Burgers mechanical element for the shear modulus of the dry-rock frame. The Arrhenius equation combined to the octahedral stress criterion define the Burgers viscosity responsible of the brittle-ductile behaviour. The effects of permeability, partial saturation, varying porosity and mineral composition on the seismic properties is described by a generalization of the White mesoscopic-loss model to the case of a distribution of heterogeneities of those properties. White model involves the wave-induced fluid flow attenuation mechanism, by which seismic waves propagating through small-scale heterogeneities, induce pressure gradients between regions of dissimilar properties, where part of the energy of the fast P-wave is converted to slow P (Biot)-wave. We consider a range of variations of the radius and size of the patches and thin layers whose probability density function is defined by different distributions. The White models used here are that of spherical patches (for partial saturation) and thin layers (for permeability heterogeneities). The complex bulk modulus of the composite medium is obtained with the Voigt-Reuss-Hill average. Effective pressure effects are taken into account by using exponential functions. We then solve the 3D equation of motion in the space-time domain, by approximating the White complex bulk modulus with that of a set of Zener elements connected in series. The Burgers and generalized Zener models allows us to solve the equations with a direct grid

  20. 3D Seismic Imaging through Reverse-Time Migration on Homogeneous and Heterogeneous Multi-Core Processors

    Mauricio Araya-Polo

    2009-01-01

    Full Text Available Reverse-Time Migration (RTM is a state-of-the-art technique in seismic acoustic imaging, because of the quality and integrity of the images it provides. Oil and gas companies trust RTM with crucial decisions on multi-million-dollar drilling investments. But RTM requires vastly more computational power than its predecessor techniques, and this has somewhat hindered its practical success. On the other hand, despite multi-core architectures promise to deliver unprecedented computational power, little attention has been devoted to mapping efficiently RTM to multi-cores. In this paper, we present a mapping of the RTM computational kernel to the IBM Cell/B.E. processor that reaches close-to-optimal performance. The kernel proves to be memory-bound and it achieves a 98% utilization of the peak memory bandwidth. Our Cell/B.E. implementation outperforms a traditional processor (PowerPC 970MP in terms of performance (with an 15.0× speedup and energy-efficiency (with a 10.0× increase in the GFlops/W delivered. Also, it is the fastest RTM implementation available to the best of our knowledge. These results increase the practical usability of RTM. Also, the RTM-Cell/B.E. combination proves to be a strong competitor in the seismic arena.

  1. Analytical study of performance evaluation for seismic retrofitting of reinforced concrete building using 3D dynamic nonlinear finite element analysis

    Sato, Yuichi; Kajihara, Shinichi; Kaneko, Yoshio

    2011-06-01

    This paper presents three-dimensional finite element (FE) analyses of an all-frame model of a three-story reinforced concrete (RC) building damaged in the 1999 Taiwan Chi-Chi Earthquake. Non-structural brick walls of the building acted as a seismic resistant element although their contributions were neglected in the design. Hence, the entire structure of a typical frame was modeled and static and dynamic nonlinear analyses were conducted to evaluate the contributions of the brick walls. However, the results of the analyses were considerably overestimated due to coarse mesh discretizations, which were unavoidable due to limited computer resources. This study corrects the overestimations by modifying (1) the tensile strengths and (2) shear stiffness reduction factors of concrete and brick. The results indicate that brick walls improve frame strength although shear failures are caused in columns shortened by spandrel walls. Then, the effectiveness of three types of seismic retrofits is evaluated. The maximum drift of the first floor is reduced by 89.3%, 94.8%, and 27.5% by Steel-confined, Full-RC, and Full-brick models, respectively. Finally, feasibility analyses of models with soils were conducted. The analyses indicated that the soils elongate the natural period of building models although no significant differences were observed.

  2. 3D Reservoir Modeling of Semutang Gas Field: A lonely Gas field in Chittagong-Tripura Fold Belt, with Integrated Well Log, 2D Seismic Reflectivity and Attributes.

    Salehin, Z.; Woobaidullah, A. S. M.; Snigdha, S. S.

    2015-12-01

    Bengal Basin with its prolific gas rich province provides needed energy to Bangladesh. Present energy situation demands more Hydrocarbon explorations. Only 'Semutang' is discovered in the high amplitude structures, where rest of are in the gentle to moderate structures of western part of Chittagong-Tripura Fold Belt. But it has some major thrust faults which have strongly breached the reservoir zone. The major objectives of this research are interpretation of gas horizons and faults, then to perform velocity model, structural and property modeling to obtain reservoir properties. It is needed to properly identify the faults and reservoir heterogeneities. 3D modeling is widely used to reveal the subsurface structure in faulted zone where planning and development drilling is major challenge. Thirteen 2D seismic and six well logs have been used to identify six gas bearing horizons and a network of faults and to map the structure at reservoir level. Variance attributes were used to identify faults. Velocity model is performed for domain conversion. Synthetics were prepared from two wells where sonic and density logs are available. Well to seismic tie at reservoir zone shows good match with Direct Hydrocarbon Indicator on seismic section. Vsh, porosity, water saturation and permeability have been calculated and various cross plots among porosity logs have been shown. Structural modeling is used to make zone and layering accordance with minimum sand thickness. Fault model shows the possible fault network, those liable for several dry wells. Facies model have been constrained with Sequential Indicator Simulation method to show the facies distribution along the depth surfaces. Petrophysical models have been prepared with Sequential Gaussian Simulation to estimate petrophysical parameters away from the existing wells to other parts of the field and to observe heterogeneities in reservoir. Average porosity map for each gas zone were constructed. The outcomes of the research

  3. 3D seismic investigation of the structural and stratigraphic characteristics of the Pagasa Wedge, Southwest Palawan Basin, Philippines, and their tectonic implications

    Ilao, Kimberly A.; Morley, Christopher K.; Aurelio, Mario A.

    2018-04-01

    The Pagasa Wedge is a poorly imaged deepwater orogenic wedge that has been variously interpreted as representing an accretionary prism, a former accretionary prism modified by thrusting onto a thinned continental margin, and a gravity-driven fold-thrust belt. This study, using 2D and 3D seismic data, together with well information indicates that at least the external part of the wedge is dominantly composed of mass transport complexes, capped by syn-kinematic sediments that have thrusts and normal faults superimposed upon them. Drilling shows that despite stratigraphic repetition of Eocene Middle Miocene units, there is stratigraphic omission of Oligocene and Early Miocene units. This absence suggests that mass transport processes have introduced the Eocene section into the wedge rather than tectonic thrusting. The accretionary prism stage (Oligocene) of the Central Palawan Ophiolite history appears to be marked by predominantly north-vergent deformation. The Deep Regional Unconformity (∼17 Ma) likely indicates the approximate time when obduction ceased in Palawan. The Pagasa Wedge is a late-stage product of the convergence history that was active in its final phase sometime above the top of the Nido Limestone (∼16 Ma) and the base of the Tabon Limestone in the Aboabo-A1X well (∼9 Ma). The top of the wedge is traditionally associated with the Middle Miocene Unconformity (MMU), However the presence of multiple unconformities, diachronous formation tops, local tectonic unconformities and regional diachronous events (e.g. migrating forebulges) all suggest simply giving a single age (or assigning a single unconformity, such as the MMU as defining the top of the Pagasa Wedge is inappropriate. The overall NE-SW trend of the wedge, and the dominant NW transport of structures within the wedge diverge from the more northerly transport direction determined from outcrops in Palawan, and also from the Nido Limestone in the SW part of the Pagasa Wedge. Possibly this NW

  4. 3D velocity measurements in fluid flows using multiple exposure holography

    Stanislas, M.; Rodriguez, O.; Dadi, M.; Beluche, F.

    1987-01-01

    An account is given of multiple exposure holography's application to the measurement of velocity in fluid flows. The method is nonintrusive, and yields access to the three components of the instantaneous velocity in three-dimensional domains. These characteristics render such holographic data complementary to classical LDV. Attention is given to solutions proposed for such limitations inherent in the method as the rather lengthy acquisition time; this difficulty is presently addressed by means of an automated evaluation methodology. 12 references

  5. 3-D crustal P-wave velocity tomography of the Italian region using local and regional seismicity data

    F. M. Mele

    1995-06-01

    Full Text Available A tomographic experiment was performed in the Italian region using local and regional arrivaI times of p and S seismological phases selected from the Italian National Bulletin in the time interval 1984-1991. We deter- mined a 3-D crustal P-wave velocity model using a simultaneous inversion method that iteratively re1ocates the hypocenters and computes the unknown model parameters. A fast two-point ray tracing algorithm was adopted to compute the ray paths and travel times of P", S", P g' Sg phases with good accuracy. Synthetic tests were performed using the "true" hypocenter and station distribution to rough1y evaluate the extension of the areas most densely spanned by the ray paths; the agreement between synthetic and computed models is more satisfactory at Moho depths than in the upper crust. The qua1ity of the model resulting from inversion of real data is examined by the ca1culation of the Spread Function (Toomey and Foulger, 1989. The 3-D crustal P-wave velocity mode1 of the Italian region shows remarkab1e trends at Moho depths: the areas east of the Apennines call for positive adjustments of the initial velocity va1ue, while the west region shows negative ad- justments. The correspondence among the main features of the velocity field, the map of Moho isobaths and the map of the gravity anoma1ies is also outlined.

  6. Investigation of data acquisition parameters for Minami Noshiro 3D experiment using 3D seismic modeling; Sanjigen hado denpa modeling wo riyoshita Minami Noshiro sanjigen jishin tansa data shutoku parameter no kento

    Tanaka, H; Nakagami, K; Minegishi, M [Japan National Oil Corp., Tokyo (Japan). Technology Research Center; Kano, R [Teikoku Oil Co. Ltd., Tokyo (Japan)

    1996-10-01

    This paper describes how to grasp the characteristics of reflected waves which means how the reflected wave can be received in its magnitude depending on the complicated subsurface structure. Data acquisition parameters were also investigated, as to offset distance distribution and mute setting during the HMO correction. A velocity structure model was prepared for an area of 9km{times}8km including the given 3D seismic exploration area at Minami Noshiro, Akita Prefecture. For the geological sequence used for the velocity structure model, three formations, i.e., Katsurane Formation, Funakawa Formation, and Onagawa Formation, were inputted in an order from the shallower depth on the basis of the depth structure profile obtained from the previous data. Ray tracing was calculated by means of the two-dot dashed line tracing method. For this method, amplitude as well as travel time of waves can be calculated at the same time. This was effective for grasping the magnitude of reflected wave on simulating the traced data. For the velocity structure model used in this study, existing data inputted were old, which limited the quantity of information. However, this model would sufficiently contribute to the verification of survey design and the determination of optimal layout. 1 ref., 3 figs.

  7. MetaTracker: integration and abstraction of 3D motion tracking data from multiple hardware systems

    Kopecky, Ken; Winer, Eliot

    2014-06-01

    Motion tracking has long been one of the primary challenges in mixed reality (MR), augmented reality (AR), and virtual reality (VR). Military and defense training can provide particularly difficult challenges for motion tracking, such as in the case of Military Operations in Urban Terrain (MOUT) and other dismounted, close quarters simulations. These simulations can take place across multiple rooms, with many fast-moving objects that need to be tracked with a high degree of accuracy and low latency. Many tracking technologies exist, such as optical, inertial, ultrasonic, and magnetic. Some tracking systems even combine these technologies to complement each other. However, there are no systems that provide a high-resolution, flexible, wide-area solution that is resistant to occlusion. While frameworks exist that simplify the use of tracking systems and other input devices, none allow data from multiple tracking systems to be combined, as if from a single system. In this paper, we introduce a method for compensating for the weaknesses of individual tracking systems by combining data from multiple sources and presenting it as a single tracking system. Individual tracked objects are identified by name, and their data is provided to simulation applications through a server program. This allows tracked objects to transition seamlessly from the area of one tracking system to another. Furthermore, it abstracts away the individual drivers, APIs, and data formats for each system, providing a simplified API that can be used to receive data from any of the available tracking systems. Finally, when single-piece tracking systems are used, those systems can themselves be tracked, allowing for real-time adjustment of the trackable area. This allows simulation operators to leverage limited resources in more effective ways, improving the quality of training.

  8. Fluid activity within the North Anatolian Fault Zone according to 3D marine seismic data on the Sea of Marmara Western High

    Grall, C.; Henry, P.; Thomas, Y.; Marsset, B.; Westbrook, G.; Saritas, H.; Géli, L.; Ruffine, L.; Dupré, S.; Scalabrin, C.; Augustin, J. M.; Cifçi, G.; Zitter, T.

    2012-04-01

    Along the northern branch of the North Anatolian Fault Zone (NAFZ) within the Sea of Marmara, numerous gas seeps occur. A large part of the gas origin is biogenic but on the Western High, gas bubbles and gas hydrate with a thermogenic signature have been sampled. The expulsion of deep fluids opened new perspective about the permeability, the mechanical properties and the monitoring of the NAFZ. Consequently, the Western High was selected for the deployment of a 3D seismic acquisition layout during the MARMESONET cruise (2009). Thirty-three km2 of high resolution seismic data (with a frequency content of 50-180 Hz) have been collected within the shear band of the fault. The SIMRAD EM-302 was also operated to detect acoustic anomalies related to the presence of gas bubbles in the water column. Within the upper sedimentary cover (seismic penetration ranges from 100 to 500 m bsf), high seismic amplitude variations of the reflectors allow to identify gas traps and gas pathways. Local high amplitude of negative polarity, such as flat spots and bright spots, are observed. Amplitude anomalies are located above and within anticlines and along normal faults. They often correlate with seafloor manifestations of fluid outflow and gas plumes in the water column. This suggests that gas migrates from depth towards the seafloor along normal faults and permeable strata, and part of it is trapped in anticlines. North of the NAF, seabed mounds, corresponding to active hydrocarbon gas seeps, are aligned along a NE-SW direction. They are linked in depth to buried mud volcanoes with an episodic activity. The last mud eruption activity apparently just before or during the Red-H1 horizon deposition which is a prominent reflector of high amplitude and negative polarity occurring all over the Sea of Marmara. It has been interpreted as a stratigraphic horizon, corresponding to slow sedimentation and high sea-level interglacial period.

  9. OpenSWPC: an open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media

    Maeda, Takuto; Takemura, Shunsuke; Furumura, Takashi

    2017-07-01

    We have developed an open-source software package, Open-source Seismic Wave Propagation Code (OpenSWPC), for parallel numerical simulations of seismic wave propagation in 3D and 2D (P-SV and SH) viscoelastic media based on the finite difference method in local-to-regional scales. This code is equipped with a frequency-independent attenuation model based on the generalized Zener body and an efficient perfectly matched layer for absorbing boundary condition. A hybrid-style programming using OpenMP and the Message Passing Interface (MPI) is adopted for efficient parallel computation. OpenSWPC has wide applicability for seismological studies and great portability to allowing excellent performance from PC clusters to supercomputers. Without modifying the code, users can conduct seismic wave propagation simulations using their own velocity structure models and the necessary source representations by specifying them in an input parameter file. The code has various modes for different types of velocity structure model input and different source representations such as single force, moment tensor and plane-wave incidence, which can easily be selected via the input parameters. Widely used binary data formats, the Network Common Data Form (NetCDF) and the Seismic Analysis Code (SAC) are adopted for the input of the heterogeneous structure model and the outputs of the simulation results, so users can easily handle the input/output datasets. All codes are written in Fortran 2003 and are available with detailed documents in a public repository.[Figure not available: see fulltext.

  10. Multiple reflections and Fresnel absorption in an actual 3D keyhole during deep penetration laser welding

    Jin Xiangzhong [Laser Institute of Hunan University, Changsha, Hunan, 410082 (China); Berger, Peter [Institut fuer Strahlwerkzeuge (IFSW), University of Stuttgart, Pfaffenwaldring 43, 70569 Stuttgart (Germany); Graf, Thomas [Institut fuer Strahlwerkzeuge (IFSW), University of Stuttgart, Pfaffenwaldring 43, 70569 Stuttgart (Germany)

    2006-11-07

    In laser welding experiments of glass, keyhole shapes are observed by two high-speed cameras from two perpendicular directions. From the obtained keyhole pictures, it can be seen that in medium- and low-speed laser penetration welding, the main distortion of the keyhole is not the section metamorphosis from rotational symmetry, but the bending of its centre line. Based on such a keyhole photograph, the keyhole profiles and its centre line are determined by the method of polynomial fitting. Then, under the assumption of a circular cross section at each depth of the keyhole, the behaviour of the laser beam in the keyhole is analysed by tracing a ray of light using geometrical optics theory; the Fresnel absorption and multiple reflections in the keyhole are systematically studied, and the laser intensities absorbed on the keyhole walls are calculated. The absorbed laser intensity is not distributed uniformly on the keyhole wall. The keyhole wall absorbs laser intensity mainly on the half-part of the keyhole wall near the front wall. Because of the high absorptivity of the glass, Fresnel absorption from the first incidence of a laser beam plays a dominant role in the final laser intensity distribution on the keyhole wall, multiple reflections have some minor effects on the intensity distribution on the bottom part of the keyhole.

  11. Comparison of 3D cube FLAIR with 2D FLAIR for multiple sclerosis imaging at 3 tesla

    Patzig, M.; Brueckmann, H.; Fesl, G. [Muenchen Univ. (Germany). Dept. of Neuroradiology; Burke, M. [GE Healthcare, Solingen (Germany)

    2014-05-15

    Purpose: Three-dimensional (3 D) MRI sequences allow improved spatial resolution with good signal and contrast properties as well as multiplanar reconstruction. We sought to compare Cube, a 3 D FLAIR sequence, to a standard 2 D FLAIR sequence in multiple sclerosis (MS) imaging. Materials and Methods: Examinations were performed in the clinical routine on a 3.0 Tesla scanner. 12 patients with definite MS were included. Lesions with MS-typical properties on the images of Cube FLAIR and 2 D FLAIR sequences were counted and allocated to different brain regions. Signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) were calculated. Results: With 384 the overall number of lesions found with Cube FLAIR was significantly higher than with 2 D FLAIR (N = 221). The difference was mostly accounted for by supratentorial lesions (N = 372 vs. N = 216) while the infratentorial lesion counts were low in both sequences. SNRs and CNRs were significantly higher in CUBE FLAIR with the exception of the CNR of lesion to gray matter, which was not significantly different. Conclusion: Cube FLAIR showed a higher sensitivity for MS lesions compared to a 2 D FLAIR sequence. 3 D FLAIR might replace 2 D FLAIR sequences in MS imaging in the future. (orig.)

  12. Improving multiple sclerosis management and collecting safety information in the real world: the MSDS3D software approach.

    Haase, Rocco; Wunderlich, Maria; Dillenseger, Anja; Kern, Raimar; Akgün, Katja; Ziemssen, Tjalf

    2018-04-01

    For safety evaluation, randomized controlled trials (RCTs) are not fully able to identify rare adverse events. The richest source of safety data lies in the post-marketing phase. Real-world evidence (RWE) and observational studies are becoming increasingly popular because they reflect usefulness of drugs in real life and have the ability to discover uncommon or rare adverse drug reactions. Areas covered: Adding the documentation of psychological symptoms and other medical disciplines, the necessity for a complex documentation becomes apparent. The collection of high-quality data sets in clinical practice requires the use of special documentation software as the quality of data in RWE studies can be an issue in contrast to the data obtained from RCTs. The MSDS3D software combines documentation of patient data with patient management of patients with multiple sclerosis. Following a continuous development over several treatment-specific modules, we improved and expanded the realization of safety management in MSDS3D with regard to the characteristics of different treatments and populations. Expert opinion: eHealth-enhanced post-authorisation safety study may complete the fundamental quest of RWE for individually improved treatment decisions and balanced therapeutic risk assessment. MSDS3D is carefully designed to contribute to every single objective in this process.

  13. Magmatic Systems in 3-D

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  14. Using 3D Reflection Seismics for Deep Platinum Mine Planning and Risk Mitigation: A Case Study from the Bushveld Complex, South Africa

    Scheiber-Enslin, S. E.; Manzi, M. S.; Webb, S. J.

    2017-12-01

    Loss-of-ground in mining is a common problem. Using the integration of high resolution aeromagnetic and 3D reflection seismic data to delineate the causative geological features allows for more efficient mine planning and risk reduction. High resolution data from Impala Platinum mine in the western Bushveld Complex are used to image potholes, iron-rich ultramafic pegmatoids (IRUPs), faults, dykes and diapirs that may impact the economic horizons (UG2). Imaging of these structures was previously limited to outcrop, both on surface and underground, as well as 2D seismic data. These high resolution seismic data are able to resolve faults with throws as small as 10 m. A diapir is imaged in the southwest of the study area with a diameter of approximately 6 km. The diapir has a depth extend of around 4 km below the UG2 horizon and displaces the horizon by 350 m. It has been suggested that topographic highs in the Transvaal Supergroup basement initiate the formation of these diapirs as new magma is injected into the chamber. The origin of the diapir within the layered basement rocks, and disruption of layering within the complex is visible on the seismic section. In the north of the study area a large region of slumping or several merged potholes is identified that is up to 2.5 km in length, with up to 700 m of vertical displacement. Ductile deformation that formed the potholes is imaged on the seismic section, with the UG2 cutting down into the footwall. However, brittle deformation of the UG2 is also imaged with faulting at the edges of the regions of slumping. The edges of these slump regions are also characterised by the emplacement of iron-rich ultramafic pegmatoids (IRUPs), which show up as regions of diffuse reflectivity on the seismic data and magnetic highs. The proximity of these faults and IRUPs to the edges of the slump structure brings in to question whether they contribute to pothole formation. The diapir and slump structure displaces the economic UG2

  15. The methods for detecting multiple small nodules from 3D chest X-ray CT images

    Hayase, Yosuke; Mekada, Yoshito; Mori, Kensaku; Toriwaki, Jun-ichiro; Natori, Hiroshi

    2004-01-01

    This paper describes a method for detecting small nodules, whose CT values and diameters are more than -600 Hounsfield unit (H.U.) and 2 mm, from three-dimensional chest X-ray CT images. The proposed method roughly consists of two submodules: initial detection of nodule candidates by discriminating between nodule regions and other regions such as blood vessels or bronchi using a shape feature computed from distance values inside the regions and reduction of false positive (FP) regions by using a minimum directional difference filter called minimum directional difference filter (Min-DD) changing its radius suit to the size of the initial candidates. The performance of the proposed method was evaluated by using seven cases of chest X-ray CT images including six abnormal cases where multiple lung cancers are observed. The experimental results for nodules (361 regions in total) showed that sensitivity and FP regions are 71% and 7.4 regions in average per case. (author)

  16. Earthquakes in Action: Incorporating Multimedia, Internet Resources, Large-scale Seismic Data, and 3-D Visualizations into Innovative Activities and Research Projects for Today's High School Students

    Smith-Konter, B.; Jacobs, A.; Lawrence, K.; Kilb, D.

    2006-12-01

    The most effective means of communicating science to today's "high-tech" students is through the use of visually attractive and animated lessons, hands-on activities, and interactive Internet-based exercises. To address these needs, we have developed Earthquakes in Action, a summer high school enrichment course offered through the California State Summer School for Mathematics and Science (COSMOS) Program at the University of California, San Diego. The summer course consists of classroom lectures, lab experiments, and a final research project designed to foster geophysical innovations, technological inquiries, and effective scientific communication (http://topex.ucsd.edu/cosmos/earthquakes). Course content includes lessons on plate tectonics, seismic wave behavior, seismometer construction, fault characteristics, California seismicity, global seismic hazards, earthquake stress triggering, tsunami generation, and geodetic measurements of the Earth's crust. Students are introduced to these topics through lectures-made-fun using a range of multimedia, including computer animations, videos, and interactive 3-D visualizations. These lessons are further enforced through both hands-on lab experiments and computer-based exercises. Lab experiments included building hand-held seismometers, simulating the frictional behavior of faults using bricks and sandpaper, simulating tsunami generation in a mini-wave pool, and using the Internet to collect global earthquake data on a daily basis and map earthquake locations using a large classroom map. Students also use Internet resources like Google Earth and UNAVCO/EarthScope's Jules Verne Voyager Jr. interactive mapping tool to study Earth Science on a global scale. All computer-based exercises and experiments developed for Earthquakes in Action have been distributed to teachers participating in the 2006 Earthquake Education Workshop, hosted by the Visualization Center at Scripps Institution of Oceanography (http

  17. Material wealth in 3D: Mapping multiple paths to prosperity in low- and middle- income countries.

    Hruschka, Daniel J; Hadley, Craig; Hackman, Joseph

    2017-01-01

    Material wealth is a key factor shaping human development and well-being. Every year, hundreds of studies in social science and policy fields assess material wealth in low- and middle-income countries assuming that there is a single dimension by which households can move from poverty to prosperity. However, a one-dimensional model may miss important kinds of prosperity, particularly in countries where traditional subsistence-based livelihoods coexist with modern cash economies. Using multiple correspondence analysis to analyze representative household data from six countries-Nepal, Bangladesh, Ethiopia, Kenya, Tanzania and Guatemala-across three world regions, we identify a number of independent dimension of wealth, each with a clear link to locally relevant pathways to success in cash and agricultural economies. In all cases, the first dimension identified by this approach replicates standard one-dimensional estimates and captures success in cash economies. The novel dimensions we identify reflect success in different agricultural sectors and are independently associated with key benchmarks of food security and human growth, such as adult body mass index and child height. The multidimensional models of wealth we describe here provide new opportunities for examining the causes and consequences of wealth inequality that go beyond success in cash economies, for tracing the emergence of hybrid pathways to prosperity, and for assessing how these different pathways to economic success carry different health risks and social opportunities.

  18. Material wealth in 3D: Mapping multiple paths to prosperity in low- and middle- income countries.

    Daniel J Hruschka

    Full Text Available Material wealth is a key factor shaping human development and well-being. Every year, hundreds of studies in social science and policy fields assess material wealth in low- and middle-income countries assuming that there is a single dimension by which households can move from poverty to prosperity. However, a one-dimensional model may miss important kinds of prosperity, particularly in countries where traditional subsistence-based livelihoods coexist with modern cash economies. Using multiple correspondence analysis to analyze representative household data from six countries-Nepal, Bangladesh, Ethiopia, Kenya, Tanzania and Guatemala-across three world regions, we identify a number of independent dimension of wealth, each with a clear link to locally relevant pathways to success in cash and agricultural economies. In all cases, the first dimension identified by this approach replicates standard one-dimensional estimates and captures success in cash economies. The novel dimensions we identify reflect success in different agricultural sectors and are independently associated with key benchmarks of food security and human growth, such as adult body mass index and child height. The multidimensional models of wealth we describe here provide new opportunities for examining the causes and consequences of wealth inequality that go beyond success in cash economies, for tracing the emergence of hybrid pathways to prosperity, and for assessing how these different pathways to economic success carry different health risks and social opportunities.

  19. 3D seismic isolation for advanced N.P.P application. Hydraulic 3-Dimensional base-isolation system

    Shimada, Takahiro; Kashiwazaki, Akihiro; Fujiwaka, Tatsuya; Moro, Satoshi

    2003-01-01

    In Japan, a number of three-dimensional base isolation systems have been studied for application to new nuclear plant concepts such as the FBR, but these effects have not so far yielded practically applicable results. The impeding factor has been the difficulty of obtaining an adequate capacity on the vertical isolator for supporting the mass of an actual structure and for suppressing rocking motion. In this paper, we propose a new three-dimensional base isolation system that should solve the foregoing problem. The system is constituted of a set of hydraulic load-carrying cylinders connected to accumulator units containing a compressed gas, another set of rocking-suppression cylinders connected in series, and a laminated rubber bearing laid under each load-carrying cylinder. The present paper covers a basic examination for applying the proposed system to a commercialized FBR now under development in Japan, together with static and dynamic loading tests performed on a scale model to verify expected system performance. Response and analysis reflecting the test results has indicated the proposed system to be well applicable to the envisaged commercialized FBR. The study was undertaken as part of an R and D project sponsored by the government for realizing a three-dimensional seismic isolation system applicable to future FRB's. (author)

  20. Ultrasound scatter in heterogeneous 3D microstructures: Parameters affecting multiple scattering

    Engle, B. J.; Roberts, R. A.; Grandin, R. J.

    2018-04-01

    This paper reports on a computational study of ultrasound propagation in heterogeneous metal microstructures. Random spatial fluctuations in elastic properties over a range of length scales relative to ultrasound wavelength can give rise to scatter-induced attenuation, backscatter noise, and phase front aberration. It is of interest to quantify the dependence of these phenomena on the microstructure parameters, for the purpose of quantifying deleterious consequences on flaw detectability, and for the purpose of material characterization. Valuable tools for estimation of microstructure parameters (e.g. grain size) through analysis of ultrasound backscatter have been developed based on approximate weak-scattering models. While useful, it is understood that these tools display inherent inaccuracy when multiple scattering phenomena significantly contribute to the measurement. It is the goal of this work to supplement weak scattering model predictions with corrections derived through application of an exact computational scattering model to explicitly prescribed microstructures. The scattering problem is formulated as a volume integral equation (VIE) displaying a convolutional Green-function-derived kernel. The VIE is solved iteratively employing FFT-based con-volution. Realizations of random microstructures are specified on the micron scale using statistical property descriptions (e.g. grain size and orientation distributions), which are then spatially filtered to provide rigorously equivalent scattering media on a length scale relevant to ultrasound propagation. Scattering responses from ensembles of media representations are averaged to obtain mean and variance of quantities such as attenuation and backscatter noise levels, as a function of microstructure descriptors. The computational approach will be summarized, and examples of application will be presented.

  1. Pseudo-random data acquisition geometry in 3D seismic survey; Sanjigen jishin tansa ni okeru giji random data shutoku reiauto ni tsuite

    Minegishi, M; Tsuburaya, Y [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1996-10-01

    Influence of pseudo-random geometry on the imaging for 3D seismic exploration data acquisition has been investigate using a simple model by comparing with the regular geometry. When constituting wave front by the interference of elemental waves, pseudo-random geometry data did not always provide good results. In the case of a point diffractor, the imaging operation, where the constituted wave front was returned to the point diffractor by the interference of elemental waves for the spatial alias records, did not always give clear images. In the case of multi point diffractor, good images were obtained with less noise generation in spite of alias records. There are a lot of diffractors in the actual geological structures, which corresponds to the case of multi point diffractors. Finally, better images could be obtained by inputting records acquired using the pseudo-random geometry rather than by inputting spatial alias records acquired using the regular geometry. 7 refs., 6 figs.

  2. Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma

    Wheeler,David M.; Miller, William A.; Wilson, Travis C.

    2002-03-11

    The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order to improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.

  3. 2D and 3D high resolution seismic imaging of shallow Solfatara crater in Campi Flegrei (Italy): new insights on deep hydrothermal fluid circulation processes

    De Landro, Grazia; Gammaldi, Sergio; Serlenga, Vincenzo; Amoroso, Ortensia; Russo, Guido; Festa, Gaetano; D'Auria, Luca; Bruno, Pier Paolo; Gresse, Marceau; Vandemeulebrouck, Jean; Zollo, Aldo

    2017-04-01

    Seismic tomography can be used to image the spatial variation of rock properties within complex geological media such as volcanoes. Solfatara is a volcano located within the Campi Flegrei still active caldera, characterized by periodic episodes of extended, low-rate ground subsidence and uplift called bradyseism accompanied by intense seismic and geochemical activities. In particular, Solfatara is characterized by an impressive magnitude diffuse degassing, which underlines the relevance of fluid and heat transport at the crater and prompted further research to improve the understanding of the hydrothermal system feeding the surface phenomenon. In this line, an active seismic experiment, Repeated Induced Earthquake and Noise (RICEN) (EU Project MEDSUV), was carried out between September 2013 and November 2014 to provide time-varying high-resolution images of the structure of Solfatara. In this study we used the datasets provided by two different acquisition geometries: a) A 2D array cover an area of 90 x 115 m ^ 2 sampled by a regular grid of 240 vertical sensors deployed at the crater surface; b) two 1D orthogonal seismic arrays deployed along NE-SW and NW-SE directions crossing the 400 m crater surface. The arrays are sampled with a regular line of 240 receiver and 116 shots. We present 2D and 3D tomographic high-resolution P-wave velocity images obtained using two different tomographic methods adopting a multiscale strategy. The 3D image of the shallow (30-35 m) central part of Solfatara crater is performed through the iterative, linearized, tomographic inversion of the P-wave first arrival times. 2D P-wave velocity sections (60-70 m) are obtained using a non-linear travel-time tomography method based on the evaluation of a posteriori probability density with a Bayesian approach. The 3D retrieved images integrated with resistivity section and temperature and CO2 flux measurements , define the following characteristics: 1. A depth dependent P-wave velocity layer

  4. Post-collapse evolution of a coastal caldera system: Insights from a 3D multichannel seismic survey from the Campi Flegrei caldera (Italy)

    Steinmann, Lena; Spiess, Volkhard; Sacchi, Marco

    2018-01-01

    In this study we present the first 3D high-resolution multichannel seismic dataset from a (partly) submerged caldera setting, the Campi Flegrei caldera (CFc). Our work aims at examining the spatial and temporal evolution of the CFc since the last caldera-forming event, the Neapolitan Yellow Tuff (NYT, 15 ka) eruption. The main objectives are to investigate the caldera's shallow ( 200 m) outer caldera ring-fault zone. The seismic data revealed that the NYT collapse occurred exclusively along the inner caldera ring-fault and that the related NYT caldera depression is filled with on average 61 m of sediment deposited between 15 and 8.6 ka. The geometry of the inner ring-fault, consisting of four fault segments, seems to be strongly influenced by regional NW-SE and NE SW-trending faults. Furthermore, we found that the ring-faults have acted as pathway for the recent (Bank (10.3-9.5 ka), Nisida Island ( 3.98 ka), and Capo Miseno (3.7 ka) eruptions, yielding DRE values of 0.15 km3, 0.1 km3, and 0.08 km3, respectively, and an explosive magnitude of at least moderate-large scale (VEI 3). Our findings highlight that eruption volumes may be underestimated by 3 to 4 times if the submerged portion of a (partly) submerged caldera is not considered, implying severe consequences for the hazard and risk evaluation. The spatial response of the post-collapse (< 15 ka) depositional environment to volcanic activity, deformational processes and sea-level variations is presented in a comprehensive 3D evolutionary model.

  5. Seismic analysis of piping systems subjected to multiple support excitations

    Sundararajan, C.; Vaish, A.K.; Slagis, G.C.

    1981-01-01

    The paper presents the results of a comparative study between the multiple response spectrum method and the time-history method for the seismic analysis of nuclear piping systems subjected to different excitation at different supports or support groups. First, the necessary equations for the above analysis procedures are derived. Then, three actual nuclear piping systems subjected to single and multiple excitations are analyzed by the different methods, and extensive comparisons of the results (stresses) are made. Based on the results, it is concluded that the multiple response spectrum analysis gives acceptable results as compared to the ''exact'', but much more costly, time-history analysis. 6 refs

  6. SAHA-induced TRAIL-sensitisation of Multiple Myeloma cells is enhanced in 3D cell culture.

    Arhoma, A; Chantry, A D; Haywood-Small, S L; Cross, N A

    2017-11-15

    Multiple Myeloma (MM) is currently incurable despite many novel therapies. Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) is a potential anti-tumour agent although effects as a single agent are limited. In this study, we investigated whether the Histone Deacetylase (HDAC) inhibitor SAHA can enhance TRAIL-induced apoptosis and target TRAIL resistance in both suspension culture, and 3D cell culture as a model of disseminated MM lesions that form in bone. The effects of SAHA and/or TRAIL in 6 Multiple Myeloma cell lines were assessed in both suspension cultures and in an Alginate-based 3D cell culture model. The effect of SAHA and/or TRAIL was assessed on apoptosis by assessment of nuclear morphology using Hoechst 33342/Propidium Iodide staining. Viable cell number was assessed by CellTiter-Glo luminescence assay, Caspase-8 and -9 activities were measured by Caspase-Glo™ assay kit. TRAIL-resistant cells were generated by culture of RPMI 8226 and NCI-H929 by acute exposure to TRAIL followed by selection of TRAIL-resistant cells. TRAIL significantly induced apoptosis in a dose-dependent manner in OPM-2, RPMI 8226, NCI-H929, U266, JJN-3 MM cell lines and ADC-1 plasma cell leukaemia cells. SAHA amplified TRAIL responses in all lines except OPM-2, and enhanced TRAIL responses were both via Caspase-8 and -9. SAHA treatment induced growth inhibition that further increased in the combination treatment with TRAIL in MM cells. The co-treatment of TRAIL and SAHA reduced viable cell numbers all cell lines. TRAIL responses were further potentiated by SAHA in 3D cell culture in NCI-H929, RPMI 8226 and U266 at lower TRAIL + SAHA doses than in suspension culture. However TRAIL responses in cells that had been selected for TRAIL resistance were not further enhanced by SAHA treatment. SAHA is a potent sensitizer of TRAIL responses in both TRAIL sensitive and resistant cell lines, in both suspension and 3D culture, however SAHA did not sensitise TRAIL-sensitive cell

  7. Stress state reconstruction and tectonic evolution of the northern slope of the Baikit anteclise, Siberian Craton, based on 3D seismic data

    Moskalenko, A. N.; Khudoley, A. K.; Khusnitdinov, R. R.

    2017-05-01

    In this work, we consider application of an original method for determining the indicators of the tectonic stress fields in the northern Baikit anteclise based on 3D seismic data for further reconstruction of the stress state parameters when analyzing structural maps of seismic horizons and corresponded faults. The stress state parameters are determined by the orientations of the main stress axes and shape of the stress ellipsoid. To calculate the stress state parameters from data on the spatial orientations of faults and slip vectors, we used the algorithms from quasiprimary stress computation methods and cataclastic analysis, implemented in the software products FaultKinWin and StressGeol, respectively. The results of this work show that kinematic characteristics of faults regularly change toward the top of succession and that the stress state parameters are characterized by different values of the Lode-Nadai coefficient. Faults are presented as strike-slip faults with normal or reverse component of displacement. Three stages of formation of the faults are revealed: (1) partial inversion of ancient normal faults, (2) the most intense stage with the predominance of thrust and strike-slip faults at north-northeast orientation of an axis of the main compression, and (3) strike-slip faults at the west-northwest orientation of an axis of the main compression. The second and third stages are pre-Vendian in age and correlate to tectonic events that took place during the evolution of the active southwestern margin of the Siberian Craton.

  8. Conception of a 3D Metamaterial-Based Foundation for Static and Seismic Protection of Fuel Storage Tanks

    Vincenzo La Salandra

    2017-10-01

    Full Text Available Fluid-filled tanks in tank farms of industrial plants can experience severe damage and trigger cascading effects in neighboring tanks due to large vibrations induced by strong earthquakes. In order to reduce these tank vibrations, we have explored an innovative type of foundation based on metamaterial concepts. Metamaterials are generally regarded as manmade structures that exhibit unusual responses not readily observed in natural materials. If properly designed, they are able to stop or attenuate wave propagation. Recent studies have shown that if locally resonant structures are periodically placed in a matrix material, the resulting metamaterial forms a phononic lattice that creates a stop band able to forbid elastic wave propagation within a selected band gap frequency range. Conventional phononic lattice structures need huge unit cells for low-frequency vibration shielding, while locally resonant metamaterials can rely on lattice constants much smaller than the longitudinal wavelengths of propagating waves. Along this line, we have investigated 3D structured foundations with effective attenuation zones conceived as vibration isolation systems for storage tanks. In particular, the three-component periodic foundation cell has been developed using two common construction materials, namely concrete and rubber. Relevant frequency band gaps, computed using the Floquet–Bloch theorem, have been found to be wide and in the low-frequency region. Based on the designed unit cell, a finite foundation has been conceived, checked under static loads and numerically tested on its wave attenuation properties. Then, by means of a parametric study we found a favorable correlation between the shear stiffness of foundation walls and wave attenuation. On this basis, to show the potential improvements of this foundation, we investigated an optimized design by means of analytical models and numerical analyses. In addition, we investigated the influence of cracks

  9. Patient-specific 3D FLAIR for enhanced visualization of brain white matter lesions in multiple sclerosis.

    Gabr, Refaat E; Pednekar, Amol S; Govindarajan, Koushik A; Sun, Xiaojun; Riascos, Roy F; Ramírez, María G; Hasan, Khader M; Lincoln, John A; Nelson, Flavia; Wolinsky, Jerry S; Narayana, Ponnada A

    2017-08-01

    To improve the conspicuity of white matter lesions (WMLs) in multiple sclerosis (MS) using patient-specific optimization of single-slab 3D fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI). Sixteen MS patients were enrolled in a prospective 3.0T MRI study. FLAIR inversion time and echo time were automatically optimized for each patient during the same scan session based on measurements of the relative proton density and relaxation times of the brain tissues. The optimization criterion was to maximize the contrast between gray matter (GM) and white matter (WM), while suppressing cerebrospinal fluid. This criterion also helps increase the contrast between WMLs and WM. The performance of the patient-specific 3D FLAIR protocol relative to the fixed-parameter protocol was assessed both qualitatively and quantitatively. Patient-specific optimization achieved a statistically significant 41% increase in the GM-WM contrast ratio (P < 0.05) and 32% increase in the WML-WM contrast ratio (P < 0.01) compared with fixed-parameter FLAIR. The increase in WML-WM contrast ratio correlated strongly with echo time (P < 10 -11 ). Two experienced neuroradiologists indicated substantially higher lesion conspicuity on the patient-specific FLAIR images over conventional FLAIR in 3-4 cases (intrarater correlation coefficient ICC = 0.72). In no case was the image quality of patient-specific FLAIR considered inferior to conventional FLAIR by any of the raters (ICC = 0.32). Changes in proton density and relaxation times render fixed-parameter FLAIR suboptimal in terms of lesion contrast. Patient-specific optimization of 3D FLAIR increases lesion conspicuity without scan time penalty, and has potential to enhance the detection of subtle and small lesions in MS. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:557-564. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Seismic structural response analysis for multiple support excitation

    Shaw, D.E.

    1975-01-01

    In the seismic analysis of nuclear power plant equipment such as piping systems situations often arise in which piping systems span between adjacent structures or between different elevations in the same structure. Owing to the differences in the seismic time history response of different structures or different elevations of the same structure, the input support motion will differ for different supports. The concept of a frequency dependent participation factor and rotational response spectra accounting for phase differences between support excitations is developed by using classical equations of motion to formulate the seismic response of a structure subjected to multiple support excitation. The essence of the method lies in describing the seismic excitation of a multiply excited structure in terms of translational and rotational spectra used at every support and a frequency dependent spatial distribution function derived from the phase relationships of the different support time histories. In this manner it is shown that frequency dependent participation factors can be derived from the frequency dependent distribution functions. Examples are shown and discussed relative to closed form solutions and the state-of-the-art techniques presently being used for the solution of problems of multiply excited structures

  11. Massive parallelization of a 3D finite difference electromagnetic forward solution using domain decomposition methods on multiple CUDA enabled GPUs

    Schultz, A.

    2010-12-01

    3D forward solvers lie at the core of inverse formulations used to image the variation of electrical conductivity within the Earth's interior. This property is associated with variations in temperature, composition, phase, presence of volatiles, and in specific settings, the presence of groundwater, geothermal resources, oil/gas or minerals. The high cost of 3D solutions has been a stumbling block to wider adoption of 3D methods. Parallel algorithms for modeling frequency domain 3D EM problems have not achieved wide scale adoption, with emphasis on fairly coarse grained parallelism using MPI and similar approaches. The communications bandwidth as well as the latency required to send and receive network communication packets is a limiting factor in implementing fine grained parallel strategies, inhibiting wide adoption of these algorithms. Leading Graphics Processor Unit (GPU) companies now produce GPUs with hundreds of GPU processor cores per die. The footprint, in silicon, of the GPU's restricted instruction set is much smaller than the general purpose instruction set required of a CPU. Consequently, the density of processor cores on a GPU can be much greater than on a CPU. GPUs also have local memory, registers and high speed communication with host CPUs, usually through PCIe type interconnects. The extremely low cost and high computational power of GPUs provides the EM geophysics community with an opportunity to achieve fine grained (i.e. massive) parallelization of codes on low cost hardware. The current generation of GPUs (e.g. NVidia Fermi) provides 3 billion transistors per chip die, with nearly 500 processor cores and up to 6 GB of fast (DDR5) GPU memory. This latest generation of GPU supports fast hardware double precision (64 bit) floating point operations of the type required for frequency domain EM forward solutions. Each Fermi GPU board can sustain nearly 1 TFLOP in double precision, and multiple boards can be installed in the host computer system. We

  12. MEVA--An Interactive Visualization Application for Validation of Multifaceted Meteorological Data with Multiple 3D Devices.

    Carolin Helbig

    Full Text Available To achieve more realistic simulations, meteorologists develop and use models with increasing spatial and temporal resolution. The analyzing, comparing, and visualizing of resulting simulations becomes more and more challenging due to the growing amounts and multifaceted character of the data. Various data sources, numerous variables and multiple simulations lead to a complex database. Although a variety of software exists suited for the visualization of meteorological data, none of them fulfills all of the typical domain-specific requirements: support for quasi-standard data formats and different grid types, standard visualization techniques for scalar and vector data, visualization of the context (e.g., topography and other static data, support for multiple presentation devices used in modern sciences (e.g., virtual reality, a user-friendly interface, and suitability for cooperative work.Instead of attempting to develop yet another new visualization system to fulfill all possible needs in this application domain, our approach is to provide a flexible workflow that combines different existing state-of-the-art visualization software components in order to hide the complexity of 3D data visualization tools from the end user. To complete the workflow and to enable the domain scientists to interactively visualize their data without advanced skills in 3D visualization systems, we developed a lightweight custom visualization application (MEVA - multifaceted environmental data visualization application that supports the most relevant visualization and interaction techniques and can be easily deployed. Specifically, our workflow combines a variety of different data abstraction methods provided by a state-of-the-art 3D visualization application with the interaction and presentation features of a computer-games engine. Our customized application includes solutions for the analysis of multirun data, specifically with respect to data uncertainty and

  13. Integration of Multiple Cues for Robust 3D Object Description: A Computational and Psychophysical Study with Applications

    Farag, Aly

    2001-01-01

    ...., provides a 3D - to - 3D mapping. The research focuses on the representation and fusion of information form differing image sources and the use of machine learning techniques to perform the fusion...

  14. Estimation of subsurface structures in a Minami Noshiro 3D seismic survey region by seismic-array observations of microtremors; Minami Noshiro sanjigen jishin tansa kuikinai no hyoso kozo ni tsuite. Bido no array kansoku ni yoru suitei

    Okada, H; Ling, S; Ishikawa, K [Hokkaido University, Sapporo (Japan); Tsuburaya, Y; Minegishi, M [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-05-27

    Japan National Oil Corporation Technology Research Center has carried out experiments on the three-dimensional seismic survey method which is regarded as an effective means for petroleum exploration. The experiments were conducted at the Minami Noshiro area in Akita Prefecture. Seismometer arrays were developed in radii of 30 to 300 m at seven points in the three-dimensional seismic exploration region to observe microtremors. The purpose is to estimate S-wave velocities from the ground surface to the foundation by using surface waves included in microtremors. Estimation of the surface bed structure is also included in the purpose since this is indispensable in seismic exploration using the reflection method. This paper reports results of the microtremor observations and the estimation on S-wave velocities (microtremor exploration). One or two kinds of arrays with different sizes composed of seven observation points per area were developed to observe microtremors independently. The important point in the result obtained in the present experiments is that a low velocity bed suggesting existence of faults was estimated. It will be necessary to repeat experiments and observations in the future to verify whether this microtremor exploration method has that much of exploration capability. For the time being, however, interest is addressed to considerations on comparison with the result of 3D experiments using the reflection method. 4 refs., 7 figs.

  15. Qademah Fault 3D Survey

    Hanafy, Sherif M.

    2014-01-01

    Objective: Collect 3D seismic data at Qademah Fault location to 1. 3D traveltime tomography 2. 3D surface wave migration 3. 3D phase velocity 4. Possible reflection processing Acquisition Date: 26 – 28 September 2014 Acquisition Team: Sherif, Kai, Mrinal, Bowen, Ahmed Acquisition Layout: We used 288 receiver arranged in 12 parallel lines, each line has 24 receiver. Inline offset is 5 m and crossline offset is 10 m. One shot is fired at each receiver location. We use the 40 kgm weight drop as seismic source, with 8 to 15 stacks at each shot location.

  16. Quantifying uncertainties on the solution model of seismic tomography; Quelle confiance accorder au modele solution de la tomographie de reflexion 3D?

    Duffet, C.

    2004-12-01

    Reflection tomography allows the determination of a velocity model that fits the travel time data associated with reflections of seismic waves propagating in the subsurface. A least-square formulation is used to compare the observed travel times and the travel times computed by the forward operator based on a ray tracing. This non-linear optimization problem is solved classically by a Gauss-Newton method based on successive linearization of the forward operator. The obtained solution is only one among many possible models. Indeed, the uncertainties on the observed travel times (resulting from an interpretative event picking on seismic records) and more generally the under-determination of the inverse problem lead to uncertainties on the solution. An a posteriori uncertainty analysis is then crucial to delimit the range of possible solutions that fit, with the expected accuracy, the data and the a priori information. A linearized a posteriori analysis is possible by an analysis of the a posteriori covariance matrix, inverse of the Gauss-Newton approximation of the matrix. The computation of this matrix is generally expensive (the matrix is huge for 3D problems) and the physical interpretation of the results is difficult. Then we propose a formalism which allows to compute uncertainties on relevant geological quantities for a reduced computational time. Nevertheless, this approach is only valid in the vicinity of the solution model (linearized framework) and complex cases may require a non-linear approach. An experimental approach consists in solving the inverse problem under constraints to test different geological scenarios. (author)

  17. Investigating The Relationship Between Structural Geology and Wetland Loss Near Golden Meadow, Louisiana By Utilizing 3D Seismic Reflection and Well Log Data

    Johnston, A. S.; Zhang, R.; Gottardi, R.; Dawers, N. H.

    2017-12-01

    Wetland loss is one of the greatest environmental and economic threats in the deltaic plain of the Gulf Coast. This loss is controlled by subsidence, sea level rise, decreased sediment supply rates, movement along normal faults, salt tectonics, fluid extraction related to oil, gas and water exploration, and compaction. However, the interplay and feedback between these different processes are still poorly understood. In this study, we investigate the role of active faulting and salt tectonics on wetland loss in an area located between Golden Meadow and Leeville, Louisiana. Using industry 3D seismic and well log data, we investigate key segments of the Golden Meadow fault zone and map shallow faults that overlie the Leeville salt dome, to compare those fault planes with areas of wetland loss and subsidence. Faults were mapped to a depth of 1200 m, and well logs were tied to the upper 180 m of the seismic data to make accurate projections of the faults to the surface. Preliminary results highlight a graben structure south of a segment of the Golden Meadow fault. Well log and published data from shallow borings reveal a thicker Holocene accumulation at the center of the graben, up to 45 m than on the flanks of the graben. The location of this graben spatially correlates with Catfish Lake, and part of it overlies salt adjacent to the main fault surface. Bayou Lafourche, the main distributary channel of the Lafourche lobe of the Mississippi River delta complex, appears to have its path controlled by faults. Bayou Lafourche changes orientation and flows parallel to, and on the downthrown side of, two radial faults associated with the Leeville salt dome. These preliminary results indicate that there is a relationship between surface geomorphology and subsurface structures that, at least in part, exert a control on wetland loss in southern Louisiana.

  18. Gas in Place Resource Assessment for Concentrated Hydrate Deposits in the Kumano Forearc Basin, Offshore Japan, from NanTroSEIZE and 3D Seismic Data

    Taladay, K.; Boston, B.

    2015-12-01

    Natural gas hydrates (NGHs) are crystalline inclusion compounds that form within the pore spaces of marine sediments along continental margins worldwide. It has been proposed that these NGH deposits are the largest dynamic reservoir of organic carbon on this planet, yet global estimates for the amount of gas in place (GIP) range across several orders of magnitude. Thus there is a tremendous need for climate scientists and countries seeking energy security to better constrain the amount of GIP locked up in NGHs through the development of rigorous exploration strategies and standardized reservoir characterization methods. This research utilizes NanTroSEIZE drilling data from International Ocean Drilling Program (IODP) Sites C0002 and C0009 to constrain 3D seismic interpretations of the gas hydrate petroleum system in the Kumano Forearc Basin. We investigate the gas source, fluid migration mechanisms and pathways, and the 3D distribution of prospective HCZs. There is empirical and interpretive evidence that deeply sourced fluids charge concentrated NGH deposits just above the base of gas hydrate stability (BGHS) appearing in the seismic data as continuous bottoms simulating reflections (BSRs). These HCZs cover an area of 11 by 18 km, range in thickness between 10 - 80 m with an average thickness of 40 m, and are analogous to the confirmed HCZs at Daini Atsumi Knoll in the eastern Nankai Trough where the first offshore NGH production trial was conducted in 2013. For consistency, we calculated a volumetric GIP estimate using the same method employed by Japan Oil, Gas and Metals National Corporation (JOGMEC) to estimate GIP in the eastern Nankai Trough. Double BSRs are also common throughout the basin, and BGHS modeling along with drilling indicators for gas hydrates beneath the primary BSRs provides compelling evidence that the double BSRs reflect a BGHS for structure-II methane-ethane hydrates beneath a structure-I methane hydrate phase boundary. Additional drilling

  19. On the effect of the 3-D regional geology on the seismic design of critical structures: the case of the Kashiwazaki-Kariwa Nuclear Power Plant

    Gatti, F.; Lopez-Caballero, F.; Clouteau, D.; Paolucci, R.

    2018-05-01

    In this study, numerical investigation is performed on a realistic source-to-site earthquake scenario, with the aim to assess the role of complex 3-D geological structures on the predicted wavefield. With this respect, the paper pointedly targets the seismic response of nuclear power plants in near-field conditions and the verification of some simplified assumptions commonly adopted for earthquake ground motion prediction and site effects analysis. To this purpose, the Kashiwazaki-Kariwa Nuclear Power Plant (Japan) is assumed as reference case-study. In 2007, the nuclear site and its surroundings were struck by the Niigata-Ken Chūetsu-Oki seismic sequence, which caused some of the peak ground motion design limits to be largely overpassed. The dense observation network deployed at the site recorded a highly incoherent and impulsive earthquake ground motion. Many studies argued that the intricate syncline-anticline geology lying underneath the nuclear facility was highly responsible of the observed seismic response. Therefore, a physics-based numerical model of the epicentral area is built-up (≈60 km wide) and tested for small aftershocks, so to discount the effect of extended source on the synthetic site-response. The numerical model (based on the Spectral Element Method) reproduces the source-to-site wave propagation by embracing the effects of the surface topography along with the presence of the Japan Sea (i.e. the bathymetry, the coastline and the fluid-solid interaction). Broad-band (0-5 Hz) synthetic waveforms are obtained for two different aftershocks, located at the two opposite sides of the nuclear facility, aiming to assess the influence of the incidence angle the radiated wave field impinges the foldings beneath it. The effect of the folding presence is assessed by comparing it to a subhorizontally layered geology, in terms of numerical outcome, and by highlighting the differences with respect to the observations. The presence of an intricate geology

  20. Quasi-3-D Seismic Reflection Imaging and Wide-Angle Velocity Structure of Nearly Amagmatic Oceanic Lithosphere at the Ultraslow-Spreading Southwest Indian Ridge

    Momoh, Ekeabino; Cannat, Mathilde; Watremez, Louise; Leroy, Sylvie; Singh, Satish C.

    2017-12-01

    We present results from 3-D processing of 2-D seismic data shot along 100 m spaced profiles in a 1.8 km wide by 24 km long box during the SISMOSMOOTH 2014 cruise. The study is aimed at understanding the oceanic crust formed at an end-member mid-ocean ridge environment of nearly zero melt supply. Three distinct packages of reflectors are imaged: (1) south facing reflectors, which we propose correspond to the damage zone induced by the active axial detachment fault: reflectors in the damage zone have dips up to 60° and are visible down to 5 km below the seafloor; (2) series of north dipping reflectors in the hanging wall of the detachment fault: these reflectors may correspond to damage zone inherited from a previous, north dipping detachment fault, or small offset recent faults, conjugate from the active detachment fault, that served as conduits for isolated magmatic dykes; and (3) discontinuous but coherent flat-lying reflectors at shallow depths (serpentinization and fracturation of the exhumed mantle-derived peridotites in the footwall of active and past detachment faults.

  1. Supra-salt normal fault growth during the rise and fall of a diapir: Perspectives from 3D seismic reflection data, Norwegian North Sea

    Tvedt, Anette B. M.; Rotevatn, Atle; Jackson, Christopher A.-L.

    2016-10-01

    Normal faulting and the deep subsurface flow of salt are key processes controlling the structural development of many salt-bearing sedimentary basins. However, our detailed understanding of the spatial and temporal relationship between normal faulting and salt movement is poor due to a lack of natural examples constraining their geometric and kinematic relationship in three-dimensions. To improve our understanding of these processes, we here use 3D seismic reflection and borehole data from the Egersund Basin, offshore Norway, to determine the structure and growth of a normal fault array formed during the birth, growth and decay of an array of salt structures. We show that the fault array and salt structures developed in response to: (i) Late Triassic-to-Middle Jurassic extension, which involved thick-skinned, sub-salt and thin-skinned supra-salt faulting with the latter driving reactive diapirism; (ii) Early Cretaceous extensional collapse of the walls; and (iii) Jurassic-to-Neogene, active and passive diapirism, which was at least partly coeval with and occurred along-strike from areas of reactive diapirism and wall collapse. Our study supports physical model predictions, showcasing a three-dimensional example of how protracted, multiphase salt diapirism can influence the structure and growth of normal fault arrays.

  2. Mesozoic and Cenozoic structural evolution of North Oman: New insights from high-quality 3D seismic from the Lekhwair area

    Bazalgette, Loïc; Salem, Hisham

    2018-06-01

    This paper highlights the role of Triassic-Jurassic extension and late Cretaceous compression in the Mesozoic-Cenozoic (Alpine) structuring of North Oman. The syn/post-Mesozoic regional structural evolution is usually documented as a succession of two stages of deformation. The Alpine 1 phase, late Cretaceous in age, occurred in association with two ophiolite obduction stages (Semail and Masirah ophiolites). It was characterised by strike slip to extensional deformation in the North Oman foreland basin sub-surface. The Alpine 2 phase, Miocene in age, was related to the continental collision responsible for both the Zagros orogen and the uplift of the Oman Mountains. The Alpine 2 deformation was transpressional to compressional. Observation and interpretation of good quality 3D seismic in the Lekhwair High area enabled the distinction of two earlier phases. Early Mesozoic extension occurred concomitantly with the regional Triassic to Jurassic rifting, developing Jurassic-age normal faults. Late Cretaceous compression occurred prior to the main Alpine 1 phase and triggered the inversion of Jurassic-seated normal faults as well as the initiation of compressional folds in the Cretaceous overburden. These early phases have been ignored or overlooked as part of the North Oman history although they are at the origin of structures hosting major local and regional hydrocarbon accumulations.

  3. Seismic site characterization of an urban dedimentary basin, Livermore Valley, California: Site tesponse, basin-edge-induced surface waves, and 3D simulations

    Hartzell, Stephen; Leeds, Alena L.; Ramirez-Guzman, Leonardo; Allen, James P.; Schmitt, Robert G.

    2016-01-01

    Thirty‐two accelerometers were deployed in the Livermore Valley, California, for approximately one year to study sedimentary basin effects. Many local and near‐regional earthquakes were recorded, including the 24 August 2014 Mw 6.0 Napa, California, earthquake. The resulting ground‐motion data set is used to quantify the seismic response of the Livermore basin, a major structural depression in the California Coast Range Province bounded by active faults. Site response is calculated by two methods: the reference‐site spectral ratio method and a source‐site spectral inversion method. Longer‐period (≥1  s) amplification factors follow the same general pattern as Bouguer gravity anomaly contours. Site response spectra are inverted for shallow shear‐wave velocity profiles, which are consistent with independent information. Frequency–wavenumber analysis is used to analyze plane‐wave propagation across the Livermore Valley and to identify basin‐edge‐induced surface waves with back azimuths different from the source back azimuth. Finite‐element simulations in a 3D velocity model of the region illustrate the generation of basin‐edge‐induced surface waves and point out strips of elevated ground velocities along the margins of the basin.

  4. 3D modeling of stratigraphic units and simulation of seismic facies in the Lion gulf margin; Modelisation 3D des unites stratigraphiques et simulation des facies sismiques dans la marge du golfe du Lion

    Chihi, H.

    1997-05-12

    This work aims at providing a contribution to the studies carried out on reservoir characterization by use of seismic data. The study mainly consisted in the use of geostatistical methods in order to model the geometry of stratigraphic units of the Golfe du Lion margin and to simulate the seismic facies from high resolution seismic data. We propose, for the geometric modelling, a methodology based on the estimation of the surfaces and calculation afterwards of the thicknesses, if the modelling of the depth is possible. On the other hand the method consists in estimating the thickness variable directly and in deducing the boundary surfaces afterwards. In order to simulate the distribution of seismic facies within the units of the western domain, we used the truncated Gaussian method. The used approach gave a satisfactory results, when the seismic facies present slightly dipping reflectors with respect to the reference level. Otherwise the method reaches its limits because of the problems of definition of a reference level which allows to follow the clino-forms. In spite of these difficulties, this simulation allows us to estimate the distribution of seismic facies within the units and then to deduce their probable extension. (author) 150 refs.

  5. Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation.

    Brosch, Tom; Tang, Lisa Y W; Youngjin Yoo; Li, David K B; Traboulsee, Anthony; Tam, Roger

    2016-05-01

    We propose a novel segmentation approach based on deep 3D convolutional encoder networks with shortcut connections and apply it to the segmentation of multiple sclerosis (MS) lesions in magnetic resonance images. Our model is a neural network that consists of two interconnected pathways, a convolutional pathway, which learns increasingly more abstract and higher-level image features, and a deconvolutional pathway, which predicts the final segmentation at the voxel level. The joint training of the feature extraction and prediction pathways allows for the automatic learning of features at different scales that are optimized for accuracy for any given combination of image types and segmentation task. In addition, shortcut connections between the two pathways allow high- and low-level features to be integrated, which enables the segmentation of lesions across a wide range of sizes. We have evaluated our method on two publicly available data sets (MICCAI 2008 and ISBI 2015 challenges) with the results showing that our method performs comparably to the top-ranked state-of-the-art methods, even when only relatively small data sets are available for training. In addition, we have compared our method with five freely available and widely used MS lesion segmentation methods (EMS, LST-LPA, LST-LGA, Lesion-TOADS, and SLS) on a large data set from an MS clinical trial. The results show that our method consistently outperforms these other methods across a wide range of lesion sizes.

  6. Integrated interpretation of 3D seismic data to enhance the detection of the gold-bearing reef: Mponeng Gold mine, Witwatersrand Basin (South Africa)

    Manzi, M

    2015-07-01

    Full Text Available The authors present an integrated approach to the seismic interpretation of one of the world's deepest gold ore body (Carbon Leader Reef) using three-dimensional seismic data, ultrasonic velocity measurements at elevated stresses, and modified...

  7. How does continental lithosphere break-apart? A 3D seismic view on the transition from magma-poor rifted margin to magmatic oceanic lithosphere

    Emmanuel, M.; Lescanne, M.; Picazo, S.; Tomasi, S.

    2017-12-01

    In the last decade, high-quality seismic data and drilling results drastically challenged our ideas about how continents break apart. New models address their observed variability and are presently redefining basics of rifting as well as exploration potential along deepwater rifted margins. Seafloor spreading is even more constrained by decades of scientific exploration along Mid Oceanic Ridges. By contrast, the transition between rifting and drifting remains a debated subject. This lithospheric breakup "event" is geologically recorded along Ocean-Continent Transitions (OCT) at the most distal part of margins before indubitable oceanic crust. Often lying along ultra-deepwater margin domains and buried beneath a thick sedimentary pile, high-quality images of these domains are rare but mandatory to get strong insights on the processes responsible for lithospheric break up and what are the consequences for the overlying basins. We intend to answer these questions by studying a world-class 3D seismic survey in a segment of a rifted margin exposed in the Atlantic. Through these data, we can show in details the OCT architecture between a magma-poor hyper-extended margin (with exhumed mantle) and a classical layered oceanic crust. It is characterized by 1- the development of out-of-sequence detachment systems with a landward-dipping geometry and 2- the increasing magmatic additions oceanwards (intrusives and extrusives). Geometry of these faults suggests that they may be decoupled at a mantle brittle-ductile interface what may be an indicator on thermicity. Furthermore, magmatism increases as deformation migrates to the future first indubitable oceanic crust what controls a progressive magmatic crustal thickening below, above and across a tapering rest of margin. As the magmatic budget increases oceanwards, full-rate divergence is less and less accommodated by faulting. Magmatic-sedimentary architectures of OCT is therefore changing from supra-detachment to magmatic

  8. Prediction of P53 mutants (multiple sites transcriptional activity based on structural (2D&3D properties.

    R Geetha Ramani

    Full Text Available Prediction of secondary site mutations that reinstate mutated p53 to normalcy has been the focus of intense research in the recent past owing to the fact that p53 mutants have been implicated in more than half of all human cancers and restoration of p53 causes tumor regression. However laboratory investigations are more often laborious and resource intensive but computational techniques could well surmount these drawbacks. In view of this, we formulated a novel approach utilizing computational techniques to predict the transcriptional activity of multiple site (one-site to five-site p53 mutants. The optimal MCC obtained by the proposed approach on prediction of one-site, two-site, three-site, four-site and five-site mutants were 0.775,0.341,0.784,0.916 and 0.655 respectively, the highest reported thus far in literature. We have also demonstrated that 2D and 3D features generate higher prediction accuracy of p53 activity and our findings revealed the optimal results for prediction of p53 status, reported till date. We believe detection of the secondary site mutations that suppress tumor growth may facilitate better understanding of the relationship between p53 structure and function and further knowledge on the molecular mechanisms and biological activity of p53, a targeted source for cancer therapy. We expect that our prediction methods and reported results may provide useful insights on p53 functional mechanisms and generate more avenues for utilizing computational techniques in biological data analysis.

  9. Extensional Tectonics and Sedimentary Architecture Using 3-D Seismic Data: An Example from Hydrocarbon-Bearing Mumbai Offshore Basin, West Coast of India

    Mukhopadhyay, D. K.; Bhowmick, P. K.; Mishra, P.

    2016-12-01

    In offshore sedimentary basins, analysis of 3-D seismic data tied with well log data can be used to deduce robust isopach and structure contour maps of different stratigraphic formations. The isopach maps give depocenters whereas structure contour maps give structural relief at a specific time. Combination of these two types of data helps us decipher horst-graben structures, sedimentary basin architecture and tectono-stratigraphic relations through Tertiary time. Restoration of structural cross sections with back-stripping of successively older stratigraphic layers leads to better understand tectono-sedimentary evolution of a basin. The Mumbai (or Bombay) Offshore Basin is the largest basin off the west coast of India and includes Bombay High giant oil/gas field. Although this field was discovered in 1974 and still producing, the basin architecture vis-à-vis structural evolution are not well documented. We take the approach briefly outlined above to study in detail three large hydrocarbon-bearing structures located within the offshore basin. The Cretaceous Deccan basalt forms the basement and hosts prodigal thickness (> 8 km at some localities) of Tertiary sedimentary formations.A two stage deformation is envisaged. At the first stage horst and graben structures formed due to approximately E-W extensional tectonics. This is most spectacularly seen at the basement top level. The faults associated with this extension strike NNW. At the second stage of deformation a set of ENE-striking cross faults have developed leading to the formation of transpressional structures at places. High rate of early sedimentation obliterated horst-graben architecture to large extent. An interesting aspect emerges is that the all the large-scale structures have rather low structural relief. However, the areal extent of such structures are very large. Consequently, these structures hold commercial quantities of oil/gas.

  10. Azimuthal filter to attenuate ground roll noise in the F-kx-ky domain for land 3D-3C seismic data with uneven acquisition geometry

    Arevalo-Lopez, H. S.; Levin, S. A.

    2016-12-01

    The vertical component of seismic wave reflections is contaminated by surface noise such as ground roll and secondary scattering from near surface inhomogeneities. A common method for attenuating these, unfortunately often aliased, arrivals is via velocity filtering and/or multichannel stacking. 3D-3C acquisition technology provides two additional sources of information about the surface wave noise that we exploit here: (1) areal receiver coverage, and (2) a pair of horizontal components recorded at the same location as the vertical component. Areal coverage allows us to segregate arrivals at each individual receiver or group of receivers by direction. The horizontal components, having much less compressional reflection body wave energy than the vertical component, provide a template of where to focus our energies on attenuating the surface wave arrivals. (In the simplest setting, the vertical component is a scaled 90 degree phase rotated version of the radial horizontal arrival, a potential third possible lever we have not yet tried to integrate.) The key to our approach is to use the magnitude of the horizontal components to outline a data-adaptive "velocity" filter region in the w-Kx-Ky domain. The big advantage for us is that even in the presence of uneven receiver geometries, the filter automatically tracks through aliasing without manual sculpting and a priori velocity and dispersion estimation. The method was applied to an aliased synthetic dataset based on a five layer earth model which also included shallow scatterers to simulate near-surface inhomogeneities and successfully removed both the ground roll and scatterers from the vertical component (Figure 1).

  11. Detection of lesions in multiple sclerosis by 2D FLAIR and single-slab 3D FLAIR sequences at 3.0 T: initial results

    Bink, Andrea; Gaa, Jochen; Lanfermann, Heinrich; Zanella, Friedhelm E.; Schmitt, Melanie; Mugler, John P.

    2006-01-01

    The aim of this study was to compare conventional 2D FLAIR and single-slab 3D FLAIR sequences in the detection of lesions in patients with multiple sclerosis. Eight patients with MS were examined at 3.0 T by using a 2D FLAIR sequence and a single-slab 3D FLAIR sequence. A comparison of lesion detectability was performed for the following regions: periventricular, nonperiventricular/juxtacortical and infratentorial. The contrast-to-noise ratios (CNRs) between lesions and brain tissue and CSF were calculated for each sequence. A total of 424 lesions were found using the 2D FLAIR sequence, while with the 3D FLAIR sequence 719 lesions were found. With the 2D FLAIR sequence, 41% fewer lesions were detected than with the 3D FLAIR sequence. Further, 40% fewer supratentorial and 62.5% fewer infratentorial lesions were found with the 2D FLAIR sequence. In images acquired with the 3D FLAIR sequence, the lesions had significantly higher CNRs than in images acquired with the 2D FLAIR sequence. These are the first results using a single-slab 3D FLAIR sequence at 3.0 T for detection of lesions in patients with MS. With the 3D FLAIR sequence significantly higher CNRs were achieved and significantly more lesions in patients with MS were detected. (orig.)

  12. Seismic and thermal structure of the crust and uppermost mantle beneath Antarctica from inversion of multiple seismic datasets

    Wiens, D.; Shen, W.; Anandakrishnan, S.; Aster, R. C.; Gerstoft, P.; Bromirski, P. D.; Dalziel, I.; Hansen, S. E.; Heeszel, D.; Huerta, A. D.; Nyblade, A.; Stephen, R. A.; Wilson, T. J.; Winberry, J. P.; Stern, T. A.

    2017-12-01

    Since the last decade of the 20th century, over 200 broadband seismic stations have been deployed across Antarctica (e.g., temporary networks such as TAMSEIS, AGAP/GAMSEIS, POLENET/ANET, TAMNNET and RIS/DRIS by U.S. geoscientists as well as stations deployed by Japan, Britain, China, Norway, and other countries). In this presentation, we discuss our recent efforts to build reference crustal and uppermost mantle shear velocity (Vs) and thermal models for continental Antarctica based on those seismic arrays. By combing the high resolution Rayleigh wave dispersion maps derived from both ambient noise and teleseismic earthquakes, together with P receiver function waveforms, we develop a 3-D Vs model for the crust and uppermost mantle beneath Central and West Antarctica to a depth of 200 km. Additionally, using this 3-D seismic model to constrain the crustal structure, we re-invert for the upper mantle thermal structure using the surface wave data within a thermodynamic framework and construct a 3-D thermal model for the Antarctic lithosphere. The final product, a high resolution thermal model together with associated uncertainty estimates from the Monte Carlo inversion, allows us to derive lithospheric thickness and surface heat flux maps for much of the continent. West Antarctica shows a much thinner lithosphere ( 50-90 km) than East Antarctica ( 130-230 km), with a sharp transition along the Transantarctic Mountains (TAM). A variety of geological features, including a slower/hotter but highly heterogeneous West Antarctica and a much faster/colder East Antarctic craton, are present in the 3-D seismic/thermal models. Notably, slow seismic velocities observed in the uppermost mantle beneath the southern TAM are interpreted as a signature of lithospheric foundering and replacement with hot asthenosphere. The high resolution image of these features from the 3-D models helps further investigation of the dynamic state of Antarctica's lithosphere and underlying asthenosphere

  13. Integrated Tsunami Database: simulation and identification of seismic tsunami sources, 3D visualization and post-disaster assessment on the shore

    Krivorot'ko, Olga; Kabanikhin, Sergey; Marinin, Igor; Karas, Adel; Khidasheli, David

    2013-04-01

    One of the most important problems of tsunami investigation is the problem of seismic tsunami source reconstruction. Non-profit organization WAPMERR (http://wapmerr.org) has provided a historical database of alleged tsunami sources around the world that obtained with the help of information about seaquakes. WAPMERR also has a database of observations of the tsunami waves in coastal areas. The main idea of presentation consists of determining of the tsunami source parameters using seismic data and observations of the tsunami waves on the shore, and the expansion and refinement of the database of presupposed tsunami sources for operative and accurate prediction of hazards and assessment of risks and consequences. Also we present 3D visualization of real-time tsunami wave propagation and loss assessment, characterizing the nature of the building stock in cities at risk, and monitoring by satellite images using modern GIS technology ITRIS (Integrated Tsunami Research and Information System) developed by WAPMERR and Informap Ltd. The special scientific plug-in components are embedded in a specially developed GIS-type graphic shell for easy data retrieval, visualization and processing. The most suitable physical models related to simulation of tsunamis are based on shallow water equations. We consider the initial-boundary value problem in Ω := {(x,y) ?R2 : x ?(0,Lx ), y ?(0,Ly ), Lx,Ly > 0} for the well-known linear shallow water equations in the Cartesian coordinate system in terms of the liquid flow components in dimensional form Here ?(x,y,t) defines the free water surface vertical displacement, i.e. amplitude of a tsunami wave, q(x,y) is the initial amplitude of a tsunami wave. The lateral boundary is assumed to be a non-reflecting boundary of the domain, that is, it allows the free passage of the propagating waves. Assume that the free surface oscillation data at points (xm, ym) are given as a measured output data from tsunami records: fm(t) := ? (xm, ym,t), (xm

  14. PLOT3D (version-5): a computer code for drawing three dimensional graphs, maps and histograms, in single or multiple colours, for mono or stereoscopic viewing

    Jayaswal, Balhans

    1987-01-01

    PLOT3D series of graphic codes (version 1 to 5) have been developed for drawing three dimensional graphs, maps, histograms and simple layout diagrams on monochrome or colour raster graphic terminal and plotter. Of these, PLOT3D Version-5 is an advanced code, equipped with several features that make it specially suitable for drawing 3D maps, multicolour 3D and contour graphs, and 3D layout diagrams, in axonometric or perspective projection. Prior to drawing, graphic parameters that define orientation, magnification, smoothening, shading, colour-map, etc. of the figure can be selected interactively by means of simple commands on the user terminal, or by reading those commands from an input data file. This code requires linking with any one of three supporting libraries: PLOT 10 TCS, PLOT 10 IGL, and CALCOMP, and the figure can be plotted in single colour, or displayed in single or multiple colours depending upon the type of library support and output device. Furthermore, this code can also be used to plot left and right eye view projections of 3D figure for composing a stereoscopic image from them with the aid of a viewer. 14 figures. (author)

  15. Single-station seismic noise measures, microgravity, and 3D electrical tomographies to assess the sinkhole susceptibility: the "Il Piano" area (Elba Island - Italy) case study

    Pazzi, Veronica; Di Filippo, Michele; Di Nezza, Maria; Carlà, Tommaso; Bardi, Federica; Marini, Federico; Fontanelli, Katia; Intrieri, Emanuele; Fanti, Riccardo

    2017-04-01

    Sudden subsurface collapse, cavities, and surface depressions, regardless of shape and origin, as well as doline are currently indicate by means of the term "sinkhole". This phenomenon can be classified according to a large variety of different schemes, depending on the dominant formation processes (soluble rocks karstic processes, acidic groundwater circulation, anthropogenic caves, bedrock poor geomechanical properties), and on the geological scenario behind the development of the phenomenon. Considering that generally sinkholes are densely clustered in "sinkhole prone areas", detection, forecasting, early warning, and effective monitoring are key aspects in sinkhole susceptibility assessment and risk mitigation. Nevertheless, techniques developed specifically for sinkhole detection, forecasting and monitoring are missing, probably because of a general lack of sinkhole risk awareness, and an intrinsic difficulties involved in detecting precursory sinkhole deformations before collapse. In this framework, integration of different indirect/non-invasive geophysical methods is the best practice approach. In this paper we present the results of an integrated geophysical survey at "Il Piano" (Elba Island - Italy), where at least nine sinkholes occurred between 2008 and 2014. 120 single-station seismic noise measures, 17 3D electrical tomographies (min area 140.3 m2, max area 10,188.9 m2; min electrode spacing 2 m, max electrode spacing 5 m), 964 measurement of microgravity spaced in a grid of 6 m to 8 m were carried out at the study area. The most likely origin for these sinkholes was considered related to sediment net erosion from the alluvium, caused by downward water circulation between aquifers. Therefore, the goals of the study were: i) obtaining a suitable geological and hydrogeological model of the area; ii) detecting possible cavities which could evolve in sinkholes, and finally iii) assess the sinkhole susceptibility of the area. Among the results of the

  16. A comparative study of 3D FZI and electrofacies modeling using seismic attribute analysis and neural network technique: A case study of Cheshmeh-Khosh Oil field in Iran

    Mahdi Rastegarnia

    2016-09-01

    Full Text Available Electrofacies are used to determine reservoir rock properties, especially permeability, to simulate fluid flow in porous media. These are determined based on classification of similar logs among different groups of logging data. Data classification is accomplished by different statistical analysis such as principal component analysis, cluster analysis and differential analysis. The aim of this study is to predict 3D FZI (flow zone index and Electrofacies (EFACT volumes from a large volume of 3D seismic data. This study is divided into two parts. In the first part of the study, in order to make the EFACT model, nuclear magnetic resonance (NMR log parameters were employed for developing an Electrofacies diagram based on pore size distribution and porosity variations. Then, a graph-based clustering method, known as multi resolution graph-based clustering (MRGC, was employed to classify and obtain the optimum number of Electrofacies. Seismic attribute analysis was then applied to model each relaxation group in order to build the initial 3D model which was used to reach the final model by applying Probabilistic Neural Network (PNN. In the second part of the study, the FZI 3D model was created by multi attributes technique. Then, this model was improved by three different artificial intelligence systems including PNN, multilayer feed-forward network (MLFN and radial basis function network (RBFN. Finally, models of FZI and EFACT were compared. Results obtained from this study revealed that the two models are in good agreement and PNN method is successful in modeling FZI and EFACT from 3D seismic data for which no Stoneley data or NMR log data are available. Moreover, they may be used to detect hydrocarbon-bearing zones and locate the exact place for producing wells for the future development plans. In addition, the result provides a geologically realistic spatial FZI and reservoir facies distribution which helps to understand the subsurface reservoirs

  17. P-Cable 3D high-resolution seismic data as a powerful tool to characterize subglacial landforms and their genesis: A case study from the SW Barents Sea

    Bellwald, Benjamin; Planke, Sverre; Matar, Mohammed; Daria Piasecka, Emilia

    2017-04-01

    High-resolution 3D seismic data have significantly increased our knowledge about petroleum reservoirs and submarine geohazards. However, little effort has been undertaken to evaluate the potential of such data for mapping subglacial landforms. The Barents Sea has been subjected to repeated Pleistocene glaciations, which intensively eroded the region, resulting in a generally thin (geology. The seismic data cover an area of 200 km2 in water depths of 380-470 m with a recorded in-line spacing of geology. Therefore high-resolution seismic data is beneficial in identifying and analyzing small-scale glacial structures and their expression in the underlying strata in great detail, contributing to the understanding of processes involved in paleo-ice stream dynamics.

  18. Seismic evidence of gas hydrates, multiple BSRs and fluid flow offshore Tumbes Basin, Peru

    Auguy, Constance; Calvès, Gérôme; Calderon, Ysabel; Brusset, Stéphane

    2017-12-01

    Identification of a previously undocumented hydrate system in the Tumbes Basin, localized off the north Peruvian margin at latitude of 3°20'—4°10'S, allows us to better understand gas hydrates of convergent margins, and complement the 36 hydrate sites already identified around the Pacific Ocean. Using a combined 2D-3D seismic dataset, we present a detailed analysis of seismic amplitude anomalies related to the presence of gas hydrates and/or free gas in sediments. Our observations identify the occurrence of a widespread bottom simulating reflector (BSR), under which we observed, at several sites, the succession of one or two BSR-type reflections of variable amplitude, and vertical acoustic discontinuities associated with fluid flow and gas chimneys. We conclude that the uppermost BSR marks the current base of the hydrate stability field, for a gas composition comprised between 96% methane and 4% of ethane, propane and pure methane. Three hypotheses are developed to explain the nature of the multiple BSRs. They may refer to the base of hydrates of different gas composition, a remnant of an older BSR in the process of dispersion/dissociation or a diagenetically induced permeability barrier formed when the active BSR existed stably at that level for an extended period. The multiple BSRs have been interpreted as three events of steady state in the pressure and temperature conditions. They might be produced by climatic episodes since the last glaciation associated with tectonic activity, essentially tectonic subsidence, one of the main parameters that control the evolution of the Tumbes Basin.

  19. 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    A 3D hierarchical computational model of deformation and stiffness of wood, which takes into account the structures of wood at several scale levels (cellularity, multilayered nature of cell walls, composite-like structures of the wall layers) is developed. At the mesoscale, the softwood cell...... cellular model. With the use of the developed hierarchical model, the influence of the microstructure, including microfibril angles (MFAs, which characterizes the orientation of the cellulose fibrils with respect to the cell axis), the thickness of the cell wall, the shape of the cell cross...... is presented as a 3D hexagon-shape-tube with multilayered walls. The layers in the softwood cell are considered as considered as composite reinforced by microfibrils (celluloses). The elastic properties of the layers are determined with Halpin–Tsai equations, and introduced into mesoscale finite element...

  20. A novel 3D volumetric voxel registration technique for volume-view-guided image registration of multiple imaging modalities

    Li Guang; Xie Huchen; Ning, Holly; Capala, Jacek; Arora, Barbara C.; Coleman, C. Norman; Camphausen, Kevin; Miller, Robert W.

    2005-01-01

    Purpose: To provide more clinically useful image registration with improved accuracy and reduced time, a novel technique of three-dimensional (3D) volumetric voxel registration of multimodality images is developed. Methods and Materials: This technique can register up to four concurrent images from multimodalities with volume view guidance. Various visualization effects can be applied, facilitating global and internal voxel registration. Fourteen computed tomography/magnetic resonance (CT/MR) image sets and two computed tomography/positron emission tomography (CT/PET) image sets are used. For comparison, an automatic registration technique using maximization of mutual information (MMI) and a three-orthogonal-planar (3P) registration technique are used. Results: Visually sensitive registration criteria for CT/MR and CT/PET have been established, including the homogeneity of color distribution. Based on the registration results of 14 CT/MR images, the 3D voxel technique is in excellent agreement with the automatic MMI technique and is indicatory of a global positioning error (defined as the means and standard deviations of the error distribution) using the 3P pixel technique: 1.8 deg ± 1.2 deg in rotation and 2.0 ± 1.3 (voxel unit) in translation. To the best of our knowledge, this is the first time that such positioning error has been addressed. Conclusion: This novel 3D voxel technique establishes volume-view-guided image registration of up to four modalities. It improves registration accuracy with reduced time, compared with the 3P pixel technique. This article suggests that any interactive and automatic registration should be safeguarded using the 3D voxel technique

  1. Identification of an impact structure in the Upper Cretaceous of the Santos Basin in 3D seismic reflection data; Identificacao de uma estrutura de impacto no Cretaceo Superior da Bacia de Santos em sismica de reflexao 3D

    Correia, Gustavo Alberto [PETROBRAS, Santos, SP (Brazil). Exploracao e Producao. Interpretacao e Avaliacao das Bacias da Costa Sul Polo Sul]. E-mail: gustavoac@petrobras.com.br; Menezes, Jorge Rui Correa de; Bueno, Gilmar Vital

    2005-05-01

    This work presents the unpublished Praia Grande impact structure, located in the Santos basin, approximately 200 km southeast from the coastline of Sao Paulo State, Brazil. The identification of this structure is based on the interpretation of three-dimensional seismic data, acquired and processed in 2004 for petroleum exploration in a PETROBRAS concession block in the Santos Basin. The main morphological elements imposed on Upper Cretaceous rocks are a structural high in the center of the crater, an adjacent ring syncline, and, externally, several concentric circular listric normal faults. The structure is apparently well preserved from erosion, measures around 20 km in diameter, is buried by 4 km of rocks and occurred in the Santonian (85,8-83,5 Ma). (author)

  2. Simultaneous 3D localization of multiple MR-visible markers in fully reconstructed MR images: proof-of-concept for subsecond position tracking.

    Thörmer, Gregor; Garnov, Nikita; Moche, Michael; Haase, Jürgen; Kahn, Thomas; Busse, Harald

    2012-04-01

    To determine whether a greatly reduced spatial resolution of fully reconstructed projection MR images can be used for the simultaneous 3D localization of multiple MR-visible markers and to assess the feasibility of a subsecond position tracking for clinical purposes. Miniature, inductively coupled RF coils were imaged in three orthogonal planes with a balanced steady-state free precession (SSFP) sequence and automatically localized using a two-dimensional template fitting and a subsequent three-dimensional (3D) matching of the coordinates. Precision, accuracy, speed and robustness of 3D localization were assessed for decreasing in-plane resolutions (0.6-4.7 mm). The feasibility of marker tracking was evaluated at the lowest resolution by following a robotically driven needle on a complex 3D trajectory. Average 3D precision and accuracy, sensitivity and specificity of localization ranged between 0.1 and 0.4 mm, 0.5 and 1.0 mm, 100% and 95%, and 100% and 96%, respectively. At the lowest resolution, imaging and localization took ≈350 ms and provided an accuracy of ≈1.0 mm. In the tracking experiment, the needle was clearly depicted on the oblique scan planes defined by the markers. Image-based marker localization at a greatly reduced spatial resolution is considered a feasible approach to monitor reference points or rigid instruments at subsecond update rates. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. 3D printing for dummies

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  4. 3D shape optimization of fan vanes for multiple operating regimes subject to efficiency and noise-related excellence criteria and constraints

    Ivo Marinić-Kragić

    2016-01-01

    Full Text Available Fully generic 3D shapes of centrifugal roof fan vanes are explored based on a custom-developed numerical workflow with the ability to vary the vane 3D shape by manipulating the control points of parametric surfaces and change the number of vanes and rotation speed. An excellence formulation is based on design flow efficiency, multi-regime operational conditions and noise criteria for various cases, including multi-objective optimization. Multiple cases of optimization demonstrate the suitability of customized and individualized fan designs for specific working environments according to the selected excellence criteria. Noise analysis is considered as an additional decision-making tool for cases where multiple solutions of equal efficiency are generated and as an additional criteria for multi-objective optimization. The 3D vane shape enables further gains in efficiency compared to 2D shape optimization, while multi-objective optimization with noise as an additional criterion shows potential to greatly reduce the roof fan noise with only small losses in efficiency. The developed workflow which comprises (i a 3D parametric shape modeler, (ii an evolutionary optimizer and (iii a computational fluid dynamics (CFD simulator can be viewed as an integral tool for optimizing the designs of roof fans under custom conditions.

  5. Multiple 3d Approaches for the Architectural Study of the Medieval Abbey of Cormery in the Loire Valley

    Pouyet, T.

    2017-02-01

    This paper will focus on the technical approaches used for a PhD thesis regarding architecture and spatial organization of benedict abbeys in Touraine in the Middle Ages, in particular the abbey of Cormery in the heart of the Loire Valley. Monastic space is approached in a diachronic way, from the early Middle Ages to the modern times using multi-sources data: architectural study, written sources, ancient maps, various iconographic documents… Many scales are used in the analysis, from the establishment of the abbeys in a territory to the scale of a building like the tower-entrance of the church of Cormery. These methodological axes have been developed in the research unit CITERES for many years and the 3D technology is now used to go further along in that field. The recording in 3D of the buildings of the abbey of Cormery allows us to work at the scale of the monastery and to produce useful data such as sections or orthoimages of the ground and the walls faces which are afterwards drawn and analysed. The study of these documents, crossed with the other historical sources, allowed us to emphasize the presence of walls older than what we thought and to discover construction elements that had not been recognized earlier and which enhance the debate about the construction date St Paul tower and associated the monastic church.

  6. 3D surface rendering of images from multiple MR pulse sequences in the pre-operative evaluation of hepatic lesions

    Bjerner, T.; Johansson, L.; Ahlstroem, H.; Haglund, U.

    1998-01-01

    Purpose: To develop a method for making three-dimensional (3D) reconstructions of liver vessels and hepatic lesions from different MR data sets. Material and Methods: To reduce the time required for segmentation and reconstructions, we used T1, T2 and phase contrast angiography, optimised for liver, lesion and vessels respectively. Following segmentation and reconstruction, the different volumes were combined on the same workstation and presented to the surgeon. Results and Conclusion: Segmentation and reconstruction took 1-2 h. To be able to combine the volumes from the different data sets, certain criteria had to be fulfilled: (a) the field of view had to be constant; (b) the same volume had to be scanned every time which meant that the slice thickness and the number of slices could be adjusted as long as the volume covered was the same; and (c) the positioning of each volume had to be identical between every scan. The resulting 3D reconstruction gave the surgeon a clear appreciation of the different lesions and their relation to the different liver segments in the pre-operative planning of hepatic resections. (orig.)

  7. Characteristic test results of reduced-scale lead and 3D laminated rubber bearings for seismic isolation design of liquid metal reactor

    Yoo, B.; Lee, Jae Han; Kwon, H. S.

    1999-06-01

    Through the fabrications and the tests of reduced scale rubber bearing by several times since 1995, the technology related to the bearings has been improved. In this report, several lead rubber bearings (LLRB) with different lead plug diameters, high damping rubber bearing (HLRB), and 3D-LRB made of UNISON NR (natural rubber) compounds are tested to get the hysteretic characteristics of rubber bearings. Specially, the HLRB and 3D-LRB are tested for the vertical deformation characteristics. All the test data are plotted and analyzed to be compared with design target values such as equivalent horizontal stiffness and equivalent damping ration. The variations of the equivalent horizontal stiffness and damping for the lead and the 3D-LRB are evaluated from test data in the range of 25% to 150% of shear strain in horizontal direction. As increasing the lead plug diameter up to 48 mm, the values of yield load, equivalent stiffness, and equivalent damping are increased, and the maximum damping of 31 % are horizontal performance during compression and shear tests. Through the vertical performance tests of HLRB and 3D-LRB, it is reveal that the vertical stiffness of HLRB is 15.57 ton/mm, which is much lower than target value by 1/4, and the vertical stiffness of 3D-LRB show in the range of 2.17 ton/mm to 4.4 ton/mm, which are higher than the design target 1.25 ton/mm by about 2 times. The vertical equivalent damping of HLRB is 11.48%, but the ones of 3D-LRB show large variations between 8 % and 54%. There are no difference between the first and after curves of the vertical hysteresis of 3D-LRB and no dependency of test speed because the dish springs take the vertical behaviors of 3D-LRB. (author). 8 refs., 38 tabs., 47 figs

  8. Strategies for Sharing Seismic Data Among Multiple Computer Platforms

    Baker, L. M.; Fletcher, J. B.

    2001-12-01

    the user. Commercial software packages, such as MatLab, also have the ability to share data in their own formats across multiple computer platforms. Our Fortran applications can create plot files in Adobe PostScript, Illustrator, and Portable Document Format (PDF) formats. Vendor support for reading these files is readily available on multiple computer platforms. We will illustrate by example our strategies for sharing seismic data among our multiple computer platforms, and we will discuss our positive and negative experiences. We will include our solutions for handling the different byte ordering, floating-point formats, and text file ``end-of-line'' conventions on the various computer platforms we use (6 different operating systems on 5 processor architectures).

  9. Hepatic toxicology following single and multiple exposure of engineered nanomaterials utilising a novel primary human 3D liver microtissue model

    Kermanizadeh, Ali; Løhr, Mille; Roursgaard, Martin

    2014-01-01

    BackgroundThe liver has a crucial role in metabolic homeostasis as well as being the principal detoxification centre of the body, removing xenobiotics and waste products which could potentially include some nanomaterials (NM). With the ever increasing public and occupational exposure associated...... with accumulative production of nanomaterials, there is an urgent need to consider the possibility of detrimental health consequences of engineered NM exposure. It has been shown that exposure via inhalation, intratracheal instillation or ingestion can result in NM translocation to the liver. Traditional in vitro...... or ex vivo hepatic nanotoxicology models are often limiting and/or troublesome (i.e. reduced metabolism enzymes, lacking important cell populations, unstable with very high variability, etc.).MethodsIn order to rectify these issues and for the very first time we have utilised a 3D human liver...

  10. Contribution of seismic processing to put up the scaffolding for the 3-dimensional study of deep sedimentary basins: the fundaments of trans-national 3D modelling in the project GeoMol

    Capar, Laure

    2013-04-01

    Within the framework of the transnational project GeoMol geophysical and geological information on the entire Molasse Basin and on the Po Basin are gathered to build consistent cross-border 3D geological models based on borehole evidence and seismic data. Benefiting from important progress in seismic processing, these new models will provide some answers to various questions regarding the usage of subsurface resources, as there are geothermal energy, CO2 and gas storage, oil and gas production, and support decisions-making to national and local administrations as well as to industries. More than 28 000 km of 2D seismic lines are compiled reprocessed and harmonized. This work faces various problems like the vertical drop of more than 700 meters between West and East of the Molasse Basin and to al lesser extent in the Po Plain, the heterogeneities of the substratum, the large disparities between the period and parameters of seismic acquisition, and depending of their availability, the use of two types of seismic data, raw and processed seismic data. The main challenge is to harmonize all lines at the same reference level, amplitude and step of signal processing from France to Austria, spanning more than 1000 km, to avoid misfits at crossing points between seismic lines and artifacts at the country borders, facilitating the interpretation of the various geological layers in the Molasse Basin and Po Basin. A generalized stratigraphic column for the two basins is set up, representing all geological layers relevant to subsurface usage. This stratigraphy constitutes the harmonized framework for seismic reprocessing. In general, processed seismic data is available on paper at stack stage and the mandatory information to take these seismic lines to the final stage of processing, the migration step, are datum plane and replacement velocity. However several datum planes and replacement velocities were used during previous processing projects. Our processing sequence is to

  11. 3D seismic travel time surveying - a comparison of the time-term method and tomography (an example from an archaeological site)

    Valenta, Jan; Dohnal, J.

    2007-01-01

    Roč. 63, č. 1 (2007), s. 46-58 ISSN 0926-9851 Institutional research plan: CEZ:AV0Z30460519 Keywords : shallow seismic * tomography * archaeology Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.938, year: 2007

  12. Neoarchaean tectonic history of the Witwatersrand Basin and Ventersdorp Supergroup: New constraints from high-resolution 3D seismic reflection data

    Manzi, MSD

    2013-04-01

    Full Text Available Rand Group (ca. 2985–2902 Ma) is unconformably overlain by the Central Rand Group (ca. 2902–2849 Ma), with tilting of the West Rand Group syn- to post-erosion at ca. 2.9 Ga. The seismic sections also confirm that an unconformable relationship exists...

  13. IMU and Multiple RGB-D Camera Fusion for Assisting Indoor Stop-and-Go 3D Terrestrial Laser Scanning

    Jacky C.K. Chow

    2014-07-01

    Full Text Available Autonomous Simultaneous Localization and Mapping (SLAM is an important topic in many engineering fields. Since stop-and-go systems are typically slow and full-kinematic systems may lack accuracy and integrity, this paper presents a novel hybrid “continuous stop-and-go” mobile mapping system called Scannect. A 3D terrestrial LiDAR system is integrated with a MEMS IMU and two Microsoft Kinect sensors to map indoor urban environments. The Kinects’ depth maps were processed using a new point-to-plane ICP that minimizes the reprojection error of the infrared camera and projector pair in an implicit iterative extended Kalman filter (IEKF. A new formulation of the 5-point visual odometry method is tightly coupled in the implicit IEKF without increasing the dimensions of the state space. The Scannect can map and navigate in areas with textureless walls and provides an effective means for mapping large areas with lots of occlusions. Mapping long corridors (total travel distance of 120 m took approximately 30 minutes and achieved a Mean Radial Spherical Error of 17 cm before smoothing or global optimization.

  14. A Tracking Analyst for large 3D spatiotemporal data from multiple sources (case study: Tracking volcanic eruptions in the atmosphere)

    Gad, Mohamed A.; Elshehaly, Mai H.; Gračanin, Denis; Elmongui, Hicham G.

    2018-02-01

    This research presents a novel Trajectory-based Tracking Analyst (TTA) that can track and link spatiotemporally variable data from multiple sources. The proposed technique uses trajectory information to determine the positions of time-enabled and spatially variable scatter data at any given time through a combination of along trajectory adjustment and spatial interpolation. The TTA is applied in this research to track large spatiotemporal data of volcanic eruptions (acquired using multi-sensors) in the unsteady flow field of the atmosphere. The TTA enables tracking injections into the atmospheric flow field, the reconstruction of the spatiotemporally variable data at any desired time, and the spatiotemporal join of attribute data from multiple sources. In addition, we were able to create a smooth animation of the volcanic ash plume at interactive rates. The initial results indicate that the TTA can be applied to a wide range of multiple-source data.

  15. National Earthquake Information Center Seismic Event Detections on Multiple Scales

    Patton, J.; Yeck, W. L.; Benz, H.; Earle, P. S.; Soto-Cordero, L.; Johnson, C. E.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center (NEIC) monitors seismicity on local, regional, and global scales using automatic picks from more than 2,000 near-real time seismic stations. This presents unique challenges in automated event detection due to the high variability in data quality, network geometries and density, and distance-dependent variability in observed seismic signals. To lower the overall detection threshold while minimizing false detection rates, NEIC has begun to test the incorporation of new detection and picking algorithms, including multiband (Lomax et al., 2012) and kurtosis (Baillard et al., 2014) pickers, and a new bayesian associator (Glass 3.0). The Glass 3.0 associator allows for simultaneous processing of variably scaled detection grids, each with a unique set of nucleation criteria (e.g., nucleation threshold, minimum associated picks, nucleation phases) to meet specific monitoring goals. We test the efficacy of these new tools on event detection in networks of various scales and geometries, compare our results with previous catalogs, and discuss lessons learned. For example, we find that on local and regional scales, rapid nucleation of small events may require event nucleation with both P and higher-amplitude secondary phases (e.g., S or Lg). We provide examples of the implementation of a scale-independent associator for an induced seismicity sequence (local-scale), a large aftershock sequence (regional-scale), and for monitoring global seismicity. Baillard, C., Crawford, W. C., Ballu, V., Hibert, C., & Mangeney, A. (2014). An automatic kurtosis-based P-and S-phase picker designed for local seismic networks. Bulletin of the Seismological Society of America, 104(1), 394-409. Lomax, A., Satriano, C., & Vassallo, M. (2012). Automatic picker developments and optimization: FilterPicker - a robust, broadband picker for real-time seismic monitoring and earthquake early-warning, Seism. Res. Lett. , 83, 531-540, doi: 10

  16. 3D object-oriented image analysis in 3D geophysical modelling

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  17. Full wavefield migration: Seismic imaging using multiple scattering effects

    Davydenko, M.

    2016-01-01

    Seismic imaging aims at revealing the structural information of the subsurface using the reflected wavefields captured by sensors usually located at the surface. Wave propagation is a complex phenomenon and the measured data contain a set of backscattered events including not only primary

  18. Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning

    Vetrivel, Anand; Gerke, Markus; Kerle, Norman; Nex, Francesco; Vosselman, George

    2018-06-01

    Oblique aerial images offer views of both building roofs and façades, and thus have been recognized as a potential source to detect severe building damages caused by destructive disaster events such as earthquakes. Therefore, they represent an important source of information for first responders or other stakeholders involved in the post-disaster response process. Several automated methods based on supervised learning have already been demonstrated for damage detection using oblique airborne images. However, they often do not generalize well when data from new unseen sites need to be processed, hampering their practical use. Reasons for this limitation include image and scene characteristics, though the most prominent one relates to the image features being used for training the classifier. Recently features based on deep learning approaches, such as convolutional neural networks (CNNs), have been shown to be more effective than conventional hand-crafted features, and have become the state-of-the-art in many domains, including remote sensing. Moreover, often oblique images are captured with high block overlap, facilitating the generation of dense 3D point clouds - an ideal source to derive geometric characteristics. We hypothesized that the use of CNN features, either independently or in combination with 3D point cloud features, would yield improved performance in damage detection. To this end we used CNN and 3D features, both independently and in combination, using images from manned and unmanned aerial platforms over several geographic locations that vary significantly in terms of image and scene characteristics. A multiple-kernel-learning framework, an effective way for integrating features from different modalities, was used for combining the two sets of features for classification. The results are encouraging: while CNN features produced an average classification accuracy of about 91%, the integration of 3D point cloud features led to an additional

  19. Exploration of the South-Eastern Alps lithosphere with 3D refraction seismics project Alp 2002 – data acquisition in Slovenia

    Andrej Gosar

    2003-06-01

    Full Text Available Using combined seismic refraction/wide-angle reflection method project Alp 2002 explored the contact zone between South-Eastern Alps, Dinarides and Pannonian basin. In a network of 12 profiles of 4100 km total length, which are spread over seven countries,1055 portable seismographs were deployed and 31 strong (300 kg explosions fired. In Slovenia 127 seismographs were deployed along five profiles totalling 575 km and two explosions fired near Vojnik and Gradin. The collected data will allow construction of athree-dimensional model of the lithosphere and will contribute to the understanding of the tectonics and geodynamics at the junction of European, Adriatic and Tisza plates.

  20. Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise

    Debussche, A.; Glatt-Holtz, N.; Temam, R.; Ziane, M.

    2012-07-01

    The primitive equations (PEs) are a basic model in the study of large scale oceanic and atmospheric dynamics. These systems form the analytical core of the most advanced general circulation models. For this reason and due to their challenging nonlinear and anisotropic structure, the PEs have recently received considerable attention from the mathematical community. On the other hand, in view of the complex multi-scale nature of the earth's climate system, many uncertainties appear that should be accounted for in the basic dynamical models of atmospheric and oceanic processes. In the climate community stochastic methods have come into extensive use in this connection. For this reason there has appeared a need to further develop the foundations of nonlinear stochastic partial differential equations in connection with the PEs and more generally. In this work we study a stochastic version of the PEs. We establish the global existence and uniqueness of strong, pathwise solutions for these equations in dimension 3 for the case of a nonlinear multiplicative noise. The proof makes use of anisotropic estimates, L^{p}_{t}L^{q}_{x} estimates on the pressure and stopping time arguments.

  1. Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise

    Debussche, A; Glatt-Holtz, N; Temam, R; Ziane, M

    2012-01-01

    The primitive equations (PEs) are a basic model in the study of large scale oceanic and atmospheric dynamics. These systems form the analytical core of the most advanced general circulation models. For this reason and due to their challenging nonlinear and anisotropic structure, the PEs have recently received considerable attention from the mathematical community. On the other hand, in view of the complex multi-scale nature of the earth's climate system, many uncertainties appear that should be accounted for in the basic dynamical models of atmospheric and oceanic processes. In the climate community stochastic methods have come into extensive use in this connection. For this reason there has appeared a need to further develop the foundations of nonlinear stochastic partial differential equations in connection with the PEs and more generally. In this work we study a stochastic version of the PEs. We establish the global existence and uniqueness of strong, pathwise solutions for these equations in dimension 3 for the case of a nonlinear multiplicative noise. The proof makes use of anisotropic estimates, L p t L q x estimates on the pressure and stopping time arguments

  2. Conversion of 3D seismic attributes to reservoir hydraulic flow units using a neural network approach: An example from the Kangan and Dalan carbonate reservoirs, the world's largest non-associated gas reservoirs, near the Persian Gulf

    Mohammad Amin Dezfoolian

    2013-07-01

    Full Text Available This study presents an intelligent model based on probabilistic neural networks (PNN to produce a quantitative formulation between seismic attributes and hydraulic flow units (HFUs. Neural networks have been used for the last several years to estimate reservoir properties. However, their application for hydraulic flow unit estimation on a cube of seismic data is an interesting topic for research. The methodology for this application is illustrated using 3D seismic attributes and petrophysical and core data from 6 wells from the Kangan and Dalan gas reservoirs in the Persian Gulf basin. The methodology introduced in this study estimates HFUs from a large volume of 3D seismic data. This may increase exploration success rates and reduce costs through the application of more reliable output results in hydrocarbon exploration programs. 4 seismic attributes, including acoustic impedance, dominant fre- quency, amplitude weighted phase and instantaneous phase, are considered as the optimal inputs for pre- dicting HFUs from seismic data. The proposed technique is successfully tested in a carbonate sequence of Permian-Triassic rocks from the studied area. The results of this study demonstrate that there is a good agreement between the core and PNN-derived flow units. The PNN used in this study is successful in modeling flow units from 3D seismic data for which no core data or well log data are available.  Resumen Este estudio presenta un modelo inteligente basado en redes neuronales probabilísticas (PNN para pro- ducir una formulación cuantitativa entre atributos sísmicos y unidades de flujo hidráulico (HFU. Las redes neuronales han sido utilizadas durante los últimos años para estimar las propiedades de reserva. Sin embargo, su aplicación para estimación de unidades de flujo hidráulico en un cubo de datos sísmicos es un tema importante de investigación. La metodología para esta aplicación está ilustrada a partir de datos tridimensionales y

  3. Feasibility evaluation of 3D photoacoustic imaging of blood vessel structure using multiple wavelengths with a handheld probe

    Uchimoto, Yo; Namita, Takeshi; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    2018-02-01

    Photoacoustic imaging is anticipated for use in portraying blood vessel structures (e.g. neovascularization in inflamed regions). To reduce invasiveness and enhance ease handling, we developed a handheld photoacoustic imaging system using multiple wavelengths. The usefulness of the proposed system was investigated in phantom experiments and in vivo measurements. A silicon tube was embedded into chicken breast meat to simulate the blood vessel. The tube was filled with ovine blood. Then laser light was guided to the phantom surface by an optical fiber bundle close to the linear ultrasound probe. Photoacoustic images were obtained at 750-950 nm wavelengths. Strong photoacoustic signals from the boundary between blood and silicon tube are observed in these images. The shape of photoacoustic spectrum at the boundary resembles that of the HbO2 absorption spectrum at 750-920 nm. In photoacoustic images, similarity between photoacoustic spectrum and HbO2 absorption spectrum was evaluated by calculating the normalized correlation coefficient. Results show high correlation in regions of strong photoacoustic signals in photoacoustic images. These analyses demonstrate the feasibility of portraying blood vessel structures under practical conditions. To evaluate the feasibility of three-dimensional vascular imaging, in vivo experiments were conducted using three wavelengths. A right hand and ultrasound probe were set in degassed water. By scanning a probe, cross-sectional ultrasound and photoacoustic images were obtained at each location. Then, all ultrasound or photoacoustic images were piled up respectively. Then three-dimensional images were constructed. Resultant images portrayed blood vessel-like structures three-dimensionally. Furthermore, to distinguish blood vessels from other tissues (e.g. skin), distinguishing images of them were constructed by comparing photoacoustic signal intensity among three wavelengths. The resultant image portrayed blood vessels as

  4. Base Isolation for Seismic Retrofitting of a Multiple Building Structure: Design, Construction, and Assessment

    Massimiliano Ferraioli

    2017-01-01

    Full Text Available The paper deals with the seismic retrofit of a multiple building structure belonging to the Hospital Centre of Avellino (Italy. At first, the paper presents the preliminary investigations, the in situ measurements and laboratory tests, and the seismic assessment of the existing fixed-base structures. Having studied different strategies, base isolation proved to be the more appropriate, also for the possibility offered by the geometry of the building to easily create an isolation interface at the ground level. The paper presents the design project, the construction process, and the details of the isolation intervention. Some specific issues of base isolation for seismic retrofitting of multiple building structures were lightened. Finally, the seismic assessment of the base-isolated building was carried out. The seismic response was evaluated through nonlinear time-history analysis, using the well-known Bouc-Wen model as the constitutive law of the isolation bearings. For reliable dynamic analyses, a suite of natural accelerograms compatible with acceleration spectra of Italian Code was first selected and then applied along both horizontal directions. The results were finally used to address some of the critical issues of the seismic response of the base-isolated multiple building structure: accidental torsional effects and potential poundings during strong earthquakes.

  5. S/N improvement method for 3D seismic data; Sanjigen jishin tansa data no S/N hi kaizenho ni tsuite

    Minegishi, M; Sato, M [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-10-22

    Discussions were given on a method to suppress coherent noise in data derived from a non-uniform vibration transmitting-receiving point layout in three-dimensional seismic exploration. The discussions attempted suppression of coherent noise by utilizing a prediction filter for the frequency-space zone. The prediction filter for the frequency-space zone is a filter which handles coherent waveforms found in the record as a signal, and attenuates random noise. Methods to remove coherent noise may include paralleling of signals, making the tracing order random, use of an FX prediction filter, restoration of the tracing order, and restoration of the signal positions. As a result of the discussion using a simple model, it was made clear that coherent noise distributed spatially can be suppressed and signals can be extracted by applying the frequency-space zone filter. In addition, the signals extracted by this operation were found to maintain well the original waveforms. 7 refs., 9 figs.

  6. Random noise attenuation of non-uniformly sampled 3D seismic data along two spatial coordinates using non-equispaced curvelet transform

    Zhang, Hua; Yang, Hui; Li, Hongxing; Huang, Guangnan; Ding, Zheyi

    2018-04-01

    The attenuation of random noise is important for improving the signal to noise ratio (SNR). However, the precondition for most conventional denoising methods is that the noisy data must be sampled on a uniform grid, making the conventional methods unsuitable for non-uniformly sampled data. In this paper, a denoising method capable of regularizing the noisy data from a non-uniform grid to a specified uniform grid is proposed. Firstly, the denoising method is performed for every time slice extracted from the 3D noisy data along the source and receiver directions, then the 2D non-equispaced fast Fourier transform (NFFT) is introduced in the conventional fast discrete curvelet transform (FDCT). The non-equispaced fast discrete curvelet transform (NFDCT) can be achieved based on the regularized inversion of an operator that links the uniformly sampled curvelet coefficients to the non-uniformly sampled noisy data. The uniform curvelet coefficients can be calculated by using the inversion algorithm of the spectral projected-gradient for ℓ1-norm problems. Then local threshold factors are chosen for the uniform curvelet coefficients for each decomposition scale, and effective curvelet coefficients are obtained respectively for each scale. Finally, the conventional inverse FDCT is applied to the effective curvelet coefficients. This completes the proposed 3D denoising method using the non-equispaced curvelet transform in the source-receiver domain. The examples for synthetic data and real data reveal the effectiveness of the proposed approach in applications to noise attenuation for non-uniformly sampled data compared with the conventional FDCT method and wavelet transformation.

  7. Seismic isolation systems designed with distinct multiple frequencies

    Wu, Ting-shu; Seidensticker, R.W.

    1991-01-01

    Two systems for seismic base isolation are presented. The main feature of these system is that, instead of only one isolation frequency as in conventional isolation systems, they are designed to have two distinct isolation frequencies. When the responses during an earthquake exceed the design value(s), the system will automatically and passively shift to the secondly isolation frequency. Responses of these two systems to different ground motions including a harmonic motion with frequency same as the primary isolation frequency, show that no excessive amplification will occur. Adoption of these new systems certainly will greatly enhance the safety and reliability of an isolated superstructure against future strong earthquakes. 3 refs

  8. Multiple Reflections and Fresnel Absorption of Gaussian Laser Beam in an Actual 3D Keyhole during Deep-Penetration Laser Welding

    Xiangzhong Jin

    2012-01-01

    Full Text Available In deep penetration laser welding, a keyhole is formed in the material. Based on an experimentally obtained bending keyhole from low- and medium-speed laser penetration welding of glass, the keyhole profiles in both the symmetric plane are determined by polynomial fitting. Then, a 3D bending keyhole is reconstructed under the assumption of circular cross-section of the keyhole at each keyhole depth. In this paper, the behavior of focused Gaussian laser beam in the keyhole is analyzed by tracing a ray of light using Gaussian optics theory, the Fresnel absorption and multiple reflections in the keyhole are systematically studied, and the laser intensities absorbed on the keyhole walls are calculated. Finally, the formation mechanism of the keyhole is deduced.

  9. 3D Animation Essentials

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  10. 3D video

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  11. Quantitative Prediction of Coalbed Gas Content Based on Seismic Multiple-Attribute Analyses

    Renfang Pan

    2015-09-01

    Full Text Available Accurate prediction of gas planar distribution is crucial to selection and development of new CBM exploration areas. Based on seismic attributes, well logging and testing data we found that seismic absorption attenuation, after eliminating the effects of burial depth, shows an evident correlation with CBM gas content; (positive structure curvature has a negative correlation with gas content; and density has a negative correlation with gas content. It is feasible to use the hydrocarbon index (P*G and pseudo-Poisson ratio attributes for detection of gas enrichment zones. Based on seismic multiple-attribute analyses, a multiple linear regression equation was established between the seismic attributes and gas content at the drilling wells. Application of this equation to the seismic attributes at locations other than the drilling wells yielded a quantitative prediction of planar gas distribution. Prediction calculations were performed for two different models, one using pre-stack inversion and the other one disregarding pre-stack inversion. A comparison of the results indicates that both models predicted a similar trend for gas content distribution, except that the model using pre-stack inversion yielded a prediction result with considerably higher precision than the other model.

  12. 3D fluid-structure modelling and vibration analysis for fault diagnosis of Francis turbine using multiple ANN and multiple ANFIS

    Saeed, R. A.; Galybin, A. N.; Popov, V.

    2013-01-01

    This paper discusses condition monitoring and fault diagnosis in Francis turbine based on integration of numerical modelling with several different artificial intelligence (AI) techniques. In this study, a numerical approach for fluid-structure (turbine runner) analysis is presented. The results of numerical analysis provide frequency response functions (FRFs) data sets along x-, y- and z-directions under different operating load and different position and size of faults in the structure. To extract features and reduce the dimensionality of the obtained FRF data, the principal component analysis (PCA) has been applied. Subsequently, the extracted features are formulated and fed into multiple artificial neural networks (ANN) and multiple adaptive neuro-fuzzy inference systems (ANFIS) in order to identify the size and position of the damage in the runner and estimate the turbine operating conditions. The results demonstrated the effectiveness of this approach and provide satisfactory accuracy even when the input data are corrupted with certain level of noise.

  13. Seismic response analysis of structural system subjected to multiple support excitation

    Wu, R.W.; Hussain, F.A.; Liu, L.K.

    1978-01-01

    In the seismic analysis of a multiply supported structural system subjected to nonuniform excitations at each support point, the single response spectrum, the time history, and the multiple response spectrum are the three commonly employed methods. In the present paper the three methods are developed, evaluated, and the limitations and advantages of each method assessed. A numerical example has been carried out for a typical piping system. Considerably smaller responses have been predicted by the time history method than that by the single response spectrum method. This is mainly due to the fact that the phase and amplitude relations between the support excitations are faithfully retained in the time history method. The multiple response spectrum prediction has been observed to compare favourably with the time history method prediction. Based on the present evaluation, the multiple response spectrum method is the most efficient method for seismic response analysis of structural systems subjected to multiple support excitation. (Auth.)

  14. Seismic qualification of nuclear equipment under multiple support excitations

    Neelwarne, A.; Kushwaha, H.S.; Kakodkar, A.

    1991-01-01

    ERS (Envelop Response Spectrum) is a conservative method for seismic analysis of equipment without overhang whereas it may severely underestimate the response, as compared to the time history response, for the case of overhanging equipment. However, MSRS (Multi Support Response Spectrum) method appears to give conservative results for both class of equipment. Inability to account a) magnification of response and b) contribution of antisymmetric modes resulting from relative support motion are found to be the reasons for unconservatism of ERS method. A simple criterion for selection of proper method, between ERS and MSRS, for the analysis of overhanging equipment is developed. The criterion is based on correlation of modal mass with the modal normal coordinate and is applicable to generalised equipment of non uniform mass and stiffness distribution. It is shown that; 1) MSRS method must be adopted if equipment first mode corresponds to vibration of overhanging masses. 2) MSRS method should be adopted if the modal mass for the first mode is less than 15 % of equipment mass. 3) Algebraic support group combination appears to give realistic results for the analysis of equipment. This is due to the dominant cantilever beam like behaviour of primary structure resulting in near in-phase motion at equipment supports. (author)

  15. ACM-based automatic liver segmentation from 3-D CT images by combining multiple atlases and improved mean-shift techniques.

    Ji, Hongwei; He, Jiangping; Yang, Xin; Deklerck, Rudi; Cornelis, Jan

    2013-05-01

    In this paper, we present an autocontext model(ACM)-based automatic liver segmentation algorithm, which combines ACM, multiatlases, and mean-shift techniques to segment liver from 3-D CT images. Our algorithm is a learning-based method and can be divided into two stages. At the first stage, i.e., the training stage, ACM is performed to learn a sequence of classifiers in each atlas space (based on each atlas and other aligned atlases). With the use of multiple atlases, multiple sequences of ACM-based classifiers are obtained. At the second stage, i.e., the segmentation stage, the test image will be segmented in each atlas space by applying each sequence of ACM-based classifiers. The final segmentation result will be obtained by fusing segmentation results from all atlas spaces via a multiclassifier fusion technique. Specially, in order to speed up segmentation, given a test image, we first use an improved mean-shift algorithm to perform over-segmentation and then implement the region-based image labeling instead of the original inefficient pixel-based image labeling. The proposed method is evaluated on the datasets of MICCAI 2007 liver segmentation challenge. The experimental results show that the average volume overlap error and the average surface distance achieved by our method are 8.3% and 1.5 m, respectively, which are comparable to the results reported in the existing state-of-the-art work on liver segmentation.

  16. EUROPEANA AND 3D

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  17. Fluids emission and gas chimneys imaged in high-resolution 3D seismic: Investigating the role of sedimentary structures in controlling vertical fluid migration (offshore of Ceará-Potiguar sub-basin, Brazil).

    Maestrelli, Daniele; Iacopini, David; Vittorio, Maselli

    2017-04-01

    Fluid emissions at seabed have been widely investigated during last years due to their potential in detecting new petroleum provinces and to their role in monitoring the environmental risk associated to CO2 storage and hydrocarbon leakage from the overburden. Fluid emission appears to be characterized by a variety of different processes and genetic mechanisms, and has been reported in different geological settings. We investigated a 45 by 25 km 3D seismic dataset located in the offshore Ceará state (Brazil), imaging the submarine slope system of the Potiguar sub-basin, part of the Ceará basin. The Paleogene sequence is characterized by a series of steep canyons acting as slope-bypass systems that force the transport of sediment basinward and promote the deposition in deepwater settings. The whole area seems to be affected by gravity driven processes in the form of turbidites and hyperpycnal flows that probably are responsible of the main submarine landslides observed and of the evolution of the canyons themselves. Bottom currents seem to play a key role in shaping the margin as well, by promoting the formation of sediment ridges and fields of sediment waves. In this setting, a series of widely distributed active pockmarks are observed both at the seabed and as paleo-pockmarks in the seismic subsurface, testifying the upward fluid migration and emission along gas chimneys and conduits. Active or recent pockmark varies from tens of meters up to about 2 km in diameters and are mainly circular to elliptical. A preliminary systematic mapping of those fluid escape features shows the strong control of the chutes and pools generated by fast turbidity currents on the chimney geometry pattern and fluid conduit. This evidence may suggest that the erosional/depositional features associated to turbidite sedimentation strongly control lateral permeability variations and, consequently, the vertical fluid migration.

  18. Open 3D Projects

    Felician ALECU

    2010-01-01

    Full Text Available Many professionals and 3D artists consider Blender as being the best open source solution for 3D computer graphics. The main features are related to modeling, rendering, shading, imaging, compositing, animation, physics and particles and realtime 3D/game creation.

  19. Multiple Seismic Array Observations for Tracing Deep Tremor Activity in Western Shikoku, Japan

    Takeda, T.; Matsuzawa, T.; Shiomi, K.; Obara, K.

    2011-12-01

    Deep non-volcanic tremors become very active during episodic slow-slip events in western Japan and Cascadia. The episodic tremor and slow-slip events in western Shikoku, Japan, occur at a typical interval of 6 months. Recently, it has been reported that tremor migration activity is complex and shows different migrating directions depending on time scales (Ghosh et al., 2010). Such characteristics of tremor are important to understand the mechanism of tremor and the relationship between tremor and SSEs. However it is difficult to determine the location of tremors with high accuracy because tremors show faint signals and make the identification of P/S-wave arrivals difficult. Seismic array analysis is useful to evaluate tremor activity, especially to estimate the arrival direction of seismic energy (e.g. Ueno et al., 2010, Ghosh et al., 2010), as it can distinguish multiple tremor sources occurring simultaneously. Here, we have conducted seismic array observation and analyzed seismic data during tremor activity by applying the MUSIC method to trace tremor location and its migration in western Shikoku. We have installed five seismic arrays in western Shikoku since January 2011. One of the arrays contains 30 stations with 3-component seismometers with a natural frequency of 2 Hz (Type-L array). The array aperture size is 2 km and the mean interval between stations is approximately 200 m. Each of the other arrays (Type-S array) contains 9 seismic stations with the same type of seismometers of the Type-L array, and is deployed surrounding the Type-L array. The small array aperture size is 800 m and its mean station interval is approximately 150 m. All array stations have recorded continuous waveform data at a sampling of 200Hz. In May 2011, an episodic tremor and a short-term slip event occurred for the first time during the observation period. We could retrieve the array seismic data during the whole tremor episode. The analysis of data from the type-L array confirms

  20. LOTT RANCH 3D PROJECT

    Larry Lawrence; Bruce Miller

    2004-01-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  1. Seismic PSA method for multiple nuclear power plants in a site

    Hakata, Tadakuni [Nuclear Safety Commission, Tokyo (Japan)

    2007-07-15

    The maximum number of nuclear power plants in a site is eight and about 50% of power plants are built in sites with three or more plants in the world. Such nuclear sites have potential risks of simultaneous multiple plant damages especially at external events. Seismic probabilistic safety assessment method (Level-1 PSA) for multi-unit sites with up to 9 units has been developed. The models include Fault-tree linked Monte Carlo computation, taking into consideration multivariate correlations of components and systems from partial to complete, inside and across units. The models were programmed as a computer program CORAL reef. Sample analysis and sensitivity studies were performed to verify the models and algorithms and to understand some of risk insights and risk metrics, such as site core damage frequency (CDF per site-year) for multiple reactor plants. This study will contribute to realistic state of art seismic PSA, taking consideration of multiple reactor power plants, and to enhancement of seismic safety. (author)

  2. The yearly rate of Relative Thalamic Atrophy (yrRTA): a simple 2D/3D method for estimating deep gray matter atrophy in Multiple Sclerosis.

    Menéndez-González, Manuel; Salas-Pacheco, José M; Arias-Carrión, Oscar

    2014-01-01

    Despite a strong correlation to outcome, the measurement of gray matter (GM) atrophy is not being used in daily clinical practice as a prognostic factor and monitor the effect of treatments in Multiple Sclerosis (MS). This is mainly because the volumetric methods available to date are sophisticated and difficult to implement for routine use in most hospitals. In addition, the meanings of raw results from volumetric studies on regions of interest are not always easy to understand. Thus, there is a huge need of a methodology suitable to be applied in daily clinical practice in order to estimate GM atrophy in a convenient and comprehensive way. Given the thalamus is the brain structure found to be more consistently implied in MS both in terms of extent of atrophy and in terms of prognostic value, we propose a solution based in this structure. In particular, we propose to compare the extent of thalamus atrophy with the extent of unspecific, global brain atrophy, represented by ventricular enlargement. We name this ratio the "yearly rate of Relative Thalamic Atrophy" (yrRTA). In this report we aim to describe the concept of yrRTA and the guidelines for computing it under 2D and 3D approaches and explain the rationale behind this method. We have also conducted a very short crossectional retrospective study to proof the concept of yrRTA. However, we do not seek to describe here the validity of this parameter since these researches are being conducted currently and results will be addressed in future publications.

  3. The yearly rate of Relative Thalamic Atrophy (yrRTA: a simple 2D/3D method for estimating deep gray matter atrophy in Multiple Sclerosis

    Manuel eMenéndez-González

    2014-08-01

    Full Text Available Despite a strong correlation to outcome, the measurement of gray matter (GM atrophy is not being used in daily clinical practice as a prognostic factor and monitor the effect of treatments in Multiple Sclerosis (MS. This is mainly because the volumetric methods available to date are sophisticated and difficult to implement for routine use in most hospitals. In addition, the meaning of raw results from volumetric studies on regions of interest are not always easy to understand. Thus, there is a huge need of a methodology suitable to be applied in daily clinical practice in order to estimate GM atrophy in a convenient and comprehensive way. Given the thalamus is the brain structure found to be more consistently implied in MS both in terms of extent of atrophy and in terms of prognostic value, we propose a solution based in this structure. In particular, we propose to compare the extent of thalamus atrophy (TA with the extent of unspecific, global brain atrophy, represented by ventricular enlargement. We name this ratio the yearly rate of Relative Thalamic Atrophy (yrRTA. In this report we aim to describe the concept of yrRTA and the guidelines for computing it under 2D and 3D approaches and explain the rationale behind this method. We have also conducted a very short crossectional retrospective study to proof the concept of yrRTA. However, we do not seek to describe here the validity of this parameter since these researches are being conducted currently and results will be addressed in future publications.

  4. Refined 3d-3d correspondence

    Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; Loon, Mark van [Mathematical Institute, University of Oxford, Andrew Wiles Building,Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG (United Kingdom)

    2017-04-28

    We explore aspects of the correspondence between Seifert 3-manifolds and 3d N=2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N=2 theories constructed from boundary conditions and interfaces in a 4d N=2{sup ∗} theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-’t Hooft loops in the 4d N=2{sup ∗} theory. In the presence of a mass parameter for the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.

  5. A 3d-3d appetizer

    Pei, Du; Ye, Ke [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125 (United States)

    2016-11-02

    We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T[L(p,1)] and the partition function of complex Chern-Simons theory on L(p,1). In particular, for p=1, we show how the familiar S{sup 3} partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p,1)] becomes a constant independent of p. In addition, we study T[L(p,1)] on the squashed three-sphere S{sub b}{sup 3}. This enables us to see clearly, at the level of partition function, to what extent G{sub ℂ} complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  6. Dissociative multiple photoionization of SiBr4 and GeBr4 in the VUV and X-ray regions: a comparative study of inner-shell processes involving Si(2p, 2s), Ge(3d, 3p, 3s), and Br(3d, 3p, 3s)

    Boo, Bong Hyun; Saito, Norio

    2003-01-01

    Dissociative multiple photoionization of MBr 4 (M=Si, Ge) in the Si(2p, 2s), Ge(3d, 3s, 3p), and Br(3d, 3p, 3s) inner-shell regions has been studied by using time-of-flight (TOF) mass spectrometry coupled to synchrotron radiation in the ranges of 50∼944 eV for SiBr 4 and 50∼467 eV for GeBr 4 . Total photoion and photoion-photoion coincidence (PIPICO) yields have been measured as functions of the photon energy. Here, giant shape resonances have been observed beyond the thresholds of the 3d shells owing to the Br(3d 10 )→Br(3d 9 -f) excitation, showing the similar patterns for both of the systems. The ranges and the intensities of the shape resonances are found to be tremendously broad and enhanced, respectively, by the tetrahedral arrangement of the bromine ligands. In addition to the giant resonances, we have observed discrete features corresponding to the Br(3d), Si(2p), and Si(2s) in SiBr 4 and to the Br(3d), Ge(3p), and Ge(3s) in GeBr 4 . The dissociation processes of multiply charged parent ions have also been evaluated from the variations of photoelectron-photoion coincidence (PEPICO) and PIPICO yields with the photon energy. Over the entire energies examined, most efficient PIPICO channels involve Br + -Br + , Br + -MBr + , and M + -Br + (M=Si, Ge), the formation of which indicates that the total destruction of the molecules is a dominant process in the dissociative photoionization of the molecules

  7. Dissociative multiple photoionization of Br2, IBr, and I2 in the VUV and X-ray regions: a comparative study of the inner-shell processes involving Br(3d,3p,3s) and I(4d,4p,4s,3d,3p)

    Boo, Bong Hyun; Saito, Norio

    2002-01-01

    Dissociative multiple photoionization of the bromine, the iodine monobromide, and the iodine molecules in the Br(3d,3p,3s) and I(4d,4p,4s,3d,3p) inner-shell regions has been studied by using time-of-flight (TOF) mass spectrometry coupled to synchrotron radiation in the ranges of 90∼978 eV for Br 2 , 60∼133 eV for IBr, and 86∼998 eV for I 2 . Total photoion and photoion-photoion coincidence (PIPICO) yields have been recorded as functions of the photon energy. Here, giant shape resonances have been observed beyond the thresholds of the inner-shells owing to the Br(3d 10 )→Br(3d 9 -f), I(4d 10 )→I(4d 9 -f), and I(3d 10 )→I(3d 9 -f) transitions. The dissociation processes of the multiply charged parent ions have also been evaluated from variations of photoelectron-photoion coincidence (PEPICO) and PIPICO spectra with the photon energy. From each Br(3p 3/2 ) (189.9 eV) and I(4p 3/2 ) threshold (129.9 eV), quintuple ionization of the molecules begins to play important roles in the photoionization, subsequently yielding ion pairs of X 3+ -X 2+ (X=Br, I). From the I(3d 5/2 ) threshold (627.3 eV), loss of six electrons from iodine molecule additionally begins to play a minor role in the multiple photoionization, giving rise to the formation of ion pairs of either I 3+ -I 3+ or I 4+ -I 2+ . A direct comparison of the strengths and the ranges of the I(4d) and Br(3d) giant resonances was successfully made from dissociative photoionization of IBr. Over the entire energy range examined, 60< E<133 eV, biased charge spread relevant to the specific core-hole states of IBr is observed, presumably reflecting the fact that charge localizes mostly in the excited atoms, which can be accounted for mainly by a two step decay via a fast dissociation followed by autoionization upon the VUV absorption

  8. 3D virtuel udstilling

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  9. Underwater 3D filming

    Roberto Rinaldi

    2014-12-01

    Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  10. Fabrication of Multiple-Layered Hydrogel Scaffolds with Elaborate Structure and Good Mechanical Properties via 3D Printing and Ionic Reinforcement.

    Wang, Xiaotong; Wei, Changzheng; Cao, Bin; Jiang, Lixia; Hou, Yongtai; Chang, Jiang

    2018-05-30

    A major challenge in three-dimensional (3D) printing of hydrogels is the fabrication of stable constructs with high precision and good mechanical properties and biocompatibility. Existing methods typically feature complicated reinforcement steps or use potentially toxic components, such as photocuring polymers and crosslinking reagents. In this study, we used a thermally sensitive hydrogel, hydroxybutyl chitosan (HBC), for 3D-printing applications. For the first time, we demonstrated that this modified polysaccharide is affected by the specific ion effect. As the salt concentration was increased and stronger kosmotropic anions were used, the lower critical solution temperature of the HBC decreased and the storage modulus was improved, indicating a more hydrophobic structure and stronger molecular chain interactions. On the basis of the thermosensitivity and the ion effects of HBC, a 25-layered hydrogel scaffold with strong mechanical properties and an elaborate structure was prepared via a 3D-printing method and one-step ionic post-treatment. In particular, the scaffold treated with 10% NaCl solution exhibited a tunable elastic modulus of 73.2 kPa to 40 MPa and excellent elastic recovery, as well as biodegradability and cytocompatibility, suggesting the potential for its applications to cartilage tissue repair. By simply controlling the temperature and salt concentrations, this novel approach provides a convenient and green route to improving the structural accuracy and regulating the properties of 3D-printed hydrogel constructs.

  11. Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4K IP images to 8K holograms.

    Ichihashi, Yasuyuki; Oi, Ryutaro; Senoh, Takanori; Yamamoto, Kenji; Kurita, Taiichiro

    2012-09-10

    We developed a real-time capture and reconstruction system for three-dimensional (3D) live scenes. In previous research, we used integral photography (IP) to capture 3D images and then generated holograms from the IP images to implement a real-time reconstruction system. In this paper, we use a 4K (3,840 × 2,160) camera to capture IP images and 8K (7,680 × 4,320) liquid crystal display (LCD) panels for the reconstruction of holograms. We investigate two methods for enlarging the 4K images that were captured by integral photography to 8K images. One of the methods increases the number of pixels of each elemental image. The other increases the number of elemental images. In addition, we developed a personal computer (PC) cluster system with graphics processing units (GPUs) for the enlargement of IP images and the generation of holograms from the IP images using fast Fourier transform (FFT). We used the Compute Unified Device Architecture (CUDA) as the development environment for the GPUs. The Fast Fourier transform is performed using the CUFFT (CUDA FFT) library. As a result, we developed an integrated system for performing all processing from the capture to the reconstruction of 3D images by using these components and successfully used this system to reconstruct a 3D live scene at 12 frames per second.

  12. Underwater 3D filming

    Rinaldi, Roberto

    2014-01-01

    After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” ) and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Unde...

  13. Blender 3D cookbook

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  14. Geopressure and Trap Integrity Predictions from 3-D Seismic Data: Case Study of the Greater Ughelli Depobelt, Niger Delta Pressions de pores et prévisions de l’intégrité des couvertures à partir de données sismiques 3D : le cas du grand sous-bassin d’Ughelli, Delta du Niger

    Opara A.I.

    2012-05-01

    Full Text Available The deep drilling campaign in the Niger Delta has demonstrated the need for a detailed geopressure and trap integrity (drilling margin analysis as an integral and required step in prospect appraisal. Pre-drill pore pressure prediction from 3-D seismic data was carried out in the Greater Ughelli depobelt, Niger Delta basin to predict subsurface pressure regimes and further applied in the determination of hydrocarbon column height, reservoir continuity, fault seal and trap integrity. Results revealed that geopressured sedimentary formations are common within the more prolific deeper hydrocarbon reserves in the Niger Delta basin. The depth to top of mild geopressure (0.60 psi/ft ranges from about 10 000 ftss to over 30 000 ftss. The distribution of geopressures shows a well defined trend with depth to top of geopressures increasing towards the central part of the basin. This variation in the depth of top of geopressures in the area is believed to be related to faulting and shale diapirism, with top of geopressures becoming shallow with shale diapirism and deep with sedimentation. Post-depositional faulting is believed to have controlled the configuration of the geopressure surface and has played later roles in modifying the present day depth to top of geopressures. In general, geopressure in this area is often associated with simple rollover structures bounded by growth faults, especially at the hanging walls, while hydrostatic pressures were observed in areas with k-faults and collapsed crested structures. Les campagnes de forages profonds dans le delta du Niger ont démontré la nécessité d’une analyse détaillée des surpressions et de l’intégrité des structures pour évaluer correctement les prospects. La prédiction des pressions interstitielles a pu être réalisée ici avant forage à partir de données sismiques 3-D du grand sous-bassin d’Ughelli, dans le delta du Niger. Ce travail a permis de prévoir les régimes de pression du

  15. DELTA 3D PRINTER

    ȘOVĂILĂ Florin

    2016-07-01

    Full Text Available 3D printing is a very used process in industry, the generic name being “rapid prototyping”. The essential advantage of a 3D printer is that it allows the designers to produce a prototype in a very short time, which is tested and quickly remodeled, considerably reducing the required time to get from the prototype phase to the final product. At the same time, through this technique we can achieve components with very precise forms, complex pieces that, through classical methods, could have been accomplished only in a large amount of time. In this paper, there are presented the stages of a 3D model execution, also the physical achievement after of a Delta 3D printer after the model.

  16. Experimental and analytical studies on multiple tuned mass dampers for seismic protection of porcelain electrical equipment

    Bai, Wen; Dai, Junwu; Zhou, Huimeng; Yang, Yongqiang; Ning, Xiaoqing

    2017-10-01

    Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic performance of two typical types of PEE and proposes a damping method for PEE based on multiple tuned mass dampers (MTMD). An MTMD damping device involving three mass units, named a triple tuned mass damper (TTMD), is designed and manufactured. Through shake table tests and finite element analysis, the dynamic characteristics of the PEE are studied and the effectiveness of the MTMD damping method is verified. The adverse influence of MTMD redundant mass to damping efficiency is studied and relevant equations are derived. MTMD robustness is verified through adjusting TTMD control frequencies. The damping effectiveness of TTMD, when the peak ground acceleration far exceeds the design value, is studied. Both shake table tests and finite element analysis indicate that MTMD is effective and robust in attenuating PEE seismic responses. TTMD remains effective when the PGA far exceeds the design value and when control deviations are considered.

  17. Professional Papervision3D

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  18. Real-Time, Multiple, Pan/Tilt/Zoom, Computer Vision Tracking, and 3D Position Estimating System for Unmanned Aerial System Metrology

    2013-10-18

    area of 3D point estimation of flapping- wing UASs. The benefits of designing and developing such a system is instrumental in researching various...series of successive states until a given name is reached such as: Object Animate Animal Mammal Dog Labrador Chocolate (Brown) Male Name...are many benefits to us- ing SIFT in tracking. It detects features that are invariant to image scale and rotation, and are shown to provide robust

  19. Computer aided display of multiple soft tissue anatomical surfaces for simultaneous structural and area-dose appreciation in 3D-radiationtherapy planning. 115

    Moore, C.J.; Mott, D.J.; Wilkinson, J.M.

    1987-01-01

    For radiotherapy applications a 3D display that includes soft tissues is required but the presentation of all anatomical structures is often unnecessary and is potentially confusing. A tumour volume and a small number of critical organs, usually embedded within other soft tissue anatomy, are likely to be all that can be clearly displayed when presented in a 3D format. The inclusion of dose data (in the form of isodose lines or surfaces) adds to the complication of any 3D display. A solution to this problem is to incorporate the presentation of dose distribution into the technique used to provide the illusion of 3D. This illusion can be provided by either depth cueing or by the hypothetical illumination of spatially defined object surfaces. The dose distribution from irradiation fields or, in the case of brachytherapy from radioactive sources, can be regarded as a source of illumination for tumour and critical organs. The intensity of illumination at any point on a tissue surface represents the dose at that point. Such an approach also allows the variation of dose over a given surface (and by extension, over the corresponding volume) to be quantified using histogram techniques. This may be of value in analysing and comparing techniques in which vulnerable tissue surfaces are irradiated. The planning of intracavitary treatments for cervical cancer is one application which might benefit from the display approach described above. Here the variation of dose over the mucosal surfaces of the bladder and the rectum is of particular interest, since dose related morbidity has often been reported following these treatments. 7 refs.; 8 figs

  20. Wearable 3D measurement

    Manabe, Yoshitsugu; Imura, Masataka; Tsuchiya, Masanobu; Yasumuro, Yoshihiro; Chihara, Kunihiro

    2003-01-01

    Wearable 3D measurement realizes to acquire 3D information of an objects or an environment using a wearable computer. Recently, we can send voice and sound as well as pictures by mobile phone in Japan. Moreover it will become easy to capture and send data of short movie by it. On the other hand, the computers become compact and high performance. And it can easy connect to Internet by wireless LAN. Near future, we can use the wearable computer always and everywhere. So we will be able to send the three-dimensional data that is measured by wearable computer as a next new data. This paper proposes the measurement method and system of three-dimensional data of an object with the using of wearable computer. This method uses slit light projection for 3D measurement and user"s motion instead of scanning system.

  1. 3D Digital Modelling

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3...... important to appreciate the analysis. Before turning to the presentation of preliminary findings and a discussion of 3D digital modelling, it begins, however, with an outline of industry specific ICT strategic issues. Paper type. Multi-site field study...

  2. 3D ARCHITECTURAL VIDEOMAPPING

    R. Catanese

    2013-07-01

    Full Text Available 3D architectural mapping is a video projection technique that can be done with a survey of a chosen building in order to realize a perfect correspondence between its shapes and the images in projection. As a performative kind of audiovisual artifact, the real event of the 3D mapping is a combination of a registered video animation file with a real architecture. This new kind of visual art is becoming very popular and its big audience success testifies new expressive chances in the field of urban design. My case study has been experienced in Pisa for the Luminara feast in 2012.

  3. Interaktiv 3D design

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  4. 3D Projection Installations

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article ...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  5. Herramientas SIG 3D

    Francisco R. Feito Higueruela

    2010-04-01

    Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs

  6. Bootstrapping 3D fermions

    Iliesiu, Luca [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Kos, Filip; Poland, David [Department of Physics, Yale University, New Haven, CT 06520 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States)

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions 〈ψψψψ〉 in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ×ψ OPE, and also on the central charge C{sub T}. We observe features in our bounds that coincide with scaling dimensions in the Gross-Neveu models at large N. We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  7. Shaping 3-D boxes

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  8. 3D Wire 2015

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and have...

  9. 3D Harmonic Echocardiography:

    M.M. Voormolen (Marco)

    2007-01-01

    textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the ’90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique

  10. 3D Printed Robotic Hand

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  11. Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system

    Zhang, Ruifu; Weng, Dagen; Ren, Xiaosong

    2011-06-01

    The seismic response of an isolated vertical, cylindrical, extra-large liquefied natural gas (LNG) tank by a multiple friction pendulum system (MFPS) is analyzed. Most of the extra-large LNG tanks have a fundamental frequency which involves a range of resonance of most earthquake ground motions. It is an effective way to decrease the response of an isolation system used for extra-large LNG storage tanks under a strong earthquake. However, it is difficult to implement in practice with common isolation bearings due to issues such as low temperature, soft site and other severe environment factors. The extra-large LNG tank isolated by a MFPS is presented in this study to address these problems. A MFPS is appropriate for large displacements induced by earthquakes with long predominant periods. A simplified finite element model by Malhotra and Dunkerley is used to determine the usefulness of the isolation system. Data reported and statistically sorted include pile shear, wave height, impulsive acceleration, convective acceleration and outer tank acceleration. The results show that the isolation system has excellent adaptability for different liquid levels and is very effective in controlling the seismic response of extra-large LNG tanks.

  12. Base Isolation for Seismic Retrofitting of a Multiple Building Structure: Evaluation of Equivalent Linearization Method

    Massimiliano Ferraioli

    2016-01-01

    Full Text Available Although the most commonly used isolation systems exhibit nonlinear inelastic behaviour, the equivalent linear elastic analysis is commonly used in the design and assessment of seismic-isolated structures. The paper investigates if the linear elastic model is suitable for the analysis of a seismically isolated multiple building structure. To this aim, its computed responses were compared with those calculated by nonlinear dynamic analysis. A common base isolation plane connects the isolation bearings supporting the adjacent structures. In this situation, the conventional equivalent linear elastic analysis may have some problems of accuracy because this method is calibrated on single base-isolated structures. Moreover, the torsional characteristics of the combined system are significantly different from those of separate isolated buildings. A number of numerical simulations and parametric studies under earthquake excitations were performed. The accuracy of the dynamic response obtained by the equivalent linear elastic model was calculated by the magnitude of the error with respect to the corresponding response considering the nonlinear behaviour of the isolation system. The maximum displacements at the isolation level, the maximum interstorey drifts, and the peak absolute acceleration were selected as the most important response measures. The influence of mass eccentricity, torsion, and high-modes effects was finally investigated.

  13. 3D Surgical Simulation

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2010-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive ...

  14. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-04-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  15. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation.

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-04-15

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors' knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  16. Multiple solutions in the theory of direct current glow discharges: Effect of plasma chemistry and nonlocality, different plasma-producing gases, and 3D modelling

    Almeida, P. G. C.; Benilov, M. S. [Departamento de Física, CCCEE, Universidade da Madeira, Largo do Município, 9000 Funchal (Portugal)

    2013-10-15

    The work is aimed at advancing the multiple steady-state solutions that have been found recently in the theory of direct current (DC) glow discharges. It is shown that an account of detailed plasma chemistry and non-locality of electron transport and kinetic coefficients results in an increase of the number of multiple solutions but does not change their pattern. Multiple solutions are shown to exist for discharges in argon and helium provided that discharge pressure is high enough. This result indicates that self-organization in DC glow microdischarges can be observed not only in xenon, which has been the case until recently, but also in other plasma-producing gases; a conclusion that has been confirmed by recent experiments. Existence of secondary bifurcations can explain why patterns of spots grouped in concentric rings, observed in the experiment, possess in many cases higher number of spots in outer rings than in inner ones.

  17. Incorporating 3D-printing technology in the design of head-caps and electrode drives for recording neurons in multiple brain regions.

    Headley, Drew B; DeLucca, Michael V; Haufler, Darrell; Paré, Denis

    2015-04-01

    Recent advances in recording and computing hardware have enabled laboratories to record the electrical activity of multiple brain regions simultaneously. Lagging behind these technical advances, however, are the methods needed to rapidly produce microdrives and head-caps that can flexibly accommodate different recording configurations. Indeed, most available designs target single or adjacent brain regions, and, if multiple sites are targeted, specially constructed head-caps are used. Here, we present a novel design style, for both microdrives and head-caps, which takes advantage of three-dimensional printing technology. This design facilitates targeting of multiple brain regions in various configurations. Moreover, the parts are easily fabricated in large quantities, with only minor hand-tooling and finishing required. Copyright © 2015 the American Physiological Society.

  18. Locating seismicity on the Arctic plate boundary using multiple-event techniques and empirical signal processing

    Gibbons, S. J.; Harris, D. B.; Dahl-Jensen, T.; Kværna, T.; Larsen, T. B.; Paulsen, B.; Voss, P. H.

    2017-12-01

    The oceanic boundary separating the Eurasian and North American plates between 70° and 84° north hosts large earthquakes which are well recorded teleseismically, and many more seismic events at far lower magnitudes that are well recorded only at regional distances. Existing seismic bulletins have considerable spread and bias resulting from limited station coverage and deficiencies in the velocity models applied. This is particularly acute for the lower magnitude events which may only be constrained by a small number of Pn and Sn arrivals. Over the past two decades there has been a significant improvement in the seismic network in the Arctic: a difficult region to instrument due to the harsh climate, a sparsity of accessible sites (particularly at significant distances from the sea), and the expense and difficult logistics of deploying and maintaining stations. New deployments and upgrades to stations on Greenland, Svalbard, Jan Mayen, Hopen, and Bjørnøya have resulted in a sparse but stable regional seismic network which results in events down to magnitudes below 3 generating high-quality Pn and Sn signals on multiple stations. A catalogue of several hundred events in the region since 1998 has been generated using many new phase readings on stations on both sides of the spreading ridge in addition to teleseismic P phases. A Bayesian multiple event relocation has resulted in a significant reduction in the spread of hypocentre estimates for both large and small events. Whereas single event location algorithms minimize vectors of time residuals on an event-by-event basis, the Bayesloc program finds a joint probability distribution of origins, hypocentres, and corrections to traveltime predictions for large numbers of events. The solutions obtained favour those event hypotheses resulting in time residuals which are most consistent over a given source region. The relocations have been performed with different 1-D velocity models applicable to the Arctic region and

  19. Tangible 3D Modelling

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...... facilitated discussions during the course as well as through a survey distributed to the participating students. The analysis of the experiences shows a mixed picture consisting of both benefits and limits to the experimental technique. A discussion about the applicability of the technique and about...

  20. 3D Surgical Simulation

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  1. Slow Earthquakes in the Alaska-Aleutian Subduction Zone Detected by Multiple Mini Seismic Arrays

    LI, B.; Ghosh, A.; Thurber, C. H.; Lanza, F.

    2017-12-01

    The Alaska-Aleutian subduction zone is one of the most seismically and volcanically active plate boundaries on earth. Compared to other subduction zones, the slow earthquakes, such as tectonic tremors (TTs) and low frequency earthquakes (LFEs), are relatively poorly studied due to the limited data availability and difficult logistics. The analysis of two-months of continuous data from a mini array deployed in 2012 shows abundant tremor and LFE activities under Unalaska Island that is heterogeneously distributed [Li & Ghosh, 2017]. To better study slow earthquakes and understand their physical characteristics in the study region, we deployed a hybrid array of arrays, consisting of three well-designed mini seismic arrays and five stand alone stations, in the Unalaska Island in 2014. They were operational for between one and two years. Using the beam back-projection method [Ghosh et al., 2009, 2012], we detect continuous tremor activities for over a year when all three arrays are running. The sources of tremors are located south of the Unalaska and Akutan Islands, at the eastern and down-dip edge of the rupture zone of the 1957 Mw 8.6 earthquake, and they are clustered in several patches, with a gap between the two major clusters. Tremors show multiple migration patterns with propagation in both along-strike and dip directions and a wide range of velocities. We also identify tens of LFE families and use them as templates to search for repeating LFE events with the matched-filter method. Hundreds to thousands of LFEs for each family are detected and their activities are spatiotemporally consistent with tremor activities. The array techniques are revealing a near-continuous tremor activity in this area with remarkable spatiotemporal details. It helps us to better recognize the physical properties of the transition zone, provides new insights into the slow earthquake activities in this area, and explores their relation with the local earthquakes and the potential slow

  2. Inclined nanoimprinting lithography for 3D nanopatterning

    Liu Zhan; Bucknall, David G; Allen, Mark G

    2011-01-01

    We report a non-conventional shear-force-driven nanofabrication approach, inclined nanoimprint lithography (INIL), for producing 3D nanostructures of varying heights on planar substrates in a single imprinting step. Such 3D nanostructures are fabricated by exploiting polymer anisotropic dewetting where the degree of anisotropy can be controlled by the magnitude of the inclination angle. The feature size is reduced from micron scale of the template to a resultant nanoscale pattern. The underlying INIL mechanism is investigated both experimentally and theoretically. The results indicate that the shear force generated at a non-zero inclination angle induced by the INIL apparatus essentially leads to asymmetry in the polymer flow direction ultimately resulting in 3D nanopatterns with different heights. INIL removes the requirements in conventional nanolithography of either utilizing 3D templates or using multiple lithographic steps. This technique enables various 3D nanoscale devices including angle-resolved photonic and plasmonic crystals to be fabricated.

  3. Seismic response analysis of a piping system subjected to multiple support excitations in a base isolated NPP building

    Surh, Han-Bum; Ryu, Tae-Young; Park, Jin-Sung; Ahn, Eun-Woo; Choi, Chul-Sun; Koo, Ja Choon; Choi, Jae-Boong; Kim, Moon Ki

    2015-01-01

    Highlights: • Piping system in the APR 1400 NPP with a base isolation design is studied. • Seismic response of piping system in base isolated building are investigated. • Stress classification method is examined for piping subjected to seismic loading. • Primary stress of piping is reduced due to base isolation design. • Substantial secondary stress is observed in the main steam piping. - Abstract: In this study, the stress response of the piping system in the advanced power reactor 1400 (APR 1400) with a base isolation design subjected to seismic loading is addressed. The piping system located between the auxiliary building with base isolation and the turbine building with a fixed base is considered since it can be subjected to substantial relative support movement during seismic events. First, the support responses with respect to the base characteristic are investigated to perform seismic analysis for multiple support excitations. Finite element analyses are performed to predict the piping stress response through various analysis methods such as the response spectrum, seismic support movement and time history method. To separately evaluate the inertial effect and support movement effect on the piping stress, the stress is decomposed into a primary and secondary stress using the proposed method. Finally, influences of the base isolation design on the piping system in the APR 1400 are addressed. The primary stress based on the inertial loading is effectively reduced in a base isolation design, whereas a considerable amount of secondary stress is generated in the piping system connecting a base isolated building with a fixed base building. It is also confirmed that both the response spectrum analysis and seismic support movement analysis provide more conservative estimations of the piping stress compared to the time history analysis

  4. Seismic evidence for multiple-stage exhumation of high/ultrahigh pressure metamorphic rocks in the eastern Dabie orogenic belt

    Luo, Yinhe; Zhao, Kaifeng; Tang, Chi-Chia; Xu, Yixian

    2018-05-01

    The Dabie-Sulu orogenic belt in China contains one of the largest exposures of high and ultrahigh pressure (HP and UHP) metamorphic rocks in the world. The origin of HP/UHP metamorphic rocks and their exhumation to the surface in this belt have attracted great interest in the geologic community because the study of exhumation history of HP/UHP rocks helps to understand the process of continental-continental collision and the tectonic evolution of post-collision. However, the exhumation mechanism of the HP-UHP rocks to the surface is still contentious. In this study, by deploying 28 broadband seismic stations in the eastern Dabie orogenic belt and combining seismic data from 40 stations of the China National Seismic Network (CNSN), we image the high-resolution crustal isotropic shear velocity and radial anisotropy structure using ambient noise tomography. Our high-resolution 3D models provide new information about the exhumation mechanism of HP/UHP rocks and the origin of two dome structures.

  5. 3D local structure around copper site of rabbit prion-related protein: Quantitative determination by XANES spectroscopy combined with multiple-scattering calculations

    Cui, P. X.; Lian, F. L.; Wang, Y.; Wen, Yi; Chu, W. S.; Zhao, H. F.; Zhang, S.; Li, J.; Lin, D. H.; Wu, Z. Y.

    2014-02-01

    Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrPC) to the post-translationally modified form (PrPSc) is thought to be relevant to Cu2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrPC) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases.

  6. 3D local structure around copper site of rabbit prion-related protein: Quantitative determination by XANES spectroscopy combined with multiple-scattering calculations

    Cui, P.X.; Lian, F.L.; Wang, Y.; Wen, Yi; Chu, W.S.; Zhao, H.F.; Zhang, S.; Li, J.; Lin, D.H.; Wu, Z.Y.

    2014-01-01

    Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrP C ) to the post-translationally modified form (PrP Sc ) is thought to be relevant to Cu 2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrP C ) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases. - Highlights: ► The first structure of the metal ion binding site in RaPrP fifth copper-binding site. ► Quantitative determination by XANES spectroscopy combined with ab initio calculations. ► Provide a proof of the roles of copper in prion conformation conversions. ► Provide a proof of the molecular mechanisms of prion-involved diseases

  7. Mobile 3D tomograph

    Illerhaus, Bernhard; Goebbels, Juergen; Onel, Yener; Sauerwein, Christoph

    2008-01-01

    Mobile tomographs often have the problem that high spatial resolution is impossible owing to the position or setup of the tomograph. While the tree tomograph developed by Messrs. Isotopenforschung Dr. Sauerwein GmbH worked well in practice, it is no longer used as the spatial resolution and measuring time are insufficient for many modern applications. The paper shows that the mechanical base of the method is sufficient for 3D CT measurements with modern detectors and X-ray tubes. CT measurements with very good statistics take less than 10 min. This means that mobile systems can be used, e.g. in examinations of non-transportable cultural objects or monuments. Enhancement of the spatial resolution of mobile tomographs capable of measuring in any position is made difficult by the fact that the tomograph has moving parts and will therefore have weight shifts. With the aid of tomographies whose spatial resolution is far higher than the mechanical accuracy, a correction method is presented for direct integration of the Feldkamp algorithm [de

  8. Easy and unambiguous sequential assignments of intrinsically disordered proteins by correlating the backbone 15N or 13C′ chemical shifts of multiple contiguous residues in highly resolved 3D spectra

    Yoshimura, Yuichi; Kulminskaya, Natalia V.; Mulder, Frans A. A.

    2015-01-01

    Sequential resonance assignment strategies are typically based on matching one or two chemical shifts of adjacent residues. However, resonance overlap often leads to ambiguity in resonance assignments in particular for intrinsically disordered proteins. We investigated the potential of establishing connectivity through the three-bond couplings between sequentially adjoining backbone carbonyl carbon nuclei, combined with semi-constant time chemical shift evolution, for resonance assignments of small folded and larger unfolded proteins. Extended sequential connectivity strongly lifts chemical shift degeneracy of the backbone nuclei in disordered proteins. We show here that 3D (H)N(COCO)NH and (HN)CO(CO)NH experiments with relaxation-optimized multiple pulse mixing correlate up to seven adjacent backbone amide nitrogen or carbonyl carbon nuclei, respectively, and connections across proline residues are also obtained straightforwardly. Multiple, recurrent long-range correlations with ultra-high resolution allow backbone 1 H N , 15 N H , and 13 C′ resonance assignments to be completed from a single pair of 3D experiments

  9. 3D Printing and 3D Bioprinting in Pediatrics.

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  10. 3D Printing and 3D Bioprinting in Pediatrics

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-01-01

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  11. Análisis tridimensional del proceso de granallado utilizando un modelo de múltiples impactos. // 3d shot peening process analysis using multiple impacts model.

    M. A. Calle Gonzales

    2006-05-01

    son comparados con resultados experimentales disponibles en la literatura especializada ypresentados en forma de gráficos y tablas.Palabras claves: Granallado, tensión residual, elementos finitos, modelación.____________________________________________________________________________Abstract.The shot peening is one of the most used superficial treatments for, amongst other applications, providing a considerableincrease of the fatigue life elements of machines and structures submitted to cyclic loads. The control of parameters, suchas, the depth of the plastic zone, residual stresses level, among others, is of vital importance to guarantee the adequateapplication of the treatment. To simulate the shot peening process, using the Finite Elements Method, a three-dimensionalrepresentative cell model of the treated part surface is created and submitted to the multiple impact shots. The modelevaluates the compression residual stresses field in different regions of the cell surface, due to the impact shots, in order tofind the best representation through out the cell. The representative profile evaluation is important, since it is responsiblefor the improvement of the mechanical properties of the component. The results reveal additionally, in an implicit way, theeffect of the shot peening process covering, in the behavior of the residual stress profile, which is also commented in thework. The results are compared with experimental results available in the specialized literature and presented in form ofgraphs and tables.Keyword: Shot peening, residual stress, finite elements, modeling.

  12. 3D Volume Rendering and 3D Printing (Additive Manufacturing).

    Katkar, Rujuta A; Taft, Robert M; Grant, Gerald T

    2018-07-01

    Three-dimensional (3D) volume-rendered images allow 3D insight into the anatomy, facilitating surgical treatment planning and teaching. 3D printing, additive manufacturing, and rapid prototyping techniques are being used with satisfactory accuracy, mostly for diagnosis and surgical planning, followed by direct manufacture of implantable devices. The major limitation is the time and money spent generating 3D objects. Printer type, material, and build thickness are known to influence the accuracy of printed models. In implant dentistry, the use of 3D-printed surgical guides is strongly recommended to facilitate planning and reduce risk of operative complications. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. 3D game environments create professional 3D game worlds

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  14. The Future Is 3D

    Carter, Luke

    2015-01-01

    3D printers are a way of producing a 3D model of an item from a digital file. The model builds up in successive layers of material placed by the printer controlled by the information in the computer file. In this article the author argues that 3D printers are one of the greatest technological advances of recent times. He discusses practical uses…

  15. The 3D additivist cookbook

    Allahyari, Morehshin; Rourke, Daniel; Rasch, Miriam

    The 3D Additivist Cookbook, devised and edited by Morehshin Allahyari & Daniel Rourke, is a free compendium of imaginative, provocative works from over 100 world-leading artists, activists and theorists. The 3D Additivist Cookbook contains .obj and .stl files for the 3D printer, as well as critical

  16. Nonlaser-based 3D surface imaging

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  17. Extra Dimensions: 3D in PDF Documentation

    Graf, Norman A

    2012-01-01

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) and the ISO PRC file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. Until recently, Adobe's Acrobat software was also capable of incorporating 3D content into PDF files from a variety of 3D file formats, including proprietary CAD formats. However, this functionality is no longer available in Acrobat X, having been spun off to a separate company. Incorporating 3D content now requires the additional purchase of a separate plug-in. In this talk we present alternatives based on open source libraries which allow the programmatic creation of 3D content in PDF format. While not providing the same level of access to CAD files as the commercial software, it does provide physicists with an alternative path to incorporate 3D content into PDF files from such disparate applications as detector geometries from Geant4, 3D data sets, mathematical surfaces or tesselated volumes.

  18. 3D Modelling and Printing Technology to Produce Patient-Specific 3D Models.

    Birbara, Nicolette S; Otton, James M; Pather, Nalini

    2017-11-10

    A comprehensive knowledge of mitral valve (MV) anatomy is crucial in the assessment of MV disease. While the use of three-dimensional (3D) modelling and printing in MV assessment has undergone early clinical evaluation, the precision and usefulness of this technology requires further investigation. This study aimed to assess and validate 3D modelling and printing technology to produce patient-specific 3D MV models. A prototype method for MV 3D modelling and printing was developed from computed tomography (CT) scans of a plastinated human heart. Mitral valve models were printed using four 3D printing methods and validated to assess precision. Cardiac CT and 3D echocardiography imaging data of four MV disease patients was used to produce patient-specific 3D printed models, and 40 cardiac health professionals (CHPs) were surveyed on the perceived value and potential uses of 3D models in a clinical setting. The prototype method demonstrated submillimetre precision for all four 3D printing methods used, and statistical analysis showed a significant difference (p3D printed models, particularly using multiple print materials, were considered useful by CHPs for preoperative planning, as well as other applications such as teaching and training. This study suggests that, with further advances in 3D modelling and printing technology, patient-specific 3D MV models could serve as a useful clinical tool. The findings also highlight the potential of this technology to be applied in a variety of medical areas within both clinical and educational settings. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  19. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  20. Embedding 3D into multipurpose cadastre

    Rahman, A.A.; Hua, T.C.; Van Oosterom, P.J.M.

    2011-01-01

    There is no doubt that the cadastral map provides a useful entrance to information in a land parcel based information system. However, such information system could be made more meaningful and useful if it can be extended for multiple usages with multi data layers, and in three-dimensions (3D).

  1. 3D Spectroscopy in Astronomy

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  2. 3D Elevation Program—Virtual USA in 3D

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  3. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  4. 3D IBFV : hardware-accelerated 3D flow visualization

    Telea, A.C.; Wijk, van J.J.

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique presented by van Wijk (2001) for 2D flow visualization in two main directions. First, we decompose the 3D

  5. PLOT3D Export Tool for Tecplot

    Alter, Stephen

    2010-01-01

    The PLOT3D export tool for Tecplot solves the problem of modified data being impossible to output for use by another computational science solver. The PLOT3D Exporter add-on enables the use of the most commonly available visualization tools to engineers for output of a standard format. The exportation of PLOT3D data from Tecplot has far reaching effects because it allows for grid and solution manipulation within a graphical user interface (GUI) that is easily customized with macro language-based and user-developed GUIs. The add-on also enables the use of Tecplot as an interpolation tool for solution conversion between different grids of different types. This one add-on enhances the functionality of Tecplot so significantly, it offers the ability to incorporate Tecplot into a general suite of tools for computational science applications as a 3D graphics engine for visualization of all data. Within the PLOT3D Export Add-on are several functions that enhance the operations and effectiveness of the add-on. Unlike Tecplot output functions, the PLOT3D Export Add-on enables the use of the zone selection dialog in Tecplot to choose which zones are to be written by offering three distinct options - output of active, inactive, or all zones (grid blocks). As the user modifies the zones to output with the zone selection dialog, the zones to be written are similarly updated. This enables the use of Tecplot to create multiple configurations of a geometry being analyzed. For example, if an aircraft is loaded with multiple deflections of flaps, by activating and deactivating different zones for a specific flap setting, new specific configurations of that aircraft can be easily generated by only writing out specific zones. Thus, if ten flap settings are loaded into Tecplot, the PLOT3D Export software can output ten different configurations, one for each flap setting.

  6. 3D for Graphic Designers

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  7. Using 3D in Visualization

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  8. 3D Bayesian contextual classifiers

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  9. 3-D printers for libraries

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  10. Supernova Remnant in 3-D

    2009-01-01

    position with respect to the rest of the debris field had never been mapped before now. This new insight into the structure of Cas A gained from this 3-D visualization is important for astronomers who build models of supernova explosions. Now, they must consider that the outer layers of the star come off spherically, but the inner layers come out more disk-like with high-velocity jets in multiple directions.

  11. Using the multiple regression analysis with respect to ANOVA and 3D mapping to model the actual performance of PEM (proton exchange membrane) fuel cell at various operating conditions

    Al-Hadeethi, Farqad; Al-Nimr, Moh'd; Al-Safadi, Mohammad

    2015-01-01

    The performance of PEM (proton exchange membrane) fuel cell was experimentally investigated at three temperatures (30, 50 and 70 °C), four flow rates (5, 10, 15 and 20 ml/min) and two flow patterns (co-current and counter current) in order to generate two correlations using multiple regression analysis with respect to ANOVA. Results revealed that increasing the temperature for co-current and counter current flow patterns will increase both hydrogen and oxygen diffusivities, water management and membrane conductivity. The derived mathematical correlations and three dimensional mapping (i.e. surface response) for the co-current and countercurrent flow patterns showed that there is a clear interaction among the various variables (temperatures and flow rates). - Highlights: • Generating mathematical correlations using multiple regression analysis with respect to ANOVA for the performance of the PEM fuel cell. • Using the 3D mapping to diagnose the optimum performance of the PEM fuel cell at the given operating conditions. • Results revealed that increasing the flow rate had direct influence on the consumption of oxygen. • Results assured that increasing the temperature in co-current and counter current flow patterns increases the performance of PEM fuel cell.

  12. 3D shape detection of the indoor space based on 3D-Hough method

    安齋, 達也; ANZAI, Tatsuya

    2013-01-01

    This paper describes methods for detecting the 3D shapes of the indoor space that is represented as a combination of planes such as a wall, desk, or whatnot. Detecting the planes makes it possible to perform calibration of multiple sensors and 3D mapping, and then produces various services such as the acquisition of life logs, AR interaction, and invader detection. This paper proposes and verifies three algorithms. First, it mentions a way to use2D-Hough.The proposed technique converts 3D dat...

  13. Pyrolytic 3D Carbon Microelectrodes for Electrochemistry

    Hemanth, Suhith; Caviglia, Claudia; Amato, Letizia

    2016-01-01

    This work presents the fabrication and characterization of suspended three-dimensional (3D) pyrolytic carbon microelectrodes for electrochemical applications. For this purpose, an optimized process with multiple steps of UV photolithography with the negative tone photoresist SU-8 followed...... by pyrolysis at 900ºC for 1h was developed. With this process, microelectrode chips with a three electrode configuration were fabricated and characterized with cyclic voltammetry (CV) using a 10mM potassium ferri-ferrocyanide redox probe in a custom made batch system with magnetic clamping. The 3D pyrolytic...... carbon microelectrodes displayed twice the higher peak current compared to 2D....

  14. 3D seismic survey in Honjo, Akita. Problems and struggles in acquisition and processing; Akitaken Honjo koku ni okeru sanjigen jishin tansa. Genba sagyo to data shori ni okeru mondaiten

    Imahori, S; Kotera, Y; Nakanishi, T [Japan Energy Development Co. Ltd., Tokyo (Japan)

    1997-05-27

    Honjo mining area where investigations are conducted is hilly and has a complicated terrain with gas pipes buried in the ground just under the access road disabling the proper positioning of shock-generating large excavators or vibrators. Auger`s shallow hole shooting method is used in this survey to execute blastings at 639 points. In this method using charge depths of 4m, different from the conventional method using deeper charge depths (20-25m), surface waves prevail in the shot records giving rise to a new problem of removing them in the stage of data processing. The 2D filter that is a powerful tool in 2D data processing is not available in a 3D-survey where the tracing intervals are irregular in the shot records. In the effort of this time, a window length as a parameter in the direction of time is specified, and the F-X dip filtering method is employed in which any event that linearly continues beyond a certain number of traces in the said window is eliminated as a linear noise. It is recommended that the weighting function be changed in the direction of space since surface wave velocities are different at different locations. 1 fig., 1 tab.

  15. Abusir 3D survey 2015

    Yukinori Kawae

    2016-12-01

    Full Text Available In 2015, in collaboration with the Czech Institute of Egyptology, we, a Japanese consortium, initiated the Abusir 3D Survey (A-3DS for the 3D documentation of the site’s pyramids, which have not been updated since the time of the architectural investigations of Vito Maragioglio and Celeste Rinaldi in the 1960s to the 1970s. The first season of our project focused on the exterior of Neferirkare’s pyramid, the largest pyramid at Abusir. By developing a strategic mathematical 3D survey plan, step-by-step 3D documentation to suit specific archaeological needs, and producing a new display method for the 3D data, we successfully measured the dimensions of the pyramid in a cost-effective way.

  16. Advanced 3-D Ultrasound Imaging

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... a channel limited 2-D transducer array and the conventional 3-D beamforming technique, Parallel Beamforming. The first part of the scientific contributions demonstrate that 3-D synthetic aperture imaging achieves a better image quality than the Parallel Beamforming technique. Data were obtained using both...

  17. 3D vector flow imaging

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... are (vx, vy, vz) = (-0.03, 95, 1.0) ± (9, 6, 1) cm/s compared with the expected (0, 96, 0) cm/s. Afterwards, 3D vector flow images from a cross-sectional plane of the vessel are presented. The out of plane velocities exhibit the expected 2D circular-symmetric parabolic shape. The experimental results...... verify that the 3D TO method estimates the complete 3D velocity vectors, and that the method is suitable for 3D vector flow imaging....

  18. 3D printing in dentistry.

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  19. Imaging 2015 Mw 7.8 Gorkha Earthquake and Its Aftershock Sequence Combining Multiple Calibrated Global Seismic Arrays

    LI, B.; Ghosh, A.

    2016-12-01

    and hazard assessment after destructive large earthquakes. Existing multiple global seismic arrays, when properly calibrated and used in combinations, provide a high resolution image of rupture of large earthquakes and spatiotemporal distribution of aftershocks.

  20. The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part II: Numerical implementation and post-bifurcation analysis

    Rattez, Hadrien; Stefanou, Ioannis; Sulem, Jean; Veveakis, Manolis; Poulet, Thomas

    2018-06-01

    In this paper we study the phenomenon of localization of deformation in fault gouges during seismic slip. This process is of key importance to understand frictional heating and energy budget during an earthquake. A infinite layer of fault gouge is modeled as a Cosserat continuum taking into account Thermo-Hydro-Mechanical (THM) couplings. The theoretical aspects of the problem are presented in the companion paper (Rattez et al., 2017a), together with a linear stability analysis to determine the conditions of localization and estimate the shear band thickness. In this Part II of the study, we investigate the post-bifurcation evolution of the system by integrating numerically the full system of non-linear equations using the method of Finite Elements. The problem is formulated in the framework of Cosserat theory. It enables to introduce information about the microstructure of the material in the constitutive equations and to regularize the mathematical problem in the post-localization regime. We emphasize the influence of the size of the microstructure and of the softening law on the material response and the strain localization process. The weakening effect of pore fluid thermal pressurization induced by shear heating is examined and quantified. It enhances the weakening process and contributes to the narrowing of shear band thickness. Moreover, due to THM couplings an apparent rate-dependency is observed, even for rate-independent material behavior. Finally, comparisons show that when the perturbed field of shear deformation dominates, the estimation of the shear band thickness obtained from linear stability analysis differs from the one obtained from the finite element computations, demonstrating the importance of post-localization numerical simulations.

  1. DNA origami design of 3D nanostructures

    Andersen, Ebbe Sloth; Nielsen, Morten Muhlig

    2009-01-01

    [8]. We have recently developed a semi-automated DNA origami software package [9] that uses a 2D sequence editor in conjunction with several automated tools to facilitate the design process. Here we extend the use of the program for designing DNA origami structures in 3D and show the application......Structural DNA nanotechnology has been heavily dependent on the development of dedicated software tools for the design of unique helical junctions, to define unique sticky-ends for tile assembly, and for predicting the products of the self-assembly reaction of multiple DNA strands [1-3]. Recently......, several dedicated 3D editors for computer-aided design of DNA structures have been developed [4-7]. However, many of these tools are not efficient for designing DNA origami structures that requires the design of more than 200 unique DNA strands to be folded along a scaffold strand into a defined 3D shape...

  2. Simulating 3D deformation using connected polygons

    Tarigan, J. T.; Jaya, I.; Hardi, S. M.; Zamzami, E. M.

    2018-03-01

    In modern 3D application, interaction between user and the virtual world is one of an important factor to increase the realism. This interaction can be visualized in many forms; one of them is object deformation. There are many ways to simulate object deformation in virtual 3D world; each comes with different level of realism and performance. Our objective is to present a new method to simulate object deformation by using a graph-connected polygon. In this solution, each object contains multiple level of polygons in different level of volume. The proposed solution focusses on performance rather while maintaining the acceptable level of realism. In this paper, we present the design and implementation of our solution and show that this solution is usable in performance sensitive 3D application such as games and virtual reality.

  3. Optimization of 3D Field Design

    Logan, Nikolas; Zhu, Caoxiang

    2017-10-01

    Recent progress in 3D tokamak modeling is now leveraged to create a conceptual design of new external 3D field coils for the DIII-D tokamak. Using the IPEC dominant mode as a target spectrum, the Finding Optimized Coils Using Space-curves (FOCUS) code optimizes the currents and 3D geometry of multiple coils to maximize the total set's resonant coupling. The optimized coils are individually distorted in space, creating toroidal ``arrays'' containing a variety of shapes that often wrap around a significant poloidal extent of the machine. The generalized perturbed equilibrium code (GPEC) is used to determine optimally efficient spectra for driving total, core, and edge neoclassical toroidal viscosity (NTV) torque and these too provide targets for the optimization of 3D coil designs. These conceptual designs represent a fundamentally new approach to 3D coil design for tokamaks targeting desired plasma physics phenomena. Optimized coil sets based on plasma response theory will be relevant to designs for future reactors or on any active machine. External coils, in particular, must be optimized for reliable and efficient fusion reactor designs. Work supported by the US Department of Energy under DE-AC02-09CH11466.

  4. Multi-view and 3D deformable part models.

    Pepik, Bojan; Stark, Michael; Gehler, Peter; Schiele, Bernt

    2015-11-01

    As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2] , 3D object classes [3] , Pascal3D+ [4] , Pascal VOC 2007 [5] , EPFL multi-view cars[6] ).

  5. 3-D neutron transport benchmarks

    Takeda, T.; Ikeda, H.

    1991-03-01

    A set of 3-D neutron transport benchmark problems proposed by the Osaka University to NEACRP in 1988 has been calculated by many participants and the corresponding results are summarized in this report. The results of K eff , control rod worth and region-averaged fluxes for the four proposed core models, calculated by using various 3-D transport codes are compared and discussed. The calculational methods used were: Monte Carlo, Discrete Ordinates (Sn), Spherical Harmonics (Pn), Nodal Transport and others. The solutions of the four core models are quite useful as benchmarks for checking the validity of 3-D neutron transport codes

  6. Handbook of 3D integration

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  7. A Model for Managing 3D Printing Services in Academic Libraries

    Scalfani, Vincent F.; Sahib, Josh

    2013-01-01

    The appearance of 3D printers in university libraries opens many opportunities for advancing outreach, teaching, and research programs. The University of Alabama (UA) Libraries recently adopted 3D printing technology and maintains an open access 3D Printing Studio. The Studio consists of a 3D printer, multiple 3D design workstations, and other…

  8. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies. (paper)

  9. Iron deposition of the deep grey matter in patients with multiple sclerosis and neuromyelitis optica: A control quantitative study by 3D-enhanced susceptibility-weighted angiography (ESWAN)

    Chen Xuan; Zeng Chun; Luo Tianyou; Ouyang Yu; Lv Fajin; Rumzan, Reshiana; Wang Zhongping; Li Qi; Wang Jingjie; Hou Huanxin

    2012-01-01

    Purpose: Previous studies have detected abnormal iron deposition in the deep grey matter (DGM) of multiple sclerosis (MS). The regional specificity of the DGM iron deposition in neuromyelitis optica (NMO) is still unclear. We compared the differences in the DGM iron concentration between MS and NMO patients. Methods: We enrolled 42 relapsing–remitting MS (RRMS) patients, 42 NMO patients and 42 healthy controls undergoing brain conventional MRI and three-dimensional (3D)-enhanced T 2 *-weighted angiography (ESWAN) sequences. We obtained the mean phase values (MPVs) for ESWAN-filtered phase images. An analysis of covariance (ANCOVA) was used to compare MPVs among three groups. The correlations of MPVs changes with disease duration and expanded disability status scale (EDSS) were analyzed. Results: The RRMS patients had higher DGM iron concentration than did the NMO and control groups, but only the bilateral substantia nigra (SN) showed a significant statistical difference among three groups (p 0.05). Furthermore, no correlations were found between the DGM iron concentration and EDSS (p > 0.05). Conclusions: We confirm the iron concentration in the DGM iron content of MS patients is more than NMO patients and healthy controls in the same age range. Furthermore, the disease duration was found to be a significant contributor to patients with MS.

  10. 3D Models of Immunotherapy

    This collaborative grant is developing 3D models of both mouse and human biology to investigate aspects of therapeutic vaccination in order to answer key questions relevant to human cancer immunotherapy.

  11. AI 3D Cybug Gaming

    Ahmed, Zeeshan

    2010-01-01

    In this short paper I briefly discuss 3D war Game based on artificial intelligence concepts called AI WAR. Going in to the details, I present the importance of CAICL language and how this language is used in AI WAR. Moreover I also present a designed and implemented 3D War Cybug for AI WAR using CAICL and discus the implemented strategy to defeat its enemies during the game life.

  12. 3D Face Apperance Model

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  13. 3D accelerator magnet calculations using MAGNUS-3D

    Pissanetzky, S.; Miao, Y.

    1989-01-01

    The steady trend towards increased magnetic and geometric complexity in the design of accelerator magnets has caused a need for reliable 3D computer models and a better understanding of the behavior of magnetic system in three dimensions. The capabilities of the MAGNUS-3D family of programs are ideally suited to solve this class of problems and provide insight into 3D effects. MAGNUS-3D can solve any problem of magnetostatics involving permanent magnets, nonlinear ferromagnetic materials and electric conductors. MAGNUS-3D uses the finite element method and the two-scalar-potentials formulation of Maxwell's equations to obtain the solution, which can then be used interactively to obtain tables of field components at specific points or lines, plots of field lines, function graphs representing a field component plotted against a coordinate along any line in space (such as the beam line), and views of the conductors, the mesh and the magnetic bodies. The magnetic quantities that can be calculated include the force or torque on conductors or magnetic parts, the energy, the flux through a specified surface, line integrals of any field component along any line in space, and the average field or potential harmonic coefficients. We describe the programs with emphasis placed on their use for accelerator magnet design, and present an advanced example of actual calculations. (orig.)

  14. CASTLE3D - A Computer Aided System for Labelling Archaeological Excavations in 3D

    Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A.; Näth, F.; Winkler, S.

    2015-08-01

    Documentation of archaeological excavation sites with conventional methods and tools such as hand drawings, measuring tape and archaeological notes is time consuming. This process is prone to human errors and the quality of the documentation depends on the qualification of the archaeologist on site. Use of modern technology and methods in 3D surveying and 3D robotics facilitate and improve this process. Computer-aided systems and databases improve the documentation quality and increase the speed of data acquisition. 3D laser scanning is the state of the art in modelling archaeological excavation sites, historical sites and even entire cities or landscapes. Modern laser scanners are capable of data acquisition of up to 1 million points per second. This provides a very detailed 3D point cloud of the environment. 3D point clouds and 3D models of an excavation site provide a better representation of the environment for the archaeologist and for documentation. The point cloud can be used both for further studies on the excavation and for the presentation of results. This paper introduces a Computer aided system for labelling archaeological excavations in 3D (CASTLE3D). Consisting of a set of tools for recording and georeferencing the 3D data from an excavation site, CASTLE3D is a novel documentation approach in industrial archaeology. It provides a 2D and 3D visualisation of the data and an easy-to-use interface that enables the archaeologist to select regions of interest and to interact with the data in both representations. The 2D visualisation and a 3D orthogonal view of the data provide cuts of the environment that resemble the traditional hand drawings. The 3D perspective view gives a realistic view of the environment. CASTLE3D is designed as an easy-to-use on-site semantic mapping tool for archaeologists. Each project contains a predefined set of semantic information that can be used to label findings in the data. Multiple regions of interest can be joined under

  15. From 3D view to 3D print

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  16. 3D imaging, 3D printing and 3D virtual planning in endodontics.

    Shah, Pratik; Chong, B S

    2018-03-01

    The adoption and adaptation of recent advances in digital technology, such as three-dimensional (3D) printed objects and haptic simulators, in dentistry have influenced teaching and/or management of cases involving implant, craniofacial, maxillofacial, orthognathic and periodontal treatments. 3D printed models and guides may help operators plan and tackle complicated non-surgical and surgical endodontic treatment and may aid skill acquisition. Haptic simulators may assist in the development of competency in endodontic procedures through the acquisition of psycho-motor skills. This review explores and discusses the potential applications of 3D printed models and guides, and haptic simulators in the teaching and management of endodontic procedures. An understanding of the pertinent technology related to the production of 3D printed objects and the operation of haptic simulators are also presented.

  17. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  18. Drift Reliability Assessment of a Four Storey Frame Residential Building Under Seismic Loading Considering Multiple Factors

    Sil, Arjun; Longmailai, Thaihamdau

    2017-09-01

    The lateral displacement of Reinforced Concrete (RC) frame building during an earthquake has an important impact on the structural stability and integrity. However, seismic analysis and design of RC building needs more concern due to its complex behavior as the performance of the structure links to the features of the system having many influencing parameters and other inherent uncertainties. The reliability approach takes into account the factors and uncertainty in design influencing the performance or response of the structure in which the safety level or the probability of failure could be ascertained. This present study, aims to assess the reliability of seismic performance of a four storey residential RC building seismically located in Zone-V as per the code provisions given in the Indian Standards IS: 1893-2002. The reliability assessment performed by deriving an explicit expression for maximum roof-lateral displacement as a failure function by regression method. A total of 319, four storey RC buildings were analyzed by linear static method using SAP2000. However, the change in the lateral-roof displacement with the variation of the parameters (column dimension, beam dimension, grade of concrete, floor height and total weight of the structure) was observed. A generalized relation established by regression method which could be used to estimate the expected lateral displacement owing to those selected parameters. A comparison made between the displacements obtained from analysis with that of the equation so formed. However, it shows that the proposed relation could be used directly to determine the expected maximum lateral displacement. The data obtained from the statistical computations was then used to obtain the probability of failure and the reliability.

  19. Materialedreven 3d digital formgivning

    Hansen, Flemming Tvede

    2010-01-01

    Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...

  20. 3D future internet media

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  1. Novel 3D media technologies

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  2. Modification of 3D milling machine to 3D printer

    Taska, Abraham

    2014-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  3. Aspects of defects in 3d-3d correspondence

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-01-01

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2,0) theory of type A_N_−_1 on a 3-manifold M. The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,ℂ)) on M and a 3d N=2 theory T_N[M]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T[SU(N)], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N>2. We also highlight the non-Abelian description of the 3d N=2T_N[M] theory with defect included, when such a description is available. This paper is a companion to our shorter paper http://dx.doi.org/10.1088/1751-8113/49/30/30LT02, which summarizes our main results.

  4. Stereoscopic 3D graphics generation

    Li, Zhi; Liu, Jianping; Zan, Y.

    1997-05-01

    Stereoscopic display technology is one of the key techniques of areas such as simulation, multimedia, entertainment, virtual reality, and so on. Moreover, stereoscopic 3D graphics generation is an important part of stereoscopic 3D display system. In this paper, at first, we describe the principle of stereoscopic display and summarize some methods to generate stereoscopic 3D graphics. Secondly, to overcome the problems which came from the methods of user defined models (such as inconvenience, long modifying period and so on), we put forward the vector graphics files defined method. Thus we can design more directly; modify the model simply and easily; generate more conveniently; furthermore, we can make full use of graphics accelerator card and so on. Finally, we discuss the problem of how to speed up the generation.

  5. 3-D Vector Flow Imaging

    Holbek, Simon

    , if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges...... ultrasonic vector flow estimation and bring it a step closer to a clinical application. A method for high frame rate 3-D vector flow estimation in a plane using the transverse oscillation method combined with a 1024 channel 2-D matrix array is presented. The proposed method is validated both through phantom...... hampers the task of real-time processing. In a second study, some of the issue with the 2-D matrix array are solved by introducing a 2-D row-column (RC) addressing array with only 62 + 62 elements. It is investigated both through simulations and via experimental setups in various flow conditions...

  6. 3D Printed Bionic Nanodevices.

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  7. 3D Printed Bionic Nanodevices

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with

  8. Qademah Fault 3D Survey

    Hanafy, Sherif M.; Lu, Kai; Hota, Mrinal Kanti; Guo, Bowen; Tarhini, Ahmad

    2014-01-01

    Acquisition Layout: We used 288 receiver arranged in 12 parallel lines, each line has 24 receiver. Inline offset is 5 m and crossline offset is 10 m. One shot is fired at each receiver location. We use the 40 kgm weight drop as seismic source, with 8 to 15 stacks at each shot location.

  9. Improved seismic risk estimation for Bucharest, based on multiple hazard scenarios, analytical methods and new techniques

    Toma-Danila, Dragos; Florinela Manea, Elena; Ortanza Cioflan, Carmen

    2014-05-01

    Bucharest, capital of Romania (with 1678000 inhabitants in 2011), is one of the most exposed big cities in Europe to seismic damage. The major earthquakes affecting the city have their origin in the Vrancea region. The Vrancea intermediate-depth source generates, statistically, 2-3 shocks with moment magnitude >7.0 per century. Although the focal distance is greater than 170 km, the historical records (from the 1838, 1894, 1908, 1940 and 1977 events) reveal severe effects in the Bucharest area, e.g. intensities IX (MSK) for the case of 1940 event. During the 1977 earthquake, 1420 people were killed and 33 large buildings collapsed. The nowadays building stock is vulnerable both due to construction (material, age) and soil conditions (high amplification, generated within the weak consolidated Quaternary deposits, their thickness is varying 250-500m throughout the city). A number of 373 old buildings, out of 2563, evaluated by experts are more likely to experience severe damage/collapse in the next major earthquake. The total number of residential buildings, in 2011, was 113900. In order to guide the mitigation measures, different studies tried to estimate the seismic risk of Bucharest, in terms of buildings, population or economic damage probability. Unfortunately, most of them were based on incomplete sets of data, whether regarding the hazard or the building stock in detail. However, during the DACEA Project, the National Institute for Earth Physics, together with the Technical University of Civil Engineering Bucharest and NORSAR Institute managed to compile a database for buildings in southern Romania (according to the 1999 census), with 48 associated capacity and fragility curves. Until now, the developed real-time estimation system was not implemented for Bucharest. This paper presents more than an adaptation of this system to Bucharest; first, we analyze the previous seismic risk studies, from a SWOT perspective. This reveals that most of the studies don't use

  10. Ideal 3D asymmetric concentrator

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  11. Markerless 3D Face Tracking

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  12. 3D Face modeling using the multi-deformable method.

    Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-09-25

    In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper.

  13. Astor Pass Seismic Surveys Preliminary Report

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Faulds, James; Eisses, Amy; Kell, Annie; Frary, Roxanna; Kent, Graham

    2011-08-05

    In collaboration with the Pyramid Lake Paiute Tribe (PLPT), the University of Nevada, Reno (UNR) and Optim re-processed, or collected and processed, over 24 miles of 2d seismic-reflection data near the northwest corner of Pyramid Lake, Nevada. The network of 2d land surveys achieved a near-3d density at the Astor Pass geothermal prospect that the PLPT drilled during Nov. 2010 to Feb. 2011. The Bureau of Indian Affairs funded additional seismic work around the Lake, and an extensive, detailed single-channel marine survey producing more than 300 miles of section, imaging more than 120 ft below the Lake bottom. Optim’s land data collection utilized multiple heavy vibrators and recorded over 200 channels live, providing a state-of-the-art reflection-refraction data set. After advanced seismic analysis including first-arrival velocity optimization and prestack depth migration, the 2d sections show clear fault-plane reflections, in some areas as deep as 4000 ft, tying to distinct terminations of the mostly volcanic stratigraphy. Some lines achieved velocity control to 3000 ft depth; all lines show reflections and terminations to 5000 ft depth. Three separate sets of normal faults appear in an initial interpretation of fault reflections and stratigraphic terminations, after loading the data into the OpendTect 3d seismic visualization system. Each preliminary fault set includes a continuous trace more than 3000 ft long, and a swarm of short fault strands. The three preliminary normal-fault sets strike northerly with westward dip, northwesterly with northeast dip, and easterly with north dip. An intersection of all three fault systems documented in the seismic sections at the end of Phase I helped to locate the APS-2 and APS-3 slimholes. The seismic sections do not show the faults connected to the Astor Pass tufa spire, suggesting that we have imaged mostly Tertiary-aged faults. We hypothesize that the Recent, active faults that produced the tufa through hotspring

  14. Nonlinear 3-D dynamic time history analysis in the reracking modifications for a nuclear power plant

    Zhao, Y.; Stevenson, J.D.

    1996-01-01

    An independent seismic response evaluation of spent fuel storage racks was performed on the reracking modifications for a typical operating pressurized water reactor type nuclear power plant using nonlinear dynamic time history analysis methods per the U. S. nuclear regulatory commission (USNRC) criteria. The submerged free standing rack system and surrounding water are coupled due to fluid-structure-interaction effects using potential theory. Three dimensional (3-D) single rack and whole pool multiple rack finite element models were developed with features that allow the consideration of geometrically and materially nonlinearities including (1) the impact of a fuel bundle to a rack cell, a rack to adjacent racks or pool walls, and rack support legs to a pool floor; (2) the hydrodynamic coupling of a fuel assembly with a rack and of a rack with adjacent racks or pool walls; and (3) the tilting and frictional sliding of the rack supports. The methodologies and typical results using a 3-D single rack model as well as a 3-D whole pool multiple rack model developed herein are presented. (orig.)

  15. Hydraulic Fracture Induced Seismicity During A Multi-Stage Pad Completion in Western Canada: Evidence of Activation of Multiple, Parallel Faults

    Maxwell, S.; Garrett, D.; Huang, J.; Usher, P.; Mamer, P.

    2017-12-01

    Following reports of injection induced seismicity in the Western Canadian Sedimentary Basin, regulators have imposed seismic monitoring and traffic light protocols for fracturing operations in specific areas. Here we describe a case study in one of these reservoirs, the Montney Shale in NE British Columbia, where induced seismicity was monitored with a local array during multi-stage hydraulic fracture stimulations on several wells from a single drilling pad. Seismicity primarily occurred during the injection time periods, and correlated with periods of high injection rates and wellhead pressures above fracturing pressures. Sequential hydraulic fracture stages were found to progressively activate several parallel, critically-stressed faults, as illuminated by multiple linear hypocenter patterns in the range between Mw 1 and 3. Moment tensor inversion of larger events indicated a double-couple mechanism consistent with the regional strike-slip stress state and the hypocenter lineations. The critically-stressed faults obliquely cross the well paths which were purposely drilled parallel to the minimum principal stress direction. Seismicity on specific faults started and stopped when fracture initiation points of individual injection stages were proximal to the intersection of the fault and well. The distance ranges when the seismicity occurs is consistent with expected hydraulic fracture dimensions, suggesting that the induced fault slip only occurs when a hydraulic fracture grows directly into the fault and the faults are temporarily exposed to significantly elevated fracture pressures during the injection. Some faults crossed multiple wells and the seismicity was found to restart during injection of proximal stages on adjacent wells, progressively expanding the seismogenic zone of the fault. Progressive fault slip is therefore inferred from the seismicity migrating further along the faults during successive injection stages. An accelerometer was also deployed close

  16. "3D fusion" echocardiography improves 3D left ventricular assessment: comparison with 2D contrast echocardiography.

    Augustine, Daniel; Yaqub, Mohammad; Szmigielski, Cezary; Lima, Eduardo; Petersen, Steffen E; Becher, Harald; Noble, J Alison; Leeson, Paul

    2015-02-01

    Three-dimensional fusion echocardiography (3DFE) is a novel postprocessing approach that utilizes imaging data acquired from multiple 3D acquisitions. We assessed image quality, endocardial border definition, and cardiac wall motion in patients using 3DFE compared to standard 3D images (3D) and results obtained with contrast echocardiography (2DC). Twenty-four patients (mean age 66.9 ± 13 years, 17 males, 7 females) undergoing 2DC had three, noncontrast, 3D apical volumes acquired at rest. Images were fused using an automated image fusion approach. Quality of the 3DFE was compared to both 3D and 2DC based on contrast-to-noise ratio (CNR) and endocardial border definition. We then compared clinical wall-motion score index (WMSI) calculated from 3DFE and 3D to those obtained from 2DC images. Fused 3D volumes had significantly improved CNR (8.92 ± 1.35 vs. 6.59 ± 1.19, P echocardiography (1.06 ± 0.09 vs. 1.07 ± 0.15, P = 0.69), whereas unfused images produced significantly more variable results (1.19 ± 0.30). This was confirmed by a better intraclass correlation coefficient (ICC 0.72; 95% CI 0.32-0.88) relative to comparisons with unfused images (ICC 0.56; 95% CI 0.02-0.81). 3DFE significantly improves left ventricular image quality compared to unfused 3D in a patient population and allows noncontrast assessment of wall motion that approaches that achieved with 2D contrast echocardiography. © 2014, Wiley Periodicals, Inc.

  17. 3D Terahertz Beam Profiling

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Jepsen, Peter Uhd

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  18. 3D Printing: Exploring Capabilities

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  19. 3D Pit Stop Printing

    Wright, Lael; Shaw, Daniel; Gaidds, Kimberly; Lyman, Gregory; Sorey, Timothy

    2018-01-01

    Although solving an engineering design project problem with limited resources or structural capabilities of materials can be part of the challenge, students making their own parts can support creativity. The authors of this article found an exciting solution: 3D printers are not only one of several tools for making but also facilitate a creative…

  20. Time Series Analysis of Soil Radon Data Using Multiple Linear Regression and Artificial Neural Network in Seismic Precursory Studies

    Singh, S.; Jaishi, H. P.; Tiwari, R. P.; Tiwari, R. C.

    2017-07-01

    This paper reports the analysis of soil radon data recorded in the seismic zone-V, located in the northeastern part of India (latitude 23.73N, longitude 92.73E). Continuous measurements of soil-gas emission along Chite fault in Mizoram (India) were carried out with the replacement of solid-state nuclear track detectors at weekly interval. The present study was done for the period from March 2013 to May 2015 using LR-115 Type II detectors, manufactured by Kodak Pathe, France. In order to reduce the influence of meteorological parameters, statistical analysis tools such as multiple linear regression and artificial neural network have been used. Decrease in radon concentration was recorded prior to some earthquakes that occurred during the observation period. Some false anomalies were also recorded which may be attributed to the ongoing crustal deformation which was not major enough to produce an earthquake.

  1. 3D histomorphometric quantification from 3D computed tomography

    Oliveira, L.F. de; Lopes, R.T.

    2004-01-01

    The histomorphometric analysis is based on stereologic concepts and was originally applied to biologic samples. This technique has been used to evaluate different complex structures such as ceramic filters, net structures and cancellous objects that are objects with inner connected structures. The measured histomorphometric parameters of structure are: sample volume to total reconstructed volume (BV/TV), sample surface to sample volume (BS/BV), connection thickness (Tb Th ), connection number (Tb N ) and connection separation (Tb Sp ). The anisotropy was evaluated as well. These parameters constitute the base of histomorphometric analysis. The quantification is realized over cross-sections recovered by cone beam reconstruction, where a real-time microfocus radiographic system is used as tomographic system. The three-dimensional (3D) histomorphometry, obtained from tomography, corresponds to an evolution of conventional method that is based on 2D analysis. It is more coherent with morphologic and topologic context of the sample. This work shows result from 3D histomorphometric quantification to characterize objects examined by 3D computer tomography. The results, which characterizes the internal structures of ceramic foams with different porous density, are compared to results from conventional methods

  2. DYNA3D2000*, Explicit 3-D Hydrodynamic FEM Program

    Lin, J.

    2002-01-01

    1 - Description of program or function: DYNA3D2000 is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation. 2 - Method of solution: Discretization of a continuous model transforms partial differential equations into algebraic equations. A numerical solution is then obtained by solving these algebraic equations through a direct time marching scheme. 3 - Restrictions on the complexity of the problem: Recent software improvements have eliminated most of the user identified limitations with dynamic memory allocation and a very large format description that has pushed potential problem sizes beyond the reach of most users. The dominant restrictions remain in code execution speed and robustness, which the developers constantly strive to improve

  3. 3D+time acquisitions of 3D cell culture by means of lens-free tomographic microscopy

    Berdeu, Anthony; Laperrousaz, Bastien; Bordy, Thomas; Morales, S.; Gidrol, Xavier; Picollet-D'hahan, Nathalie; Allier, Cédric

    2018-02-01

    We propose a three-dimensional (3D) imaging platform based on lens-free microscopy to perform multi-angle acquisitions on 3D cell cultures embedded in extracellular matrix (ECM). We developed algorithms based on the Fourier diffraction theorem to perform fully 3D reconstructions of biological samples and we adapted the lens-free microscope to incubator conditions. Here we demonstrate for the first time, 3D+time lens-free acquisitions of 3D cell culture over 8 days directly into the incubator. The 3D reconstructed volume is as large as 5 mm3 and provides a unique way to observe in the same 3D cell culture experiment multiple cell migration strategies. Namely, in a 3D cell culture of prostate epithelial cells embedded within a Matrigel® matrix, we are able to distinguish single cell 'leaders', migration of cell clusters, migration of large aggregates of cells, and also close-gap and large-scale branching. In addition, we observe long-scale 3D deformations of the ECM that modify the geometry of the 3D cell culture. Interestingly, we also observed the opposite, i.e. we found that large aggregates of cells may deform the ECM by generating traction forces over very long distances. In sum we put forward a novel 3D lens-free microscopy tomographic technique to study the single and collective cell migrations, the cell-to-cell interactions and the cell-to-matrix interactions.

  4. 3-D Discrete Analytical Ridgelet Transform

    Helbert , David; Carré , Philippe; Andrès , Éric

    2006-01-01

    International audience; In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines:...

  5. 3D FaceCam: a fast and accurate 3D facial imaging device for biometrics applications

    Geng, Jason; Zhuang, Ping; May, Patrick; Yi, Steven; Tunnell, David

    2004-08-01

    Human faces are fundamentally three-dimensional (3D) objects, and each face has its unique 3D geometric profile. The 3D geometric features of a human face can be used, together with its 2D texture, for rapid and accurate face recognition purposes. Due to the lack of low-cost and robust 3D sensors and effective 3D facial recognition (FR) algorithms, almost all existing FR systems use 2D face images. Genex has developed 3D solutions that overcome the inherent problems in 2D while also addressing limitations in other 3D alternatives. One important aspect of our solution is a unique 3D camera (the 3D FaceCam) that combines multiple imaging sensors within a single compact device to provide instantaneous, ear-to-ear coverage of a human face. This 3D camera uses three high-resolution CCD sensors and a color encoded pattern projection system. The RGB color information from each pixel is used to compute the range data and generate an accurate 3D surface map. The imaging system uses no moving parts and combines multiple 3D views to provide detailed and complete 3D coverage of the entire face. Images are captured within a fraction of a second and full-frame 3D data is produced within a few seconds. This described method provides much better data coverage and accuracy in feature areas with sharp features or details (such as the nose and eyes). Using this 3D data, we have been able to demonstrate that a 3D approach can significantly improve the performance of facial recognition. We have conducted tests in which we have varied the lighting conditions and angle of image acquisition in the "field." These tests have shown that the matching results are significantly improved when enrolling a 3D image rather than a single 2D image. With its 3D solutions, Genex is working toward unlocking the promise of powerful 3D FR and transferring FR from a lab technology into a real-world biometric solution.

  6. Integrating visible light 3D scanning into the everyday world

    Straub, Jeremy

    2015-05-01

    Visible light 3D scanning offers the potential to non-invasively and nearly non-perceptibly incorporate 3D imaging into the everyday world. This paper considers the various possible uses of visible light 3D scanning technology. It discusses multiple possible usage scenarios including in hospitals, security perimeter settings and retail environments. The paper presents a framework for assessing the efficacy of visible light 3D scanning for a given application (and compares this to other scanning approaches such as those using blue light or lasers). It also discusses ethical and legal considerations relevant to real-world use and concludes by presenting a decision making framework.

  7. Why 3D Print? The 21st-Century Skills Students Develop While Engaging in 3D Printing Projects

    Trust, Torrey; Maloy, Robert W.

    2017-01-01

    The emergence of 3D printing has raised hopes and concerns about how it can be used effectively as an educational technology in school classrooms. This paper presents the results of a survey asking teachers from multiple grade levels and subject fields about the impact of 3D projects on student learning. Teachers were asked about the kinds of 3D…

  8. Iron deposition in the gray matter in patients with relapse-remitting multiple sclerosis: A longitudinal study using three-dimensional (3D)-enhanced T2*-weighted angiography (ESWAN)

    Du, Silin; Sah, Shambhu K.; Zeng, Chun; Wang, Jingjie; Liu, Yi; Xiong, Hua; Li, Yongmei

    2015-01-01

    Purpose: To investigate the relationship between the iron content by magnetic resonance imaging (MRI) and clinic correlation in patients with relapse-remitting multiple sclerosis (RRMS) over a two-year period. Methods: Thirty RRMS patients and 30 healthy control subjects were examined twice, two years apart, by undergoing brain conventional MRI and three-dimensional (3D)-enhanced T2*-weighted angiography (ESWAN) sequences at 3.0 T. Quantitative differences in iron content in deep gray matter (GM) nuclei and precentral gyrus GM between patients and control subjects with repeated-measures the mean phase values (MPVs) for ESWAN-filtered phase images. Spearman's rank correlation coefficient analysis was used to evaluate correlations of the MPVs, both 2-year-difference and single-time measurements, to disease duration, expanded disability status scale (EDSS) and times of recurrence. Results: The RRMS patients had higher GM iron concentration than that of the healthy control subjects in both single-time measurements, but only the substantia nigra (SN), and the precentral gyrus GM (PGM) showed a significant statistical difference (p < 0.05). Using the paired samples t test, we found that there were significant differences in two-year-difference measurements of the MPVs in the putamen (PUT), the globus pallidus (GP), the head of the caudate nucleus (HCN), the thalamus (THA), SN, the red nucleus (RN), the dentate nucleus (DN) and PGM, especially in SN (t = 2.92, p = 0.007) in RRMS patients. The MPVs of the PUT, GP, HCN, THA, SN, RN, DN and PGM for the subgroup with RRMS patients in times of recurrence less than twice were similar to the healthy controls. There was no significant difference in all regions of interests (ROIs). However, there were significant differences in all ROIs except THA and GP for the other subgroup with RRMS patients in times of recurrence more than and equal to twice. Spearman's rank correlation coefficient analysis showed there were

  9. Iron deposition in the gray matter in patients with relapse-remitting multiple sclerosis: A longitudinal study using three-dimensional (3D)-enhanced T2*-weighted angiography (ESWAN)

    Du, Silin, E-mail: 182389558@qq.com; Sah, Shambhu K., E-mail: mrsks2007@hotmail.com; Zeng, Chun, E-mail: zengchun19840305@163.com; Wang, Jingjie, E-mail: 345151097@qq.com; Liu, Yi, E-mail: 993537544@qq.com; Xiong, Hua, E-mail: rjdfxyh@163.com; Li, Yongmei, E-mail: lymzhang70@aliyun.com

    2015-07-15

    Purpose: To investigate the relationship between the iron content by magnetic resonance imaging (MRI) and clinic correlation in patients with relapse-remitting multiple sclerosis (RRMS) over a two-year period. Methods: Thirty RRMS patients and 30 healthy control subjects were examined twice, two years apart, by undergoing brain conventional MRI and three-dimensional (3D)-enhanced T2*-weighted angiography (ESWAN) sequences at 3.0 T. Quantitative differences in iron content in deep gray matter (GM) nuclei and precentral gyrus GM between patients and control subjects with repeated-measures the mean phase values (MPVs) for ESWAN-filtered phase images. Spearman's rank correlation coefficient analysis was used to evaluate correlations of the MPVs, both 2-year-difference and single-time measurements, to disease duration, expanded disability status scale (EDSS) and times of recurrence. Results: The RRMS patients had higher GM iron concentration than that of the healthy control subjects in both single-time measurements, but only the substantia nigra (SN), and the precentral gyrus GM (PGM) showed a significant statistical difference (p < 0.05). Using the paired samples t test, we found that there were significant differences in two-year-difference measurements of the MPVs in the putamen (PUT), the globus pallidus (GP), the head of the caudate nucleus (HCN), the thalamus (THA), SN, the red nucleus (RN), the dentate nucleus (DN) and PGM, especially in SN (t = 2.92, p = 0.007) in RRMS patients. The MPVs of the PUT, GP, HCN, THA, SN, RN, DN and PGM for the subgroup with RRMS patients in times of recurrence less than twice were similar to the healthy controls. There was no significant difference in all regions of interests (ROIs). However, there were significant differences in all ROIs except THA and GP for the other subgroup with RRMS patients in times of recurrence more than and equal to twice. Spearman's rank correlation coefficient analysis showed there were

  10. 3D integrated superconducting qubits

    Rosenberg, D.; Kim, D.; Das, R.; Yost, D.; Gustavsson, S.; Hover, D.; Krantz, P.; Melville, A.; Racz, L.; Samach, G. O.; Weber, S. J.; Yan, F.; Yoder, J. L.; Kerman, A. J.; Oliver, W. D.

    2017-10-01

    As the field of quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed for commercial electronics, relatively little work has been performed to determine its compatibility with high-coherence solid-state qubits. Of particular concern, qubit coherence times can be suppressed by the requisite processing steps and close proximity of another chip. In this work, we use a flip-chip process to bond a chip with superconducting flux qubits to another chip containing structures for qubit readout and control. We demonstrate that high qubit coherence (T1, T2,echo > 20 μs) is maintained in a flip-chip geometry in the presence of galvanic, capacitive, and inductive coupling between the chips.

  11. Mortars for 3D printing

    Demyanenko Olga

    2018-01-01

    Full Text Available The paper is aimed at developing scientifically proven compositions of mortars for 3D printing modified by a peat-based admixture with improved operational characteristics. The paper outlines the results of experimental research on hardened cement paste and concrete mixture with the use of modifying admixture MT-600 (thermally modified peat. It is found that strength of hardened cement paste increases at early age when using finely dispersed admixtures, which is the key factor for formation of construction and technical specifications of concrete for 3D printing technologies. The composition of new formations of hardened cement paste modified by MT-600 admixture were obtained, which enabled to suggest the possibility of their physico-chemical interaction while hardening.

  12. Automated 3-D Radiation Mapping

    Tarpinian, J. E.

    1991-01-01

    This work describes an automated radiation detection and imaging system which combines several state-of-the-art technologies to produce a portable but very powerful visualization tool for planning work in radiation environments. The system combines a radiation detection system, a computerized radiation imaging program, and computerized 3-D modeling to automatically locate and measurements are automatically collected and imaging techniques are used to produce colored, 'isodose' images of the measured radiation fields. The isodose lines from the images are then superimposed over the 3-D model of the area. The final display shows the various components in a room and their associated radiation fields. The use of an automated radiation detection system increases the quality of radiation survey obtained measurements. The additional use of a three-dimensional display allows easier visualization of the area and associated radiological conditions than two-dimensional sketches

  13. Forensic 3D Scene Reconstruction

    LITTLE, CHARLES Q.; PETERS, RALPH R.; RIGDON, J. BRIAN; SMALL, DANIEL E.

    1999-01-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene

  14. 3D neutron transport modelization

    Warin, X.

    1996-12-01

    Some nodal methods to solve the transport equation in 3D are presented. Two nodal methods presented at an OCDE congress are described: a first one is a low degree one called RTN0; a second one is a high degree one called BDM1. The two methods can be made faster with a totally consistent DSA. Some results of parallelization show that: 98% of the time is spent in sweeps; transport sweeps are easily parallelized. (K.A.)

  15. 3D Printing A Survey

    Muhammad Zulkifl Hasan

    2017-08-01

    Full Text Available Solid free fabrication SFF are produced to enhance the printing instrument utilizing distinctive strategies like Piezo spout control multi-spout injet printers or STL arrange utilizing cutting information. The procedure is utilized to diminish the cost and enhance the speed of printing. A few techniques take long at last because of extra process like dry the printing. This study will concentrate on SFFS utilizing UV gum for 3D printing.

  16. 3D neutron transport modelization

    Warin, X.

    1996-12-01

    Some nodal methods to solve the transport equation in 3D are presented. Two nodal methods presented at an OCDE congress are described: a first one is a low degree one called RTN0; a second one is a high degree one called BDM1. The two methods can be made faster with a totally consistent DSA. Some results of parallelization show that: 98% of the time is spent in sweeps; transport sweeps are easily parallelized. (K.A.). 10 refs.

  17. Conducting polymer 3D microelectrodes

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...

  18. [Real time 3D echocardiography

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  19. 3D treatment planning systems.

    Saw, Cheng B; Li, Sicong

    2018-01-01

    Three-dimensional (3D) treatment planning systems have evolved and become crucial components of modern radiation therapy. The systems are computer-aided designing or planning softwares that speed up the treatment planning processes to arrive at the best dose plans for the patients undergoing radiation therapy. Furthermore, the systems provide new technology to solve problems that would not have been considered without the use of computers such as conformal radiation therapy (CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). The 3D treatment planning systems vary amongst the vendors and also the dose delivery systems they are designed to support. As such these systems have different planning tools to generate the treatment plans and convert the treatment plans into executable instructions that can be implemented by the dose delivery systems. The rapid advancements in computer technology and accelerators have facilitated constant upgrades and the introduction of different and unique dose delivery systems than the traditional C-arm type medical linear accelerators. The focus of this special issue is to gather relevant 3D treatment planning systems for the radiation oncology community to keep abreast of technology advancement by assess the planning tools available as well as those unique "tricks or tips" used to support the different dose delivery systems. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  20. Compact 3D quantum memory

    Xie, Edwar; Deppe, Frank; Renger, Michael; Repp, Daniel; Eder, Peter; Fischer, Michael; Goetz, Jan; Pogorzalek, Stefan; Fedorov, Kirill G.; Marx, Achim; Gross, Rudolf

    2018-05-01

    Superconducting 3D microwave cavities offer state-of-the-art coherence times and a well-controlled environment for superconducting qubits. In order to realize at the same time fast readout and long-lived quantum information storage, one can couple the qubit to both a low-quality readout and a high-quality storage cavity. However, such systems are bulky compared to their less coherent 2D counterparts. A more compact and scalable approach is achieved by making use of the multimode structure of a 3D cavity. In our work, we investigate such a device where a transmon qubit is capacitively coupled to two modes of a single 3D cavity. External coupling is engineered so that the memory mode has an about 100 times larger quality factor than the readout mode. Using an all-microwave second-order protocol, we realize a lifetime enhancement of the stored state over the qubit lifetime by a factor of 6 with a fidelity of approximately 80% determined via quantum process tomography. We also find that this enhancement is not limited by fundamental constraints.

  1. 3D Graphics with Spreadsheets

    Jan Benacka

    2009-06-01

    Full Text Available In the article, the formulas for orthographic parallel projection of 3D bodies on computer screen are derived using secondary school vector algebra. The spreadsheet implementation is demonstrated in six applications that project bodies with increasing intricacy – a convex body (cube with non-solved visibility, convex bodies (cube, chapel with solved visibility, a coloured convex body (chapel with solved visibility, and a coloured non-convex body (church with solved visibility. The projections are revolvable in horizontal and vertical plane, and they are changeable in size. The examples show an unusual way of using spreadsheets as a 3D computer graphics tool. The applications can serve as a simple introduction to the general principles of computer graphics, to the graphics with spreadsheets, and as a tool for exercising stereoscopic vision. The presented approach is usable at visualising 3D scenes within some topics of secondary school curricula as solid geometry (angles and distances of lines and planes within simple bodies or analytic geometry in space (angles and distances of lines and planes in E3, and even at university level within calculus at visualising graphs of z = f(x,y functions. Examples are pictured.

  2. 3D composite image, 3D MRI, 3D SPECT, hydrocephalus

    Mito, T.; Shibata, I.; Sugo, N.; Takano, M.; Takahashi, H.

    2002-01-01

    The three-dimensional (3D)SPECT imaging technique we have studied and published for the past several years is an analytical tool that permits visual expression of the cerebral circulation profile in various cerebral diseases. The greatest drawback of SPECT is that the limitation on precision of spacial resolution makes intracranial localization impossible. In 3D SPECT imaging, intracranial volume and morphology may vary with the threshold established. To solve this problem, we have produced complimentarily combined SPECT and helical-CT 3D images by means of general-purpose visualization software for intracranial localization. In hydrocephalus, however, the key subject to be studied is the profile of cerebral circulation around the ventricles of the brain. This suggests that, for displaying the cerebral ventricles in three dimensions, CT is a difficult technique whereas MRI is more useful. For this reason, we attempted to establish the profile of cerebral circulation around the cerebral ventricles by the production of combined 3D images of SPECT and MRI. In patients who had shunt surgery for hydrocephalus, a difference between pre- and postoperative cerebral circulation profiles was assessed by a voxel distribution curve, 3D SPECT images, and combined 3D SPECT and MRI images. As the shunt system in this study, an Orbis-Sigma valve of the automatic cerebrospinal fluid volume adjustment type was used in place of the variable pressure type Medos valve currently in use, because this device requires frequent changes in pressure and a change in pressure may be detected after MRI procedure. The SPECT apparatus used was PRISM3000 of the three-detector type, and 123I-IMP was used as the radionuclide in a dose of 222 MBq. MRI data were collected with an MAGNEXa+2 with a magnetic flux density of 0.5 tesla under the following conditions: field echo; TR 50 msec; TE, 10 msec; flip, 30ueK; 1 NEX; FOV, 23 cm; 1-mm slices; and gapless. 3D images are produced on the workstation TITAN

  3. 3D silicon strip detectors

    Parzefall, Ulrich; Bates, Richard; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Eckert, Simon; Eklund, Lars; Fleta, Celeste; Jakobs, Karl; Kuehn, Susanne; Lozano, Manuel; Pahn, Gregor; Parkes, Chris; Pellegrini, Giulio; Pennicard, David; Piemonte, Claudio; Ronchin, Sabina; Szumlak, Tomasz; Zoboli, Andrea; Zorzi, Nicola

    2009-01-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10 15 N eq /cm 2 , which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10 15 N eq /cm 2 . The tests were performed with three systems: a highly focused IR-laser with 5μm spot size to make position-resolved scans of the charge collection efficiency, an Sr 90 β-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of the results obtained with 3D-STC-modules.

  4. 3D silicon strip detectors

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  5. 3D Bioprinting for Organ Regeneration.

    Cui, Haitao; Nowicki, Margaret; Fisher, John P; Zhang, Lijie Grace

    2017-01-01

    Regenerative medicine holds the promise of engineering functional tissues or organs to heal or replace abnormal and necrotic tissues/organs, offering hope for filling the gap between organ shortage and transplantation needs. Three-dimensional (3D) bioprinting is evolving into an unparalleled biomanufacturing technology due to its high-integration potential for patient-specific designs, precise and rapid manufacturing capabilities with high resolution, and unprecedented versatility. It enables precise control over multiple compositions, spatial distributions, and architectural accuracy/complexity, therefore achieving effective recapitulation of microstructure, architecture, mechanical properties, and biological functions of target tissues and organs. Here we provide an overview of recent advances in 3D bioprinting technology, as well as design concepts of bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering living organs, focusing more specifically on vasculature, neural networks, the heart and liver. We conclude with current challenges and the technical perspective for further development of 3D organ bioprinting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. 3D Bioprinting for Organ Regeneration

    Cui, Haitao; Nowicki, Margaret; Fisher, John P.; Zhang, Lijie Grace

    2017-01-01

    Regenerative medicine holds the promise of engineering functional tissues or organs to heal or replace abnormal and necrotic tissues/organs, offering hope for filling the gap between organ shortage and transplantation needs. Three-dimensional (3D) bioprinting is evolving into an unparalleled bio-manufacturing technology due to its high-integration potential for patient-specific designs, precise and rapid manufacturing capabilities with high resolution, and unprecedented versatility. It enables precise control over multiple compositions, spatial distributions, and architectural accuracy/complexity, therefore achieving effective recapitulation of microstructure, architecture, mechanical properties, and biological functions of target tissues and organs. Here we provide an overview of recent advances in 3D bioprinting technology, as well as design concepts of bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering living organs, focusing more specifically on vasculature, neural networks, the heart and liver. We conclude with current challenges and the technical perspective for further development of 3D organ bioprinting. PMID:27995751

  7. DNA Assembly in 3D Printed Fluidics.

    William G Patrick

    Full Text Available The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology.

  8. Integrated Biogeomorphological Modeling Using Delft3D

    Ye, Q.; Jagers, B.

    2011-12-01

    The skill of numerical morphological models has improved significantly from the early 2D uniform, total load sediment models (with steady state or infrequent wave updates) to recent 3D hydrodynamic models with multiple suspended and bed load sediment fractions and bed stratigraphy (online coupled with waves). Although there remain many open questions within this combined field of hydro- and morphodynamics, we observe an increasing need to include biological processes in the overall dynamics. In riverine and inter-tidal environments, there is often an important influence by riparian vegetation and macrobenthos. Over the past decade more and more researchers have started to extend the simulation environment with wrapper scripts and other quick code hacks to estimate their influence on morphological development in coastal, estuarine and riverine environments. Although one can in this way quickly analyze different approaches, these research tools have generally not been designed with reuse, performance and portability in mind. We have now implemented a reusable, flexible, and efficient two-way link between the Delft3D open source framework for hydrodynamics, waves and morphology, and the water quality and ecology modules. The same link will be used for 1D, 2D and 3D modeling on networks and both structured and unstructured grids. We will describe the concepts of the overall system, and illustrate it with some first results.

  9. 3D Integration for Wireless Multimedia

    Kimmich, Georg

    The convergence of mobile phone, internet, mapping, gaming and office automation tools with high quality video and still imaging capture capability is becoming a strong market trend for portable devices. High-density video encode and decode, 3D graphics for gaming, increased application-software complexity and ultra-high-bandwidth 4G modem technologies are driving the CPU performance and memory bandwidth requirements close to the PC segment. These portable multimedia devices are battery operated, which requires the deployment of new low-power-optimized silicon process technologies and ultra-low-power design techniques at system, architecture and device level. Mobile devices also need to comply with stringent silicon-area and package-volume constraints. As for all consumer devices, low production cost and fast time-to-volume production is key for success. This chapter shows how 3D architectures can bring a possible breakthrough to meet the conflicting power, performance and area constraints. Multiple 3D die-stacking partitioning strategies are described and analyzed on their potential to improve the overall system power, performance and cost for specific application scenarios. Requirements and maturity of the basic process-technology bricks including through-silicon via (TSV) and die-to-die attachment techniques are reviewed. Finally, we highlight new challenges which will arise with 3D stacking and an outlook on how they may be addressed: Higher power density will require thermal design considerations, new EDA tools will need to be developed to cope with the integration of heterogeneous technologies and to guarantee signal and power integrity across the die stack. The silicon/wafer test strategies have to be adapted to handle high-density IO arrays, ultra-thin wafers and provide built-in self-test of attached memories. New standards and business models have to be developed to allow cost-efficient assembly and testing of devices from different silicon and technology

  10. Seismic reflector imaging using internal multiples with Marchenko-type equations

    Slob, E.C.; Wapenaar, C.P.A.; Broggini, F.; Snieder, R.

    2014-01-01

    We present an imaging method that creates a map of reflection coefficients in correct one-way time with no contamination from internal multiples using purely a filtering approach. The filter is computed from the measured reflection response and does not require a background model. We demonstrate

  11. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    Qiu Wu [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario N6A 5K8 (Canada); Yuchi Ming; Ding Mingyue [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Tessier, David; Fenster, Aaron [Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)

    2013-04-15

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions

  12. Wireless 3D Chocolate Printer

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  13. Interactive 3D Mars Visualization

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as