WorldWideScience

Sample records for multiphoton resonances intensity-dependent

  1. Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process

    International Nuclear Information System (INIS)

    Xu, Shuwu; Yao, Yunhua; Jia, Tianqing; Ding, Jingxin; Zhang, Shian; Sun, Zhenrong; Huang, Yunxia

    2015-01-01

    We theoretically and experimentally demonstrate the control of the intermediate state absorption in an (n + m) resonance-mediated multi-photon absorption process by the polarization-modulated femtosecond laser pulse. An analytical solution of the intermediate state absorption in a resonance-mediated multi-photon absorption process is obtained based on the time-dependent perturbation theory. Our theoretical results show that the control efficiency of the intermediate state absorption by the polarization modulation is independent of the laser intensity when the transition from the intermediate state to the final state is coupled by the single-photon absorption, but will be affected by the laser intensity when this transition is coupled by the non-resonant multi-photon absorption. These theoretical results are experimentally confirmed via a two-photon fluorescence control in (2 + 1) resonance-mediated three-photon absorption of Coumarin 480 dye and a single-photon fluorescence control in (1 + 2) resonance-mediated three-photon absorption of IR 125 dye. (paper)

  2. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field

    Science.gov (United States)

    Glushkov, A. V.; Gurskaya, M. Yu; Ignatenko, A. V.; Smirnov, A. V.; Serga, I. N.; Svinarenko, A. A.; Ternovsky, E. V.

    2017-10-01

    The consistent relativistic energy approach to the finite Fermi-systems (atoms and nuclei) in a strong realistic laser field is presented and applied to computing the multiphoton resonances parameters in some atoms and nuclei. The approach is based on the Gell-Mann and Low S-matrix formalism, multiphoton resonance lines moments technique and advanced Ivanov-Ivanova algorithm of calculating the Green’s function of the Dirac equation. The data for multiphoton resonance width and shift for the Cs atom and the 57Fe nucleus in dependence upon the laser intensity are listed.

  3. Multiphoton resonances

    International Nuclear Information System (INIS)

    Shore, B.W.

    1977-01-01

    The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory

  4. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    Science.gov (United States)

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing

  5. Multiphotonic resonance processes in potassium vapor

    International Nuclear Information System (INIS)

    Bensoussan, Paul.

    1975-01-01

    Despite several theoretical and experimental investigations, the phenomena of resonance multiphotonic ionization are still not completely understood. The following lines of investigation were undertaken to try and elucidate certain aspects of the resonance processes. The first line of investigation aims at finding the processes which can compete with ionization. Resonance ionization processes can be considered as taking place in two stages: absorption induced excitation of a bound state, followed by photoionization from the excited level. The problem is now to determine what are the processes which compete with the ionization processes starting from a level selectively populated by the absorption of one or two photons. The second line aims at finding the influence of the polarization of the radiation on resonance multiphotonic ionization for the second photon and to check the validity of the selection rules on the magnetic quantic number of the resonance bound linked states. The last study therefore relates to the development of a method of multiphotonic spectrometry which could determine the energy levels in the alcaline f series [fr

  6. Coherent enhancement of resonance-mediated multiphoton absorption

    International Nuclear Information System (INIS)

    Zhang, Shian; Zhang, Hui; Jia, Tianqing; Wang, Zugeng; Sun, Zhenrong

    2010-01-01

    In this paper, we theoretically investigate the coherent enhancement of resonance-mediated (2+2) four-photon absorption. It is found that by shaping the spectral phase with a π phase step, the resonance-mediated (2+2) four-photon transition probability can be enhanced. Furthermore, the coherent enhancement dependences on the detuning between the two two-photon absorptions, laser spectral bandwidth and laser centre frequency are explicitly discussed and analysed. We believe these theoretical results may play an important role in enhancing more complex resonance-mediated multiphoton absorption processes.

  7. Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields

    International Nuclear Information System (INIS)

    Chu, S.-I.; Telnov, D.A.

    2004-01-01

    The advancement of high-power and short-pulse laser technology in the past two decades has generated considerable interest in the study of multiphoton and very high-order nonlinear optical processes of atomic and molecular systems in intense and superintense laser fields, leading to the discovery of a host of novel strong-field phenomena which cannot be understood by the conventional perturbation theory. The Floquet theorem and the time-independent Floquet Hamiltonian method are powerful theoretical framework for the study of bound-bound multiphoton transitions driven by periodically time-dependent fields. However, there are a number of significant strong-field processes cannot be directly treated by the conventional Floquet methods. In this review article, we discuss several recent developments of generalized Floquet theorems, formalisms, and quasienergy methods, beyond the conventional Floquet theorem, for accurate nonperturbative treatment of a broad range of strong-field atomic and molecular processes and phenomena of current interests. Topics covered include (a) artificial intelligence (AI)-most-probable-path approach (MPPA) for effective treatment of ultralarge Floquet matrix problem; (b) non-Hermitian Floquet formalisms and complex quasienergy methods for nonperturbative treatment of bound-free and free-free processes such as multiphoton ionization (MPI) and above-threshold ionization (ATI) of atoms and molecules, multiphoton dissociation (MPD) and above-threshold dissociation (ATD) of molecules, chemical bond softening and hardening, charge-resonance enhanced ionization (CREI) of molecular ions, and multiple high-order harmonic generation (HHG), etc.; (c) many-mode Floquet theorem (MMFT) for exact treatment of multiphoton processes in multi-color laser fields with nonperiodic time-dependent Hamiltonian; (d) Floquet-Liouville supermatrix (FLSM) formalism for exact nonperturbative treatment of time-dependent Liouville equation (allowing for relaxations and

  8. Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields

    Science.gov (United States)

    Chu, Shih-I.; Telnov, Dmitry A.

    2004-02-01

    The advancement of high-power and short-pulse laser technology in the past two decades has generated considerable interest in the study of multiphoton and very high-order nonlinear optical processes of atomic and molecular systems in intense and superintense laser fields, leading to the discovery of a host of novel strong-field phenomena which cannot be understood by the conventional perturbation theory. The Floquet theorem and the time-independent Floquet Hamiltonian method are powerful theoretical framework for the study of bound-bound multiphoton transitions driven by periodically time-dependent fields. However, there are a number of significant strong-field processes cannot be directly treated by the conventional Floquet methods. In this review article, we discuss several recent developments of generalized Floquet theorems, formalisms, and quasienergy methods, beyond the conventional Floquet theorem, for accurate nonperturbative treatment of a broad range of strong-field atomic and molecular processes and phenomena of current interests. Topics covered include (a) artificial intelligence (AI)-most-probable-path approach (MPPA) for effective treatment of ultralarge Floquet matrix problem; (b) non-Hermitian Floquet formalisms and complex quasienergy methods for nonperturbative treatment of bound-free and free-free processes such as multiphoton ionization (MPI) and above-threshold ionization (ATI) of atoms and molecules, multiphoton dissociation (MPD) and above-threshold dissociation (ATD) of molecules, chemical bond softening and hardening, charge-resonance enhanced ionization (CREI) of molecular ions, and multiple high-order harmonic generation (HHG), etc.; (c) many-mode Floquet theorem (MMFT) for exact treatment of multiphoton processes in multi-color laser fields with nonperiodic time-dependent Hamiltonian; (d) Floquet-Liouville supermatrix (FLSM) formalism for exact nonperturbative treatment of time-dependent Liouville equation (allowing for relaxations and

  9. Multi-photon transitions and Rabi resonance in continuous wave EPR.

    Science.gov (United States)

    Saiko, Alexander P; Fedaruk, Ryhor; Markevich, Siarhei A

    2015-10-01

    The study of microwave-radiofrequency multi-photon transitions in continuous wave (CW) EPR spectroscopy is extended to a Rabi resonance condition, when the radio frequency of the magnetic-field modulation matches the Rabi frequency of a spin system in the microwave field. Using the non-secular perturbation theory based on the Bogoliubov averaging method, the analytical description of the response of the spin system is derived for all modulation frequency harmonics. When the modulation frequency exceeds the EPR linewidth, multi-photon transitions result in sidebands in absorption EPR spectra measured with phase-sensitive detection at any harmonic. The saturation of different-order multi-photon transitions is shown to be significantly different and to be sensitive to the Rabi resonance. The noticeable frequency shifts of sidebands are found to be the signatures of this resonance. The inversion of two-photon lines in some spectral intervals of the out-of-phase first-harmonic signal is predicted under passage through the Rabi resonance. The inversion indicates the transition from absorption to stimulated emission or vice versa, depending on the sideband. The manifestation of the primary and secondary Rabi resonance is also demonstrated in the time evolution of steady-state EPR signals formed by all harmonics of the modulation frequency. Our results provide a theoretical framework for future developments in multi-photon CW EPR spectroscopy, which can be useful for samples with long spin relaxation times and extremely narrow EPR lines. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Doubly resonant multiphoton ionization

    International Nuclear Information System (INIS)

    Crance, M.

    1978-01-01

    A particular case of doubly resonant multiphoton ionization is theoretically investigated. More precisely, two levels quasi-resonant with two successive harmonics of the field frequency are considered. The method used is based on the effective operator formalism first introduced for this problem by Armstrong, Beers and Feneuille. The main result is to show the possibility of observing large interference effects on the width of the resonances. Moreover this treatment allows us to make more precise the connection between effective operator formalism and standard perturbation theory

  11. Controlling the optical bistability beyond the multi-photon resonance condition in a three-level closed-loop atomic system

    International Nuclear Information System (INIS)

    Mahmoudi, Mohammad; Nozari, Narges; Vafafard, Azar; Sahrai, Mostafa

    2012-01-01

    We investigate the optical bistability behavior of a three-level closed-loop atomic system beyond the multi-photon resonance condition. Using the Floquet decomposition, we solve the time-dependent equations of motion, beyond the multi-photon resonance condition. By identifying the different scattering processes contributing to the medium response, it is shown that in general the optical bistability behavior of the system is not phase-dependent. The phase dependence is due to the scattering of the driving and coupling fields into the probe field at a frequency, which, in general, differs from the probe field frequency. - Highlights: → We investigate optical bistability of a three-level closed-loop atomic system, beyond the multi-photon resonance condition. → By applying Floquet decomposition to the equation of motion, the different scattering processes contributing to the medium response are determined. → It is shown that the phase dependence of optical bistability arises from the scattering of the driving and coupling fields into the probe field frequency.

  12. (1+1) resonant enhanced multiphoton ionization via the A 2Σ+ state of NO: Ionic rotational branching ratios and their intensity dependence

    International Nuclear Information System (INIS)

    Rudolph, H.; Dixit, S.N.; McKoy, V.; Huo, W.M.

    1988-01-01

    Recent high resolution photoelectron spectroscopic studies of the (1+1) resonant enhanced multiphoton ionization (REMPI) of NO via the 0--0 transition of the A--X band (γ band) have shown a pronounced ΔN = 0 signal (ΔNequivalentN/sub +/-N/sub i/) and smaller, but measurable, ΔN = +- 2 peaks. The authors [K. S. Viswanathan et al., J. Phys. Chem. 90, 5078 (1986)] assign the excitation to be via an R(21.5) line, with no further specification. We have performed ab initio calculations of the rotational branching ratios for the four possible ''R(21.5)'' transitions, namely, the rotationally ''clean'' R 21 and R 22 , and the ''mixed'' R 12 +Q 22 and R 11 +Q 21 branches. We find the mixed R 12 +Q 22 (21.5) branch to agree best with the observed photoelectron spectrum collected parallel to the polarization vector of the light. The discrepancy is larger for detection perpendicular to the polarization. To understand this difference, we have assessed the influence of laser intensity and polarization ''contamination'' on the branching ratios and photoelectron angular distributions

  13. Wavelength dependence of momentum-space images of low-energy electrons generated by short intense laser pulses at high intensities

    International Nuclear Information System (INIS)

    Maharjan, C M; Alnaser, A S; Litvinyuk, I; Ranitovic, P; Cocke, C L

    2006-01-01

    We have measured momentum-space images of low-energy electrons generated by the interaction of short intense laser pulses with argon atoms at high intensities. We have done this over a wavelength range from 400 to 800 nm. The spectra show considerable structure in both the energy and angular distributions of the electrons. Some, but not all, energy features can be identified as multi-photon resonances. The angular structure shows a regularity which transcends the resonant structure and may be due instead to diffraction. The complexity of the results defies easy model-dependent interpretations and invites full solutions to Schroedinger's equation for these systems

  14. Resonance Enhanced Multi-photon Spectroscopy of DNA

    Science.gov (United States)

    Ligare, Marshall Robert

    For over 50 years DNA has been studied to better understand its connection to life and evolution. These past experiments have led to our understanding of its structure and function in the biological environment but the interaction of DNA with UV radiation at the molecular level is still not very well understood. Unique mechanisms in nucleobase chromaphores protect us from adverse chemical reactions after UV absorption. Studying these processes can help develop theories for prebiotic chemistry and the possibility of alternative forms of DNA. Using resonance enhanced multi-photon spectroscopic techniques in the gas phase allow for the structure and dynamics of individual nucleobases to be studied in detail. Experiments studying different levels of structure/complexity with relation to their biological function are presented. Resonant IR multiphoton dissociation spectroscopy in conjunction with molecular mechanics and DFT calculations are used to determine gas phase structures of anionic nucleotide clusters. A comparison of the identified structures with known biological function shows how the hydrogen bonding of the nucleotides and their clusters free of solvent create favorable structures for quick incorporation into enzymes such as DNA polymerase. Resonance enhanced multi-photon ionization (REMPI) spectroscopy techniques such as resonant two photon ionization (R2PI) and IR-UV double resonance are used to further elucidate the structure and excited state dynamics of the bare nucleobases thymine and uracil. Both exhibit long lived excited electronic states that have been implicated in DNA photolesions which can ultimately lead to melanoma and carcinoma. Our experimental data in comparison with many quantum chemical calculations suggest a new picture for the dynamics of thymine and uracil in the gas phase. A high probability of UV absorption from a vibrationally hot ground state to the excited electronic state shows that the stability of thymine and uracil comes from

  15. Exact results for emission from one and two atoms in an ideal cavity at multiphoton resonance

    International Nuclear Information System (INIS)

    Fam Le Kien; Shumovskij, A.S.; Tran Quang.

    1987-01-01

    The emission from the system of one or two two-level atoms in an ideal cavity with one mode at mutiphoton resonance is examined. Exact results for the two-time dipole correlation function and the time-dependent spectra of multiphoton-induced fluorescence are presented

  16. Effects of multi-photon interferences from internally generated fields in strongly resonant systems

    International Nuclear Information System (INIS)

    Deng, Lu; Payne, Marvin G.; Garrett, William R.

    2006-01-01

    In studies of various nonlinear optical phenomena, strong resonant features in the atomic or molecular response to multi-photon driven processes have been used to greatly enhance the visibility of otherwise weak higher-order processes. However, there are well defined circumstances where a multi-photon-resonant response of a target system leads to the generation of one or more new electromagnetic fields that can drastically change the overall system response from what would be expected from the imposed laser fields alone. New effects can occur and dominate some aspects of the nonlinear optical response because of the constructive or destructive interference between transition amplitudes along multiple excitation pathways between a given set of optically coupled states, where one of the pathways involve internally generated field(s). Under destructive interference some resonant enhancements can become completely canceled (suppressed). This review focuses on the class of optical interference effects associated with internally generated fields, that have been found to be capable of influencing a very significant number of basic physical phenomena in gas or vapor phase systems. It provides a historical overview of experimental and theoretical developments and a modern understanding of the underlying physics and its various manifestations that include: suppression of multi-photon excitation processes, suppression of stimulated emissions (Raman, hyper-Raman, and optically pumped stimulated emissions), saturation of parametric wave-mixing, pressure and beam-geometry dependent shifting of multi-photon-resonant absorption lines, and the suppression of Autler-Townes splitting and ac-stark shifts. Additionally, optical interference effects in some modern contexts, such as achieving multi-photon induced transparency, establishing single-photon self-interference based induced transparency, and generating entangled single photon states, are reviewed

  17. Line broadening in multiphoton processes with a resonant intermediate transition

    International Nuclear Information System (INIS)

    Wang, C.C.; James, J.V.; Xia, J.

    1983-01-01

    The linewidth of the excitation spectrum for multiphoton ionization is found to be broadened much more severely than the cascade fluorescence originating from the resonant intermediate level. These results are due to the mutual effects of the ionizing and resonating transitions, which are not properly accounted for in perturbative treatments

  18. The squeezing properties in the Jaynes-Cummings model with arbitrary intensity-dependent coupling

    International Nuclear Information System (INIS)

    Rhui-Hua, X.; Dun-Huan, L.; Gong-Ou, X.

    1996-01-01

    It is studied the squeezing properties of the atom and the radiation field in arbitrary intensity-dependent-coupling Jaynes-Cummings model when it is restricted to the following initial condition: the atom in its coherent state and the field in the vacuum state. The influence of virtual-photon processes on the atomic squeezing predicted by the Jaynes-Cummings model (JCM) has been examined. The relationship between the field and atomic squeezing in the resonant multi-photon JCM has been discussed. The symmetry between the field and atomic squeezing (SFAS) has been exposed in the resonant vacuum one-photon JCM, and the influence of non-resonant interaction and virtual-photon processes on the SFAS has also been discussed

  19. Multiphoton ionization of many-electron atoms and highly-charged ions in intense laser fields: a relativistic time-dependent density functional theory approach

    Science.gov (United States)

    Tumakov, Dmitry A.; Telnov, Dmitry A.; Maltsev, Ilia A.; Plunien, Günter; Shabaev, Vladimir M.

    2017-10-01

    We develop an efficient numerical implementation of the relativistic time-dependent density functional theory (RTDDFT) to study multielectron highly-charged ions subject to intense linearly-polarized laser fields. The interaction with the electromagnetic field is described within the electric dipole approximation. The resulting time-dependent relativistic Kohn-Sham (RKS) equations possess an axial symmetry and are solved accurately and efficiently with the help of the time-dependent generalized pseudospectral method. As a case study, we calculate multiphoton ionization probabilities of the neutral argon atom and argon-like xenon ion. Relativistic effects are assessed by comparison of our present results with existing non-relativistic data.

  20. Video-rate resonant scanning multiphoton microscopy

    Science.gov (United States)

    Kirkpatrick, Nathaniel D.; Chung, Euiheon; Cook, Daniel C.; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L.; Padera, Timothy P.; Fukumura, Dai; Jain, Rakesh K.

    2013-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates—only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment. PMID:24353926

  1. S-matrix analysis of vibrational and alignment effects in intense-field multiphoton ionization of molecules

    International Nuclear Information System (INIS)

    Requate, A.

    2007-03-01

    Theoretical analysis of the vibrational excitation of small molecules during multiphoton ionization in intense laser fields of optical and infrared frequencies. Analysis of the alignment dependence of the electron impact ionization of diatomic molecules in the presence of an intense laser field as the final step in the process of Nonsequential Double Ionization. Quantum mechanical description using S-matrix theory in Strong Field Approximation (SFA), i.e. beyond perturbation theory. (orig.)

  2. S-matrix analysis of vibrational and alignment effects in intense-field multiphoton ionization of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Requate, A

    2007-03-15

    Theoretical analysis of the vibrational excitation of small molecules during multiphoton ionization in intense laser fields of optical and infrared frequencies. Analysis of the alignment dependence of the electron impact ionization of diatomic molecules in the presence of an intense laser field as the final step in the process of Nonsequential Double Ionization. Quantum mechanical description using S-matrix theory in Strong Field Approximation (SFA), i.e. beyond perturbation theory. (orig.)

  3. Spin Multiphoton Antiresonance at Finite Temperatures

    Science.gov (United States)

    Hicke, Christian; Dykman, Mark

    2007-03-01

    Weakly anisotropic S>1 spin systems display multiphoton antiresonance. It occurs when an Nth overtone of the radiation frequency coincides with the distance between the ground and the Nth excited energy level (divided by ). The coherent response of the spin displays a sharp minimum or maximum as a function of frequency, depending on which state was initially occupied. We find the spectral shape of the response dips/peaks. We also study the stationary response for zero and finite temperatures. The response changes dramatically with increasing temperature, when excited states become occupied even in the absence of radiation. The change is due primarily to the increasing role of single-photon resonances between excited states, which occur at the same frequencies as multiphoton resonances. Single-photon resonances are broad, because the single-photon Rabi frequencies largely exceed the multi-photon ones. This allows us to separate different resonances and to study their spectral shape. We also study the change of the spectrum due to relaxational broadening of the peaks, with account taken of both decay and phase modulation.

  4. Experimental REMPI [Resonance Enhanced Multiphoton Ionization] studies of small molecules

    International Nuclear Information System (INIS)

    Dehmer, J.L.; Dehmer, P.M.; Pratt, S.T.; O'Halloran, M.A.; Tomkins, F.S.

    1986-01-01

    Resonance Enhanced Multiphoton Ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of exciting opportunities for both basic and applied science. On the applied side, REMPI has great potential as an ultrasensitive, highly selective detector for trace, reactive, or transient species. On the basic side, REMPI affords an unprecedented means of exploring excited state physics and chemistry at the quantum-state-specific level. We shall give an overview together with examples of current studies of excited molecular states to illustrate the principles of and prospects for REMPI. 27 refs., 3 figs

  5. Resonant multiphoton ionization of caesium atoms by ultra-short laser pulses at 1.06 μm

    International Nuclear Information System (INIS)

    Lompre, L.A.; Mainfray, G.; Manus, C.; Thebault, J.

    1978-01-01

    This paper reports the four-photon ionization of caesium atoms when the laser frequency is tuned through the resonant three-photon transition 6S → 6F. This experiment was performed by using a tunable-wavelength bandwidth-limited subnanosecond laser pulse at 1.06 μm, in the 10 8 -10 9 W.cm -2 laser intensity range. Pulse widths of 1.5 ns, 50 ps, and 15 ps were used. The resonant character of the multiphoton ionization process was observed, even with the shortest pulse of 15 ps. Nevertheless the influence of a temporal effect is demonstrated according to theoretical predictions. The resonance shift ΔE of the 6S → 6F transition energy was found to be linear with the laser intensity I within the range 10 8 -10 9 W.cm -2 . ΔE = αI, with α = 2 cm -1 /GW.cm -2 . This results confirms previous measurements performed with single-mode 35 ns laser pulses and is in very good agreement with calculated resonance shifts

  6. Multiphoton processes

    International Nuclear Information System (INIS)

    Manus, C.; Mainfray, G.

    1980-01-01

    The main features of multiphoton processes are described on a somewhat elementary basis. The emphasis is put on multiphoton ionization of atoms where the influence of resonance effects is given through typical examples. The important role played by the coherence of light is shown to produce a very dramatic influence on multiphoton absorption. Different observations concerning molecules, electrons, as well as solid surfaces illustrate the generality of these very non linear interaction between light and matter

  7. Multiphoton ionization processes in strong laser

    International Nuclear Information System (INIS)

    Krstic, P.

    1982-01-01

    Multiphoton ionization of hydrogen in ultrastrong laser fields is studied. The previous calculations of this process yield differing result for the transition rate. We show the relations between them and difficulties with each of them. One difficulty is that the finite spatial and time extent of the laser field has been omitted. It is also found that a laser field, which is sufficiently intense to be labeled ultrastrong, makes the electron move relativistically so that it becomes necessary to use Volkov states to describe the electron in the laser field. The transition rate is obtained, using a CO laser as an example, and it is found that the transition rate rises as the laser intensity rises. This is a consequence of the use of relativistic kinematics and is not true nonrelativistically. We also discuss the multiple peaks observed in the energy spectrum of electrons resulting from multiphoton ionization of atoms by lasers. When the laser intensity is large enough for the ponderomotive force to result in appreciable broading of the peaks we show the shape of the broadened peaks contains useful information. We show that the multiphoton ionization probability as a function of laser intensity can be obtained but that the free-free cross sections, which are in principle also obtainable, are probably not obtainable in practice. Finally, we describe the theory of the absorption of more than minimum numbers of photons needed to ionize an atom by an intense laser. The basic approximation used is that the atom is adiabatically deformed by the laser and an impulsive interaction then results in multiphoton absorption. In our first calculation we allow only one resonant excited state to be included in the adiabatic deformation. In our second we also allow the lowest energy continuum to be included. The two results are then compared

  8. Multiphoton Absorption Order of CsPbBr3 As Determined by Wavelength-Dependent Nonlinear Optical Spectroscopy.

    Science.gov (United States)

    Saouma, Felix O; Stoumpos, Constantinos C; Kanatzidis, Mercouri G; Kim, Yong Soo; Jang, Joon I

    2017-10-05

    CsPbBr 3 is a direct-gap semiconductor where optical absorption takes place across the fundamental bandgap, but this all-inorganic halide perovskite typically exhibits above-bandgap emission when excited over an energy level, lying above the conduction-band minimum. We probe this bandgap anomaly using wavelength-dependent multiphoton absorption spectroscopy and find that the fundamental gap is strictly two-photon forbidden, rendering it three-photon absorption (3PA) active. Instead, two-photon absorption (2PA) commences when the two-photon energy is resonant with the optical gap, associated with the level causing the anomaly. We determine absolute nonlinear optical dispersion over this 3PA-2PA region, which can be explained by two-band models in terms of the optical gap. The polarization dependence of 3PA and 2PA is also measured and explained by the relevant selection rules. CsPbBr 3 is highly luminescent under multiphoton absorption at room temperature with marked polarization and wavelength dependence at the 3PA-2PA crossover and therefore has potential for nonlinear optical applications.

  9. Multi-photon resonant effects in strong-field ionization: origin of the dip in experimental longitudinal momentum distributions

    International Nuclear Information System (INIS)

    Alnaser, A S; Maharjan, C M; Wang, P; Litvinyuk, I V

    2006-01-01

    We studied ionization of neon and argon by intense linearly polarized femtosecond laser pulses of different wavelengths (400 nm and 800 nm) and peak intensities, and by measuring momentum distributions of singly charged positive ions in the direction parallel to laser polarization. For Ne the momentum distributions exhibited a characteristic dip at zero momentum at 800 nm and a complex multipeak structure at 400 nm. Similarly, for Ar the momentum distributions evolved from a complex multipeak structure with a pronounced dip in the centre at 400 nm, to a smooth distribution characteristic of pure tunneling ionization (800 nm, high intensities). In the intermediate regime (800 nm, medium to low intensities), for both atoms we observed recoil ion momentum distributions modulated by quasi-periodic structures usually seen in the photoelectron energy spectra in a multi-photon regime (ATI spectra). Ne did show a characteristic 'dip' at low momentum, while the longitudinal momentum distribution for Ar exhibited a spike at zero momentum instead. The spectra did dramatically change at 400 nm, where both ions show the pronounced dip near zero momentum. Based on our results, we conclude that the structures observed in Ne and Ar momentum distributions reflect the specifics of atomic structure of the two targets and should not be attributed to effects of electron recollision, as was suggested earlier. Instead, as our results indicate, they are due to the effects of multi-photon resonant enhancement of strong-field ionization. (letter to the editor)

  10. Resonance-enhanced multiphoton ionization (REMPI) spectroscopy of p-chlorofluorobenzene

    Science.gov (United States)

    Tuttle, William D.; Gardner, Adrian M.; Wright, Timothy G.

    2017-09-01

    The S1 ← S0 (A˜1 B2 ← X˜1 A1) electronic transition of para-chlorofluorobenzene has been investigated using resonance-enhanced multiphoton ionization (REMPI) spectroscopy. Assignment of the vibrational structure has been achieved by comparison with corresponding spectra of related molecules, via quantum chemical calculations, and via shifts in bands between the spectra of the 35Cl and 37Cl isotopologues. In addition, we have also partially reassigned a previously-published spectrum of para-dichlorobenzene.

  11. Multiphoton ionization of H+2 at critical internuclear separations: non-Hermitian Floquet analysis

    International Nuclear Information System (INIS)

    Likhatov, P V; Telnov, D A

    2009-01-01

    We present ab initio time-dependent non-Hermitian Floquet calculations of multiphoton ionization (MPI) rates of hydrogen molecular ions subject to an intense linearly polarized monochromatic laser field with a wavelength of 800 nm. The orientation of the molecular axis is parallel to the polarization vector of the laser field. The MPI rates are computed for a wide range of internuclear separations R with high resolution in R and reproduce resonance and near-threshold structures. We show that enhancement of ionization at critical internuclear separations is related to resonance series with higher electronic states. The effect of two-centre interference on the MPI signal is discussed.

  12. The importance of spectroscopy for infrared multiphoton excitation

    International Nuclear Information System (INIS)

    Fuss, W.; Kompa, K.L.

    1980-07-01

    It is substantiated by examples that the infrared spectra of molecules in high vibrational states are similar in width to those of the ground states. Therefore in order to explain collisionless infrared multiphoton excitation, the existence of resonance has to be checked, not only for the first three steps, but for all of them. That is, their (low resolution) spectra should be studied. This review summarizes the spectroscopic mechanisms contributing to multiphoton excitation, which have been suggested to date, including several kinds of rotational compensation and of vibrational level splitting, which cooperate to overcome the anharmonic shift. The spectral quasicontinuum, generated by intensity borrowing, must neither be very broad nor dense, and collisionless vibrational relaxation is only important at very high energies. Knowledge of relatively few spectroscopic detailes helps to understand many details and many differences in multiphoton excitatio. (orig.)

  13. Three-dimensional spatial imaging in multiphoton ionization rate measurements

    International Nuclear Information System (INIS)

    Bredy, Richard; Camp, Howard A.; Nguyen, Hai; Awata, Takaaki; Shan Bing; Chang Zhenghu; DePaola, B.D.

    2004-01-01

    An experiment is described in which an apparatus is used to demonstrate the feasibility of measuring multiphoton photoionization rates in the interaction of short pulsed lasers with atoms or molecules. With this methodology, the ionization rate is measured as a function of the spatial position in the beam-waist region of the laser through the direct three-dimensional spatial imaging of the ionization events. Thus, if the spatial dependence of the laser beam intensity were known, a series of experiments could yield the intensity dependence of multiphoton ionization without the assumptions or errors that are generally inherent in the integration over one or more dimensions in the laser focal volume

  14. Examination of excited state populations in sputtering using Multiphoton Resonance Ionization

    International Nuclear Information System (INIS)

    Kimock, F.M.; Baxter, J.P.; Pappas, D.L.; Kobrin, P.H.; Winograd, N.

    1984-01-01

    Multiphoton Resonance Ionization has been employed to study the populations of excited state atoms ejected from ion bombarded metal surfaces. Preliminary investigations have focused on three model systems: aluminum, indium and cobalt. In this paper the authors examine the effect of primary ion energy (2 to 12 keV Ar + ) on excited state yields for these three systems. The influence of the sample matrix on excited state populations of sputtered atoms is also discussed

  15. The multiphoton ionization of uranium hexafluoride

    International Nuclear Information System (INIS)

    Armstrong, D.P.

    1992-05-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF 6 have been conducted using focused light from the Nd:YAG laser fundamental (λ=1064 nm) and its harmonics (λ=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF x + fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U n+ ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U 2+ ) intensity is much greater than that of the singly-charged uranium ion (U + ). For the case of the tunable dye laser experiments, the U n+ (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U 2+ ion and the absence or very small intensities of UF x + fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule

  16. Polarization control of multi-photon absorption under intermediate femtosecond laser field

    International Nuclear Information System (INIS)

    Cheng Wenjing; Liang Guo; Wu Ping; Liu Pei; Jia Tianqing; Sun Zhenrong; Zhang Shian

    2017-01-01

    It has been shown that the femtosecond laser polarization modulation is a very simple and well-established method to control the multi-photon absorption process by the light–matter interaction. Previous studies mainly focused on the multi-photon absorption control in the weak field. In this paper, we further explore the polarization control behavior of multi-photon absorption process in the intermediate femtosecond laser field. In the weak femtosecond laser field, the second-order perturbation theory can well describe the non-resonant two-photon absorption process. However, the higher order nonlinear effect (e.g., four-photon absorption) can occur in the intermediate femtosecond laser field, and thus it is necessary to establish new theoretical model to describe the multi-photon absorption process, which includes the two-photon and four-photon transitions. Here, we construct a fourth-order perturbation theory to study the polarization control behavior of this multi-photon absorption under the intermediate femtosecond laser field excitation, and our theoretical results show that the two-photon and four-photon excitation pathways can induce a coherent interference, while the coherent interference is constructive or destructive that depends on the femtosecond laser center frequency. Moreover, the two-photon and four-photon transitions have the different polarization control efficiency, and the four-photon absorption can obtain the higher polarization control efficiency. Thus, the polarization control efficiency of the whole excitation process can be increased or decreased by properly designing the femtosecond laser field intensity and laser center frequency. These studies can provide a clear physical picture for understanding and controlling the multi-photon absorption process in the intermediate femtosecond laser field, and also can provide a theoretical guidance for the future experimental realization. (paper)

  17. Resonance-enhanced multiphoton ionization photoelectron spectroscopy of even-parity autoionizing Rydberg states of atomic sulphur

    NARCIS (Netherlands)

    Woutersen, S.; de Milan, J.B.; de Lange, C.A.; Buma, W.J.

    1997-01-01

    Several previously unobserved Rydberg states of the sulphur atom above the lowest ionization threshold are identified and assigned using (2 + 1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy. All states were accessed by two-photon transitions from either the 3P ground or the

  18. Examination of excited state populations in sputtering using multiphoton resonance ionization

    International Nuclear Information System (INIS)

    Kimock, F.M.; Baxter, J.P.; Pappas, D.L.; Kobrin, P.H.; Winograd, N.

    1984-01-01

    Multiphoton Resonance Ionization has been employed to study the populations of excited state atoms ejected from ion bombarded metal surfaces. Preliminary investigations have focused on three model systems: aluminum, indium and cobalt. In this paper we examine the effect of primary ion energy (2 to 12 keV Ar + ) on excited state yields for these three systems. The influence of the sample matrix on excited state populations of sputtered atoms is also discussed. 8 refs., 4 figs

  19. Multiphoton dissociation of polyatomic molecules

    International Nuclear Information System (INIS)

    Schulz, P.A.

    1979-10-01

    The dynamics of infrared multiphoton excitation and dissociation of SF 6 was investigated under collision free conditions by a crossed laser-molecular beam method. In order to understand the excitation mechanism and to elucidate the requirements of laser intensity and energy fluence, a series of experiments were carried out to measure the dissociation yield dependences on energy fluence, vibrational temperature of SF 6 , the pulse duration of the CO 2 laser and the frequency in both one and two laser experiments. Translational energy distributions of the SF 5 dissociation product measured by time of flight and angular distributions and the dissociation lifetime of excited SF 6 as inferred from the observation of secondary dissociation of SF 5 into SF 4 and F during the laser pulse suggest that the dynamics of dissociation of excited molecules is dominated by complete energy randomization and rapid intramolecular energy transfer on a nanosecond timescale, and can be adequately described by RRKM theory. An improved phenomenological model including the initial intensity dependent excitation, a rate equation describing the absorption and stimulated emission of single photons, and the unimolecular dissociation of excited molecules is constructed based on available experimental results. The model shows that the energy fluence of the laser determines the excitation of molecules in the quasi-continuum and the excess energy with which molecules dissociate after the laser pulse. The role played by the laser intensity in multiphoton dissociation is more significant than just that of overcoming the intensity dependent absorption in the lowest levels. 63 references

  20. Multiphoton ionization/dissociation of osmium tetroxide

    International Nuclear Information System (INIS)

    Ding, D.; Puretzky, A.A.; Compton, R.N.

    1993-01-01

    The mechanisms leading to laser multiphoton ionization and dissociation (MPI/MPD) of osmium tetroxide (OsO 4 ) have been investigated from measurements of the kinetic energies of product ions (Os + , Os 2+ , OsO + , O 2 + , O + ) and photoelectrons as a function of the laser wavelength. Neutral channels, intermediate to the dominant Os + ionization channel, such as OsO 4 →OsO 4-n +nO are examined using resonance-enhanced multiphoton ionization (REMPI) of the fast O atoms. Equipartition of the available photon energy among the fragments is observed. The wavelength dependence of the Os + ion signal suggests that one or more of the steps leading to Os + ions involve molecular ions and/or excited neutral atoms. The observed preponderance of very slow ( 2+ is shown to result primarily from REMPI of Os +

  1. Dissecting multi-photon resonances at the large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Allanach, B.C. [University of Cambridge, Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Cambridge (United Kingdom); Bhatia, D.; Iyer, Abhishek M. [Tata Institute of Fundamental Research, Department of Theoretical Physics, Mumbai (India)

    2017-09-15

    We examine the phenomenology of the production, at the 13 TeV Large Hadron Collider (LHC), of a heavy resonance X, which decays via other new on-shell particles n into multi-(i.e. three or more) photon final states. In the limit that n has a much smaller mass than X, the multi-photon final state may dominantly appear as a two-photon final state because the γs from the n decay are highly collinear and remain unresolved. We discuss how to discriminate this scenario from X → γγ: rather than discarding non-isolated photons, it is better to relax the isolation criteria and instead form photon jets substructure variables. The spins of X and n leave their imprint upon the distribution of pseudo-rapidity gap Δη between the apparent two-photon states. Depending on the total integrated luminosity, this can be used in many cases to claim discrimination between the possible spin choices of X and n, although the case where X and n are both scalar particles cannot be discriminated from the direct X → γγ decay in this manner. Information on the mass of n can be gained by considering the mass of each photon jet. (orig.)

  2. Laser-induced multiphoton transitions

    International Nuclear Information System (INIS)

    Stenholm, S.

    1978-06-01

    Laser induced multiphoton processes are reviewed. The effects of strong fields on atoms are discussed. The perturbation treatment is presented and also its generalization to treat intermediate resonances. The influence of atomic coherence is discussed heuristically and the relation between quantal and classical descriptions of the field is elucidated by reference to the dressed atom description. Atomic ionization experiments are reviewed and the present understanding of multiphoton dissociation of molecules is explained. Finally some prospects for the future are discussed. (author)

  3. Theory of resonant multiphoton ionization of krypton by intense ultraviolet laser radiation

    International Nuclear Information System (INIS)

    Tang, X.; Lambropoulos, P.; L'Huillier, A.; Dixit, S.N.

    1989-01-01

    We present a theoretical interpretation of the experimental results on three-photon-resonant four-photon ionization of Kr reported by Landen, Perry, and Campbell [Phys. Rev. Lett. 59, 2558 (1987)] and Perry and Landen [Phys. Rev. A 38, 2815 (1988)]. Our calculations are based on multichannel quantum-defect theory combined with a density-matrix formalism describing the spatiotemporal development of the process. We obtain good agreement with the data, which even at intensities as high as 10 14 W/cm 2 show the imprint of the underlying atomic structure

  4. Development of resonance-enhanced multiphoton ionization system

    International Nuclear Information System (INIS)

    Naik, P.D.; Upadhyaya, Hari P.; Kumar, Awadhesh; Bajaj, P.N.; Sinha, A.K.; Bhatt, S.; Gupta, M.D.P.

    2009-05-01

    Radiation and Photochemistry Division has developed a Molecular Beam-Resonance Enhanced Multiphoton Ionization-Time-of-Flight spectrometer, a highly sensitive and selective analytical detection system, for investigation of photodissociation dynamics of isolated molecules. In this system, the molecular beam is intersected in the extraction region of a Wiley-McLaren type Time-of-Flight mass spectrometer by the photolysis laser beam, propagating perpendicular to both the molecular beams and the Time-of-Flight tube. The probe (ionization) laser beam counter propagating to the photolysis beam, ionizes the stable products and the radicals produced on photodissociation. The important features of the system, namely, the resolution and the detection limit, have been determined from the studies of aniline molecular beam, generated by seeding 1% aniline in helium. For the present configuration, using one metre long flight tube, the resolution has been found to be about 400, and detection limit is better than 106 species per cm 3 . The integrity of the set-up is obtained from the photodissociation dynamics studies of bromoform. (author)

  5. Theory of the effect of third-harmonic generation on three-photon resonantly enhanced multiphoton ionization in focused beams

    International Nuclear Information System (INIS)

    Payne, M.G.; Garrett, W.R.

    1983-01-01

    Multiphoton ionization in the region near a three-photon resonance is treated for focused, plane-polarized Gaussian beams with diffraction-limited beam divergence. In this situation, a third-harmonic field is generated within the laser beam. At, and very near, three-photon resonance the driving rate for the upper-state probability amplitude due to one-photon absorption of third-harmonic light becomes nearly equal to the corresponding three-photon rate due to the laser field, but these effects are 180 0 out of phase. As a consequence of this cancellation between two pumping terms, the three-photon resonance line essentially disappears at moderate concentrations and the observed ionization has a line shape that is close to the phase-matching curve for third-harmonic generation. The ionization signal, near but not on the resonance, is due almost entirely to absorption of third-harmonic photons plus other laser photons; three-photon resonantly enhanced multiphoton ionization by the laser is much weaker. This is particularly true on the blue side of the three-photon resonance at detunings where phase matching occurs. The problem is treated quite generally with predictions of the full line shape for n-photon ionization and third-harmonic light generation near three-photon resonance, including the rather strong influences of positively dispersive buffer gases. We also show that the cancellation between the one-photon and the three-photon process is partially spoiled in the presence of a counterpropagating beam at the same frequency

  6. Semiclassical analysis of long-wavelength multiphoton processes: The periodically driven harmonic oscillator

    International Nuclear Information System (INIS)

    Fox, Ronald F.; Vela-Arevalo, Luz V.

    2002-01-01

    The problem of multiphoton processes for intense, long-wavelength irradiation of atomic and molecular electrons is presented. The recently developed method of quasiadiabatic time evolution is used to obtain a nonperturbative analysis. When applied to the standard vector potential coupling, an exact auxiliary equation is obtained that is in the electric dipole coupling form. This is achieved through application of the Goeppert-Mayer gauge. While the analysis to this point is general and aimed at microwave irradiation of Rydberg atoms, a Floquet analysis of the auxiliary equation is presented for the special case of the periodically driven harmonic oscillator. Closed form expressions for a complete set of Floquet states are obtained. These are used to demonstrate that for the oscillator case there are no multiphoton resonances

  7. Theory of the effect of odd-photon destructive interference on optical shifts in resonantly enhanced multiphoton excitation and ionization

    International Nuclear Information System (INIS)

    Payne, M.G.; Deng, L.; Garrett, W.R.

    1998-01-01

    We present a theory for two- and three-photon excitation, optical shifting, and four-wave mixing when a first laser is tuned onto, or near, a two-photon resonance and a second much more intense laser is tuned near or on resonance between the two-photon resonance and a second excited state. When the second excited state has a dipole-allowed transition back to the ground state and the concentration is sufficiently high, a destructive interference is produced between three-photon coupling of the ground state and the second excited state and one-photon coupling between the same states by the internally generated four-wave mixing field. This interference leads to several striking effects. For instance, as the onset of the interference occurs, the optical shifts in the two-photon resonance excitation line shape become smaller in copropagating geometry so that the line shapes for multiphoton ionization enhanced by the two-photon resonance eventually become unaffected by the second laser. In the same range of concentrations the four-wave mixing field evolves to a concentration-independent intensity. With counterpropagating laser beams the line shape exhibits normal optical shifts like those observed for both copropagating and counterpropagating laser beams at very low concentrations. The theoretical work presented here extends our earlier works by including the effect of laser bandwidth and by removing the restriction of having the second laser be tuned far from three-photon resonance. In this way we have now included, as a special case, the effect of both laser bandwidth and interference on laser-induced transparency. Unlike other effects related to odd-photon destructive interference, the effect of a broad bandwidth is to bring about the predicted effects at much lower concentrations. Studies in rubidium show good agreement between theory and experiment for both ionization line shapes and four-wave mixing intensity as a function of concentration. copyright 1998 The

  8. Nonperturbative theory of single/multiphoton processes in atoms and molecules induced by intense laser fields

    International Nuclear Information System (INIS)

    Lau, A.M.F.

    1975-04-01

    A quantum nonperturbative theory is given for the problem of a general n discrete-level atomic/molecular system interacting with a strong single-mode/multimode radiation field. The atomic/molecular energy-level structures are modified due to interaction with the laser field. These energy level shifts are derived in the rigorous solution to the adiabatic eigenvalue problem of the charge--field system, involving a simple iterative procedure. The task of solution is simplified by recurrence relations between matrices connecting probability amplitudes of successive photon numbers. New formulae for calculating probability of single/multiphoton transitions between three resonant shifted levels and between some cases of two near-resonant shifted levels are derived. This general formalism can be applied to calculate transition probabilities of various atomic/molecular photo processes of interest. Numerical values are obtained for the inelastic cross section of the slow-collisional process Li + H and for dissociation cross section of LiH molecule. The transition probabilities of Na (3s → 5s by absorption of two photon of lambda = 0.60233μ -- 0.602396 μ) and of Li (2s → 3s by absorption of eight photons of lambda = 2.9406 μ -- 2.945 μ) irradiated by a strong pulse are calculated. Finally, a parametric study is carried out for the process where a molecular system is interacting with two intense radiation fields of different wavelengths. Owing to potential barrier shift due to the much more intense field, the molecular system penetrates into an otherwise inaccessible region in the potential level where it is allowed to radiate to a lower level by emitting photons at a second wavelength. (12 figures, 6 tables) (U.S.)

  9. vuv fluorescence from selective high-order multiphoton excitation of N2

    International Nuclear Information System (INIS)

    Coffee, Ryan N.; Gibson, George N.

    2004-01-01

    Recent fluorescence studies suggest that ultrashort pulse laser excitation may be highly selective. Selective high-intensity laser excitation holds important consequences for the physics of multiphoton processes. To establish the extent of this selectivity, we performed a detailed comparative study of the vacuum ultraviolet fluorescence resulting from the interaction of N 2 and Ar with high-intensity infrared ultrashort laser pulses. Both N 2 and Ar reveal two classes of transitions, inner-valence ns ' l ' . From their pressure dependence, we associate each transition with either plasma or direct laser excitation. Furthermore, we qualitatively confirm such associations with the time dependence of the fluorescence signal. Remarkably, only N 2 presents evidence of direct laser excitation. This direct excitation produces ionic nitrogen fragments with inner-valence (2s) holes, two unidentified transitions, and one molecular transition, the N 2 + :X 2 Σ g + 2 Σ u + . We discuss these results in the light of a recently proposed model for multiphoton excitation

  10. One color multi-photon ionization of the Gadolinium atom in near UV region

    International Nuclear Information System (INIS)

    Kim, Jin Tae; Yi, Jong Hoon; Lhee, Yong Joo; Lee, Jong Min

    1999-01-01

    We have investigated the states of the gadolinium atom in near ultra-violet (UV) region (∼410 nm) using single photon excitation using resonance ionization mass spectrometry (RIMS). Around 70 transitions among observed 180 single color multi-photon ionization signals have been assigned. Most of the multi-photon processes of the assigned ion signals are through single photon resonant three photon ionization and through two photon resonant three photon ionization. (author)

  11. Optical Magnetometry Using Multiphoton Transitions

    Science.gov (United States)

    Degenkolb, Skyler M.

    Optical magnetometry plays a critical role in low-energy precision measurements and numerous other applications. In particular, permanent electric dipole moment (EDM) searches impose strict requirements on magnetic field sensitivity of the underlying atomic or molecular species. Other magnetometer properties - such as chemical reactivity, dielectric strength, and interaction cross-sections with other species - also impose limitations on experimental conditions. Here, we explore a novel approach to optical magnetometry, using multiphoton transitions of diamagnetic atoms to detect Larmor precession of polarized nuclei. Resonant probes are possible at moderate ultraviolet wavelengths, and hyperfine structure couples spin precession to fluorescence transitions with negligible backgrounds; paramagnetic rotation due to intensity-dependent dispersion may also be detectable. Nuclear spins and nonlinear optical excitation introduce new degrees of freedom, and evade limitations arising from rapid electronic decoherence. This dissertation reports progress towards two-photon optical magnetometry using ytterbium, rubidium, and xenon. We characterize the influence of probe polarization and magnetic fields on fluorescence spectra, for one- and two-photon continuous-wave (cw) excitation of ytterbium. Resolved hyperfine and isotope structure allow us to use spin-zero isotopes for diagnostics and normalization, and we develop analysis for overlapping two-photon resonances. We also report measurements of two-photon excitation in ytterbium and rubidium using picosecond laser pulses, and in xenon using a cw laser. Although hyperfine structure is unresolved, the rubidium measurements are sensitive to probe field polarization. Fluorescence spectra from two-photon excitation of ytterbium with femtosecond pulses show modulation when the repetition rate changes. Although techniques for polarizing noble gas nuclei are mature, existing cell designs are incompatible with two

  12. Semiclassical analysis of long-wavelength multiphoton processes: The Rydberg atom

    International Nuclear Information System (INIS)

    Vela-Arevalo, Luz V.; Fox, Ronald F.

    2004-01-01

    We study the problem of multiphoton processes for intense, long-wavelength irradiation of atomic and molecular electrons. An exact, nonperturbative approach is applied to the standard vector potential coupling Hamiltonian for a three-dimensional hydrogenlike atom in a microwave field treated semiclassically. Multiphoton probability exchange is calculated in both the velocity and the length gauges, by applying the Goeppert-Mayer gauge transformation. The expansion of the time-dependent solution in terms of Floquet states delineates the mechanism of multiphoton transitions. A detailed analysis of the Floquet states and quasienergies as functions of the field parameters allows us to describe the relation between avoided quasienergy crossings and multiphoton probability exchange. We formulate analytical expressions for the variation of quasienergies and Floquet states with respect to the field parameters, and demonstrate that avoided quasienergy crossings are accompanied by dramatic changes in the Floquet states. Analysis of the Floquet states, for small values of the field strength, yields selection rules for the avoided quasienergy crossings. In the case of strong fields, the simultaneous choice of frequency and strength of the field producing an avoided crossing results in improved ionization probability

  13. The Application of Resonance-Enhanced Multiphoton Ionization Technique in Gas Chromatography Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Adan Li

    2014-01-01

    Full Text Available Gas chromatography resonance-enhanced multiphoton ionization time-of-flight mass spectrometry (GC/REMPI-TOFMS using a nanosecond laser has been applied to analyze the 16 polycyclic aromatic hydrocarbons (PAHs. The excited-state lifetime, absorption characters, and energy of electronic states of the 16 PAHs were investigated to optimize the ionization yield. A river water sample pretreated by means of solid phase extraction was analyzed to evaluate the performance of the analytical instrument. The results suggested that REMPI is superior to electron impact ionization method for soft ionization and suppresses the background signal due to aliphatic hydrocarbons. Thus, GC/REMPI-TOFMS is a more reliable method for the determination of PAHs present in the environment.

  14. Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment.

    Science.gov (United States)

    Kirkpatrick, Nathaniel D; Chung, Euiheon; Cook, Daniel C; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L; Padera, Timothy P; Fukumura, Dai; Jain, Rakesh K

    2012-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates-only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment.

  15. Dependence of Moessbauer resonance intensities on vibrational lattice anisotropy in case of an axial electric field gradient

    International Nuclear Information System (INIS)

    Friedt, J.M.

    1976-01-01

    The change in the hyperfine line intensities is discussed for various Moessbauer transitions in cases involving axial vibrational lattice anisotropy and axial electric field gradient at the resonant nucleus. The change in the relative intensities of the spectral components has been calculed numerically for the different types of Moessbauer transitions. Polynomial expansions are given to describe the functional dependence of the relative intensities on the magnitude of the vibration anisotropy. They may be used to extract the relevant parameters from experimental data without requiring the numerical integrations implied in the description of the Goldanskii-Karyagin effect [fr

  16. Stochastic resonance and coherence resonance in groundwater-dependent plant ecosystems.

    Science.gov (United States)

    Borgogno, Fabio; D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca

    2012-01-21

    Several studies have shown that non-linear deterministic dynamical systems forced by external random components can give rise to unexpectedly regular temporal behaviors. Stochastic resonance and coherence resonance, the two best known processes of this type, have been studied in a number of physical and chemical systems. Here, we explore their possible occurrence in the dynamics of groundwater-dependent plant ecosystems. To this end, we develop two eco-hydrological models, which allow us to demonstrate that stochastic and coherence resonance may emerge in the dynamics of phreatophyte vegetation, depending on their deterministic properties and the intensity of external stochastic drivers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Multiphoton (e,2e) process of hydrogen atom in strong laser field

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh Deb, S.; Roy, S.; Sinha, C. [Indian Association for the Cultivation of Science, Dept. of Theoretical Physics, Jadavpur, Kolkata (India)

    2009-12-15

    The dynamics of the electron impact multiphoton ionization of a hydrogen atom in the presence of an intense laser field (e, n gamma e) has been studied theoretically for laser polarization parallel and perpendicular to the incident momentum, with a view to comparing (qualitatively) the results with the recent kinematically complete experiments of Hoehr et al. for the He target. Significant laser modifications are noted in the present doubly (DDCS) and the fully differential multiphoton cross sections (TDCS) for both the geometries (parallel and perpendicular). For most of the explored kinematics (chosen in accordance with the experiment), the present binary peak intensity of the laser-assisted multiphoton TDCS is significantly enhanced with respect to the field free ones, in qualitative agreement with the experiment. Importance of the multiphoton effects is also studied. The multiphoton cross sections in the zeroth order approximation of the ejected electron wavefunction (CV) obeys the Kroll Watson sum rule while it does not hold good in the corresponding first order approximation (MCV). (authors)

  18. MULTI-PHOTON PHOSPHOR FEASIBILITY RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    R. Graham; W. Chow

    2003-05-01

    Development of multi-photon phosphor materials for discharge lamps represents a goal that would achieve up to a doubling of discharge (fluorescent) lamp efficacy. This report reviews the existing literature on multi-photon phosphors, identifies obstacles in developing such phosphors, and recommends directions for future research to address these obstacles. To critically examine issues involved in developing a multi-photon phosphor, the project brought together a team of experts from universities, national laboratories, and an industrial lamp manufacturer. Results and findings are organized into three categories: (1) Multi-Photon Systems and Processes, (2) Chemistry and Materials Issues, and (3) Concepts and Models. Multi-Photon Systems and Processes: This category focuses on how to use our current understanding of multi-photon phosphor systems to design new phosphor systems for application in fluorescent lamps. The quickest way to develop multi-photon lamp phosphors lies in finding sensitizer ions for Gd{sup 3+} and identifying activator ions to red shift the blue emission from Pr{sup 3+} due to the {sup 1}S{sub 0} {yields} {sup 1}I{sub 6} transition associated with the first cascading step. Success in either of these developments would lead to more efficient fluorescent lamps. Chemistry and Materials Issues: The most promising multi-photon phosphors are found in fluoride hosts. However, stability of fluorides in environments typically found in fluorescent lamps needs to be greatly improved. Experimental investigation of fluorides in actual lamp environments needs to be undertaken while working on oxide and oxyfluoride alternative systems for backup. Concepts and Models: Successful design of a multi-photon phosphor system based on cascading transitions of Gd{sup 3+} and Pr{sup 3+} depends critically on how the former can be sensitized and the latter can sensitize an activator ion. Methods to predict energy level diagrams and Judd-Ofelt parameters of multi-photon

  19. High-order multiphoton ionization photoelectron spectroscopy of NO

    International Nuclear Information System (INIS)

    Carman, H.S. Jr.; Compton, R.N.

    1987-01-01

    Photoelectron energy angular distributions of NO following three different high-order multiphoton ionization (MPI) schemes have been measured. The 3 + 3 resonantly enhanced multiphoton ionization (REMPI) via the A 2 Σ + (v=O) level yielded a distribution of electron energies corresponding to all accessible vibrational levels (v + =O-6) of the nascent ion. Angular distributions of electrons corresponding to v + =O and v + =3 were significantly different. The 3 + 2 REMPI via the A 2 Σ + (v=1) level produced only one low-energy electron peak (v + =1). Nonresonant MPI at 532 nm yielded a distribution of electron energies corresponding to both four- and five-photon ionization. Prominent peaks in the five-photon photoelectron spectrum (PES) suggest contributions from near-resonant states at the three-photon level. 4 refs., 3 figs

  20. Resonance enhanced multiphoton ionization spectra of molecules and molecular fragments. Annual progress report, March 1992 - February 1993

    International Nuclear Information System (INIS)

    1993-01-01

    In this report, the author will review the progress made in his studies of ion rotational distributions resulting from resonance enhanced multiphoton ionization of excited electronic states and from single-photon ionization of ground electronic states of jet-cooled molecules by coherent VUV and XUV radiation. To do so he will select a few examples from his studies which serve to highlight his progress and to identify the background and significance of the specific spectral features and systems he has chosen to study

  1. Temperature-dependent of Nonlinear Optical Conductance of Graphene-based Systems in High-intensity Terahertz Field

    Institute of Scientific and Technical Information of China (English)

    Jing Lv; Rui-yang Yuan; Hui Yan

    2014-01-01

    For multi-photon processed with the linear dispersion in the high-intensity terahertz(THz) field,we have systematically investigated the temperature-dependent nonlinear optical response of graphene-based systems, including single layer graphene, graphene superlattice and gapped graphene. In the intrinsic single layer graphene system, it demonstrates that, at low temperature, nonlinear optical conductivities of the thirdand fifth-order are respectively five and ten orders of magnitude larger than the universal conductivity with high-intensity and low frequency THz wave.In the graphene superlattice and gapped graphene systems, the optical responses enhanced because of the anisotropic massless and massive Dirac fermions.

  2. Limiting energy loss distributions for multiphoton channeling radiation

    International Nuclear Information System (INIS)

    Bondarenco, M.V.

    2015-01-01

    Recent results in the theory of multiphoton spectra for coherent radiation sources are overviewed, with the emphasis on channeling radiation. For the latter case, the importance of the order of resummation and averaging is emphasized. Limiting shapes of multiphoton spectra at high intensity are discussed for different channeling regimes. In some spectral regions, there emerges a correspondence between the radiative energy loss and the electron integrals of motion

  3. Off-resonant vibrational excitation: Orientational dependence and spatial control of photofragments

    DEFF Research Database (Denmark)

    Machholm, Mette; Henriksen, Niels Engholm

    2000-01-01

    Off-resonant and resonant vibrational excitation with short intense infrared (IR) laser pulses creates localized oscillating wave packets, but differs by the efficiency of the excitation and surprisingly by the orientational dependence. Orientational selectivity of the vibrational excitation...... of randomly oriented heteronuclear diatomic molecules can be obtained under simultaneous irradiation by a resonant and an off-resonant intense IR laser pulse: Molecules with one initial orientation will be vibrationally excited, while those with the opposite orientation will be at rest. The orientation-dependent...... distribution. (C) 2000 American Institute of Physics....

  4. Multiphoton excitation and high-harmonics generation in topological insulator.

    Science.gov (United States)

    Avetissian, H K; Avetissian, A K; Avchyan, B R; Mkrtchian, G F

    2018-05-10

    Multiphoton interaction of coherent electromagnetic radiation with 2D metallic carriers confined on the surface of the 3D topological insulator is considered. A microscopic theory describing the nonlinear interaction of a strong wave and metallic carriers with many-body Coulomb interaction is developed. The set of integrodifferential equations for the interband polarization and carrier occupation distribution is solved numerically. Multiphoton excitation of Fermi-Dirac sea of 2D massless carriers is considered for a THz pump wave. It is shown that in the moderately strong pump wave field along with multiphoton interband/intraband transitions the intense radiation of high harmonics takes place.

  5. Multiphoton excitation and high-harmonics generation in topological insulator

    Science.gov (United States)

    Avetissian, H. K.; Avetissian, A. K.; Avchyan, B. R.; Mkrtchian, G. F.

    2018-05-01

    Multiphoton interaction of coherent electromagnetic radiation with 2D metallic carriers confined on the surface of the 3D topological insulator is considered. A microscopic theory describing the nonlinear interaction of a strong wave and metallic carriers with many-body Coulomb interaction is developed. The set of integrodifferential equations for the interband polarization and carrier occupation distribution is solved numerically. Multiphoton excitation of Fermi–Dirac sea of 2D massless carriers is considered for a THz pump wave. It is shown that in the moderately strong pump wave field along with multiphoton interband/intraband transitions the intense radiation of high harmonics takes place.

  6. Multiphoton Rabi oscillations between highly excited Stark states of potassium

    International Nuclear Information System (INIS)

    He Yonglin

    2011-01-01

    We have applied a nonperturbative resonant theory to study the Rabi frequency of microwave multiphoton transitions between two Rydberg states of potassium in a static electric field. The Stark electric dipole moments used to calculate the Rabi frequency are determined by the Stark states' wave functions, which are obtained by the diagonalization method. The frequencies of the Rabi oscillations are in good agreement with either experimental ones or ones calculated by the time-dependent close-coupling method and the Floquet theory. Furthermore, we are able to show that the size of avoided crossings between the (n+2)s and (n,3) states can be predicted from the Stark electric dipole moment and the difference of the two Stark states' energy at a given resonance.

  7. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    Science.gov (United States)

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  8. Classical and quantum mechanical studies of HF in an intense laser field

    International Nuclear Information System (INIS)

    Dardi, P.S.; Gray, S.K.

    1982-01-01

    The behavior of an HF molecule in an intense laser field is investigated with both classical trajectories and quantum dynamics. Vibration-rotation transition probabilities and energy absorption as a function of laser pulse time are calculated for the diatomic initially in its ground state. For comparison, results are also reported for a model nonrotating HF molecule. It is found that classical mechanics does not predict the correct time behavior of the system, nor does it predict the correct rotational state distributions. Classical mechanics does, however, predict pulse time averaged quantities to be the correct order of magnitude. There is also a correct general trend of increased multiphoton excitation for laser frequencies red-shifted from the one-photon resonance, although multiphoton resonance peaks are not observed in the classical results and far too little multiphoton excitation is predicted. The effect of laser phase has also been investigated and shown to be relatively unimportant in both the classical and quantum dynamics

  9. Controllable surfaces of path interference in the multiphoton ionization of atoms by a weak trichromatic field

    International Nuclear Information System (INIS)

    Mercouris, Theodoros; Nicolaides, Cleanthes A

    2005-01-01

    Multiphoton detachment rates for the H - 1 S ground state irradiated by a weak trichromatic ac field consisting of the fundamental frequency ω 0.272 eV and its second, third or fourth higher harmonics were computed from first principles. The weak intensities are in the range of 10 7 -10 8 W cm -2 . The calculations incorporated systematically electronic structure and electron correlation effects. They were done by implementing a time-independent, nonperturbative many-electron, many-photon theory (MEMPT) which obtains cycle-averaged complex eigenvalues, whose real part gives the field-induced energy shift, Δ, and the imaginary part is the multiphoton ionization rate, Γ. Through analysis, plausible arguments and computation, we show that when the intensities are weak the dependence of Γ on phase differences is simple. Specifically, Γs are depicted in the form of plane surfaces, with minor ripples due to higher order ionization paths, in terms of trigonometric functions of the phase differences. This dependence is likely to be applicable to other atomic systems as well, and to provide a definition of the weak field regime in the trichromatic case. When the field intensities are such that higher order ionization paths become important, these dependences break down and we reach the strong field regime

  10. Resonant laser ablation: mechanisms and applications

    International Nuclear Information System (INIS)

    Anderson, J.E.; Bodla, R.; Eiden, G.C.; Nogar, N.S.; Smith, C.H.

    1996-01-01

    Resonant laser ablation (RLA) typically relies on irradiation of a sample in a mass spectrometer with modest intensity laser pulses tuned to a one or two photon resonant transition in the analyte of interest. This paper shows that RLA is well suited for highly sensitive analyses of complex samples. The examples actually studied are trace components in rhenium and technetium in nickel. The authors also studied the 2+1 multiphoton ionization spectrum of iron-56 detected by RLA of Re containing 70 ppm iron. Two-photon transition rates for Fe transitions were calculated perturbatively and found to agree semi-quantitatively with experimentally observed intensities. 17 refs., 3 figs

  11. uv laser induced molecular multiphoton ionization and fragmentation. [Intensity dependence, ion properties and yield

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, S; Reilly, J P; Hohla, K; Kompa, K L

    1979-02-01

    It has been demonstrated that the output from a discharge pumped KrF laser (249 nm) is capable of ionizing a variety of molecules. The nature and yield of ions generated in this process, which were identified by time-of-flight mass spectrometry, exhibit a striking intensity dependence. 12 references, 3 figures.

  12. Multiphoton electronic-spin generation and transmission spectroscopy in n-type GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-01-17

    Multiphoton electronic-spin generation in semiconductors was investigated using differential transmission spectroscopy. The generation of the electronic spins in the semiconductor samples were achieved by multiphoton pumping with circularly polarized light beam and was probed by the spin-resolved transmission of the samples. The electronic spin-polarization of conduction band was estimated and was found to depend on the delay of the probe beam, temperature as well as on the multiphoton pumping energy. The temperature dependence showed a decrease of the spin-polarization with increasing temperature. The electronic spin-polarization was found to depolarize rapidly for multiphoton pumping energy larger than the energy gap of the split-off band to the conduction band. The results were compared with those obtained in one-photon pumping, which shows that an enhancement of the electronic spin-polarization was achieved in multiphoton pumping. The findings resulting from this investigation might have potential applications in opto-spintronics, where the generation of highly polarized electronic spins is required.

  13. Multiphoton electronic-spin generation and transmission spectroscopy in n-type GaAs

    International Nuclear Information System (INIS)

    Idrish Miah, M.

    2011-01-01

    Multiphoton electronic-spin generation in semiconductors was investigated using differential transmission spectroscopy. The generation of the electronic spins in the semiconductor samples were achieved by multiphoton pumping with circularly polarized light beam and was probed by the spin-resolved transmission of the samples. The electronic spin-polarization of conduction band was estimated and was found to depend on the delay of the probe beam, temperature as well as on the multiphoton pumping energy. The temperature dependence showed a decrease of the spin-polarization with increasing temperature. The electronic spin-polarization was found to depolarize rapidly for multiphoton pumping energy larger than the energy gap of the split-off band to the conduction band. The results were compared with those obtained in one-photon pumping, which shows that an enhancement of the electronic spin-polarization was achieved in multiphoton pumping. The findings resulting from this investigation might have potential applications in opto-spintronics, where the generation of highly polarized electronic spins is required.

  14. Effects of multiple electronic shells on strong-field multiphoton ionization and high-order harmonic generation of diatomic molecules with arbitrary orientation: An all-electron time-dependent density-functional approach

    International Nuclear Information System (INIS)

    Telnov, Dmitry A.; Chu, S.-I

    2009-01-01

    We present a time-dependent density-functional theory approach with proper long-range potential for an ab initio study of the effect of correlated multielectron responses on the multiphoton ionization (MPI) and high-order harmonic generation (HHG) of diatomic molecules N 2 and F 2 in intense short laser pulse fields with arbitrary molecular orientation. We show that the contributions of inner molecular orbitals to the total MPI probability can be sufficiently large or even dominant over the highest-occupied molecular orbital, depending on detailed electronic structure and symmetry, laser field intensity, and orientation angle. The multielectron effects in HHG are also very important. They are responsible for enhanced HHG at some orientations of the molecular axis. Even strongly bound electrons may have a significant influence on the HHG process.

  15. Non-dipole effects in multiphoton ionization of hydrogen atom in short superintense laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Jobunga, Eric O. [AG Moderne Optik, Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Department of Mathematics and Physics, Technical University of Mombasa, P. O. Box 90420-80100, Mombasa (Kenya); Saenz, Alejandro [AG Moderne Optik, Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany)

    2014-07-01

    The development of novel light sources has enabled the realization of high-precision experiments investigating various non-linear processes in the dynamics of atomic, molecular, and ionic systems interacting with high intense laser pulses. At high intensities or short wavelengths, the analysis of these experiments would definitely require a reliable non-perturbative solution of the time-dependent Schroedinger or Dirac equation. These solutions should consider both the temporal and the spatial intensity variations of the laser pulse.We have solved the non-relativistic time dependent Schroedinger equation for a ground state hydrogen atom interacting with short intense spatially and temporally resolved laser fields corresponding to the multiphoton ATI regime for a monochromatic source with λ= 800 nm. We shall analyse the effects of the A{sup 2} term and the corresponding orders of the multipolar expansion of the transition matrix.

  16. Intensity-dependent resonant transmission of x-rays in solid-density aluminum plasma

    Science.gov (United States)

    Cho, M. S.; Chung, H.-K.; Cho, B. I.

    2018-05-01

    X-ray free-electron lasers (XFELs) provide unique opportunities to generate and investigate dense plasmas. The absorption and transmission properties of x-ray photons in dense plasmas are important in characterizing the state of the plasmas. Experimental evidence shows that the transmission of x-ray photons through dense plasmas depends greatly on the incident XFEL intensity. Here, we present a detailed analysis of intensity-dependent x-ray transmission in solid-density aluminum using collisional-radiative population kinetics calculations. Reverse saturable absorption (RSA), i.e., an increase in x-ray absorption with intensity has been observed for photon energies below the K-absorption edge and in the intensity range of 1016-1017 W/cm2 for XFEL photons with 1487 eV. At higher intensities, a transition from RSA to saturable absorption (SA) is predicted; thus, the x-ray absorption decreases with intensity above a threshold value. For XFEL photon energies of 1501 eV and 1515 eV, the transition from RSA to SA occurs at XFEL intensities between 1017-1018 W/cm2. Electron temperatures are predicted to be in the range of 30-50 eV for the given experimental conditions. Detailed population kinetics of the charge states explains the intensity-dependent absorption of x-ray photons and the fast modulation of XFEL pulses for both RSA and SA.

  17. Resonance multiphoton ionization and dissociation of dimethyl ether via the {\\skew1\\tilde{\\rm C}^{\\prime}}, {\\skew1\\tilde{\\rm C}} and \\tilde{\\rm B} states

    Science.gov (United States)

    Mejia-Ospino, E.; García, G.; Guerrero, A.; Alvarez, I.; Cisneros, C.

    2005-01-01

    The three-photon resonance four-photon ionization and dissociation spectra of dimethyl ether (DME) are presented in the wavelength range 450-550 nm at 1 nm intervals. The (3+1) REMPI spectra show three prominent bands corresponding to the \\tildeB \\leftarrow \\skew1\\tildeX, {\\skew1\\tildeC} \\leftarrow \\skew1\\tildeX and {\\skew1\\tildeC^{\\prime}} \\leftarrow \\skew1\\tildeX transitions with origins at 61 457 cm-1 (7.615 eV), 59 055 cm-1 (7.322 eV) and 58 010 cm-1 (7.194 eV), respectively. Several ionized species, CH3+, CHnO+ (n = 1-3) and CH3OCH3+, are observed in the region of wavelengths studied here. In order to compare the results, a shorter wavelength multiphoton dissociation and ionization of DME at 355 nm is also presented. At this wavelength, DME undergoes neutral dissociation to CH3 and CH3O and each fragment is then ionized by multiphoton absorption. The fragmentation at 355 nm is very intense and only small fragments such as CH3+, CHO+, CH2+, CH+ and C+ ions are observed. The measurement of photoelectron energy allows us to establish that the DME ionization potential is at least 9.55 ± 0.15 eV. The experiments were performed using a Nd:YAG-OPO (optical parametric oscillator) tunable laser system coupled to a time-of-flight mass spectrometer and a hemispherical electron energy analyser.

  18. Fundamental studies of molecular multiphoton ionization

    International Nuclear Information System (INIS)

    Miller, J.C.; Compton, R.N.

    1984-04-01

    For several years the authors have performed fundamental studies of molecular multiphoton ionization (MPI). We will present a potpourri of techniques and results chosen to illustrate the interesting complexities of molecular MPI. Techniques used include time-of-flight mass spectroscopy, photoelectron spectroscopy, supersonic expansion cooling of molecular beams, harmonic generation, two-color laser MPI, and polarization spectroscopy. Whenever possible the relevance of these results to resonance ionization spectroscopy schemes will be delineated. 23 references, 10 figures

  19. Distinguishing human normal or cancerous esophagus tissue ex vivo using multiphoton microscopy

    International Nuclear Information System (INIS)

    Liu, N R; Chen, G N; Wu, S S; Chen, R

    2014-01-01

    Application of multiphoton microscopy (MPM) to clinical cancer research has greatly developed over the last few years. In this paper, we mainly focus on two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) for investigating esophageal cancer. We chiefly discuss the SHG/TPEF image and spectral characteristics of normal and cancerous esophagus submucosa with the combined multi-channel imaging mode and Lambda mode of a multiphoton microscope (LSM 510 META). Great differences can be detected, such as collagen content and morphology, glandular-shaped cancer cells, TPEF/SHG intensity ratio, and so on, which demonstrate that the multiphoton imaging technique has the potential ability for minimally-invasive early cancer diagnosis. (paper)

  20. Distinguishing human normal or cancerous esophagus tissue ex vivo using multiphoton microscopy

    Science.gov (United States)

    Liu, N. R.; Chen, G. N.; Wu, S. S.; Chen, R.

    2014-02-01

    Application of multiphoton microscopy (MPM) to clinical cancer research has greatly developed over the last few years. In this paper, we mainly focus on two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) for investigating esophageal cancer. We chiefly discuss the SHG/TPEF image and spectral characteristics of normal and cancerous esophagus submucosa with the combined multi-channel imaging mode and Lambda mode of a multiphoton microscope (LSM 510 META). Great differences can be detected, such as collagen content and morphology, glandular-shaped cancer cells, TPEF/SHG intensity ratio, and so on, which demonstrate that the multiphoton imaging technique has the potential ability for minimally-invasive early cancer diagnosis.

  1. Multiphoton spectroscopy of human skin in vivo

    Science.gov (United States)

    Breunig, Hans G.; Weinigel, Martin; König, Karsten

    2012-03-01

    In vivo multiphoton-intensity images and emission spectra of human skin are reported. Optical sections from different depths of the epidermis and dermis have been measured with near-infrared laser-pulse excitation. While the intensity images reveal information on the morphology, the spectra show emission characteristics of main endogenous skin fluorophores like keratin, NAD(P)H, melanin, elastin and collagen as well as of second harmonic generation induced by the excitation-light interaction with the dermal collagen network.

  2. Effects of uniform dc electric fields on multiphoton ionization of cesium atoms

    International Nuclear Information System (INIS)

    Klots, C.E.; Compton, R.N.

    1985-01-01

    Multiphoton ionization of cesium atoms shows pronounced two-photon resonances at the nd states and, to a much smaller extent, at the ns states. A dc electric field augments the ns resonances and, for a complementary reason, induces resonances at the np and nf levels. A scaling law for field-induced signals, as a function of principal quantum number, is reported. Field ionization of high Rydberg states is also conveniently studied and quantified with our technique

  3. Statistical properties of multiphoton time-dependent three-boson coupled oscillators

    Czech Academy of Sciences Publication Activity Database

    Abdalla, M. S.; Peřina, Jan; Křepelka, Jaromír

    2006-01-01

    Roč. 23, č. 6 (2006), s. 1146-1160 ISSN 0740-3224 R&D Projects: GA MŠk(CZ) OC P11.003 Institutional research plan: CEZ:AV0Z10100522 Keywords : quantum statistic * coupled oscillators * multiphoton Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.002, year: 2006

  4. Multiphoton processes: conference proceedings

    International Nuclear Information System (INIS)

    Lambropoulos, P.; Smith, S.J.

    1984-01-01

    The chapters of this volume represent the invited papers delivered at the conference. They are arranged according to thermatic proximity beginning with atoms and continuing with molecules and surfaces. Section headings include multiphoton processes in atoms, field fluctuations and collisions in multiphoton process, and multiphoton processes in molecules and surfaces. Abstracts of individual items from the conference were prepared separately for the data base

  5. Multiphoton processes: conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lambropoulos, P.; Smith, S.J. (eds.)

    1984-01-01

    The chapters of this volume represent the invited papers delivered at the conference. They are arranged according to thermatic proximity beginning with atoms and continuing with molecules and surfaces. Section headings include multiphoton processes in atoms, field fluctuations and collisions in multiphoton process, and multiphoton processes in molecules and surfaces. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

  6. Hotspot related plasmon assisted multiphoton photocurrents in metal-insulator-metal junctions

    Energy Technology Data Exchange (ETDEWEB)

    Differt, Dominik; Pfeiffer, Walter [Universitaet Bielefeld, Universitaetsstr. 25, 33615 Bielefeld (Germany); Diesing, Detlef [Universitaet Duisburg-Essen, Universitaetsstr. 5, 45117 Essen (Germany)

    2011-07-01

    Scanning photocurrent microscopy of metal-insulator-metal junctions (MIM) is used to investigate the mechanisms of femtosecond multiphoton photocurrent injection at liquid nitrogen temperature. The locally induced multiphoton photocurrent in a Ag-TaO-Ta MIM junction is measured in a scanning microscope cryostat under focused illumination (5{mu}m focus diameter, 800 nm, 30 fs, 80 MHz repetition rate). The intensity dependence reveals a mixture of two-photon and three-photon processes that are responsible for the photocurrent. Its lateral variation shows hotspot-like behaviour with significant magnitude variations on a 100 to 200 nm length scale. Assuming an injection current duration of 40fs the peak injection current density of about 10{sup 4} A cm{sup -2} is estimated - 10{sup 6} times higher than that for 400 nm continuous wave illumination slightly below the damage threshold. The simultaneously measured extinction of the incident radiation reveals a 20 to 30% increased absorption at the hotspots. We attribute the local photocurrent enhancement to the defect-assisted excitation of surface plasmon polaritons at the silver electrode leading to an enhanced local excitation.

  7. Dressing effect in multiphoton unimolecular dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, P.F.; Garcia-Fernandez, P.

    1986-03-01

    On the basis of a quantum-statistical model recently discussed, we deal in this paper with the perturbations induced by the intense field of a CO/sub 2/ laser on the levels of the vibrational pattern of a molecule undergoing multiphoton unimolecular dissociation. This perturbational correction is investigated by using a displacement operator technique and the results are interpreted according to the statistical model.

  8. Multiphoton above threshold effects in strong-field fragmentation

    DEFF Research Database (Denmark)

    B Madsen, C; Anis, F; B Madsen, L

    2012-01-01

    We present a study of multiphoton dissociative ionization from molecules. By solving the time-dependent Schrödinger equation for H2+ and projecting the solution onto double continuum scattering states, we observe the correlated electron-nuclear ionization dynamics in detail. We show—for the first...... time—how multiphoton structure prevails as long as one accounts for the energies of all the fragments. Our current work provides a new avenue to analyze strong-field fragmentation that leads to a deeper understanding of the correlated molecular dynamics....

  9. Time dependence of resonance γ-radiation modulated by acoustic excitations

    International Nuclear Information System (INIS)

    Mkrtchyan, A.R.; Arakelyan, A.R.; Gabrielyan, R.G.; Kocharyan, L.A.; Grigoryan, G.R.; Slavinskii, M.M.

    1984-01-01

    Experimental investigations of the time dependence of the γ-resonance absorption line intensity in case of modulation by acoustic waves are presented. 57 Co was used as source and a stainless steel foil was chosen as an absorber. The time dependences of the counting rate of the resonant γ-quanta corresponding to excitations with 3400 Hz and with 1.5 or 7 V at the vibrosystem transducer are plotted. The measurements show that the method has principal advantages over the conventional Moessbauer spectroscopy

  10. Focusing effects of a laser beam in the non resonant MPI of gases

    International Nuclear Information System (INIS)

    Baravian, G.; Sultan, G.

    1984-09-01

    The authors give a method to interpret correctly the multiphoton ionization in the case of no resonance and saturation. The calculation model is applied to hydrogen to calculate the ion production related to the intensity of laser pulse. Different applications and methods are given. The six-photon ionization cross-section of the krypton is calculated [fr

  11. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    Science.gov (United States)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n -mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [ F. Dell’Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004) ], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.

  12. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-01-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n-mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [F. Dell'Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization

  13. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multi-photon ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photo-electron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photo-ionization signal. For both ns and np states the ''field induced'' MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength

  14. Wavelength dependent photoelectron circular dichroism of limonene studied by femtosecond multiphoton laser ionization and electron-ion coincidence imaging

    Science.gov (United States)

    Rafiee Fanood, Mohammad M.; Janssen, Maurice H. M.; Powis, Ivan

    2016-09-01

    Enantiomers of the monoterpene limonene have been investigated by (2 + 1) resonance enhanced multiphoton ionization and photoelectron circular dichroism employing tuneable, circularly polarized femtosecond laser pulses. Electron imaging detection provides 3D momentum measurement while electron-ion coincidence detection can be used to mass-tag individual electrons. Additional filtering, by accepting only parent ion tagged electrons, can be then used to provide discrimination against higher energy dissociative ionization mechanisms where more than three photons are absorbed to better delineate the two photon resonant, one photon ionization pathway. The promotion of different vibrational levels and, tentatively, different electronic ion core configurations in the intermediate Rydberg states can be achieved with different laser excitation wavelengths (420 nm, 412 nm, and 392 nm), in turn producing different state distributions in the resulting cations. Strong chiral asymmetries in the lab frame photoelectron angular distributions are quantified, and a comparison made with a single photon (synchrotron radiation) measurement at an equivalent photon energy.

  15. Multiphoton dissociation and thermal unimolecular reactions induced by infrared lasers

    International Nuclear Information System (INIS)

    Dai, H.L.

    1981-04-01

    Multiphoton dissociation (MPD) of ethyl chloride was studied using a tunable 3.3 μm laser to excite CH stretches. The absorbed energy increases almost linearly with fluence, while for 10 μm excitation there is substantial saturation. Much higher dissociation yields were observed for 3.3 μm excitation than for 10 μm excitation, reflecting bottlenecking in the discrete region of 10 μm excitation. The resonant nature of the excitation allows the rate equations description for transitions in the quasicontinuum and continuum to be extended to the discrete levels. Absorption cross sections are estimated from ordinary ir spectra. A set of cross sections which is constant or slowly decreasing with increasing vibrational excitation gives good fits to both absorption and dissociation yield data. The rate equations model was also used to quantitatively calculate the pressure dependence of the MPD yield of SF 6 caused by vibrational self-quenching. Between 1000-3000 cm -1 of energy is removed from SF 6 excited to approx. > 60 kcal/mole by collision with a cold SF 6 molecule at gas kinetic rate. Calculation showed the fluence dependence of dissociation varies strongly with the gas pressure. Infrared multiphoton excitation was applied to study thermal unimolecular reactions. With SiF 4 as absorbing gas for the CO 2 laser pulse, transient high temperature pulses were generated in a gas mixture. IR fluorescence from the medium reflected the decay of the temperature. The activation energy and the preexponential factor of the reactant dissociation were obtained from a phenomenological model calculation. Results are presented in detail

  16. Multiphoton tomography of the human eye

    Science.gov (United States)

    König, Karsten; Batista, Ana; Hager, Tobias; Seitz, Berthold

    2017-02-01

    Multiphoton tomography (MPT) is a novel label-free clinical imaging method for non-invasive tissue imaging with high spatial (300 nm) and temporal (100 ps) resolutions. In vivo optical histology can be realized due to the nonlinear excitation of endogenous fluorophores and second-harmonic generation (SHG) of collagen. Furthermore, optical metabolic imaging (OMI) is performed by two-photon autofluorescence lifetime imaging (FLIM). So far, applications of the multiphoton tomographs DermaInspect and MPTflex were limited to dermatology. Novel applications include intraoperative brain tumor imaging as well as cornea imaging. In this work we describe two-photon imaging of ex vivo human corneas unsuitable for transplantation. Furthermore, the cross-linking (CXL) process of corneal collagen based on UVA exposure and 0.1 % riboflavin was studied. The pharmacokinetics of the photosensitizer could be detected with high spatial resolution. Interestingly, an increase in the stromal autofluorescence intensity and modifications of the autofluorescence lifetimes were observed in the human corneal samples within a few days following CXL.

  17. Influence of rotation on multiphoton processes in HF

    International Nuclear Information System (INIS)

    Broeckhove, J.; Feyen, B.; Van Leuven, P.

    1994-01-01

    In this contribution, the authors are concerned with the role of rotational motion in multiphoton processes induced by a laser field of high intensity. The authors use the pseudospectral split operator method for the propagation of the quantum wave-function. The rotation is treated by decomposition of the HF wave-function in its angular momentum components

  18. O2 rotational temperature measurements in an atmospheric air microdischarge by radar resonance-enhanced multiphoton ionization

    International Nuclear Information System (INIS)

    Sawyer, Jordan; Wu, Yue; Zhang, Zhili; Adams, Steven F.

    2013-01-01

    Nonintrusive spatially resolved rotational temperature measurements in an atmospheric air microdischarge are presented. The measurements were based on coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization of molecular oxygen. The open air DC microdischarge source operated in a stable “normal-glow” mode and pin-to-pin electrodes spaced 1.3 mm apart. The second harmonic of a tunable dye laser beam was focused between the two electrodes and scanned between 286 and 288 nm. Coherent microwave Rayleigh scattering was used to collect the two-photon rotational spectra of O 2 at C 3 Π(v = 2)←X 3 Σ(v′ = 0) transitions. The Boltzmann plots from analyses of the O 2 rotational lines determined local rotational temperatures at various axial locations between the electrodes. The molecular oxygen rotational temperature varied from ∼1150 K to ∼1350 K within the discharge area. The measurements had an accuracy of ∼±50 K.

  19. O2 rotational temperature measurements in an atmospheric air microdischarge by radar resonance-enhanced multiphoton ionization

    Science.gov (United States)

    Sawyer, Jordan; Wu, Yue; Zhang, Zhili; Adams, Steven F.

    2013-06-01

    Nonintrusive spatially resolved rotational temperature measurements in an atmospheric air microdischarge are presented. The measurements were based on coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization of molecular oxygen. The open air DC microdischarge source operated in a stable "normal-glow" mode and pin-to-pin electrodes spaced 1.3 mm apart. The second harmonic of a tunable dye laser beam was focused between the two electrodes and scanned between 286 and 288 nm. Coherent microwave Rayleigh scattering was used to collect the two-photon rotational spectra of O2 at C3Π(v = 2)←X3Σ(v' = 0) transitions. The Boltzmann plots from analyses of the O2 rotational lines determined local rotational temperatures at various axial locations between the electrodes. The molecular oxygen rotational temperature varied from ˜1150 K to ˜1350 K within the discharge area. The measurements had an accuracy of ˜±50 K.

  20. Multiphoton ionization as a probe of molecular photofragmentation: statistical and dynamical energy partitioning in the multiphoton dissociation of nitromethane

    International Nuclear Information System (INIS)

    Rockney, B.H.

    1982-01-01

    Multiphoton ionization (MPI) appears in its first use as a probe of laser-induced photofragmentation. Specifically, MPI here reveals the internal and translational energy content of the nascent fragments from the infrared multiphoton dissociation (MPD) of nitromethane (CH 3 NO 2 ). The apparatus for this work consists of a pulsed supersonic molecular beam crossed by two pulsed and focused lasers - a CO 2 laser to induce collision-free unimolecular dissociation of CH 3 NO 2 , and a tunable dye laser following immediately to ionize selectively one of the pair of dissociation fragments for detection by a mass spectrometer and particle multiplier. A computer simulation of each fragment's MPI spectrum, a series of four photon resonances to members of the npsigma/sub u/ Rydberg state of NO 2 and three photon resonances to two vibrational members of the #betta# 1 Rydberg state of CH 3 , aids in determining the fragment's internal energy content. The dye laser is delayed and its focus is traced through a small quarter circle centered at the focus of the CO 2 laser. The flight times of the fragments from the point of dissociation and their laboratory scattering angular distributions at fixed ionizing laser wavelength provide their center of mass recoil velocity distributions. The energy deposited in the fragments evidences a striking mixture of statistical and dynamical energy partitioning. The statistical RRKM theory of unimolecular decomposition accurately predicts the amount of internal energy found in the fragments

  1. Hematoporphyrin-sensitized degradation of deoxyribose and DNA in high intensity near-UV picosecond pulsed laser photolysis

    International Nuclear Information System (INIS)

    Gantchev, T.G.; Lier, J.E. van; Grabner, G.; Keskinova, E.; Angelov, D.

    1995-01-01

    The photosensitized degradation of deoxyribose and DNA, using hematoporphyrin (HP) and picosecond laser pulses at high intensities was studied. Aldehyde formation from 2-deoxy-D-ribose and long-chain double-stranded DNA, when analyzed as a function of light intensity, followed a non-linear dependence, suggesting the involvement of multiphoton light absorption by HP. The degradation mechanism was studied by analysis of the yield dependence on excitation intensity and the effect of added radical scavengers. The participation of OH radicals in the degradation process was confirmed by spin trapping techniques. At low light intensities, added N 2 O largely increased product formation, suggesting that HP photoionization predominates under these conditions. At higher intensities (I ≥ 3 GW/cm 2 ) the product yield was not affected by N 2 O which, combined with spin trapping data, suggested that OH radical formation occurred, but that neither HP photoionization nor peroxy formation was involved. Single and double strand breaks in supercoiled plasmid DNA (pBR 322) confirmed the generation of OH or OH-like radicals during high-intensity excitation of HP. A mechanism involving a multistep excitation of HP, followed by resonance energy transfer to H 2 O resulting in dissociation to yield OH and H atoms, is proposed. (author)

  2. Multiphoton quantum optics and quantum state engineering

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2006-01-01

    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information

  3. Multiphoton quantum optics and quantum state engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Anno, Fabio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (Saudi Arabia) (Italy)]. E-mail: dellanno@sa.infn.it; De Siena, Silvio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: desiena@sa.infn.it; Illuminati, Fabrizio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: illuminati@sa.infn.it

    2006-05-15

    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.

  4. Multiphoton effects in laser-assisted ionization of a helium atom by electron impact

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh Deb, S.; Sinha, C. [Department of Theoretical Physics, Indian association for the Cultivation of Science, Jadavpur, Kokata (India)

    2010-11-15

    The dynamics of the electron impact multiphoton ionization of a He atom in the presence of an intense laser field (n{gamma}{sub e}, 2e) is studied theoretically for laser polarization (||{sup l}) and perpendicular to the incident momentum. The triple differential (TDCS) as well as the double differential (DDCS) cross sections are studied for the coplanar asymmetric geometry. The results are compared with the only available kinematically complete experiment at high incident energy (1000 eV). Significant laser modification (enhancement) is noted due to multiphoton effects in the present binary and recoil peak intensities of the TDCS for both the geometries, in qualitative agreement with the experiment. In the single photon case, the net effect of the laser field is to suppress the field free (FF) TDCS as well as the DDCS in the zeroth order approximation of the ejected electron wave function (CV), while in the first order (MCV), the cross sections are found to be enhanced. The CV multiphoton cross sections obey the famous Kroll Watson (KW) sum rule while the latter does not hold good in the corresponding MCV approximation. (authors)

  5. Multiphoton ionization of the hydrogen atom by a circularly polarized electromagnetic field

    International Nuclear Information System (INIS)

    Prepelitsa, O.B.

    1999-01-01

    This paper examines the multiphoton ionization of the ground state of the hydrogen atom in the field of a circularly polarized intense electromagnetic wave. To describe the states of photoelectrons, quasiclassical wave functions are introduced that partially allow for the effect of an intense electromagnetic wave and that of the Coulomb potential. Expressions are derived for the angular and energy distributions of photoelectrons with energies much lower than the ionization potential of an unperturbed atom. It is found that, due to allowance for the Coulomb potential in the wave function of the final electron states, the transition probability near the ionization threshold tends to a finite value. In addition, the well-known selection rules for multiphoton transitions in a circularly polarized electromagnetic field are derived in a natural way. Finally, the results are compared with those obtained in the Keldysh-Faisal-Reiss approximation

  6. Dynamics of NO2 dissociation. Study by resonance-enhanced multi-photon ionisation of energy distribution and of anisotropies in fragments

    International Nuclear Information System (INIS)

    Mons, Michel

    1988-01-01

    In this research thesis, the author reports the use of laser resonance-enhanced multi-photon ionization and of time-of-flight mass spectrometry for a detailed characterization of fragments produced by a photo-dissociation process. The author more particularly addressed the case of a NO 2 molecule excited at low energies above the dissociation threshold. In the first part, the author discusses issues and problems related to molecular photo-dissociation. In the second part, he presents the developed method and shows that the combined use of both techniques allows a precise characterisation of photo-fragments in terms of internal or translational energies as well as in terms of angle distributions. Finally, the author presents and discusses results obtained in the case of NO 2 [fr

  7. Signatures of tunneling and multiphoton ionization in the electron-momentum distributions of atoms by intense few-cycle laser pulses

    International Nuclear Information System (INIS)

    Wickenhauser, M.; Tong, X. M.; Arbo, D. G.; Burgdoerfer, J.; Lin, C. D.

    2006-01-01

    Electron-momentum distributions for above-threshold ionization of argon in a few-cycle, linearly polarized laser pulse are investigated. Spectral features characteristic of multiphoton as well as tunneling ionization coexist over a range of the Keldysh parameter γ in the transition regime γ∼1. Surprisingly, the simple strong-field approximation (SFA) is capable of reproducing the key features of the two-dimensional momentum distributions found in the full solution of the time-dependent Schroedinger equation, despite the fact that SFA is known to severely underestimate the total ionization probability

  8. High Resolution Multiphoton Ionization/Dissociation of Molecular Beam of Acetone from 582.60 to 585.80 nm

    Science.gov (United States)

    Mejia-Ospino, Enrique; Garcia, Gladis; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2003-05-01

    Multiphoton ionization and dissociation of a jet supersonic of acetone at wavelength from 582.60 to 585.80 nm is studied using a Nd:YAG-OPO (optical parametric oscillator) system coupled to time-of-flight mass spectrometer. We present high-resolution (1.5 cm-1) three-photon resonance multiphoton spectra of the acetone 3s CH3CO+), (CH3+) and (COH+), being CH3COCH3+ ---> CH3CO+ + CH3 the more likely channel. The molecular and acetyl ions are observed practically in overall wavelength range.

  9. Multi-Photon Entanglement and Quantum Teleportation

    National Research Council Canada - National Science Library

    Shih, Yanhua

    1999-01-01

    The project 'Multi-Photon Entanglement and Quantum Teleportation' concerns a series of experimental and theoretical investigations on multi-photon entangled states and the applications, for example...

  10. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multiphoton ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photoelectron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photoionization signal. For both ns and np states the field induced MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength. Finally, we note that the classical two-photon field-ionization threshold is lower for the case in which the laser polarization and the electric field are parallel than it is when they are perpendicular. 22 references, 11 figures

  11. Exact perturbation theory of multiphoton processes at high intensities. [Schroedinger equation, perturbation theory, matrix

    Energy Technology Data Exchange (ETDEWEB)

    Faisal, F H.M. [Bielefeld Univ. (Germany, F.R.). Fakultaet fuer Physik

    1976-06-11

    In this work the perturbation theory for multiphoton processes at high intensities is investigated and it is described an analytical method of summing the perturbation series to extract the contribution from all terms that give rise to the absorption of N photons by an atomic system. The method is first applied to the solution of a simple model problem and the result is confirmed by direct integration of the model Schroedinger equation. The usual lowest (nonvanishing)-order perturbation-theoretical calculation is also carried out for this model to demonstrate explicitly that the full result correctly reproduces that of the lowest-order theory in the limit of low intensity. The method is then extended to the case of an atomic system with well-developed spectrum (e.g. H atom) and the N-photon T-matrix is derived in terms of a ''photon matrix'' asub(N), for which a three-term recurrence relation is established. Next, from the vantage point of the general result obtained here, A probe is made into the nature of several approximate nonperturbative solutions that have appeared in the literature in the past. It is shown here that their applicability is severely restricted by the requirement of the essential spectral degeneracy of the atomic system. Finally, appendix A outlines a prescription of computing the photon matrix asub(N), which (as in the usual lowest-order perturbation-theoretical calculation)requires a knowledge of the eigenfunctions and eigenvalues of the atomic Hamiltonian only.

  12. First observations of intensity-dependent effects for transversely split beams during multiturn extraction studies at the CERN Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    Simone Gilardoni

    2013-05-01

    Full Text Available During the commissioning of the CERN Proton Synchrotron multiturn extraction, tests with different beam intensities were performed in order to probe the behavior of resonance crossing in the presence of possible space charge effects. The initial beam intensity before transverse splitting was varied and the properties of the five beamlets obtained by crossing the fourth-order horizontal resonance were studied. A clear dependence of the beamlets’ parameters on the total beam intensity was found, which is the first direct observation of intensity-dependent effects for such a peculiar beam type. The experimental results are presented and discussed in detail in this paper.

  13. Time-dependent change of blood flow in the prostate treated with high-intensity focused ultrasound.

    Science.gov (United States)

    Shoji, Sunao; Tonooka, Akiko; Hashimoto, Akio; Nakamoto, Masahiko; Tomonaga, Tetsuro; Nakano, Mayura; Sato, Haruhiro; Terachi, Toshiro; Koike, Junki; Uchida, Toyoaki

    2014-09-01

    Avascular areas on contrast-enhanced magnetic resonance imaging have been considered to be areas of localized prostate cancer successfully treated by high-intensity focused ultrasound. However, the optimal timing of magnetic resonance imaging has not been discussed. The thermal effect of high-intensity focused ultrasound is degraded by regional prostatic blood flow. Conversely, the mechanical effect of high-intensity focused ultrasound (cavitation) is not affected by blood flow, and can induce vessel damage. In this series, the longitudinal change of blood flow on contrast-enhanced magnetic resonance imaging was observed from postoperative day 1 to postoperative day 14 in 10 patients treated with high-intensity focused ultrasound. The median rates of increase in the non-enhanced volume of the whole gland, transition zone and peripheral zone from postoperative day 1 to postoperative day 14 were 36%, 39%, and 34%, respectively. In another pathological analysis of the prostate tissue of 17 patients immediately after high-intensity focused ultrasound without neoadjuvant hormonal therapy, we observed diffuse coagulative degeneration and partial non-coagulative prostate tissue around arteries with vascular endothelial cell detachment. These observations on contrast-enhanced magnetic resonance imaging support a time-dependent change of the blood flow in the prostate treated with high-intensity focused ultrasound. Additionally, our pathological findings support the longitudinal changes of these magnetic resonance imaging findings. Further large-scale studies will investigate the most appropriate timing of contrast-enhanced magnetic resonance imaging for evaluation of the effectiveness of high-intensity focused ultrasound for localized prostate cancer. © 2014 The Japanese Urological Association.

  14. Current developments in clinical multiphoton tomography

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Breunig, Hans Georg; Gregory, Axel; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer

    2010-02-01

    Two-photon microscopy has been introduced in 1990 [1]. 13 years later, CE-marked clinical multiphoton systems for 3D imaging of human skin with subcellular resolution have been launched by the JenLab company with the tomograph DermaInspectTM. In 2010, the second generation of clinical multiphoton tomographs was introduced. The novel mobile multiphoton tomograph MPTflexTM, equipped with a flexible articulated optical arm, provides an increased flexibility and accessibility especially for clinical and cosmetical examinations. The multiphoton excitation of fluorescent biomolecules like NAD(P)H, flavins, porphyrins, elastin, and melanin as well as the second harmonic generation of collagen is induced by picojoule femtosecond laser pulses from an tunable turn-key near infrared laser system. The ability for rapid highquality image acquisition, the user-friendly operation of the system, and the compact and flexible design qualifies this system to be used for melanoma detection, diagnostics of dermatological disorders, cosmetic research, and skin aging measurements as well as in situ drug monitoring and animal research. So far, more than 1,000 patients and volunteers have been investigated with the multiphoton tomographs in Europe, Asia, and Australia.

  15. Intensity and pressure dependence of resonance fluorescence of OH induced by a tunable UV laser

    Science.gov (United States)

    Killinger, D. K.; Wang, C. C.; Hanabusa, M.

    1976-01-01

    The intensity and pressure dependence of the fluorescence spectrum of OH in the presence of N2 and H2O molecules was studied. Saturation of the absorption transition was observed at low pressures, and the corresponding fluorescence signal was found to vary as the square root of the exciting intensity. This observed dependence agreed with the predicted dependence which took into account the presence of laser modes in the spectrum of the exciting radiation. With full laser power incident, a saturation parameter as high as 3 x 10 to the 5th was observed. The fluorescence spectrum was found to peak at 3145 and at 3090 A, with the relative peak intensities dependent upon gas pressures and upon the particular rotational electronic transition used for excitation. It is concluded that vibrational relaxation of the electronically excited OH due to water vapor in the system plays a dominant role in determining the observed fluorescence spectrum.

  16. Photoionization of resonantly driven atomic states by an extreme ultraviolet-free-electron laser: intensity dependence and renormalization of Rabi frequencies

    International Nuclear Information System (INIS)

    Kaiser, B; Brand, A; Glässl, M; Vagov, A; Axt, V M; Pietsch, U

    2013-01-01

    We analyze theoretically the high intensity photoionization dynamics of a system with two atomic states resonantly coupled by coherent extreme ultraviolet laser radiation that also gives rise to the ionization. The ground state occupation of such a system is shown to exhibit damped Rabi oscillations. The corresponding ionization, which is responsible for the damping, scales almost linearly with the field intensity when the pulse length exceeds the Rabi period. For shorter pulses a quadratic scaling is found. The Rabi frequency is shifted compared to its value for an isolated two-level system. The shift increases with excitation intensity and can acquire a high percentage of the unrenormalized frequency at high intensities. Analytical results obtained within a simplified solvable model demonstrate that the damping and the shift both result from the coupling of the discrete states to the ionization continuum and are therefore closely related. Numerical simulations for a two-electron system reveal at high intensities the importance of off-resonant ionization channels. (paper)

  17. Multiphoton fluorescence lifetime imaging of chemotherapy distribution in solid tumors

    Science.gov (United States)

    Carlson, Marjorie; Watson, Adrienne L.; Anderson, Leah; Largaespada, David A.; Provenzano, Paolo P.

    2017-11-01

    Doxorubicin is a commonly used chemotherapeutic employed to treat multiple human cancers, including numerous sarcomas and carcinomas. Furthermore, doxorubicin possesses strong fluorescent properties that make it an ideal reagent for modeling drug delivery by examining its distribution in cells and tissues. However, while doxorubicin fluorescence and lifetime have been imaged in live tissue, its behavior in archival samples that frequently result from drug and treatment studies in human and animal patients, and murine models of human cancer, has to date been largely unexplored. Here, we demonstrate imaging of doxorubicin intensity and lifetimes in archival formalin-fixed paraffin-embedded sections from mouse models of human cancer with multiphoton excitation and multiphoton fluorescence lifetime imaging microscopy (FLIM). Multiphoton excitation imaging reveals robust doxorubicin emission in tissue sections and captures spatial heterogeneity in cells and tissues. However, quantifying the amount of doxorubicin signal in distinct cell compartments, particularly the nucleus, often remains challenging due to strong signals in multiple compartments. The addition of FLIM analysis to display the spatial distribution of excited state lifetimes clearly distinguishes between signals in distinct compartments such as the cell nuclei versus cytoplasm and allows for quantification of doxorubicin signal in each compartment. Furthermore, we observed a shift in lifetime values in the nuclei of transformed cells versus nontransformed cells, suggesting a possible diagnostic role for doxorubicin lifetime imaging to distinguish normal versus transformed cells. Thus, data here demonstrate that multiphoton FLIM is a highly sensitive platform for imaging doxorubicin distribution in normal and diseased archival tissues.

  18. Half-integer resonance crossing in high-intensity rings

    Directory of Open Access Journals (Sweden)

    A. V. Fedotov

    2002-02-01

    Full Text Available A detailed study of the influence of space charge on the crossing of second-order resonances is presented and associated with the space-charge limit of high-intensity rings. Two-dimensional simulation studies are compared with envelope models, which agree in the finding of an increased intensity limit due to the coherent frequency shift. This result is also found for realistic bunched beams with multiturn injection painting. Characteristic features such as the influence of tune splitting, structure resonances, and the role of envelope instabilities are discussed in detail. The theoretical limits are found to be in good agreement with the performance of high-intensity proton machines.

  19. On the role of resonances in photoionization of metal clusters

    International Nuclear Information System (INIS)

    Wopperer, P; Dinh, P M; Suraud, E; Reinhard, P G

    2013-01-01

    We analyze electron emission from irradiated clusters by means of time-dependent density-functional theory (TDDFT) in real time. We focus on photo-electron spectra (PES) which deliver an invaluable tool to explore static and dynamical properties of irradiated species. We discuss, in particular, the role of resonances in the PES once the laser frequency is below the emission threshold which implies multiphoton processes. We show that the resonances in the electronic spectrum lead to the occurrence of several peaks in the PES and also strongly affect the standard scaling relations between ionization and the number of required photons for electronic emission.

  20. Multiphoton states and amplitude k-th power squeezing

    International Nuclear Information System (INIS)

    Buzek, V.; Jex, I.

    1991-01-01

    On the basis of the work of d'Ariano and coworkers a new type of multiphoton states is introduced. Amplitude k-th power squeezing of the multiphoton states are analysed. In particular, it is shown that even if the multiphoton states do not exhibit ordinary squeezing they can be amplitude k-th power squeezed

  1. Studies of atmospheric molecules by multiphoton spectroscopy

    International Nuclear Information System (INIS)

    Johnson, P.M.

    1990-12-01

    Resonance ionization processes can play an important role in understanding molecules important in combustion processes. They are a reflection of the dynamic as well as the static properties of atomic and molecular species. Due to the sequential or quasisequential nature of photon absorption in resonant multiphoton events, the lifetimes of the intermediate states play an essential role in the overall cross-sections if they are short enough to be competitive with subsequent photon interactions. In molecules this is particularly important because there are many dissociative and other radiationless pathways which can contribute to a competitive channel. Under those conditions it should be possible to obtain information about the nature of the dynamics of the intermediate state form the multiphoton ionization process. This will involve looking at not only the ionization cross-section but also other observables such as the kinetic energy of the ejected electrons and possibly the distribution of fragment ions produced in the ionization event. Whether the ionization amplitude is affected or not, the time scales of the dynamic events which alter the ionization path can vary over a large range from the femtoseconds of dissociation to the microseconds of some radiationless transitions in large molecules. When the competing channel has a time scale shorter than the laser pulse length, the kinetics of the ionization are intimately tied into the precise nature of the laser pulse. For time scales longer than the laser pulse, pump-probe ionization schemes in which one laser prepares a state while another does the ionization provide a particularly simple method for investigating the dynamics of the intermediate state. Here the author discusses examples from each of these regimes. CO 2 and pyrazine are examined. 6 refs., 6 figs

  2. Many-body processes in atomic and molecular physics. Progress report, September 1, 1983-August 31, 1984

    International Nuclear Information System (INIS)

    Chu, S.I.

    1984-02-01

    Research is reported on: semiclassical many mode Floquet theory; exact semiclassical treatment of nonlinear multiphoton dissociation; nonadiabatic approach for resonant infrared multiphoton absorption spectroscopy; infrared MPD of triatomic molecules, most probable path approach; and complex-coordinate coupled-Landau-channel method for autoionizing resonances of H atoms in intense magnetic fields

  3. Clinical multiphoton FLIM tomography

    Science.gov (United States)

    König, Karsten

    2012-03-01

    This paper gives an overview on current clinical high resolution multiphoton fluorescence lifetime imaging in volunteers and patients. Fluorescence lifetime imaging (FLIM) in Life Sciences was introduced in Jena/Germany in 1988/89 based on a ZEISS confocal picosecond dye laser scanning microscope equipped with a single photon counting unit. The porphyrin distribution in living cells and living tumor-bearing mice was studied with high spatial, temporal, and spectral resolution. Ten years later, time-gated cameras were employed to detect dental caries in volunteers based on one-photon excitation of autofluorescent bacteria with long fluorescence lifetimes. Nowadays, one-photon FLIM based on picosecond VIS laser diodes are used to study ocular diseases in humans. Already one decade ago, first clinical twophoton FLIM images in humans were taken with the certified clinical multiphoton femtosecond laser tomograph DermaInspectTM. Multiphoton tomographs with FLIM modules are now operating in hospitals at Brisbane, Tokyo, Berlin, Paris, London, Modena and other European cities. Multiple FLIM detectors allow spectral FLIM with a temporal resolution down to 20 ps (MCP) / 250 ps (PMT) and a spectral resolution of 10 nm. Major FLIM applications include the detection of intradermal sunscreen and tattoo nanoparticles, the detection of different melanin types, the early diagnosis of dermatitis and malignant melanoma, as well as the measurement of therapeutic effects in pateints suffering from dermatitis. So far, more than 1,000 patients and volunteers have been investigated with the clinical multiphoton FLIM tomographs DermaInspectTM and MPTflexTM.

  4. Multiphoton processes for atoms in intense electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Collins, L.A.; Abdallah, J.; Csanak, G.

    1995-12-31

    Lasers from table-top to giant ICF facilities that produce intense electromagnetic fields (10{sup 14}-10{sup 21} W/cm{sup 2}) have become important tools in probing the intricate nature of matter-radiation interactions. At such intensities, the laser field equals or exceeds that which binds electrons to an atom or molecule, and a new realm of physics opens in which perturbation theory may no longer suffice. We are developing several sophisticated techniques for treating atoms in such a regime, concentrating on two-photon X-ray absorption in intermediate-weight atoms and on laser-assisted electron-atom collisions. We perform most calculations in a time-independent frame in which field-free scattering formalisms can be invoked. We also investigate time-dependent methods in order to study transient effects. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  5. Multiphoton Processes and Attosecond Physics

    CERN Document Server

    Midorikawa, Katsumi; 12th International Conference on Multiphoton Processes; 3rd International Conference on Attosecond Physics

    2012-01-01

    Recent advances in ultrashort pulsed laser technology have opened new frontiers in atomic, molecular and optical sciences. The 12th International Conference on Multiphoton Processes (ICOMP12) and the 3rd International Conference on Attosecond Physics (ATTO3), held jointly in Sapporo, Japan, during July 3-8, showcased studies at the forefront of research on multiphoton processes and attosecond physics. This book summarizes presentations and discussions from these two conferences.

  6. Time dependent resonating Hartree-Bogoliubov theory

    International Nuclear Information System (INIS)

    Nishiyama, Seiya; Fukutome, Hideo.

    1989-01-01

    Very recently, we have developed a theory of excitations in superconducting Fermion systems with large quantum fluctuations that can be described by resonance of time dependent non-orthogonal Hartree-Bogoliubov (HB) wave functions with different correlation structures. We have derived a new kind of variation equation called the time dependent Resonating HB equation, in order to determine both the time dependent Resonating HB wave functions and coefficients of a superposition of the HB wave functions. Further we have got a new approximation for excitations from time dependent small fluctuations of the Resonating HB ground state, i.e., the Resonating HB RPA. The Res HB RPA equation is represented in a given single particle basis. It, however, has drawbacks that the constraints for the Res HB RPA amplitudes are not taken into account and the equation contains equations which are not independent. We shall derive another form of the Res HB RPA equation eliminating these drawbacks. The Res HB RPA gives a unified description of the vibrons and resonons and their interactions. (author)

  7. New developments in multimodal clinical multiphoton tomography

    Science.gov (United States)

    König, Karsten

    2011-03-01

    80 years ago, the PhD student Maria Goeppert predicted in her thesis in Goettingen, Germany, two-photon effects. It took 30 years to prove her theory, and another three decades to realize the first two-photon microscope. With the beginning of this millennium, first clinical multiphoton tomographs started operation in research institutions, hospitals, and in the cosmetic industry. The multiphoton tomograph MPTflexTM with its miniaturized flexible scan head became the Prism-Award 2010 winner in the category Life Sciences. Multiphoton tomographs with its superior submicron spatial resolution can be upgraded to 5D imaging tools by adding spectral time-correlated single photon counting units. Furthermore, multimodal hybrid tomographs provide chemical fingerprinting and fast wide-field imaging. The world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph in spring 2010. In particular, nonfluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen have been imaged in patients with dermatological disorders. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution imaging tools such as ultrasound, optoacoustic, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer (malignant melanoma), optimization of treatment strategies (wound healing, dermatitis), and cosmetic research including long-term biosafety tests of ZnO sunscreen nanoparticles and the measurement of the stimulated biosynthesis of collagen by anti-ageing products.

  8. Multiphoton bibliography

    International Nuclear Information System (INIS)

    Eberly, J.H.; Gallagher, J.W.

    1981-12-01

    A bibliography is presented of approximately 275 references from literature published since 1980 on multiphoton research. A subject list is provided which divides the references into four subdivisions, i.e., ionization, bound-bound transitions, dissociation, and free-free transitions. An author index is included

  9. Stark-shift induced resonances in multiphoton ionization

    International Nuclear Information System (INIS)

    Potvliege, R M; Vuci, Svetlana

    2006-01-01

    The resonance enhancements marking the ATI spectrum of argon are discussed in the light of a recently compiled map of the quasienergies of this atom. Many of the dressed excited states of interest shift nonponderomotively in complicated ways, but keep an ionization width narrow enough to produce sharp substructures of both low and high ATI peaks through Stark-shift induced resonances. The most prominent enhancement observed in the high-order ATI peaks originates from ionization from the dressed ground state perturbed by the influence of neighbouring resonant dressed states

  10. Non-perturbative methods applied to multiphoton ionization

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.; Zagury, N.

    1982-09-01

    The use of non-perturbative methods in the treatment of atomic ionization is discussed. Particular attention is given to schemes of the type proposed by Keldysh where multiphoton ionization and tunnel auto-ionization occur for high intensity fields. These methods are shown to correspond to a certain type of expansion of the T-matrix in the intra-atomic potential; in this manner a criterium concerning the range of application of these non-perturbative schemes is suggested. A brief comparison between the ionization rate of atoms in the presence of linearly and circularly polarized light is presented. (Author) [pt

  11. Multi-photon vertical cross-sectional imaging with a dynamically-balanced thin-film PZT z-axis microactuator.

    Science.gov (United States)

    Choi, Jongsoo; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R

    2017-10-01

    Use of a thin-film piezoelectric microactuator for axial scanning during multi-photon vertical cross-sectional imaging is described. The actuator uses thin-film lead-zirconate-titanate (PZT) to generate upward displacement of a central mirror platform, micro-machined from a silicon-on-insulator (SOI) wafer to dimensions compatible with endoscopic imaging instruments. Device modeling in this paper focuses on existence of frequencies near device resonance producing vertical motion with minimal off-axis tilt even in the presence of multiple vibration modes and non-uniformity in fabrication outcomes. Operation near rear resonance permits large stroke lengths at low voltages relative to other vertical microactuators. Highly uniform vertical motion of the mirror platform is a key requirement for vertical cross-sectional imaging in the remote scan architecture being used for multi-photon instrument prototyping. The stage is installed in a benchtop testbed in combination with an electrostatic mirror that performs in-plane scanning. Vertical sectional images are acquired from 15 μm diameter beads and excised mouse colon tissue.

  12. Multi-photon processes brought about by a laser; Processus multiphotoniques provoques par un laser

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    We calculate the critical intensity characterizing the multiphoton processes. The multiphoton effects corresponding to the Compton scattering, the Bremsstrahlung, the photoelectric effect are investigated. The cross sections are evaluated. We show how the introduction of a refractive index, in clothing the photons, allows the elimination of the infrared divergence. The theory seems consistent with experiment. (author) [French] Nous calculons l'intensite critique caracterisant les processus multiphotoniques. Les effets multiphotoniques correspondant a la diffusion Compton, au bremsstrahlung, a l'effet photoelectrique sont etudies. Les sections efficaces sont evaluees. Nous montrons comment l'introduction d'un indice de refraction, en habillant les photons, permet d'eliminer les divergences infra-rouges. La theorie semble compatible avec l'experience. (auteur)

  13. Human bladder cancer diagnosis using multiphoton microscopy

    Science.gov (United States)

    Mukherjee, Sushmita; Wysock, James S.; Ng, Casey K.; Akhtar, Mohammed; Perner, Sven; Lee, Ming-Ming; Rubin, Mark A.; Maxfield, Frederick R.; Webb, Watt W.; Scherr, Douglas S.

    2009-02-01

    At the time of diagnosis, approximately 75% of bladder cancers are non-muscle invasive. Appropriate diagnosis and surgical resection at this stage improves prognosis dramatically. However, these lesions, being small and/or flat, are often missed by conventional white-light cystoscopes. Furthermore, it is difficult to assess the surgical margin for negativity using conventional cystoscopes. Resultantly, the recurrence rates in patients with early bladder cancer are very high. This is currently addressed by repeat cystoscopies and biopsies, which can last throughout the life of a patient, increasing cost and patient morbidity. Multiphoton endoscopes offer a potential solution, allowing real time, noninvasive biopsies of the human bladder, as well as an up-close assessment of the resection margin. While miniaturization of the Multiphoton microscope into an endoscopic format is currently in progress, we present results here indicating that Multiphoton imaging (using a bench-top Multiphoton microscope) can indeed identify cancers in fresh, unfixed human bladder biopsies. Multiphoton images are acquired in two channels: (1) broadband autofluorescence from cells, and (2) second harmonic generation (SHG), mostly by tissue collagen. These images are then compared with gold standard hematoxylin/eosin (H&E) stained histopathology slides from the same specimen. Based on a "training set" and a very small "blinded set" of samples, we have found excellent correlation between the Multiphoton and histopathological diagnoses. A larger blinded analysis by two independent uropathologists is currently in progress. We expect that the conclusion of this phase will provide us with diagnostic accuracy estimates, as well as the degree of inter-observer heterogeneity.

  14. Atom ionization in a nonclassical intense electromagnetic field

    International Nuclear Information System (INIS)

    Popov, A.M.; Tikhonova, O.V.

    2002-01-01

    The atoms ionization process in the intense nonclassical electromagnetic field is considered. It is shown that depending on the field quantum state the probability of ionization may essentially change even by one and the same average quantum number in the radiation mode, whereby the difference in the ionization rates is especially significant in the case, when the ionization process is of a multiphoton character. It is demonstrates in particular, that the nonclassical field may be considerably more intensive from the viewpoint of the atoms ionization, than the classical field with the same intensity. The peculiarities of the decay, related to the atomic system state in the strong nonclassical field beyond the perturbation theory frames are studied [ru

  15. High-resolution multimodal clinical multiphoton tomography of skin

    Science.gov (United States)

    König, Karsten

    2011-03-01

    This review focuses on multimodal multiphoton tomography based on near infrared femtosecond lasers. Clinical multiphoton tomographs for 3D high-resolution in vivo imaging have been placed into the market several years ago. The second generation of this Prism-Award winning High-Tech skin imaging tool (MPTflex) was introduced in 2010. The same year, the world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph. In particular, non-fluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen has been imaged with submicron resolution in patients suffering from psoriasis. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution wide-field systems such as ultrasound, optoacoustical, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer, optimization of treatment strategies, and cosmetic research including long-term testing of sunscreen nanoparticles as well as anti-aging products.

  16. Signal improvement in multiphoton microscopy by reflection with simple mirrors near the sample

    Science.gov (United States)

    Rehberg, Markus; Krombach, Fritz; Pohl, Ulrich; Dietzel, Steffen

    2010-03-01

    In conventional fluorescence or confocal microscopy, emitted light is generated not only in the focal plane but also above and below. The situation is different in multiphoton-induced fluorescence and multiphoton-induced higher harmonic generation. Here, restriction of signal generation to a single focal point permits that all emitted photons can contribute to image formation if collected, regardless of their path through the specimen. Often, the intensity of the emitted light is rather low in biological specimens. We present a method to significantly increase the fraction of photons collected by an epi (backward) detector by placing a simple mirror, an aluminum-coated coverslip, directly under the sample. Samples investigated include fluorescent test slides, collagen gels, and thin-layered, intact mouse skeletal muscles. Quantitative analysis revealed an intensity increase of second- and third-harmonic generated signal in skeletal muscle of nine- and sevenfold respectively, and of fluorescent signal in test slides of up to twofold. Our approach thus allows significant signal improvement also for situations were a forward detection is impossible, e.g., due to the anatomy of animals in intravital microscopy.

  17. Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations

    Energy Technology Data Exchange (ETDEWEB)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)

    2016-07-28

    Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molecular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here, we present a model for describing hyperfine-structure effects in the REMPI process and for predicting hyperfine populations in molecular ions produced by this method. This model is a generalization of our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including the hyperfine structure that makes up the first step of the REMPI process and (2) modification of our ionization model to account for anisotropic populations resulting from this first excitation step. Our findings may be used for analyzing results from experiments with molecular ions produced by REMPI and may serve as a theoretical background for hyperfine-selective ionization experiments.

  18. Multiphoton microscopy imaging of developing tooth germs

    Directory of Open Access Journals (Sweden)

    Pei-Yu Pan

    2014-01-01

    Conclusion: In this study, a novel multiphoton microscopy database of images from developing tooth germs in mice was set up. We confirmed that multiphoton laser microscopy is a powerful tool for investigating the development of tooth germ and is worthy for further application in the study of tooth regeneration.

  19. Multiphoton absorption coefficients in solids: an universal curve

    International Nuclear Information System (INIS)

    Brandi, H.S.; Araujo, C.B. de

    1983-04-01

    An universal curve for the frequency dependence of the multiphoton absorption coefficient is proposed based on a 'non-perturbative' approach. Specific applications have been made to obtain two, three, four and five photons absorption coefficient in different materials. Properly scaling of the two photon absorption coefficient and the use of the universal curve yields results for the higher order absorption coefficients in good agreement with the experimental data. (Author) [pt

  20. Picosecond multiphoton ionization of atomic and molecular clusters

    International Nuclear Information System (INIS)

    Miller, J.C.; Smith, D.B.

    1990-01-01

    High peak-power picosecond laser pulses have been used for the first time to effect nonresonant or resonant multiphoton ionization (MPI) of clusters generated in a supersonic nozzle expansion. The resulting ions are subsequently detected and characterized by time-of-flight mass spectroscopy. Specifically, we present results involving MPI of clusters of xenon and nitric oxide. Previous MPI studies of many molecular clusters using nanosecond lasers have not been successful in observing the parent ion, presumably due to fast dissociation channels. It is proposed that the present technique is a new and rather general ionization source for cluster studies which is complementary to electron impact but may, in addition, provide unique spectroscopic or dynamical information. 23 refs., 5 figs

  1. The study of multiphoton ionization processes in hydrogen atoms

    International Nuclear Information System (INIS)

    Mohammad, M.A.

    1981-01-01

    In this thesis we investigate theoretically the multiphoton ionization of hydrogen atoms based on perturbation theory.The main problem in the numorical evaluation is the appearance of infinite summation over the matrix element and energy denominators of the intermediate state in the formula for ionization cross section.Our numerical result is in excellent agreement with other workers.In the last part of the thesis we have again calculated the two photon ionization of hydrogen atoms using momentum translation approximation of Reiss.The method in general is in fair agreement with other calculations but dose not show the resonance behaviour.(2 tabs., 1 fig., 45 refs.)

  2. Amplitudes for multiphoton quantum processes in linear optics

    International Nuclear Information System (INIS)

    UrIas, Jesus

    2011-01-01

    The prominent role that linear optical networks have acquired in the engineering of photon states calls for physically intuitive and automatic methods to compute the probability amplitudes for the multiphoton quantum processes occurring in linear optics. A version of Wick's theorem for the expectation value, on any vector state, of products of linear operators, in general, is proved. We use it to extract the combinatorics of any multiphoton quantum processes in linear optics. The result is presented as a concise rule to write down directly explicit formulae for the probability amplitude of any multiphoton process in linear optics. The rule achieves a considerable simplification and provides an intuitive physical insight about quantum multiphoton processes. The methodology is applied to the generation of high-photon-number entangled states by interferometrically mixing coherent light with spontaneously down-converted light.

  3. Amplitudes for multiphoton quantum processes in linear optics

    Science.gov (United States)

    Urías, Jesús

    2011-07-01

    The prominent role that linear optical networks have acquired in the engineering of photon states calls for physically intuitive and automatic methods to compute the probability amplitudes for the multiphoton quantum processes occurring in linear optics. A version of Wick's theorem for the expectation value, on any vector state, of products of linear operators, in general, is proved. We use it to extract the combinatorics of any multiphoton quantum processes in linear optics. The result is presented as a concise rule to write down directly explicit formulae for the probability amplitude of any multiphoton process in linear optics. The rule achieves a considerable simplification and provides an intuitive physical insight about quantum multiphoton processes. The methodology is applied to the generation of high-photon-number entangled states by interferometrically mixing coherent light with spontaneously down-converted light.

  4. Near resonant absorption by atoms in intense fluctuating laser fields

    International Nuclear Information System (INIS)

    Smith, S.J.

    1994-01-01

    The objective of this program was to make quantitative measurements of the effects of higher-order phase/frequency correlations in a laser beam on nonlinear optical absorption processes in atoms. The success of this program was due in large part to a unique experimental capability for modulating the extracavity beam of a stabilized (approx-lt 200 kHz) continuous-wave laser with statistically-well-characterized stochastic phase (or frequency) fluctuations, in order to synthesize laser bandwidths to ∼20 MHz (depending on noise amplitude), with profiles variable between Gaussian and Lorentzian (depending on noise bandwidth). Laser driven processes investigated included the following: (1) the optical Autler-Towns effect in the 3S 1/2 (F = 2, M F = 2) → 3P 3/2 (F = 3, M F = 3) two- level Na resonance, using a weak probe to the 4D 5/2 level; (2) the variance and spectra of fluorescence intensity fluctuations in the two-level Na resonance; (3) the Hanle effect in the 1 S 0 - 3 P 1 , transition at λ = 555.6 nm in 174 Yb; (4) absorption (and gain) of a weak probe, when the probe is a time-delayed replica of the resonant (with the two-level Na transition) pump laser; and (5) four-wave-mixing in a phase-conjugate geometry, in a sodium cell, and, finally, in a diffuse atomic sodium beam. The experimental results from these several studies have provided important confirmation of advanced theoretical methods

  5. Photoionization of excited molecular states using multiphoton excitation techniques

    International Nuclear Information System (INIS)

    Dehmer, P.M.; Pratt, S.T.; Dehmer, J.L.

    1984-01-01

    Photoelectron spectra are reported for three photon resonant, four photon ionization of H 2 via the B 1 Σ + /sub u/, v = 7 (J = 2,4) and C 1 Pi/sub u/, v = 0-4 (J = 1) levels and of N 2 via the o 3 1 Pi/sub u/, v = 1,2, b 1 Pi/sub u/, v = 3-5, and c 1 Pi/sub u/, v = 0 levels. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon factors are observed, which reflect the more subtle dynamics of excited state photoionization

  6. A pragmatic guide to multiphoton microscope design

    Science.gov (United States)

    Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff

    2016-01-01

    Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429

  7. Athermal electron distribution probed by femtosecond multiphoton photoemission from image potential states

    International Nuclear Information System (INIS)

    Ferrini, Gabriele; Giannetti, Claudio; Pagliara, Stefania; Banfi, Francesco; Galimberti, Gianluca; Parmigiani, Fulvio

    2005-01-01

    Image potential states are populated through indirect, scattering-mediated multiphoton absorption induced by femtosecond laser pulses and revealed by single-photon photoemission. The measured effective mass is significantly different from that obtained with direct, resonant population. These features reveal a strong coupling of the electrons residing in the image potential state, outside the solid, with the underlying hot electron population created by the laser pulse. The coupling is mediated by a many-body scattering interaction between the image potential state electrons and bulk electrons in highly excited states

  8. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    Science.gov (United States)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  9. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-01-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states

  10. Temporal shaping of nanosecond CO2 laser pulses in multiphoton saturable absorbers

    International Nuclear Information System (INIS)

    Haglund, R.F. Jr.

    1981-01-01

    It was shown that substantial temporal distortion of nanosecond 10.6 μm laser pulses occurs in traversing multiphoton saturable absorbers. The risetime and pulse delay effects appear to depend both on fluence and wavelength, and to be qualitatively consistent with predictions of a simple two-level absorption model

  11. Near resonant absorption by atoms in intense, fluctuating fields: [Progress report

    International Nuclear Information System (INIS)

    1989-01-01

    During the present grant period preparations for photon echo studies of the role of phase fluctuations of an optical driving field resonant with the 1 S 0 - 3 P 1 transition in 174 Yb are moving forward. This experimental study emphasizes the role of fluctuations as a decorrelating mechanism on a phased array of excited atoms. Improvements in laser stabilization and in the quality of the fluctuation spectrum have been carried out and the first spectroscopic measurements will be carried out during this grant year. In response to an important recent theoretical study we have also applied the phase fluctuation synthesizing capability to the study of the atomic sodium resonance fluorescence line profile, driven by a phase fluctuating laser. The measured fluctuations in the fluorescence, characterized in terms of the standard deviation of the fluorescence intensity, have an unexpected and strong dependence on detuning of the driving laser

  12. Use of multi-photon laser-scanning microscopy to describe the distribution of xenobiotic chemicals in fish early life stages

    International Nuclear Information System (INIS)

    Hornung, Michael W.; Cook, Philip M.; Flynn, Kevin M.; Lothenbach, Doug B.; Johnson, Rodney D.; Nichols, John W.

    2004-01-01

    To better understand the mechanisms by which persistent bioaccumulative toxicants (PBTs) produce toxicity during fish early life stages (ELS), dose-response relationships need to be understood in relation to the dynamic distribution of chemicals in sensitive tissues. In this study, a multi-photon laser scanning microscope (MPLSM) was used to determine the multi-photon excitation spectra of several polyaromatic hydrocarbons (PAHs) and to describe chemical distribution among tissues during fish ELS. The multi-photon excitation spectra revealed intense fluorescent signal from the model fluorophore, pentamethyl-difluoro-boro-indacene (BODIPY[reg], less signal from benzo[a]pyrene and fluoranthene, and no detectable signal from pyrene. The imaging method was tested by exposing newly fertilized medaka (Oryzias latipes) eggs to BODIPY[reg] or fluoranthene for 6 h, followed by transfer to clean media. Embryos and larvae were then imaged through 5 days post-hatch. The two test chemicals partitioned similarly throughout development and differences in fluorescence intensity among tissues were evident to a depth of several hundred microns. Initially, the most intense signal was observed in the oil droplet within the yolk, while a moderate signal was seen in the portion of the yolk containing the yolk-platelets. As embryonic development progressed, the liver biliary system, gall bladder, and intestinal tract accumulated strong fluorescent signal. After hatch, once the gastrointestinal tract was completely developed, most of the fluorescent signal was cleared. The MPLSM is a useful tool to describe the tissue distribution of fluorescent PBTs during fish ELS

  13. Evaluation of multiphoton effects in down-conversion

    International Nuclear Information System (INIS)

    Yoshimi, Kazuyoshi; Koshino, Kazuki

    2010-01-01

    Multiphoton effects in down-conversion are investigated based on the full-quantum multimode formalism by considering a three-level system as a prototype nonlinear system. We analytically derive the three-photon output wave function for two input photons, where one of the two input photons is down-converted and the other one is not. Using this output wave function, we calculate the down-conversion probability, the purity, and the fidelity to evaluate the entanglement between a down-converted photon pair and a non-down-converted photon. It is shown that the saturation effect occurs by multiphoton input and that it affects both the down-conversion probability and the quantum correlation between the down-converted photon pair and the non-down-converted photon. We also reveal the necessary conditions for multiphoton effects to be strong.

  14. QED theory of multiphoton transitions in atoms and ions

    Science.gov (United States)

    Zalialiutdinov, Timur A.; Solovyev, Dmitry A.; Labzowsky, Leonti N.; Plunien, Günter

    2018-03-01

    This review surveys the quantum theory of electromagnetic radiation for atomic systems. In particular, a review of current theoretical studies of multiphoton processes in one and two-electron atoms and highly charged ions is provided. Grounded on the quantum electrodynamics description the multiphoton transitions in presence of cascades, spin-statistic behaviour of equivalent photons and influence of external electric fields on multiphoton in atoms and anti-atoms are discussed. Finally, the nonresonant corrections which define the validity of the concept of the excited state energy levels are introduced.

  15. Multiphoton Laser Microscopy and Fluorescence Lifetime Imaging for the Evaluation of the Skin

    Directory of Open Access Journals (Sweden)

    Stefania Seidenari

    2012-01-01

    Full Text Available Multiphoton laser microscopy is a new, non-invasive technique providing access to the skin at a cellular and subcellular level, which is based both on autofluorescence and fluorescence lifetime imaging. Whereas the former considers fluorescence intensity emitted by epidermal and dermal fluorophores and by the extra-cellular matrix, fluorescence lifetime imaging (FLIM, is generated by the fluorescence decay rate. This innovative technique can be applied to the study of living skin, cell cultures and ex vivo samples. Although still limited to the clinical research field, the development of multiphoton laser microscopy is thought to become suitable for a practical application in the next few years: in this paper, we performed an accurate review of the studies published so far, considering the possible fields of application of this imaging method and providing high quality images acquired in the Department of Dermatology of the University of Modena.

  16. Universal and local time components in Schumann resonance intensity

    Directory of Open Access Journals (Sweden)

    A. P. Nickolaenko

    2008-05-01

    Full Text Available We extend the technique suggested by Sentman and Fraser (1991 and discussed by Pechony and Price (2006, the technique for separating the local and universal time variations in the Schumann resonance intensity. Initially, we simulate the resonance oscillations in a uniform Earth-ionosphere cavity with the distribution of lightning strokes based on the OTD satellite data. Different field components were used in the Dayside source model for the Moshiri (Japan, geographic coordinates: 44.365° N, 142.24° E and Lehta (Karelia, Russia, 64.427° N, 33.974° E observatories. We use the extended Fourier series for obtaining the modulating functions. Simulations show that the algorithm evaluates the impact of the source proximity in the resonance intensity. Our major goal was in estimating the universal alteration factors, which reflect changes in the global thunderstorm activity. It was achieved by compensating the local factors present in the initial data. The technique is introduced with the model Schumann resonance data and afterwards we use the long-term experimental records at the above sites for obtaining the diurnal/monthly variations of the global thunderstorms.

  17. Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment

    OpenAIRE

    Kirkpatrick, Nathaniel D.; Chung, Euiheon; Cook, Daniel C.; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L.; Padera, Timothy P.; Fukumura, Dai; Jain, Rakesh K.

    2012-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion...

  18. Design and development of compact multiphoton microscopes

    Science.gov (United States)

    Mehravar, SeyedSoroush

    A compact multi-photon microscope (MPM) was designed and developed with the use of low-cost mode-locked fiber lasers operating at 1040nm and 1560nm. The MPM was assembled in-house and the system aberration was investigated using the optical design software: Zemax. A novel characterization methodology based on 'nonlinear knife-edge' technique was also introduced to measure the axial, lateral resolution, and the field curvature of the multi-photon microscope's image plane. The field curvature was then post-corrected using data processing in MATLAB. A customized laser scanning software based on LabVIEW was developed for data acquisition, image display and controlling peripheral electronics. Finally, different modalities of multi-photon excitation such as second- and third harmonic generation, two- and three-photon fluorescence were utilized to study a wide variety of samples from cancerous cells to 2D-layered materials.

  19. Insights on proximity effect and multiphoton induced luminescence from gold nanospheres in far field optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Borglin, Johan [Biomedical Photonics Group, Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg (Sweden); Department of Physics, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg (Sweden); Guldbrand, Stina [Department of Physics, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg (Sweden); Evenbratt, Hanne [Pharmaceutical Technology, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg (Sweden); Kirejev, Vladimir; Ericson, Marica B., E-mail: marica.ericson@chem.gu.se [Biomedical Photonics Group, Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg (Sweden); Grönbeck, Henrik [Department of Applied Physics, Chalmers University of Technology, Kemivägen 9, 412 96 Gothenburg (Sweden)

    2015-12-07

    Gold nanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared (NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm gold nanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enable studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that gold nanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region.

  20. Insights on proximity effect and multiphoton induced luminescence from gold nanospheres in far field optical microscopy

    International Nuclear Information System (INIS)

    Borglin, Johan; Guldbrand, Stina; Evenbratt, Hanne; Kirejev, Vladimir; Ericson, Marica B.; Grönbeck, Henrik

    2015-01-01

    Gold nanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared (NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm gold nanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enable studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that gold nanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region

  1. Resonant heating of a cluster plasma by intense laser light

    International Nuclear Information System (INIS)

    Antonsen, Thomas M. Jr.; Taguchi, Toshihiro; Gupta, Ayush; Palastro, John; Milchberg, Howard M.

    2005-01-01

    Gases of atomic clusters are interaction media for laser pulse propagation with properties useful for applications such as extreme ultraviolet (EUV) and x-ray microscopy, harmonic generation, EUV lithography, and laser plasma acceleration. To understand cluster heating and expansion, a series of two- and three-dimensional electrostatic particle in cell simulations of the explosion of argon clusters of diameter in the range 20 nm-53 nm have been preformed. The studies show that heating is dominated by a nonlinear, resonant absorption process that gives rise to a size-dependent intensity threshold for strong absorption and that controls the dielectric properties of the cluster. Electrons are first accelerated out from the cluster and then driven back into it by the combined effects of the laser field and the electrostatic field produced by the laser-driven charge separation. Above the intensity threshold for strong heating there is a dramatic increase in the production of energetic particles and harmonic radiation. The dielectric properties of a gas of clusters are determined by the ensemble average cluster polarizability. Individual electrons contribute to the polarizability differently depending on whether they are in the core of the cluster or in the outer edge. Consequently, there can be large fluctuations in polarizability during the heating of a cluster

  2. Multiphoton atomic ionization in the field of a very short laser pulse

    International Nuclear Information System (INIS)

    Popov, V.S.

    2001-01-01

    Closed analytic expressions are derived for the probability of multiphoton atomic and ionic ionization in a variable electric field E(t), which are applicable for arbitrary Keldysh parameters γ. Dependencies of the ionization probability and photoelectron pulse spectrum on the shape of a very short laser pulse are analyzed. Examples of pulse fields of various forms, including a modulated light pulse with a Gaussian or Lorentz envelope, are considered in detail. The interference effect in the photoelectron energy spectrum during atomic ionization by a periodic field of a general form is examined. The range of applicability of the adiabatic approximation in the multiphoton ionization theory is discussed. The imaginary time method is used in the calculations, which allows the probability of particle tunneling through oscillating barriers to be effectively calculated

  3. Multiphoton ionization of (Xe)/sub n/ and (NO)/sub n/ clusters using a picosecond laser

    International Nuclear Information System (INIS)

    Smith, D.B.; Miller, J.C.

    1989-01-01

    In an effort to extend the application of multiphoton ionization (MPI) spectroscopy to the study of weakly bound systems, we have begun a systematic investigation of picosecond MPI in van der Waals molecules and clusters. To our knowledge no previous picosecond MPI studies of weakly bound systems have been reported. We present here results of picosecond MPI of Xe/sub n/(n = 1-20) and (NO)/sub n/(n = 1-4) clusters. Previous MPI studies using nanosecond lasers have not detected the NO cluster series, presumably because of fast dissociation channels. The use of high peak-power allows resonant and non-resonant photon absorption to the ionization limit to compete effectively with fast dissociative processes. 10 refs., 2 figs

  4. Photoionization of excited molecular states using multiphoton excitation techniques

    International Nuclear Information System (INIS)

    Dehmer, P.M.; Pratt, S.T.; Dehmer, J.L.

    1984-01-01

    Photoelectron spectra are reported for three photon resonant, four photon ionization of H 2 via the B 1 Σ/sub u/ + , v = 7 (J = 2,4) and C 1 π/sub u'/, v = 0-4 (J = 1) levels and of N 2 via the o 3 1 π/sub u'/, v = 1,2, b 1 π/sub u'/, v = 3-5, and c 1 π/sub u'/, v = 0 levels. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon factors are observed, which reflect the more subtle dynamics of excited state photoionization. 23 references, 6 figures, 2 tables

  5. Resonance Ionization Mass Spectrometry (RIMS): applications in spectroscopy and chemical dynamics

    International Nuclear Information System (INIS)

    Naik, P.D.; Kumar, Awadhesh; Upadhyaya, Hari; Bajaj, P.N.

    2009-01-01

    Resonance ionization is a photophysical process wherein electromagnetic radiation is used to ionize atoms, molecules, transient species, etc., by exciting them through their quantum states. The number of photons required to ionize depends on the species being investigated and energy of the photon. Once a charged particle is produced, it is easy to detect it with high efficiency. With the advent of narrow band high power pulsed and cw tunable dye lasers, it has blossomed into a powerful spectroscopic and analytical technique, commonly known as resonance ionization spectroscopy (RIS)/resonance enhanced multiphoton ionization (REMPI). The alliance of resonance ionization with mass spectrometry has grown into a still more powerful technique, known as resonance ionization mass spectrometry (RIMS), which has made significant contributions in a variety of frontier areas of research and development, such as spectroscopy, chemical dynamics, analytical chemistry, cluster science, surface science, radiochemistry, nuclear physics, biology, environmental science, material science, etc. In this article, we shall describe the application of resonance ionization mass spectrometry to spectroscopy of uranium and chemical dynamics of polyatomic molecules

  6. On effect of stability of magnetic resonance position by harmonized field

    International Nuclear Information System (INIS)

    Ivanchenko, E.A.; Tolstoluzhsky, A.P.

    2006-01-01

    The formalism of density matrix in a two level system is used to study the time-periodic modulation of the magnetic field stabilizating the magnetic resonance position. An exact solution for density matrix at resonance is found. It is shown that the fundamental resonance is stable with respect to consistent variations of longitudinal and transversal magnetic fields. A differential equation for the transition probability is obtained. The dependence of time-averaged spin flip probability on the normalized Larmor frequency was numerically researched in different parameter regimes with account of dissipation and decoherence. It is shown that the position of the main resonance is independent of field deformation and dissipation; only the width of resonance line changes upon field deformation and dissipation. The odd parametric (multi-photon) resonance transitions is studied. Static magnetization induced by time-periodic modulated magnetic field is considered. The results of the investigation may be useful for analysis of interference experiments, improvement of magnetic spectrometers and in the field of quantum computing manipulation of q-bits

  7. Evaluation of temperature dependent neutron resonance integrals

    International Nuclear Information System (INIS)

    Menon, S.V.G.; Sahni, D.C.

    1975-01-01

    The Fourier transform method is extended for evaluating temperature dependent resonance integrals and Doppler coefficients. With the temperature dependent cross-sections, the slowing-down equation is transformed into a Fredholm integral equation of second kind. A method of solution is presented using the familiar Gauss-Hermite quadrature formulae. As a byproduct of the above technique, a fast and accurate method for computing the resonance integral J-function is given. (orig.) [de

  8. Experimental study of intense radiation in terahertz region based on cylindrical surface wave resonator

    International Nuclear Information System (INIS)

    Gong, Shaoyan; Ogura, Kazuo; Yambe, Kiyoyuki; Nomizu, Shintaro; Shirai, Akihiro; Yamazaki, Kosuke; Kawamura, Jun; Miura, Takuro; Takanashi, Sho; San, Min Thu

    2015-01-01

    Periodical corrugations structured on a cylindrical conductor have cylindrical surface waves (CSWs), which are reflected at the corrugation ends and form a CSW-resonator. In this paper, intense radiations in terahertz region based on the CSW-resonator are reported. The CSW-resonators with upper cut off frequencies in the modern IEEE G-band (110–300 GHz) are excited by a coaxially injected annular beam in a weakly relativistic region less than 100 kV. It is shown that there exists an oscillation starting energy for the CSW-resonator. Above the starting energy, very intense terahertz radiations on the order of kW are obtained. The operation frequencies in the range of 166–173 GHz and 182–200 GHz are obtained using two types of CSW-resonator with the different corrugation amplitude. Electromagnetic properties of the CSW-resonator can be controlled by the artificial structure and may play an important role in high-intensity terahertz generations and applications

  9. Observation of multiphoton detachment of the H/sup -/ ion

    International Nuclear Information System (INIS)

    Tang, C.Y.; Harris, P.G.; Mohagheghi, A.H.; Los Alamos National Laboratory, Los Alamos, New Mexico 87545; Cohen Mechanical Design, Broomall, Pennsylvania 19008; The University of Connecticut, Storrs, Connecticut 06268; Western Washington University, Bellingham, Washington 98225)

    1989-01-01

    We have observed nonresonant multiphoton electron detachment of H/sup -/ ions in moderately intense (a few tens of GW/cm 2 ) laser fields. A well-collimated beam of H/sup -/ ions with an energy of 581 MeV was intersected by focused 10.6-μm radiation from a pulsed CO 2 laser. The center-of-mass photon energy was tuned using the relativistic Doppler shift so that the minimum number of simultaneous photons required for electron detachment ranged from three to sixteen. Definite signals were observed for the minimum photon number ranging from three to eight. Our preliminary results show evidence for structure in the relative total cross section

  10. Resonant second harmonic generation in potassium vapor

    International Nuclear Information System (INIS)

    Kim, D.; Mullin, C.S.; Shen, Y.R.; Lawrence Berkeley Lab., CA

    1995-06-01

    Picosecond pulses are used to study resonant second harmonic generation in potassium vapor. Although the process is both microscopically and macroscopically forbidden, it can readily be observed. The results can be quantitatively understood by a multiphoton-ionization-initiated, dc-field-induced, coherent transient model

  11. An alternative way of computation of amplitudes and intensities in time-dependent Moessbauer spectroscopy (TDMS)

    International Nuclear Information System (INIS)

    Christoskov, I.D.; Vapirev, E.I.

    1990-01-01

    An alternative way of presenting the time-dependent amplitudes and intensities of radiation, corresponding to resonant absorption and scattering experiments, is developed. Infinite series of Bessel functions with complex coefficients are replaced by simple for calculation definite integrals and the number of Bessel function calls is reduced to one per a tabulation point. Thus the calculational effort for experimental data processing becomes smaller

  12. A novel multiphoton microscopy images segmentation method based on superpixel and watershed.

    Science.gov (United States)

    Wu, Weilin; Lin, Jinyong; Wang, Shu; Li, Yan; Liu, Mingyu; Liu, Gaoqiang; Cai, Jianyong; Chen, Guannan; Chen, Rong

    2017-04-01

    Multiphoton microscopy (MPM) imaging technique based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) shows fantastic performance for biological imaging. The automatic segmentation of cellular architectural properties for biomedical diagnosis based on MPM images is still a challenging issue. A novel multiphoton microscopy images segmentation method based on superpixels and watershed (MSW) is presented here to provide good segmentation results for MPM images. The proposed method uses SLIC superpixels instead of pixels to analyze MPM images for the first time. The superpixels segmentation based on a new distance metric combined with spatial, CIE Lab color space and phase congruency features, divides the images into patches which keep the details of the cell boundaries. Then the superpixels are used to reconstruct new images by defining an average value of superpixels as image pixels intensity level. Finally, the marker-controlled watershed is utilized to segment the cell boundaries from the reconstructed images. Experimental results show that cellular boundaries can be extracted from MPM images by MSW with higher accuracy and robustness. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Application of multiphoton microscopy in dermatological studies: A mini-review

    Directory of Open Access Journals (Sweden)

    Elijah Yew

    2014-09-01

    Full Text Available This review summarizes the historical and more recent developments of multiphoton microscopy, as applied to dermatology. Multiphoton microscopy offers several advantages over competing microscopy techniques: there is an inherent axial sectioning, penetration depths that compete well with confocal microscopy on account of the use of near-infrared light, and many two-photon contrast mechanisms, such as second-harmonic generation, have no analogue in one-photon microscopy. While the penetration depths of photons into tissue are typically limited on the order of hundreds of microns, this is of less concern in dermatology, as the skin is thin and readily accessible. As a result, multiphoton microscopy in dermatology has generated a great deal of interest, much of which is summarized here. The review covers the interaction of light and tissue, as well as the various considerations that must be made when designing an instrument. The state of multiphoton microscopy in imaging skin cancer and various other diseases is also discussed, along with the investigation of aging and regeneration phenomena, and finally, the use of multiphoton microscopy to analyze the transdermal transport of drugs, cosmetics and other agents is summarized. The review concludes with a look at potential future research directions, especially those that are necessary to push these techniques into widespread clinical acceptance.

  14. Proton energy dependence of slow neutron intensity

    International Nuclear Information System (INIS)

    Teshigawara, Makoto; Harada, Masahide; Watanabe, Noboru; Kai, Tetsuya; Sakata, Hideaki; Ikeda, Yujiro

    2001-01-01

    The choice of the proton energy is an important issue for the design of an intense-pulsed-spallation source. The optimal proton beam energy is rather unique from a viewpoint of the leakage neutron intensity but no yet clear from the slow-neutron intensity view point. It also depends on an accelerator type. Since it is also important to know the proton energy dependence of slow-neutrons from the moderators in a realistic target-moderator-reflector assembly (TMRA). We studied on the TMRA proposed for Japan Spallation Neutron Source. The slow-neutron intensities from the moderators per unit proton beam power (MW) exhibit the maximum at about 1-2 GeV. At higher proton energies the intensity per MW goes down; at 3 and 50 GeV about 0.91 and 0.47 times as low as that at 1 GeV. The proton energy dependence of slow-neutron intensities was found to be almost the same as that of total neutron yield (leakage neutrons) from the same bare target. It was also found that proton energy dependence was almost the same for the coupled and decoupled moderators, regardless the different moderator type, geometry and coupling scheme. (author)

  15. Enhancement of four-wave mixing induced by interacting dark resonances

    International Nuclear Information System (INIS)

    Yang Weifeng; Gong Shangqing; Niu Yueping; Jin Shiqi; Xu Zhizhan

    2005-01-01

    We analyse a four-wave mixing (FWM) scheme in a five-level atomic system in which double-dark resonances are present. It is found that the enhancement of FWM in both electromagnetically induced transparency (EIT) windows can be obtained even without the condition of multiphoton resonance. Moreover, the conversion efficiency of FWM in one EIT window can be much larger than that in the other due to the presence of interacting dark resonances

  16. Transverse correlations in multiphoton entanglement

    International Nuclear Information System (INIS)

    Wen Jianming; Rubin, Morton H.; Shih Yanhua

    2007-01-01

    We have analyzed the transverse correlation in multiphoton entanglement. The generalization of quantum ghost imaging is extended to the N-photon state. The Klyshko's two-photon advanced-wave picture is generalized to the N-photon case

  17. Self-resonant wakefield excitation by intense laser pulse in plasmas

    International Nuclear Information System (INIS)

    Andreev, N.E.; Pogosova, A.A.; Gorbunov, L.M.; Ramazashvili, R.R.; Kirsanov, V.I.

    1993-01-01

    It is demonstrated by theoretical analysis and numerical calculations that in an underdense plasma the process of three-dimensional evolution of the short and strong laser pulse (with duration equal to several plasma periods) leads to compression and self-modulation of the pulse, so that during a fairly long period of time beats of pulse amplitude generates resonantly a strong and stable plasma wakefield. The intensity of the wake-field is so high that it can provide a new promising outlook for the plasma based accelerator concept. Linear analysis of dispersion relation predicts that taking into account transverse component of wavenumber considerably increases the growth rate of resonance instability of the pulse. The numerical simulations demonstrate that considered self-focusing and resonant-modulation instability are essentially three dimensional processes. Laser field evolution in each transverse cross section of the pulse is synchronized by the regular structure of plasma wave that is excited by the pulse. The considered effect of resonant modulation has a threshold. For the pulses with the intensity below the threshold the refraction dominates and no modulation appears. The studied phenomenon can be referred to as the Self-Resonant Wakefield (SRWF) excitation that is driven by self-focusing and self-modulation of laser pulse with quite a moderate initial duration. In fact, this method of excitation differs from both suggested in Ref.1 (PBWA) and in Refs.2,3 (LWFA), being even more than the combination of these concepts. Unlike the first scheme it does not require initially the two-frequency laser pulse, since the modulation here appears in the most natural way due to evolution of the pulse. In contrast with the LWFA, the considered SRWF generation scheme gives the possibility to raise the intensity of wake-excitation due to pulse self-focusing ( initial stage) and self modulation (second stage)

  18. Multiphoton imaging with a novel compact diode-pumped Ti:sapphire oscillator

    DEFF Research Database (Denmark)

    König, Karsten; Andersen, Peter E.; Le, Tuan

    2015-01-01

    Multiphoton laser scanning microscopy commonly relies on bulky and expensive femtosecond lasers. We integrated a novel minimal-footprint Ti:sapphire oscillator, pumped by a frequency-doubled distributed Bragg reflector tapered diode laser, into a clinical multiphoton tomograph and evaluated its...... imaging capability using different biological samples, i.e. cell monolayers, corneal tissue, and human skin. With the novel laser, the realization of very compact Ti:sapphire-based systems for high-quality multiphoton imaging at a significantly size and weight compared to current systems will become...

  19. Multi-photon creation and single-photon annihilation of electron-positron pairs

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Huayu

    2011-04-27

    In this thesis we study multi-photon e{sup +}e{sup -} pair production in a trident process, and singlephoton e{sup +}e{sup -} pair annihilation in a triple interaction. The pair production is considered in the collision of a relativistic electron with a strong laser beam, and calculated within the theory of laser-dressed quantum electrodynamics. A regularization method is developed systematically for the resonance problem arising in the multi-photon process. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. Our calculation shows good agreement with existing experimental data from SLAC, and adds further insights into the experimental findings. Besides, we study the process in a manifestly nonperturbative domain, whose accessibility to future all-optical experiments based on laser acceleration is shown. In the single-photon e{sup +}e{sup -} pair annihilation, the recoil momentum is absorbed by a spectator particle. Various kinematic configurations of the three incoming particles are examined. Under certain conditions, the emitted photon exhibits distinct angular and polarization distributions which could facilitate the detection of the process. Considering an equilibrium relativistic e{sup +}e{sup -} plasma, it is found that the single-photon process becomes the dominant annihilation channel for plasma temperatures above 3 MeV. Multi-particle correlation effects are therefore essential for the e{sup +}e{sup -} dynamics at very high density. (orig.)

  20. Multi-photon creation and single-photon annihilation of electron-positron pairs

    International Nuclear Information System (INIS)

    Hu, Huayu

    2011-01-01

    In this thesis we study multi-photon e + e - pair production in a trident process, and singlephoton e + e - pair annihilation in a triple interaction. The pair production is considered in the collision of a relativistic electron with a strong laser beam, and calculated within the theory of laser-dressed quantum electrodynamics. A regularization method is developed systematically for the resonance problem arising in the multi-photon process. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. Our calculation shows good agreement with existing experimental data from SLAC, and adds further insights into the experimental findings. Besides, we study the process in a manifestly nonperturbative domain, whose accessibility to future all-optical experiments based on laser acceleration is shown. In the single-photon e + e - pair annihilation, the recoil momentum is absorbed by a spectator particle. Various kinematic configurations of the three incoming particles are examined. Under certain conditions, the emitted photon exhibits distinct angular and polarization distributions which could facilitate the detection of the process. Considering an equilibrium relativistic e + e - plasma, it is found that the single-photon process becomes the dominant annihilation channel for plasma temperatures above 3 MeV. Multi-particle correlation effects are therefore essential for the e + e - dynamics at very high density. (orig.)

  1. Ionization of a two-electron atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Ovodova, O.V.; Popov, A.M.; Tikhonova, O.V.

    1997-01-01

    A one-dimensional model of a helium atom in an intense field of a femtosecond electromagnetic pulse has been constructed using the Hartree technique. 'Exact' calculations have been compared to the approximations of 'frozen' and 'passive' electrons. A nonmonotonic dependence of the single-electron ionization probability on the radiation intensity has been detected. Minima in the ionization probability are due to multiphoton resonances between different atomic states due to the dynamic Stark effect. We suggest that the ionization suppression is due to the interference stabilization in this case

  2. Multiphoton tomography of astronauts

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Pietruszka, Anna; Bückle, Rainer; Gerlach, Nicole; Heinrich, Ulrike

    2015-03-01

    Weightlessness may impair the astronaut's health conditions. Skin impairments belong to the most frequent health problems during space missions. Within the Skin B project, skin physiological changes during long duration space flights are currently investigated on three European astronauts that work for nearly half a year at the ISS. Measurements on the hydration, the transepidermal water loss, the surface structure, elasticity and the tissue density by ultrasound are conducted. Furthermore, high-resolution in vivo histology is performed by multiphoton tomography with 300 nm spatial and 200 ps temporal resolution. The mobile certified medical tomograph with a flexible 360° scan head attached to a mechano-optical arm is employed to measure two-photon autofluorescence and SHG in the volar forearm of the astronauts. Modification of the tissue architecture and of the fluorescent biomolecules NAD(P)H, keratin, melanin and elastin are detected as well as of SHG-active collagen. Thinning of the vital epidermis, a decrease of the autofluoresence intensity, an increase in the long fluorescence lifetime, and a reduced skin ageing index SAAID based on an increased collagen level in the upper dermis have been found. Current studies focus on recovery effects.

  3. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang, E-mail: jiangwang@tju.edu.cn; Deng, Bin; Wei, Xile [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2014-09-01

    The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.

  4. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks

    International Nuclear Information System (INIS)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang; Deng, Bin; Wei, Xile

    2014-01-01

    The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks

  5. Two-electron Rabi oscillations in real-time time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Habenicht, Bradley F.; Tani, Noriyuki P.; Provorse, Makenzie R.; Isborn, Christine M.

    2014-01-01

    We investigate the Rabi oscillations of electrons excited by an applied electric field in several simple molecular systems using time-dependent configuration interaction (TDCI) and real-time time-dependent density-functional theory (RT-TDDFT) dynamics. While the TDCI simulations exhibit the expected single-electron Rabi oscillations at a single resonant electric field frequency, Rabi oscillations in the RT-TDDFT simulations are a two-electron process. The existence of two-electron Rabi oscillations is determined both by full population inversion between field-free molecular orbitals and the behavior of the instantaneous dipole moment during the simulations. Furthermore, the Rabi oscillations in RT-TDDFT are subject to an intensity threshold of the electric field, below which Rabi oscillations do not occur and above which the two-electron Rabi oscillations occur at a broad range of frequencies. It is also shown that at field intensities near the threshold intensity, the field frequency predicted to induce Rabi oscillations by linear response TDDFT only produces detuned Rabi oscillations. Instead, the field frequency that yields the full two-electron population inversion and Rabi oscillation behavior is shown to be the average of single-electron transition frequencies from the ground S 0 state and the doubly-excited S 2 state. The behavior of the two-electron Rabi oscillations is rationalized via two possible models. The first model is a multi-photon process that results from the electric field interacting with the three level system such that three level Rabi oscillations may occur. The second model suggests that the mean-field nature of RT-TDDFT induces paired electron propagation

  6. Infrared multiphoton absorption and decomposition

    International Nuclear Information System (INIS)

    Evans, D.K.; McAlpine, R.D.

    1984-01-01

    The discovery of infrared laser induced multiphoton absorption (IRMPA) and decomposition (IRMPD) by Isenor and Richardson in 1971 generated a great deal of interest in these phenomena. This interest was increased with the discovery by Ambartzumian, Letokhov, Ryadbov and Chekalin that isotopically selective IRMPD was possible. One of the first speculations about these phenomena was that it might be possible to excite a particular mode of a molecule with the intense infrared laser beam and cause decomposition or chemical reaction by channels which do not predominate thermally, thus providing new synthetic routes for complex chemicals. The potential applications to isotope separation and novel chemistry stimulated efforts to understand the underlying physics and chemistry of these processes. At ICOMP I, in 1977 and at ICOMP II in 1980, several authors reviewed the current understandings of IRMPA and IRMPD as well as the particular aspect of isotope separation. There continues to be a great deal of effort into understanding IRMPA and IRMPD and we will briefly review some aspects of these efforts with particular emphasis on progress since ICOMP II. 31 references

  7. Extending the fundamental imaging-depth limit of multi-photon microscopy by imaging with photo-activatable fluorophores.

    Science.gov (United States)

    Chen, Zhixing; Wei, Lu; Zhu, Xinxin; Min, Wei

    2012-08-13

    It is highly desirable to be able to optically probe biological activities deep inside live organisms. By employing a spatially confined excitation via a nonlinear transition, multiphoton fluorescence microscopy has become indispensable for imaging scattering samples. However, as the incident laser power drops exponentially with imaging depth due to scattering loss, the out-of-focus fluorescence eventually overwhelms the in-focal signal. The resulting loss of imaging contrast defines a fundamental imaging-depth limit, which cannot be overcome by increasing excitation intensity. Herein we propose to significantly extend this depth limit by multiphoton activation and imaging (MPAI) of photo-activatable fluorophores. The imaging contrast is drastically improved due to the created disparity of bright-dark quantum states in space. We demonstrate this new principle by both analytical theory and experiments on tissue phantoms labeled with synthetic caged fluorescein dye or genetically encodable photoactivatable GFP.

  8. Simulations of the polarisation-dependent Raman intensity of β-carotene in photosystem II crystals

    International Nuclear Information System (INIS)

    Brose, K.; Zouni, A.; Müh, F.; Mroginski, M.A.; Maultzsch, J.

    2013-01-01

    Highlights: • First polarisation-dependent Raman spectroscopy on photosystem II crystals. • Orientation-dependent Raman intensity simulations for di- and monomeric crystals. • Simulations account for all β-carotenes (β-Car) in the unit cell for the first time. • Prediction for identificationy of the β-Car cation in side-path electron transport. - Abstract: In order to clarify possibilities to identify the β-carotene (β-Car) radicals in secondary electron transfer (ET) reactions in the photosystem II core complex (PSIIcc), Raman intensities of all 96 β-Car cofactors in the unit cell of PSIIcc-dimer crystals as a function of polarisation and crystal orientation were simulated based on the 2.9 Å resolution structure. The Raman-active symmetry A g in the C 2h group is assigned to the β-Car modes ν 66 and ν 67 . Simulations are in agreement with experiment for off-resonant excitation at 1064 nm. Resonant measurements at 476 and 532 nm excitation can not be explained, which is attributed to mode mixing in the excited state and the existence of different spectral pools. The identity of the β-Car oxidised in secondary ET can not be resolved by Raman measurements on PSIIcc-dimer crystals. Additional simulations show that similar measurements on PSIIcc-monomer crystals could provide a possible route to solve this issue

  9. Simulations of the polarisation-dependent Raman intensity of β-carotene in photosystem II crystals

    Energy Technology Data Exchange (ETDEWEB)

    Brose, K., E-mail: katharina.brose@gmx.net [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Zouni, A. [Institut für Chemie, Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany); Müh, F. [Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Straße 69, 4040 Linz (Austria); Mroginski, M.A. [Institut für Chemie, Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany); Maultzsch, J. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany)

    2013-06-03

    Highlights: • First polarisation-dependent Raman spectroscopy on photosystem II crystals. • Orientation-dependent Raman intensity simulations for di- and monomeric crystals. • Simulations account for all β-carotenes (β-Car) in the unit cell for the first time. • Prediction for identificationy of the β-Car cation in side-path electron transport. - Abstract: In order to clarify possibilities to identify the β-carotene (β-Car) radicals in secondary electron transfer (ET) reactions in the photosystem II core complex (PSIIcc), Raman intensities of all 96 β-Car cofactors in the unit cell of PSIIcc-dimer crystals as a function of polarisation and crystal orientation were simulated based on the 2.9 Å resolution structure. The Raman-active symmetry A{sub g} in the C{sub 2h} group is assigned to the β-Car modes ν{sub 66} and ν{sub 67}. Simulations are in agreement with experiment for off-resonant excitation at 1064 nm. Resonant measurements at 476 and 532 nm excitation can not be explained, which is attributed to mode mixing in the excited state and the existence of different spectral pools. The identity of the β-Car oxidised in secondary ET can not be resolved by Raman measurements on PSIIcc-dimer crystals. Additional simulations show that similar measurements on PSIIcc-monomer crystals could provide a possible route to solve this issue.

  10. Resonant Self-Trapping and Absorption of Intense Bessel Beams

    International Nuclear Information System (INIS)

    Fan, J.; Parra, E.; Milchberg, H. M.

    2000-01-01

    We report the observation of resonant self-trapping and enhanced laser-plasma heating resulting from propagation of high intensity Bessel beams in neutral gas. The enhancement in absorption and plasma heating is directly correlated to the spatial trapping of laser radiation. (c) 2000 The American Physical Society

  11. In vivo multiphoton imaging of bile duct ligation

    Science.gov (United States)

    Liu, Yuan; Li, Feng-Chieh; Chen, Hsiao-Chin; Chang, Po-shou; Yang, Shu-Mei; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2008-02-01

    Bile is the exocrine secretion of liver and synthesized by hepatocytes. It is drained into duodenum for the function of digestion or drained into gallbladder for of storage. Bile duct obstruction is a blockage in the tubes that carry bile to the gallbladder and small intestine. However, Bile duct ligation results in the changes of bile acids in serum, liver, urine, and feces1, 2. In this work, we demonstrate a novel technique to image this pathological condition by using a newly developed in vivo imaging system, which includes multiphoton microscopy and intravital hepatic imaging chamber. The images we acquired demonstrate the uptake, processing of 6-CFDA in hepatocytes and excretion of CF in the bile canaliculi. In addition to imaging, we can also measure kinetics of the green fluorescence intensity.

  12. Temp erature-dep endent of Nonlinear Optical Conductance of Graphene-based Systems in High-intensity Terahertz Field

    Institute of Scientific and Technical Information of China (English)

    Jing Lv; Rui-yang Yuan; Hui Yan

    2014-01-01

    For multi-photon processed with the linear dispersion in the high-intensity terahertz (THz) field, we have systematically investigated the temperature-dependent nonlinear optical response of graphene-based systems, including single layer graphene, graphene superlattice and gapped graphene. In the intrinsic single layer graphene system, it demonstrates that, at low temperature, nonlinear optical conductivities of the third-and fifth-order are respectively five and ten orders of magnitude larger than the universal conductivity with high-intensity and low frequency THz wave.In the graphene superlattice and gapped graphene systems, the optical responses enhanced because of the anisotropic massless and massive Dirac fermions.

  13. Multiphoton tomography of intratissue tattoo nanoparticles

    Science.gov (United States)

    König, Karsten

    2012-02-01

    Most of today's intratissue tattoo pigments are unknown nanoparticles. So far, there was no real control of their use due to the absence of regulations. Some of the tattoo pigments contain carcinogenic amines e.g. azo pigment Red 22. Nowadays, the European Union starts to control the administration of tattoo pigments. There is an interest to obtain information on the intratissue distribution, their interaction with living cells and the extracellular matrix, and the mechanisms behind laser tattoo removal. Multiphoton tomographs are novel biosafety and imaging tools that can provide such information non-invasively and without further labeling. When using the spectral FLIM module, spatially-resolved emission spectra, excitation spectra, and fluorescence lifetimes can pr provided. Multiphoton tomographs are used by all major cosmetic comapanies to test the biosafety of sunscreen nanoparticles.

  14. Multi-photon UV photolysis of gaseous polycyclic aromatic hydrocarbons: Extinction spectra and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, A. J.; Gash, E. W.; Mansfield, M. W. D. [Physics Department, University College Cork, Cork (Ireland); Ruth, A. A. [Physics Department, University College Cork, Cork (Ireland); Environmental Research Institute, University College Cork, Cork (Ireland)

    2013-08-07

    The extinction spectra of static naphthalene and static biphenylene vapor, each buffered with a noble gas at room temperature, were measured as a function of time in the region between 390 and 850 nm after UV multi-photon laser photolysis at 308 nm. Employing incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), the spectra were found to be unstructured with a general lack of isolated features suggesting that the extinction was not solely based on absorption but was in fact dominated by scattering from particles formed in the photolysis of the respective polycyclic aromatic hydrocarbon. Following UV multi-photon photolysis, the extinction dynamics of the static (unstirred) closed gas-phase system exhibits extraordinary quasi-periodic and complex oscillations with periods ranging from seconds to many minutes, persisting for up to several hours. Depending on buffer gas type and pressure, several types of dynamical responses could be generated (classified as types I, II, and III). They were studied as a function of temperature and chamber volume for different experimental conditions and possible explanations for the oscillations are discussed. A conclusive model for the observed phenomena has not been established. However, a number of key hypotheses have made based on the measurements in this publication: (a) Following the multi-photon UV photolysis of naphthalene (or biphenylene), particles are formed on a timescale not observable using IBBCEAS. (b) The observed temporal behavior cannot be described on basis of a chemical reaction scheme alone. (c) The pressure dependence of the system's responses is due to transport phenomena of particles in the chamber. (d) The size distribution and the refractive indices of particles are time dependent and evolve on a timescale of minutes to hours. The rate of particle coagulation, involving coalescent growth and particle agglomeration, affects the observed oscillations. (e) The walls of the chamber act as a

  15. Microwave multiphoton excitation of helium Rydberg atoms: The analogy with atomic collisions

    International Nuclear Information System (INIS)

    van de Water, W.; van Leeuwen, K.A.H.; Yoakum, S.; Galvez, E.J.; Moorman, L.; Bergeman, T.; Sauer, B.E.; Koch, P.M.

    1989-01-01

    We study multiphoton transitions in helium Rydberg atoms subjected to a microwave electric field of fixed frequency but varying intensity. For each principal quantum number in the range n=25--32, the n 3 S to n 3 (L>2), n=25--32, transition probability exhibits very sharp structures as a function of the field amplitude. Their positions could be reproduced precisely using a Floquet Hamiltonian for the interaction between atom and field. Their shapes are determined by the transients of field turn-on and turn-off in a way that makes a close analogy with the theory of slow atomic collisions

  16. A review of biomedical multiphoton microscopy and its laser sources

    International Nuclear Information System (INIS)

    Lefort, Claire

    2017-01-01

    Multiphoton microscopy (MPM) has been the subject of major development efforts for about 25 years for imaging biological specimens at micron scale and presented as an elegant alternative to classical fluorescence methods such as confocal microscopy. In this topical review, the main interests and technical requirements of MPM are addressed with a focus on the crucial role of excitation source for optimization of multiphoton processes. Then, an overview of the different sources successfully demonstrated in literature for MPM is presented, and their physical parameters are inventoried. A classification of these sources in function with their ability to optimize multiphoton processes is proposed, following a protocol found in literature. Starting from these considerations, a suggestion of a possible identikit of the ideal laser source for MPM concludes this topical review. (topical review)

  17. Characterizing lamina propria of human gastric mucosa by multiphoton microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y C; Yang, H Q; Zhuo, S M [Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007 (China); Chen, G; Chen, J X [Department of Pathology, Fujian Provincial Tumor Hospital, Fuzhou, 350014 (China); Yan, J, E-mail: chenjianxin@fjnu.edu.cn, E-mail: ynjun@yahoo.com [Department of Surgery, Fujian Provincial Tumor Hospital, Fuzhou, 350014 (China)

    2011-01-01

    Lamina propria (LP) of gastric mucosa plays an important role in progression of gastric cancer because of the site at where inflammatory reactions occur. Multiphoton imaging has been recently employed for microscopic examination of intact tissue. In this paper, using multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG), high resolution multiphoton microscopic images of lamina propria (LP) are obtained in normal human gastric mucosa at excitation wavelength {lambda}{sub ex} = 800 nm. The main source of tissue TPEF originated from the cells of gastric glands, and loose connective tissue, collagen, produced SHG signals. Our results demonstrated that MPM can be effective for characterizing the microstructure of LP in human gastric mucosa. The findings will be helpful for diagnosing and staging early gastric cancer in the clinics.

  18. Characterizing lamina propria of human gastric mucosa by multiphoton microscopy

    Science.gov (United States)

    Liu, Y. C.; Yang, H. Q.; Chen, G.; Zhuo, S. M.; Chen, J. X.; Yan, J.

    2011-01-01

    Lamina propria (LP) of gastric mucosa plays an important role in progression of gastric cancer because of the site at where inflammatory reactions occur. Multiphoton imaging has been recently employed for microscopic examination of intact tissue. In this paper, using multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG), high resolution multiphoton microscopic images of lamina propria (LP) are obtained in normal human gastric mucosa at excitation wavelength λex = 800 nm. The main source of tissue TPEF originated from the cells of gastric glands, and loose connective tissue, collagen, produced SHG signals. Our results demonstrated that MPM can be effective for characterizing the microstructure of LP in human gastric mucosa. The findings will be helpful for diagnosing and staging early gastric cancer in the clinics.

  19. A review of biomedical multiphoton microscopy and its laser sources

    Science.gov (United States)

    Lefort, Claire

    2017-10-01

    Multiphoton microscopy (MPM) has been the subject of major development efforts for about 25 years for imaging biological specimens at micron scale and presented as an elegant alternative to classical fluorescence methods such as confocal microscopy. In this topical review, the main interests and technical requirements of MPM are addressed with a focus on the crucial role of excitation source for optimization of multiphoton processes. Then, an overview of the different sources successfully demonstrated in literature for MPM is presented, and their physical parameters are inventoried. A classification of these sources in function with their ability to optimize multiphoton processes is proposed, following a protocol found in literature. Starting from these considerations, a suggestion of a possible identikit of the ideal laser source for MPM concludes this topical review. Dedicated to Martin.

  20. Ionic rotational branching ratios in resonant enhanced multiphoton ionization of NO via the A 2Σ+(3sσ) and D 2Σ+(3pσ) states

    International Nuclear Information System (INIS)

    Rudolph, H.; Dixit, S.N.; McKoy, V.; Huo, W.M.

    1988-01-01

    We present the results of ab initio calculations of the ionic rotational branching ratios in NO for a (1+1) REMPI (resonant enhanced multiphoton ionization) via the A 2 Σ + (3sσ) state and a (2+1) REMPI via the D 2 Σ + (3pσ) state. Despite the atomic-like character of the bound 3sσ and 3pσ orbitals in these resonant states, the photoelectron continuum exhibits strong l mixing. The selection rule ΔN+l = odd (ΔNequivalentN/sub +/-N/sub i/) implies that the peaks in the photoelectron spectrum corresponding to ΔN = odd ( +- 1, +- 3) are sensitive to even partial waves while those corresponding to even ΔN probe the odd partial waves in the photoelectron continuum. Recent experimental high resolution photoelectron studies have shown a strong ΔN = 0 peak for ionization via the A 2 Σ + and the D 2 Σ + states, indicating a dominance of odd-l partial waves. While this seems natural for ionization out of the 3sσ orbital, it is quite anomalous for 3pσ ionization. Based on extensive bound calculations, Viswanathan et al. [J. Phys. Chem. 90, 5078 (1986)] attribute this anomaly to a strong l mixing in the electronic continuum caused by the nonspherical molecular potential

  1. Characterizing germania concentration and structure in fiber soot using multiphoton microscopy and spectroscopy technology

    Science.gov (United States)

    Chen, Minghan; Li, Ming-Jun; Liu, Anping

    2015-02-01

    Germania doping is commonly used in the core of optical fiber due to its advantages compared to other materials such as superior transparency in near-infrared telecommunication wavelength region. During fiber preform manufacturing using the outside vapor deposition (OVD) process, Ge is doped into a silica soot preform by chemical vapor deposition. Since the Ge doping concentration profile is directly correlated with the fiber refractive index profile, its characterization is critical for the fiber industry. Electron probe micro-analyzer (EPMA) is a conventional analysis method for characterizing the Ge concentration profile. However, it requires extensive sample preparation and lengthy measurement. In this paper, a multiphoton microscopy technique is utilized to measure the Ge doping profile based on the multiphoton fluorescence intensity of the soot layers. Two samples, one with ramped and another with stepped Ge doping profiles were prepared for measurements. Measured results show that the technique is capable of distinguishing ramped and stepped Ge doping profiles with good accuracy. In the ramped soot sample, a sharp increment of doping level was observed in about 2 mm range from soot edge followed by a relative slow gradient doping accretion. As for the stepped doping sample, step sizes ranging from around 1 mm (at soot edge) to 3 mm (at soot center) were observed. All the measured profiles are in close agreement with that of the EPMA measurements. In addition, both multiphoton fluorescence (around 420 nm) and sharp second harmonic generations (at 532 nm) were observed, which indicates the co-existence of crystal and amorphous GeO2.

  2. Rapid creation of distant entanglement by multi-photon resonant fluorescence

    Science.gov (United States)

    Cohen, Guy Z.; Sham, L. J.

    2014-03-01

    We study a simple, effective and robust method for entangling two separate stationary quantum dot spin qubits with high fidelity using multi-photon Gaussian state. The fluorescence signals from the two dots interfere at a beam splitter. The bosonic nature of photons leads, in analogy with the Hong-Ou-Mandel (HOM) effect, to selective pairing of photon holes (photon absences in the fluorescent signals). By the HOM effect, two photon holes with the same polarization end up at the same beam splitter output. As a result, two odd photon number detections at the outgoing beams, which must correspond to two photon holes with different polarizations, herald entanglement creation. The robustness of the Gaussian states is evidenced by the ability to compensate for photon absorption and noise by a moderate increase in the number of photons at the input. We calculate the entanglement generation rate in the ideal, non-ideal and near-ideal detector regimes and find substantial improvement over single-photon schemes in all three regimes. Fast and efficient spin-spin entanglement creation can form the basis for a scalable quantum dot quantum computing network. Our predictions can be tested using current experimental capabilities. This research was supported by the U.S. Army Research Office MURI award W911NF0910406, by NSF grant PHY-1104446 and by ARO (IARPA, W911NF-08-1-0487). The authors thank D. G. Steel for useful discussions.

  3. Compensating amplitude-dependent tune-shift without driving fourth-order resonances

    Science.gov (United States)

    Ögren, J.; Ziemann, V.

    2017-10-01

    If octupoles are used in a ring to correct the amplitude-dependent tune-shift one normally tries to avoid that the octupoles drive additional resonances. Here we consider the optimum placement of octupoles that only affects the amplitude-dependent tune-shift, but does not drive fourth-order resonances. The simplest way turns out to place three equally powered octupoles with 60 ° phase advance between adjacent magnets. Using two such octupole triplets separated by a suitable phase advance cancels all fourth-order resonance driving terms and forms a double triplet we call a six-pack. Using three six-packs at places with different ratios of the beta functions allows to independently control all amplitude-dependent tune-shift terms without exciting additional fourth-order resonances in first order of the octupole excitation.

  4. Excited-state structure and electronic dephasing time of Nile blue from absolute resonance Raman intensities

    Science.gov (United States)

    Lawless, Mary K.; Mathies, Richard A.

    1992-06-01

    Absolute resonance Raman cross sections are measured for Nile blue 690 perchlorate dissolved in ethylene glycol with excitation at 514, 531, and 568 nm. These values and the absorption spectrum are modeled using a time-dependent wave packet formalism. The excited-state equilibrium geometry changes are quantitated for 40 resonance Raman active modes, seven of which (590, 1141, 1351, 1429, 1492, 1544, and 1640 cm-1 ) carry 70% of the total resonance Raman intensity. This demonstrates that in addition to the prominent 590 and 1640 cm-1 modes, a large number of vibrational degrees of freedom are Franck-Condon coupled to the electronic transition. After exposure of the explicit vibrational progressions, the residual absorption linewidth is separated into its homogeneous [350 cm-1 half-width at half-maximum (HWHM)] and inhomogeneous (313 cm-1 HWHM) components through an analysis of the absolute Raman cross sections. The value of the electronic dephasing time derived from this study (25 fs) compares well to previously published results. These data should be valuable in multimode modeling of femtosecond experiments on Nile blue.

  5. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M., E-mail: m.h.m.janssen@vu.nl [LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); Powis, Ivan [School of Chemistry, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2013-12-21

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  6. X-ray laser studies using plasmas created by optical field ionization

    International Nuclear Information System (INIS)

    Krushelnick, K.M.; Tighe, W.; Suckewer, S.

    1995-01-01

    X-ray laser experiments involving the creation of fast recombining plasmas by optical field ionization of preformed targets were conducted. A nonlinear increase in the intensity of the 13.5nm Lyman-α line in Li III with the length of the target plasma was observed but only for distances less than the laser confocal parameter and for low plasma electron temperatures. Multiphoton pumping of resonant atomic transitions was also examined and the process of multiphoton ionization of FIII was found to be more probable than multiphoton excitation

  7. Scanless multitarget-matching multiphoton excitation fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Junpeng Qiu

    2018-03-01

    Full Text Available Using the combination of a reflective blazed grating and a reflective phase-only diffractive spatial light modulator (SLM, scanless multitarget-matching multiphoton excitation fluorescence microscopy (SMTM-MPM was achieved. The SLM shaped an incoming mode-locked, near-infrared Ti:sapphire laser beam into an excitation pattern with addressable shapes and sizes that matched the samples of interest in the field of view. Temporal and spatial focusing were simultaneously realized by combining an objective lens and a blazed grating. The fluorescence signal from illuminated areas was recorded by a two-dimensional sCMOS camera. Compared with a conventional temporal focusing multiphoton microscope, our microscope achieved effective use of the laser power and decreased photodamage with higher axial resolution.

  8. Cellular organization and spectral diversity of GFP-like proteins in live coral cells studied by single and multiphoton imaging and microspectroscopy

    Science.gov (United States)

    Salih, Anya; Cox, Guy C.; Larkum, Anthony W.

    2003-07-01

    Tissues of many marine invertebrates of class Anthozoa contain intensely fluorescent or brightly coloured pigments. These pigments belong to a family of photoactive proteins closely related to Green Fluorescent Protein (GFP), and their emissions range from blue to red wavelengths. The great diversity of these pigments has only recently been realised. To investigate the role of these proteins in corals, we have performed an in vivo fluorescent pigment (FP) spectral and cellular distribution analyses in live coral cells using single and multi-photon laser scanning imaging and microspectroscopy. These analyses revealed that even single colour corals contain spectroscopically heterogeneous pigment mixtures, with 2-5 major colour types in the same area of tissue. They were typically arranged in step-wise light emission energy gradients (e.g. blue, green, yellow, red). The successive overlapping emission-excitation spectral profiles of differently coloured FPs suggested that they were suited for sequential energy coupling. Traces of red FPs (emission = 570-660 nm) were present, even in non-red corals. We confirmed that radiative energy transfer could occur between separate granules of blue and green FPs and that energy transfer was inversely proportional to the square of the distance between them. Multi-photon micro-spectrofluorometric analysis gave significantly improved spectral resolution by restricting FP excitation to a single point in the focal plane of the sample. Pigment heterogeneity at small scales within granules suggested that fluorescence resonance energy transfer (FRET) might be occurring, and we confirmed that this was the case. Thus, energy transfer can take place both radiatively and by FRET, probably functioning in photoprotection by dissipation of excessive solar radiation.

  9. Energy distributions of neutral species ejected from well-characterized surfaces measured by means of multiphoton resonance ionization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, D.; Ishigami, R.; Dhole, S.D.; Morita, K. E-mail: k-morita@mail.nucl.nagoya-u.ac.jp

    2000-04-01

    The energy distributions of neutral atoms ejected from the polycrystalline Cu target, the Si(1 1 1)-7x7 surface, and the Si(1 1 1)-''5 x 5''-Cu surface by 5 keV Ar{sup +} ion bombardment have been measured with very high efficiency by means of the multi-photon resonance ionization spectroscopy, in order to obtain the surface binding energies. The energy distributions for Cu from polycrystalline Cu target, Si from the Si(1 1 1)-7x7 surface, and Cu from the Si(1 1 1)-''5 x 5''-Cu surface have been found to have a peak at energies of around 3.0, 5.0 and 1.5 eV, and the function shapes of high energy tails to be proportional to E{sup -1.9}, E{sup -1.2} and E{sup -1.3}, respectively. Based on the linear collision cascade theory, the surface binding energies are determined to be 5.7, 6.0 and 2.0 eV, and the power factor m in the power law approximation to the Thomas-Fermi potential are determined to be 0.1, 0.4 and 0.3 for Cu from the Cu polycrystalline, Si from the Si(1 1 1)-7x7 surface, and Cu from the Si(1 1 1)-''5 x 5''-Cu surface, respectively. In conclusion, the results indicate that the energy distributions of ejected particles are well characterized by the linear collision cascade theory developed by Sigmund.

  10. Theory of multiphoton ionization of atoms

    International Nuclear Information System (INIS)

    Szoeke, A.

    1986-03-01

    A non-perturbative approach to the theory of multiphoton ionization is reviewed. Adiabatic Floquet theory is its first approximation. It explains qualitatively the energy and angular distribution of photoelectrons. In many-electron atoms it predicts collective and inner shell excitation. 14 refs

  11. Multiphoton ionization photoelectron spectroscopy of xenon: Experiment and theory

    International Nuclear Information System (INIS)

    Bajic, S.J.; Compton, R.N.; Tang, X.; L'Huiller, A.; Lambropoulos, P.

    1988-11-01

    Photoelectron energy and angular distributions for resonantly enhanced multiphoton ionization (REMPI) of xenon via the three-photon-allowed 7s[3/2] 1 0 and 5d[3/2] 1 0 states have been studied both experimentally and theoretically. The electron kinetic energy spectra give the probability of leaving Xe + in either the 2 P/sub 1/2/ or 2 P/sub 3/2/ core. The measured branching ratio for leaving each ionic core is used to test the theoretical description of the REMPI process. Measurements of both the angular distributions and the [3+1] REMPI via the 5d state are adequately reproduced by multichannel quantum defect theory. However, measurements of angular distributions for the electrons resulting from [3+1] via the 7s[3/2] 1 0 state into Xe + 2 P/sub 3/2/ (core preserving) or Xe + 2 P/sub 1/2/ (core changing) are in striking disagreement with theory. 1 ref., 2 figs

  12. Observation of the M1 giant resonance by resonance averaging in 106Pd

    International Nuclear Information System (INIS)

    Kopecky, J.

    1987-01-01

    An investigation of capture of 2 keV and 24 keV neutrons in a 105 Pd target resulted in resonance-averaged intensities of primary gamma rays with energies between 5.2 and 9.5 MeV. From these intensities the gamma ray strength functions have been evaluated for E1, M1 and E2 radiation and compared with predictions of the giant resonance theory. The inclusion of an energy dependent spreading width for the E1 giant resonance is necessary. The energy distribution of M1 reduced strength is consistent with an interpretation of a broad resonance around 8.8 MeV. E2 data agrees satisfactorily with the giant extrapolation. (orig.)

  13. An enhancement of spin polarization by multiphoton pumping in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-08-15

    Highlights: {yields} Multiphoton pumping and spin generation in semiconductors. {yields} Optical selection rules for inter-band transitions. {yields} Calculations of spin polarization using band-energy model and the second order perturbation theory. {yields} Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  14. An enhancement of spin polarization by multiphoton pumping in semiconductors

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    Highlights: → Multiphoton pumping and spin generation in semiconductors. → Optical selection rules for inter-band transitions. → Calculations of spin polarization using band-energy model and the second order perturbation theory. → Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  15. Study the multi-photon absorption process in two types of molecules

    International Nuclear Information System (INIS)

    Al-azawi, H.R.

    1986-01-01

    The aim of the present work was to study the multi-photon absorption process in two types of molecules; spherical top such as SF 6 molecules and assymetric top such as CHOOH and C 2 H 4 molecules. This work also aimed to study the effect of buffer gas pressure (Ar), which is transparent to the infrared (IR) laser on the multiphoton absorption of both types of molecules. A pulsed (TEA) CO 2 laser was used as a source which generates multi-lines in the IR-region of the spectrum and an optoacoustic detector was used to detect the energy absorbed by the molecules. In this study, the relaxation process was found to be faster in the heavy molecules than that in the light ones. A limit in the Ar pressure was observed. Below this limit, the gas acted as an active buffer gas and above it, the multi-photon absorption process was quenched. This work also aimed to study the multi-photon absorption spectrum for the CHOOH molecules in the range (1067-1090 cm -1 ). This spectrum was found to be consistent with the linear absorption spectrum obtained for the same range. The density of the vibrational states as a function of the vibrational energy was studied for the molecules SF 6 , CHOOH and C 2 H 4 . The results were used to interpret (i) the difference in the energy absorbed by difference molecules at the same energy density and (ii) the non-linearity in the multi-photon absorption for CHOOH molecules. 1 tab.; 40 figs.; 70 refs

  16. Coherent Control of Multiphoton Transitions in the Gas and Condensed Phases with Shaped Ultrashort Pulses

    International Nuclear Information System (INIS)

    Dantus, Marcos

    2008-01-01

    Controlling laser-molecule interactions has become an integral part of developing devices and applications in spectroscopy, microscopy, optical switching, micromachining and photochemistry. Coherent control of multiphoton transitions could bring a significant improvement of these methods. In microscopy, multi-photon transitions are used to activate different contrast agents and suppress background fluorescence; coherent control could generate selective probe excitation. In photochemistry, different dissociative states are accessed through two, three, or more photon transitions; coherent control could be used to select the reaction pathway and therefore the yield-specific products. For micromachining and processing a wide variety of materials, femtosecond lasers are now used routinely. Understanding the interactions between the intense femtosecond pulse and the material could lead to technologically important advances. Pulse shaping could then be used to optimize the desired outcome. The scope of our research program is to develop robust and efficient strategies to control nonlinear laser-matter interactions using ultrashort shaped pulses in gas and condensed phases. Our systematic research has led to significant developments in a number of areas relevant to the AMO Physics group at DOE, among them: generation of ultrashort phase shaped pulses, coherent control and manipulation of quantum mechanical states in gas and condensed phases, behavior of isolated molecules under intense laser fields, behavior of condensed phase matter under intense laser field and implications on micromachining with ultrashort pulses, coherent control of nanoparticles their surface plasmon waves and their nonlinear optical behavior, and observation of coherent Coulomb explosion processes at 10 16 W/cm 2 . In all, the research has resulted in 36 publications (five journal covers) and nine invention disclosures, five of which have continued on to patenting

  17. Multiphoton tomography to detect chemo- and biohazards

    Science.gov (United States)

    König, Karsten

    2015-03-01

    In vivo high-resolution multiphoton/CARS tomography provides optical biopsies with 300 nm lateral resolution with chemical fingerprints. Thousands of volunteers and patients have been investigated for early cancer diagnosis, evaluation of anti-ageing cosmetic products, and changes of cellular metabolism by UV exposure and decreased oxygen supply. The skin as the outermost and largest organ is also the major target of CB agents. Current UV-based sensors are useful for bio-aerosol sensing but not for evaluating exposed in vivo skin. Here we evaluate the use of 4D multiphoton/CARS tomographs based on near infrared femtosecond laser radiation, time-correlated single photon counting (FLIM) and white light generation by photonic crystal fibers to detect bio- and chemohazards in human in vivo skin using twophoton fluorescence, SHG, and Raman signals.

  18. High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation

    International Nuclear Information System (INIS)

    Li, Yongjin; Song, Zhiguo; Li, Chen; Wan, Ronghua; Qiu, Jianbei; Yang, Zhengwen; Yin, Zhaoyi; Yang, Yong; Zhou, Dacheng; Wang, Qi

    2013-01-01

    Under 980 nm excitation, high multi-photon upconversion (UC) emission from the 2 H 11/2 / 4 S 3/2 (green) and 4 F 9/2 (red) levels of Er 3+ ions were observed from Er 3+ singly doped BiOCl microcrystals. These high-energy excited states were populated by a three to ten photon UC process conditionally, which depended on the pump power density and the Er 3+ ion doping concentration, characterizing as a hetero-looping enhanced energy transfer avalanche UC process. UC emission lifetime and Raman analysis suggest that the unusual UC phenomena are initiated by the new and intense phonon vibration modes of BiOCl lattices due to Er 3+ ions doping

  19. Effects of laser radiation parameters of the infrared multiphoton dissociation of protonated trichloroethylene

    International Nuclear Information System (INIS)

    Ungureanu, C.; Almasan, V.

    1994-01-01

    The favorable properties of the infrared multiphoton absorption and dissociation of trichloroethylene-H, (C 2 HCl 3 ), by TEA-CO 2 laser radiation and rapid isotopic exchange between this molecule and water, indicate that it can be a promising further candidate for the final enrichment of heavy water (> 98% D 2 O), by laser method. We present the results obtained in the isotopic selectivity of multiphoton absorption measurements and in the study of the pulse energy and frequency laser radiation influence on the infrared multiphoton dissociation of C 2 HCl 3 in isotopic mixture with C 2 DCl 3 . (Author)

  20. Coherent beam control through inhomogeneous media in multi-photon microscopy

    Science.gov (United States)

    Paudel, Hari Prasad

    Multi-photon fluorescence microscopy has become a primary tool for high-resolution deep tissue imaging because of its sensitivity to ballistic excitation photons in comparison to scattered excitation photons. The imaging depth of multi-photon microscopes in tissue imaging is limited primarily by background fluorescence that is generated by scattered light due to the random fluctuations in refractive index inside the media, and by reduced intensity in the ballistic focal volume due to aberrations within the tissue and at its interface. We built two multi-photon adaptive optics (AO) correction systems, one for combating scattering and aberration problems, and another for compensating interface aberrations. For scattering correction a MEMS segmented deformable mirror (SDM) was inserted at a plane conjugate to the objective back-pupil plane. The SDM can pre-compensate for light scattering by coherent combination of the scattered light to make an apparent focus even at a depths where negligible ballistic light remains (i.e. ballistic limit). This problem was approached by investigating the spatial and temporal focusing characteristics of a broad-band light source through strongly scattering media. A new model was developed for coherent focus enhancement through or inside the strongly media based on the initial speckle contrast. A layer of fluorescent beads under a mouse skull was imaged using an iterative coherent beam control method in the prototype two-photon microscope to demonstrate the technique. We also adapted an AO correction system to an existing in three-photon microscope in a collaborator lab at Cornell University. In the second AO correction approach a continuous deformable mirror (CDM) is placed at a plane conjugate to the plane of an interface aberration. We demonstrated that this "Conjugate AO" technique yields a large field-of-view (FOV) advantage in comparison to Pupil AO. Further, we showed that the extended FOV in conjugate AO is maintained over a

  1. Fast monitoring of motor exhaust components by resonant multi-photon ionisation and time-of-flight mass spectrometry

    Science.gov (United States)

    Franzen, Jochen; Frey, Rüdiger; Nagel, Holger

    1995-03-01

    A new analytical procedure is provided by the combination of two types of spectroscopy. Resonant ionization of selected compounds by multiphoton ionization is based on results of absorption spectroscopy for the compound molecules of interest and time-of-flight mass spectrometry serves for the unambigious detection of these compounds. An interesting application of this method is the fast exhaust gas analysis. In the development of future combustion engines, the management of dynamic motor processes becomes predominant because by more than 90 % of all the dangerous exhaust pollutions are produced in instationary motor phases such as fast speed or load changes. The investigation of dynamic processes however, requires fast analytical procedures with millisecond time resolution together with the capability to measure individual components in a very complex gas mixture The objectives for a development project of such an instrument were set by the Research Association for Combustion Engines (Forschungsvereinigung Verbrennungskraftmaschinen, FVV, Germany): Up to ten substances should be monitored synchroneously with a time resolution of about 10 milliseconds, with concentration limits of 1 part per million and with a precision better than 10 % relative standard deviation. Such a laser mass spectrometer for fast multi-component automotive exhaust analyses has been developed in a joint research project by Bruker-Franzen Analytik GmbH, Dornier GmbH and the Technical University of Munich. The system has been applied at a motor test facility to investigate the emissions of the aromatic hydrocarbons benzene, toluene and xylene, of nitric oxide and acetaldehyde in stationary and dynamic engine operation. These measurements demonstrate that strong emission of these pollutants takes place at instationary engine operation and in particular that these compounds are emitted at different times, giving new information about the processes in the combustion chamber and in the exhaust pipe.

  2. Imaging rat esophagus using combination of reflectance confocal and multiphoton microscopy

    International Nuclear Information System (INIS)

    Zhuo, S M; Chen, J X; Jiang, X S; Lu, K C; Xie, S S

    2008-01-01

    We combine reflectance confocal microscopy (RCM) with multiphoton microscopy (MPM) to image rat esophagus. The two imaging modalities allow detection of layered–resolved complementary information from esophagus. In the keratinizing layer, the keratinocytes boundaries can be characterized by RCM, while the keratinocytes cytoplasm (keratin) can be further imaged by multiphoton autofluorescence signal. In the epithelium, the epithelial cellular boundaries and nucleus can be detected by RCM, and MPM can be used for imaging epithelial cell cytoplasm and monitoring metabolic state of epithelium. In the stroma, multiphoton autofluorescence signal is used to image elastin and second harmonic generation signal is utilized to detect collagen, while RCM is used to determine the optical property of stroma. Overall, these results suggest that the combination of RCM and MPM has potential to provide more important and comprehensive information for early diagnosis of esophageal cancer

  3. Field enhancement of multiphoton induced luminescence processes in ZnO nanorods

    Science.gov (United States)

    Hyyti, Janne; Perestjuk, Marko; Mahler, Felix; Grunwald, Rüdiger; Güell, Frank; Gray, Ciarán; McGlynn, Enda; Steinmeyer, Günter

    2018-03-01

    The near-ultraviolet photoluminescence of ZnO nanorods induced by multiphoton absorption of unamplified Ti:sapphire pulses is investigated. Power dependence measurements have been conducted with an adaptation of the ultrashort pulse characterization method of interferometric frequency-resolved optical gating. These measurements enable the separation of second harmonic and photoluminescence bands due to their distinct coherence properties. A detailed analysis yields fractional power dependence exponents in the range of 3-4, indicating the presence of multiple nonlinear processes. The range in measured exponents is attributed to differences in local field enhancement, which is supported by independent photoluminescence and structural measurements. Simulations based on Keldysh theory suggest contributions by three- and four-photon absorption as well as avalanche ionization in agreement with experimental findings.

  4. Recoil effects in multiphoton electron-positron pair creation

    International Nuclear Information System (INIS)

    Krajewska, K.; Kaminski, J. Z.

    2010-01-01

    Triply differential probability rates for electron-positron pair creation in laser-nucleus collisions, calculated within the S-matrix approach, are investigated as functions of the nuclear recoil. Pronounced enhancements of differential probability rates of multiphoton pair production are found for a nonzero momentum transfer from the colliding nucleus. The corresponding rates show a very dramatic dependence on the polarization of the laser field impinging on the nucleus; only for a linearly polarized light are the multiphoton rates for electron-positron pair production considerably large. We focus therefore on this case. Our numerical results for different geometries of the reaction particles demonstrate that, for the linearly polarized laser field of an infinite extent (which is a good approximation for femtosecond laser pulses), the pair creation is far more efficient if the nucleus is detected in the direction of the laser-field propagation. The corresponding angular distributions of the created particles show that the high-energy pairs are predominantly produced in the plane spanned by the polarization vector and the laser-field propagation direction, while the low-energy pairs are rather spread around the latter of the two directions. The enhancement of differential probability rates at each energy sector, defined by the four-momentum conservation relation, is observed with varying the energy of the produced particles. The total probability rates of pair production are also evaluated and compared with the corresponding results for the case when one disregards the recoil effect. A tremendous enhancement of the total probability rates of the electron-positron pair creation is observed if one takes into account the nuclear recoil.

  5. Temperature dependence of the resonance frequency of thermogravimetric devices

    NARCIS (Netherlands)

    Iervolino, E.; Riccio, M.; Van Herwaarden, A.W.; Irace, A.; Breglio, G.; Van der Vlist, W.; Sarro, P.M.

    2010-01-01

    This paper investigates the temperature dependence of the resonance frequency of thermogravimetric (TG) devices for tip heating over the temperature range of View the MathML source 25–600?C. The resonance frequency of a fabricated TG device shows to be temperature independent for tip heating up to

  6. Multiphoton ionization of (Xe)n and (NO)n clusters using a picosecond laser

    International Nuclear Information System (INIS)

    Smith, D.B.; Miller, J.C.

    1989-01-01

    Mass-resolved multiphoton ionization (MPI) spectroscopy is an established technique for detecting and analyzing van der Waals molecules and larger clusters. MPI spectroscopy provides excellent detection sensitivity, moderately high resolution, and selectivity among cluster species. In addition to information provided by the analysis of photoions following MPI, photoelectron spectroscopy can reveal details regarding the structure of ionic states. Unfortunately, the technique is limited by its tendency to produce extensive fragmentation. Fragmentation is also a problem with other ionization techniques (e.g., electron impact ionization), but the intense laser beams required for MPI cause additional dissociation channels to become available. These channels include absorption of additional photons by parent ions (ion ladder mechanism), absorption of additional photons by fragment ions (ladder switching mechanism), and resonances with dissociative states in the neutral manifold. The existence of these dissociation channels can preclude the use of MPI spectroscopy in many situations. Recently, MPI studies of stable molecules using picosecond lasers (pulse length = 1 - 10 ps) have indicated that limitations due to fragmentation might be subdued. With picosecond lasers, dissociation mechanisms can be altered and in some cases fragmentation can be eliminated or reduced. Additional photon absorption competes effectively with dissociation channels when a very short laser pulse or, perhaps more importantly, a sufficiently high peak-power is used. In the case where ionic absorption and fragmentation occurs, it has been shown that picosecond MPI might favor the ion ladder mechanism rather than the ladder switching mechanism

  7. Application of Negative Curvature Hollow-Core Fiber in an Optical Fiber Sensor Setup for Multiphoton Spectroscopy.

    Science.gov (United States)

    Popenda, Maciej Andrzej; Stawska, Hanna Izabela; Mazur, Leszek Mateusz; Jakubowski, Konrad; Kosolapov, Alexey; Kolyadin, Anton; Bereś-Pawlik, Elżbieta

    2017-10-06

    In this paper, an application of negative curvature hollow core fiber (NCHCF) in an all-fiber, multiphoton fluorescence sensor setup is presented. The dispersion parameter (D) of this fiber does not exceed the value of 5 ps/nm × km across the optical spectrum of (680-750) nm, making it well suited for the purpose of multiphoton excitation of biological fluorophores. Employing 1.5 m of this fiber in a simple, all-fiber sensor setup allows us to perform multiphoton experiments without any dispersion compensation methods. Multiphoton excitation of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with this fiber shows a 6- and 9-fold increase, respectively, in the total fluorescence signal collected when compared with the commercial solution in the form of a hollow-core photonic band gap fiber (HCPBF). To the author's best knowledge, this is the first time an NCHCF was used in an optical-fiber sensor setup for multiphoton fluorescence experiments.

  8. Multiphoton control of the 1,3-cyclohexadiene ring-opening reaction in the presence of competing solvent reactions.

    Science.gov (United States)

    Carroll, Elizabeth C; White, James L; Florean, Andrei C; Bucksbaum, Philip H; Sension, Roseanne J

    2008-07-31

    Although physical chemistry has often concentrated on the observation and understanding of chemical systems, the defining characteristic of chemistry remains the direction and control of chemical reactivity. Optical control of molecular dynamics, and thus of chemical reactivity provides a path to use photon energy as a smart reagent in a chemical system. In this paper, we discuss recent research in this field in the context of our studies of the multiphoton optical control of the photo-initiated ring-opening reaction of 1,3-cyclohexadiene (CHD) to form 1,3,5- cis-hexatriene (Z-HT). Closed-loop feedback and learning algorithms are able to identify pulses that increase the desired target state by as much as a factor of two. Mechanisms for control are discussed through the influence of the intensity dependence, the nonlinear power spectrum, and the projection of the pulses onto low orders of polynomial phase. Control measurements in neat solvents demonstrate that competing solvent fragmentation reactions must also be considered. In particular, multiphoton excitation of cyclohexane alone is capable of producing hexatriene. Statistical analyses of data sets obtained in learning algorithm searches in neat cyclohexane and for CHD in hexane and cyclohexane highlight the importance of linear and quadratic chirp, while demonstrating that the control features are not so easily defined. Higher order phase components are also important. On the basis of these results the involvement of low-frequency ground-state vibrational modes is proposed. When the population is transferred to the excited state, momentum along the torsional coordinate may keep the wave packet localized as it moves toward the conical intersections controlling the yield of Z-HT.

  9. Three-photon resonances due to autoionizing states in calcium

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzka, A.; Dygdala, R.S.; Raczynski, A.; Zaremba, J.; Kobus, J. [Instytut Fizyki, Uniwersytet M Kopernika w Toruniu, Torun (Poland)

    2002-04-28

    In the present study we have investigated three-photon ionization in Ca in which autoionizing states are engaged. The two-photon resonant process (from the Ca ground state 4s{sup 2} {sup 1}S{sub 0}) occurred through or at least in the vicinity of one of the following states: 4s4d {sup 1}D{sub 2}, 4p{sup 2} {sup 3}P{sub 2}, 4s6s {sup 1}S{sub 0}, 4p{sup 2} {sup 1}D{sub 2} and 4p{sup 2} {sup 1}S{sub 0}, with the third photon either reaching the continuum directly or one of the autoionizing states. The three-photon resonant transitions to 3dmp, mf: {sup 1}P{sub 1}, {sup 3}P{sub 1} and {sup 3}D{sub 1} autoionizing states for m up to 21 have been observed. Some of the autoionizing resonances which we have found had not been observed before in a high-resolution one-photon absorption experiment (for J=1) and in multiphoton experiments (for J=3). We have compared the ionization signal as a function of the laser detuning and the laser intensity with theoretical curves obtained within a simple model (three-level atom + one-mode laser field). This gives information about the order of magnitude of the three-photon ionization probability through autoionizing states. (author)

  10. Resonant characteristics and sensitivity dependency on the contact surface in QCM-micropillar-based system of coupled resonator sensors

    International Nuclear Information System (INIS)

    Kashan, M A M; Kalavally, V; Ramakrishnan, N; Lee, H W

    2016-01-01

    We report the characteristics and sensitivity dependence over the contact surface in coupled resonating sensors (CRSs) made of high aspect ratio resonant micropillars attached to a quartz crystal microbalance (QCM). Through experiments and simulation, we observed that when the pillars of resonant heights were placed in maximum displacement regions the resonance frequency of the QCM increased following the coupled resonance characteristics, as the pillar offered elastic loading to the QCM surface. However, the same pillars when placed in relatively lower displacement regions, in spite of their resonant dimension, offered inertial loading and resulted in a decrease in QCM resonance frequency, as the displacement amplitude was insufficient to couple the vibrations from the QCM to the pillars. Accordingly, we discovered that the coupled resonance characteristics not only depend on the resonant structure dimensions but also on the contact regions in the acoustic device. Further analysis revealed that acoustic pressure at the contact surface also influences the resonance frequency characteristics and sensitivity of the CRS. To demonstrate the significance of the present finding for sensing applications, humidity sensing is considered as the example measurand. When a sensing medium made of resonant SU-8 pillars was placed in a maximum displacement region on a QCM surface, the sensitivity increased by 14 times in comparison to a resonant sensing medium placed in a lower displacement region of a QCM surface. (paper)

  11. Relativistic theory of tunnel and multiphoton ionization of atoms in a strong laser field

    International Nuclear Information System (INIS)

    Popov, V. S.; Karnakov, B. M.; Mur, V. D.; Pozdnyakov, S. G.

    2006-01-01

    Relativistic generalization is developed for the semiclassical theory of tunnel and multiphoton ionization of atoms and ions in the field of an intense electromagnetic wave (Keldysh theory). The cases of linear, circular, and elliptic polarizations of radiation are considered. For arbitrary values of the adiabaticity parameter γ, the exponential factor in the ionization rate for a relativistic bound state is calculated. For low-frequency laser radiation , an asymptotically exact formula for the tunnel ionization rate for the atomic s level is obtained including the Coulomb, spin, and adiabatic corrections and the preexponential factor. The ionization rate for the ground level of a hydrogen-like atom (ion) with Z ≤ 100 is calculated as a function of the laser radiation intensity. The range of applicability is determined for nonrelativistic ionization theory. The imaginary time method is used in the calculations

  12. Parametric Resonance in a Time-Dependent Harmonic Oscillator

    Directory of Open Access Journals (Sweden)

    P. N. Nesterov

    2013-01-01

    Full Text Available In this paper, we study the phenomenon of appearance of new resonances in a timedependent harmonic oscillator under an oscillatory decreasing force. The studied equation belongs to the class of adiabatic oscillators and arises in connection with the spectral problem for the one-dimensional Schr¨odinger equation with Wigner–von Neumann type potential. We use a specially developed method for asymptotic integration of linear systems of differential equations with oscillatory decreasing coefficients. This method uses the ideas of the averaging method to simplify the initial system. Then we apply Levinson’s fundamental theorem to get the asymptotics for its solutions. Finally, we analyze the features of a parametric resonance phenomenon. The resonant frequencies of perturbation are found and the pointwise type of the parametric resonance phenomenon is established. In conclusion, we construct an example of a time-dependent harmonic oscillator (adiabatic oscillator in which the parametric resonances, mentioned in the paper, may occur.

  13. Frequency-difference-dependent stochastic resonance in neural systems

    Science.gov (United States)

    Guo, Daqing; Perc, Matjaž; Zhang, Yangsong; Xu, Peng; Yao, Dezhong

    2017-08-01

    Biological neurons receive multiple noisy oscillatory signals, and their dynamical response to the superposition of these signals is of fundamental importance for information processing in the brain. Here we study the response of neural systems to the weak envelope modulation signal, which is superimposed by two periodic signals with different frequencies. We show that stochastic resonance occurs at the beat frequency in neural systems at the single-neuron as well as the population level. The performance of this frequency-difference-dependent stochastic resonance is influenced by both the beat frequency and the two forcing frequencies. Compared to a single neuron, a population of neurons is more efficient in detecting the information carried by the weak envelope modulation signal at the beat frequency. Furthermore, an appropriate fine-tuning of the excitation-inhibition balance can further optimize the response of a neural ensemble to the superimposed signal. Our results thus introduce and provide insights into the generation and modulation mechanism of the frequency-difference-dependent stochastic resonance in neural systems.

  14. Temperature dependence of the electronic structure of Sr14Cu24O41 studied by resonant inelastic X-ray scattering

    International Nuclear Information System (INIS)

    Yoshida, M.; Ishii, K.; Ikeuchi, K.; Jarrige, I.; Murakami, Y.; Mizuki, J.; Tsutsui, K.; Tohyama, T.; Maekawa, S.; Kudo, K.; Koike, Y.; Endoh, Y.

    2010-01-01

    We report a resonant inelastic X-ray scattering (RIXS) study of charge excitations in the two-leg ladder Sr 14 Cu 24 O 41 . RIXS spectra at 1-5 eV are found to be dependent on temperature. An intraband excitation of the ladder, which appears as a continuum intensity below the Mott gap, decreases in intensity with temperature. Because the intraband excitation is related to the dynamics of doped holes in the ladder, its decrease of the intraband excitation is attributed to the reduction of the mobile holes in the ladder at low temperature.

  15. Dynamic T2-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    International Nuclear Information System (INIS)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M.

    2012-01-01

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate ( 2 , since T 2 increases linearly in fat during heating. T 2 -mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T 2 . Calibration of T 2 -based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T 2 and temperature with a thermocouple. A positive T 2 temperature dependence in bone marrow of 20 ms/°C was observed. Dynamic T 2 -mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  16. Probing temporal aspects of high-order harmonic pulses via multi-colour, multi-photon ionization processes

    Energy Technology Data Exchange (ETDEWEB)

    Mauritsson, J [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Johnsson, P [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); Lopez-Martens, R [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); Varju, K [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); L' Huillier, A [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); Gaarde, M B [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Schafer, K J [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)

    2005-07-14

    High-order harmonics generated through the interaction of atoms and strong laser fields are a versatile, laboratory-scale source of extreme ultraviolet (XUV) radiation on a femtosecond or even attosecond time-scale. In order to be a useful experimental tool, however, this radiation has to be well characterized, both temporally and spectrally. In this paper we discuss how multi-photon, multi-colour ionization processes can be used to completely characterize either individual harmonics or attosecond pulse trains. In particular, we discuss the influence of the intensity and duration of the probe laser, and how these parameters effect the accuracy of the XUV characterization.

  17. Probing temporal aspects of high-order harmonic pulses via multi-colour, multi-photon ionization processes

    International Nuclear Information System (INIS)

    Mauritsson, J; Johnsson, P; Lopez-Martens, R; Varju, K; L'Huillier, A; Gaarde, M B; Schafer, K J

    2005-01-01

    High-order harmonics generated through the interaction of atoms and strong laser fields are a versatile, laboratory-scale source of extreme ultraviolet (XUV) radiation on a femtosecond or even attosecond time-scale. In order to be a useful experimental tool, however, this radiation has to be well characterized, both temporally and spectrally. In this paper we discuss how multi-photon, multi-colour ionization processes can be used to completely characterize either individual harmonics or attosecond pulse trains. In particular, we discuss the influence of the intensity and duration of the probe laser, and how these parameters effect the accuracy of the XUV characterization

  18. Processing multiphoton states through operation on a single photon: Methods and applications

    International Nuclear Information System (INIS)

    Lin Qing; He Bing; Bergou, Janos A.; Ren, Yuhang

    2009-01-01

    Multiphoton states are widely applied in quantum information technology. By the methods presented in this paper, the structure of a multiphoton state in the form of multiple single-photon qubit products can be mapped to a single-photon qudit, which could also be in a separable product with other photons. This makes possible the manipulation of such multiphoton states by processing single-photon states. The optical realization of unknown qubit discrimination [B. He, J. A. Bergou, and Y.-H. Ren, Phys. Rev. A 76, 032301 (2007)] is simplified with the transformation methods. Another application is the construction of quantum logic gates, where the inverse transformations back to the input state spaces are also necessary. We especially show that the modified setups to implement the transformations can realize the deterministic multicontrol gates (including Toffoli gate) operating directly on the products of single-photon qubits.

  19. Multiphoton processes in the field of two-frequency circularly polarized plane electromagnetic waves

    International Nuclear Information System (INIS)

    Yu, An

    1997-01-01

    The authors solve Dirac's equation for an electron in the field of a two-frequency plane electromagnetic wave, deriving general formulae for the probabilities of radiation of a photon by the electron, and for the probabilities for pair production by a photon when the two-frequency wave is circularly polarized. In contrast to the case of a monochromatic-plane electromagnetic wave, when an electron is in the field of a two-frequency circularly polarized wave, besides the absorption of multiphotons and emission of simple harmonics of the individual waves, stimulated multiphoton emission processes and various composite harmonic-photon emission processes are occurred: when a high-energy photon is in a such a field, multiphoton processes also follow the pair production processes

  20. Optical Asymmetry and Nonlinear Light Scattering from Colloidal Gold Nanorods.

    Science.gov (United States)

    Lien, Miao-Bin; Kim, Ji-Young; Han, Myung-Geun; Chang, You-Chia; Chang, Yu-Chung; Ferguson, Heather J; Zhu, Yimei; Herzing, Andrew A; Schotland, John C; Kotov, Nicholas A; Norris, Theodore B

    2017-06-27

    A systematic study is presented of the intensity-dependent nonlinear light scattering spectra of gold nanorods under resonant excitation of the longitudinal surface plasmon resonance (SPR). The spectra exhibit features due to coherent second and third harmonic generation as well as a broadband feature that has been previously attributed to multiphoton photoluminescence arising primarily from interband optical transitions in the gold. A detailed study of the spectral dependence of the scaling of the scattered light with excitation intensity shows unexpected scaling behavior of the coherent signals, which is quantitatively accounted for by optically induced damping of the SPR mode through a Fermi liquid model of the electronic scattering. The broadband feature is shown to arise not from luminescence, but from scattering of the second-order longitudinal SPR mode with the electron gas, where efficient excitation of the second order mode arises from an optical asymmetry of the nanorod. The electronic-temperature-dependent plasmon damping and the Fermi-Dirac distribution together determine the intensity dependence of the broadband emission, and the structure-dependent absorption spectrum determines the spectral shape through the fluctuation-dissipation theorem. Hence a complete self-consistent picture of both coherent and incoherent light scattering is obtained with a single set of physical parameters.

  1. Real-time analysis of organic compounds in ship engine aerosol emissions using resonance-enhanced multiphoton ionisation and proton transfer mass spectrometry.

    Science.gov (United States)

    Radischat, Christian; Sippula, Olli; Stengel, Benjamin; Klingbeil, Sophie; Sklorz, Martin; Rabe, Rom; Streibel, Thorsten; Harndorf, Horst; Zimmermann, Ralf

    2015-08-01

    Organic combustion aerosols from a marine medium-speed diesel engine, capable to run on distillate (diesel fuel) and residual fuels (heavy fuel oil), were investigated under various operating conditions and engine parameters. The online chemical characterisation of the organic components was conducted using a resonance-enhanced multiphoton ionisation time-of-flight mass spectrometer (REMPI TOF MS) and a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS). Oxygenated species, alkenes and aromatic hydrocarbons were characterised. Especially the aromatic hydrocarbons and their alkylated derivatives were very prominent in the exhaust of both fuels. Emission factors of known health-hazardous compounds (e.g. mono- and poly-aromatic hydrocarbons) were calculated and found in higher amounts for heavy fuel oil (HFO) at typical engine loadings. Lower engine loads lead in general to increasing emissions for both fuels for almost every compound, e.g. naphthalene emissions varied for diesel fuel exhaust between 0.7 mg/kWh (75 % engine load, late start of injection (SOI)) and 11.8 mg/kWh (10 % engine load, late SOI) and for HFO exhaust between 3.3 and 60.5 mg/kWh, respectively. Both used mass spectrometric techniques showed that they are particularly suitable methods for online monitoring of combustion compounds and very helpful for the characterisation of health-relevant substances. Graphical abstract Three-dimensional REMPI data of organic species in diesel fuel and heavy fuel oil exhaust.

  2. Efficient Multiphoton Generation in Waveguide Quantum Electrodynamics

    Science.gov (United States)

    González-Tudela, A.; Paulisch, V.; Kimble, H. J.; Cirac, J. I.

    2017-05-01

    Engineering quantum states of light is at the basis of many quantum technologies such as quantum cryptography, teleportation, or metrology among others. Though, single photons can be generated in many scenarios, the efficient and reliable generation of complex single-mode multiphoton states is still a long-standing goal in the field, as current methods either suffer from low fidelities or small probabilities. Here we discuss several protocols which harness the strong and long-range atomic interactions induced by waveguide QED to efficiently load excitations in a collection of atoms, which can then be triggered to produce the desired multiphoton state. In order to boost the success probability and fidelity of each excitation process, atoms are used to both generate the excitations in the rest, as well as to herald the successful generation. Furthermore, to overcome the exponential scaling of the probability of success with the number of excitations, we design a protocol to merge excitations that are present in different internal atomic levels with a polynomial scaling.

  3. Multiphoton processes in isolated atoms and molecules

    International Nuclear Information System (INIS)

    Sudbo, A.S.

    1979-11-01

    The theory of coherent excitation of a multilevel quantum mechanical system is developed. Damping of the system is taken into account by the use of a density matrix formalism. General properties of the wave function and/or the density matrix are discussed. The physical implications for the behavior of the system are described, together with possible applications of the formalism, including the infrared multiphoton excitation of molecules, and optical pumping in alkali atoms. Experimental results are presented on the infrared multiphoton dissociation of molecules, followed by a discussion of the general features of this process. The experimental results were obtained using a crossed laser and molecular beam method, and the emphasis is on determining the properties of the dissociating molecule and the dissociation products. The dissociation process is shown to be described very well by the standard statistical theory (RRKM theory) of unimolecular reactions, a brief presentation of which is also included

  4. Isoscalar giant resonances and Landau parameters with density-dependent effective interactions

    International Nuclear Information System (INIS)

    Kohno, Michio; Ando, Kazuhiko

    1979-01-01

    Discussion is given on the relations between the Landau parameters and the isoscalar giant (quadrupole- and monopole-) resonance energies by using general density-dependent interactions. In the limit of infinite nuclear matter, the isoscalar giant quadrupole energy is shown to depend not only on the effective mass but also on the Landau parameter F 2 . Collective energies of the isoscalar giant resonances are calculated for 16 O and 40 Ca with four different effective interactions, G-0, B1, SII and SV, by using the scaling- and constrained Hartree-Fock-methods. It is shown that the dependence of the collective energies on the effective interactions is essentially determined by the Landau parameters. The G-0 force is found to be most successful in reproducing the giant resonance energies. Validity of the RPA-moment theorems is examined for the case of local density-dependent interactions. (author)

  5. Amplification of the Signal Intensity of Fluorescence-Based Fiber-Optic Biosensors Using a Fabry-Perot Resonator Structure

    Directory of Open Access Journals (Sweden)

    Meng-Chang Hsieh

    2015-02-01

    Full Text Available Fluorescent biosensors have been widely used in biomedical applications. To amplify the intensity of fluorescence signals, this study developed a novel structure for an evanescent wave fiber-optic biosensor by using a Fabry-Perot resonator structure. An excitation light was coupled into the optical fiber through a laser-drilled hole on the proximal end of the resonator. After entering the resonator, the excitation light was reflected back and forth inside the resonator, thereby amplifying the intensity of the light in the fiber. Subsequently, the light was used to excite the fluorescent molecules in the reactive region of the sensor. The experimental results showed that the biosensor signal was amplified eight-fold when the resonator reflector was formed using a 92% reflective coating. Furthermore, in a simulation, the biosensor signal could be amplified 20-fold by using a 99% reflector.

  6. The high intensity approximation applied to multiphoton ionization

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.; Zagury, N.

    1980-08-01

    It is shown that the most commonly used high intensity approximations as applied to ionization by strong electromagnetic fields are related. The applicability of the steepest descent method in these approximations, and the relation between them and first-order perturbation theory, are also discussed. (Author) [pt

  7. Photoionization pathways and thresholds in generation of Lyman-α radiation by resonant four-wave mixing in Kr-Ar mixture

    Directory of Open Access Journals (Sweden)

    Oleg A. Louchev

    2016-09-01

    Full Text Available We develop a set of analytical approximations for the estimation of the combined effect of various photoionization processes involved in the resonant four-wave mixing generation of ns pulsed Lyman-α (L-α radiation by using 212.556 nm and 820-845 nm laser radiation pulses in Kr-Ar mixture: (i multi-photon ionization, (ii step-wise (2+1-photon ionization via the resonant 2-photon excitation of Kr followed by 1-photon ionization and (iii laser-induced avalanche ionization produced by generated free electrons. Developed expressions validated by order of magnitude estimations and available experimental data allow us to identify the area for the operation under high input laser intensities avoiding the onset of full-scale discharge, loss of efficiency and inhibition of generated L-α radiation. Calculations made reveal an opportunity for scaling up the output energy of the experimentally generated pulsed L-α radiation without significant enhancement of photoionization.

  8. Photoionization pathways and thresholds in generation of Lyman-α radiation by resonant four-wave mixing in Kr-Ar mixture

    Science.gov (United States)

    Louchev, Oleg A.; Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Iwasaki, Masahiko; Wada, Satoshi

    2016-09-01

    We develop a set of analytical approximations for the estimation of the combined effect of various photoionization processes involved in the resonant four-wave mixing generation of ns pulsed Lyman-α (L-α ) radiation by using 212.556 nm and 820-845 nm laser radiation pulses in Kr-Ar mixture: (i) multi-photon ionization, (ii) step-wise (2+1)-photon ionization via the resonant 2-photon excitation of Kr followed by 1-photon ionization and (iii) laser-induced avalanche ionization produced by generated free electrons. Developed expressions validated by order of magnitude estimations and available experimental data allow us to identify the area for the operation under high input laser intensities avoiding the onset of full-scale discharge, loss of efficiency and inhibition of generated L-α radiation. Calculations made reveal an opportunity for scaling up the output energy of the experimentally generated pulsed L-α radiation without significant enhancement of photoionization.

  9. Additive Manufacture of Three Dimensional Nanocomposite Based Objects through Multiphoton Fabrication

    Directory of Open Access Journals (Sweden)

    Yaan Liu

    2016-09-01

    Full Text Available Three-dimensional structures prepared from a gold-polymer composite formulation have been fabricated using multiphoton lithography. In this process, gold nanoparticles were simultaneously formed through photoreduction whilst polymerisation of two possible monomers was promoted. The monomers, trimethylopropane triacrylate (TMPTA and pentaerythritol triacrylate (PETA were mixed with a gold salt, but it was found that the addition of a ruthenium(II complex enhanced both the geometrical uniformity and integrity of the polymerised/reduced material, enabling the first production of 3D gold-polymer structures by single step multiphoton lithography.

  10. High-intensity laser physics

    International Nuclear Information System (INIS)

    Mohideen, U.

    1993-01-01

    This thesis is a study of the effect of high intensity lasers on atoms, free electrons and the generation of X-rays from solid density plasmas. The laser produced 50 milli Joule 180 femto sec pulses at 5 Hz. This translates to a maximum intensity of 5 x 10 18 W/cm 2 . At such high fields the AC stark shifts of atoms placed at the focus is much greater than the ionization energy. The characteristics of multiphoton ionization of atoms in intense laser fields was studied by angle resolved photoelectron spectroscopy. Free electrons placed in high intensity laser fields lead to harmonic generation. This phenomenon of Nonlinear Compton Scattering was theoretically investigated. Also, when these high intensity pulses are focused on solids a hot plasma is created. This plasma is a bright source of a short X-ray pulse. The pulse-width of X-rays from these solid density plasmas was measured by time-resolved X-ray spectroscopy

  11. Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color THG imaging.

    Science.gov (United States)

    Du, Yu; Zhuang, Ziwei; He, Jiexing; Liu, Hongji; Qiu, Ping; Wang, Ke

    2018-05-16

    With tunable excitation light, multiphoton microscopy (MPM) is widely used for imaging biological structures at subcellular resolution. Axial chromatic dispersion, present in virtually every transmissive optical system including the multiphoton microscope, leads to focal (and the resultant image) plane separation. Here we demonstrate experimentally a technique to measure the axial chromatic dispersion in a multiphoton microscope, using simultaneous 2-color third-harmonic generation (THG) imaging excited by a 2-color soliton source with tunable wavelength separation. Our technique is self-referenced, eliminating potential measurement error when 1-color tunable excitation light is used which necessitates reciprocating motion of the mechanical translation stage. Using this technique, we demonstrate measured axial chromatic dispersion with 2 different objective lenses in a multiphoton microscope. Further measurement in a biological sample also indicates that this axial chromatic dispersion, in combination with 2-color imaging, may open up opportunity for simultaneous imaging of two different axial planes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Evidence on a link between the intensity of Schumann resonance and global surface temperature

    Directory of Open Access Journals (Sweden)

    M. Sekiguchi

    2006-08-01

    Full Text Available A correlation is investigated between the intensity of the global electromagnetic oscillations (Schumann resonance with the planetary surface temperature. The electromagnetic signal was monitored at Moshiri (Japan, and temperature data were taken from surface meteorological observations. The series covers the period from November 1998 to May 2002. The Schumann resonance intensity is found to vary coherently with the global ground temperature in the latitude interval from 45° S to 45° N: the relevant cross-correlation coefficient reaches the value of 0.9. It slightly increases when the high-latitude temperature is incorporated. Correspondence among the data decreases when we reduce the latitude interval, which indicates the important role of the middle-latitude lightning in the Schumann resonance oscillations. We apply the principal component (or singular spectral analysis to the electromagnetic and temperature records to extract annual, semiannual, and interannual variations. The principal component analysis (PCA clarifies the links between electromagnetic records and meteorological data.

  13. Applications of multiphoton microscopy in the field of colorectal cancer

    Science.gov (United States)

    Wang, Shu; Li, Lianhuang; Zhu, Xiaoqin; Zheng, Liqin; Zhuo, Shuangmu; Chen, Jianxin

    2018-06-01

    Multiphoton microscopy (MPM) is a powerful tool for visualizing cellular and subcellular details within living tissue by its unique advantages of being label-free, its intrinsic optical sectioning ability, near-infrared excitation for deep penetration depth into tissue, reduced photobleaching and phototoxicity in the out-of-focus regions, and being capable of providing quantitative information. In this review, we focus on applications of MPM in the field of colorectal cancer, including monitoring cancer progression, detecting tumor metastasis and microenvironment, evaluating the cancer therapy response, and visualizing and ablating pre-invasive cancer cells. We also present one of the major challenges and the future research direction to exploit a colorectal multiphoton endoscope.

  14. Plasmon resonance enhanced temperature-dependent photoluminescence of Si-V centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shaoheng [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Song, Jie; Wang, Qiliang; Liu, Junsong; Li, Hongdong, E-mail: hdli@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Zhang, Baolin [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2015-11-23

    Temperature dependent optical property of diamond has been considered as a very important factor for realizing high performance diamond-based optoelectronic devices. The photoluminescence feature of the zero phonon line of silicon-vacancy (Si-V) centers in Si-doped chemical vapor deposited single crystal diamond (SCD) with localized surface plasmon resonance (LSPR) induced by gold nanoparticles has been studied at temperatures ranging from liquid nitrogen temperature to 473 K, as compared with that of the SCD counterpart in absence of the LSPR. It is found that with LSPR the emission intensities of Si-V centers are significantly enhanced by factors of tens and the magnitudes of the redshift (width) of the emissions become smaller (narrower), in comparison with those of normal emissions without plasmon resonance. More interestingly, these strong Si-V emissions appear remarkably at temperatures up to 473 K, while the spectral feature was not reported in previous studies on the intrinsic Si-doped diamonds when temperatures are higher than room temperature. These findings would lead to reaching high performance diamond-based devices, such as single photon emitter, quantum cryptography, biomarker, and so forth, working under high temperature conditions.

  15. Intensity-based readout of resonant-waveguide grating biosensors: Systems and nanostructures

    Science.gov (United States)

    Paulsen, Moritz; Jahns, Sabrina; Gerken, Martina

    2017-09-01

    Resonant waveguide gratings (RWG) - also called photonic crystal slabs (PCS) - have been established as reliable optical transducers for label-free biochemical assays as well as for cell-based assays. Current readout systems are based on mechanical scanning and spectrometric measurements with system sizes suitable for laboratory equipment. Here, we review recent progress in compact intensity-based readout systems for point-of-care (POC) applications. We briefly introduce PCSs as sensitive optical transducers and introduce different approaches for intensity-based readout systems. Photometric measurements have been realized with a simple combination of a light source and a photodetector. Recently a 96-channel, intensity-based readout system for both biochemical interaction analyses as well as cellular assays was presented employing the intensity change of a near cut-off mode. As an alternative for multiparametric detection, a camera system for imaging detection has been implemented. A portable, camera-based system of size 13 cm × 4.9 cm × 3.5 cm with six detection areas on an RWG surface area of 11 mm × 7 mm has been demonstrated for the parallel detection of six protein binding kinetics. The signal-to-noise ratio of this system corresponds to a limit of detection of 168 M (24 ng/ml). To further improve the signal-to-noise ratio advanced nanostructure designs are investigated for RWGs. Here, results on multiperiodic and deterministic aperiodic nanostructures are presented. These advanced nanostructures allow for the design of the number and wavelengths of the RWG resonances. In the context of intensity-based readout systems they are particularly interesting for the realization of multi-LED systems. These recent trends suggest that compact point-of-care systems employing disposable test chips with RWG functional areas may reach market in the near future.

  16. In vivo multiphoton imaging of human skin: assessment of topical corticosteroid-induced epidermis atrophy and depigmentation

    Science.gov (United States)

    Ait El Madani, Hassan; Tancrède-Bohin, Emmanuelle; Bensussan, Armand; Colonna, Anne; Dupuy, Alain; Bagot, Martine; Pena, Ana-Maria

    2012-02-01

    Multiphoton microscopy has emerged in the past decade as a promising tool for noninvasive skin imaging. Our aim was to evaluate the potential of multiphoton microscopy to detect topical corticosteroids side effects within the epidermis and to provide new insights into their dynamics. Healthy volunteers were topically treated with clobetasol propionate on a small region of their forearms under overnight occlusion for three weeks. The treated region of each patient was investigated at D0, D7, D15, D22 (end of the treatment), and D60. Our study shows that multiphoton microscopy allows for the detection of corticoid-induced epidermis modifications: thinning of stratum corneum compactum and epidermis, decrease of keratinocytes size, and changes in their morphology from D7 to D22. We also show that multiphoton microscopy enables in vivo three-dimensional (3-D) quantitative assessment of melanin content. We observe that melanin density decreases during treatment and almost completely disappears at D22. Moreover, these alterations are reversible as they are no longer present at D60. Our study demonstrates that multiphoton microscopy is a convenient and powerful tool for noninvasive 3-D dynamical studies of skin integrity and pigmentation.

  17. Modelling of infrared multiphoton absorption and dissociation for design of reactors for isotope separation by lasers

    International Nuclear Information System (INIS)

    Takeuchi, Kazuo; Nakane, Ryohei; Inoue, Cihiro

    1981-01-01

    A series of experiments were performed on infrared laser beam absorption (multiphoton absorption) and subsequent dissociation (multiphoton dissociation) of CF 3 Cl to propose models for the design of reactors for isotope separation by lasers. A parallel beam geometry was utilized in batch irradiation experiments to make direct compilation of lumped-parameter data possible. Multiphoton absorption is found to be expressed by a power-law extension of the law of Lambert and by an addition of a new term for buffer gas effect to the law of Beer. For reaction analysis, a method to evaluate the effect of incomplete mixing on apparent reaction rates is first presented. Secondly, multiphoton dissociation of Cf 3 Cl is found to occur in pseudo-first order fashion and the specific reaction rates for different beam fluence are shown to be correlated to the absorbed energy. (author)

  18. High multi-photon visible upconversion emissions of Er{sup 3+} singly doped BiOCl microcrystals: A photon avalanche of Er{sup 3+} induced by 980 nm excitation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongjin; Song, Zhiguo, E-mail: songzg@kmust.edu.cn; Li, Chen; Wan, Ronghua; Qiu, Jianbei; Yang, Zhengwen; Yin, Zhaoyi; Yang, Yong; Zhou, Dacheng; Wang, Qi [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2013-12-02

    Under 980 nm excitation, high multi-photon upconversion (UC) emission from the {sup 2}H{sub 11/2}/{sup 4}S{sub 3/2} (green) and {sup 4}F{sub 9/2} (red) levels of Er{sup 3+} ions were observed from Er{sup 3+} singly doped BiOCl microcrystals. These high-energy excited states were populated by a three to ten photon UC process conditionally, which depended on the pump power density and the Er{sup 3+} ion doping concentration, characterizing as a hetero-looping enhanced energy transfer avalanche UC process. UC emission lifetime and Raman analysis suggest that the unusual UC phenomena are initiated by the new and intense phonon vibration modes of BiOCl lattices due to Er{sup 3+} ions doping.

  19. Multi-photon excited luminescence of magnetic FePt core-shell nanoparticles.

    Science.gov (United States)

    Seemann, K M; Kuhn, B

    2014-07-01

    We present magnetic FePt nanoparticles with a hydrophilic, inert, and biocompatible silico-tungsten oxide shell. The particles can be functionalized, optically detected, and optically manipulated. To show the functionalization the fluorescent dye NOPS was bound to the FePt core-shell nanoparticles with propyl-triethoxy-silane linkers and fluorescence of the labeled particles were observed in ethanol (EtOH). In aqueous dispersion the NOPS fluorescence is quenched making them invisible using 1-photon excitation. However, we observe bright luminescence of labeled and even unlabeled magnetic core-shell nanoparticles with multi-photon excitation. Luminescence can be detected in the near ultraviolet and the full visible spectral range by near infrared multi-photon excitation. For optical manipulation, we were able to drag clusters of particles, and maybe also single particles, by a focused laser beam that acts as optical tweezers by inducing an electric dipole in the insulated metal nanoparticles. In a first application, we show that the luminescence of the core-shell nanoparticles is bright enough for in vivo multi-photon imaging in the mouse neocortex down to cortical layer 5.

  20. Light intensity dependent optical rotation in azobenzene polymers

    Science.gov (United States)

    Ivanov, M.; Ilieva, D.; Petrova, T.; Dragostinova, V.; Todorov, T.; Nikolova, L.

    2006-05-01

    We investigate the self-induced rotation of the azimuth of light polarization ellipse in azobenzene polymers. It is initiated by the photoreorientation and ordering of the azobenzenes on illumination with elliptically polarized light resulting in the appearance of an optical axis whose direction is gradually rotated along the depth of the film. A macroscopic chiral structure is created with a pitch depending on light ellipticity and the photobirefringence ▵n in the successive layers of the film. In this work we make use of the fact that at elevated temperatures ▵n is very sensitive to light intensity. In our acrylic amorphous azobenzene polymer at temperatures 50-65°C the saturated values of ▵n are much higher for low intensity of the exciting light than for higher intensity. In this temperature range the polarization azimuth of monochromatic blue light with different intensity is rotated to a different angle after passing through the polymer film. This effect can be used for passive elements rotating the polarization azimuth depending on light intensity and for the formation of light beams with a space-variant polarization state.

  1. 2008 Multiphoton Processes Gordon Research Conferences - June 8-13, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Mette B. Gaarde

    2009-08-28

    In 2008 the Gordon Research Conference on Multiphoton Processes is held for the 14th time. The meeting continues to evolve as it embraces both the rapid technological and intellectual growth in the field as well as the multi-disciplinary expertise of the participants. This time the sessions will focus on: (1) Attosecond Science; (2) Free-electron laser experiments and theory; (3) Ultrafast dynamics of molecules; (4) Laser control of molecules; (5) Ultrafast imaging; (6) Super-high intensity and x-rays; (7) Strong field processes in molecules; and (8) Control atoms with light and vice versa. The scientific program will blur traditional disciplinary boundaries as the presenters and discussion leaders involve chemists, physicists, and optical engineers, representing both experiment and theory. The broad range of expertise and different perspectives of attendees should provide a stimulating and unique environment for solving problems and developing new ideas in this rapidly evolving field.

  2. Field-angle dependence of magnetic resonance in Pt/NiFe films

    International Nuclear Information System (INIS)

    Inoue, H.Y.; Harii, K.; Saitoh, E.

    2007-01-01

    Ferromagnetic resonance in NiFe/ amorphous Pt bilayer thin films was investigated with changing the external field direction. The spectral width of the ferromagnetic resonance depends critically on the external-magnetic-field direction. We found that the sample dependence of the spectral width is enhanced with deviation of external field direction from the direction along the film plain, implying an important role of spin directions in field-induced spin-decoherence mechanism in Pt

  3. Visualizing radiofrequency-skin interaction using multiphoton microscopy in vivo.

    Science.gov (United States)

    Tsai, Tsung-Hua; Lin, Sung-Jan; Lee, Woan-Ruoh; Wang, Chun-Chin; Hsu, Chih-Ting; Chu, Thomas; Dong, Chen-Yuan

    2012-02-01

    Redundant skin laxity is a major feature of aging. Recently, radiofrequency has been introduced for nonablative tissue tightening by volumetric heating of the deep dermis. Despite the wide range of application based on this therapy, the effect of this technique on tissue and the subsequent tissue remodeling have not been investigated in detail. Our objective is to evaluate the potential of non-linear optics, including multiphoton autofluorescence and second harmonic generation (SHG) microscopy, as a non-invasive imaging modality for the real-time study of radiofrequency-tissue interaction. Electro-optical synergy device (ELOS) was used as the radiofrequency source in this study. The back skin of nude mouse was irradiated with radiofrequency at different passes. We evaluated the effect on skin immediately and 1 month after treatment with multiphoton microscopy. Corresponding histology was performed for comparison. We found that SHG is negatively correlated to radiofrequency passes, which means that collagen structural disruption happens immediately after thermal damage. After 1 month of collagen remodeling, SHG signals increased above baseline, indicating that collagen regeneration has occurred. Our findings may explain mechanism of nonablative skin tightening and were supported by histological examinations. Our work showed that monitoring the dermal heating status of RF and following up the detailed process of tissue reaction can be imaged and quantified with multiphoton microscopy non-invasively in vivo. Copyright © 2011. Published by Elsevier Ireland Ltd.

  4. The clinical study on high intensity zone of magnetic resonance imaging using Scolopendrid Aquacupuncture.

    Directory of Open Access Journals (Sweden)

    Jeong-a Lim

    2006-12-01

    Full Text Available Objective : This study was designed to find out the effect of scolopendrid aquacupuncture on low back pain with or without sciatica showing high intensity zone of magnetic resonance imaging. Methods : The 30 patients who had a diagnosis of high intensity zone by lumbar-MRI and admitted to Gwangju oriental medical hospital in wonkwang university from January 2005 to August 2004 were observed. The symptom of inpatients is low back pain with or without sciatica. We treated 30 patients by scolopendrid aquacupuncture besides the general conservative treatment of oriental medicine. Results and Conclusion : The scolopendrid aquacupuncture treatment led to improvement in the pain and symptom of disability as determined by all efficacy measures. After scolopendrid aquacupuncture treatment, there was improvement in VAS, ROM and SLRT. This results suggest that scolopendrid aquacupuncture is good method for treatment of low back pain with or without sciatica showing high intensity zone of magnetic resonance imaging.

  5. Linear surface photoelectric effect of gold in intense laser field as a possible high-current electron source

    International Nuclear Information System (INIS)

    Farkas, G.; Horvath, Z.G.; Toth, C.; Fotakis, C.; Hontzopoulos, E.

    1987-01-01

    Investigations were conducted on radiation-induced electron emission processes on a gold target surface with a high-intensity (2 MW/cm 2 ) KrF laser (λ = 248 nm). The single photon surface photoelectric emission obtained can be used for high-current density electron sources. The measured polarization dependence of electron current shows the dominance of the surface-type effect over that of the volume type, thereby making it possible to optimize the short, high-density electron current creation conditions. The advantage of the grazing light incidence and the multiphoton photoeffect giving rise to a 500 A/cm 2 electron current has been demonstrated

  6. Time-dependent transport in interacting and noninteracting resonant-tunneling systems

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka; Wingreen, Ned S.; Meir, Yigal

    1994-01-01

    noninteracting resonant-tunneling system are presented. Due to the coherence between the leads and the resonant site, the current does not follow the driving signal adiabatically: a ''ringing'' current is found as a response to a voltage pulse, and a complex time dependence results in the case of harmonic......We consider a mesoscopic region coupled to two leads under the influence of external time-dependent voltages. The time dependence is coupled to source and drain contacts, the gates controlling the tunnel-barrier heights, or to the gates that define the mesoscopic region. We derive, with the Keldysh...... nonequilibrium-Green-function technique, a formal expression for the fully nonlinear, time-dependent current through the system. The analysis admits arbitrary interactions in the mesoscopic region, but the leads are treated as noninteracting. For proportionate coupling to the leads, the time-averaged current...

  7. Excitation of resonances of microspheres on an optical fiber

    Science.gov (United States)

    Serpengüzel, A.; Arnold, S.; Griffel, G.

    1995-04-01

    Morphology-dependent resonances (MDR's) of solid microspheres are excited by using an optical fiber coupler. The narrowest measured MDR linewidths are limited by the excitation laser linewidth ( < 0.025 nm). Only MDR's, with an on-resonance to off-resonance intensity ratio of 104, contribute to scattering. The intensity of various resonance orders is understood by the localization principle and the recently developed generalized Lorentz-Mie theory. The microsphere fiber system has potential for becoming a building block in dispersive microphotonics. The basic physics underlying our approach may be considered a harbinger for the coupling of active photonic microstructures such as microdisk lasers.

  8. Q2 dependence of the spin structure function in the resonance region

    International Nuclear Information System (INIS)

    Li, Z.; Li, Z.

    1994-01-01

    In this paper, we show what we can learn from the CEBAF experiments on spin-structure functions, and the transition from the Drell-Hearn-Gerasimov sum rule in the real photon limit to the spin-dependent sum rules in deep inelastic scattering, and how the asymmetry A 1 (x,Q 2 ) approaches the scaling limit in the resonance region. The spin structure function in the resonance region alone cannot determine the spin-dependent sum rule due to the kinematic restriction of the resonance region. The integral ∫ 0 1 {A 1 (x,Q 2 )F 2 (x,Q 2 )/2x[1+R(x,Q 2 )]}dx is estimated from Q 2 =0--2.5 GeV 2 . The result shows that there is a region where both contributions from the baryon resonances and the deep inelastic scattering are important; thus it provides important information on the high twist effects on the spin-dependent sum rule

  9. Stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses

    International Nuclear Information System (INIS)

    Wang, Jiang; Guo, Xinmeng; Yu, Haitao; Liu, Chen; Deng, Bin; Wei, Xile; Chen, Yingyuan

    2014-01-01

    Highlights: •We study stochastic resonance in small-world neural networks with hybrid synapses. •The resonance effect depends largely on the probability of chemical synapse. •An optimal chemical synapse probability exists to evoke network resonance. •Network topology affects the stochastic resonance in hybrid neuronal networks. - Abstract: The dependence of stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses on the probability of chemical synapse and the rewiring probability is investigated. A subthreshold periodic signal is imposed on one single neuron within the neuronal network as a pacemaker. It is shown that, irrespective of the probability of chemical synapse, there exists a moderate intensity of external noise optimizing the response of neuronal networks to the pacemaker. Moreover, the effect of pacemaker driven stochastic resonance of the system depends largely on the probability of chemical synapse. A high probability of chemical synapse will need lower noise intensity to evoke the phenomenon of stochastic resonance in the networked neuronal systems. In addition, for fixed noise intensity, there is an optimal chemical synapse probability, which can promote the propagation of the localized subthreshold pacemaker across neural networks. And the optimal chemical synapses probability turns even larger as the coupling strength decreases. Furthermore, the small-world topology has a significant impact on the stochastic resonance in hybrid neuronal networks. It is found that increasing the rewiring probability can always enhance the stochastic resonance until it approaches the random network limit

  10. Magnetic Field Dependence and Q of the Josephson Plasma Resonance

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Finnegan, T. F.; Langenberg, D. N.

    1972-01-01

    of supercurrent density which is not observed in conventional measurements of the field-dependent critical current. The frequency and field dependence of the plasma-resonance linewidth are interpreted as evidence that the previously unobserved quasiparticle-pair-interference tunnel current predicted by Josephson...

  11. Differentiating the two main histologic categories of fibroadenoma tissue from normal breast tissue by using multiphoton microscopy.

    Science.gov (United States)

    Nie, Y T; Wu, Y; Fu, F M; Lian, Y E; Zhuo, S M; Wang, C; Chen, J X

    2015-04-01

    Multiphoton microscopy has become a novel biological imaging technique that allows cellular and subcellular microstructure imaging based on two-photon excited fluorescence and second harmonic generation. In this work, we used multiphoton microscopy to obtain the high-contrast images of human normal breast tissue and two main histologic types of fibroadenoma (intracanalicular, pericanalicular). Moreover, quantitative image analysis was performed to characterize the changes of collagen morphology (collagen content, collagen orientation). The results show that multiphoton microscopy combined with quantitative method has the ability to identify the characteristics of fibroadenoma including changes of the duct architecture and collagen morphology in stroma. With the advancement of multiphoton microscopy, we believe that the technique has great potential to be a real-time histopathological diagnostic tool for intraoperative detection of fibroadenoma in the future. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  12. Double giant resonances in time-dependent relativistic mean-field theory

    International Nuclear Information System (INIS)

    Ring, P.; Podobnik, B.

    1996-01-01

    Collective vibrations in spherical nuclei are described in the framework of time-dependent relativistic mean-field theory (RMFT). Isoscalar quadrupole and isovector dipole oscillations that correspond to giant resonances are studied, and possible excitations of higher modes are investigated. We find evidence for modes which can be interpreted as double resonances. In a quantized RMFT they correspond to two-phonon states. (orig.)

  13. Time-dependent resonant tunnelling for parallel-coupled double quantum dots

    International Nuclear Information System (INIS)

    Dong Bing; Djuric, Ivana; Cui, H L; Lei, X L

    2004-01-01

    We derive the quantum rate equations for an Aharonov-Bohm interferometer with two vertically coupled quantum dots embedded in each of two arms by means of the nonequilibrium Green function in the sequential tunnelling regime. Based on these equations, we investigate time-dependent resonant tunnelling under a small amplitude irradiation and find that the resonant photon-assisted tunnelling peaks in photocurrent demonstrate a combination behaviour of Fano and Lorentzian resonances due to the interference effect between the two pathways in this parallel configuration, which is controllable by threading the magnetic flux inside this device

  14. Generalized Multiphoton Quantum Interference

    Directory of Open Access Journals (Sweden)

    Max Tillmann

    2015-10-01

    Full Text Available Nonclassical interference of photons lies at the heart of optical quantum information processing. Here, we exploit tunable distinguishability to reveal the full spectrum of multiphoton nonclassical interference. We investigate this in theory and experiment by controlling the delay times of three photons injected into an integrated interferometric network. We derive the entire coincidence landscape and identify transition matrix immanants as ideally suited functions to describe the generalized case of input photons with arbitrary distinguishability. We introduce a compact description by utilizing a natural basis that decouples the input state from the interferometric network, thereby providing a useful tool for even larger photon numbers.

  15. The layered-resolved microstructure and spectroscopy of mouse oral mucosa using multiphoton microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo Shuangmu [Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Normal University, Ministry of Education, Fuzhou 350007 (China); Chen Jianxin [Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Normal University, Ministry of Education, Fuzhou 350007 (China); Jiang Xingshan [Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Normal University, Ministry of Education, Fuzhou 350007 (China); Xie Shusen [Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Normal University, Ministry of Education, Fuzhou 350007 (China); Chen Rong [Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Normal University, Ministry of Education, Fuzhou 350007 (China); Cao Ning [Fujian Medical University, Fuzhou 350004 (China); Zou Qilian [Fujian Medical University, Fuzhou 350004 (China); Xiong Shuyuan [Fujian Medical University, Fuzhou 350004 (China)

    2007-08-21

    The layered-resolved microstructure and spectroscopy of mouse oral mucosa are obtained using a combination of multiphoton imaging and spectral analysis with different excitation wavelengths. In the keratinizing layer, the keratinocytes microstructure can be characterized and the keratinizing thickness can be measured. The keratin fluorescence signal can be further characterized by emission maxima at 510 nm. In the epithelium, the cellular microstructure can be quantitatively visualized with depth and the epithelium thickness can be determined by multiphoton imaging excited at 730 nm. The study also shows that the epithelial spectra excited at 810 nm, showing a combination of NADH and FAD fluorescence, can be used for the estimation of the metabolic state in epithelium. Interestingly, a second-harmonic generation (SHG) signal from DNA was observed for the first time within the epithelial layer in backscattering geometry and provides the possibility of analyzing the chromatin structure. In the stroma, the combination of multiphoton imaging and spectral analysis excited at 850 nm in tandem can obtain quantitative information regarding the biomorphology and biochemistry of stroma. Specifically, the microstructure of collagen, minor salivary glands and elastic fibers, and the optical property of the stroma can be quantitatively displayed. Overall, these results suggest that the combination of multiphoton imaging and spectral analysis with different excitation wavelengths has the potential to provide important and comprehensive information for early diagnosis of oral cancer.

  16. Rapid in vivo vertical tissue sectioning by multiphoton tomography

    Science.gov (United States)

    Batista, Ana; Breunig, Hans Georg; König, Karsten

    2018-02-01

    A conventional tool in the pathological field is histology which involves the analysis of thin sections of tissue in which specific cellular structures are stained with different dyes. The process to obtain these stained tissue sections is time consuming and invasive as it requires tissue removal, fixation, sectioning, and staining. Moreover, imaging of live tissue is not possible. We demonstrate that multiphoton tomography can provide within seconds, non-invasive, label-free, vertical images of live tissue which are in quality similar to conventional light micrographs of histologic stained specimen. In contrast to conventional setups based on laser scanning which image horizontally sections, the vertical in vivo images are directly recorded by combined line scanning and timed adjustments of the height of the focusing optics. In addition, multiphoton tomography provides autofluorescence lifetimes which can be used to determine the metabolic states of cells.

  17. Energetics of the rearrangement of neutral and ionized perfluorocyclopropane to perfluoropropylene. Use of infrared multiphoton dissociation spectra to identify structural isomers of molecular ions

    International Nuclear Information System (INIS)

    Bomse, D.S.; Berman, D.W.; Beauchamp, J.L.

    1981-01-01

    Infrared photodissociation spectroscopy is used to compare the structure of gas-phase C 3 F 6 + ions obtained by electron-impact ionization of two isomeric precursors: perfluoropropylene and perfluorocyclopropane. Photodissociation spectra are obtained by observing the extent of multiphoton dissociation as the CO 2 laser is tuned across the 925 to 1080 cm -1 wavelength range. Ions are formed, stored, and detected with the use of techniques of ion cyclotron resonance spectroscopy. Infrared multiphoton excitation is effected by using low-power, continuous-wave laser radiation. The fingerprint spectrum of the molecular ion of perfluorocyclopropane is identical with that obtained from perfluoropropylene, indicating rearrangement of the former to the latter. Photodissociation kinetics indicate that the entire perfluorocyclopropane molecular ion population isomerizes to the more stable perfluoropropylene structure. Thermochemistry of C 3 F 6 and C 3 F 6 + isomers is discussed. Comparisons are made with the analogous C 3 H 6 system. Photoionization mass spectroscopy results yield ΔH/sub f/(c-C 3 F 6 ) = -233.8 kcal/mol. 4 figures

  18. Evidence of the 2s2p(1P) doubly excited state in the harmonic generation spectrum of helium

    International Nuclear Information System (INIS)

    Ngoko Djiokap, J. M.; Starace, Anthony F.

    2011-01-01

    By solving the two-active-electron time-dependent Schroedinger equation in an intense, ultrashort laser field, we investigate evidence of electron correlations in the high-order harmonic generation spectrum of helium. As the frequency of the driving laser pulse varies from 4.6 to 6.6 eV, the 13th, 11th, and 9th harmonics sequentially become resonant with the transition between the ground state and the isolated 2s2p( 1 P) autoionizing state of helium, which dramatically enhances these harmonics and changes their profiles. When each of the 9th and 13th harmonics are in resonance with this autoionizing state, there is also a low-order multiphoton resonance with a Rydberg state, resulting in a particularly large enhancement of these harmonics relative to neighboring harmonics. When the 11th harmonic is in resonance with the 2s2p( 1 P) autoionizing state, the 13th harmonic is simultaneously in resonance with numerous higher-energy autoionizing states, resulting in a competition between these two harmonics for intensity. These results demonstrate that even electron correlations occurring over a narrow energy interval can have a significant effect on strong-field processes such as harmonic generation.

  19. Long-distance propagation of intense short laser pulse in air

    International Nuclear Information System (INIS)

    Yu Wei; Yu, M.Y.; Zhang, J.; Qian, L.J.; Yuan, X.; Lu, P.X.; Li, R.X.; Sheng, Z.M.; Liu, J.R.; Xu, Z.Z.

    2004-01-01

    Long-distance propagation of intense laser pulse in air is reconsidered analytically by generalizing the analogy between the laser spotsize and the orbit of a classical particle. It is shown that multiphoton ionization introduces unique features to the laser-air interaction, thereby enabling the long-distance behavior. Several interesting characteristics of the latter are pointed out

  20. Multi-photon microscope driven by novel green laser pump

    DEFF Research Database (Denmark)

    Marti, Dominik; Djurhuus, Martin; Jensen, Ole Bjarlin

    2016-01-01

    Multi-photon microscopy is extensively used in research due to its superior possibilities when compared to other microscopy modalities. The technique also has the possibility to advance diagnostics in clinical applications, due to its capabilities complementing existing technology in a multimodal...

  1. Focal switching of photochromic fluorescent proteins enables multiphoton microscopy with superior image contrast.

    Science.gov (United States)

    Kao, Ya-Ting; Zhu, Xinxin; Xu, Fang; Min, Wei

    2012-08-01

    Probing biological structures and functions deep inside live organisms with light is highly desirable. Among the current optical imaging modalities, multiphoton fluorescence microscopy exhibits the best contrast for imaging scattering samples by employing a spatially confined nonlinear excitation. However, as the incident laser power drops exponentially with imaging depth into the sample due to the scattering loss, the out-of-focus background eventually overwhelms the in-focus signal, which defines a fundamental imaging-depth limit. Herein we significantly improve the image contrast for deep scattering samples by harnessing reversibly switchable fluorescent proteins (RSFPs) which can be cycled between bright and dark states upon light illumination. Two distinct techniques, multiphoton deactivation and imaging (MPDI) and multiphoton activation and imaging (MPAI), are demonstrated on tissue phantoms labeled with Dronpa protein. Such a focal switch approach can generate pseudo background-free images. Conceptually different from wave-based approaches that try to reduce light scattering in turbid samples, our work represents a molecule-based strategy that focused on imaging probes.

  2. Parameter dependence of resonant spin torque magnetization reversal

    International Nuclear Information System (INIS)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H.W.

    2012-01-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  3. Parameter dependence of resonant spin torque magnetization reversal

    Science.gov (United States)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H. W.

    2012-04-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  4. Historical survey of resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Hurst, G.S.

    1984-04-01

    We have recently celebrated the 10th birthday of Resonance Ionization Spectroscopy (RIS), and this seems an appropriate time to review the history of its development. Basically, RIS is a photophysics process in which tunable light sources are used to remove a valence electron from an atom of selected atomic number, Z. If appropriate lasers are used as the light source, one electron can be removed from each atom of the selected Z in the laser pulse. This implies that RIS can be a very efficient, as well as selective, ionization process. In what we normally call RIS, laser schemes are employed which preserve both of these features. In contrast, multiphoton ionization (MPI) is more general, although not necessarily Z selective or very efficient because resonances are often not used. Early research completed in the USSR and described as selective two-step photoionization, employed resonances to ionize the rubidium atom and served to guide work on laser isotope separation. 29 references, 8 figures

  5. Tuning excitation laser wavelength for secondary resonance in low-intensity phase-selective laser-induced breakdown spectroscopy for in-situ analytical measurement of nanoaerosols

    Science.gov (United States)

    Xiong, Gang; Li, Shuiqing; Tse, Stephen D.

    2018-02-01

    In recent years, a novel low-intensity phase-selective laser-induced breakdown spectroscopy (PS-LIBS) technique has been developed for unique elemental-composition identification of aerosolized nanoparticles, where only the solid-phase nanoparticles break down, forming nanoplasmas, without any surrounding gas-phase breakdown. Additional work has demonstrated that PS-LIBS emissions can be greatly enhanced with secondary resonant excitation by matching the excitation laser wavelength with an atomic transition line in the formed nanoplasma, thereby achieving low limits of detection. In this work, a tunable dye laser is employed to investigate the effects of excitation wavelength and irradiance on in-situ PS-LIBS measurements of TiO2 nanoaerosols. The enhancement factor by resonant excitation can be 220 times greater than that for non-resonant cases under similar conditions. Moreover, the emitted spectra are unique for the selected resonant transition lines for a given element, suggesting the potential to make precise phase-selective and analyte-selective measurements of nanoparticles in a multicomponent multiphase system. The enhancement factor by resonant excitation is highly sensitive to excitation laser wavelength, with narrow excitation spectral windows, i.e., 0.012 to 0.023 nm (FWHM, full width at half maximum) for Ti (I) neutral atomic lines, and 0.051 to 0.139 nm (FWHM) for Ti (II) single-ionized atomic lines. Boltzmann analysis of the emission intensities, temporal response of emissions, and emission dependence on excitation irradiance are investigated to understand aspects of the generated nanoplasmas such as temperature, local thermodynamic equilibrium (LTE), and excitation mechanism.

  6. Resonance broadening in an intense light field

    International Nuclear Information System (INIS)

    Andreev, S.P.; Lisitsa, V.S.

    1977-01-01

    Collisions of identical atoms in a strong resonance radiation field E 0 cosωt, for which the atomic oscillation period is comparable to the collision time of the atoms, are considered. The problem is treated in terms of the simplest two-level atomic model. The problem of light absorption in such collisions is reduced to the problem of inelastic transitions in a three-level compound system of two atoms and an electromagnetic field. Corresponding probabilities and inelastic scattering integral cross sections for transitions between energy levels in such a system are calculated for two extreme cases- the impact (rapid collisions) and the static one (slow collisions). In the general case the cross sections depend nonlinearly on Esub(0). For small Esub(0) as compared to a certain critical Esub(0)* the results are similar to those of the well-known linear theory of resonance broadening. For Esub(0)>>Esub(0)* the absorption in the line wing is found to decrease (with increase of Esub(0)-the medium becomes more ''transparent''). The kinetics of light absorption in the medium of identical atoms with constant absorption capacity is analysed

  7. Reflecting on mirror mechanisms: motor resonance effects during action observation only present with low-intensity transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Michela Loporto

    Full Text Available Transcranial magnetic stimulation (TMS studies indicate that the observation of other people's actions influences the excitability of the observer's motor system. Motor evoked potential (MEP amplitudes typically increase in muscles which would be active during the execution of the observed action. This 'motor resonance' effect is thought to result from activity in mirror neuron regions, which enhance the excitability of the primary motor cortex (M1 via cortico-cortical pathways. The importance of TMS intensity has not yet been recognised in this area of research. Low-intensity TMS predominately activates corticospinal neurons indirectly, whereas high-intensity TMS can directly activate corticospinal axons. This indicates that motor resonance effects should be more prominent when using low-intensity TMS. A related issue is that TMS is typically applied over a single optimal scalp position (OSP to simultaneously elicit MEPs from several muscles. Whether this confounds results, due to differences in the manner that TMS activates spatially separate cortical representations, has not yet been explored. In the current study, MEP amplitudes, resulting from single-pulse TMS applied over M1, were recorded from the first dorsal interosseous (FDI and abductor digiti minimi (ADM muscles during the observation of simple finger abductions. We tested if the TMS intensity (110% vs. 130% resting motor threshold or stimulating position (FDI-OSP vs. ADM-OSP influenced the magnitude of the motor resonance effects. Results showed that the MEP facilitation recorded in the FDI muscle during the observation of index-finger abductions was only detected using low-intensity TMS. In contrast, changes in the OSP had a negligible effect on the presence of motor resonance effects in either the FDI or ADM muscles. These findings support the hypothesis that MN activity enhances M1 excitability via cortico-cortical pathways and highlight a methodological framework by which the

  8. Multiphoton photodegradation of indocyanine green: Solvent protolysis effect

    Energy Technology Data Exchange (ETDEWEB)

    Fuyuki, Masanori, E-mail: mn.fuyuki@kio.ac.jp

    2016-02-15

    The multiphoton photodegradation mechanism of indocyanine green (ICG) was investigated by using femtosecond near-infrared (NIR) pump and probe pulses. In the pump fluence region from 2 mJ/cm{sup 2} to 4 mJ/cm{sup 2}, the photodegradation rate was higher in acetic acid than in ethanol, and the rate was proportional to pump fluence to the 2.3th power in acetic acid and the 3.9th in ethanol. Considering that the degree of auto-protolysis of acetic acid is much higher than that of ethanol, the experimental results indicate that self-ionized solvent molecules played an essential role in the degradation of ICG molecules excited by NIR multiphoton process. - Highlights: • Photodegradation of ICG by femtosecond near-infrared pulses. • Photodegradation rate of ICG was higher in acetic acid than in ethanol. • Photodegradation rate was proportional to pump fluence to 2.3th power in acetic acid. • Photodegradation rate was proportional to pump fluence to 3.9th power in ethanol. • Self-ionized solvent molecules promoted ICG photodegradation in acetic acid.

  9. Morphology-dependent resonances of a microsphere-optical fiber system

    Science.gov (United States)

    Griffel, Giora; Arnold, Stephen; Taskent, Dogan; Serpengüzel, Ali; Connolly, John; Morris, Nancy

    1996-05-01

    Morphology-dependent resonances of microspheres sitting upon an index-matched single-mode fiber half-coupler are excited by a tunable 753-nm distributed-feedback laser. Resonance peaks in the scattering spectra and associated dips in the transmission spectra for the TE and TM modes are observed. We present a new model that describes this interaction in terms of the fiber-sphere coupling coefficient and the microsphere's intrinsic quality factor Q0 . This model enables us to obtain expressions for the finesse and the Q factor of the composite particle-fiber system, the resonance width, and the depth of the dips measured in the transmission spectra. Our model shows that index matching improves the coupling efficiency by more than a factor of 2 compared with that of a non-index-matched system.

  10. In vivo real-time multiphoton imaging of T lymphocytes in the mouse brain after experimental stroke

    DEFF Research Database (Denmark)

    Fumagalli, Stefano; Coles, Jonathan A; Ejlerskov, Patrick

    2011-01-01

    To gain a better understanding of T cell behavior after stroke, we have developed real-time in vivo brain imaging of T cells by multiphoton microscopy after middle cerebral artery occlusion.......To gain a better understanding of T cell behavior after stroke, we have developed real-time in vivo brain imaging of T cells by multiphoton microscopy after middle cerebral artery occlusion....

  11. Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature

    KAUST Repository

    Alabastri, A.; Tuccio, S.; Giugni, A.; Toma, A.; Liberale, Carlo; Das, G.; Angelis, F.D.; Fabrizio, E.D.; Zaccaria, R.P.

    2013-01-01

    In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  12. Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature

    KAUST Repository

    Alabastri, A.

    2013-10-25

    In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  13. High-resolution multiphoton microscopy with a low-power continuous wave laser pump.

    Science.gov (United States)

    Chen, Xiang-Dong; Li, Shen; Du, Bo; Dong, Yang; Wang, Ze-Hao; Guo, Guang-Can; Sun, Fang-Wen

    2018-02-15

    Multiphoton microscopy (MPM) has been widely used for three-dimensional biological imaging. Here, based on the photon-induced charge state conversion process, we demonstrated a low-power high-resolution MPM with a nitrogen vacancy (NV) center in diamond. Continuous wave green and orange lasers were used to pump and detect the two-photon charge state conversion, respectively. The power of the laser for multiphoton excitation was 40 μW. Both the axial and lateral resolutions were improved approximately 1.5 times compared with confocal microscopy. The results can be used to improve the resolution of the NV center-based quantum sensing and biological imaging.

  14. PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina; Dethlefsen, Maja Munk; Bangsbo, Jens

    2017-01-01

    The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO) and littermate wildtype (WT) mice performed a single treadmill running bout at either low...... intensity dependent increases in LC3I and LC3II protein and intensity independent decrease in p62 protein in skeletal muscle late in recovery and increased LC3II with exercise training independent of exercise intensity and volume in WT mice. Furthermore, acute exercise and exercise training did not increase...... LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute...

  15. Characteristics of subgingival calculus detection by multiphoton fluorescence microscopy

    Science.gov (United States)

    Tung, Oi-Hong; Lee, Shyh-Yuan; Lai, Yu-Lin; Chen, How-Foo

    2011-06-01

    Subgingival calculus has been recognized as a major cause of periodontitis, which is one of the main chronic infectious diseases of oral cavities and a principal cause of tooth loss in humans. Bacteria deposited in subgingival calculus or plaque cause gingival inflammation, function deterioration, and then periodontitis. However, subgingival calculus within the periodontal pocket is a complicated and potentially delicate structure to be detected with current dental armamentaria, namely dental x-rays and dental probes. Consequently, complete removal of subgingival calculus remains a challenge to periodontal therapies. In this study, the detection of subgingival calculus employing a multiphoton autofluorescence imaging method was characterized in comparison with a one-photon confocal fluorescence imaging technique. Feasibility of such a system was studied based on fluorescence response of gingiva, healthy teeth, and calculus with and without gingiva covered. The multiphoton fluorescence technology perceived the tissue-covered subgingival calculus that cannot be observed by the one-photon confocal fluorescence method.

  16. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors

    Directory of Open Access Journals (Sweden)

    Carlo Ciulla

    2015-11-01

    Full Text Available This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI. Post-processing of the MRI of the human brain encompasses the following model functions: (i bivariate cubic polynomial, (ii bivariate cubic Lagrange polynomial, (iii monovariate sinc, and (iv bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i classic-curvature, (ii signal resilient to interpolation, (iii intensity-curvature measure and (iv intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional.

  17. Resonance phenomena in a time-dependent, three-dimensional model of an idealized eddy

    Science.gov (United States)

    Rypina, I. I.; Pratt, L. J.; Wang, P.; Äe; -zgökmen, T. M.; Mezic, I.

    2015-08-01

    We analyze the geometry of Lagrangian motion and material barriers in a time-dependent, three-dimensional, Ekman-driven, rotating cylinder flow, which serves as an idealization for an isolated oceanic eddy and other overturning cells with cylindrical geometry in the ocean and atmosphere. The flow is forced at the top through an oscillating upper lid, and the response depends on the frequency and amplitude of lid oscillations. In particular, the Lagrangian geometry changes near the resonant tori of the unforced flow, whose frequencies are rationally related to the forcing frequencies. Multi-scale analytical expansions are used to simplify the flow in the vicinity of resonant trajectories and to investigate the resonant flow geometries. The resonance condition and scaling can be motivated by simple physical argument. The theoretically predicted flow geometries near resonant trajectories have then been confirmed through numerical simulations in a phenomenological model and in a full solution of the Navier-Stokes equations.

  18. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    Science.gov (United States)

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-05-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea.

  19. Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry

    Energy Technology Data Exchange (ETDEWEB)

    Chakravadhanula, V S K; Elbahri, M; Schuermann, U; Takele, H; Greve, H; Zaporojtchenko, V; Faupel, F [Chair for Multicomponent Materials, Technical Faculty of the CAU Kiel, Kaiserstrasse 2, D-24143 Kiel (Germany)], E-mail: ff@tf.uni-kiel.de

    2008-06-04

    We report a strategy to achieve a material showing equal intensity double plasmon resonance (EIDPR) based on sandwich geometry. We studied the interaction between localized plasmon resonances associated with different metal clusters (Au/Ag) on Teflon AF (TAF) in sandwich geometry. Engineering the EIDPR was done by tailoring the amount of Au/Ag and changing the TAF thickness. The samples were investigated by transmission electron microscopy (TEM) and UV-visible spectroscopy. Interestingly, and in agreement with the dipole-surface interaction, the critical barrier thickness for an optimum EIDPR was observed at 3.3 nm. The results clearly show a plasmon sequence effect and visualize the role of plasmon decay.

  20. Continuous Energy, Multi-Dimensional Transport Calculations for Problem Dependent Resonance Self-Shielding

    International Nuclear Information System (INIS)

    Downar, T.

    2009-01-01

    The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system. The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multidimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system. Specifically, the methods here utilize the existing continuous energy SCALE5 module, CENTRM, and the multi-dimensional discrete ordinates solver, NEWT to develop a new code, CENTRM( ) NEWT. The work here addresses specific theoretical limitations in existing CENTRM resonance treatment, as well as investigates advanced numerical and parallel computing algorithms for CENTRM and NEWT in order to reduce the computational burden. The result of the work here will be a new computer code capable of performing problem dependent self-shielding analysis for both existing and proposed GENIV fuel designs. The objective of the work was to have an immediate impact on the safety analysis of existing reactors through improvements in the calculation of fuel temperature effects, as well as on the analysis of more sophisticated GENIV/NGNP systems through improvements in the depletion/transmutation of actinides for Advanced Fuel Cycle Initiatives.

  1. Ponderomotive effects in multiphoton pair production

    Science.gov (United States)

    Kohlfürst, Christian; Alkofer, Reinhard

    2018-02-01

    The Dirac-Heisenberg-Wigner formalism is employed to investigate electron-positron pair production in cylindrically symmetric but otherwise spatially inhomogeneous, oscillating electric fields. The oscillation frequencies are hereby tuned to obtain multiphoton pair production in the nonperturbative threshold regime. An effective mass, as well as a trajectory-based semiclassical analysis, is introduced in order to interpret the numerical results for the distribution functions as well as for the particle yields and spectra. The results, including the asymptotic particle spectra, display clear signatures of ponderomotive forces.

  2. INTENSITY DEPENDENT EFFECTS IN RHIC

    International Nuclear Information System (INIS)

    WEI, J.

    1999-01-01

    The Relativistic Heavy Ion Collider (RHIC) is currently under commissioning after a seven-year construction cycle. Unlike conventional hadron colliders, this machine accelerates, stores, and collides heavy ion beams of various combinations of species. The dominant intensity dependent effects are intra-beam scattering at both injection and storage, and complications caused by crossing transition at a slow ramp rate. In this paper, the authors present theoretical formalisms that have been used for the study, and discuss mechanisms, impacts, and compensation methods including beam cooling and transition jump schemes. Effects of space charge, beam-beam, and ring impedances are also summarized

  3. Multifocal multiphoton microscopy with adaptive optical correction

    Science.gov (United States)

    Coelho, Simao; Poland, Simon; Krstajic, Nikola; Li, David; Monypenny, James; Walker, Richard; Tyndall, David; Ng, Tony; Henderson, Robert; Ameer-Beg, Simon

    2013-02-01

    Fluorescence lifetime imaging microscopy (FLIM) is a well established approach for measuring dynamic signalling events inside living cells, including detection of protein-protein interactions. The improvement in optical penetration of infrared light compared with linear excitation due to Rayleigh scattering and low absorption have provided imaging depths of up to 1mm in brain tissue but significant image degradation occurs as samples distort (aberrate) the infrared excitation beam. Multiphoton time-correlated single photon counting (TCSPC) FLIM is a method for obtaining functional, high resolution images of biological structures. In order to achieve good statistical accuracy TCSPC typically requires long acquisition times. We report the development of a multifocal multiphoton microscope (MMM), titled MegaFLI. Beam parallelization performed via a 3D Gerchberg-Saxton (GS) algorithm using a Spatial Light Modulator (SLM), increases TCSPC count rate proportional to the number of beamlets produced. A weighted 3D GS algorithm is employed to improve homogeneity. An added benefit is the implementation of flexible and adaptive optical correction. Adaptive optics performed by means of Zernike polynomials are used to correct for system induced aberrations. Here we present results with significant improvement in throughput obtained using a novel complementary metal-oxide-semiconductor (CMOS) 1024 pixel single-photon avalanche diode (SPAD) array, opening the way to truly high-throughput FLIM.

  4. Megalophallus as a sequela of priapism in sickle cell anemia: use of blood oxygen level-dependent magnetic resonance imaging.

    Science.gov (United States)

    Kassim, A A; Umans, H; Nagel, R L; Fabry, M E

    2000-09-01

    Priapism is a common complication of sickle cell anemia. We report a little known sequela of priapism: painless megalophallus, with significant penile enlargement. The patient had had an intense episode of priapism 9 years previously and his penis remained enlarged. Blood oxygen level-dependent magnetic resonance imaging revealed enlarged, hypoxic corpora cavernosa. Megalophallus probably resulted from permanent loss of elasticity of the tunica albuginea due to severe engorgement during the episode of priapism. This sequela needs to be recognized by physicians because no intervention is necessary and sexual function seems to remain intact.

  5. Multiphoton effects in electron-ion scattering: A limitation of the cross-section treatment

    International Nuclear Information System (INIS)

    Torres Silva, H.; Sakanaka, P.H.; Braga, L.C.

    1991-07-01

    The differential cross-section for inelastic scattering in the presence of an intense laser field, when applied to the calculation of energy balance and heating by multiphoton process, is a problem which is not completely solved yet. One of the main difficulties is the calculation of the absorption coefficients α-bar for a monoenergetic beam of electrons scattered by a static potential. There are contradictory results shown by different authors. Here we have derived α-bar starting under the framework of quantum mechanics and then making the classical correspondence (h/2π → 0) according to the kinetic theory, and show that the absorption coefficient is always positive for all values of the particle incoming velocity, v-vector i . Furthermore, we show that in the calculation of α-bar we recover the Coulomb logarithm term. (author). 18 refs, 5 figs, 2 tabs

  6. Study on infrared multiphoton excitation of the linear triatomic molecule by the Lie-algebra approach

    International Nuclear Information System (INIS)

    Feng, H.; Zheng, Y.; Ding, S.

    2007-01-01

    Infrared multiphoton vibrational excitation of the linear triatomic molecule has been studied using the quadratic anharmonic Lie-algebra model, unitary transformations, and Magnus approximation. An explicit Lie-algebra expression for the vibrational transition probability is obtained by using a Lie-algebra approach. This explicit Lie-algebra expressions for time-evolution operator and vibrational transition probabilities make the computation clearer and easier. The infrared multiphoton vibrational excitation of the DCN linear tri-atomic molecule is discussed as an example

  7. Multiphoton Microscopy for Ophthalmic Imaging

    Directory of Open Access Journals (Sweden)

    Emily A. Gibson

    2011-01-01

    Full Text Available We review multiphoton microscopy (MPM including two-photon autofluorescence (2PAF, second harmonic generation (SHG, third harmonic generation (THG, fluorescence lifetime (FLIM, and coherent anti-Stokes Raman Scattering (CARS with relevance to clinical applications in ophthalmology. The different imaging modalities are discussed highlighting the particular strength that each has for functional tissue imaging. MPM is compared with current clinical ophthalmological imaging techniques such as reflectance confocal microscopy, optical coherence tomography, and fluorescence imaging. In addition, we discuss the future prospects for MPM in disease detection and clinical monitoring of disease progression, understanding fundamental disease mechanisms, and real-time monitoring of drug delivery.

  8. Multiphoton microscopy for the in-situ investigation of cellular processes and integrity in cryopreservation.

    Science.gov (United States)

    Doerr, Daniel; Stark, Martin; Ehrhart, Friederike; Zimmermann, Heiko; Stracke, Frank

    2009-08-01

    In this study we demonstrate a new noninvasive imaging method to monitor freezing processes in biological samples and to investigate life in the frozen state. It combines a laser scanning microscope with a computer-controlled cryostage. Nearinfrared (NIR) femtosecond laser pulses evoke the fluorescence of endogenous fluorophores and fluorescent labels due to multiphoton absorption.The inherent optical nonlinearity of multiphoton absorption allows 3D fluorescence imaging for optical tomography of frozen biological material in-situ. As an example for functional imaging we use fluorescence lifetime imaging (FLIM) to create images with chemical and physical contrast.

  9. Association between preoperative magnetic resonance imaging, pain intensity and quantitative sensory testing in patients awaiting lumbar diskectomy.

    LENUS (Irish Health Repository)

    Hegarty, Dominic

    2011-02-01

    Magnetic resonance imaging (MRI) offers important information regarding the morphology, location and size of a herniated disc, which influences the decision to offer lumbar diskectomy (LD). This study aims to examine the association between clinical neurophysiologic indices including pain intensity and quantitative sensory testing (QST), and the degree of lumbar nerve root compromise depicted on magnetic resonance (MR) in patients awaiting LD.

  10. Temperature dependence of giant dipole resonance width

    International Nuclear Information System (INIS)

    Vdovin, A.I.; Storozhenko, A.N.

    2005-01-01

    The quasiparticle-phonon nuclear model extended to finite temperature within the framework of the thermo field dynamics is applied to calculate a temperature dependence of the spreading width Γ d own of a giant dipole resonance. Numerical calculations are made for 12S n and 208 Pb nuclei. It is found that the width Γ d own increases with T. The reason of this effect is discussed as well as a relation of the present approach to other ones existing in the literature

  11. Multi-photon ionization of atoms and molecules by intense XUV-FEL light. Application to methanol and ethanol molecules

    International Nuclear Information System (INIS)

    Sato, Takahiro; Iwasaki, Atsushi; Okino, Tomoya; Yamanouchi, Kaoru; Yagishita, Akira; Yazawa, Hiroki; Kannari, Fumihiko; Aoyama, Makoto; Yamakawa, Koichi; Midorikawa, Katsumi; Nakano, Hidetoshi; Yabashi, Makina; Nagasono, Mitsuru; Higashiya, Atsushi; Togashi, Tadashi; Ishikawa, Tetsuya

    2009-01-01

    The photo-ionization processes of methanol (CH 3 OH, CD 3 OH) and ethanol (C 2 H 5 OH) and their dependences on the wavelength and the light-field intensity were investigated using intense XUV light at 51 and 61 nm at the XUV free electron laser facility of RIKEN SPring-8 Center. The light field intensity achieved at 51 nm was found to be intense enough to generate Ar 7+ from Ar. It was confirmed that (1) the stable dications, CH 2 OH 2+ and CH 2 OD 2+ , were produced respectively from CH 3 OH and CD 3 OH, and C 2 H 2 OH 2+ from CH 2 H 5 OH via the direct and/or stepwise two-photon absorption, and (2) C + and CH + were produced from C 2 H 5 OH via the stepwise two-photon absorption of the XUV light. It was also confirmed by the formation of H 3 O + from CH 3 OH and C 2 H 5 OH, and HOD 2 + from CD 3 OH that hydrogen migration processes were induced by the irradiation of the intense XUV light. (author)

  12. Multiphoton microscopy in every lab: the promise of ultrafast semiconductor disk lasers

    Science.gov (United States)

    Emaury, Florian; Voigt, Fabian F.; Bethge, Philipp; Waldburger, Dominik; Link, Sandro M.; Carta, Stefano; van der Bourg, Alexander; Helmchen, Fritjof; Keller, Ursula

    2017-07-01

    We use an ultrafast diode-pumped semiconductor disk laser (SDL) to demonstrate several applications in multiphoton microscopy. The ultrafast SDL is based on an optically pumped Vertical External Cavity Surface Emitting Laser (VECSEL) passively mode-locked with a semiconductor saturable absorber mirror (SESAM) and generates 170-fs pulses at a center wavelength of 1027 nm with a repetition rate of 1.63 GHz. We demonstrate the suitability of this laser for structural and functional multiphoton in vivo imaging in both Drosophila larvae and mice for a variety of fluorophores (including mKate2, tdTomato, Texas Red, OGB-1, and R-CaMP1.07) and for endogenous second-harmonic generation in muscle cell sarcomeres. We can demonstrate equivalent signal levels compared to a standard 80-MHz Ti:Sapphire laser when we increase the average power by a factor of 4.5 as predicted by theory. In addition, we compare the bleaching properties of both laser systems in fixed Drosophila larvae and find similar bleaching kinetics despite the large difference in pulse repetition rates. Our results highlight the great potential of ultrafast diode-pumped SDLs for creating a cost-efficient and compact alternative light source compared to standard Ti:Sapphire lasers for multiphoton imaging.

  13. Histopathology of breast cancer after magnetic resonance-guided high-intensity focused ultrasound and radiofrequency ablation

    NARCIS (Netherlands)

    Knuttel, Floor; Waaijer, Laurien; Merckel, LG; van den Bosch, Maurice A A J; Witkamp, Arjen J.; Deckers, Roel; van Diest, Paul J.

    AIMS: Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation and radiofrequency ablation (RFA) are being researched as possible substitutes for surgery in breast cancer patients. The histopathological appearance of ablated tissue has not been studied in great detail. This

  14. Adaptive optics improves multiphoton super-resolution imaging

    Science.gov (United States)

    Zheng, Wei; Wu, Yicong; Winter, Peter; Shroff, Hari

    2018-02-01

    Three dimensional (3D) fluorescence microscopy has been essential for biological studies. It allows interrogation of structure and function at spatial scales spanning the macromolecular, cellular, and tissue levels. Critical factors to consider in 3D microscopy include spatial resolution, signal-to-noise (SNR), signal-to-background (SBR), and temporal resolution. Maintaining high quality imaging becomes progressively more difficult at increasing depth (where optical aberrations, induced by inhomogeneities of refractive index in the sample, degrade resolution and SNR), and in thick or densely labeled samples (where out-of-focus background can swamp the valuable, in-focus-signal from each plane). In this report, we introduce our new instrumentation to address these problems. A multiphoton structured illumination microscope was simply modified to integrate an adpative optics system for optical aberrations correction. Firstly, the optical aberrations are determined using direct wavefront sensing with a nonlinear guide star and subsequently corrected using a deformable mirror, restoring super-resolution information. We demonstrate the flexibility of our adaptive optics approach on a variety of semi-transparent samples, including bead phantoms, cultured cells in collagen gels and biological tissues. The performance of our super-resolution microscope is improved in all of these samples, as peak intensity is increased (up to 40-fold) and resolution recovered (up to 176+/-10 nm laterally and 729+/-39 nm axially) at depths up to 250 μm from the coverslip surface.

  15. ELISE, a code for intensity dependent effects

    International Nuclear Information System (INIS)

    Barton, M.Q.

    1991-01-01

    The Electron ring Limits on Intensity, Stability, and Emittance (ELISE) code described in this paper computes many of the intensity dependent effects of interest to the builder of a small electron storage ring. ELISE is a program, developed largely for the author's own use, which duplicates many of the functions provided by the more general program ZAP developed by the Berkeley group. The motivation for the code was to provide an interactive system for quick answers that could be used during accelerator commissioning. A lattice program, IDA, developed earlier by the author while at Brookhaven National Laboratory, provides a good model of the type of user friendly interaction that would be desirable in such a code

  16. Magnetic resonance sialography for investigating major salivary gland duct system after intensity-modulated radiotherapy of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Ou Dan; He Xiayun; Zhang Yunyan

    2013-01-01

    We investigated the value of magnetic resonance sialography for evaluating xerostomia induced by intensity-modulated radiotherapy for nasopharyngeal carcinoma. Fourteen patients with nasopharyngeal carcinoma were treated with intensity-modulated radiotherapy. Salivary function was assessed by magnetic resonance sialography and subjective evaluation criteria pre-treatment, 1 week and 1 year post-radiotherapy. A magnetic resonance sialography categorical scoring system was used to compare the visibility of salivary ducts. The average mean dose was 38.93 Gy to the parotid glands and 59.34 Gy to the submandibular glands. Before radiotherapy, the visibility scores of both the parotid and submandibular ducts increased after secretion stimulation. The scores decreased and the response to stimulation was attenuated 1 week post-radiotherapy. For most of the parotid ducts, the visibility score improved at 1 year post-radiotherapy both at rest and under stimulation, but not for the submandibular ducts. With a median follow-up of 12.3 months, 8/12 patients had grade 1 xerostomia and 4/12 had grade 2 xerostomia. Magnetic resonance sialography allows non-invasive evaluation of radiation-induced ductal changes in the major salivary glands and enables reliable prediction of radiation-induced xerostomia. (author)

  17. Automatic detection of frequency changes depends on auditory stimulus intensity.

    Science.gov (United States)

    Salo, S; Lang, A H; Aaltonen, O; Lertola, K; Kärki, T

    1999-06-01

    A cortical cognitive auditory evoked potential, mismatch negativity (MMN), reflects automatic discrimination and echoic memory functions of the auditory system. For this study, we examined whether this potential is dependent on the stimulus intensity. The MMN potentials were recorded from 10 subjects with normal hearing using a sine tone of 1000 Hz as the standard stimulus and a sine tone of 1141 Hz as the deviant stimulus, with probabilities of 90% and 10%, respectively. The intensities were 40, 50, 60, 70, and 80 dB HL for both standard and deviant stimuli in separate blocks. Stimulus intensity had a statistically significant effect on the mean amplitude, rise time parameter, and onset latency of the MMN. Automatic auditory discrimination seems to be dependent on the sound pressure level of the stimuli.

  18. Quantitative multiphoton imaging

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Breunig, Hans Georg; Uchugonova, Aisada

    2014-02-01

    Certified clinical multiphoton tomographs for label-free multidimensional high-resolution in vivo imaging have been introduced to the market several years ago. Novel tomographs include a flexible 360° scan head attached to a mechanooptical arm for autofluorescence and SHG imaging as well as a CARS module. Non-fluorescent lipids and water, mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged in vivo with submicron resolution in human skin. Sensitive and rapid detectors allow single photon counting and the construction of 3D maps where the number of detected photons per voxel is depicted. Intratissue concentration profiles from endogenous as well exogenous substances can be generated when the number of detected photons can be correlated with the number of molecules with respect to binding and scattering behavior. Furthermore, the skin ageing index SAAID based on the ratio elastin/collagen as well as the epidermis depth based on the onset of SHG generation can be determined.

  19. High-intensity-laser-electron scattering

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.

    1997-01-01

    In the field of an intense laser, photon-electron scattering becomes nonlinear when the oscillatory energy of the electron approaches its rest mass. The electron wave function is dressed by the field with a concomitant increase in the effective electron mass. When the photon energy in the electron rest frame is comparable to the electron rest mass, multiphoton Compton scattering occurs. When the photon energy is significantly lower than the electron rest mass, the electron acquires momentum from the photon field and emits harmonics. This paper reviews nonlinear photon-electron scattering processes and results from two recent experiments where they have been observed

  20. Resonance broadening of Hg lines as a density diagnostic in high intensity discharge lamps

    International Nuclear Information System (INIS)

    Lawler, J E

    2004-01-01

    The use of width measurements on resonance broadened lines of Hg as a density diagnostic in high intensity discharge (HID) lamps is reviewed and further developed in this paper. Optical depths of Hg I lines at 491.6 nm, 577.0 nm, and 1014 nm are computed as a function of temperature to confirm that these lines are optically thin in most HID lamps. The effect of quadratic and quartic radial temperature variation on the width of resonance broadened lines is computed for arc core temperatures from 4000 K to 7000 K. Such variations in temperature, and inverse variations in Hg density, are found to increase the line widths by less than 10% for 'side-on' emission measurements averaged over the arc radius. Theoretical profiles of resonance broadened spectral lines, both radially averaged and as a function of chord offset, are presented. Observations of resonance broadened lines in a metal-halide HID lamp are presented and analysed. It is concluded that the widths of resonance broadened lines provide a convenient and reliable diagnostic for the arc core Hg density but are generally not very sensitive to the radial temperature and Hg density gradient

  1. Photoionization pathways and thresholds in generation of Lyman-α radiation by resonant four-wave mixing in Kr-Ar mixture

    OpenAIRE

    Oleg A. Louchev; Norihito Saito; Yu Oishi; Koji Miyazaki; Kotaro Okamura; Jumpei Nakamura; Masahiko Iwasaki; Satoshi Wada

    2016-01-01

    We develop a set of analytical approximations for the estimation of the combined effect of various photoionization processes involved in the resonant four-wave mixing generation of ns pulsed Lyman-α (L-α) radiation by using 212.556 nm and 820-845 nm laser radiation pulses in Kr-Ar mixture: (i) multi-photon ionization, (ii) step-wise (2+1)-photon ionization via the resonant 2-photon excitation of Kr followed by 1-photon ionization and (iii) laser-induced avalanche ionization produced by genera...

  2. Photoelectron imaging spectroscopy for (2+1) resonance-enhanced multiphoton ionization of atomic bromine

    International Nuclear Information System (INIS)

    Kim, Yong Shin; Jung, Young Jae; Kang, Wee Kyung; Jung, Kyung Hoon

    2002-01-01

    Two-photon resonant third photon ionization of atomic bromine (4p 5 2 P 3/2 and 2 P 1/2 ) has been studied using a photoelectron imaging spectroscopy in the wavelength region 250-278 nm. The technique has yielded simultaneously both relative branching ratios to the three levels of Br + ( 3 P 2 , 3 P 0,1 and 1 D 2 ) with 4p 4 configuration and the angular distributions of outgoing photoelectrons. The product branching ratios reveal a strong propensity to populate particular levels in many cases. Several pathways have been documented for selective formation of Br + ( 3 P 2 ) and Br + ( 3 P 0,1 ) ions. In general, the final ion level distributions are dominated by the preservation of the ion core configuration of a resonant excited state. Some deviations from this simple picture are discussed in terms of the configuration interaction of resonant states and the autoionization in the continuum. The photoelectron angular distributions are qualitatively similar for all transitions, with a positive A 2 anisotropy coefficient of 1.0 - 2.0 and negligible A 4 in most cases, which suggests that the angular distribution is mainly determined by the single-photon ionization process of a resonant excited state induced from the third photon absorption

  3. Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high intensity laser waves

    International Nuclear Information System (INIS)

    Rax, J.M.

    1992-04-01

    The dynamics of electrons in two-dimensional, linearly or circularly polarized, ultra-high intensity (above 10 18 W/cm 2 ) laser waves, is investigated. The Compton harmonic resonances are identified as the source of various stochastic instabilities. Both Arnold diffusion and resonance overlap are considered. The quasilinear kinetic equation, describing the evolution of the electron distribution function, is derived, and the associated collisionless damping coefficient is calculated. The implications of these new processes are considered and discussed

  4. Excitation-energy dependence of the resonant Auger transitions to the 4p4(1D)np (n=5,6) states across the 3d3/2-15p and 3d5/2-16p resonances in Kr

    International Nuclear Information System (INIS)

    Sankari, A.; Alitalo, S.; Nikkinen, J.; Kivimaeki, A.; Aksela, S.; Aksela, H.; Fritzsche, S.

    2007-01-01

    The energy dependencies of the intensities and angular distribution parameters β of the resonant Auger final states 4p 4 ( 1 D)np (n=5,6) of Kr were determined experimentally in the excitation-energy region of the overlapping 3d 3/2 -1 5p and 3d 5/2 -1 6p resonances. The experimental results were compared with the outcome of multiconfiguration Dirac-Fock calculations. Combining experimental and calculated results allowed us to study interference effects between the direct and several resonant channels that populate the 4p 4 ( 1 D)np states. The inclusion of the direct channel was crucial in order to reproduce the observed energy behavior of the angular distribution parameters. It was also important to take into account experimentally observed shake transitions

  5. Angle-dependent spin-wave resonance spectroscopy of (Ga,Mn)As films

    Science.gov (United States)

    Dreher, L.; Bihler, C.; Peiner, E.; Waag, A.; Schoch, W.; Limmer, W.; Goennenwein, S. T. B.; Brandt, M. S.

    2013-06-01

    A modeling approach for standing spin-wave resonances based on a finite-difference formulation of the Landau-Lifshitz-Gilbert equation is presented. In contrast to a previous study [C. Bihler , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.79.045205 79, 045205 (2009)], this formalism accounts for elliptical magnetization precession and magnetic properties arbitrarily varying across the layer thickness, including the magnetic anisotropy parameters, the exchange stiffness, the Gilbert damping, and the saturation magnetization. To demonstrate the usefulness of our modeling approach, we experimentally study a set of (Ga,Mn)As samples grown by low-temperature molecular-beam epitaxy by means of angle-dependent standing spin-wave resonance spectroscopy and electrochemical capacitance-voltage measurements. By applying our modeling approach, the angle dependence of the spin-wave resonance data can be reproduced in a simulation with one set of simulation parameters for all external field orientations. We find that the approximately linear gradient in the out-of-plane magnetic anisotropy is related to a linear gradient in the hole concentrations of the samples.

  6. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    OpenAIRE

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-01-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. I...

  7. Real-time analysis of aromatics in combustion engine exhaust by resonance-enhanced multiphoton ionisation time-of-flight mass spectrometry (REMPI-TOF-MS): a robust tool for chassis dynamometer testing

    Energy Technology Data Exchange (ETDEWEB)

    Adam, T.W. [European Commission Joint Research Centre, Institute for Environment and Sustainability, Transport and Air Quality Unit, Ispra, VA (Italy); Clairotte, M.; Manfredi, U.; Carriero, M.; Martini, G.; Krasenbrink, A.; Astorga, C. [European Commission Joint Research Centre, Institute for Environment and Sustainability, Transport and Air Quality Unit, Ispra, VA (Italy); European Commission Joint Research Centre, Institute for Energy and Transport, Sustainable Transport Unit, Ispra, Varese (Italy); Streibel, T.; Pommeres, A.; Sklorz, M. [University of Rostock, Analytical Chemistry/Joint Mass Spectrometry Centre, Institute of Chemistry, Rostock (Germany); Elsasser, M.; Zimmermann, R. [Cooperation Group Complex Molecular Systems (CMA)/Joint Mass Spectrometry Centre (JMSC), Neuherberg (Germany); University of Rostock, Analytical Chemistry/Joint Mass Spectrometry Centre, Institute of Chemistry, Rostock (Germany)

    2012-07-15

    Resonance-enhanced multiphoton ionisation time-of-flight mass spectrometry (REMPI-TOF-MS) is a robust method for real-time analysis of monocyclic and polycyclic aromatic hydrocarbons in complex emissions. A mobile system has been developed which enables direct analysis on site. In this paper, we utilize a multicomponent calibration scheme based on the analytes' photo-ionisation cross-sections relative to a calibrated species. This allows semi-quantification of a great number of components by only calibrating one compound of choice, here toluene. The cross-sections were determined by injecting nebulised solutions of aromatic compounds into the TOF-MS ion source with the help of a HPLC pump. Then, REMPI-TOF-MS was implemented at various chassis dynamometers and test cells and the exhaust of the following vehicles and engines investigated: a compression ignition light-duty (LD) passenger car, a compression ignition LD van, two spark ignition LD passenger cars, 2 two-stroke mopeds, and a two-stroke engine of a string gas trimmer. The quantitative time profiles of benzene are shown. The results indicate that two-stroke engines are a significant source for toxic and cancerogenic compounds. Air pollution and health effects caused by gardening equipment might still be underestimated. (orig.)

  8. Gas breakdown at cyclotron resonance with a submillimeter laser

    International Nuclear Information System (INIS)

    Hacker, M.P.; Temkin, R.J.; Lax, B.

    1976-01-01

    A pulsed 496-μm CH 3 F laser is used to produce gas breakdown in He at pressures between 1 and 300 Torr in an intense longitudinal magnetic field. Breakdown is detected by the observation of visible light when the electron cyclotron frequency (eB/m) equals the laser frequency, which occurs at B=216 kG for lambda=496 μm. At the lowest helium pressures and near cyclotron resonance, the focused laser intensity of 40 kW/cm 2 gives rise to very large electron heating rates, well beyond the limit of validity of conventional equilibrium breakdown theory. The observed result is an intensity-dependent resonant linewidth, much larger than predicted by equilibrium theories

  9. Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo

    Science.gov (United States)

    Dancik, Yuri; Favre, Amandine; Loy, Chong Jin; Zvyagin, Andrei V.; Roberts, Michael S.

    2013-02-01

    There is a growing body of literature showing the usefulness of multiphoton tomography (MPT) and fluorescence lifetime imaging for in situ characterization of skin constituents and the ensuing development of noninvasive diagnostic tools against skin diseases. Melanin and pigmentation-associated skin cancers constitute some of the major applications. We show that MPT and fluorescence lifetime imaging can be used to measure changes in cutaneous melanin concentration and that these can be related to the visible skin color. Melanin in the skin of African, Indian, Caucasian, and Asian volunteers is detected on the basis of its emission wavelength and fluorescence lifetimes in solution and in a melanocyte-keratinocyte cell culture. Fluorescence intensity is used to characterize the melanin content and distribution as a function of skin type and depth into the skin (stratum granulosum and stratum basale). The measured fluorescence intensities in given skin types agree with melanin amounts reported by others using biopsies. Our results suggest that spatial distribution of melanin in skin can be studied using MPT and fluorescence lifetime imaging, but further studies are needed to ascertain that the method can resolve melanin amount in smaller depth intervals.

  10. Resonance ionization and time-of-flight mass spectrometry for the analysis of trace substances in complex gas mixtures

    International Nuclear Information System (INIS)

    Nagel, Holger; Weickhardt, Christian; Boesl, Ulrich; Frey, Ruediger

    1995-01-01

    The analysis of mixtures of technical gases still comprises a lot of problems: the large number of components with very different and often rapidly varying concentrations makes great demands on analytical methods. By use of conventional analytical methods, signals of trace substances may interfere with signals of main components, whereas small signals representing low concentrations are covered by signals of main substances.The resonant-enhanced multiphoton ionization (REMPI) makes use of excited intermediate states of molecules. As these states are characteristic of each substance, one or more components of interest can be ionized with high efficiency without interference of other molecules by using a special laser-wavelength. The combination of the above mentioned ionization method with a reflectron time-of-flight mass spectrometer permits a very fast and sensitive detection of preselected trace substances.As ionization processes of higher order strongly depend on the laser intensity, there is no direct relation between ion signals and concentrations of exhaust components. Quantitative assessments are based on an especially developed calibration technique that makes use of internal standards. Applied under environmental aspects, this new analytical method helps to analyze a large number of components extracted from exhaust gases of combustion engines with high time resolution (<20 ms motor synchronously), high sensitivity (1 ppm) and high quantitative accuracy (more than 10%). A preliminary list of detectable compounds contains 30 substances

  11. Very high intensity reaction chamber design

    International Nuclear Information System (INIS)

    Devaney, J.J.

    1975-09-01

    The problem of achieving very high intensity irradiation by light in minimal regions was studied. Three types of irradiation chamber are suggested: the common laser-reaction chamber, the folded concentric or near-concentric resonator, and the asymmetric confocal resonator. In all designs the ratio of high-intensity illuminated volume to other volume is highly dependent (to the 3 / 2 power) on the power and fluence tolerances of optical elements, primarily mirrors. Optimization of energy coupling is discussed for the common cavity. For the concentric cavities, optimization for both coherent and incoherent beams is treated. Formulae and numerical examples give the size of chambers, aspect ratios, maximum pass number, image sizes, fluences, and the like. Similarly for the asymmetric confocal chamber, formulae and numerical examples for fluences, dimensions, losses, and totally contained pass numbers are given

  12. Laser-Bioplasma Interaction: Excitation and Suppression of the Brain Waves by the Multi-photon Pulsed-operated Fiber Lasers in the Ultraviolet Range of Frequencies

    Science.gov (United States)

    Stefan, V. Alexander; IAPS-team Team

    2017-10-01

    The novel study of the laser excitation-suppression of the brain waves is proposed. It is based on the pulsed-operated multi-photon fiber-laser interaction with the brain parvalbumin (PV) neurons. The repetition frequency matches the low frequency brain waves (5-100 Hz); enabling the resonance-scanning of the wide range of the PV neurons (the generators of the brain wave activity). The tunable fiber laser frequencies are in the ultraviolet frequency range, thus enabling the monitoring of the PV neuron-DNA, within the 10s of milliseconds. In medicine, the method can be used as an ``instantaneous-on-off anesthetic.'' Supported by Nikola Tesla Labs, Stefan University.

  13. Multiphoton ionization for hydrogen plasma diagnostics

    International Nuclear Information System (INIS)

    Bonnie, J.H.M.

    1987-01-01

    In this thesis the processes leading to the formation of negative ions (H - ) in hydrogen discharges are studied. These ions enable efficient production of a beam of fast neutral particles. Such beams are applied in nuclear fusion research. A model has been generally accepted in which H - is formed by means of dissociative attachment (DA) of electrons to vibrationally excited hydrogen molecules [H 2 (υ'')] molecule: when υ'' is low, electron emission is most probable, but when υ'' is high, H - production dominates. A necessary preliminary to the DA process is the presence of sufficient [H 2 (υ'')] molecules with υ'' > 4. By determining the densities of hydrogen molecules in the various vibrational levels as a function of the various discharge parameters (scaling laws), insight can be gained into the extent to which the DA process contributes to H - formation. Since the de-excitation of [H 2 (υ'')] molecules by H atoms is expected to have a large cross section, it is also relevant to determine the scaling laws for atomic hydrogen. This thesis gives an account of the development of an experimental setup for obtaining such measurements, and reports the first results achieved. In view of the anticipated density of the vibrationally excited molecules and the detection limit considered feasible, the diagnostic chosen was resonance-enhanced multiphoton ionization (REMPI). The principle is based on state-selective ionization with REMPI of particles effusing from the discharge chamber through an aperture in the wall. The ions produced in the REMPI-process are then detected. The use of both an electric and a magnetic field makes it possible to distinguish the REMPI ions from those originating elsewhere, such as plasma ions or photodesorption ions. 145 refs.; 25 figs.; 6 tabs

  14. Femtosecond Light Source for Phase-Controlled Multiphoton Ionization

    International Nuclear Information System (INIS)

    Sokolov, A. V.; Walker, D. R.; Yavuz, D. D.; Yin, G. Y.; Harris, S. E.

    2001-01-01

    We describe a femtosecond Raman light source with more than an octave of optical bandwidth. We use this source to demonstrate phase control of multiphoton ionization under conditions where ionization requires eleven photons of the lowest frequency of the spectrum or five photons of the highest frequency. The nonlinearity of the photoionization process allows us to characterize the light source. Experiment-to-theory comparison implies generation of a near single-cycle waveform

  15. Multi-photon ionization of atoms and molecules by intense XUV-FEL light. Application to methanol and ethanol molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Takahiro; Iwasaki, Atsushi; Okino, Tomoya; Yamanouchi, Kaoru [Tokyo Univ., School of Science, Tokyo (Japan); Yagishita, Akira [Institute of Materials Structure Science, Photon Factory, Tsukuba, Ibaraki (Japan); Yazawa, Hiroki; Kannari, Fumihiko [Keio Univ., Graduate School of Science and Technology, Yokohama, Kanagawa (Japan); Aoyama, Makoto; Yamakawa, Koichi [Japan Atomic Energy Agency, Kansai Photon Science Inst., Kizugawa, Kyoto (Japan); Midorikawa, Katsumi [RIKEN, Laser Technology Laboratory, Wako, Saitama (Japan); Nakano, Hidetoshi [NTT Corp., NTT Basic Research Laboratories, Atsugi, Kanagawa (Japan); Yabashi, Makina; Nagasono, Mitsuru; Higashiya, Atsushi; Togashi, Tadashi; Ishikawa, Tetsuya [RIKEN SPring-8 XFEL Project, Sayo, Hyogo (Japan)

    2009-12-15

    The photo-ionization processes of methanol (CH{sub 3}OH, CD{sub 3}OH) and ethanol (C{sub 2}H{sub 5}OH) and their dependences on the wavelength and the light-field intensity were investigated using intense XUV light at 51 and 61 nm at the XUV free electron laser facility of RIKEN SPring-8 Center. The light field intensity achieved at 51 nm was found to be intense enough to generate Ar{sup 7+} from Ar. It was confirmed that (1) the stable dications, CH{sub 2}OH{sup 2+} and CH{sub 2}OD{sup 2+}, were produced respectively from CH{sub 3}OH and CD{sub 3}OH, and C{sub 2}H{sub 2}OH{sup 2+} from CH{sub 2}H{sub 5}OH via the direct and/or stepwise two-photon absorption, and (2) C{sup +} and CH{sup +} were produced from C{sub 2}H{sub 5}OH via the stepwise two-photon absorption of the XUV light. It was also confirmed by the formation of H{sub 3}O{sup +} from CH{sub 3}OH and C{sub 2}H{sub 5}OH, and HOD{sub 2}{sup +} from CD{sub 3}OH that hydrogen migration processes were induced by the irradiation of the intense XUV light. (author)

  16. Enhanced intensity dependence and aggression history indicate previous regular ecstasy use in abstinent polydrug users.

    Science.gov (United States)

    Wan, Li; Baldridge, Robyn M; Colby, Amanda M; Stanford, Matthew S

    2009-11-13

    Intensity dependence is an electrophysiological measure of intra-individual stability of the augmenting/reducing characteristic of N1/ P2 event-related potential amplitudes in response to stimuli of varying intensities. Abstinent ecstasy users typically show enhanced intensity dependence and higher levels of impulsivity and aggression. Enhanced intensity dependence and high impulsivity and aggression levels may be due to damage in the brain's serotonergic neurons as a result of ecstasy use. The present study investigated whether intensity dependence, impulsivity and aggression history can be used as indicators of previous chronic ecstasy usage. Forty-four abstinent polydrug users (8 women; age 19 to 61 years old) were recruited. All participants were currently residents at a local substance abuse facility receiving treatment and had been free of all drugs for a minimum of 21 days. The study found significantly enhanced intensity dependence of tangential dipole source activity and a history of more aggressive behavior in those who had previously been involved in chronic ecstasy use. Intensity dependence of the tangential dipole source and aggressive behavior history correctly identified 73.3% of those who had been regular ecstasy users and 78.3% of those who had not. Overall, 76.3% of the participants were correctly classified.

  17. Resonantly-enhanced, four-photon ionization of krypton at laser intensities exceeding 1013 W/cm2

    International Nuclear Information System (INIS)

    Perry, M.D.; Landen, O.L.; Campbell, E.M.

    1987-12-01

    The yield of singly- and multiply- charged ions of krypton and xenon is presented as a function of laser intensity and frequency. The measurements were performed using the second harmonic output of a well-characterized, tunable picosecond dye laser in the range 285 to 310 nm at laser intensities from 1 x 10 12 to 10 14 W/cm 2 . Enhancement of the Kr + yield by two orders of magnitude by three-photon resonant, four-photon ionization is observed in the vicinity of the 4d'[5/2] 3 and the 4d[3/2] 1 intermediate states. A model incorporating line shifts and widths scaling linearly with intensity is in good agreement with the experimental results

  18. Design, Fabrication and Computational Characterization of a 3D Micro-Valve Built by Multi-Photon Polymerization

    Directory of Open Access Journals (Sweden)

    Stratos Galanopoulos

    2014-08-01

    Full Text Available We report on the design, modeling and fabrication by multi-photon polymerization of a complex medical fluidic device. The physical dimensions of the built micro-valve prototype are compared to those of its computer-designed model. Important fabrication issues such as achieving high dimensional resolution and ability to control distortion due to shrinkage are presented and discussed. The operational performance of both multi-photon and CAD-created models under steady blood flow conditions was evaluated and compared through computational fluid dynamics analysis.

  19. Blood lactate clearance after maximal exercise depends on active recovery intensity.

    Science.gov (United States)

    Devlin, J; Paton, B; Poole, L; Sun, W; Ferguson, C; Wilson, J; Kemi, O J

    2014-06-01

    High-intensity exercise is time-limited by onset of fatigue, marked by accumulation of blood lactate. This is accentuated at maximal, all-out exercise that rapidly accumulates high blood lactate. The optimal active recovery intensity for clearing lactate after such maximal, all-out exercise remains unknown. Thus, we studied the intensity-dependence of lactate clearance during active recovery after maximal exercise. We constructed a standardized maximal, all-out treadmill exercise protocol that predictably lead to voluntary exhaustion and blood lactate concentration>10 mM. Next, subjects ran series of all-out bouts that increased blood lactate concentration to 11.5±0.2 mM, followed by recovery exercises ranging 0% (passive)-100% of the lactate threshold. Repeated measurements showed faster lactate clearance during active versus passive recovery (P40%>passive recovery, Pexercise clears accumulated blood lactate faster than passive recovery in an intensity-dependent manner, with maximum clearance occurring at active recovery of 80% of lactate threshold.

  20. The temperature dependence of quantum spin pumping generated using electron spin resonance with three-magnon splittings

    International Nuclear Information System (INIS)

    Nakata, Kouki

    2013-01-01

    On the basis of the Schwinger–Keldysh formalism, we have closely investigated the temperature dependence of quantum spin pumping generated using electron spin resonance. We have clarified that three-magnon splittings excite non-zero modes of magnons and characterize the temperature dependence of quantum spin pumping generated using electron spin resonance. (paper)

  1. Measurement of inverse pion photoproduction at energies spanning the N(1440) resonance

    International Nuclear Information System (INIS)

    Shafi, A.; Strakovsky, I.I.; Briscoe, W.J.; Arndt, R.A.; Bennhold, C.; Workman, R.L.; Prakhov, S.; Nefkens, B.M.K.; Clajus, M.; Marusic, A.; McDonald, S.; Phaisangittisakul, N.; Price, J.W.; Tippens, W.B.; Allgower, C.E.; Spinka, H.; Bekrenev, V.; Kulbardis, A.; Kozlenko, N.; Kruglov, S.

    2004-01-01

    Differential cross sections for the process π - p→γn have been measured at Brookhaven National Laboratory's Alternating Gradient Synchrotron with the Crystal Ball multiphoton spectrometer. Measurements were made at 18 pion momenta from 238 to 748 MeV/c, corresponding to E γ for the inverse reaction from 285 to 769 MeV. The data have been used to evaluate the γn multipoles in the vicinity of the N(1440) resonance. We compare our data and multipoles to previous determinations

  2. Anomolous, intensity dependent losses in Au(32+) beams

    International Nuclear Information System (INIS)

    Blaskiewicz, M.; Ahrens, L.; Calvani, H.

    1997-01-01

    The AGS Booster is a rapid cycling proton and heavy ion synchrotron. Anomolous, intensity dependent losses in Au(32+) beams have been observed in the AGS Booster. No collective signal is expected, or observed, but increasing the number of injected ions decreases the beam lifetime. The loss rates for Au(32+) are compared with those for Au(15+)

  3. Electron spin resonance investigations on polycarbonate irradiated with U ions

    Energy Technology Data Exchange (ETDEWEB)

    Chipara, M.I.; Reyes-Romero, J

    2001-12-01

    Electron spin resonance investigations on polycarbonate irradiated with uranium ions are reported. The dependence of the resonance line parameters (line intensity, line width, double integral) on penetration depth and dose is studied. The nature of free radicals induced in polycarbonate by the incident ions is discussed in relation with the track structure. The presence of severe exchange interactions among free radicals is noticed.

  4. Temperature dependence of high-resolution resonant photoemission spectra of CeSi

    International Nuclear Information System (INIS)

    Mimura, Kojiro; Noguchi, Satoru; Suzuki, Mitsuharu; Higashiguchi, Mitsuharu; Shimada, Kenya; Ichikawa, Kouichi; Taguchi, Yukihiro; Namatame, Hirofumi; Taniguchi, Masaki; Aita, Osamu

    2005-01-01

    High-resolution Ce 4d-4f resonant photoemission spectra near the Fermi level of CeSi with the Neel temperature of 5.9K have been measured at temperatures from 5.6 to 200K, in order to investigate the competition between the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction and the Kondo effect. As temperature is decreasing down to 30K, the intensity due to the Ce 4f 5/2 1 final state increases because of the evolution of the heavy Fermion behaviour caused by the Kondo effect. The intensity, however, decreases gradually from 30 to 5.6K. This indicates that the heavy Fermion behaviour is strongly suppressed by the anti-ferromagnetic ordering due to the RKKY interaction

  5. Generating multiphoton Greenberger-Horne-Zeilinger states with weak cross-Kerr nonlinearity

    International Nuclear Information System (INIS)

    Jin, Guang-Sheng; Lin, Yuan; Wu, Biao

    2007-01-01

    We propose a scheme to generate polarization-entangled multiphoton Greenberger-Horne-Zeilinger states with weak cross-Kerr nonlinearity based on controlled bus rotation and subsequent homodyne measurement. Our method is simple in operation and has high success probabilities with near perfect fidelities in an ideal case

  6. Stepwise multiphoton activation fluorescence reveals a new method of melanin detection

    Science.gov (United States)

    Lai, Zhenhua; Kerimo, Josef; Mega, Yair; DiMarzio, Charles A.

    2013-06-01

    The stepwise multiphoton activated fluorescence (SMPAF) of melanin, activated by a continuous-wave mode near infrared (NIR) laser, reveals a broad spectrum extending from the visible spectra to the NIR and has potential application for a low-cost, reliable method of detecting melanin. SMPAF images of melanin in mouse hair and skin are compared with conventional multiphoton fluorescence microscopy and confocal reflectance microscopy (CRM). By combining CRM with SMPAF, we can locate melanin reliably. However, we have the added benefit of eliminating background interference from other components inside mouse hair and skin. The melanin SMPAF signal from the mouse hair is a mixture of a two-photon process and a third-order process. The melanin SMPAF emission spectrum is activated by a 1505.9-nm laser light, and the resulting spectrum has a peak at 960 nm. The discovery of the emission peak may lead to a more energy-efficient method of background-free melanin detection with less photo-bleaching.

  7. Dust grain resonant capture: A statistical study

    Science.gov (United States)

    Marzari, F.; Vanzani, V.; Weidenschilling, S. J.

    1993-01-01

    A statistical approach, based on a large number of simultaneous numerical integrations, is adopted to study the capture in external mean motion resonances with the Earth of micron size dust grains perturbed by solar radiation and wind forces. We explore the dependence of the resonant capture phenomenon on the initial eccentricity e(sub 0) and perihelion argument w(sub 0) of the dust particle orbit. The intensity of both the resonant and dissipative (Poynting-Robertson and wind drag) perturbations strongly depends on the eccentricity of the particle while the perihelion argument determines, for low inclination, the mutual geometrical configuration of the particle's orbit with respect to the Earth's orbit. We present results for three j:j+1 commensurabilities (2:3, 4:5 and 6:7) and also for particle sizes s = 15, 30 microns. This study extends our previous work on the long term orbital evolution of single dust particles trapped into resonances with the Earth.

  8. Multiphoton ionization in superintense, high-frequency laser fields. I. General developments

    International Nuclear Information System (INIS)

    Pont, M.

    1991-01-01

    This is the first of two papers studying multiphoton ionization (MPI) in superintense, high-frequency laser fields. They are based on a general iteration scheme in increasing powers of the inverse frequency. To lowest order in the frequency, i.e., the high-frequency limit, the atom was shown to be stable against decay by MPI, though distorted. To next order in the iteration, an expression for the MPI amplitude was obtained. In the present paper, we present general developments from this expression, valid for arbitrary polarization, binding potential, intensity, and initial state. First we analyze the symmetry of the angular distributions of photoelectrons determined by this expression for the MPI amplitude. This expression can explain the asymmetries in the angular distributions of photoelectrons occurring in the case of elliptic polarization that were recently reported in experiments. In the radiation regime where our theory applies these asymmetries are, however, weak. In certain instances our theory yields asymmetries in cases where lowest-order perturbation theory (LOPT) fails to predict them. We prove that at low intensities our expression for the MPI amplitude yields results in agreement with LOPT evaluated at high frequencies. An important part of this paper consists, however, of the derivation of an alternative form for the MPI amplitude of atomic hydrogen, which is substantially simpler, though somewhat less accurate. We study the consequences of this simplified expression for the case of linearly polarized fields in the following paper [Phys. Rev. A 44, xxxx (1991)

  9. Fragmentation of dimethyl ether in femtosecond intense field

    Science.gov (United States)

    Zhu, Jingyi; Guo, Wei; Wang, Yanqiu; Wang, Li

    2006-08-01

    The fragmentation of dimethyl ether (DME) in intense femtosecond laser field has been studied at 810, 405 and 270 nm with intensities up to 2.48 × 10 15, 3.86 × 10 15 and 1.62 × 10 14 W/cm 2, respectively. At 405 nm, DME is possibly firstly ionized by multiphoton absorption, and then parent ion DME + dissociates into fragments via filed-induced dissociation. For 810 and 270 nm laser fields, DME firstly dissociates into CH 3O and CH 3 fragments and then these neutral fragments are ionized by field tunneling. Another possible way for DME to dissociate at 810 and 270 nm is that DME is ionized by intense field ejection of inner valance electron and then the excited DME + dissociates into fragment ions. Ultrafast rearrangement of DME or DME + in intense field may be responsible to the unpredictable fragment ions, CHO+/C2H5+andH2+.

  10. Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling

    NARCIS (Netherlands)

    Yeoh, S.Y.; Arias Moreno, A.J.; Rietbergen, van B.; Hoeve, ter N.D.; Diest, van P.J.; Grull, H.

    2015-01-01

    Background Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a promising technique for palliative treatment of bone pain. In this study, the effects of MR-HIFU ablation on bone mechanics and modeling were investigated. Methods A total of 12 healthy rat femurs were ablated

  11. Multiphoton absorption probabilities in strong laser fields with application to H-

    International Nuclear Information System (INIS)

    Mu, X.; University of Oregon, Eugene, OR

    1990-01-01

    The commonly used Keldysh multiphoton ionization rate is shown to follow from the zeroth-order approximation of an exact expression, based on the formal time-independent theory of scattering. The formulation is applied to the loosely bound H - system; good agreement is obtained with a recent experimental measurement

  12. Investigations of multiphoton excitation and ionization in a short range potential

    International Nuclear Information System (INIS)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a δ-function potential. 9 refs., 3 figs

  13. Investigations of multiphoton excitation and ionization in a short range potential

    Energy Technology Data Exchange (ETDEWEB)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a delta-function potential. 9 refs., 3 figs.

  14. Asymptotic inference for jump diffusions with state-dependent intensity

    NARCIS (Netherlands)

    Becheri, Gaia; Drost, Feico; Werker, Bas

    2016-01-01

    We establish the local asymptotic normality property for a class of ergodic parametric jump-diffusion processes with state-dependent intensity and known volatility function sampled at high frequency. We prove that the inference problem about the drift and jump parameters is adaptive with respect to

  15. Clinical optical coherence tomography combined with multiphoton tomography for evaluation of several skin disorders

    Science.gov (United States)

    König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J.; Elsner, Peter; Kaatz, Martin

    2010-02-01

    The first clinical trial of optical coherence tomography (OCT) combined with multiphoton tomography (MPT) and dermoscopy is reported. State-of-the-art (i) OCT systems for dermatology (e.g. multibeam swept source OCT), (ii) the femtosecond laser multiphoton tomograph DermaInspectTM, and (iii) digital dermoscopes were applied to 47 patients with a diversity of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases. Dermoscopy, also called 'epiluminescent microscopy', provides two-dimensional color images of the skin surface. OCT imaging is based on the detection of optical reflections within the tissue measured interferometrically whereas nonlinear excitation of endogenous fluorophores and the second harmonic generation are the bases of MPT images. OCT cross sectional "wide field" image provides a typical field of view of 5 x 2 mm2 and offers fast information on the depth and the volume of the investigated lesion. In comparison, multiphoton tomography presents 0.36 x 0.36 mm2 horizontal or diagonal sections of the region of interest within seconds with submicron resolution and down to a tissue depth of 200 μm. The combination of OCT and MPT provides a synergistic optical imaging modality for early detection of skin cancer and other skin diseases.

  16. One- and two-photon single ionization of 1D helium: resolving the role of individual decay channels and resonance states

    Energy Technology Data Exchange (ETDEWEB)

    Neimanns, Vera; Zimmermann, Klaus; Joerder, Felix; Buchleitner, Andreas [Albert-Ludwigs-Univ., Freiburg im Breisgau (Germany). Quantum Optics and Statistics; Lugan, Pierre [Laboratory of Theoretical Physics of Nanosystems, Institute of Theoretical Physics, EPF Lausanne (Switzerland)

    2012-07-01

    We combine the method of complex rotation and Floquet theory to analyze the multiphoton ionization of helium atoms in strong laser fields. We focus on 1D Z{sup 2+}e{sup -}e{sup -} helium to highlight the methods that allow us to extract the partial decay rates associated with various decay channels. In the regime of one-photon single ionization, we study the dependence of the partial rates associated with the singly ionized He{sup +}(N) states on the field frequency. We show that the electron-electron interaction provides couplings to higher single-ionization continua. Finally, we examine two-photon single-ionization processes, and analyze the role of the internal electronic structure of the atom, specifically the signature of resonant coupling to intermediate bound states on the decay rates.

  17. Long Range Dependence Prognostics for Bearing Vibration Intensity Chaotic Time Series

    Directory of Open Access Journals (Sweden)

    Qing Li

    2016-01-01

    Full Text Available According to the chaotic features and typical fractional order characteristics of the bearing vibration intensity time series, a forecasting approach based on long range dependence (LRD is proposed. In order to reveal the internal chaotic properties, vibration intensity time series are reconstructed based on chaos theory in phase-space, the delay time is computed with C-C method and the optimal embedding dimension and saturated correlation dimension are calculated via the Grassberger–Procaccia (G-P method, respectively, so that the chaotic characteristics of vibration intensity time series can be jointly determined by the largest Lyapunov exponent and phase plane trajectory of vibration intensity time series, meanwhile, the largest Lyapunov exponent is calculated by the Wolf method and phase plane trajectory is illustrated using Duffing-Holmes Oscillator (DHO. The Hurst exponent and long range dependence prediction method are proposed to verify the typical fractional order features and improve the prediction accuracy of bearing vibration intensity time series, respectively. Experience shows that the vibration intensity time series have chaotic properties and the LRD prediction method is better than the other prediction methods (largest Lyapunov, auto regressive moving average (ARMA and BP neural network (BPNN model in prediction accuracy and prediction performance, which provides a new approach for running tendency predictions for rotating machinery and provide some guidance value to the engineering practice.

  18. Density dependence of line intensities and application to plasma diagnostics

    International Nuclear Information System (INIS)

    Masai, Kuniaki.

    1993-02-01

    Electron density dependence of spectral lines are discussed in view of application to density diagnostics of plasmas. The dependence arises from competitive level population processes, radiative and collisional transitions from the excited states. Results of the measurement on tokamak plasmas are presented to demonstrate the usefulness of line intensity ratios for density diagnostics. Also general characteristics related to density dependence are discussed with atomic-number scaling for H-like and He-like systems to be helpful for application to higher density plasmas. (author)

  19. Magnetic resonance described in the excitation dependent rotating frame of reference.

    Science.gov (United States)

    Tahayori, Bahman; Johnston, Leigh A; Mareels, Iven M Y; Farrell, Peter M

    2008-01-01

    An excitation dependent rotating frame of reference to observe the magnetic resonance phenomenon is introduced in this paper that, to the best of our knowledge, has not been used previously in the nuclear magnetic resonance context. The mathematical framework for this new rotating frame of reference is presented based on time scaling the Bloch equation after transformation to the classical rotating frame of reference whose transverse plane is rotating at the Larmor frequency. To this end, the Bloch equation is rewritten in terms of a magnetisation vector observed from the excitation dependent rotating frame of reference. The resultant Bloch equation is referred to as the time scaled Bloch equation. In the excitation dependent rotating frame of reference whose coordinates are rotating at the instantaneous Rabi frequency the observed magnetisation vector is a much slower signal than the true magnetisation in the rotating frame of reference. As a result the ordinary differential equation solvers have the ability to solve the time scaled version of the Bloch equation with a larger step size resulting in a smaller number of samples for solving the equation to a desired level of accuracy. The simulation results for different types of excitation are presented in this paper. This method may be used in true Bloch simulators in order to reduce the simulation time or increase the accuracy of the numerical solution. Moreover, the time scaled Bloch equation may be employed to determine the optimal excitation pattern in magnetic resonance imaging as well as designing pulses with better slice selectivity which is an active area of research in this field.

  20. Label-free identification of intestinal metaplasia in the stomach using multiphoton microscopy

    International Nuclear Information System (INIS)

    Wu, G; Wei, J; Zheng, Z; Ye, J; Zeng, S

    2014-01-01

    The early diagnosis of intestinal metaplasia (IM) in the stomach together with effective therapeutic interventions is crucial to reducing the mortality-rates of the patients associated with gastric cancer. However, it is challenging during conventional white-light endoscopy, and histological analysis remains the ‘gold standard’ for the final diagnosis. Here, we describe a label-free imaging method, multiphoton microscopy (MPM), for the identification of IM in the stomach. It was found that multiphoton imaging provides cellular and subcellular details to the identification of IM from normal gastric tissues. In particular, there is significant difference in the population density of goblet cells between normal and IM gastric tissues, providing substantial potential to become a quantitative intrinsic marker for in vivo clinical diagnosis of early gastric lesions. To our knowledge, this is the first demonstration of the potential of MPM for the identification of IM. (letters)

  1. Vibronic Rabi resonances in harmonic and hard-wall ion traps for arbitrary laser intensity and detuning

    International Nuclear Information System (INIS)

    Lizuain, I.; Muga, J. G.

    2007-01-01

    We investigate laser-driven vibronic transitions of a single two-level atomic ion in harmonic and hard-wall traps. In the Lamb-Dicke regime, for tuned or detuned lasers with respect to the internal frequency of the ion, and weak or strong laser intensities, the vibronic transitions occur at well-isolated Rabi resonances, where the detuning-adapted Rabi frequency coincides with the transition frequency between vibrational modes. These vibronic resonances are characterized as avoided crossings of the dressed levels (eigenvalues of the full Hamiltonian). Their peculiarities due to symmetry constraints and trapping potential are also examined

  2. Carbohydrate Dependence During Prolonged, Intense Endurance Exercise.

    Science.gov (United States)

    Hawley, John A; Leckey, Jill J

    2015-11-01

    A major goal of training to improve the performance of prolonged, continuous, endurance events lasting up to 3 h is to promote a range of physiological and metabolic adaptations that permit an athlete to work at both higher absolute and relative power outputs/speeds and delay the onset of fatigue (i.e., a decline in exercise intensity). To meet these goals, competitive endurance athletes undertake a prodigious volume of training, with a large proportion performed at intensities that are close to or faster than race pace and highly dependent on carbohydrate (CHO)-based fuels to sustain rates of muscle energy production [i.e., match rates of adenosine triphosphate (ATP) hydrolysis with rates of resynthesis]. Consequently, to sustain muscle energy reserves and meet the daily demands of training sessions, competitive athletes freely select CHO-rich diets. Despite renewed interest in high-fat, low-CHO diets for endurance sport, fat-rich diets do not improve training capacity or performance, but directly impair rates of muscle glycogenolysis and energy flux, limiting high-intensity ATP production. When highly trained athletes compete in endurance events lasting up to 3 h, CHO-, not fat-based fuels are the predominant fuel for the working muscles and CHO, not fat, availability becomes rate limiting for performance.

  3. Functional dependence of resonant harmonics on nanomechanical parameters in dynamic mode atomic force microscopy.

    Science.gov (United States)

    Gramazio, Federico; Lorenzoni, Matteo; Pérez-Murano, Francesc; Rull Trinidad, Enrique; Staufer, Urs; Fraxedas, Jordi

    2017-01-01

    We present a combined theoretical and experimental study of the dependence of resonant higher harmonics of rectangular cantilevers of an atomic force microscope (AFM) as a function of relevant parameters such as the cantilever force constant, tip radius and free oscillation amplitude as well as the stiffness of the sample's surface. The simulations reveal a universal functional dependence of the amplitude of the 6th harmonic (in resonance with the 2nd flexural mode) on these parameters, which can be expressed in terms of a gun-shaped function. This analytical expression can be regarded as a practical tool for extracting qualitative information from AFM measurements and it can be extended to any resonant harmonics. The experiments confirm the predicted dependence in the explored 3-45 N/m force constant range and 2-345 GPa sample's stiffness range. For force constants around 25 N/m, the amplitude of the 6th harmonic exhibits the largest sensitivity for ultrasharp tips (tip radius below 10 nm) and polymers (Young's modulus below 20 GPa).

  4. Resonant parametric interference effect in spontaneous bremsstrahlung of an electron in the field of a nucleus and two pulsed laser waves

    Science.gov (United States)

    Lebed', A. A.; Padusenko, E. A.; Roshchupkin, S. P.; Dubov, V. V.

    2018-04-01

    Electron-nucleus bremsstrahlung in the field of two moderately strong pulsed laser waves in the case of incommensurate frequencies is theoretically studied under resonant conditions. The process is studied in detail in a special kinematic region, where stimulated processes with correlated emission and absorption of photons of the first and second waves become predominant (parametric interference effect). The availability of this region is caused by interference of the first and second laser waves. The correspondence between the emission angle and the final-electron energy is established in this interference kinematic. In this case, the cross-sectional properties are determined by the multiphoton quantum interference parameter, which is proportional to the product of intensities of the first and second waves. The resonant differential cross section of electron-nucleus spontaneous bremsstrahlung with simultaneous registration of both emission angles of the spontaneous photon and the scattered electron can exceed by four or five orders of magnitude the corresponding cross section in the absence of an external field. It was shown for nonrelativistic electrons that the resonant cross section of the studied process in the field of two pulsed laser waves within the interference region in two order of magnitude may exceed corresponding cross sections at other scattering kinematics. The obtained results may be experimentally verified, for example, by scientific facilities at sources of pulsed laser radiation (such as SLAC, FAIR, XFEL, ELI).

  5. Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Yokoya, Kaoru; Chen, Pisin

    1989-03-01

    The final electron energy spectrum under multi-photon beamstrahlung process is derived analytically in the classical and the intermediate regimes. The maximum disruption angle from the low energy tail of the spectrum is also estimated. The results are then applied to the TLC and the CLIC parameters. 6 refs., 1 fig., 1 tab.

  6. Concentration dependence of the Huang scattering intensity of TaHsub(x) alloys

    International Nuclear Information System (INIS)

    Behr, H.; Metzger, H.; Peisl, J.

    1983-01-01

    The analysis of the concentration dependence of the Huang diffuse scattering intensity from ThHsub(x) single crystals has been re-evaluated using two quantities recently determined from independent measurements of the Bragg diffraction intensities. Good agreement between experiment and theory has been achieved. (author)

  7. Intensity dependence narrowing of electromagnetically induced absorption in a Doppler-broadened medium

    International Nuclear Information System (INIS)

    Dimitrijevic, J.; Arsenovic, D.; Jelenkovic, B. M.

    2007-01-01

    In this paper, we present a theoretical model for studying the interaction between linearly polarized laser light and near-degenerated Zeeman sublevels for a multiple V-type atomic system of 2 S 1/2 F g =2→ 2 P 3/2 F e =3 transition in 87 Rb. We have calculated the laser absorption in a Hanle configuration, as well as the amplitudes and the widths of electromagnetically induced absorption (EIA) in the range of laser intensities from 0.01 to 40 mW/cm 2 . Our results, showing nonvanishing EIA amplitude, a nonmonotonic increase of the EIA width for the increase of laser intensity, and pronounced shape differences of the Hanle EIA curves at different laser intensities, are in good agreement with recent experimental results. We have found that the EIA behaves differently than the electromagnetically induced transparency (EIT) as a function of the laser intensity. Both the amplitude and width of the EIA have narrow maximums at 1 to 2 mW/cm 2 . We have shown the strong influence of Doppler broadening of atomic transition on Hanle resonances and have suggested the explanation of it

  8. Magnetic resonance imaging signal intensity of temporomandibular joint disk and posterior attachment in patients with internal derangement

    International Nuclear Information System (INIS)

    Jeong, Yeon Hwa; Cho, Bong Hae

    2001-01-01

    To analyze the possible association between magnetic resonance imaging signal intensity of temporomandibular joint disk and posterior attachment, and the type and extent of disk displacement, disk donfiguration, effusion and clinical signs in patients with internal derangement. Magnetic resonance images of the 132 temporomandibular joints of 66 patients with temporomandibular joint displacement were analyzed. The clinical findings were obtained by retrospective review of the patients' records. The type and extent of disk displacement, disk configuration and effusion were evaluated on the proton density MR images. The signal intensity from the anterior band, posterior band and posterior attachment were measured on MR images. The associations between the type and extent of disk displacement, disk configuration, effusion and clinical signs and the MR signal intensity of disk and posterior attachment were statistically analyzed by student's t-test. Of 132 joints, 87 (65.9%) showed anterior disk displacement with reduction (ADR) and 45 (34.1%) showed anterior disk displacement without reduction (ADnR). This signals from posterior attachments were lower in joints with ADnR than those of ADR (p<0.05). The results showed statistically significant (p<0.05) association between the type and extent of disk displacement and disk configuration, and decreased signal intensity of posterior attachment. There were no statistical associations between pain, noise and limited mouth opening, and signal intensity of disk and posterior attachment. The average signal from posterior attachment was lower in joints with ADnR than that of ADR. The type and extent of disk displacement and disk configuration appeared to be correlated with the signal intensity from posterior attachment

  9. Polarization dependence of two-photon transition intensities in rare-earth doped crystals

    Energy Technology Data Exchange (ETDEWEB)

    Le Nguyen, An-Dien [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    A polarization dependence technique has been developed as a tool to investigate phonon scattering (PS), electronic Raman scattering (ERS), and two-photon absorption (TPA) transition intensities in vanadate and phosphate crystals. A general theory for the polarization dependence (PD) of two-photon transition intensities has been given. Expressions for the polarization dependent behavior of two-photon transition intensities have been tabulated for the 32 crystallographic point groups. When the wavefunctions for the initial and final states of a rare-earth doped in crystals are known, explicit PD expressions with no unknown parameters can be obtained. A spectroscopic method for measuring and interpreting phonon and ERS intensities has been developed to study PrVO4, NdVO4, ErVO4, and TmVO4 crystals. Relative phonon intensities with the polarization of the incident and scattered light arbitrarily varied were accurately predicted and subsequently used for alignment and calibration in ERS measurements in these systems for the first time. Since ERS and PS intensities generally follow different polarization curves as a function of polar angles, the two can be uniquely identified by comparing their respective polarization behavior. The most crucial application of the technique in ERS spectroscopy is the establishment of a stringent test for the Axe theory. For the first time, the F1/F2 ratio extracted from the experimental fits of the ERS intensities were compared with those predicted by theories which include both the second- and third-order contributions. Relatively good agreement between the fitted values of F1/F2 and the predicted values using the second-order theory has been found.

  10. Field angle dependence of voltage-induced ferromagnetic resonance under DC bias voltage

    International Nuclear Information System (INIS)

    Shiota, Yoichi; Miwa, Shinji; Tamaru, Shingo; Nozaki, Takayuki; Kubota, Hitoshi; Fukushima, Akio; Suzuki, Yoshishige; Yuasa, Shinji

    2016-01-01

    We studied the rectification function of microwaves in CoFeB/MgO-based magnetic tunnel junctions using voltage-induced ferromagnetic resonance (FMR). Our findings reveal that the shape of the structure of the spectrum depends on the rotation angle of the external magnetic field, providing clear evidence that FMR dynamics are excited by voltage-induced magnetic anisotropy changes. Further, enhancement of the rectified voltage was demonstrated under a DC bias voltage. In our experiments, the highest microwave detection sensitivity obtained was 350 mV/mW, at an RF frequency of 1.0 GHz and field angle of θ_H=80°, ϕ_H=0°. The experimental results correlated with those obtained via simulation, and the calculated results revealed the magnetization dynamics at the resonance state. - Highlights: • Examined voltage-induced ferromagnetic resonance (FMR) under various field angles. • FMR dynamics are excited by voltage-induced magnetic anisotropy changes. • Microwave detection sensitivity depends on input RF and elevation angle. • Microwave detection sensitivity=350 mV/mW at RF=1.0 GHz, θ_H=80°, ϕ_H=0°.

  11. Intensity dependence of electron gas kinetics in a laser corona

    Directory of Open Access Journals (Sweden)

    Mašek Martin

    2013-11-01

    Full Text Available In various experimental situations relevant to the laser fusion, such as plasma near the light entrance holes of hohlraum in the indirect drive experiments or more recently in the shock ignition direct drive a relatively long underdense plasma of corona type is encountered, which is subject to an intense nanosecond laser beam. The plasma is only weakly collisional and thus in the electron phase space a complicated kinetic evolution is going on, which is taking the electron gas fairly far from the thermal equilibrium and contributes to its unstable behaviour. These phenomena impede the absorption and thermalization of the incoming laser energy, create groups of fast electrons and also may lead to a non-linear reflection of the heating laser beam. One of the key processes leading to the electron acceleration is the stimulated Raman scattering (SRS in its non-linear phase. The SRS in the presence of electron-ion collisions requires a certain threshold intensity above which the mentioned non-dissipative phenomena can occur and develop to the stage, where they may become unpleasant for the fusion experiments. To assess this intensity limit a computational model has been developed based on the Vlasov-Maxwell kinetics describing such a plasma in 1D geometry. At a relatively high intensity of 1016 W/cm2 a number of non-linear phenomena are predicted by the code such as a saturation of Landau damping, which is then translated in an unfavourable time dependence of the reflected light intensity and formation of accelerated electron groups due to the electron trapping. The purpose of the present contribution is to map the intensity dependence of this non-linear development with the aim of assessing its weight in fusion relevant situations.

  12. PScan 1.0: flexible software framework for polygon based multiphoton microscopy

    Science.gov (United States)

    Li, Yongxiao; Lee, Woei Ming

    2016-12-01

    Multiphoton laser scanning microscopes exhibit highly localized nonlinear optical excitation and are powerful instruments for in-vivo deep tissue imaging. Customized multiphoton microscopy has a significantly superior performance for in-vivo imaging because of precise control over the scanning and detection system. To date, there have been several flexible software platforms catered to custom built microscopy systems i.e. ScanImage, HelioScan, MicroManager, that perform at imaging speeds of 30-100fps. In this paper, we describe a flexible software framework for high speed imaging systems capable of operating from 5 fps to 1600 fps. The software is based on the MATLAB image processing toolbox. It has the capability to communicate directly with a high performing imaging card (Matrox Solios eA/XA), thus retaining high speed acquisition. The program is also designed to communicate with LabVIEW and Fiji for instrument control and image processing. Pscan 1.0 can handle high imaging rates and contains sufficient flexibility for users to adapt to their high speed imaging systems.

  13. Temperature dependence of spreading width of giant dipole resonance

    International Nuclear Information System (INIS)

    Storozhenko, A.N.; Vdovin, A.I.; Ventura, A.; Blokhin, A.I.

    2002-01-01

    The Quasiparticle-Phonon Nuclear Model extended to finite temperature within the framework of Thermo Field Dynamics is applied to calculate a temperature dependence of the spreading width Γ ↓ of a giant dipole resonance. Numerical calculations are made for 120 Sn and 208 Pb nuclei. It is found that Γ ↓ increases with T. The reason of this effect is discussed as well as a relation of the present approach to other ones, existing in the literature

  14. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, M.; Sakamoto, S.; Ishii, K. [Division of Neuroimaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders (Japan); Imamura, T.; Kazui, H.; Mori, E. [Division of Clinical Neurosciences, Hyogo Institute for Aging Brain and Cognitive Disorders, Hyogo (Japan)

    2002-03-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  15. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Matsui, M.; Sakamoto, S.; Ishii, K.; Imamura, T.; Kazui, H.; Mori, E.

    2002-01-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  16. Resonance enhanced laser mass spectrometry for process- and environmental-analysis: Applications and perspectives

    International Nuclear Information System (INIS)

    Zimmermann, Ralf; Dorfner, Ralph; Kettrup, Antonius; Heger, Hans Joerg; Boesl, Ulrich

    1998-01-01

    Laser induced Resonance-Enhanced Multi-Photon Ionization Time-Of-Flight Mass Spectrometry (REMPI TOFMS) is a highly selective as well as sensitive analytical technique, well suited for species selective, on-line monitoring of trace-substances. In this contribution some analytical applications of a mobile REMPI-TOFMS are presented. This includes REMPI-TOMS on-line analysis of coffee roasting gas and waste incineration flue gas as well as headspace measurements of pulp processing lye or rapid analysis of polycyclic aromatic hydrocarbons from soil samples via thermal desorption

  17. Exact invariants in the form of momentum resonances for particle motion in one-dimensional, time-dependent potentials

    International Nuclear Information System (INIS)

    Goedert, J.; Lewis, H.R.

    1984-01-01

    A momentum-resonance ansatz of Lewis and Leach was used to study exact invariants for time-dependent, one-dimensional potentials. This ansatz provides a framework for finding invariants admitted by a larger class of time-dependent potentials that was known previously. For a potential that admits an exact invariant in this resonance form, we have shown how to construct the invariant as a functional of the potential in terms of the solution of a definite linear algebraic system of equations. We have found a necessary and sufficient condition on the potential for the existence of an invariant with a given number of resonances. There exist more potentials that admit invariants with two resonances than were previously known and we have found an example in parametric form of such a potential. We have also found examples of potentials that admit invariants with three resonances

  18. Multiphoton ionization of H2+ in xuv laser pulses

    International Nuclear Information System (INIS)

    Guan Xiaoxu; Secor, Ethan B.; Bartschat, Klaus; Schneider, Barry I.

    2011-01-01

    We consider the ionization of the hydrogen molecular ion after one-, two-, and three-photon absorption over a large range of photon energies between 9 and 40 eV in the fixed-nuclei approximation. The temporal development of the system is obtained in a fully ab initio time-dependent grid-based approach in prolate spheroidal coordinates. The alignment dependence of the one-photon ionization amplitude is highlighted in the framework of time-dependent perturbation theory. For one-photon ionization as a function of the nuclear separation, the calculations reveal a significant minimum in the ionization probability. The suppressed ionization is attributed to a Cooper-type minimum, which is similar, but not identical, to the cancellation effect observed in photoionization cross sections of some noble-gas atoms. The effect of the nonspherical two-center Coulomb potential is analyzed. For two- and three-photon ionization, the angle-integrated cross sections clearly map out intermediate-state resonances, and the predictions of the current computations agree very well with those from time-independent calculations. The dominant emission modes for two-photon ionization are found to be very similar in both resonance and off-resonance regions.

  19. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  20. Multi-Photon Absorption Spectra: A Comparison Between Transmittance Change and Fluorescence Methods

    Science.gov (United States)

    2015-05-21

    AFRL-OSR-VA-TR-2015-0134 multi-photon absorption spectra Cleber Mendonca INSTITUTO DE FISICA DE SAO CARLOS Final Report 05/21/2015 DISTRIBUTION A...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Instituto de Fisica de Sao Carlos - Universidade de Sao Paulo Av

  1. Volumetric intensity dependence on the formation of molecular and atomic ions within a high intensity laser focus.

    Science.gov (United States)

    Robson, Lynne; Ledingham, Kenneth W D; McKenna, Paul; McCanny, Thomas; Shimizu, Seiji; Yang, Jiamin M; Wahlström, Claes-Göran; Lopez-Martens, Rodrigo; Varju, Katalin; Johnsson, Per; Mauritsson, Johan

    2005-01-01

    The mechanism of atomic and molecular ionization in intense, ultra-short laser fields is a subject which continues to receive considerable attention. An inherent difficulty with techniques involving the tight focus of a laser beam is the continuous distribution of intensities contained within the focus, which can vary over several orders of magnitude. The present study adopts time of flight mass spectrometry coupled with a high intensity (8 x 10(15) Wcm(-2)), ultra-short (20 fs) pulse laser in order to investigate the ionization and dissociation of the aromatic molecule benzene-d1 (C(6)H(5)D) as a function of intensity within a focused laser beam, by scanning the laser focus in the direction of propagation, while detecting ions produced only in a "thin" slice (400 and 800 microm) of the focus. The resultant TOF mass spectra varies significantly, highlighting the dependence on the range of specific intensities accessed and their volumetric weightings on the ionization/dissociation pathways accessed.

  2. Population inversion of two atoms under the phase decoherence in the multiphoton process

    International Nuclear Information System (INIS)

    Zhang Dongxia; Sa Chuerfu; Mu Qier

    2011-01-01

    By means of the quantum theory, the population inversion of two atoms in the system of two two-level atoms coupled to a light field in the Binomial Optical Field are investigated in the presence of phase decoherence in the multiphoton Tavis-Cumming Model. The influences of the phase decoherence coefficient, the parameters η of the binomial optical field, the maximum number of photons and the number of the transitional photons on the properties of the population inversion of two atoms have been discussed. The results show that the phase decoherence reduced the oscillation amplitude of the population inversion of two atoms and destroyed the atomic quantum characteristic. Changing the number of the transitional photons, evolved cycle and evolved intensity the population inversion of two atoms can be changed. The phenomena of collapse and revival disappear as photon number increase. When the binomial optical state changes from a coherent state to a Fock state, the oscillation frequency of the atomic population reduces gradually, the phenomena of collapse and revival vanishes gradually. (authors)

  3. Dirac Equation in (1 +1 )-Dimensional Curved Spacetime and the Multiphoton Quantum Rabi Model

    Science.gov (United States)

    Pedernales, J. S.; Beau, M.; Pittman, S. M.; Egusquiza, I. L.; Lamata, L.; Solano, E.; del Campo, A.

    2018-04-01

    We introduce an exact mapping between the Dirac equation in (1 +1 )-dimensional curved spacetime (DCS) and a multiphoton quantum Rabi model (QRM). A background of a (1 +1 )-dimensional black hole requires a QRM with one- and two-photon terms that can be implemented in a trapped ion for the quantum simulation of Dirac particles in curved spacetime. We illustrate our proposal with a numerical analysis of the free fall of a Dirac particle into a (1 +1 )-dimensional black hole, and find that the Zitterbewegung effect, measurable via the oscillatory trajectory of the Dirac particle, persists in the presence of gravity. From the duality between the squeezing term in the multiphoton QRM and the metric coupling in the DCS, we show that gravity generates squeezing of the Dirac particle wave function.

  4. Monitoring wound healing by multiphoton tomography/endoscopy

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Bückle, Rainer; Kaatz, Martin; Hipler, Christina; Zens, Katharina; Schneider, Stefan W.; Huck, Volker

    2015-02-01

    Certified clinical multiphoton tomographs are employed to perform rapid label-free high-resolution in vivo histology. Novel tomographs include a flexible 360° scan head attached to a mechano-optical arm for autofluorescence and SHG imaging as well as rigid two-photon GRIN microendoscope. Mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged with submicron resolution in human skin. The system was employed to study the healing of chronic wounds (venous leg ulcer) and acute wounds (curettage of actinic or seborrheic keratosis) on a subcellular level. Furthermore, a flexible sterile foil as interface between wound and focusing optic was tested.

  5. Atom-Dependent Edge-Enhanced Second-Harmonic Generation on MoS2 Monolayers.

    Science.gov (United States)

    Lin, Kuang-I; Ho, Yen-Hung; Liu, Shu-Bai; Ciou, Jian-Jhih; Huang, Bo-Ting; Chen, Christopher; Chang, Han-Ching; Tu, Chien-Liang; Chen, Chang-Hsiao

    2018-02-14

    Edge morphology and lattice orientation of single-crystal molybdenum disulfide (MoS 2 ) monolayers, a transition metal dichalcogenide (TMD), possessing a triangular shape with different edges grown by chemical vapor deposition are characterized by atomic force microscopy and transmission electron microscopy. Multiphoton laser scanning microscopy is utilized to study one-dimensional atomic edges of MoS 2 monolayers with localized midgap electronic states, which result in greatly enhanced optical second-harmonic generation (SHG). Microscopic S-zigzag edge and S-Mo Klein edge (bare Mo atoms protruding from a S-zigzag edge) terminations and the edge-atom dependent resonance energies can therefore be deduced based on SHG images. Theoretical calculations based on density functional theory clearly explain the lower energy of the S-zigzag edge states compared to the corresponding S-Mo Klein edge states. Characterization of the atomic-scale variation of edge-enhanced SHG is a step forward in this full-optical and high-yield technique of atomic-layer TMDs.

  6. Simulation of multi-photon emission isotopes using time-resolved SimSET multiple photon history generator

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chih-Chieh; Lin, Hsin-Hon; Lin, Chang-Shiun; Chuang, Keh-Shih [Department of Biomedical Engineering and Environmental Sciences, National Tsing-HuaUniversity, Hsinchu, Taiwan (China); Jan, Meei-Ling [Health Physics Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan (China)

    2015-07-01

    Abstract-Multiple-photon emitters, such as In-111 or Se-75, have enormous potential in the field of nuclear medicine imaging. For example, Se-75 can be used to investigate the bile acid malabsorption and measure the bile acid pool loss. The simulation system for emission tomography (SimSET) is a well-known Monte Carlo simulation (MCS) code in nuclear medicine for its high computational efficiency. However, current SimSET cannot simulate these isotopes due to the lack of modeling of complex decay scheme and the time-dependent decay process. To extend the versatility of SimSET for simulation of those multi-photon emission isotopes, a time-resolved multiple photon history generator based on SimSET codes is developed in present study. For developing the time-resolved SimSET (trSimSET) with radionuclide decay process, the new MCS model introduce new features, including decay time information and photon time-of-flight information, into this new code. The half-life of energy states were tabulated from the Evaluated Nuclear Structure Data File (ENSDF) database. The MCS results indicate that the overall percent difference is less than 8.5% for all simulation trials as compared to GATE. To sum up, we demonstrated that time-resolved SimSET multiple photon history generator can have comparable accuracy with GATE and keeping better computational efficiency. The new MCS code is very useful to study the multi-photon imaging of novel isotopes that needs the simulation of lifetime and the time-of-fight measurements. (authors)

  7. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    International Nuclear Information System (INIS)

    Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W.

    1990-01-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity

  8. Hysteresis loops of spin-dependent electronic current in a paramagnetic resonant tunnelling diode

    International Nuclear Information System (INIS)

    Wójcik, P; Spisak, B J; Wołoszyn, M; Adamowski, J

    2012-01-01

    Nonlinear properties of the spin-dependent electronic transport through a semiconductor resonant tunnelling diode with a paramagnetic quantum well are considered. The spin-dependent Wigner–Poisson model of the electronic transport and the two-current Mott’s formula for the independent spin channels are applied to determine the current–voltage curves of the nanodevice. Two types of the electronic current hysteresis loops are found in the current–voltage characteristics for both the spin components of the electronic current. The physical interpretation of these two types of the electronic current hysteresis loops is given based on the analysis of the spin-dependent electron densities and the potential energy profiles. The differences between the current–voltage characteristics for both the spin components of the electronic current allow us to explore the changes of the spin polarization of the current for different electric fields and determine the influence of the electronic current hysteresis on the spin polarization of the current flowing through the paramagnetic resonant tunnelling diode. (paper)

  9. Dependence of excitation frequency of resonant circuit on RF irradiation position of MRI equipment

    International Nuclear Information System (INIS)

    Shimizu, Masato; Yamada, Tsutomu; Takemura, Yasushi; Niwa, Touru; Inoue, Tomio

    2010-01-01

    Hyperthermia using implants is a cancer treatment in which cancer tissue is heated to over 42.5 deg C to selectively kill the cancer cells. In this study, a resonant circuit was used as an implant, and a weak magnetic field of radiofrequency (RF) pulses from a magnetic resonance imaging (MRI) device was used as an excitation source. We report here how the temperature of the resonant circuit was controlled by changing the excitation frequency of the MRI. As a result, the temperature rise of the resonant circuit was successfully found to depend on its position in the MRI device. This significant result indicates that the temperature of the resonant circuit can be controlled only by adjusting the excitation position. Accurate temperature control is therefore expected to be possible by combining this control technique with the temperature measurement function of MRI equipment. (author)

  10. Coherent control through near-resonant Raman transitions

    International Nuclear Information System (INIS)

    Dai Xingcan; Lerch, Eliza-Beth W.; Leone, Stephen R.

    2006-01-01

    The phase of an electronic wave function is shown to play an important role in coherent control experiments. By using a pulse shaping system with a femtosecond laser, we explore the phase relationships among resonant and off-resonant Raman transitions in Li 2 by measuring the phases of the resulting wave packets, or quantum beats. Specific pixels in a liquid-crystal spatial light modulator are used to isolate the resonant and off-resonant portions of the Raman transitions in Li 2 . The off-resonant Raman transitions have an approximately 90 degree sign phase shift with respect to the resonant Raman transition, and there is an approximately 180 degree sign phase shift between the blue-detuned and the red-detuned off-resonant Raman transitions. Calculations using second-order time-dependent perturbation theory for the electronic transitions agree with the experimental results for the laser pulse intensities used here. Interferences between the off-resonant Raman transitions as a function of detuning are used to demonstrate coherent control of the Raman quantum wave packet

  11. Design and synthesis of hyperstructured molecules based on cyclophosphazene core for multiphoton absorption

    International Nuclear Information System (INIS)

    Naik, K. Praveen Kumar; Sreeramulu, V.; Ramya, E.; Muralidharan, K.; Rao, D. Narayana

    2016-01-01

    Cyclophosphazene based hyperstructured molecules were synthesized through simple nucleophilic substitution reactions. All these molecules were characterized by multinuclear NMR, MALDI and HRMS spectral data. Third order nonlinear optical properties of the hyperstructured molecules were measured using Z-scan technique with 532 nm, picosecond (ps) laser and 800 nm, femtosecond (fs) laser pulses. The molecules showed reverse saturable absorption on excitation at both 532 nm and 800 nm, which could be attributed to the two-photon absorption (2 PA) and three-photon absorption (3 PA), respectively. The 2 PA and 3 PA cross section values exhibited by the molecules based on cyclophosphazene are as high as 527 GM and 1.86 × 10"−"7"6 cm"−"6 s"2 photon"−"1, respectively. The 2PA, 3PA coefficients and optical limiting properties make them suitable candidates for nonlinear optical devices in the visible and near IR range. - Graphical abstract: The hyperstructured molecules based on cyclophosphazene core were synthesized and used for multiphoton absorption. Open aperture Z-scan curves of hyper structured molecules at the excitation of (a) picosecond laser and (b) femtosecond laser representing multiphoton absorption properties are reported. - Highlights: • Two hyperstructured molecules based on cyclophosphazene core are designed for multiphoton absorption. • NLO properties are measured using Z-scan technique at 532 nm and 800 nm wavelengths. • The molecules were tested for the optical limiting applications at 532 nm and 800 nm laser pulses.

  12. Design and synthesis of hyperstructured molecules based on cyclophosphazene core for multiphoton absorption

    Energy Technology Data Exchange (ETDEWEB)

    Naik, K. Praveen Kumar [School of Chemistry, University of Hyderabad, Hyderabad 500046 India (India); Sreeramulu, V. [School of Physics, University of Hyderabad, Hyderabad 500046 India (India); CNR-IFN CSMFO Laboratory, Via alla Cascata, 56/C Povo, Trento (Italy); Ramya, E. [School of Physics, University of Hyderabad, Hyderabad 500046 India (India); Muralidharan, K., E-mail: murali@uohyd.ac.in [School of Chemistry, University of Hyderabad, Hyderabad 500046 India (India); Rao, D. Narayana [School of Physics, University of Hyderabad, Hyderabad 500046 India (India)

    2016-09-01

    Cyclophosphazene based hyperstructured molecules were synthesized through simple nucleophilic substitution reactions. All these molecules were characterized by multinuclear NMR, MALDI and HRMS spectral data. Third order nonlinear optical properties of the hyperstructured molecules were measured using Z-scan technique with 532 nm, picosecond (ps) laser and 800 nm, femtosecond (fs) laser pulses. The molecules showed reverse saturable absorption on excitation at both 532 nm and 800 nm, which could be attributed to the two-photon absorption (2 PA) and three-photon absorption (3 PA), respectively. The 2 PA and 3 PA cross section values exhibited by the molecules based on cyclophosphazene are as high as 527 GM and 1.86 × 10{sup −76} cm{sup −6} s{sup 2} photon{sup −1}, respectively. The 2PA, 3PA coefficients and optical limiting properties make them suitable candidates for nonlinear optical devices in the visible and near IR range. - Graphical abstract: The hyperstructured molecules based on cyclophosphazene core were synthesized and used for multiphoton absorption. Open aperture Z-scan curves of hyper structured molecules at the excitation of (a) picosecond laser and (b) femtosecond laser representing multiphoton absorption properties are reported. - Highlights: • Two hyperstructured molecules based on cyclophosphazene core are designed for multiphoton absorption. • NLO properties are measured using Z-scan technique at 532 nm and 800 nm wavelengths. • The molecules were tested for the optical limiting applications at 532 nm and 800 nm laser pulses.

  13. Electromagnetic design of a β=0.4 superconducting spoke resonator for a high intensity proton linac

    International Nuclear Information System (INIS)

    Pathak, Abhishek; Krishnagopal, Srinivas

    2015-01-01

    Here we present electromagnetic design simulations of a superconducting single-spoke resonator with a geometrical beta of 0.4 and operating at 325 MHz for a high intensity proton linac (HIPL). The spoke equatorial and base parameters were optimized to minimize the peak electric and peak magnetic fields and maximize the shunt impedance, while keeping the same resonant frequency. Variation of the surface magnetic fields was investigated as a function of the spoke base shape, and it was found that an elliptical profile is preferred over a circular or racecourse profile with E peak /E acc =4.71, E peak /E acc =4.33 (mT/(MV/m)) and R/Q=272 Ω. (author)

  14. In vivo multiphoton and fluorescence lifetime imaging microscopy of the healthy and cholestatic liver

    Science.gov (United States)

    Kuznetsova, Daria S.; Dudenkova, Varvara V.; Rodimova, Svetlana A.; Bobrov, Nikolai V.; Zagainov, Vladimir E.; Zagaynova, Elena V.

    2018-02-01

    A cholestatic liver disease presents one of the most common liver diseases and can potentially progress to cirrhosis or even cholangiocarcinoma. Conventional techniques are insufficient to precisely describe the complex internal structure, heterogeneous cell populations and the dynamics of biological processes of the liver. Currently, the methods of multiphoton and fluorescence lifetime imaging microscopy are actively introducing to biomedical research. Those methods are extremely informative and non-destructive that allows studying of a large number of processes occurring inside cells and tissues, analyzing molecular cellular composition, as well as evaluating the state of connective tissue fibers due to their ability to generate a second optical harmonic. Multiphoton and FLIM microscopy do not need additional staining of samples or the incorporation of any markers to study metabolism, lipid composition, microstructure analysis, evaluation of fibrous structures. These parameters have pronounced changes in hepatocytes of liver with common pathological diseases. Thereby in this study we investigated metabolic changes in the healthy and cholestatic liver based on the fluorescence of the metabolic co-factors NAD(P)H and FAD by multiphoton microscopy combined with FLIM. To estimate the contribution of energy metabolism and lipogenesis in the observed changes of the metabolic profile, a separate analysis of NADH and NADPH was presented. The data can be used to develop new criteria for the identification of hepatic pathology at the level of hepatocyte changes directed to personalized medicine in the future.

  15. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    H. W. Zhao

    2017-09-01

    Full Text Available The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24–28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of ^{40}Ar^{12+} and ^{129}Xe^{26+} have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL, China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24+18  GHz heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  16. Dynamic T{sub 2}-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M. [Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Philips Healthcare Canada, Markham, ON, L6C 2S3 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada)

    2012-11-28

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate (<1 Degree-Sign C) and dynamic (<5s) thermal maps in soft tissues. PRFS-MRT is ineffective in fatty tissues such as yellow bone marrow and, since accurate temperature measurements are required in the bone to ensure adequate thermal dose, MR-HIFU is not indicated for primary bone tumor treatments. Magnetic relaxation times are sensitive to lipid temperature and we hypothesize that bone marrow temperature can be determined accurately by measuring changes in T{sub 2}, since T{sub 2} increases linearly in fat during heating. T{sub 2}-mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T{sub 2}. Calibration of T{sub 2}-based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T{sub 2} and temperature with a thermocouple. A positive T{sub 2} temperature dependence in bone marrow of 20 ms/ Degree-Sign C was observed. Dynamic T{sub 2}-mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  17. Far-Infrared Magneto-Optical Studies in Germanium and Indium-Antimonide at High Intensities

    Science.gov (United States)

    Leung, Michael

    Observations of nonlinear magneto-optical phenomena occurring in p-type Germanium and n-type Indium Antimonide are reported. These include multi-photon ionization of impurity states, and a new observation, the magneto-photon ionization of impurity states, and a new observation, the magneto-photon drag effect. A novel source of far-infrared radiation has been used. This source uses a pulsed CO(,2) LASER to optically pump a super-radiant cell, generating light with intensities up to 100 KW/cm('2) and wavelengths from 66 (mu)m to 496 (mu)m in a pulse of 150 nanoseconds duration. The Germanium samples were doped with Gallium, which is a shallow acceptor with an ionization potential of 11 meV. At liquid Helium temperature virtually all charge carriers are bound to acceptor sites. However, the high intensity radiation unexpectedly ionizes the acceptors. This is demonstrated through measurements of photoconductivity, transmission and the photo-Hall Effect. This observation is unexpected because the photon energy is one-fourth the ionization potential. Rate equations describing sequential multiphoton excitations are in agreement with the experimental results. The intermediate states are postulated to be acceptor exciton band states. Studies of the photoexcited mobility at 496 (mu)m suggest that at non-saturating levels of photoexcitation, the primary scattering mechanism of hot holes in Germanium is by neutral impurities. A new magneto-optical effect, the magneto-photon drag effect, has been studied in both Germanium and Indium Antimonide. This is simply the absorption of momentum by free carriers, from an incident photon field. It has been found that the mechanism for this effect is different in the two materials. In Germanium, the effect occurs when carriers make optical transitions from the heavy hole band to the light hole band. Thus, the magneto-optical behavior depends heavily upon the band structure. On the other hand, a modified Drude model (independent electron

  18. Magnetic Resonance-Based Treatment Planning for Prostate Intensity-Modulated Radiotherapy: Creation of Digitally Reconstructed Radiographs

    International Nuclear Information System (INIS)

    Chen, Lili; Nguyen, Thai-Binh; Jones, Elan; Chen Zuoqun; Luo Wei; Wang Lu; Price, Robert A.; Pollack, Alan; Ma, C.-M. Charlie

    2007-01-01

    Purpose: To develop a technique to create magnetic resonance (MR)-based digitally reconstructed radiographs (DRR) for initial patient setup for routine clinical applications of MR-based treatment planning for prostate intensity-modulated radiotherapy. Methods and Materials: Twenty prostate cancer patients' computed tomography (CT) and MR images were used for the study. Computed tomography and MR images were fused. The pelvic bony structures, including femoral heads, pubic rami, ischium, and ischial tuberosity, that are relevant for routine clinical patient setup were manually contoured on axial MR images. The contoured bony structures were then assigned a bulk density of 2.0 g/cm 3 . The MR-based DRRs were generated. The accuracy of the MR-based DDRs was quantitatively evaluated by comparing MR-based DRRs with CT-based DRRs for these patients. For each patient, eight measuring points on both coronal and sagittal DRRs were used for quantitative evaluation. Results: The maximum difference in the mean values of these measurement points was 1.3 ± 1.6 mm, and the maximum difference in absolute positions was within 3 mm for the 20 patients investigated. Conclusions: Magnetic resonance-based DRRs are comparable to CT-based DRRs for prostate intensity-modulated radiotherapy and can be used for patient treatment setup when MR-based treatment planning is applied clinically

  19. A multiphoton laser scanning microscope setup for transcranial in vivo brain imaging on mice

    Science.gov (United States)

    Nase, Gabriele; Helm, P. Johannes; Reppen, Trond; Ottersen, Ole Petter

    2005-12-01

    We describe a multiphoton laser scanning microscope setup for transcranial in vivo brain imaging in mice. The modular system is based on a modified industrial standard Confocal Scanning Laser Microscope (CSLM) and is assembled mainly from commercially available components. A special multifunctional stage, which is optimized for both laser scanning microscopic observation and preparative animal surgery, has been developed and built. The detection unit includes a highly efficient photomultiplier tube installed in a Peltier-cooled thermal box shielding the detector from changes in room temperature and from distortions caused by external electromagnetic fields. The images are recorded using a 12-bit analog-to-digital converter. Depending on the characteristics of the staining, individual nerve cells can be imaged down to at least 100μm below the intact cranium and down to at least 200μm below the opened cranium.

  20. Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Yougang; Liu, Yachao; He, Yongli; Zhou, Junxiao; Luo, Hailu, E-mail: hailuluo@hnu.edu.cn; Wen, Shuangchun [Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082 (China)

    2015-07-27

    We report the realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces. Compared with the plasmonic metasurfaces, the all-dielectric metasurface exhibits more high transmission efficiency and conversion efficiency, which makes it possible to achieve the spin-dependent splitting with arbitrary intensity patterns. Our findings suggest a way for generation and manipulation of spin photons, and thereby offer the possibility of developing spin-based nanophotonic applications.

  1. Intense field stabilization in circular polarization: Three-dimensional time-dependent dynamics

    International Nuclear Information System (INIS)

    Choi, Dae-Il; Chism, Will

    2002-01-01

    We investigate the stabilization of hydrogen atoms in a circularly polarized laser field. We use a three-dimensional, time-dependent approach to study the quantum dynamics of hydrogen atoms subject to high-intensity, short-wavelength, laser pulses. We find an enhanced survival probability as the field is increased under fixed envelope conditions. We also confirm wave packet behaviors previously seen in two-dimensional time-dependent computations

  2. Light intensity dependent Debye screening length in undoped photorefractive titanosillenite crystals

    OpenAIRE

    de Oliveira, I; Frejlich, J

    2012-01-01

    We report on the experimental evidence of the light intensity dependence of the Debye screening length l(s) in undoped photorefractive titanosillenite crystals (Bi12TiO20) by measuring the holographic gain and diffraction efficiency in a two-wave mixing experiment under 532 nm wavelength laser light. Debye length shows saturation at high values of the light intensity. Results are in agreement with the theoretical development. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/...

  3. Interpreting intensities in vibrational sum frequency generation (SFG) spectroscopy: CO adsorption on Pd surfaces

    Science.gov (United States)

    Morkel, M.; Unterhalt, H.; Klüner, T.; Rupprechter, G.; Freund, H.-J.

    2005-07-01

    The lineshape and intensity of SFG signals of CO adsorbed on supported Pd nanoparticles and Pd(1 1 1) are analyzed. For CO/Pd(1 1 1) nearly symmetric lorentzian lineshapes were observed. Applying two different visible wavelengths for excitation, asymmetric lineshapes observed for the CO/Pd/Al 2O 3/NiAl(1 1 0) system are explained by a lower resonant and a higher non-resonant SFG signal and a change in the phase between resonant and non-resonant signals, most likely originating from an interband transition in the NiAl substrate. The relative intensity of different CO species (hollow, bridge, on-top) was modeled by DFT calculations of IR transition moments and Raman activities. While the (experimental) sensitivity of SFG towards different CO species strongly varies, the calculated IR and Raman activities are rather similar. The inability to exactly reproduce experimental SFG intensities suggests a strong coverage dependence of Raman activities or that non-linear effects occur that can currently not be properly accounted for.

  4. TIME-DEPENDENT COROTATION RESONANCE IN BARRED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Ting; Taam, Ronald E. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Pfenniger, Daniel, E-mail: ytwu@asiaa.sinica.edu.tw, E-mail: daniel.pfenniger@unige.ch, E-mail: taam@asiaa.sinica.edu.tw [Geneva Observatory, University of Geneva, CH-1290 Sauverny (Switzerland)

    2016-10-20

    The effective potential neighboring the corotation resonance region in barred galaxies is shown to be strongly time-dependent in any rotating frame, due to the competition of nearby perturbations of similar strengths with differing rotation speeds. Contrary to the generally adopted assumption that in the bar rotating frame the corotation region should possess four stationary equilibrium points (Lagrange points), with high quality N -body simulations, we localize the instantaneous equilibrium points (EPs) and find that they circulate or oscillate broadly in azimuth with respect to the pattern speeds of the inner or outer perturbations. This implies that at the particle level the Jacobi integral is not well conserved around the corotation radius. That is, angular momentum exchanges decouple from energy exchanges, enhancing the chaotic diffusion of stars through the corotation region.

  5. Rotational averaging of multiphoton absorption cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Friese, Daniel H., E-mail: daniel.h.friese@uit.no; Beerepoot, Maarten T. P.; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, University of Tromsø — The Arctic University of Norway, N-9037 Tromsø (Norway)

    2014-11-28

    Rotational averaging of tensors is a crucial step in the calculation of molecular properties in isotropic media. We present a scheme for the rotational averaging of multiphoton absorption cross sections. We extend existing literature on rotational averaging to even-rank tensors of arbitrary order and derive equations that require only the number of photons as input. In particular, we derive the first explicit expressions for the rotational average of five-, six-, and seven-photon absorption cross sections. This work is one of the required steps in making the calculation of these higher-order absorption properties possible. The results can be applied to any even-rank tensor provided linearly polarized light is used.

  6. Variational methods for high-order multiphoton processes

    International Nuclear Information System (INIS)

    Gao, B.; Pan, C.; Liu, C.; Starace, A.F.

    1990-01-01

    Methods for applying the variationally stable procedure for Nth-order perturbative transition matrix elements of Gao and Starace [Phys. Rev. Lett. 61, 404 (1988); Phys. Rev. A 39, 4550 (1989)] to multiphoton processes involving systems other than atomic H are presented. Three specific cases are discussed: one-electron ions or atoms in which the electron--ion interaction is described by a central potential; two-electron ions or atoms in which the electronic states are described by the adiabatic hyperspherical representation; and closed-shell ions or atoms in which the electronic states are described by the multiconfiguration Hartree--Fock representation. Applications are made to the dynamic polarizability of He and the two-photon ionization cross section of Ar

  7. High-precision two-dimensional atom localization from four-wave mixing in a double-Λ four-level atomic system

    Science.gov (United States)

    Shui, Tao; Yang, Wen-Xing; Chen, Ai-Xi; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu

    2018-03-01

    We propose a scheme for high-precision two-dimensional (2D) atom localization via the four-wave mixing (FWM) in a four-level double-Λ atomic system. Due to the position-dependent atom-field interaction, the 2D position information of the atoms can be directly determined by the measurement of the normalized light intensity of output FWM-generated field. We further show that, when the position-dependent generated FWM field has become sufficiently intense, efficient back-coupling to the FWM generating state becomes important. This back-coupling pathway leads to competitive multiphoton destructive interference of the FWM generating state by three supplied and one internally generated fields. We find that the precision of 2D atom localization can be improved significantly by the multiphoton destructive interference and depends sensitively on the frequency detunings and the pump field intensity. Interestingly enough, we show that adjusting the frequency detunings and the pump field intensity can modify significantly the FWM efficiency, and consequently lead to a redistribution of the atoms. As a result, the atom can be localized in one of four quadrants with holding the precision of atom localization.

  8. Dose-response relationships between exercise intensity, cravings, and inhibitory control in methamphetamine dependence: An ERPs study.

    Science.gov (United States)

    Wang, Dongshi; Zhou, Chenglin; Zhao, Min; Wu, Xueping; Chang, Yu-Kai

    2016-04-01

    The present study integrated behavioral and neuroelectric approaches for determining the dose-response relationships between exercise intensity and methamphetamine (MA) craving and between exercise intensity and inhibitory control in individuals with MA dependence. Ninety-two individuals with MA dependence were randomly assigned to an exercise group (light, moderate, or vigorous intensity) or to a reading control group. The participants then completed a craving self-report at four time points: before exercise, during exercise, immediately after exercise, and 50 min after exercise. Event-related potentials were also recorded while the participants completed a standard Go/NoGo task and an MA-related Go/NoGo task approximately 20 min after exercise cessation. The reduction in self-reported MA craving scores of the moderate and vigorous intensity groups was greater than that of the light intensity and control groups during acute exercise as well as immediately and 50 min following exercise termination. Additionally, an inverted-U-shaped relationship between exercise intensity and inhibitory control was generally observed for the behavioral and neuroelectric indices, with the moderate intensity group exhibiting shorter Go reaction times, increased NoGo accuracy, and larger NoGo-N2 amplitudes. Acute exercise may provide benefits for MA-associated craving and inhibitory control in MA-dependent individuals, as revealed by behavioral and neuroelectric measures. Moderate-intensity exercise may be associated with more positive effects, providing preliminary evidence for the establishment of an exercise prescription regarding intensity for MA dependence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Star-shaped ladder-type ter(p-phenylene)s for efficient multiphoton absorption.

    Science.gov (United States)

    Guo, Lei; Li, King Fai; Wong, Man Shing; Cheah, Kok Wai

    2013-05-04

    Star-shaped ladder-type ter(p-phenylene)s exhibit remarkably efficient multiphoton absorption properties with 2PA cross-section up to 2579 GM at 700 nm and 3PA cross-section up to 3.35 × 10(-76) cm(6) s(2) in the femtosecond regime for a blue-emissive molecule despite having such a short π-conjugated framework.

  10. Resonant spin-flavor conversion of supernova neutrinos: Dependence on electron mole fraction

    International Nuclear Information System (INIS)

    Yoshida, Takashi; Takamura, Akira; Kimura, Keiichi; Yokomakura, Hidekazu; Kawagoe, Shio; Kajino, Toshitaka

    2009-01-01

    Detailed dependence of resonant spin-flavor (RSF) conversion of supernova neutrinos on electron mole fraction Y e is investigated. Supernova explosion forms a hot-bubble and neutrino-driven wind region of which electron mole fraction exceeds 0.5 in several seconds after the core collapse. When a higher resonance of the RSF conversion is located in the innermost region, flavor change of the neutrinos strongly depends on the sign of 1-2Y e . At an adiabatic high RSF resonance the flavor conversion of ν e ↔ν μ,τ occurs in Y e e >0.5 and inverted mass hierarchy. In other cases of Y e values and mass hierarchies, the conversion of ν e ↔ν μ,τ occurs. The final ν e spectrum is evaluated in the cases of Y e e >0.5 taking account of the RSF conversion. Based on the obtained result, time variation of the event number ratios of low ν e energy to high ν e energy is discussed. In normal mass hierarchy, an enhancement of the event ratio should be seen in the period when the electron fraction in the innermost region exceeds 0.5. In inverted mass hierarchy, on the other hand, a dip of the event ratio should be observed. Therefore, the time variation of the event number ratio is useful to investigate the effect of the RSF conversion.

  11. Rotational dependence of Fermi-type resonance interactions in molecules

    Science.gov (United States)

    Mikhailov, Vladimir M.; Smirnov, M. A.

    1997-03-01

    In Pasadena, (Milliken Lab., USA, 1930) F. Rossetti has observed in Raman spectrum of carbon-dioxide molecule the full symmetric vibration of carbon dioxide appeared as the group of four near lying lines instead of the waited single line. The true interpretation of this enigmatic effect (in that time) was given by E. Fermi -- accidental degeneration of the first excited state of the full symmetric vibration in carbon dioxide. It was the first example of the event observed later in various organic molecules. This event was named as resonance Fermi. The rotational dependence of Fermi type resonance interactions in quasirigid molecules in dominant approximation can be selected in an expansion of the effective vibration-rotation Hamiltonian Hvib- roteff by the operator H(g)(Fermi) equals H30 plus (Sigma) nH3n(g). Let us consider in detail the problem of the construction of the effective vibration-rotational Hamiltonian HVR yields Heff from the point of view of various ordering schemes (grouping) of the vibrational-rotational interactions with sequential analysis of the choice of the convenient grouping adequate to the spectroscopic problem.

  12. Microstructure imaging of human rectal mucosa using multiphoton microscopy

    Science.gov (United States)

    Liu, N. R.; Chen, G.; Chen, J. X.; Yan, J.; Zhuo, S. M.; Zheng, L. Q.; Jiang, X. S.

    2011-01-01

    Multiphoton microscopy (MPM) has high resolution and sensitivity. In this study, MPM was used to image microstructure of human rectal mucosa. The morphology and distribution of the main components in mucosa layer, absorptive cells and goblet cells in the epithelium, abundant intestinal glands in the lamina propria and smooth muscle fibers in the muscularis mucosa were clearly monitored. The variations of these components were tightly relevant to the pathology in gastrointestine system, especially early rectal cancer. The obtained images will be helpful for the diagnosis of early colorectal cancer.

  13. Resonant two-magnon Raman scattering in parent compounds of high-Tc superconductors

    International Nuclear Information System (INIS)

    Chubukov, A.V.; Frenkel, D.M.

    1995-01-01

    We propose a theory of two-magnon Raman scattering from the insulating parent compounds of high-T c superconductors, which contains information not only on magnetism, but also on the electronic properties in these materials. We use spin-density-wave formalism for the Hubbard model, and study diagrammatically the profile of the two-magnon scattering and its intensity dependence on the incoming photon frequency ω i both for ω i much-lt U and in the resonant regime, in which the energy of the incident photon is close to the gap between conduction and valence bands. In the nonresonant case, we identify the diagrams which contribute to the conventional Loudon-Fleury Hamiltonian. In the resonant regime, where most of the experiments have been done, we find that the dominant contribution to Raman intensity comes from a different diagram, one which allows for a simultaneous vanishing of all three of its dominators (i.e., a triple resonanc). We study this diagram in detail and show taht the triple resonance, combined with the spin-density-wave dispersion relation for the carriers, explains the unusual features found in the two-magnon profile and in the two-magnon peak intensity dependence on the incoming photon frequency. In particular, our theory predicts a maximum of the two-magnon peak intensity right at the upper edge of the features in the optical data, which has been one of the key experimental puzzles

  14. Laser sub-Doppler cooling of atoms in an arbitrarily directed magnetic field

    International Nuclear Information System (INIS)

    Chang, Soo; Kwon, Taeg Yong; Lee, Ho Seong; Minogin, V.G.

    2002-01-01

    We analyze the influence of an arbitrarily directed uniform magnetic field on the laser sub-Doppler cooling of atoms. The analysis is done for a (3+5)-level atom excited by a σ + -σ - laser field configuration. Our analysis shows that the effects of the magnetic field depend strongly on the direction of the magnetic field. In an arbitrarily directed magnetic field the laser cooling configuration produces both the main resonance existing already at zero magnetic field and additional sub-Doppler resonances caused by two-photon and higher-order multiphoton processes. These sub-Doppler resonances are, however, well separated on the velocity scale if the Zeeman shift exceeds the widths of the resonances. This allows one to use the main sub-Doppler resonance for an effective laser cooling of atoms even in the presence of the magnetic field. The effective temperature of the atomic ensemble at the velocity of the main resonance is found to be almost the same as in the absence of the magnetic field. The defined structure of the multiphoton resonances may be of importance for the sub-Doppler laser cooling of atoms, atomic extraction from magneto-optical traps, and applications related to the control of atomic motion

  15. Vacuum thermalization of high intensity laser beams and the uncertainty principle

    International Nuclear Information System (INIS)

    Gupta, R.P.; Bhakar, B.S.; Panarella, E.

    1983-01-01

    This chapter phenomenologically calculates the cross section for photon-photon scattering in high intensity laser beams. The consequence of the Heisenberg uncertainty principle must be taken account in any photon-photon scattering calculation when many photons are present within the uncertainty volume. An exact determination of the number of scattering centers present in the scattering region is precluded when high intensity laser beams are involved in the scattering. Predictions are presented which suggest an upper limit to which the coherent photon densities can be increased either during amplification or focusing before scattering becomes predominant. The results of multiphoton ionization of gases, and laser induced CTR plasmas of the future, may be significantly affected due to the enhancement of the photon scattering investigated

  16. Soliton-induced nonlocal resonances observed through high-intensity tunable spectrally compressed second-harmonic peaks

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2014-01-01

    Experimental data of femtosecond thick-crystal second-harmonic generation show that when tuning away from phase matching, a dominating narrow spectral peak appears in the second harmonic that can be tuned over hundreds of nanometers by changing the phase-mismatch parameter. Traditional theory...... and the nonlocal theory indirectly proves that we have observed a soliton-induced nonlocal resonance. The soliton exists in the self-defocusing regime of the cascaded nonlinear interaction and in the normal dispersion regime of the crystal, and needs high input intensities to become excited....

  17. Electron spin resonance studies of iron-group impurities in beryllium fluoride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Griscom, D L; Stapelbroek, M [Naval Research Lab., Washington, DC (USA); Weber, M J [California Univ., Livermore (USA). Lawrence Livermore National Lab.

    1980-11-01

    Electron spin resonance investigations have been carried out on unirradiated BeF/sub 2/ glasses. Two relatively intense resonances were observed in a water-free distilled glass known to contain 49 ppM Ni, 13 ppM Mn, and < 20 ppM Fe. One of these was the paramagnetic resonance spectrum of Mn/sup 2 +/. Analysis of the observed /sup 19/F superhyperfine structure demonstrated this manganese to occupy distorted octahedral sites in the glass network. The second resonance was shown by temperature and frequency dependence studies, coupled with computer line shape analysis, to be a ferromagnetic resonance signal due to precipitated ferrite phases. The data suggest that these ferrites are somewhat heterogeneous and most likely comprize magnetite-like phases similar to NiFe/sub 2/O/sub 4/. An optical extinction curve rising into the ultraviolet with an approximate lambda/sup -4/ dependence is tentatively ascribed to light scattering by ferrite particles approximately 1000 Angstroems in diameter.

  18. A novel flexible clinical multiphoton tomograph for early melanoma detection, skin analysis, testing of anti-age products, and in situ nanoparticle tracking

    Science.gov (United States)

    Weinigel, Martin; Breunig, Hans Georg; Gregory, Axel; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer; König, Karsten

    2010-02-01

    High-resolution 3D microscopy based on multiphoton induced autofluorescence and second harmonic generation have been introduced in 1990. 13 years later, CE-marked clinical multiphoton systems for 3D imaging of human skin with subcellular resolution have first been launched by JenLab company with the tomography DermaInspect®. This year, the second generation of clinical multiphoton tomographs was introduced. The novel multiphoton tomograph MPTflex, equipped with a flexible articulated optical arm, provides an increased flexibility and accessibility especially for clinical and cosmetical examinations. Improved image quality and signal to noise ratio (SNR) are achieved by a very short source-drain spacing, by larger active areas of the detectors and by single photon counting (SPC) technology. Shorter image acquisition time due to improved image quality reduces artifacts and simplifies the operation of the system. The compact folded optical design and the light-weight structure of the optical head eases the handling. Dual channel detectors enable to distinguish between intratissue elastic fibers and collagenous structures simultaneously. Through the use of piezo-driven optics a stack of optical cross-sections (optical sectioning) can be acquired and 3D imaging can be performed. The multiphoton excitation of biomolecules like NAD(P)H, flavins, porphyrins, elastin, and melanin is done by picojoule femtosecond laser pulses from an tunable turn-key femtosescond near infrared laser system. The ability for rapid high-quality image acquisition, the user-friendly operation of the system and the compact and flexible design qualifies this system to be used for melanoma detection, diagnostics of dermatological disorders, cosmetic research and skin aging measurements as well as in situ drug monitoring and animal research.

  19. Conceptual basis of resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Payne, M.G.

    1984-04-01

    Resonance Ionization Spectroscopy (RIS) can b defined as a state-selective detection process in which tunable lasers are used to promote transitions from the selected state of the atoms or molecules in question to higher states, one of which will be ionized by the absorption of another photon. At least one resonance step is used in the stepwise ionization process, and it has been shown that the ionization probability of the spectroscopically selected species can nearly always be made close to unity. Since measurements of the number of photoelectrons or ions can be made very precisely and even one electron (or under vacuum conditions, one ion) can be detected, the technique can be used to make quantitative measurements of very small populations of the state-selected species. Counting of individual atoms has special meaning for detection of rare events. The ability to make saturated RIS measurements opens up a wide variety of applications to both basic and applied research. We view RIS as a specific type of multi-photon ionization in which the goal is to make quantitative measurements of quantum-selected populations in atomic or molecular systems. 16 references

  20. Sub-Poissonian photon statistics in time-dependent collective resonance fluorescence

    International Nuclear Information System (INIS)

    Buzek, V.; Tran Quang; Lan, L.H.

    1989-10-01

    We have discussed the photon statistics of the spectral components of N-atom time-dependent resonance fluorescence. It is shown that in contrast to the stationary limit, sub-Poissonian photon statistics in the sidebands occur for any number N of atoms including the case N >> 1. Reduction in Maldel's parameters Q ±1 is found with increasing numbers of atoms. The typical time for the presence of sub-Poissonian statistics is proportional to 1/N. (author). 31 refs, 1 fig

  1. Alignment dependence in above-threshold ionization of H2+: role of intermediate resonances

    DEFF Research Database (Denmark)

    Hernández, Jorge Fernández; Madsen, Lars Bojer

    2009-01-01

    We report a 3D ab initio investigation of the dependence of above-threshold ionization of the H2+ molecule on the orientation of a linearly polarized intense femtosecond laser pulse with respect to the molecular axis. The calculations were performed in the frozen nuclei approximation for the 2Σ+g(1......sσg) ground and the 2Σ+u(2pσu) first excited electronic states, in laser pulses of seven optical cycles (19 fs) with a wavelength of 800 nm and for different intensities. The numerical procedure combines two different techniques, a grid-based split-step method to propagate the wave packet during...... the pulse, and a bound and scattering states B-spline basis set calculation to extract the information from the former. We show that the orientation dependence of the above-threshold ionization spectra is very sensitive to the intensity of the field and to the final electron energy. For some intensities...

  2. Temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom adsorbed on a surface

    International Nuclear Information System (INIS)

    Dino, Wilson Agerico; Kasai, Hideaki; Rodulfo, Emmanuel Tapas; Nishi, Mayuko

    2006-01-01

    Manifestations of the Kondo effect on an atomic length scale on and around a magnetic atom adsorbed on a nonmagnetic surface differ depending on the spectroscopic mode of operation of the scanning tunneling microscope. Two prominent signatures of the Kondo effect that can be observed at surfaces are the development of a sharp resonance (Yosida-Kondo resonance) at the Fermi level, which broadens with increasing temperature, and the splitting of this sharp resonance upon application of an external magnetic field. Until recently, observing the temperature and magnetic field dependence has been a challenge, because the experimental conditions strongly depend on the system's critical temperature, the so-called Kondo temperature T K . In order to clearly observe the temperature dependence, one needs to choose a system with a large T K . One can thus perform the experiments at temperatures T K . However, because the applied external magnetic field necessary to observe the magnetic field dependence scales with T K , one needs to choose a system with a very small T K . This in turn means that one should perform the experiments at very low temperatures, e.g., in the mK range. Here we discuss the temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom on a metal surface, in relation to recent experimental developments

  3. Multiphoton crosslinking for biocompatible 3D printing of type I collagen.

    Science.gov (United States)

    Bell, Alex; Kofron, Matthew; Nistor, Vasile

    2015-09-03

    Multiphoton fabrication is a powerful technique for three-dimensional (3D) printing of structures at the microscale. Many polymers and proteins have been successfully structured and patterned using this method. Type I collagen comprises a large part of the extracellular matrix for most tissue types and is a widely used cellular scaffold material for tissue engineering. Current methods for creating collagen tissue scaffolds do not allow control of local geometry on a cellular scale. This means the environment experienced by cells may be made up of the native material but unrelated to native cellular-scale structure. In this study, we present a novel method to allow multiphoton crosslinking of type I collagen with flavin mononucleotide photosensitizer. The method detailed allows full 3D printing of crosslinked structures made from unmodified type I collagen and uses only demonstrated biocompatible materials. Resolution of 1 μm for both standing lines and high-aspect ratio gaps between structures is demonstrated and complex 3D structures are fabricated. This study demonstrates a means for 3D printing with one of the most widely used tissue scaffold materials. High-resolution, 3D control of the fabrication of collagen scaffolds will facilitate higher fidelity recreation of the native extracellular environment for engineered tissues.

  4. Broader energy distribution of CO adsorbed at polycrystalline Pt electrode in comparison with that at Pt(111) electrode in H_2SO_4 solution confirmed by potential dependent IR/visible double resonance sum frequency generation spectroscopy

    International Nuclear Information System (INIS)

    Yang, Shuo; Noguchi, Hidenori; Uosaki, Kohei

    2017-01-01

    Highlights: • Electrochemical SFG spectroscopy is an efficient in situ probe of electronic structure at electrochemical interface. • Electrooxidation performances of CO adsorbed on polycrystalline Pt and Pt(111) electrodes were compared. • The enhanced SFG signal of CO on Pt electrodes was observed due to a vibrational-electronic double resonance effect. • The broader energy distribution of 5sa state of CO on polycrystalline Pt than on Pt(111) is proved by SFG results. - Abstract: Electrochemical cyclic voltammetry and potential dependent double resonance sum frequency generation (DR-SFG) spectroscopy were performed on CO adsorbed on polycrystalline Pt and Pt(111) electrodes in H_2SO_4 solution to examine the effect of substrate on the electronic structure of CO. The dependence of SFG intensity on potential and visible energy for atop CO band was observed on both polycrystalline and single crystalline Pt electrodes. Enhancement of the SFG intensity was determined to be a direct result of a surface electronic resonance of the visible/SF light with the electronic transition from Fermi level of Pt to the 5σ_a anti-bonding state of adsorbed CO, in agreement with previous results. Interestingly, when compared to the Pt(111) electrode, the distribution width of the intensity enhancement region on polycrystalline Pt is broader than on Pt(111). This suggests that the energy distribution of the 5σ_a state of CO on polycrystalline Pt surface is broader than that on Pt(111) due to the complex surface structure of the polycrystalline Pt electrode.

  5. Physics of the Brain. Prevention of the Epileptic Seizures by the Multi-photon Pulsed-operated Fiber Lasers in the Ultraviolet Range of Frequencies.

    Science.gov (United States)

    Stefan, V. Alexander; IAPS Team

    The novel study of the epileptogenesis mechanisms is proposed. It is based on the pulsed-operated (amplitude modulation) multi-photon (frequency modulation) fiber-laser interaction with the brain epilepsy-topion (the epilepsy onset area), so as to prevent the excessive electrical discharge (epileptic seizure) in the brain. The repetition frequency, Ω, matches the low frequency (epileptic) phonon waves in the brain. The laser repetition frequency (5-100 pulses per second) enables the resonance-scanning of the wide range of the phonon (possible epileptic-to-be) activity in the brain. The tunable fiber laser frequencies, Δω (multi photon operation), are in the ultraviolet frequency range, thus enabling monitoring of the electrical charge imbalance (within the 10s of milliseconds), and the DNA-corruption in the epilepsy-topion, as the possible cause of the disease. Supported by Nikola Tesla Labs., Stefan University.

  6. Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors

    Science.gov (United States)

    Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos

    2018-04-01

    The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.

  7. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    DEFF Research Database (Denmark)

    Denning, Emil Vosmar; Iles-Smith, Jake; McCutcheon, Dara P. S.

    2017-01-01

    Multiphoton entangled states are a crucial resource for many applications inquantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confinedelectron spin, but dephasing caused by the host nuclear spin...... environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning...... that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present schemeallows for the generation of very low error probability polarisation encoded three-photon GHZ states and larger entangled states, without the need for spin echo...

  8. Yield and enrichment studies of C-13 isotope by multi-photon ...

    Indian Academy of Sciences (India)

    Abstract. Multi-photon dissociation of Freon-22 (CF2HCl) at low temperatures has been carried out to separate the C-13 isotope using a TEA CO2 laser. Yield and enrichment of C-13 isotope in the product C2F4 are studied at 9P(22) laser line as a function of temperature (–50°C to 30°C). It is observed that at a given fluence ...

  9. Magnetic resonance imaging of the supraspinatus tendon: The significance of signal intensity alterations at the 'critical zone'

    International Nuclear Information System (INIS)

    Jones, A.O.

    1998-01-01

    A pictorial essay of normal and abnormal appearances of the supraspinatus tendon is presented. An increased signal intensity within the supraspinatus tendon on short TE sequences is not necessarily abnormal. Increased signal seen within the tendon on modern magnetic resonance imaging (MRI) units is often due to a phenomenon known as the 'magic angle' effect. Only when supraspinatus tendon signal intensity is greater than that of muscle on long TE (T2) sequences should it be considered to be abnormal. The physical basis for the magic angle effect is outlined and a pictorial essay demonstrating the practical implications of this effect is presented. A comparison is made to signal intensity changes seen with partial and complete tears of the supraspinatus tendon. Correlation is made with important morphologic features of partial or complete tears. Copyright (1998) Blackwell Science Pty Ltd

  10. Measurement of the profile and intensity of the solar He I lambda 584-A resonance line

    Science.gov (United States)

    Maloy, J. O.; Hartmann, U. G.; Judge, D. L.; Carlson, R. W.

    1978-01-01

    The intensity and profile of the helium resonance line at 584 A from the entire disk of the sun was investigated by using a rocket-borne helium-filled spectrometer and a curve-of-growth technique. The line profile was found to be accurately represented by a Gaussian profile with full width at half maximum of 122 + or - 10 mA, while the integrated intensity was measured to be 2.6 + or - 1.3 billion photons/s per sq cm at solar activity levels of F(10.7) = 90.8 x 10 to the -22nd per sq m/Hz and Rz = 27. The measured line width is in good agreement with previous spectrographic measurements, but the integrated intensity is larger than most previous photoelectric measurements. However, the derived line center flux of 20 + or - 10 billion photons/s per sq cm/A is in good agreement with values inferred from airglow measurements.

  11. A threat to the understanding of oneself: intensive care patients' experiences of dependency.

    Science.gov (United States)

    Lykkegaard, Kristina; Delmar, Charlotte

    2013-06-28

    This study examines the meaning of dependency on care as experienced by intensive care patients. Literature on the subject is sparse, but research from nonintensive settings shows that dependency is often experienced negatively. The study is based on in-depth qualitative semistructured interviews with three former patients characterized as narratives. The analysis is inspired by a phenomenological hermeneutical method. The study has found that dependency is experienced as difficult and that the experience seems to be attached to the relationship to oneself. Patients feel powerless and experience shame, their understanding of self is threatened, and they fight for independence in the course after intensive care. The findings might be influenced by the study being conducted in a Western country setting, where independence is valued. They can be used as means of reflection on nursing practice and matters such as communication and patient participation.

  12. Resonant freak microwaves

    International Nuclear Information System (INIS)

    Aguiar, F.M. de

    2011-01-01

    The Helmholtz equation describing transverse magnetic modes in a closed flat microwave resonator with 60 randomly distributed discs is numerically solved. At lower frequencies, the calculated wave intensity spatially distributed obeys the universal Porter-Thomas form if localized modes are excluded. A superposition of resonant modes is shown to lead to rare events of extreme intensities (freak waves) at localized 'hot spots'. The temporally distributed intensity of such a superposition at the center of a hot spot also follows the Porter-Thomas form. Branched modes are found at higher frequencies. The results bear resemblance to recent experiments reported in an open cavity.

  13. The behaviour of hydrogen-like atoms in an intense long-wave field

    International Nuclear Information System (INIS)

    Brodsky, A.M.

    1979-01-01

    The equations, which permit the calculation by means of regular operations of multiphoton photoionisation cross sections and the dynamic polarisabilities in an intense classical long-wave electromagnetic field, are considered for a hydrogen atom. The calculations have been performed for a circularly polarised field. A quantitative expression has been derived for the Lamb shift analogue, which can be verified experimentally. Within the framework of the problem the interaction at small distances is self-compensated and reduced to a constant potential. This conclusion is of general interest for the theory of strong interactions. (author)

  14. Ionisation of hydrogen-like atoms by a multiphoton absorption process

    International Nuclear Information System (INIS)

    Gontier, Y.; Trahin, M.

    1967-01-01

    The general expression for the amplitude of the probability of ionisation by a multiphoton absorption process is derived. Its non-relativistic limit is taken and the bipolar approximation is used for calculating the ionisation cross-section of hydrogen-like atoms. This latter involves the summation over intermediate virtual states by means of: a) a recursion relationship concerning angular functions, b) a particular technique which when applied to radial functions makes it possible to solve a system of inhomogeneous first-order differential equations. (authors) [fr

  15. N-Acetylcysteine Normalizes Glutamate Levels in Cocaine-Dependent Patients: A Randomized Crossover Magnetic Resonance Spectroscopy Study

    NARCIS (Netherlands)

    Schmaal, Lianne; Veltman, Dick J.; Nederveen, Aart; van den Brink, Wim; Goudriaan, Anna E.

    2012-01-01

    Treatment with N-acetylcysteine (NAC) normalizes glutamate (Glu) homeostasis and prevents relapse in drug-dependent animals. However, the effect of NAC on brain Glu levels in substance-dependent humans has not yet been investigated. Proton magnetic resonance spectroscopy (H-1 MRS) was used to

  16. N-Acetylcysteine Normalizes Glutamate Levels in Cocaine-Dependent Patients: A Randomized Crossover Magnetic Resonance Spectroscopy Study

    NARCIS (Netherlands)

    Schmaal, L.; Veltman, D.J.; Nederveen, A.; van den Brink, W.; Goudriaan, A.E.

    2012-01-01

    Treatment with N-acetylcysteine (NAC) normalizes glutamate (Glu) homeostasis and prevents relapse in drug-dependent animals. However, the effect of NAC on brain Glu levels in substance-dependent humans has not yet been investigated. Proton magnetic resonance spectroscopy (1 H MRS) was used to

  17. Advances in polarization sensitive multiphoton nano-bio-imaging

    Directory of Open Access Journals (Sweden)

    Zyss J.

    2010-06-01

    Full Text Available In this talk, we shall shortly review four main directions of ongoing research in our laboratories, directed at the conception and demonstration of a variety of innovative configurations in nanoscale multiphoton imaging. A common feature to all of these directions appears to be the central role played by the involvement of polarization features, both in- and outgoing, moreover so in view of the tensorial aspects inherent to nonlinear schemes such second-harmonic generation, electro-optic modulation or two-photon fluorescence which will ne emphasized. These advances relate to the new domain of nonlinear ellipsometry in multiphoton imaging [1], of high relevance to fundamental aspects of nanophotonics and nanomaterial engineering as well as towards basic life science issues. The four domains to be shortly reported are: a polarization resolved second-harmonic generation in semiconductor QD’s with record small sizes in the 10-12 nm range [2] b original use of two-photon confocal polarization resolved microscopy in DNA stained by two photon fluorescent dyes in different LC phases arrangements so as to characterize these as well as ascertain the respective DNA-dye orientation (intercalant or groves [3] c elaboration and demonstration of an electrooptic confocal microscope in a highly sensitive interferometric and homodyne detection configuration allowing to map weak electric potentials such as in artificial functionalized membranes, the dynamical investigation of firing and propagation aspects of action potentials in neurones being currently the next step [4] d original plasmon based enhanced nanoscale confocal imaging involving a dual detection scheme (fluorescence imaging and ATR plasmon coupling in reflection whereby adequate preparation and switching of the incoming polarization state between radial, linear and azimuthal configurations, entail different images and plasmon enhancement levels [5].

  18. Clinical multiphoton tomography and clinical two-photon microendoscopy

    Science.gov (United States)

    König, Karsten; Bückle, Rainer; Weinigel, Martin; Elsner, Peter; Kaatz, Martin

    2009-02-01

    We report on applications of high-resolution clinical multiphoton tomography based on the femtosecond laser system DermaInspectTM with its flexible mirror arm in Australia, Asia, and Europe. Applications include early detection of melanoma, in situ tracing of pharmacological and cosmetical compounds including ZnO nanoparticles in the epidermis and upper dermis, the determination of the skin aging index SAAID as well as the study of the effects of anti-aging products. In addition, first clinical studies with novel rigid high-NA two-photon 1.6 mm GRIN microendoscopes have been conducted to study the effect of wound healing in chronic wounds (ulcus ulcera) as well as to perform intrabody imaging with subcellular resolution in small animals.

  19. Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kusa, F. [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei Tokyo 184-8588 (Japan); Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Echternkamp, K. E.; Herink, G.; Ropers, C. [4th Physical Institute – Solids and Nanostructures, University of Göttingen, 37077 Göttingen (Germany); Ashihara, S., E-mail: ashihara@iis.u-tokyo.ac.jp [Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2015-07-15

    We demonstrate strong-field photoelectron emission from gold nanorods driven by femtosecond mid-infrared optical pulses. The maximum photoelectron yield is reached at the localized surface plasmon resonance, indicating that the photoemission is governed by the resonantly-enhanced optical near-field. The wavelength- and field-dependent photoemission yield allows for a noninvasive determination of local field enhancements, and we obtain intensity enhancement factors close to 1300, in good agreement with finite-difference time domain computations.

  20. Multiphoton ionization of H{sub 2}{sup +} in xuv laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Guan Xiaoxu; Secor, Ethan B.; Bartschat, Klaus [Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311 (United States); Schneider, Barry I. [Office of Cyberinfrastructure, National Science Foundation, Arlington, Virgina 22230 (United States)

    2011-09-15

    We consider the ionization of the hydrogen molecular ion after one-, two-, and three-photon absorption over a large range of photon energies between 9 and 40 eV in the fixed-nuclei approximation. The temporal development of the system is obtained in a fully ab initio time-dependent grid-based approach in prolate spheroidal coordinates. The alignment dependence of the one-photon ionization amplitude is highlighted in the framework of time-dependent perturbation theory. For one-photon ionization as a function of the nuclear separation, the calculations reveal a significant minimum in the ionization probability. The suppressed ionization is attributed to a Cooper-type minimum, which is similar, but not identical, to the cancellation effect observed in photoionization cross sections of some noble-gas atoms. The effect of the nonspherical two-center Coulomb potential is analyzed. For two- and three-photon ionization, the angle-integrated cross sections clearly map out intermediate-state resonances, and the predictions of the current computations agree very well with those from time-independent calculations. The dominant emission modes for two-photon ionization are found to be very similar in both resonance and off-resonance regions.

  1. Dependency of plasmon resonance sensitivity of colloidal gold nanoparticles on the identity of surrounding ionic media

    Science.gov (United States)

    Mehrdel, B.; Aziz, A. Abdul

    2018-03-01

    The plasmon resonance sensitivity of gold nanoparticles (AuNPs) in sodium chloride (NaCl) liquid in near-infrared to the visible spectral region was investigated. The correlation between NaCl concentration and refractive index was analyzed using concentration dependency and Lorenz-Lorenz methods. The first derivative method was applied to the measured absorption spectra to quantitatively evaluate the plasmon resonance sensitivity. To understand the influence of the identity of the surrounding medium on the plasmon resonance sensitivity, experiments were repeated by replacing NaCl with sodium hydroxide (NaOH), followed by phosphate buffered saline (PBS). Experimental results showed that NaCl is the most effective ionic surrounding medium, which gives prominent plasmon resonance response. AuNPs size can have a significant influence on the plasmon resonance sensitivity. For tiny AuNPs (∼10 nm AuNPs), the plasmon resonance is insensitive to the identity of the surrounding medium due to their low cross-section value.

  2. Potential of ultraviolet widefield imaging and multiphoton microscopy for analysis of dehydroergosterol in cellular membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Brewer, Jonathan R.; Bagatolli, Luis

    2011-01-01

    Dehydroergosterol (DHE) is an intrinsically fluorescent sterol with absorption/emission in the ultraviolet (UV) region and biophysical properties similar to those of cholesterol. We compared the potential of UV-sensitive low-light-level wide-field (UV-WF) imaging with that of multiphoton (MP) exc...

  3. Transluminal color-coded three-dimensional magnetic resonance angiography for visualization of signal Intensity distribution pattern within an unruptured cerebral aneurysm: preliminarily assessment with anterior communicating artery aneurysms

    International Nuclear Information System (INIS)

    Satoh, T.; Ekino, C.; Ohsako, C.

    2004-01-01

    The natural history of unruptured cerebral aneurysm is not known; also unknown is the potential growth and rupture in any individual aneurysm. The authors have developed transluminal color-coded three-dimensional magnetic resonance angiography (MRA) obtained by a time-of-flight sequence to investigate the interaction between the intra-aneurysmal signal intensity distribution patterns and configuration of unruptured cerebral aneurysms. Transluminal color-coded images were reconstructed from volume data of source magnetic resonance angiography by using a parallel volume-rendering algorithm with transluminal imaging technique. By selecting a numerical threshold range from a signal intensity opacity chart of the three-dimensional volume-rendering dataset several areas of signal intensity were depicted, assigned different colors, and visualized transparently through the walls of parent arteries and an aneurysm. Patterns of signal intensity distribution were analyzed with three operated cases of an unruptured anterior communicating artery aneurysm and compared with the actual configurations observed at microneurosurgery. A little difference in marginal features of an aneurysm was observed; however, transluminal color-coded images visualized the complex signal intensity distribution within an aneurysm in conjunction with aneurysmal geometry. Transluminal color-coded three-dimensional magnetic resonance angiography can thus provide numerical analysis of the interaction between spatial signal intensity distribution patterns and aneurysmal configurations and may offer an alternative and practical method to investigate the patient-specific natural history of individual unruptured cerebral aneurysms. (orig.)

  4. Observations of a free-energy source for intense electrostatic waves. [in upper atmosphere near upper hybrid resonance frequency

    Science.gov (United States)

    Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.

    1980-01-01

    Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.

  5. Evaluation of endogenous species involved in brain tumors using multiphoton photoacoustic spectroscopy

    Science.gov (United States)

    Dahal, Sudhir; Cullum, Brian M.

    2013-05-01

    It has been shown that using non-resonant multiphoton photoacoustic spectroscopy (NMPPAS), excised brain tumor (grade III astrocytoma) and healthy tissue can be differentiated from each other, even in neighboring biopsy samples[1, 2]. Because of this, this powerful technique offers a great deal of potential for use as a surgical guidance technique for tumor margining with up to cellular level spatial resolution[3]. NMPPAS spectra are obtained by monitoring the non-radiative relaxation pathways via ultrasonic detection, following two-photon excitation with light in the optical diagnostic window (740nm-1100nm). Based upon significant differences in the ratiometric absorption of the tissues following 970nm and 1100nm excitation, a clear classification of the tissue can be made. These differences are the result of variations in composition and oxidation state of certain endogenous biochemical species between healthy and malignant tissues. In this work, NADH, NAD+ and ATP were measured using NMPPAS in model gelatin tissue phantoms to begin to understand which species might be responsible for the observed spectral differences in the tissue. Each species was placed in specific pH environments to provide control over the ratio of oxidized to reduced forms of the species. Ratiometric analyses were then conducted to account for variability caused due to instrumental parameters. This paper will discuss the potential roles of each of the species for tumor determination and their contribution to the spectral signature.

  6. Atomic-structure effects in strong-field multiphoton detachment and ionization

    International Nuclear Information System (INIS)

    AAberg, T.; Mu, X.; Ruscheinski, J.; Crasemann, B.

    1994-01-01

    Above-threshold photoelectron detachment and ionization spectra are investigated theoretically in the tunneling and over-barrier regime as a function of wavelength (≥ 1.064 μm) and polarization of the electromagnetic field. It is found that the zeros in the initial-state wave function can drastically affect the shape of the high-energy photoelectron distribution. The phenomenon is not predicted by tunneling and related models and hence can test their validity and reveal whether Keldysh-type theories are in general applicable to strong-field multiphoton dynamics. (orig.)

  7. Progressive and resonant wave helices application to electron paramagnetic resonance; Helices a ondes progressives et resonnantes application a la resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    We show that helices can be used as resonant systems. Their properties are theoretically and experimentally studied. We describe resonant helices for electron paramagnetic resonance in X-band and develop a comparison between their sensitivity and the sensitivity of a normal resonant cavity. For cylindrical samples less than 3 mm diameter, the helix is more sensitive and can produce more intense microwave magnetic fields. (author) [French] Il est montre que les helices peuvent etre utilisees comme systeme resonnant. Leurs proprietes sont discutees theoriquement et experimentalement. Des helices resonnantes en bande X pour la resonance paramagnetique electronique sont decrites et leur sensibilite est comparee a celle des cavites resonnantes. Pour des echantillons cylindriques de moins de 3 mm de diametre, l'helice est plus sensible et peut produire des champs magnetiques hyper fins plus intenses. (auteur)

  8. Electron-Nuclear Energy Sharing in Above-Threshold Multiphoton Dissociative Ionization of H2

    DEFF Research Database (Denmark)

    Wu, J.; Kunitski, M.; Pitzer, M.

    2013-01-01

    We report experimental observation of the energy sharing between electron and nuclei in above-threshold multiphoton dissociative ionization of H2 by strong laser fields. The absorbed photon energy is shared between the ejected electron and nuclei in a correlated fashion, resulting in multiple...... diagonal lines in their joint energy spectrum governed by the energy conservation of all fragment particles....

  9. Iota-dependent resonance absorption in the optical model description of alpha particle elastic scattering

    International Nuclear Information System (INIS)

    Chyla, K.; Jarczyk, L.; Maciuk, B.; Zipper, W.

    1976-01-01

    Alpha particle scattering from 28 Si has been studied at five bombarding energies from 23.5 to 28.5 MeV. iota-dependent resonance absorption has been introduced to the optical model analysis of 28 Si (α,β) 28 Si reaction. (author)

  10. Time-dependent shape fluctuations and the giant dipole resonance in hot nuclei: Realistic calculations

    International Nuclear Information System (INIS)

    Alhassid, Y.; Bush, B.; Yale Univ., New Haven, CT

    1990-01-01

    The effects of time-dependent shape fluctuations on the giant dipole resonance (GDR) in hot rotating nuclei are investigated. Using the framework of the Landau theory of shape transitions we develop a realistic macroscopic stochastic model to describe the quadrupole time-dependent shape fluctuations and their coupling to the dipole degrees of freedom. In the adiabatic limit the theory reduces to a previous adiabatic theory of static fluctuations in which the GDR cross section is calculated by averaging over the equilibrium distribution with the unitary invariant metric. Nonadiabatic effects are investigated in this model and found to cause structural changes in the resonance cross section and motional narrowing. Comparisons with experimental data are made and deviations from the adiabatic calculations can be explained. In these cases it is possible to determine from the data the damping of the quadrupole motion at finite temperature. (orig.)

  11. Identification of normal and cancerous human colorectal muscularis propria by multiphoton microscopy in different sections

    International Nuclear Information System (INIS)

    Zhou, Yi; Li, Lianhuang; Zhuo, Shuangmu; Zhu, Xiaoqin; Chen, Jianxin; Chen, Zhifen; Guan, Guoxian; Kang, Deyong

    2016-01-01

    Multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) as a potential diagnostic tool is attractive. MPM can effectively provide information about morphological and biochemical changes in biological tissues at the molecular level. In this paper, we attempt to identify normal and cancerous human colorectal muscularis propria by multiphoton microscopy in different sections (both in transverse and longitudinal sections). The results show that MPM can display different microstructure changes in the transverse and longitudinal sections of colorectal muscularis propria. MPM also can quantitatively describe the alteration of collagen content between normal and cancerous muscle layers. These are important pathological findings that MPM images can bring more detailed complementary information about tissue architecture and cell morphology through observing the transverse and longitudinal sections of colorectal muscularis propria. This work demonstrates that MPM can be better for identifying the microstructural characteristics of normal and cancerous human colorectal muscularis propria in different sections. (paper)

  12. Identification of normal and cancerous human colorectal muscularis propria by multiphoton microscopy in different sections

    Science.gov (United States)

    Zhou, Yi; Chen, Zhifen; Kang, Deyong; li, Lianhuang; Zhuo, Shuangmu; Zhu, Xiaoqin; Guan, Guoxian; Chen, Jianxin

    2016-01-01

    Multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) as a potential diagnostic tool is attractive. MPM can effectively provide information about morphological and biochemical changes in biological tissues at the molecular level. In this paper, we attempt to identify normal and cancerous human colorectal muscularis propria by multiphoton microscopy in different sections (both in transverse and longitudinal sections). The results show that MPM can display different microstructure changes in the transverse and longitudinal sections of colorectal muscularis propria. MPM also can quantitatively describe the alteration of collagen content between normal and cancerous muscle layers. These are important pathological findings that MPM images can bring more detailed complementary information about tissue architecture and cell morphology through observing the transverse and longitudinal sections of colorectal muscularis propria. This work demonstrates that MPM can be better for identifying the microstructural characteristics of normal and cancerous human colorectal muscularis propria in different sections.

  13. Temperature Dependence of the Resonant Magnetoelectric Effect in Layered Heterostructures

    Directory of Open Access Journals (Sweden)

    Dmitrii A. Burdin

    2017-10-01

    Full Text Available The dependence of the resonant direct magnetoelectric effect on temperature is studied experimentally in planar composite structures. Samples of rectangular shapes with dimensions of 5 mm × 20 mm employed ferromagnetic layers of either an amorphous (metallic glass alloy or nickel with a thickness of 20–200 μm and piezoelectric layers of single crystalline langatate material or lead zirconate titanate piezoelectric ceramics with a thickness of 500 μm. The temperature of the samples was varied in a range between 120 and 390 K by blowing a gaseous nitrogen stream around them. It is shown that the effective characteristics of the magnetoelectric effect—such as the mechanical resonance frequency fr, the quality factor Q and the magnitude of the magnetoelectric coefficient αE at the resonance frequency—are contingent on temperature. The interrelations between the temperature changes of the characteristics of the magnetoelectric effect and the temperature variations of the following material parameters—Young’s modulus Y, the acoustic quality factor of individual layers, the dielectric constant ε, the piezoelectric modulus d of the piezoelectric layer as well as the piezomagnetic coefficients λ(n of the ferromagnetic layer—are established. The effect of temperature on the characteristics of the nonlinear magnetoelectric effect is observed for the first time. The results can be useful for designing magnetoelectric heterostructures with specified temperature characteristics, in particular, for the development of thermally stabilized magnetoelectric devices.

  14. Comparison of higher-order multiphoton signal generation and collection at the 1700-nm window based on transmittance measurement of objective lenses.

    Science.gov (United States)

    Wen, Wenhui; Wang, Yuxin; Liu, Hongji; Wang, Kai; Qiu, Ping; Wang, Ke

    2018-01-01

    One benefit of excitation at the 1700-nm window is the more accessible modalities of multiphoton signal generation. It is demonstrated here that the transmittance performance of the objective lens is of vital importance for efficient higher-order multiphoton signal generation and collection excited at the 1700-nm window. Two commonly used objective lenses for multiphoton microscopy (MPM) are characterized and compared, one with regular coating and the other with customized coating for high transmittance at the 1700-nm window. Our results show that, fourth harmonic generation imaging of mouse tail tendon and 5-photon fluorescence of carbon quantum dots using the regular objective lens shows an order of magnitude signal higher than those using the customized objective lens. Besides, the regular objective lens also enables a 3-photon fluorescence imaging depth of >1600 μm in mouse brain in vivo. Our results will provide guidelines for objective lens selection for MPM at the 1700-nm window. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Isotopic dependence of giant multipole resonances

    International Nuclear Information System (INIS)

    Bar Touv, J.; Moalem, A.; Shlomo, S.

    1980-01-01

    A procedure is presented which allows the application of linear response theory and the random phase approximation to an open shell. The procedure is applied to Ca isotopes. The general features of giant multipole resonances are found to vary smoothly with the mass. The resonances exhibit more structure in the open lfsub(7/2) shell nuclei. While the energy-weighted dipole sum is practically constant in all isotopes, the isoscalar quadrupole and octupole energy weighted sums increase continuously by approx. 30% from 40 Ca to 48 Ca. (orig.)

  16. Spatio-temporal coherent control of atomic systems: weak to strong field transition and breaking of symmetry in 2D maps

    Energy Technology Data Exchange (ETDEWEB)

    Suchowski, H; Natan, A; Bruner, B D; Silberberg, Y [Physics of Complex Systems, Weizmann Institute of Science, Rehovot (Israel)], E-mail: haim.suchowski@weizmann.ac.il

    2008-04-14

    Coherent control of resonant and non-resonant two-photon absorption processes was examined using a spatio-temporal pulse-shaping technique. By utilizing a combination of temporal focusing and femtosecond pulse-shaping techniques, we spatially control multiphoton absorption processes in a completely deterministic manner. Distinctive symmetry properties emerge through two-dimensional mapping of spatio-temporal data. These symmetries break down in the transition to strong fields, revealing details of strong-field effects such as power broadenings and dynamic Stark shifts. We also present demonstrations of chirp-dependent population transfer in atomic rubidium, as well as the spatial separation of resonant and non-resonant excitation pathways in atomic caesium.

  17. Spatio-temporal coherent control of atomic systems: weak to strong field transition and breaking of symmetry in 2D maps

    International Nuclear Information System (INIS)

    Suchowski, H; Natan, A; Bruner, B D; Silberberg, Y

    2008-01-01

    Coherent control of resonant and non-resonant two-photon absorption processes was examined using a spatio-temporal pulse-shaping technique. By utilizing a combination of temporal focusing and femtosecond pulse-shaping techniques, we spatially control multiphoton absorption processes in a completely deterministic manner. Distinctive symmetry properties emerge through two-dimensional mapping of spatio-temporal data. These symmetries break down in the transition to strong fields, revealing details of strong-field effects such as power broadenings and dynamic Stark shifts. We also present demonstrations of chirp-dependent population transfer in atomic rubidium, as well as the spatial separation of resonant and non-resonant excitation pathways in atomic caesium

  18. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser.

    Science.gov (United States)

    Huang, Lin; Mills, Arthur K; Zhao, Yuan; Jones, David J; Tang, Shuo

    2016-05-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications.

  19. Single photon and multiphoton events with missing energy in $e^{+} e^{-}$ collisions at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2004-01-01

    Single- and multi-photon events with missing energy are selected in 619/pb of data collected by the L3 detector at LEP at centre-of-mass energies between 189GeV and 209GeV. The cross sections of the process e^+e^- -> nu nu gamma (gamma) are found to be in agreement with the Standard Model expectations, and the number of light neutrino species is determined, including lower energy data, to be N_nu = 2.98 +/- 0.05 +/- 0.04. Selection results are also given in the form of tables which can be used to test future models involving single- and multi-photon signatures at LEP. These final states are also predicted by models with large extra dimensions and by several supersymmetric models. No evidence for such models is found. Among others, lower limits between 1.5TeV and 0.65TeV are set, at 95% confidence level, on the new scale of gravity for the number of extra dimensions between 2 and 8.

  20. Multi-photon microscope driven by novel green laser pump

    Science.gov (United States)

    Marti, Dominik; Djurhuus, Martin; Jensen, Ole Bjarlin; Andersen, Peter E.

    2016-03-01

    Multi-photon microscopy is extensively used in research due to its superior possibilities when compared to other microscopy modalities. The technique also has the possibility to advance diagnostics in clinical applications, due to its capabilities complementing existing technology in a multimodal system. However, translation is hindered due to the high cost, high training demand and large footprint of a standard setup. We show in this article that minification of the setup, while also reducing cost and complexity, is indeed possible without compromising on image quality, by using a novel diode laser replacing the commonly used conventional solid state laser as the pump for the femtosecond system driving the imaging.

  1. Resonant Raman spectroscopy of PAH-Os self-assembled multilayers

    International Nuclear Information System (INIS)

    Tognalli, N.; Fainstein, A.; Bonazzola, C.; Calvo, E.

    2004-01-01

    We present a resonant Raman scattering study of (PAH-Os/PVS) n and (PAH-Os/GOx) m self-assembled multilayers (n=1-11 and m=1-3). These Os polymer multilayers can be used in electrodes as efficient molecular wires for biomolecular recognition. The Raman intensity dependence on the number of self-assembly cycles provides information on the deposition process. The spectra are identical to that observed for PAH-Os in aqueous solution, indicating that the PAH-Os metal complex structure is conserved in the multilayers. We observe at ∼500 nm incoming and outgoing Raman resonances of osmium and bipyridine vibrational modes. These resonances are associated to the metal-to-ligand charge transfer (MLCT) transition. We study the evolution of these Raman modes as a function of the Os oxidation state during in situ electrochemistry. During the oxidation process, Os(II)→Os(III), the Raman resonance related to the MLCT disappears and the bipyridine related modes harden by ∼10 cm-1. These results are correlated with optical transmission measurements which show the disappearance of the visible region absorption when the Os complex is oxidized. We also find partial quenching of the Raman mode intensity after in situ voltamperometric cycles which demonstrates the existence of photo-electro-chemical processes

  2. Interference of laser-induced resonances in the continuous structures of a helium atom

    International Nuclear Information System (INIS)

    Magunov, A I; Strakhova, S I

    2003-01-01

    Coherent effects in the interference of overlapping laser-induced resonances in helium atoms are considered. The simultaneous action of single-mode radiation of the 294-nm second harmonic of a cw dye laser and a 1064-nm Nd:YAG laser on helium atoms provides the overlap of two resonances induced by transitions from the 1s2s 1 S and 1s4s 1 S helium levels. The shape of the overlapping laser-induced resonances in the rotating-wave approximation is described by analytic expressions, which depend on the laser radiation intensities and the ratio of laser frequencies. (nonlinear optical phenomena)

  3. Multiphoton amplitude in a constant background field

    Science.gov (United States)

    Ahmad, Aftab; Ahmadiniaz, Naser; Corradini, Olindo; Kim, Sang Pyo; Schubert, Christian

    2018-01-01

    In this contribution, we present our recent compact master formulas for the multiphoton amplitudes of a scalar propagator in a constant background field using the worldline fomulation of quantum field theory. The constant field has been included nonperturbatively, which is crucial for strong external fields. A possible application is the scattering of photons by electrons in a strong magnetic field, a process that has been a subject of great interest since the discovery of astrophysical objects like radio pulsars, which provide evidence that magnetic fields of the order of 1012G are present in nature. The presence of a strong external field leads to a strong deviation from the classical scattering amplitudes. We explicitly work out the Compton scattering amplitude in a magnetic field, which is a process of potential relevance for astrophysics. Our final result is compact and suitable for numerical integration.

  4. Generation of a multi-photon Greenberger-Horne-Zeilinger state with linear optical elements and photon detectors

    International Nuclear Information System (INIS)

    Zou, X B; Pahlke, K; Mathis, W

    2005-01-01

    We present a scheme to generate a multi-photon Greenberger-Horne-Zeilinger (GHZ) state by using single-photon sources, linear optical elements and photon detectors. Such a maximum entanglement has wide applications in the demonstration of quantum nonlocality and quantum information processing

  5. Progressive and resonant wave helices application to electron paramagnetic resonance; Helices a ondes progressives et resonnantes application a la resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    We show that helices can be used as resonant systems. Their properties are theoretically and experimentally studied. We describe resonant helices for electron paramagnetic resonance in X-band and develop a comparison between their sensitivity and the sensitivity of a normal resonant cavity. For cylindrical samples less than 3 mm diameter, the helix is more sensitive and can produce more intense microwave magnetic fields. (author) [French] Il est montre que les helices peuvent etre utilisees comme systeme resonnant. Leurs proprietes sont discutees theoriquement et experimentalement. Des helices resonnantes en bande X pour la resonance paramagnetique electronique sont decrites et leur sensibilite est comparee a celle des cavites resonnantes. Pour des echantillons cylindriques de moins de 3 mm de diametre, l'helice est plus sensible et peut produire des champs magnetiques hyper fins plus intenses. (auteur)

  6. Excitation dependence of resonance line self-broadening at different atomic densities

    OpenAIRE

    Li, Hebin; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Scully, Marlan O.

    2009-01-01

    We study the dipole-dipole spectral broadening of a resonance line at high atomic densities when the self-broadening dominates. The selective reflection spectrum of a weak probe beam from the interface of the cell window and rubidium vapor are recorded in the presence of a far-detuned pump beam. The excitation due to the pump reduces the self-broadening. We found that the self-broadening reduction dependence on the pump power is atomic density independent. These results provide experimental e...

  7. As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance

    Science.gov (United States)

    Li, Yun-Fei; Dong, Feng-Xi; Chen, Yang; Zhang, Xu-Lin; Wang, Lei; Bi, Yan-Gang; Tian, Zhen-Nan; Liu, Yue-Feng; Feng, Jing; Sun, Hong-Bo

    2016-11-01

    The transfer-free fabrication of the high quality graphene on the metallic nanostructures, which is highly desirable for device applications, remains a challenge. Here, we develop the transfer-free method by direct chemical vapor deposition of the graphene layers on copper (Cu) nanoparticles (NPs) to realize the hybrid nanostructures. The graphene as-grown on the Cu NPs permits full electric contact and strong interactions, which results in a strong localization of the field at the graphene/copper interface. An enhanced intensity of the localized surface plasmon resonances (LSPRs) supported by the hybrid nanostructures can be obtained, which induces a much enhanced fluorescent intensity from the dye coated hybrid nanostructures. Moreover, the graphene sheets covering completely and uniformly on the Cu NPs act as a passivation layer to protect the underlying metal surface from air oxidation. As a result, the stability of the LSPRs for the hybrid nanostructures is much enhanced compared to that of the bare Cu NPs. The transfer-free hybrid nanostructures with enhanced intensity and stability of the LSPRs will enable their much broader applications in photonics and optoelectronics.

  8. The wavelength dependence of gold nanorod-mediated optical breakdown during infrared ultrashort pulses

    Energy Technology Data Exchange (ETDEWEB)

    Davletshin, Yevgeniy R.; Kumaradas, J. Carl [Department of Physics, Ryerson University, Toronto, ON (Canada)

    2017-04-15

    This paper investigates the wavelength dependence of the threshold of gold nanorod-mediated optical breakdown during picosecond and femtosecond near infrared optical pulses. It was found that the wavelength dependence in the picosecond regime is governed solely by the changes of a nanorod's optical properties. On the other hand, the optical breakdown threshold during femtosecond pulse exposure falls within one of two regimes. When the ratio of the maximum electric field from the outside to the inside of the nanorod is less then 7 (the absorption regime) the seed electrons are initiated by photo-thermal emission, and the wavelength dependence in the threshold of optical breakdown is the result of optical properties of the nanoparticle. When the ratio is greater than 7 (the near-field regime) more seed electrons are initiated by multiphoton ionization, and the wavelength dependence of the threshold of optical breakdown results from a combination of nanorod's optical properties and transitions in the order of multiphoton ionization. The findings of this study can guide the design of nanoparticle based optical breakdown applications. This analysis also deepens the understanding of nanoparticle-mediated laser induced breakdown for picosecond and femtosecond pulses at near infrared wavelengths. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Energy and polarization dependence of resonant inelastic X-ray scattering in Nd2CuO4

    International Nuclear Information System (INIS)

    Hill, J.P.; Kao, C.C.; Haemaelaeinen, K.

    1998-01-01

    The authors report the energy and polarization dependence of resonant inelastic x-ray scattering from Nd 2 CuO 4 . An energy loss feature at ∼6 eV is observed in the vicinity of the Cu K-edge. Numerical calculations based on the Anderson impurity model identify this as a charge transfer excitation to the anti-bonding state. The incident polarization is shown to select the intermediate states participating in the resonance process. Resonances are observed at 8,990 eV and 9,000 eV with the incident polarization perpendicular and parallel to the CuO planes, respectively. In contrast to the single-site model calculations, no resonances are observed associated with the 1s3d 10 L intermediate states, suggesting non-local effects play a role

  10. Electron-related nonlinearities in GaAs-Ga{sub 1-x}Al{sub x}As double quantum wells under the effects of intense laser field and applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos, Mexico (Mexico); Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Duque, C.A., E-mail: cduque_echeverri@yahoo.es [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Kasapoglu, E.; Sari, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Soekmen, I. [Dokuz Eyluel University, Physics Department, 35160 Buca, Izmir (Turkey)

    2013-03-15

    The combined effects of intense laser radiation and applied electric fields on the intersubband-related linear and nonlinear optical properties in GaAs-based quantum wells are discussed. It is shown that for asymmetric double quantum well, the increasing laser field intensity causes progressive redshifts in the peak positions of the second and third harmonic coefficients. However, the resonant peaks of the nonlinear optical rectification can suffer a blueshift or a redshift, depending on the laser strengths. The same feature appears in the case of the resonant peaks corresponding to the total coefficients of optical absorption and relative change in the refractive index. - Highlights: Black-Right-Pointing-Pointer Nonlinear optical properties in double quantum wells. Black-Right-Pointing-Pointer Increasing laser field intensity causes redshifts in the peak positions. Black-Right-Pointing-Pointer Resonant peak of second order nonlinearities can be blue-shifted. Black-Right-Pointing-Pointer Relative change in refractive index depends of the applied electric field. Black-Right-Pointing-Pointer The energy position depends of the laser field parameter.

  11. Using multiphoton fluorescence lifetime imaging to characterize liver damage and fluorescein disposition in liver in vivo

    Science.gov (United States)

    Thorling, Camilla A.; Studier, Hauke; Crawford, Darrell; Roberts, Michael S.

    2016-03-01

    Liver disease is the fifth most common cause of death and unlike many other major causes of mortality, liver disease rates are increasing rather than decreasing. There is no ideal measurement of liver disease and although biopsies are the gold standard, this only allows for a spot examination and cannot follow dynamic processes of the liver. Intravital imaging has the potential to extract detailed information over a larger sampling area continuously. The aim of this project was to investigate whether multiphoton and fluorescence lifetime imaging microscopy could detect early liver damage and to assess whether it could detect changes in metabolism of fluorescein in normal and diseased livers. Four experimental groups were used in this study: 1) control; 2) ischemia reperfusion injury; 3) steatosis and 4) steatosis with ischemia reperfusion injury. Results showed that multiphoton microscopy could visualize morphological changes such as decreased fluorescence of endogenous fluorophores and the presence of lipid droplets, characteristic of steatosis. Fluorescence lifetime imaging microscopy showed increase in NADPH in steatosis with and without ischemia reperfusion injury and could detect changes in metabolism of fluorescein to fluorescein monoglurcuronide, which was impaired in steatosis with ischemia reperfusion injury. These results concluded that the combination of multiphoton microscopy and fluorescence lifetime imaging is a promising method of assessing early stage liver damage and that it can be used to study changes in drug metabolism in the liver as an indication of liver disease and has the potential to replace the traditional static liver biopsy currently used.

  12. The state of development of an intense resonance electron-ion accelerator based on Doppler effect

    Energy Technology Data Exchange (ETDEWEB)

    Egorov, A M; Ivanov, B I; Butenko, V I; Ognivenko, V V; Onishchenko, I N; Prishchepov, V P [Kharkov Inst. of Physics and Technology (Ukraine)

    1997-12-31

    An intense ion accelerator has been proposed and now is being developed in which accelerating and focusing electric fields in a slow wave structure are excited by an intense electron beam using the anomalous and the normal Doppler effects. The results of theoretical studies and computer simulations show the advantage of this acceleration method that will make it possible to obtain acceleration rates of the order of 10 - 100 MeV/m, and ion beam energies and currents of the order of 10-100 MeV, 1-10 A. The project and technical documentation of an experimental accelerating installation were worked out. Currently, the 5 MeV accelerator-injector URAL-5 is in operation; preliminary experiments on a small installation have been carried out; experimental investigations of an accelerating RF resonator model (in 1/2 scaling) are being performed; the accelerating test installation is being manufactured. (author). 1 tab. 12 fig., 6 refs.

  13. The state of development of an intense resonance electron-ion accelerator based on Doppler effect

    International Nuclear Information System (INIS)

    Egorov, A.M.; Ivanov, B.I.; Butenko, V.I.; Ognivenko, V.V.; Onishchenko, I.N.; Prishchepov, V.P.

    1996-01-01

    An intense ion accelerator has been proposed and now is being developed in which accelerating and focusing electric fields in a slow wave structure are excited by an intense electron beam using the anomalous and the normal Doppler effects. The results of theoretical studies and computer simulations show the advantage of this acceleration method that will make it possible to obtain acceleration rates of the order of 10 - 100 MeV/m, and ion beam energies and currents of the order of 10-100 MeV, 1-10 A. The project and technical documentation of an experimental accelerating installation were worked out. Currently, the 5 MeV accelerator-injector URAL-5 is in operation; preliminary experiments on a small installation have been carried out; experimental investigations of an accelerating RF resonator model (in 1/2 scaling) are being performed; the accelerating test installation is being manufactured. (author). 1 tab. 12 fig., 6 refs

  14. Gas chromatography/multiphoton ionization/time-of-flight mass spectrometry of polychlorinated biphenyls

    International Nuclear Information System (INIS)

    Matsui, Taiki; Uchimura, Tomohiro; Imasaka, Totaro

    2011-01-01

    A sample mixture of polychlorinated biphenyls (PCBs) was measured by gas chromatography/multiphoton ionization/time-of-flight mass spectrometry (GC/MPI/TOF-MS) using four types of laser sources. When a fourth harmonic emission (266 nm) of a picosecond Nd:YAG laser (1064 nm) was utilized, highly chlorinated PCBs larger than hepta-CBs were not observed. A fifth harmonic emission (213 nm) of the picosecond Nd:YAG laser allowed the measurement of PCBs from di-CBs to octa-CBs, and the limit of detection (LOD) was several pg for each component of PCBs. The LOD for the total amount of PCBs, which was calculated using the protocol provided by the Ministry of the Environment, Japan, was 1000 pg. The signal intensity of the congeners with chlorine atoms at the ortho positions (non-coplanar PCBs) was enhanced by using the fifth harmonic emission. When the fourth harmonic emission remaining after fifth harmonic generation was simultaneously used, the LOD for total PCBs was improved to 667 pg. The PCB sample was also measured using a third harmonic emission (267 nm) of a femtosecond Ti:sapphire laser (800 nm), providing an LOD of 677 pg. Thus, the two-color beam (266/213 nm) of a picosecond Nd:YAG laser had a comparable, or even slightly superior, performance to the more expensive femtosecond Ti:sapphire laser.

  15. Search for anomalous multiphoton production at 100-300 GeV

    International Nuclear Information System (INIS)

    Burke, D.L.; Gustafson, H.R.; Jones, L.W.; Longo, M.J.

    1975-01-01

    A search for anomalous multiphoton production in neutron-CH 2 collisions has been carried out at Fermilab. Both anomalous γ events as might be produced in the annihilation of a magnetic monopole pair, as well as events with smaller opening angles, such as those observed in cosmic ray emulsions by Schein et al. and others were sought. No evidence for either type of event was found. An upper limit approximately 2.7 μb is placed on the production cross section for 'Schein' events or approximately10 -2 that deduced from the cosmic ray data. (Auth.)

  16. Multiphoton microscopy based cryo-imaging of inflated frozen human lung sections at -60°C in healthy and COPD lungs

    Science.gov (United States)

    Abraham, Thomas; Kayra, Damian; Zhang, Angela; Suzuki, Masaru; McDonough, John; Elliott, W. M.; Cooper, Joel D.; Hogg, James C.

    2013-02-01

    Lung is a complex gas exchanger with interfacial area (where the gas exchange takes place) is about the size of a tennis court. Respiratory function is linked to the biomechanical stability of the gas exchange or alveolar regions which directly depends on the spatial distributions of the extracellular matrix fibers such fibrillar collagens and elastin fibers. It is very important to visualize and quantify these fibers at their native and inflated conditions to have correct morphometric information on differences between control and diseased states. This can be only achieved in the ex vivo states by imaging directly frozen lung specimens inflated to total lung capacity. Multiphoton microscopy, which uses ultra-short infrared laser pulses as the excitation source, produces multiphoton excitation fluorescence (MPEF) signals from endogenously fluorescent proteins (e.g. elastin) and induces specific second harmonic generation (SHG) signals from non-centrosymmetric proteins such as fibrillar collagens in fresh human lung tissues [J. Struct. Biol. (2010)171,189-196]. Here we report for the first time 3D image data obtained directly from thick frozen inflated lung specimens (~0.7- 1.0 millimeter thick) visualized at -60°C without prior fixation or staining in healthy and diseased states. Lung specimens donated for transplantation and released for research when no appropriate recipient was identified served as controls, and diseased lung specimens donated for research by patients receiving lung transplantation for very severe COPD (n=4) were prepared as previously described [N. Engl. J. Med. (2011) 201, 1567]. Lung slices evenly spaced between apex and base were examined using multiphoton microscopy while maintained at -60°C using a temperature controlled cold stage with a temperature resolution of 0.1°C. Infrared femto-second laser pulses tuned to 880nm, dry microscopic objectives, and non-de-scanned detectors/spectrophotometer located in the reflection geometry were

  17. Short-term effect of short, intensive speech therapy on articulation and resonance in Ugandan patients with cleft (lip and) palate

    NARCIS (Netherlands)

    Anke Luyten; H. Vermeersch; A. Hodges; K. Bettens; K. van Lierde; G. Galiwango

    2016-01-01

    Objectives: The purpose of the current study was to assess the short-term effectiveness of short and intensive speech therapy provided to patients with cleft (lip and) palate (C(L)P) in terms of articulation and resonance. Methods: Five Ugandan patients (age: 7.3-19.6 years) with non-syndromic C(L)P

  18. Effects of four-wave mixing on four-photon resonance excitation and ionization in the presence of a three-photon intermediate state resonance enhancement

    International Nuclear Information System (INIS)

    Payne, M.G.; Miller, J.C.; Hart, R.C.; Garrett, W.R.

    1991-01-01

    We consider effects which occur when four-wave sum frequency generation and multiphoton ionization are induced by lasers tuned near a three-photon resonance and simultaneously near or at a dipole allowed four-photon resonance. In studies with unfocused laser beams, if the phase mismatch of the generated four-wave-mixing field is large and the related two-photon resonance for the absorption of a four-wave-mixing photon and a laser photon results in strong absorption of the four-wave-mixing field, a coherent cancellation occurs between the pumping of the resonance by two- and four-photon processes. This interference effect occurs when the first laser is tuned on either side of the three-photon resonance and |Δk rL |much-gt 1, where Δk r is the mismatch and L is the length of the path of the laser beams in the gas. With focused laser beams large differences occur between ionization with unidirectional beams and with counterpropagating laser beams when |Δk rb |much-gt 1, where b is the confocal parameter of the focused laser beams. Strong absorption of the four-wave-mixing field is shown not to be necessary for strong destructive interference with focused laser beams when the phase mismatch is large. This work also suggests an explanation for earlier experiments where the presence of a four-photon resonance enabled the generation of third-harmonic light in a positively dispersive wavelength region. We argue that this process can occur when the laser used to achieve the four-photon resonance is focused on the small z (z is the coordinate in the direction of propagation) side of the focal point of the laser responsible for the third-harmonic generation

  19. Modulation of the pupil function of microscope objective lens for multifocal multi-photon microscopy using a spatial light modulator

    Science.gov (United States)

    Matsumoto, Naoya; Okazaki, Shigetoshi; Takamoto, Hisayoshi; Inoue, Takashi; Terakawa, Susumu

    2014-02-01

    We propose a method for high precision modulation of the pupil function of a microscope objective lens to improve the performance of multifocal multi-photon microscopy (MMM). To modulate the pupil function, we adopt a spatial light modulator (SLM) and place it at the conjugate position of the objective lens. The SLM can generate an arbitrary number of spots to excite the multiple fluorescence spots (MFS) at the desired positions and intensities by applying an appropriate computer-generated hologram (CGH). This flexibility allows us to control the MFS according to the photobleaching level of a fluorescent protein and phototoxicity of a specimen. However, when a large number of excitation spots are generated, the intensity distribution of the MFS is significantly different from the one originally designed due to misalignment of the optical setup and characteristics of the SLM. As a result, the image of a specimen obtained using laser scanning for the MFS has block noise segments because the SLM could not generate a uniform MFS. To improve the intensity distribution of the MFS, we adaptively redesigned the CGH based on the observed MFS. We experimentally demonstrate an improvement in the uniformity of a 10 × 10 MFS grid using a dye solution. The simplicity of the proposed method will allow it to be applied for calibration of MMM before observing living tissue. After the MMM calibration, we performed laser scanning with two-photon excitation to observe a real specimen without detecting block noise segments.

  20. Multiphoton ionization and fragmentation study of acetone using 308 nm laser radiation

    Science.gov (United States)

    Liu Houxiang, Li Shutao, Han Jingcheng, Zhu Rong, Guan Yifu, Wu Cunkai

    1988-10-01

    Multiphoton ionization and fragmentation (MPI-F) of acetone molecules using 308 nm laser radiation was studied by using a molecular beam and quadrupole mass spectrometer. The ion peaks of acetone molecule appear at m/e=15 and 43, corresponding to the two fragments CH3+ and CH3CO+. It is considered that these two ions are, respectively, formed by direct (2+1) and 2-photon ionization of methyl and acetyl radicals, generated by photodissociation of acetone molecule.

  1. Hamiltonian Dynamics and Adiabatic Invariants for Time-Dependent Superconducting Qubit-Oscillators and Resonators in Quantum Computing Systems

    Directory of Open Access Journals (Sweden)

    Jeong Ryeol Choi

    2015-01-01

    Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.

  2. Below-threshold harmonic generation from strong non-uniform fields

    Science.gov (United States)

    Yavuz, I.

    2017-10-01

    Strong-field photoemission below the ionization threshold is a rich/complex region where atomic emission and harmonic generation may coexist. We studied the mechanism of below-threshold harmonics (BTH) from spatially non-uniform local fields near the metallic nanostructures. Discrete harmonics are generated due to the broken inversion symmetry, suggesting enriched coherent emission in the vuv frequency range. Through the numerical solution of the time-dependent Schrödinger equation, we investigate wavelength and intensity dependence of BTH. Wavelength dependence identifies counter-regular resonances; individual contributions from the multi-photon emission and channel-closing effects due to quantum path interferences. In order to understand the underlying mechanism of BTH, we devised a generalized semi-classical model, including the influence of Coulomb and non-uniform field interactions. As in uniform fields, Coulomb potential in non-uniform fields is the determinant of BTH; we observed that the generation of BTH are due to returning trajectories with negative energies. Due to large distance effectiveness of the non-uniformity, only long trajectories are noticeably affected.

  3. Multiphoton autofluorescence lifetime imaging of induced pluripotent stem cells

    Science.gov (United States)

    Uchugonova, Aisada

    2017-06-01

    The multiphoton fluorescence lifetime imaging tomograph MPTflex with its flexible 360-deg scan head, articulated arm, and tunable femtosecond laser source was employed to study induced pluripotent stem cell (iPS) cultures. Autofluorescence (AF) lifetime imaging was performed with 250-ps temporal resolution and submicron spatial resolution using time-correlated single-photon counting. The two-photon excited AF was based on the metabolic coenzymes NAD(P)H and flavin adenine dinucleotide/flavoproteins. iPS cells generated from mouse embryonic fibroblasts (MEFs) and cocultured with growth-arrested MEFs as feeder cells have been studied. Significant differences on AF lifetime signatures were identified between iPS and feeder cells as well as between their differentiating counterparts.

  4. Multiphoton transitions in semiconductors in the non-perturbative approach

    International Nuclear Information System (INIS)

    Iqbal, M.Z.; Hassan, A.R.

    1987-09-01

    Transition rates for multiphoton absorption via direct band-to-band excitation have been calculated using a non-perturbative approach due to Jones and Reiss, based on the Volkov type final state wave functions. Both cases of parabolic and non-parabolic energy bands have been included in our calculations. Absorption coefficients have been obtained for the cases of plane polarized and circularly polarized light. In particular, two-photon absorption coefficients are derived for the two cases of polarization for the parabolic band approximation as well as for non-parabolic bands and compared with the results based on perturbation theory. Numerical estimates of the two photon absorption coefficients resulting from our calculations are also provided. (author). 10 refs, 1 tab

  5. Excitation-energy-dependent resonances in x-ray emissions under near-threshold electron excitation of the Ce 3d and 4d levels

    International Nuclear Information System (INIS)

    Chamberlain, M.B.; Baun, W.L.

    1975-01-01

    Soft x-ray appearance potential spectra of the 3d and 4d levels of polycrystalline cerium metal are reported in this paper. Resonant x-ray emissions are observed when the electron-excitation energy sweeps through the ionization energies of the 3d and 4d levels. The resonant x rays excited at the 3d-level onsets are considerably more intense, and are excited at a lower electron-excitation energy than the 3d-series characteristic x rays. In the neighborhood of the 4d-electron thresholds, four line-like structures extend to approx.8 eV below the 4d-electron binding energies, while two broad and more intense structures occur above the 4d onsets, with the largest one reaching a peak intensity at 12 eV above the 4d thresholds. The resonant emissions apparently arise from the decay of threshold-excited states which are bound to the inner vacancy and have core configurations nd 9 4f 3 , (n=3,4). The exchange interaction between the three 4f electrons and the respective d-orbital vacancy spreads the 4d-threshold structures over a 20 eV range of excitation energies and the 3d-threshold structures over a much smaller range

  6. Electronically tunable femtosecond all-fiber optical parametric oscillator for multi-photon microscopy

    Science.gov (United States)

    Hellwig, Tim; Brinkmann, Maximilian; Fallnich, Carsten

    2018-02-01

    We present a femtosecond fiber-based optical parametric oscillator (FOPO) for multiphoton microscopy with wavelength tuning by electronic repetition rate tuning in combination with a dispersive filter in the FOPO cavity. The all-spliced, all-fiber FOPO cavity is based on polarization-maintaining fibers and a broadband output coupler, allowing to get access to the resonant signal pulses as well as the idler pulses simultaneously. The system was pumped by a gain-switched fiber-coupled laser diode emitting pulses at a central wavelength of 1030 nm and an electronically tunable repetition frequency of about 2 MHz. The pump pulses were amplified in an Ytterbium fiber amplifier system with a pulse duration after amplification of 13 ps. Tuning of the idler (1140 nm - 1300 nm) and signal wavelengths (850 nm - 940 nm) was achieved by changing the repetition frequency of the pump laser by about 4 kHz. The generated signal pulses reached a pulse energy of up to 9.2 nJ at 920 nm and were spectrally broadened to about 6 nm in the FOPO by a combination of self-phase and cross-phase modulation. We showed external compression of the idler pulses at 920 nm to about 430 fs and appleid them to two-photon excitation microscopy with green fluorescent dyes. The presented system constitutes an important step towards a fully fiber-integrated all-electronically tunable and, thereby, programmable light source and already embodies a versatile and flexible light source for applications, e.g., for smart microscopy.

  7. Measurement of magnetization of Ga1−xMnxAs by ferromagnetic resonance

    International Nuclear Information System (INIS)

    Hagmann, J.A.; Traudt, K.; Zhou, Y.Y.; Liu, X.; Dobrowolska, M.; Furdyna, J.K.

    2014-01-01

    In this paper, we extend ferromagnetic resonance (FMR) studies of thin layers of the ferromagnetic semiconductor Ga 1−x Mn x As to the analysis of the integrated intensity of the resonance in order to obtain information on the total spin in the sample directly involved in ferromagnetically-ordered magnetization. A theoretical model is proposed for the dependences of the FMR integrated intensity and linewidth on the orientation of the applied magnetic field as the field direction is varied from in-plane to normal-to-the-plane of the Ga 1−x Mn x As layer. The strain-induced magnetic anisotropy of Ga 1−x Mn x As presents a significant challenge to conventional FMR linewidth and integrated intensity models. The new model predicts that the integrated FMR intensity is proportional to the saturation magnetization M S of the sample, with the constant of proportionality varying as a function of the polar and azimuthal angles of the applied magnetic field. The angular and temperature behaviors of the integrated intensity and linewidth of the FMR predicted by the proposed model are in good qualitative agreement with measurements. - Highlights: • We extend ferromagnetic resonance to the analysis of total magnetization of thin film Ga 1−x Mn x As. • We formulate a theoretical model for FMR integrated intensity and linewidth. • The model predicts that integrated FMR intensity is proportional to magnetization. • Predictions made by the model are in good qualitative agreement with measurements

  8. resonance fluorescence in Al, Ti, Cu and potential applications for X-ray sources

    Science.gov (United States)

    Nahar, Sultana N.; Pradhan, Anil K.

    2015-04-01

    The Kα resonance fluorescence (RFL) effect via photoabsorptions of inner shell electrons as the element goes through multiple ionization states is studied. We demonstrate that the resonances observed recently in Kα (1s-2p) fluorescence in aluminum plasmas by using a high-intensity X-ray free-electron laser [1] are basically K-shell resonances in hollow atoms going through multiple ionization states at resonant energies as predicted earlier for gold and iron ions [2]. These resonances are formed below the K-shell ionization edge and shift toward higher energies with ionization states, as observed. Fluorescence emission intensities depend on transition probabilities for each ionization stage of the given element for all possible Kα (1 s → 2 p) transition arrays. The present calculations for resonant photoabsorptions of Kα photons in Al have reproduced experimentally observed features. Resonant cross sections and absorption coefficients are presented for possible observation of Kα RFL in the resonant energy ranges of 4.5-5.0 keV for Ti ions and 8.0-8.7 keV for Cu ions respectively. We suggest that theoretically the Kα RFL process may be driven to enhance the Auger cycle by a twin-beam monochromatic X-ray source, tuned to the K-edge and Kα energies, with potential applications such as the development of narrow-band biomedical X-ray devices.

  9. Excitonic dynamical Franz-Keldysh effect

    DEFF Research Database (Denmark)

    Nordstrøm, K.B.; Johnsen, Kristinn; Allen, S.J.

    1998-01-01

    The dynamical Franz-Keldysh effect is exposed by exploring near-band-gap absorption in the presence of intense THz electric fields. It bridges the gap between the de Franz-Keldysh effect and multiphoton absorption and competes with the THz ac Stark effect in shifting the energy of the excitonic...... resonance. A theoretical model which includes the strong THz field nonperturbatively via a nonequilibrium Green functions technique is able to describe the dynamical Franz-Keldysh effect in the presence of excitonic absorption....

  10. From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin

    Science.gov (United States)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Getova, Valentina; Niemeyer, Verena; Zens, Katharina; Unnerstall, Tim R.; Feger, Julia S.; Fallah, Mohammad A.; Metze, Dieter; Ständer, Sonja; Luger, Thomas A.; Koenig, Karsten; Mess, Christian; Schneider, Stefan W.

    2016-03-01

    The application of multiphoton microscopy in the field of biomedical research and advanced diagnostics promises unique insights into the pathophysiology of inflammatory skin diseases. In the present study, we combined multiphoton-based intravital tomography (MPT) and fluorescence lifetime imaging (MPT-FLIM) within the scope of a clinical trial of atopic dermatitis with the aim of providing personalised data on the aetiopathology of inflammation in a non-invasive manner at patients’ bedsides. These ‘optical biopsies’ generated via MPT were morphologically analysed and aligned with classical skin histology. Because of its subcellular resolution, MPT provided evidence of a redistribution of mitochondria in keratinocytes, indicating an altered cellular metabolism. Two independent morphometric algorithms reliably showed an even distribution in healthy skin and a perinuclear accumulation in inflamed skin. Moreover, using MPT-FLIM, detection of the onset and progression of inflammatory processes could be achieved. In conclusion, the change in the distribution of mitochondria upon inflammation and the verification of an altered cellular metabolism facilitate a better understanding of inflammatory skin diseases and may permit early diagnosis and therapy.

  11. A least squares approach to estimating the probability distribution of unobserved data in multiphoton microscopy

    Science.gov (United States)

    Salama, Paul

    2008-02-01

    Multi-photon microscopy has provided biologists with unprecedented opportunities for high resolution imaging deep into tissues. Unfortunately deep tissue multi-photon microscopy images are in general noisy since they are acquired at low photon counts. To aid in the analysis and segmentation of such images it is sometimes necessary to initially enhance the acquired images. One way to enhance an image is to find the maximum a posteriori (MAP) estimate of each pixel comprising an image, which is achieved by finding a constrained least squares estimate of the unknown distribution. In arriving at the distribution it is assumed that the noise is Poisson distributed, the true but unknown pixel values assume a probability mass function over a finite set of non-negative values, and since the observed data also assumes finite values because of low photon counts, the sum of the probabilities of the observed pixel values (obtained from the histogram of the acquired pixel values) is less than one. Experimental results demonstrate that it is possible to closely estimate the unknown probability mass function with these assumptions.

  12. Magnetic resonance imaging of thoracic hydatid disease

    International Nuclear Information System (INIS)

    Sinner, W.N. von; Rifal, A.; Te Strake, L.; Sieck, J.; King Faisal Specialist Hospital and Research Centre, Riyadh; Michigan Univ., Ann Arbor

    1990-01-01

    Two patients with thoracic manifestations of hydatid disease (HD) are discussed; one patient had recurrent HD of the chest wall and the other, intrapulmonary HD after rupture and intrathoracic extension of an infradiaphragmatic cyst. At magnetic resonance (MR) imaging the manifestations of HD in the thorax are similar to previously reported MR findings in HD in the liver. The presence of a low signal intensity rim on T2 weighted images representing the cyst wall was confirmed. On T1 weighted images cysts with heterogeneous low and intermediate signal intensity contents and a relatively high signal intensity wall were seen. ''Folded parasitic membranes'' previously not described on MR were noted. Daughter cysts may have a low or high signal intensity depending on contents. Reactive changes in the lung may be quite marked compared with the liver, due to reaction to the parasite or simply because the lung is more easily compressed leading to secondary atelectasis. (orig.)

  13. Advanced multiphoton methods for in vitro and in vivo functional imaging of mouse retinal neurons (Conference Presentation)

    Science.gov (United States)

    Cohen, Noam; Schejter, Adi; Farah, Nairouz; Shoham, Shy

    2016-03-01

    Studying the responses of retinal ganglion cell (RGC) populations has major significance in vision research. Multiphoton imaging of optogenetic probes has recently become the leading approach for visualizing neural populations and has specific advantages for imaging retinal activity during visual stimulation, because it leads to reduced direct photoreceptor excitation. However, multiphoton retinal activity imaging is not straightforward: point-by-point scanning leads to repeated neural excitation while optical access through the rodent eye in vivo has proven highly challenging. Here, we present two enabling optical designs for multiphoton imaging of responses to visual stimuli in mouse retinas expressing calcium indicators. First, we present an imaging solution based on Scanning Line Temporal Focusing (SLITE) for rapidly imaging neuronal activity in vitro. In this design, we scan a temporally focused line rather than a point, increasing the scan speed and reducing the impact of repeated excitation, while maintaining high optical sectioning. Second, we present the first in vivo demonstration of two-photon imaging of RGC activity in the mouse retina. To obtain these cellular resolution recordings we integrated an illumination path into a correction-free imaging system designed using an optical model of the mouse eye. This system can image at multiple depths using an electronically tunable lens integrated into its optical path. The new optical designs presented here overcome a number of outstanding obstacles, allowing the study of rapid calcium- and potentially even voltage-indicator signals both in vitro and in vivo, thereby bringing us a step closer toward distributed monitoring of action potentials.

  14. Intensity dependent absorption bleaching of high subband excitons in GaAs/AlGaAs multiple quantum wells

    CERN Document Server

    Shin, S H; Lee, E H; Chae, K M; Park, S H; Kim, U

    1998-01-01

    We have investigated the influence of carrier generation on the absorption bleaching of the n=2 and n=3 excitons in GaAs/AlGaAs multiple quantum wells (MQWs). With the excitation near the resonance of the n=1 exciton absorption, the long range coulomb screening and collision broadening had significant effects on the exciton bleaching. At low excitation intensity, the absorption bleaching of the n=2 exciton in 75 A-thick MQWs and that of the n=3 exciton in 150 A-thick MQWs were due to linewidth broadening by the collision broadening effect only. At high excitation intensity, however, the reduction of oscillator strength due to the long range coulomb screening contributed dominantly to absorption bleaching.

  15. Detection of polychlorinated biphenyls in transformer oils in Vietnam by multiphoton ionization mass spectrometry using a far-ultraviolet femtosecond laser as an ionization source.

    Science.gov (United States)

    Duong, Vu Thi Thuy; Duong, Vu; Lien, Nghiem Thi Ha; Imasaka, Tomoko; Tang, Yuanyuan; Shibuta, Shinpei; Hamachi, Akifumi; Hoa, Do Quang; Imasaka, Totaro

    2016-03-01

    Polychlorinated biphenyls (PCBs) in transformer and food oils were measured using gas chromatography combined with multiphoton ionization mass spectroscopy. An ultrashort laser pulse emitting in the far-ultraviolet region was utilized for efficient ionization of the analytes. Numerous signal peaks were clearly observed for a standard sample mixture of PCBs when the third and fourth harmonic emissions (267 and 200nm) of a femtosecond Ti:sapphire laser (800nm) were employed. The signal intensities were found to be greater when measured at 200nm compared with those measured at 267nm, providing lower detection limits especially for highly chlorinated PCBs at shorter wavelengths. After simple pretreatment using disposable columns, PCB congeners were measured and found to be present in the transformer oils used in Vietnam. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Self-assembled Au nanoparticles on heated Corning glass by dc magnetron sputtering: size-dependent surface plasmon resonance tuning

    Energy Technology Data Exchange (ETDEWEB)

    Grammatikopoulos, S.; Pappas, S. D. [University of Patras, Laboratory of High-Tech Materials, School of Engineering (Greece); Dracopoulos, V. [Hellas-Institute of Chemical Engineering and High Temperature Chemical Processes, (FORTH/ICE-HT), Foundation for Research and Technology (Greece); Poulopoulos, P., E-mail: poulop@upatras.gr [University of Patras, Laboratory of High-Tech Materials, School of Engineering (Greece); Fumagalli, P. [Freie Universitaet Berlin, Institut fuer Experimentalphysik (Germany); Velgakis, M. J.; Politis, C. [University of Patras, Laboratory of High-Tech Materials, School of Engineering (Greece)

    2013-02-15

    We report on the growth of Au nanoparticles on Corning glass by direct current magnetron sputtering and on the optical absorption of the films. The substrate temperature was kept to relatively high temperatures of 100 or 450 Degree-Sign C. This lead to the growth of Au nanoparticles instead of smooth Au films as the surface energy of Au is much larger than the one of glass. The size of the particles depended on the substrate temperature and deposition time and was shown to follow a logarithmic normal distribution function. Both, the surface plasmon resonance position and bandwidth, were found to depend upon the average particle size. The surface plasmon resonance position showed a 75 nm continuous blue shift from 14 nm down to 2.5 nm average particle size. Thus, we have shown how to tune the nanoparticle size and surface plasmon resonance of Au by varying the substrate temperature and deposition time. The experimental results are reproduced reasonably using a method which is based on the size- and wavelength-dependent complex dielectric function of Au within the framework of the Mie theory for the optical properties of metallic nanospheres.

  17. Anaesthesiological aspects of thorax-diagnostic procedures in intensive-care units

    International Nuclear Information System (INIS)

    Schulte am Esch, J.

    1989-01-01

    Diagnostic procedures of the thorax in intensive-care units are conventional X-ray chest images, chest images by digital luminescence radiography, sonography and transoesophageal Doppler echocardiography. In addition to these bedside methods the stationary usable techniques, such as computed tomography, digital subtraction angiography and the seldom in intensive care patients used computed nuclear spin resonance tomography (NMR) are applicable. The selection of the above mentioned techniques depends on the availability and the quality of the methods as well as the qualifications of the involved staff. The diagnostic procedures of the chest must be arranged depending on the decision if patients have to be transported or not. In conclusion it can be stated that in spite of growing technical preconditions the availability of the methods in immobile patients and the diagnostic potency of the techniques have to be examined. (orig.) [de

  18. Energy transfer properties and mechanisms

    International Nuclear Information System (INIS)

    Barker, J.R.

    1993-01-01

    Since no single experimental technique is the best method for energy transfer experiments, we have used both time-dependent infrared fluorescence (IRF) and time-dependent thermal lensing (TDTL) to study energy transfer in various systems. We are investigating pump-probe techniques employing resonance enhanced multiphoton ionization (REMPI). IRF was used to study benzene, azulene, and toluene. TDTL was used to study CS 2 and SO 2 (data not given for latter). Large molecule energy transfer mechanisms are discussed. 10 figs

  19. Propagation of Solar Energetic Particles in Three-dimensional Interplanetary Magnetic Fields: Radial Dependence of Peak Intensities

    Science.gov (United States)

    He, H.-Q.; Zhou, G.; Wan, W.

    2017-06-01

    A functional form {I}\\max (R)={{kR}}-α , where R is the radial distance of a spacecraft, was usually used to model the radial dependence of peak intensities {I}\\max (R) of solar energetic particles (SEPs). In this work, the five-dimensional Fokker-Planck transport equation incorporating perpendicular diffusion is numerically solved to investigate the radial dependence of SEP peak intensities. We consider two different scenarios for the distribution of a spacecraft fleet: (1) along the radial direction line and (2) along the Parker magnetic field line. We find that the index α in the above expression varies in a wide range, primarily depending on the properties (e.g., location and coverage) of SEP sources and on the longitudinal and latitudinal separations between the sources and the magnetic foot points of the observers. Particularly, whether the magnetic foot point of the observer is located inside or outside the SEP source is a crucial factor determining the values of index α. A two-phase phenomenon is found in the radial dependence of peak intensities. The “position” of the break point (transition point/critical point) is determined by the magnetic connection status of the observers. This finding suggests that a very careful examination of the magnetic connection between the SEP source and each spacecraft should be taken in the observational studies. We obtain a lower limit of {R}-1.7+/- 0.1 for empirically modeling the radial dependence of SEP peak intensities. Our findings in this work can be used to explain the majority of the previous multispacecraft survey results, and especially to reconcile the different or conflicting empirical values of the index α in the literature.

  20. Interaction of intense electromagnetic fields with SF6 molecules and clusters in supersonic expansion

    International Nuclear Information System (INIS)

    Airoldi, V.J.T.

    1987-01-01

    A method of measuring SF 6 cluster formation and inhibition in pulsed supersonic expansion in the presence of intense electromagnetic radiation is presented. The characterization of the expansion of SF 6 molecules was done and, the extension of the collision region was determined. An improved unidimensional theory of supersonic expansion showed good agreement with the experimental results. The spectra of multiphoton absorption of SF 6 molecules in supersonic jet and the average energy absorved by each molecule were determined. The absorption spectra of molecule in the collision region present absorption maxima different from those obtained in the collisionless region. The results, if compared with the literature data, show good agreement, with a small difference in the spetra corresponding to the collisionless region. This difference was observed, for the first time in the multiphoton absorption and is attribuited to cluster formation in the jet. A new technique for measuring cluster formation in the supersonic jet, based on determination of the spatial distribution of the energy of molecules in the jet after passing through a skimmer located in the collision region is shown. The inhibition of cluster formation, due to the incidence of intense electromagnetic radiation from a CO 2 -TEA pulsed laser in the initial collision region of the jet, causes a second expansion in the skimmer. The results obtained show that this method can lead to a new isotope separation process. All the parts of the experimental set up, for example, high vacuum system, pulsed valve and pyroelectric detector, were developed and constructed specially for the experiment. (Author) [pt