WorldWideScience

Sample records for multiphasic personality inventory-2-restructured

  1. Equivalence of Laptop and Tablet Administrations of the Minnesota Multiphasic Personality Inventory-2 Restructured Form.

    Menton, William H; Crighton, Adam H; Tarescavage, Anthony M; Marek, Ryan J; Hicks, Adam D; Ben-Porath, Yossef S

    2017-06-01

    The present study investigated the comparability of laptop computer- and tablet-based administration modes for the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF). Employing a counterbalanced within-subjects design, the MMPI-2-RF was administered via both modes to a sample of college undergraduates ( N = 133). Administration modes were compared in terms of mean scale scores, internal consistency, test-retest consistency, external validity, and administration time. Mean scores were generally similar, and scores produced via both methods appeared approximately equal in terms of internal consistency and test-retest consistency. Scores from the two modalities also evidenced highly similar patterns of associations with external criteria. Notably, tablet administration of the MMPI-2-RF was substantially longer than laptop administration in the present study (mean difference 7.2 minutes, Cohen's d = .95). Overall, results suggest that varying administration mode between laptop and tablet has a negligible influence on MMPI-2-RF scores, providing evidence that these modes of administration can be considered psychometrically equivalent.

  2. Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) predictors of police officer problem behavior.

    Tarescavage, Anthony M; Corey, David M; Ben-Porath, Yossef S

    2015-02-01

    The purpose of this study was to investigate the predictive validity of the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) in a sample of law enforcement officers. MMPI-2-RF scores were collected from preemployment psychological evaluations of 136 male police officers, and supervisor ratings of performance and problem behavior were subsequently obtained during the initial probationary period. The sample produced meaningfully lower and less variant substantive scale scores than the general population and the MMPI-2-RF Police Candidate comparison group, which significantly affected effect sizes for the zero-order correlations. After applying a correction for range restriction, MMPI-2-RF substantive scales demonstrated moderate to strong associations with criteria, particularly in the Emotional Dysfunction and Interpersonal Functioning domains. Relative risk ratio analyses showed that cutoffs of 45T and 50T maintained reasonable selection ratios because of the exceptionally low scores in this sample and were associated with significantly increased risk for problematic behavior. These results provide support for the predictive validity of the MMPI-2-RF substantive scales in this setting. Implications of these findings and limitations of these results are discussed. © The Author(s) 2014.

  3. Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) normative elevation rates: comparisons with epidemiological prevalence rates.

    Tarescavage, Anthony M; Marek, Ryan J; Finn, Jacob A; Hicks, Adam; Rapier, Jessica L; Ben-Porath, Yossef S

    2013-01-01

    Odland, Berthelson, Sharma, Martin, and Mittenberg ( 2013 ) caution that clinically elevated scale scores produced by members of the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008 /2011) normative sample raise concerns about the potential for false positive findings of psychopathology. However, the MMPI-2-RF normative sample is intended to represent the general population of the United States, 26.2% of which met criteria for a Diagnostic and Statistical Manual-IV (APA, 1994 ) disorder in a 12-month period (Kessler, Chiu, Demler, & Walters, 2005 ). In the current study we compare scale elevation rates in the MMPI-2-RF normative sample to prevalence rates of mental disorders primarily drawn from the National Comorbidity Study Replication (Kessler et al., 2005 ). Our objective was to evaluate MMPI-2-RF elevation rates in an epidemiological context. Results indicate that MMPI-2-RF scale elevation rates were generally consistent with epidemiological data when examined in the context of standard interpretation guidelines for the inventory. We also reiterate Ben-Porath and Tellegen's (2008/2011) caution that MMPI-2-RF scale elevations alone are not sufficient to indicate the presence of psychiatric disorder. Rather they are best viewed as indications of the need to evaluate the individual for possible disorder(s). Implications of these results, limitations of this study, and future directions in research are discussed.

  4. Minnesota multiphasic personality inventory-2-restructured form (MMPI-2-RF) predictors of violating probation after felonious crimes.

    Tarescavage, Anthony M; Luna-Jones, Lynn; Ben-Porath, Yossef S

    2014-12-01

    We compared Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) scores of 25 individuals convicted of felonies who violated probation within 1 year of sentencing with those of 45 similarly sentenced defendants who completed probation successfully. The sample (51 males, 19 females) ranged in age from 18 to 81 years (M = 35.2, SD = 13.8) and had 8 to 16 years of education (M = 11.7, SD = 2.1). The majority were Caucasian (85.7%), but African Americans were also represented (14.3%). Individuals in the sample were primarily convicted of mid-level felonies (F-1: 2.9%; F-2: 14.3%; F-3: 22.9%; F-4: 31.4%; F-5: 12.9%). As hypothesized, moderate to large statistically significant differences between probation completers and violators were found on several MMPI-2-RF scales, including Behavioral/Externalizing Dysfunction, Antisocial Behavior, Juvenile Conduct Problems, Substance Abuse, Aggression, Activation, and Disconstraint. Relative risk ratio analyses indicated that probationers who produced elevated scores on these scales were up to 3 times more likely to violate probation than were those with non-elevated scores. Implications of these results and limitations of our findings are discussed. (c) 2014 APA, all rights reserved.

  5. Associations between DSM-5 section III personality traits and the Minnesota Multiphasic Personality Inventory 2-Restructured Form (MMPI-2-RF) scales in a psychiatric patient sample.

    Anderson, Jaime L; Sellbom, Martin; Ayearst, Lindsay; Quilty, Lena C; Chmielewski, Michael; Bagby, R Michael

    2015-09-01

    Our aim in the current study was to evaluate the convergence between Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5) Section III dimensional personality traits, as operationalized via the Personality Inventory for DSM-5 (PID-5), and Minnesota Multiphasic Personality Inventory 2-Restructured Form (MMPI-2-RF) scale scores in a psychiatric patient sample. We used a sample of 346 (171 men, 175 women) patients who were recruited through a university-affiliated psychiatric facility in Toronto, Canada. We estimated zero-order correlations between the PID-5 and MMPI-2-RF substantive scale scores, as well as a series of exploratory structural equation modeling (ESEM) analyses to examine how these scales converged in multivariate latent space. Results generally showed empirical convergence between the scales of these two measures that were thematically meaningful and in accordance with conceptual expectations. Correlation analyses showed significant associations between conceptually expected scales, and the highest associations tended to be between scales that were theoretically related. ESEM analyses generated evidence for distinct internalizing, externalizing, and psychoticism factors across all analyses. These findings indicate convergence between these two measures and help further elucidate the associations between dysfunctional personality traits and general psychopathology. (c) 2015 APA, all rights reserved.

  6. Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) predictors of police officer problem behavior and collateral self-report test scores.

    Tarescavage, Anthony M; Fischler, Gary L; Cappo, Bruce M; Hill, David O; Corey, David M; Ben-Porath, Yossef S

    2015-03-01

    The current study examined the predictive validity of Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008/2011) scores in police officer screenings. We utilized a sample of 712 police officer candidates (82.6% male) from 2 Midwestern police departments. The sample included 426 hired officers, most of whom had supervisor ratings of problem behaviors and human resource records of civilian complaints. With the full sample, we calculated zero-order correlations between MMPI-2-RF scale scores and scale scores from the California Psychological Inventory (Gough, 1956) and Inwald Personality Inventory (Inwald, 2006) by gender. In the hired sample, we correlated MMPI-2-RF scale scores with the outcome data for males only, owing to the relatively small number of hired women. Several scales demonstrated meaningful correlations with the criteria, particularly in the thought dysfunction and behavioral/externalizing dysfunction domains. After applying a correction for range restriction, the correlation coefficient magnitudes were generally in the moderate to large range. The practical implications of these findings were explored by means of risk ratio analyses, which indicated that officers who produced elevations at cutscores lower than the traditionally used 65 T-score level were as much as 10 times more likely than those scoring below the cutoff to exhibit problem behaviors. Overall, the results supported the validity of the MMPI-2-RF in this setting. Implications and limitations of this study are discussed. 2015 APA, all rights reserved

  7. Use of Prehire Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) Police Candidate Scores to Predict Supervisor Ratings of Posthire Performance.

    Tarescavage, Anthony M; Brewster, JoAnne; Corey, David M; Ben-Porath, Yossef S

    2015-08-01

    We examined associations between prehire Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) scores and posthire performance ratings for a sample of 131 male police officers. Substantive scale scores in this sample were meaningfully lower than those obtained by the test's normative sample and substantially range restricted, but scores were consistent with those produced by members of the police candidate comparison group (Corey & Ben-Porath). After applying a statistical correction for range restriction, we found several associations between MMPI-2-RF substantive scale scores and supervisor ratings of job-related performance. Findings for scales from the emotional dysfunction and interpersonal functioning domains of the test were particularly strong. For example, scales assessing low positive emotions and social avoidance were associated with several criteria that may be affected by lack of engagement with one's environment and other people, including problems with routine task performance, decision making, assertiveness, conscientiousness, and social competence. Implications of these findings for assessment science and practice are discussed. © The Author(s) 2014.

  8. Minnesota multiphasic personality inventory-2 restructured form (MMPI-2-RF) scale score differences in bariatric surgery candidates diagnosed with binge eating disorder versus BMI-matched controls.

    Marek, Ryan J; Ben-Porath, Yossef S; Ashton, Kathleen; Heinberg, Leslie J

    2014-04-01

    Binge Eating Disorder (BED) is among the most common psychiatric disorders in bariatric surgery candidates. The Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF) is a broadband, psychological test that includes measures of emotional and behavioral dysfunction, which have been associated with BED behaviors in bariatric surgery candidates; however these studies have lacked appropriate controls. In the current study, we compared MMPI-2-RF scale scores of bariatric surgery patients diagnosed with BED (BED+) with BMI-matched controls without BED (BED-). Three-hundred and seven BED+ participants (72.64% female and 67.87% Caucasian; mean BMI of 51.36 kg/m(2) [SD = 11.94]) were drawn from a large, database (N = 1304). Three-hundred and seven BED- participants were matched on BMI and demographics (72.64% female, 68.63% Caucasian, and mean BMI of 51.30 kg/m(2) [SD = 11.70]). The BED+ group scored significantly higher on measures of Demoralization, Low Positive Emotions, and Dysfunctional Negative Emotions and scored lower on measures of Antisocial Behaviors, reflecting behavioral constraint. Optimal T-Score cutoffs were below the traditional 65 T score for several MMPI-2-RF scales. MMPI-2-RF externalizing measures also added incrementally to differentiating between the groups beyond the Binge Eating Scale (BES). BED+ individuals produced greater elevations on a number of MMPI-2-RF internalizing scales and externalizing scales. Use of the test in conjunction with a clinical interview and other self-report data can further aid the clinician in guiding patients to appropriate treatment to optimize outcome. Copyright © 2013 Wiley Periodicals, Inc.

  9. The Generalizability of Overreporting Across Self-Report Measures: An Investigation With the Minnesota Multiphasic Personality Inventory-2-Restructured Form and the Personality Assessment Inventory in a Civil Disability Sample.

    Crighton, Adam H; Tarescavage, Anthony M; Gervais, Roger O; Ben-Porath, Yossef S

    2017-07-01

    Elevated overreporting Validity Scale scores on the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) are associated with higher scores on collateral measures; however, measures used in prior research lacked validity scales. We sought to extend these findings by examining associations between elevated MMPI-2-RF overreporting scale scores and Personality Assessment Inventory (PAI) scale scores among 654 non-head injury civil disability claimants. Individuals were classified as overreporting psychopathology (OR-P), overreporting somatic/cognitive complaints (OR-SC), inconclusive reporting psychopathology (IR-P), inconclusive reporting somatic/cognitive complaints (IR-SC), or valid reporting (VR). Both overreporting groups had significantly and meaningfully higher scores than the VR group on the MMPI-2-RF and PAI scales. Both IR groups had significantly and meaningfully higher scores than the VR group, as well as lower scores than their overreporting counterparts. Our findings demonstrate the utility of inventories with validity scales in assessment batteries that include instruments without measures of protocol validity.

  10. Reliability and validity of the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) in evaluations of chronic low back pain patients.

    Tarescavage, Anthony M; Scheman, Judith; Ben-Porath, Yossef S

    2015-06-01

    The purpose of the current study was to investigate the reliability and concurrent validity of Minnesota Multiphasic Personality Inventory (MMPI)-2-Restructured Form (2-RF) (Ben-Porath & Tellegen, 2008/2011) scores in a sample of 811 chronic low back pain patients (346 males, 529 females) beginning treatment in a short-term interdisciplinary pain rehabilitation program. We calculated internal consistency coefficients, mean-item correlations, and SEM for all substantive scales, as well as zero-order correlations with collateral medical record information and self-report testing. Results indicated reliability and validity for most of the MMPI-2-RF substantive scales. Implications of these findings and limitations of this study are discussed. (c) 2015 APA, all rights reserved).

  11. The Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF): incremental validity in predicting early postoperative outcomes in spine surgery candidates.

    Marek, Ryan J; Block, Andrew R; Ben-Porath, Yossef S

    2015-03-01

    A substantial proportion of individuals who undergo surgical procedures to relieve spine pain continue to report significant pain and dysfunction after recovery. Psychopathology and patient expectations have been linked to poor results, leading to an increasing reliance on presurgical psychological screening (PPS) as part of the surgical diagnostic process. The original Minnesota Multiphasic Personality Inventory (MMPI; Hathaway & McKinley, 1943) and the MMPI-2 (Butcher, Graham, Ben-Porath, Tellegen, & Dahlstrom, 2001) were among the measures most commonly used in PPS evaluations and research. This study focuses on the newest version of the test, the MMPI-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008/2011; Tellegen & Ben-Porath, 2008/2011) as a predictor of outcomes for spine surgery candidates. Using a sample of 172 men and 210 women who underwent a PPS, we examined the ability of MMPI-2-RF scale scores to predict early surgical outcomes independent of other presurgical risk factors identified by other means, as well as patients' presurgical expectations. MMPI-2-RF results accounted for up to 11% of additional variance in measures of early postoperative functioning. MMPI-2-RF scales that assess for emotional/internalizing problems, specifically Demoralization, measures of somatoform dysfunction, and interpersonal problems contributed most to the prediction of diminished outcome. 2015 APA, all rights reserved

  12. Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) scores generated from the MMPI-2 and MMPI-2-RF test booklets: internal structure comparability in a sample of criminal defendants.

    Tarescavage, Anthony M; Alosco, Michael L; Ben-Porath, Yossef S; Wood, Arcangela; Luna-Jones, Lynn

    2015-04-01

    We investigated the internal structure comparability of Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) scores derived from the MMPI-2 and MMPI-2-RF booklets in a sample of 320 criminal defendants (229 males and 54 females). After exclusion of invalid protocols, the final sample consisted of 96 defendants who were administered the MMPI-2-RF booklet and 83 who completed the MMPI-2. No statistically significant differences in MMPI-2-RF invalidity rates were observed between the two forms. Individuals in the final sample who completed the MMPI-2-RF did not statistically differ on demographics or referral question from those who were administered the MMPI-2 booklet. Independent t tests showed no statistically significant differences between MMPI-2-RF scores generated with the MMPI-2 and MMPI-2-RF booklets on the test's substantive scales. Statistically significant small differences were observed on the revised Variable Response Inconsistency (VRIN-r) and True Response Inconsistency (TRIN-r) scales. Cronbach's alpha and standard errors of measurement were approximately equal between the booklets for all MMPI-2-RF scales. Finally, MMPI-2-RF intercorrelations produced from the two forms yielded mostly small and a few medium differences, indicating that discriminant validity and test structure are maintained. Overall, our findings reflect the internal structure comparability of MMPI-2-RF scale scores generated from MMPI-2 and MMPI-2-RF booklets. Implications of these results and limitations of these findings are discussed. © The Author(s) 2014.

  13. Impact of using DSM-5 criteria for diagnosing binge eating disorder in bariatric surgery candidates: change in prevalence rate, demographic characteristics, and scores on the Minnesota Multiphasic Personality Inventory--2 restructured form (MMPI-2-RF).

    Marek, Ryan J; Ben-Porath, Yossef S; Ashton, Kathleen; Heinberg, Leslie J

    2014-07-01

    Binge eating disorder (BED) was recently included in the DSM-5. The prevalence rate for BED using the DSM-IV-TR research criteria tends to be higher in bariatric surgery candidates than the normative population; however, no studies have examined how many more bariatric surgery candidates will meet the new, less conservative criteria of DSM-5. We explore the current BED prevalence rate change in a sample of bariatric surgery candidates. Data were obtained for 1,283 bariatric surgery candidates. 84 men and 213 women were diagnosed with current BED using DSM-IV-TR research criteria. A semi-structured interview, the binge eating scale (BES), and a Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF) were given to every patient as part of standard procedures mandated by the facility. An additional 3.43% (p MMPI-2-RF and BES scores when compared with patients who met DSM-IV-TR criteria for BED. Thus, the current investigation indicates that individuals meeting BED criteria based on DSM-5 are similar to those meeting the more conservative diagnostic threshold outlined in DSM-IV-TR in a sample of bariatric surgery candidates. © 2014 Wiley Periodicals, Inc.

  14. Predicting one and three month postoperative Somatic Concerns, Psychological Distress, and Maladaptive Eating Behaviors in bariatric surgery candidates with the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF).

    Marek, Ryan J; Ben-Porath, Yossef S; Merrell, Julie; Ashton, Kathleen; Heinberg, Leslie J

    2014-04-01

    Presurgical psychological screening of bariatric surgery candidates includes some form of standardized psychological assessment. However, associations between presurgical psychological screening and postoperative outcome have not been extensively studied. Here, we explore associations between presurgical Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF) scores and early postoperative Somatic Concerns, Psychological Distress, and Maladaptive Eating Behaviors. The sample consisted of male (n = 238) and female (n = 621) patients who were administered the MMPI-2-RF at their presurgical psychological evaluation and received bariatric surgery. Patients were evaluated at their 1- and 3-month postoperative appointments. Confirmatory factor analysis indicated that three latent constructs-somatic concerns, psychological distress, and maladaptive eating behaviors-were represented by responses to a postoperative assessment and that these constructs could be measured consistently over time. Presurgical scores on MMPI-2-RF scales measuring internalizing dysfunction were associated with more psychological distress at postoperative follow-ups, scores on scales measuring somatization were associated with more postoperative somatic concerns, and scores on scales assessing emotional/internalizing, behavioral/externalizing, cognitive complaints, and thought dysfunction prior to surgery were associated with maladaptive eating behaviors after surgery. In conjunction with a presurgical psychological interview, the MMPI-2-RF provides information that can assist in anticipating postoperative outcomes and inform efforts to prevent them.

  15. Integrating Psychopathology and Personality Disorders Conceptualized by the MMPI-2-RF and the MCMI-III: A Structural Validity Study

    Heijden, P.T. van der; Egger, J.I.M.; Rossi, G.M.P.; Derksen, J.J.L.

    2012-01-01

    The Minnesota Multiphasic Personality Inventory-2-Restructured Form (Ben-Porath & Tellegen, 2008) Restructured Clinical scales and Higher Order scales were linked to the Millon Clinical Multiaxial Inventory-III ( Millon, Millon, Davis, & Grossman, 2009) personality disorder scales and clinical

  16. Measurement of DSM-5 section II personality disorder constructs using the MMPI-2-RF in clinical and forensic samples

    Anderson, J.L.; Sellbom, M.; Pymont, C.; Smid, W.; de Saeger, H.; Kamphuis, J.H.

    2015-01-01

    In the current study, we evaluated the associations between the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008) scale scores and the Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5; American Psychiatric Association, 2013)

  17. Validity of Minnesota Multiphasic Personality Inventory – 2 – Restructured Form (MMPI-2-RF) scores as a function of gender, ethnicity, and age of bariatric surgery candidates.

    Marek, Ryan J; Ben-Porath, Yossef S; Sellbom, Martin; McNulty, John L; Heinberg, Leslie J

    2015-01-01

    Presurgical psychological screening is used to identify factors that may impact postoperative adherence and surgical outcomes in bariatric surgery candidates. Minnesota Multiphasic Personality Inventory - 2 Restructured Form (MMPI-2-RF) findings have demonstrated utility for this task. To explore whether there are clinically meaningful gender, ethnicity, or age differences in presurgical MMPI-2-RF scores and the validity of these scores in bariatric surgery candidates. The sample was composed of 872 men and 2337 women. Ethnicity/race groups included 2,204 Caucasian, 744 African American, and 96 Hispanic individuals. A sample of 165 were not included in the ethnicity/race analyses because they were of another descent. Ages groups included 18-35 year olds (n = 454), 36-49 year olds (n = 1154), 50-64 year olds, (n = 1246), and 65 years old or older (n = 355). Validity data, obtained via a retrospective chart review, were available for a subset patients (n = 1,268) who were similarly distributed. Step-down hierarchical regression analyses were conducted to assess for differential validity. Bariatric surgery candidates produced comparable MMPI-2-RF scores in all subsamples, indicating that the test norms generalize across demographic groups. Validity findings were also generally comparable, indicating that MMPI-2-RF scores have the same interpretive implications in demographically diverse subgroups of bariatric surgery candidates. The MMPI-2-RF can assist in presurgical psychological screening of demographically diverse bariatric surgery candidates. Copyright © 2015 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  18. Personality and psychopathology: mapping the MMPI-2-RF on Cloninger's psychobiological model of personality.

    van der Heijden, Paul T; Egger, Jos I M; Rossi, Gina M P; van der Veld, William M; Derksen, Jan J L

    2013-10-01

    This study investigates the relationship between the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) and the Temperament and Character Inventory (TCI) in a combined data set (N = 491) of patients with a broad range of psychiatric disorders (n = 286) as well as alcohol use disorder (n = 205). We examined bivariate correlations between both measures. The MMPI-2-RF scales relate to the TCI dimensions as was hypothesized, and relationships between both measurements were largely similar for psychiatric patients and alcohol-dependent patients. Theoretical and clinical implications are considered.

  19. Use of the Minnesota Multiphasic Personality Inventory-2 with Persons Diagnosed with Multiple Sclerosis

    Hayes, Danielle; Granello, Darcy Haag

    2009-01-01

    Counselors who assess persons with multiple sclerosis (MS) using the Minnesota Multiphasic Personality Inventory-2 (MMPI-2; T. N. Butcher, W. G. Dahlstrom, J. R. Graham, A. Tellegen, & B. Kaemmer, 1989) may find scale elevations on Scales 1, 2, 3, and 8. These elevations may be due, at least in part, to specific questions on the MMPI-2 that…

  20. Assessment of DSM-5 Section II Personality Disorders With the MMPI-2-RF in a Nonclinical Sample.

    Sellbom, Martin; Smith, Alexander

    2017-01-01

    The Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008 / 2011 ) is frequently used in clinical practice. However, there has been a dearth of literature on how well this instrument can assess symptoms associated with personality disorders (PDs). This investigation examined a range of hypothesized MMPI-2-RF scales in predicting PD symptoms. We evaluated these associations in a sample of 397 university students who had been administered the MMPI-2-RF and the Structured Clinical Interview for DSM-IV Axis II Disorders-Personality Questionnaire (First, Gibbon, Spitzer, Williams, & Benjamin, 1997 ). Zero-order correlation analyses and negative binomial regression models indicated that a wide range of MMPI-2-RF scale hypotheses were supported; however, the least support was available for predicting schizoid and obsessive-compulsive PDs. Implications for MMPI-2-RF interpretation and PD diagnosis are discussed.

  1. Evaluation of personality features of nuclear power plant operators: investigation with Minnesota Multiphasic Personality Inventory

    Sun Yiling; Liu Yulong; Li Yuan; Bian Huahui; Bi Jinling; Qiu Mengyue; Liu Chunfeng

    2011-01-01

    Objective: To explore the personality features of nuclear power plant operators and the influencing factors thereof. Methods: Minnesota Multiphasic Personality Inventory was used to examine the personality features of 136 nuclear power plant operators randomly selected from 2 cooperative units, all males. The results were compared with the nationwide norms and subsequently an inter-block contrast analysis was carried out. Results: Obvious difference was observed in the final scores between the nuclear power plant operators and nationwide norms. The former got higher scores on hysteria (t=3.05, P<0.05), and lower scores on hypochondriasis, depression, morbid personality, masculinity-femininity, paranoia, psychasthenia, schizophrenia, hypomania, and social introversion(t=7.47, 7.47, 7.31, 2.23, 15.09, 16.15, 19.28, 7.88, 11.10, P<0.05). The scores on hypochondriasis, depression, schizophrenia, and social introversion of those with the length of services over 3 years were all significantly higher than those of with the length of services less than 3 years (t=3.25, 2.51, 2.76, 3.00, P<0.05). The scores on hypochondriasis, depression, psychopathicdeviate, and social introversion of the operators aged over 30 were all significantly higher than those of the operators aged below 30 (t=2.36, 2.35, 2.01, 2.54, P<0.05). Conclusions: The psychological quality of the nuclear power plant operators is superior to that of the general population. (authors)

  2. Predicting criminals' personality characteristics by using the Minnesota Multiphasic Personality Inventory (MMPI in committing type of crime

    Mustafa Mohebbi

    2016-07-01

    Full Text Available Understanding criminals' personality characteristics could engender appropriate solutions for preventing crimes and treating criminals and the aim of the current work is to predict criminals' (robbers, swindlers and smugglers personality characteristics by using the Minnesota Multiphasic Personality Inventory (MMPI in committing type of crime. The research falls under the applied category in terms of goal while in terms of nature it is among surveydescriptive researches. The sample under investigation includes 480 people who were selected by way of classified random sampling method in a systematic form from among the population of criminals in the Central Prison, province of Kermanshah. The tool used in this paper is the Minnesota Multiphasic Personality Inventory (MMPI (short form of 71 questions. The results obtained from the Minnesota Multiphasic Personality Inventory (MMPI indicated that prevalence of anti-social personalitycharacteristics and mental weakness among robbers; depression, anti-social personality and schizophrenia among swindlers as well as anti-social traits, mental weakness and schizophrenia among smugglers are seen significantly. Also, the results of the variance analysis demonstrated that there is a significant difference between the (MMPI clinical scales among three groups of criminals (robbers, swindlers and smugglers on D scales (depression, Pd (Psychopathy deviation, Pt (Anxiety and psychosis, Sc (Schizophrenia and Ma (Hypomania (p<%5. Research findings revealed that criminals enjoy lower level of normal and positive personality dimensions. To sum up, we can infer that all personality characteristics exist in the population of criminals and therapy experts need to pay attention to all sorts of personalities for treating criminals affected with personality disorder.

  3. Assessing DSM-5 section III personality traits and disorders with the MMPI-2-RF.

    Sellbom, Martin; Anderson, Jaime L; Bagby, R Michael

    2013-12-01

    An alternative model for diagnosing personality disorders (PDs) appears in DSM-5 Section III. This model includes a set of dimensional personality traits, which along with impairment in personality functioning can be configured to represent one of six PDs. Although specific assessment instruments for these personality traits have already been developed (e.g., the Personality Inventory for DSM-5 [PID-5]), clinicians will likely continue to use omnibus measures of psychopathology that are familiar to them to inform diagnostic decision making. One such measure, the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF), will likely remain in the test armamentarium of many practitioners and be employed to assess the DSM-5 dimensional traits. In the current investigation, we examined the associations between MMPI-2-RF scale scores and the PID-5 trait scores and DSM-5 Section III PDs in a combined sample of university students (n = 668) from the United States and Canada. Our results indicated that the MMPI-2-RF scale scores mostly converge with PID-5 dimensional traits as well as the Section III PDs in a conceptually expected manner. As such, we conclude that the MMPI-2-RF is a potentially useful instrument in assessing personality psychopathology as conceptualized in DSM-5 Section III.

  4. Results of the Minnesota Multiphasic Personality Inventory-2 among gestational surrogacy candidates.

    Klock, Susan C; Covington, Sharon N

    2015-09-01

    To obtain normative data on the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) personality test for gestational surrogate (GS) candidates. A retrospective study was undertaken through chart review of all GS candidates assessed at Shady Grove Fertility Center, Rockville, MD, USA, between June 2007 and December 2009. Participants completed the MMPI-2 test during screening. MMPI-2 scores, demographic information, and screening outcome were retrieved. Among 153 included candidates, 132 (86.3%) were accepted to be a GS, 6 (3.9%) were ruled out because of medical reasons, and 15 (9.8%) were ruled out because of psychological reasons. The mean scores on each of the MMPI-2 scales were within the normal range. A score of more than 65 (the clinical cutoff) was recorded on the L scale for 46 (30.1%) candidates, on the K scale for 61 (39.9%), and on the S scale for 84 (54.9%). Women who were ruled out for psychological reasons had significantly higher mean scores on the validity scales F and L, and on clinical scale 8 than did women who were accepted (P<0.05 for all). Most GS candidates are well adjusted and free of psychopathology, but candidates tend to present themselves in an overly positive way. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  5. An Introduction to the Minnesota Multiphasic Personality Inventory-Adolescent-Restructured Form (MMPI-A-RF).

    Handel, Richard W

    2016-12-01

    The Minnesota Multiphasic Personality Inventory-Adolescent-Restructured Form (MMPI-A-RF; Archer, Handel, Ben-Porath, & Tellegen, 2016) is a new broadband measure of adolescent psychopathology and personality. The MMPI-A-RF is the adolescent counterpart of the MMPI-2-RF (Ben-Porath & Tellegen, 2008/2011). The goal of the MMPI-2-RF development project was to capture the clinically significant substance of the MMPI-2 item pool with a psychometrically sound measure linked to contemporary models of personality and psychopathology (Ben-Porath & Tellegen, 2008/2011). Using the MMPI-2-RF scales and development methods as models, Archer et al. (2016) developed a 241-item adolescent self-report inventory-in contrast to the 478-items of the MMPI-A-that includes 48 new and revised scales. In this manuscript, I provide an overview of the rationale for the development of the MMPI-A-RF, an abbreviated review of its development process, brief descriptions of its 48 scales, and a subset of analyses bearing on reliability and validity. As with the MMPI-2-RF, one of our primary goals was to develop scales with improved discriminant validity relative to the heterogeneous Clinical Scales of the MMPI-2 and MMPI-A. The MMPI-A-RF development process employed a large sample of 15,128 adolescents (9,286 boys and 5,842 girls) drawn from a variety of settings. In addition to the development sample, subsequent validation analyses were conducted in multiple independent samples including numerous external criterion measures. The MMPI-A-RF is designed to provide a comprehensive assessment of adolescent psychopathology and personality in a wide array of clinical and forensic settings.

  6. Measurement of DSM-5 section II personality disorder constructs using the MMPI-2-RF in clinical and forensic samples.

    Anderson, Jaime L; Sellbom, Martin; Pymont, Carly; Smid, Wineke; De Saeger, Hilde; Kamphuis, Jan H

    2015-09-01

    In the current study, we evaluated the associations between the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008) scale scores and the Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5; American Psychiatric Association, 2013) Section II personality disorder (PD) criterion counts in inpatient and forensic psychiatric samples from The Netherlands using structured clinical interviews to operationalize PDs. The inpatient psychiatric sample included 190 male and female patients and the forensic sample included 162 male psychiatric patients. We conducted correlation and count regression analyses to evaluate the utility of relevant MMPI-2-RF scales in predicting PD criterion count scores. Generally, results from these analyses emerged as conceptually expected and provided evidence that MMPI-2-RF scales can be useful in assessing PDs. At the zero-order level, most hypothesized associations between Section II disorders and MMPI-2-RF scales were supported. Similarly, in the regression analyses, a unique set of predictors emerged for each PD that was generally in line with conceptual expectations. Additionally, the results provided general evidence that PDs can be captured by dimensional psychopathology constructs, which has implications for both DSM-5 Section III specifically and the personality psychopathology literature more broadly. (c) 2015 APA, all rights reserved.

  7. Examining the Construct Validity of the MMPI-2-RF Interpersonal Functioning Scales Using the Computerized Adaptive Test of Personality Disorder as a Comparative Framework.

    Franz, Annabel O; Harrop, Tiffany M; McCord, David M

    2017-01-01

    This study aimed to examine the construct validity of the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF) interpersonal functioning scales (Ben-Porath & Tellegen, 2008/2011 ) using as a criterion measure the Computerized Adaptive Test of Personality Disorder-Static Form (CAT-PD-SF; Simms et al., 2011 ). Participants were college students (n = 98) recruited through the university subject pool. A series of a priori hypotheses were developed for each of the 6 interpersonal functioning scales of the MMPI-2-RF, expressed as predicted correlations with construct-relevant CAT-PD-SF scales. Of the 27 specific predictions, 21 were supported by substantial (≥ |.30|) correlations. The MMPI-2-RF Family Problems scale (FML) demonstrated the strongest correlations with CAT-PD-SF scales Anhedonia and Mistrust; Cynicism (RC3) was most highly correlated with Mistrust and Norm Violation; Interpersonal Passivity (IPP) was most highly correlated with Domineering and Rudeness; Social Avoidance (SAV) was most highly correlated with Social Withdrawal and Anhedonia; Shyness (SHY) was most highly correlated with Social Withdrawal and Anxioiusness; and Disaffiliativeness (DSF) was most highly correlated with Emotional Detachment and Mistrust. Results are largely consistent with hypotheses suggesting support for both models of constructs relevant to interpersonal functioning. Future research designed to more precisely differentiate Social Avoidance (SAV) and Shyness (SHY) is suggested.

  8. Associations between MMPI-2-RF validity scale scores and extra-test measures of personality and psychopathology.

    Forbey, Johnathan D; Lee, Tayla T C; Ben-Porath, Yossef S; Arbisi, Paul A; Gartland, Diane

    2013-08-01

    The current study explored associations between two potentially invalidating self-report styles detected by the Validity scales of the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF), over-reporting and under-reporting, and scores on the MMPI-2-RF substantive, as well as eight collateral self-report measures administered either at the same time or within 1 to 10 days of MMPI-2-RF administration. Analyses were conducted with data provided by college students, male prisoners, and male psychiatric outpatients from a Veterans Administration facility. Results indicated that if either an over- or under-reporting response style was suggested by the MMPI-2-RF Validity scales, scores on the majority of the MMPI-2-RF substantive scales, as well as a number of collateral measures, were significantly affected in all three groups in the expected directions. Test takers who were identified as potentially engaging in an over- or under-reporting response style by the MMPI-2-RF Validity scales appeared to approach extra-test measures similarly regardless of when these measures were administered in relation to the MMPI-2-RF. Limitations and suggestions for future study are discussed.

  9. A Review of the Minnesota Multiphasic Personality Inventory-Adolescent (MMPI-A) and the Millon Adolescent Clinical Inventory (MACI) with an Emphasis on Juvenile Justice Samples

    Baum, Linda J.; Archer, Robert P.; Forbey, Johnathan D.; Handel, Richard W.

    2009-01-01

    The Minnesota Multiphasic Personality Inventory-Adolescent (MMPI-A) and Millon Adolescent Clinical Inventory (MACI) are frequently used objective personality self-report measures. Given their widespread use, the purpose of the current study was to examine and compare the literature base for the two instruments. A comprehensive review of the…

  10. Further Validation of the MMPI-2 And MMPI-2-RF Response Bias Scale: Findings from Disability and Criminal Forensic Settings

    Wygant, Dustin B.; Sellbom, Martin; Gervais, Roger O.; Ben-Porath, Yossef S.; Stafford, Kathleen P.; Freeman, David B.; Heilbronner, Robert L.

    2010-01-01

    The present study extends the validation of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) and the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF) Response Bias Scale (RBS; R. O. Gervais, Y. S. Ben-Porath, D. B. Wygant, & P. Green, 2007) in separate forensic samples composed of disability claimants and…

  11. Examining the Impact of Unscorable Item Responses on the Validity and Interpretability of MMPI-2/MMPI-2-RF Restructured Clinical (RC) Scale Scores

    Dragon, Wendy R.; Ben-Porath, Yossef S.; Handel, Richard W.

    2012-01-01

    This article examined the impact of unscorable item responses on the psychometric validity and practical interpretability of scores on the Restructured Clinical (RC) Scales of the Minnesota Multiphasic Personality Inventory-2/Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2/MMPI-2-RF). In analyses conducted with five…

  12. Ability of Substance Abusers to Escape Detection on the Minnesota Multiphasic Personality Inventory-Adolescent (MMPI-A) in a Juvenile Correctional Facility

    Stein, L. A. R.; Graham, John R.

    2005-01-01

    The ability of respondents to underreport successfully on substance abuse and validity scales of the Minnesota Multiphasic Personality Inventory-Adolescent (MMPI-A; Butcher et al., 1992) was evaluated. Incarcerated teens (67 substance abusing, 59 non-substance abusing) completed the MMPI-A twice: once under standard instructions (SI) and once…

  13. Reliability and validity of the Spanish version of the Minnesota Multiphasic Personality Inventory-Adolescent (MMPI-A).

    Zubeidat, Ihab; Sierra, Juan Carlos; Salinas, José María; Rojas-García, Antonio

    2011-01-01

    The aim of this study was to determine the test-retest reliability and internal consistency of the scales of the Spanish version of the Minnesota Multiphasic Personality Inventory-Adolescent (MMPI-A; Butcher et al., 1992). Two samples of 939 and 109 Spanish adolescents ages 14 to 18 years were assessed with the MMPI-A in their school environment. The first sample responded to the inventory once, whereas the second sample responded to it on 2 occasions with a 2-week interval between sessions. Results showed no significant differences in means or variances between the first and the second test administration for most MMPI-A scales. Test-retest reliability ranged between .62 (Amorality, Ma(1)) and .92 (Immaturity, IMM); most correlations exceeded .70. Internal consistency values for the MMPI-A scales in the pretest and posttest were very similar overall. External validity of the MMPI-A was demonstrated through several significant correlations between its scales and YSR/11-18 syndromes and social interaction measures. The highest correlations were established between the Anxious/Depressed YSR/11-18 scale and other MMPI-A scales such as Schizophrenia (Sc), Welsh's Anxiety (A), Adolescent-Anxiety (A-anx) and Adolescent-Alienation (A-aln), and between the Social Avoidance and Distress Scale and the MMPI-A Adolescent-Social Discomfort (A-sod) scale.

  14. Comparing the psychological profiles of Iranian population based on clinical and validity measures of Minnesota multiphasic personality inventory

    Mojtaba Habibi

    2017-11-01

    Full Text Available According to the necessity of screening and identifying the people exposed to mental disorders to determine the prevalence of these disorders in order to taking preventive actions and developing a treatment plan, this study was aimed to compare psychological profiles of people based on Minnesota Multiphasic Personality Inventory (MMPI-2 according to gender and marital status in a sample of Iranian general population. Statistical population included all of Iranian people between 18 to 80 years old that had passed at least 8 years of education and had no history of mental illness and brain injury. 1418 participants were selected by multi-stage cluster sampling method and were assessed by MMPI-2. Results showed that there was significant difference between males and females in the subscales of F, K, Hs, D, Hy, MF, Pt, Ma, and Si and also between single people and married people in the subscales of L, F, Pd, Pa, Pt, Sc and Ma. In general, findings of present study suggest that males have different patterns of mental disorders than females and married people have a different pattern of mental disorders in comparison of single people and they have different types of mental health problems. But, regarding males' higher scores in F and K validity scales and higher scores of married people in L validity scale in acceptance the findings of this study should be more cautious.

  15. Religious Orientation and Mental Health Measured by the Minnesota Multiphasic Personality Inventory.

    Trent, James R.; And Others

    While previous research has provided varied findings about the effect of religion on people and society, no final conclusion has been drawn about the effect (either positive or negative) of religion on personal mental health. For this research project on how people with different levels of religiousness would score on the Minnnesota Multiphasic…

  16. Psychopathological features of anorectic patients who dropped out of inpatient treatment as assessed by the Minnesota Multiphasic Personality Inventory

    Kawai Keisuke

    2007-07-01

    Full Text Available Abstract Background Anorexia nervosa often requires inpatient treatment that includes psychotherapeutic intervention in addition to physical and nutritional management for severe low body weight. However, such patients sometimes terminate inpatient treatment prematurely because of resistance to treatment, poor motivation for treatment, unstable emotions, and problematic behaviors. In this study, the psychopathological factors related to the personality of anorexic patients that might predict discontinuation of inpatient treatment were investigated using the Minnesota Multiphasic Personality Inventory (MMPI. Methods Subjects were 75 consecutive anorectic inpatients who received cognitive behavioral therapy with a behavior protocol governing privileges in a university hospital based general (not psychiatric ward. The MMPI was done on admission for all patients. A comparison was done of patients who completed the process of inpatient treatment, including attainment of target body weight (completers, and patients who dropped out of inpatient treatment (dropouts. Results: No significant differences between completers (n = 51 and dropouts (n = 24 were found in the type of eating disorder, age of onset, duration of illness, age, or BMI at admission. Logistic regression analysis found the MMPI scales schizophrenia (Sc, hypomania (HYP, deviant thinking and experience, and antisocial attitude to be factors predicting completion or dropout. Conclusion Dropouts have difficulty adapting to inpatient treatment protocols such as our behavior protocol governing privileges because they have social and emotional alienation, a lack of ego mastery (Sc, emotional instability (HYP and an antisocial attitude. As a result, they have decreased motivation for treatment, leave the hospital without permission, attempt suicide, or shoplift, which leads them to terminate inpatient treatment prematurely. Treatments based on cognitive behavioral therapy with a behavior

  17. Quality of life and personality traits in patients with malignant pleural mesothelioma and their first-degree caregivers

    Granieri A

    2013-08-01

    Full Text Available Antonella Granieri,1 Stella Tamburello,2 Antonino Tamburello,2 Silvia Casale,3 Chiara Cont,1 Fanny Guglielmucci,1 Marco Innamorati21Università degli Studi di Torino, Turin, Italy; 2Università Europea di Roma, Rome, Italy; 3Università di Firenze, Firenze, ItalyAbstract: Asbestos exposure causes significant pleural diseases, including malignant pleural mesothelioma (MPM. Taking into account the impact of MPM on emotional functioning and wellbeing, this study aimed to evaluate the quality of life and personality traits in patients with MPM and their first-degree caregivers through the World Health Organization Quality of Life–BREF (WHOQOL-BREF and the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF. The sample was composed of 27 MPM patients, 55 first-degree relatives enrolled in Casale Monferrato and Monfalcone (Italy, and 40 healthy controls (HC. Patients and relatives reported poorer physical health than the HC. Patients had a higher overall sense of physical debilitation and poorer health than relatives and the HC, more numerous complaints of memory problems and difficulties in concentrating, and a greater belief that goals cannot be reached or problems solved, while often claiming that they were more indecisive and inefficacious than the HC. First-degree relatives reported lower opinions of others, a greater belief that goals cannot be reached or problems solved, support for the notion that they are indecisive and inefficacious, and were more likely to suffer from fear that significantly inhibited normal activities than were HC. In multinomial regression analyses, partial models indicated that sex, physical comorbidities, and the True Response Inconsistency (TRIN-r, Malaise (MLS, and Behavior-Restricting Fears (BRF dimensions of the MMPI-2-RF had significant effects on group differences. In conclusion, health care providers should assess the ongoing adjustment and emotional wellbeing of people with MPM and their

  18. Utility of the MMPI-2-RF (Restructured Form) Validity Scales in Detecting Malingering in a Criminal Forensic Setting: A Known-Groups Design

    Sellbom, Martin; Toomey, Joseph A.; Wygant, Dustin B.; Kucharski, L. Thomas; Duncan, Scott

    2010-01-01

    The current study examined the utility of the recently released Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008) validity scales to detect feigned psychopathology in a criminal forensic setting. We used a known-groups design with the Structured Interview of Reported Symptoms (SIRS;…

  19. MMPI-2-RF Characteristics of Custody Evaluation Litigants

    Archer, Elizabeth M.; Hagan, Leigh D.; Mason, Janelle; Handel, Richard; Archer, Robert P.

    2012-01-01

    The Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) is a 338-item objective self-report measure drawn from the 567 items of the MMPI-2. Although there is a substantial MMPI-2 literature regarding child custody litigants, there has been only one previously published study using MMPI-2-RF data in this population that…

  20. Predicting Drug Court Treatment Completion Using the MMPI-2-RF

    Mattson, Curtis; Powers, Bradley; Halfaker, Dale; Akeson, Steven; Ben-Porath, Yossef

    2012-01-01

    We examined the ability of the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008) substantive scales to predict Drug Court treatment completion in a sample of individuals identified as being at risk for failure to complete the program. Higher scores on MMPI-2-RF scales…

  1. The Impact of Overreporting on MMPI-2-RF Substantive Scale Score Validity

    Burchett, Danielle L.; Ben-Porath, Yossef S.

    2010-01-01

    This study examined the impact of overreporting on the validity of Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) substantive scale scores by comparing correlations with relevant external criteria (i.e., validity coefficients) of individuals who completed the instrument under instructions to (a) feign psychopathology…

  2. Psychometric Functioning of the MMPI-2-RF VRIN-r and TRIN-r Scales with Varying Degrees of Randomness, Acquiescence, and Counter-Acquiescence

    Handel, Richard W.; Ben-Porath, Yossef S.; Tellegen, Auke; Archer, Robert P.

    2010-01-01

    In the present study, the authors evaluated the effects of increasing degrees of simulated non-content-based (random or fixed) responding on scores on the newly developed Variable Response Inconsistency-Revised (VRIN-r) and True Response Inconsistency-Revised (TRIN-r) scales of the Minnesota Multiphasic Personality Inventory-2 Restructured Form…

  3. Diagnostic Construct Validity of MMPI-2 Restructured Form (MMPI-2-RF) Scale Scores

    Sellbom, Martin; Bagby, R. Michael; Kushner, Shauna; Quilty, Lena C.; Ayearst, Lindsay E.

    2012-01-01

    In the current investigation, the authors examined the diagnostic construct validity of the "Minnesota Multiphasic Personality Inventory-2-Restructured Form" (MMPI-2-RF) in a patient sample. All participants were diagnosed via the "Structured Clinical Interview" for DSM-IV Axis I Disorders (SCID-I/P). The data set used in this…

  4. Validity of the MMPI-2-RF (Restructured Form) L-r and K-r Scales in Detecting Underreporting in Clinical and Nonclinical Samples

    Sellbom, Martin; Bagby, R. Michael

    2008-01-01

    In the current investigation, the authors examined the validity of the L-r and K-r scales on the recently developed Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Y. S. Ben-Porath & A. Tellegen, in press) in measuring underreported response bias. Three archival samples previously collected for examining MMPI-2…

  5. Detection of Overreported Psychopathology with the MMPI-2 RF Form Validity Scales

    Sellbom, Martin; Bagby, R. Michael

    2010-01-01

    We examined the utility of the validity scales on the recently released Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2 RF; Ben-Porath & Tellegen, 2008) to detect overreported psychopathology. This set of validity scales includes a newly developed scale and revised versions of the original MMPI-2 validity scales. We…

  6. Correlates of the MMPI-2-RF in a College Setting

    Forbey, Johnathan D.; Lee, Tayla T. C.; Handel, Richard W.

    2010-01-01

    The current study examined empirical correlates of scores on Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; A. Tellegen & Y. S. Ben-Porath, 2008; Y. S. Ben-Porath & A. Tellegen, 2008) scales in a college setting. The MMPI-2-RF and six criterion measures (assessing anger, assertiveness, sex roles, cognitive…

  7. Empirical Correlates and Expanded Interpretation of the MMPI-2-RF Restructured Clinical Scale 3 (Cynicism)

    Ingram, Paul B.; Kelso, Kristy M.; McCord, David M.

    2011-01-01

    The recent release of the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) has received much attention from the clinical psychology community. Particular concerns have focused on Restructured Clinical Scale 3 (RC3; Cynicism). This article briefly reviews the major criticisms and responses regarding the restructuring of…

  8. Comparison analysis of schizophrenia patients with Minnesota multiphasic personality inventory%精神分裂症患者明尼苏达多相人格调查表的比较

    杨九州; 杨松娥

    2003-01-01

    @@ INTRODUCTION Minnesota multiphasic personality inventory(MMPI) is a kind ofdiagnosis measuring scale helpful to classification of schizophreniapatients, it can describe main personality characteristics of patients. It was widely used in psychoneurosis patients instead of patients with schizophrenia in the past.

  9. Ability of Substance Abusers to Escape Detection on the Minnesota Multiphasic Personality Inventory–Adolescent (MMPI-A) in a Juvenile Correctional Facility

    Stein, L. A. R.; Graham, John R.

    2010-01-01

    The ability of respondents to underreport successfully on substance abuse and validity scales of the Minnesota Multiphasic Personality Inventory-Adolescent was evaluated. Incarcerated teens (67 substance abusing, 59 non-substance abusing) completed the MMPI-A twice: once under standard instructions (SI) and once under instructions to fake good (FG). Under SI, substance scales correctly classified about 60% to 85% of adolescents. Under FG, substance- and non-substance-abusing juveniles produced lower scores on substance scales. However, the Lie Scale (L) was able to detect more than 75% of deceptive profiles and about 77% of honest profiles. When scale L and the best substance scale were used in combination, only about 18% of faking substance abusers were not identified as either substance abusers or as underreporting. For feigning substance abusers, only about 10% of substance abusers were detected, with about 72% being categorized as faking and needing further assessment. PMID:15695741

  10. Neuronal degeneration in the hippocampus and dorsolateral prefrontal cortex in depressive disorder Correlation between 1H-MRS and Minnesota Multiphasic Personality Inventory

    Jun Xia; Minjie Yang; Yi Lei; Yicheng Zhou

    2010-01-01

    Previous studies using magnetic resonance imaging(MRI)and functional MRI to study depression have primarily focused on proton magnetic resonance spectroscopy(1H-MRS)appearance in various areas of the brain and volume measurements in the limbic system.However,results have not been consistent.To the best of our knowledge,very little is known about the relationship between 1H-MRS appearance and depression inventory.In the present study,the relationship between 1H-MRS appearance in depressive patients and Minnesota Multiphasic Personality Inventory-2 scale was analyzed.MRI and 1H-MRS exhibited widened sulci and cisterns,as well as an absence of abnormal signals in depressive patients.In addition,N-acetyl aspartate/total creatine ratios in bilateral hippocampi and dorsolateral prefrontal cortex were significantly less in depressive patients than in control subjects(P < 0.01).In contrast,choline-containing compounds/total creatine ratios in the dorsolateral prefrontal cortex were significantly greater in depressive patients than in control subjects(P < 0.01).These ratios significantly and positively correlated with patient total depression scores as assessed using the Minnesota Multiphasic Personality Inventory-2 scale(r=0.934 7,0.878 7,P < 0.01).These results suggested that 1H-MRS could be used to reveal a reduced number of neurons in the hippocampus and dorsolateral prefrontal cortex,as well as altered membrane phospholipid metabolism in the dorsolateral prefrontal cortex,in patients with depressive disorder.Abnormal mechanisms partially reflected severity of depressive disorder.

  11. A review of the Minnesota Multiphasic Personality Inventory-Adolescent (MMPI-A) and the Millon Adolescent Clinical Inventory (MACI) with an emphasis on juvenile justice samples.

    Baum, Linda J; Archer, Robert P; Forbey, Johnathan D; Handel, Richard W

    2009-12-01

    The Minnesota Multiphasic Personality Inventory-Adolescent (MMPI-A) and Millon Adolescent Clinical Inventory (MACI) are frequently used objective personality self-report measures. Given their widespread use, the purpose of the current study was to examine and compare the literature base for the two instruments. A comprehensive review of the literature was conducted between the years 1992 and 2007 using the PsycINFO Database. Results indicate the publication of 277 articles, books, book chapters, monographs, and dissertation abstracts on the MMPI-A. This was compared with the results of a comparable search for the MACI, which yielded 84 citations. The literature was further explored by determining the content of the topic areas addressed for both instruments. A particular focus was placed on the utility of the instruments with juvenile justice populations; scale means, standard deviations, and effect sizes calculated from this literature were examined. Results indicate that the use of the MMPI-A is supported by a substantial literature and a growing research base is also available for the MACI. Both instruments appear to provide useful results in juvenile justice settings.

  12. A pilot study on the Chinese Minnesota Multiphasic Personality Inventory-2 in detecting feigned mental disorders: Simulators classified by using the Structured Interview of Reported Symptoms.

    Chang, Yi-Ting; Tam, Wai-Cheong C; Shiah, Yung-Jong; Chiang, Shih-Kuang

    2017-09-01

    The Minnesota Multiphasic Personality Inventory-2 (MMPI-2) is often used in forensic psychological/psychiatric assessment. This was a pilot study on the utility of the Chinese MMPI-2 in detecting feigned mental disorders. The sample consisted of 194 university students who were either simulators (informed or uninformed) or controls. All the participants were administered the Chinese MMPI-2 and the Structured Interview of Reported Symptoms-2 (SIRS-2). The results of the SIRS-2 were utilized to classify the participants into the feigning or control groups. The effectiveness of eight detection indices was investigated by using item analysis, multivariate analysis of covariance (MANCOVA), and receiver operating characteristic (ROC) analysis. Results indicated that informed-simulating participants with prior knowledge of mental disorders did not perform better in avoiding feigning detection than uninformed-simulating participants. In addition, the eight detection indices of the Chinese MMPI-2 were effective in discriminating participants in the feigning and control groups, and the best cut-off scores of three of the indices were higher than those obtained from the studies using the English MMPI-2. Thus, in this sample of university students, the utility of the Chinese MMPI-2 in detecting feigned mental disorders was tentatively supported, and the Chinese Infrequency Scale (ICH), a scale developed specifically for the Chinese MMPI-2, was also supported as a valid scale for validity checking. © 2017 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  13. A substantial psychometric analysis of the scales of the Minnesota Multiphasic Personality Inventory: F. B. Berezin’s version, the MMIL

    Dzherelievskaya, Maria A.

    2014-03-01

    Full Text Available In our research we made a substantial psychometric analysis of the scales of F. B. Berezin’s version of the Minnesota Multiphasic Personality Inventory (MMPI, the MMIL, which is widely used in various spheres of psychological practice. Since the mid-1990s in Russia there have been many essential transformations in thinking and values that have been caused by changes in social and economic reality. For this reason, we need to continue our work on specifying the meaning of the MMIL tasks and, then, on updating the test norms and keys. Such psychometric updating is necessary for maintaining the efficiency of the method. For our update, we constructed linear norms for the test; we tested the questionnaire for the normality of the distribution of points; and we checked the validity (including external validity, the reliability coherence of the scales, and the variability of the points. The necessity of readapting the MMIL was thus demonstrated. Questions that display low variability and that are not significantly correlated with the scale they belong to, which reduces their differentiating potential, may be excluded from the test or reformulated.

  14. ALIENATION, SENSATION SEEKING AND MULTIPHASIC PERSONALITY QUESTIONNAIRE PROFILE IN MEN BEING TREATED FOR ALCOHOL AND/OR OPIOID DEPENDENCE

    Mattoo, Surendra K.; Varma, Vijoy K.; Singh, Ram Avatar; Khurana, Hitesh; Kaur, Rajinder; Sharma, Suresh K.

    2001-01-01

    Two hundred and thirty men, being treated for ICD-10 diagnosed dependence on alcohol, opioids or both, were studied 2-4 weeks after the last use of alcohol or opioids. Alienation Scale, Sensation Seeking Scale and Muliphasic Personality Questionnaire (MPQ), and selected sociodemographic and family history data were studied. All three groups showed high alienation (more in opioid cases), high sensation seeking (more in alcohol cases, more for boredom susceptibility), and a disturbed MPQ profile. The dual dependence group was similar to opioid group for age, but closer to alcohol group in terms of personality profile. Only alcohol cases showed a significantly positive correlation between alienation and sensation seeking- in terms of total scale, and boredom susceptibility and disinhibition subscales only. Thus, substance specificity was not reflected prominently in the inter-relationships between alienation, sensation seeking and MPQ scores, and sociodemographic variables. PMID:21407879

  15. Recording of dissimulation and denial in the context of the psychosomatic evaluation at living kidney transplantation using the Minnesota Multiphasic Personality Inventory (MMPI)

    Wutzler, Uwe; Venner, Margit; Villmann, Thomas; Decker, Oliver; Ott, Undine; Steiner, Thomas; Gumz, Antje

    2009-01-01

    Objective: Living organ donation involves interference with a healthy organism. Therefore, most transplantation centres ascertain the voluntariness of the donation as well as its motivation by means of a psychosomatic evaluation. The circumstance that the evaluation is compulsory and not a primary concern of the donor-recipient pair may occasion respondents to present only what they consider innocuous and socially adequate. Thus, the information value of the results can be considerably affected. Methods: In the context of a psychosomatic evaluation prior to living kidney transplantation, 71 donor-recipient pairs were screened at the transplantation centre of Friedrich Schiller University, Jena. Using the validity scales of the Minnesota Multiphasic Personality Inventory (MMPI) (“infrequency” (F), “lie” (L) and “correction-scales” (K)) and the Dissimulation Index according to Gough (“F-K”), we tried to find traits of dissimulation and denial. Results: About 50% of the participants showed an infrequency raw score of zero. This means that at least half of the sample is apprehensive which may cause a cautious and controlled attitude towards the examination. The K-value (T≥59) and the Dissimulation Index (F-K≤–15) indicated dissimulation in 29% and 26% of the overall sample. Moreover, it affects the score of 11 respondents (8%) so profoundly that any significance regarding the personality traits is lost. Conclusion: In the setup of the examination situation as well as in the interpretation of test-psychological findings, the occurrence and possible influence of dissimulation should be considered. The validity scale of the MMPI can help to obtain an objective clinical impression of dissimulation in problem cases. PMID:19911073

  16. Validity of the clinical and content scales of the Multiphasic Personality Inventory Minnesota 2 for the diagnosis of psychogenic non-epileptic seizures.

    del Barrio, A; Jiménez-Huete, A; Toledano, R; García-Morales, I; Gil-Nagel, A

    2016-03-01

    The use of the Multiphasic Personality Inventory Minnesota 2 (MMPI-2) for the diagnosis of psychogenic non-epileptic seizures (PNES) is controversial. This study examines the validity of the clinical scales and, unlike previous works, the content scales. Cross-sectional study of 209 patients treated in the epilepsy unit. We performed a logistic regression analysis, taking video-electroencephalography as the reference test, and as predictor variables age, sex, IQ and clinical (model A) or content scales (model B) of the MMPI-2. The models were selected according to the Aikake index and compared using the DeLong test. We analyzed 37 patients with PNES alone, or combined with seizures, and 172 patients with seizures only. The model consisting of sex, Hs (hypochondriasis) and Pa (paranoia) showed a sensitivity of 77.1%, a specificity of 76.8%, a percentage of correct classification of 76.8%, and an area under the curve (AUC) of 0.836 for diagnosing CNEP. Model B, consisting of sex, HEA (health concerns) and FRS (fears), showed a sensitivity of 65.7%, a specificity of 78.0%, a percentage of correct classification of 75.9% and an AUC of 0.840. DeLong's test did not detect significant differences. The MMPI-2 has a moderate validity for the diagnosis of PNES in patients referred to an epilepsy unit. Using content scales does not significantly improve results from the clinical scales. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  17. Modeling multiphase materials processes

    Iguchi, Manabu

    2010-01-01

    ""Modeling Multiphase Materials Processes: Gas-Liquid Systems"" describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing. The book focuses on systems involving gas-liquid interaction, the most prevalent in current metallurgical processes. The performance characteristics of these processes are largely dependent on transport phenomena. This volume covers the inherent characteristics that complicate the modeling of transport phenomena in such systems, including complex multiphase structure, intense turbulence, opacity of

  18. Multidomain multiphase fluid mechanics

    Sha, W.T.; Soo, S.L.

    1976-10-01

    A set of multiphase field equations--conversion of mass, momentum and energy--based on multiphase mechanics is developed. Multiphase mechanics applies to mixtures of phases which are separated by interfaces and are mutually exclusive. Based on the multiphase mechanics formulation, additional terms appear in the field equations when the physical size of the dispersed phase (bubble or droplet) is many times larger than the inter-molecular spacing. These terms are the inertial coupling due to virtual mass and the additional viscous coupling due to unsteadiness of the flow field. The multiphase formulation given here takes into account the discreteness of particles of dispersed phases and, at the same time, the necessity of the distributive representation of field variables via space-time averaging when handling a large number of particles. The provision for multidomain transition further permits us to treat dispersed phases which are large compared to the characteristic dimension of the flow system via interdomain relations. The multidomain multiphase approach provides a framework for us to model the various flow regimes. Because some of the transport parameters associated with the system equations are not well known at the present time, an idealized two-domain two-phase solution approach is proposed as a first step. Finally, comparisons are made between the field equations formulated based on the multidomain-multiphase fluid mechanics and the pertinent existing models, and their relative significances are discussed. The desirability of consistent approximation and simplifications possible for dilute suspensions are discussed

  19. The comparative capacity of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) and MMPI-2 Restructured Form (MMPI-2-RF) validity scales to detect suspected malingering in a disability claimant sample.

    Chmielewski, Michael; Zhu, Jiani; Burchett, Danielle; Bury, Alison S; Bagby, R Michael

    2017-02-01

    The current study expands on past research examining the comparative capacity of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2; Butcher et al., 2001) and MMPI-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008/2011) overreporting validity scales to detect suspected malingering, as assessed by the Miller Forensic Assessment of Symptoms Test (M-FAST; Miller, 2001), in a sample of public insurance disability claimants (N = 742) who were considered to have potential incentives to malinger. Results provide support for the capacity of both the MMPI-2 and the MMPI-2-RF overreporting validity scales to predict suspected malingering of psychopathology. The MMPI-2-RF overreporting validity scales proved to be modestly better predictors of suspected psychopathology malingering-compared with the MMPI-2 overreporting scales-in dimensional predictive models and categorical classification accuracy analyses. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Shock tube Multiphase Experiments

    Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob

    2017-11-01

    Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.

  1. Il Minnesota Multiphasic Personality Inventory-2 nel contesto forense: studio su coppie di genitori in fase di separazione ed affidamento minori / L’Inventaire Multiphasique de Personnalité du Minnesota-2 dans le contexte juridique : une étude sur les parents confrontés à une séparation et à la garde des enfants / The Minnesota Multiphasic Personality Inventory–2 Test in the legal context: a study on parents going through separation and the custody of children

    Lasala R.

    2017-12-01

    Full Text Available Obiettivo di questo lavoro è analizzare i profili medi di genitori valutati in sede di consulenza tecnica per l'affidamento di figli minori attraverso il Minnesota Multiphasic Personality Inventory 2 (MMPI-2, il questionario di personalità maggiormente utilizzato in ambito giuridico. Si tratta di uno studio iniziale ed esplorativo, condotto su un campione di 200 periziandi divisi equamente tra uomini e donne, che si propone in primis di rispondere all’esigenza dello psicodiagnosta forense di avere dati statistici specifici a cui far riferimento quando utilizza tale strumento. Il lavoro ha anche l'obiettivo di osservare la presenza di eventuali differenze significative tra i dati emersi dal campione peritale ed i valori normativi generali della popolazione italiana. Le but de cette étude est celui d’analyser les profils moyens des parents évalués par le test MMPI-2 (Inventaire Multiphasique de Personnalité du Minnesota-2 afin d’obtenir la garde de leurs enfants. Le MMPI-2 est le questionnaire de personnalité le plus utilisé dans le contexte juridique. Dans l’article, les auteurs présentent une étude initiale et exploratoire menée sur un échantillon de 200 personnes, réparties de manière égale entre hommes et femmes. En outre, cette étude a pour objet d’observer les différences statistiquement significatives entre l’échantillon et la population de référence. En effet, elle montre certaines différences entre les valeurs moyennes dans ces deux groupes, notamment entre les deux sexes. The aim of this study is to analyse the average profiles of parents evaluated through the MMPI-2 test (Minnesota Multiphasic Personality Inventory 2 in order to obtain custody of their children. The MMPI-2 is a psychological test that assesses personality traits which is the most used test in legal context. This is an initial and exploratory study done on a sample of 200 people, equally divided between men and women, assessed with a view

  2. Multiphase Flow Dynamics 1 Fundamentals

    Kolev, Nikolay Ivanov

    2012-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its fourth extended edition the successful monograph package “Multiphase Flow Dynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the...

  3. Multiphase flow dynamics 1 fundamentals

    Kolev, Nikolay Ivanov

    2004-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this monograph contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the fundamentals of multiphase dynamics are provided. This third edition includes various updates, extensions and improvements in all book chapters.

  4. Tomographic multiphase flow measurement

    Sætre, C.; Johansen, G.A.; Tjugum, S.A.

    2012-01-01

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. - Highlights: ► Multiphase flow gas-fraction and flow regime measurements by multi gamma ray beams. ► High-speed gamma ray tomograph as reference for the flow pattern and gas fraction. ► Dual modality

  5. Tomographic multiphase flow measurement

    Saetre, C., E-mail: camilla@ift.uib.no [Department of Physics and Technology, University of Bergen (Norway); Michelsen Centre for Industrial Measurement Science and Technology (Norway); Johansen, G.A. [Department of Physics and Technology, University of Bergen (Norway); Michelsen Centre for Industrial Measurement Science and Technology (Norway); Tjugum, S.A. [Michelsen Centre for Industrial Measurement Science and Technology (Norway); Roxar Flow Measurement, Bergen (Norway)

    2012-07-15

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. - Highlights: Black-Right-Pointing-Pointer Multiphase flow gas-fraction and flow regime measurements by multi gamma ray beams. Black-Right-Pointing-Pointer High-speed gamma ray tomograph as reference for the flow

  6. Challenges in Downhole Multiphase Measurements

    Aspelund, A.; Midttveit, Oe.; Richards, A.

    1996-12-31

    Permanent downhole multi-phase monitoring (DMM) can have several advantages in field development, such as increased flexibility in the development of multi-lateral and horizontal wells, optimisation of artificial lift systems and monitoring of multi-layered wells. This paper gives an overview of existing permanent downhole measurement systems and a status of topside and subsea multi-phase flow meters (MFM). The main focus is on the challenges in downhole multi-phase measurements. Topics to be taken into consideration for realization of a downhole multi-phase meter are discussed, such as actual flow conditions occurring at the point of measurement, which quantities that need to be measured, sensor principles, data processing needs and signal transmission capability. 9 refs., 9 figs.

  7. Multiphase flow dynamics 1 fundamentals

    Kolev, Nikolay Ivanov

    2015-01-01

    In its fifth extended edition the successful monograph package “Multiphase Flow Dynamics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the obtained system of partial differential equations. Finally the analysis is repeated for boundary fitted curvilinear coordinate systems designing methods applicable for interconnected multi-blocks. This fifth edition includes various updates, extensions, improvements and corrections, as well as  a completely new chapter containing the basic physics describing the multi-phase flow in tu...

  8. Multiphase flows with phase change

    Multiphase flows with phase change are ubiquitous in many industrial sectors ranging from energy and infra-structure to specialty chemicals and pharmaceuticals. My own interest in mul- tiphase flows with phase change started more than 15 years ago when I had initiated work on riser reactor for fluid catalytic cracking and ...

  9. Multiphase Flow Dynamics 2 Mechanical Interactions

    Kolev, Nikolay Ivanov

    2012-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present second volume the methods for describing the mechanical interactions in multiphase dynamics are provided. This fourth edition includes various updates, extensions, improvements and corrections.   "The literature in the field of multiphase flows is numerous. Therefore, it i...

  10. Multiphase-Multifunctional Ceramic Coatings

    2013-06-30

    systems for high temperatura applications” “ Estudios de Ferroelasticidad en Sistemas Cerámicos Multifásicos para Aplicaciones en Alta Temperatura ...Ceramic Coatings Performing Organization names: Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional – Unidad Queretaro...materials, Cinvestav. Thesis: “Ferroelasticity studies in multiphase ceramic systems for high temperatura applications”. Her work mainly focused in the

  11. Multiphase Flow Dynamics 3 Thermal Interactions

    Kolev, Nikolay Ivanov

    2012-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present third volume methods for describing of the thermal interactions in multiphase dynamics are provided. In addition a large number of valuable experiments is collected and predicted using the methods introduced in this monograph. In this way the accuracy of the methods is reve...

  12. Proceedings of submicron multiphase materials

    Baney, R.; Gilliom, L.; Hirano, S.I.; Schmidt, H.

    1992-01-01

    This book contains the papers presented at Symposium R of the spring 1992 Materials Research Society meeting held in San Francisco, California. The title of the symposium, Submicron Multiphase Materials, was selected by the organizers to encompass the realm of composite materials from those smaller than conventional fiber matrix composites to those with phase separation dimensions approaching molecular dimensions. The development of composite materials is as old as the development of materials. Humans quickly learned that, by combining materials, the best properties of each can be realized and that, in fact, synergistic effects often arise. For example, chopped straw was used by the Israelites to limit cracking in bricks. The famed Japanese samurai swords were multilayers of hard oxide and tough ductile materials. One also finds in nature examples of composite materials. These range form bone to wood, consisting of a hard phase which provides strength and stiffness and a softer phase for toughness. Advanced composites are generally thought of as those which are based on a high modulus, discontinuous, chopped or woven fiber phase and a continuous polymer phase. In multiphase composites, dimensions can range from meters in materials such as steel rod-reinforced concrete structures to angstroms. In macrophase separated composite materials, properties frequently follow the rule of mixtures with the properties approximating the arithmetic mean of the properties of each individual phase, if there is good coupling between the phases. As the phases become smaller, the surface to volume ratio grows in importance with respect to properties. Interfacial and interphase phenomena being to dominate. Surface free energies play an ever increasing role in controlling properties. In recent years, much research in materials science has been directed at multiphase systems where phase separations are submicron in at least some dimension

  13. Problems of multiphase fluid filtration

    Konovalov, AN

    1994-01-01

    This book deals with a spectrum of problems related to the mathematical modeling of multiphase filtration. Emphasis is placed on an inseparable triad: model - algorithm - computer code. An analysis of new and traditional filtration problems from the point of view of both their numerical implementation and the reproduction of one or another technological characteristics of the processes under consideration is given. The basic principles which underlie the construction of efficient numerical methods taking into account the filtration problems are discussed: non-evolutionary nature, degeneration,

  14. Advances in multiphase flow and related problems

    Papanicolaou, G.

    1986-01-01

    Proceedings of a workshop in multiphase flow held at Leesburg, Va. in June 1986 representing a cross-disciplinary approach to theoretical as well as computational problems in multiphase flow. Topics include composites, phase transitions, fluid-particle systems, and bubbly liquids

  15. A multiphase compressible model for the simulation of multiphase flows

    Caltagirone, J.P.; Vincent, St.; Caruyer, C.

    2011-01-01

    A compressible model able to manage incompressible two-phase flows as well as compressible motions is proposed. After a presentation of the multiphase compressible concept, the new model and related numerical methods are detailed on fixed structured grids. The presented model is a 1-fluid model with a reformulated mass conservation equation which takes into account the effects of compressibility. The coupling between pressure and flow velocity is ensured by introducing mass conservation terms in the momentum and energy equations. The numerical model is then validated with four test cases involving the compression of an air bubble by water, the liquid injection in a closed cavity filled with air, a bubble subjected to an ultrasound field and finally the oscillations of a deformed air bubble in melted steel. The numerical results are compared with analytical results and convergence orders in space are provided. (authors)

  16. Frontiers and progress in multiphase flow

    2014-01-01

    This volume presents state-of-the-art of reviews in the field of multiphase flow. In focusses on nonlinear aspects of multiphase flow networks as well as visualization experiments. The first chapter presents nonlinear aspects or deterministic chaos issues in the systems of multi-phase reactors.  The second chapter reviews two-phase flow dynamics in combination with complex network theory. The third chapter discusses evaporation mechanism in the wick of copper heat pipes. The last chapter investigates numerically the flow dynamics and heat and mass transfer in the laminar and turbulent boundary layer on the flat vertical plate.

  17. On multiphase negative flash for ideal solutions

    Yan, Wei; Stenby, Erling Halfdan

    2012-01-01

    simpler than the corresponding normal flash algorithm. Unlike normal flash, multiphase negative flash for ideal solutions can diverge if the feasible domain for phase amounts is not closed. This can be judged readily during the iteration process. The algorithm can also be extended to the partial negative......There is a recent interest to solve multiphase negative flash problems where the phase amounts can be negative for normal positive feed composition. Solving such a negative flash problem using successive substitution needs an inner loop for phase distribution calculation at constant fugacity...... coefficients. It is shown that this inner loop, named here as multiphase negative flash for ideal solutions, can be solved either by Michelsen's algorithm for multiphase normal flash, or by its variation which uses F−1 phase amounts as independent variables. In either case, the resulting algorithm is actually...

  18. Accurate solution algorithms for incompressible multiphase flows

    Rider, W.J.; Kothe, D.B.; Mosso, S.J.; Cerutti, J.H.; Hochstein, J.I.

    1994-01-01

    A number of advances in modeling multiphase incompressible flow are described. These advances include high-order Godunov projection methods, piecewise linear interface reconstruction and tracking and the continuum surface force model. Examples are given

  19. Personality traits in persons with manganese poisoning

    Platonov, A A

    1976-10-01

    Results of studies with the Minnesota Multiphasic Personality Inventory (MMPI) in 3 groups of arc welders with various degrees of manganese poisoning (22 symptom-free, 23 with functional disturbances, 55 with organic symptoms) and 50 controls were discussed. There was a close relation between the severity of the poisoning and quantitative and qualitative personality changes. Personality tests are considered a useful addition to the clinical diagnosis of chronic manganese poisoning.

  20. Multiphase modelling of mud volcanoes

    Colucci, Simone; de'Michieli Vitturi, Mattia; Clarke, Amanda B.

    2015-04-01

    Mud volcanism is a worldwide phenomenon, classically considered as the surface expression of piercement structures rooted in deep-seated over-pressured sediments in compressional tectonic settings. The release of fluids at mud volcanoes during repeated explosive episodes has been documented at numerous sites and the outflows resemble the eruption of basaltic magma. As magma, the material erupted from a mud volcano becomes more fluid and degasses while rising and decompressing. The release of those gases from mud volcanism is estimated to be a significant contributor both to fluid flux from the lithosphere to the hydrosphere, and to the atmospheric budget of some greenhouse gases, particularly methane. For these reasons, we simulated the fluid dynamics of mud volcanoes using a newly-developed compressible multiphase and multidimensional transient solver in the OpenFOAM framework, taking into account the multicomponent nature (CH4, CO2, H2O) of the fluid mixture, the gas exsolution during the ascent and the associated changes in the constitutive properties of the phases. The numerical model has been tested with conditions representative of the LUSI, a mud volcano that has been erupting since May 2006 in the densely populated Sidoarjo regency (East Java, Indonesia), forcing the evacuation of 40,000 people and destroying industry, farmland, and over 10,000 homes. The activity of LUSI mud volcano has been well documented (Vanderkluysen et al., 2014) and here we present a comparison of observed gas fluxes and mud extrusion rates with the outcomes of numerical simulations. Vanderkluysen, L.; Burton, M. R.; Clarke, A. B.; Hartnett, H. E. & Smekens, J.-F. Composition and flux of explosive gas release at LUSI mud volcano (East Java, Indonesia) Geochem. Geophys. Geosyst., Wiley-Blackwell, 2014, 15, 2932-2946

  1. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  2. The simulation of multidimensional multiphase flows

    Lahey, Richard T.

    2005-01-01

    This paper presents an assessment of various models which can be used for the multidimensional simulation of multiphase flows, such as may occur in nuclear reactors. In particular, a model appropriate for the direct numerical simulation (DNS) of multiphase flows and a mechanistically based, three-dimensional, four-field, turbulent, two-fluid computational multiphase fluid dynamics (CMFD) model are discussed. A two-fluid bubbly flow model, which was derived using potential flow theory, can be extended to other flow regimes, but this will normally involve ensemble-averaging the results from direct numerical simulations (DNS) of various flow regimes to provide the detailed numerical data necessary for the development of flow-regime-specific interfacial and wall closure laws

  3. Multiphase reacting flows modelling and simulation

    Marchisio, Daniele L

    2007-01-01

    The papers in this book describe the most widely applicable modeling approaches and are organized in six groups covering from fundamentals to relevant applications. In the first part, some fundamentals of multiphase turbulent reacting flows are covered. In particular the introduction focuses on basic notions of turbulence theory in single-phase and multi-phase systems as well as on the interaction between turbulence and chemistry. In the second part, models for the physical and chemical processes involved are discussed. Among other things, particular emphasis is given to turbulence modeling strategies for multiphase flows based on the kinetic theory for granular flows. Next, the different numerical methods based on Lagrangian and/or Eulerian schemes are presented. In particular the most popular numerical approaches of computational fluid dynamics codes are described (i.e., Direct Numerical Simulation, Large Eddy Simulation, and Reynolds-Averaged Navier-Stokes approach). The book will cover particle-based meth...

  4. Multiphase flow in wells and pipelines

    Sharma, M.P.; Rohatgi, U.S.

    1992-01-01

    This conference focuses primarily on multi-phase flow modeling and calculation methods for oil and gas although two papers focus more on the fluid mechanics of fluidized beds. Papers include theoretical, numerical modeling, experimental investigation, and state-of-the-art review aspects of multiphase flow. The theme of the symposium being general, the papers reflect generality of gas-liquid, liquid-solid, and gas solid flows. One paper deals with nuclear reactor safety as it relates to fluid flow through the reactor

  5. Multiphasic helical CT of hepatocellular carcinoma. Evaluation after chemo embolization

    Catalano, O.; Esposito, M.; Sandomenico, F.; Siani, A.; Nunziata, A.

    2000-01-01

    The main purpose of this work is to report the personal experience with addition of contrast-enhanced multiphase helical CT to unenhanced CT (Lipiodol CT) in the evaluation of patients with hepatocellular carcinoma treated with chemoembolization and to analyze the present role of oily agent CT. It has been retrospectively reviewed the examinations of 42 consecutive patients submitted to globla chemoembolization over a 2-year period. CT was performed 18-30 days after the treatment. The Lipiodol CT study was carried out with volume acquisitions. It has been considered as nodules all well-defined areas with dense oily agent uptake; uptake itself was classified as: 0=absent, I=lower tha 10% of the tumor volume; II=lower than 50%, III=50%, IV=homogeneous. Contrast-enhanced helical CT was performed with the 2-phase technique in 28 patients and with the 3-phase technique in 14; it has been considered as nodules all well-defined and relatively homogeneous areas with hyperattenuation in the arterial phase and hypo-isoattenuation in the portal and/or delayed phase, or with hypo-isoattenuation in the arterial phase and in the portal and/or delayed phase. Lipiodol CT permitted to recognize 65 nodules (1-5/patient, mean 1.5), namely 15 grade I, 21 grade II, 20 grade III and 9 grade IV. Multiphase CT identified 6 additional nodules in 5 patients, 5 hypervascular and 1 hypovascular, and better assessed the correct morphology and volume of grade I nodules. Only 4 of 6 nodules missed on Lipiodol CT showed oily agent uptake after a new chemoembolization session. Moreover after retreatment, carried out in 6 of 9 patients with grade I uptake (11 nodules in all), it has been found persistence of the grade I pattern in 5 nodules, grade II in 5, and grade III in 1. Lipiodol CT may miss liver nodules and underestimate the volume of nodules with poor uptake. Though Lipiodol CT should still be considered slightly more sensitive than multiphase CT, in the general opinion this technique has

  6. Multiphase flow dynamics 2 thermal and mechanical interactions

    Kolev, Nikolay I

    2007-01-01

    The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. This book contains theory, methods and practical experience for describing complex transient multi-phase processes. It provides a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics.

  7. Multiphase flow and transport in porous media

    Parker, J. C.

    1989-08-01

    Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. In petroleum reservoir engineering, efficient recovery of energy reserves is the principal goal. Unfortunately, some of these hydrocarbons and other organic chemicals often find their way unwanted into the soils and groundwater supplies. Removal in the latter case is predicated on ensuring the public health and safety. In this paper, principles of modeling fluid flow in systems containing up to three fluid phases (namely, water, air, and organic liquid) are described. Solution of the governing equations for multiphase flow requires knowledge of functional relationships between fluid pressures, saturations, and permeabilities which may be formulated on the basis of conceptual models of fluid-porous media interactions. Mechanisms of transport in multicomponent multiphase systems in which species may partition between phases are also described, and the governing equations are presented for the case in which local phase equilibrium may be assumed. A number of hypothetical numerical problems are presented to illustrate the physical behavior of systems in which multiphase flow and transport arise.

  8. A Multiphase Model for the Intracluster Medium

    Nagai, Daisuke; Sulkanen, Martin E.; Evrard, August E.

    1999-01-01

    Constraints on the clustered mass density of the universe derived from the observed population mean intracluster gas fraction of x-ray clusters may be biased by reliance on a single-phase assumption for the thermodynamic structure of the intracluster medium (ICM). We propose a descriptive model for multiphase structure in which a spherically symmetric ICM contains isobaric density perturbations with a radially dependent variance. Fixing the x-ray emission and emission weighted temperature, we explore two independently observable signatures of the model in the parameter space. For bremsstrahlung dominated emission, the central Sunyaev-Zel'dovich (SZ) decrement in the multiphase case is increased over the single-phase case and multiphase x-ray spectra in the range 0.1-20 keV are flatter in the continuum and exhibit stronger low energy emission lines than their single-phase counterpart. We quantify these effects for a fiducial 10e8 K cluster and demonstrate how the combination of SZ and x-ray spectroscopy can be used to identify a preferred location in the plane of the model parameter space. From these parameters the correct value of mean intracluster gas fraction in the multiphase model results, allowing an unbiased estimate of clustered mass density to he recovered.

  9. Multiphase flow in porous media using CFD

    Hemmingsen, Casper Schytte; Walther, Jens Honore

    . This approach is widely used for single phase flow, but not for multiphase flow in porous media. This might be due to the complexity of introducing relative permeability and capillary pressure in the CFD solver.The introduction of relative permeability and capillary pressure may cause numerical instabilities...

  10. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    Mecartnery, Martha [Univ. of California, Irvine, CA (United States); Graeve, Olivia [Univ. of California, San Diego, CA (United States); Patel, Maulik [Univ. of Liverpool (United Kingdom)

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  11. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-01-01

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  12. The utility of MMPI-2-RF substantive scales in prediction of negative treatment outcomes in a community mental health center.

    Anestis, Joye C; Gottfried, Emily D; Joiner, Thomas E

    2015-02-01

    This study examined the utility of the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) substantive scales in the prediction of premature termination and therapy no-shows while controlling for other relevant predictors in a university-based community mental health center, a sample at high risk of both premature termination and no-show appointments. Participants included 457 individuals seeking services from a university-based psychology clinic. Results indicated that Juvenile Conduct Problems (JCP) predicted premature termination and Behavioral/Externalizing Dysfunction and JCP predicted number of no-shows, when accounting for initial severity of illness, personality disorder diagnosis, therapist experience, and other related MMPI-2-RF scales. The MMPI-2-RF Aesthetic-Literary Interests scale also predicted number of no-shows. Recommendations for applying these findings in clinical practice are discussed. © The Author(s) 2014.

  13. Non-Equilibrium Thermodynamics in Multiphase Flows

    Mauri, Roberto

    2013-01-01

    Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...

  14. Multiphase Microfluidics The Diffuse Interface Model

    2012-01-01

    Multiphase flows are typically described assuming that the different phases are separated by a sharp interface, with appropriate boundary conditions. This approach breaks down whenever the lengthscale of the phenomenon that is being studied is comparable with the real interface thickness, as it happens, for example, in the coalescence and breakup of bubbles and drops, the wetting and dewetting of solid surfaces and, in general, im micro-devices. The diffuse interface model resolves these probems by assuming that all quantities can vary continuously, so that interfaces have a non-zero thickness, i.e. they are "diffuse". The contributions in this book review the theory and describe some relevant applications of the diffuse interface model for one-component, two-phase fluids and for liquid binary mixtures, to model multiphase flows in confined geometries.

  15. Visualization of multiphase flow by neutron radiography

    Mishima, Kaichiro; Takenaka, Nobuyuki.

    1991-01-01

    Neutron radiography (NRG) is a technique which produces images of the internal structure of a body, making use of the attenuation characteristics of neutrons in the materials being observed. Recently, attempts have been made to expand the application of this technique not only to non-destructive testing but also to a variety of industrial and basic research fields. The attenuation of neutrons is large in a light material like water and small in ordinary metals, which difference may make it possible to visualize a multiphase flow in a metallic container. Particularly, the neutron television, which is one of the applied techniques of NRG, is expected to be a useful tool for observing the behavior of two-phase flow, since it produces images in real time. In this paper the basic idea and the method of NRG are presented along with examples of visualization of multiphase flow by NRG. (author)

  16. Multiphase composite coatings: structure and properties

    Yurov, V M; Guchenko, S A; Platonova, E S; Syzdykova, A Sh; Lysenko, E N

    2015-01-01

    The paper discusses the results of the research into the formation of ion-plasma multiphase coatings. The types of the formed structures are found to be not so diverse, as those formed, for example, in alloy crystallization. The structures observed are basically of globular type and, more rarely, of unclosed dissipative and cellular structures. It is shown that the properties of the coating formed in deposition are largely determined by its surface energy or surface tension. Since the magnitude of the surface tension (surface energy) in most cases is an additive quantity, each of the elements of the coating composition contributes to the total surface energy. In case of simultaneous sputtering of multiphase cathodes, high entropy coatings with an ordered cellular structure and improved mechanical properties are formed. (paper)

  17. Application and Perspectives of Multiphase Induction Motors

    Benas Kundrotas

    2012-04-01

    Full Text Available The article considers the areas of applying multiphase induction motors. Their advantages against three phase motors have become the main reason for employing them in multiphase drives. The paper deals with the six-phase induction motor having two similar three phase windings in the stator shifted by 30 degrees in space and three phase windings in the rotor. Differential equations for this motor are presented and transformed to dq synchronous reference frame. The transformed equations are expressed in a matrix form and solved by MATLAB software using the Dormand-Prince (ode45 method. The transient characteristics of the torque, speed and current of the six-phase induction motor are calculated and discussed.Article in Lithuanian

  18. Variational continuum multiphase poroelasticity theory and applications

    Serpieri, Roberto

    2017-01-01

    This book collects the theoretical derivation of a recently presented general variational macroscopic continuum theory of multiphase poroelasticity (VMTPM), together with its applications to consolidation and stress partitioning problems of interest in several applicative engineering contexts, such as in geomechanics and biomechanics. The theory is derived based on a purely-variational deduction, rooted in the least-Action principle, by considering a minimal set of kinematic descriptors. The treatment herein considered keeps a specific focus on the derivation of most general medium-independent governing equations. It is shown that VMTPM recovers paradigms of consolidated use in multiphase poroelasticity such as Terzaghi's stress partitioning principle and Biot's equations for wave propagation. In particular, the variational treatment permits the derivation of a general medium-independent stress partitioning law, and the proposed variational theory predicts that the external stress, the fluid pressure, and the...

  19. Modeling variability in porescale multiphase flow experiments

    Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.

    2017-07-01

    Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e., fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rates. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.

  20. On modeling of structured multiphase mixtures

    Dobran, F.

    1987-01-01

    The usual modeling of multiphase mixtures involves a set of conservation and balance equations of mass, momentum, energy and entropy (the basic set) constructed by an averaging procedure or postulated. The averaged models are constructed by averaging, over space or time segments, the local macroscopic field equations of each phase, whereas the postulated models are usually motivated by the single phase multicomponent mixture models. In both situations, the resulting equations yield superimposed continua models and are closed by the constitutive equations which place restrictions on the possible material response during the motion and phase change. In modeling the structured multiphase mixtures, the modeling of intrinsic motion of grains or particles is accomplished by adjoining to the basic set of field equations the additional balance equations, thereby placing restrictions on the motion of phases only within the imposed extrinsic and intrinsic sources. The use of the additional balance equations has been primarily advocated in the postulatory theories of multiphase mixtures and are usually derived through very special assumptions of the material deformation. Nevertheless, the resulting mixture models can predict a wide variety of complex phenomena such as the Mohr-Coulomb yield criterion in granular media, Rayleigh bubble equation, wave dispersion and dilatancy. Fundamental to the construction of structured models of multiphase mixtures are the problems pertaining to the existence and number of additional balance equations to model the structural characteristics of a mixture. Utilizing a volume averaging procedure it is possible not only to derive the basic set of field equation discussed above, but also a very general set of additional balance equations for modeling of structural properties of the mixture

  1. NMR studies of multiphase flows II

    Altobelli, S.A.; Caprihan, A.; Fukushima, E. [Lovelace Institutes, Albuquerque, NM (United States)] [and others

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  2. Modified Invasion Percolation Models for Multiphase Processes

    Karpyn, Zuleima [Pennsylvania State Univ., State College, PA (United States)

    2015-01-31

    This project extends current understanding and modeling capabilities of pore-scale multiphase flow physics in porous media. High-resolution X-ray computed tomography imaging experiments are used to investigate structural and surface properties of the medium that influence immiscible displacement. Using experimental and computational tools, we investigate the impact of wetting characteristics, as well as radial and axial loading conditions, on the development of percolation pathways, residual phase trapping and fluid-fluid interfacial areas.

  3. Clinical significance of multiphase skeletal scintiscanning

    Zimmermann, P.

    1984-01-01

    A total of 61 patients were included in this study, which was performed to find out, if multiphase skeletal scintiscanning using 99mTc-DPD is a more accurate investigational method in terms of diagnostic differentiation than conventional scintiscanning. All patients were subjected to additional diagnostic procedures using X-rays, CT, etc. and the findings revealed were compared. In order to ensure an objective assessment of the density patterns obtained in the individual study phase (initial phase (1); vascular phase (2); soft tissue phase (3); standard phase (4)), special care was taken that only regions of similar vascularity were compared. In acute osteomyelitis, osteitis deformans according to Paget and osteoid osteoma multiphase scintiscanning yielded valuable additional information which, from the diagnostic point of view, proved to be much more meaningful than that provided by conventional scintiscanning, as very characteristic activity patterns were discernible in the initial study phases. In patients showing artificial limb infection or fractures this supplementary information was also found to be of some value, although the behaviour of activity in the initial study phases gave less conclusive evidence here than in the diseases mentioned before. In inflammatory disorders involving only minor histological changes or those of a chronic nature as well as in special forms of inflammation and artificial limb dislocation multiphase scintiscanning was not found to offer any advantages over conventional scintiscanning. (TRV) [de

  4. How winning changes motivation in multiphase competitions.

    Huang, Szu-Chi; Etkin, Jordan; Jin, Liyin

    2017-06-01

    What drives motivation in multiphase competitions? Adopting a dynamic approach, this research examines how temporary standing-being ahead of (vs. behind) one's opponent-in a multiphase competition shapes subsequent motivation. Six competitions conducted in the lab and in the field demonstrate that the impact of being ahead on contestants' motivation depends on when (i.e., in which phase of the competition) contestants learn they are in the lead. In the early phase, contestants are concerned about whether they can win; being ahead increases motivation by making winning seem more attainable. In the later phase, however, contestants are instead driven by how much additional effort they believe they need to invest; being ahead decreases motivation by reducing contestants' estimate of the remaining effort needed to win. Temporary standing thus has divergent effects on motivation in multiphase competitions, driven by a shift in contestants' main concern from the early to the later phase and thus the meaning they derive from being ahead of their opponent. By leveraging insights gained from approaching individuals' self-regulation as a dynamic process, this research advances understanding of how motivation evolves in a unique interdependent self-regulatory context. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Modeling reproducibility of porescale multiphase flow experiments

    Ling, B.; Tartakovsky, A. M.; Bao, J.; Oostrom, M.; Battiato, I.

    2017-12-01

    Multi-phase flow in porous media is widely encountered in geological systems. Understanding immiscible fluid displacement is crucial for processes including, but not limited to, CO2 sequestration, non-aqueous phase liquid contamination and oil recovery. Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.

  6. Detection of overreported psychopathology with the MMPI-2-RF [corrected] validity scales.

    Sellbom, Martin; Bagby, R Michael

    2010-12-01

    We examined the utility of the validity scales on the recently released Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2 RF; Ben-Porath & Tellegen, 2008) to detect overreported psychopathology. This set of validity scales includes a newly developed scale and revised versions of the original MMPI-2 validity scales. We used an analogue, experimental simulation in which MMPI-2 RF responses (derived from archived MMPI-2 protocols) of undergraduate students instructed to overreport psychopathology (in either a coached or noncoached condition) were compared with those of psychiatric inpatients who completed the MMPI-2 under standardized instructions. The MMPI-2 RF validity scale Infrequent Psychopathology Responses best differentiated the simulation groups from the sample of patients, regardless of experimental condition. No other validity scale added consistent incremental predictive utility to Infrequent Psychopathology Responses in distinguishing the simulation groups from the sample of patients. Classification accuracy statistics confirmed the recommended cut scores in the MMPI-2 RF manual (Ben-Porath & Tellegen, 2008).

  7. Using the MMPI-2-RF to discriminate psychometrically identified schizotypic college students from a matched comparison sample.

    Hunter, Helen K; Bolinskey, P Kevin; Novi, Jonathan H; Hudak, Daniel V; James, Alison V; Myers, Kevin R; Schuder, Kelly M

    2014-01-01

    This study investigates the extent to which the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF) profiles of 52 individuals making up a psychometrically identified schizotypes (SZT) sample could be successfully discriminated from the protocols of 52 individuals in a matched comparison (MC) sample. Replication analyses were performed with an additional 53 pairs of SZT and MC participants. Results showed significant differences in mean T-score values between these 2 groups across a variety of MMPI-2-RF scales. Results from discriminant function analyses indicate that schizotypy can be predicted effectively using 4 MMPI-2-RF scales and that this method of classification held up on replication. Additional results demonstrated that these MMPI-2-RF scales nominally outperformed MMPI-2 scales suggested by previous research as being indicative of schizophrenia liability. Directions for future research with the MMPI-2-RF are suggested.

  8. Reading the Road Signs: The Utility of the MMPI-2 Restructured Form Validity Scales in Prediction of Premature Termination.

    Anestis, Joye C; Finn, Jacob A; Gottfried, Emily; Arbisi, Paul A; Joiner, Thomas E

    2015-06-01

    This study examined the utility of the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF) Validity Scales in prediction of premature termination in a sample of 511 individuals seeking services from a university-based psychology clinic. Higher scores on True Response Inconsistency-Revised and Infrequent Psychopathology Responses increased the risk of premature termination, whereas higher scores on Adjustment Validity lowered the risk of premature termination. Additionally, when compared with individuals who did not prematurely terminate, individuals who prematurely terminated treatment had lower Global Assessment of Functioning scores at both intake and termination and made fewer improvements. Implications of these findings for the use of the MMPI-2-RF Validity Scales in promoting treatment compliance are discussed. © The Author(s) 2014.

  9. Contrast optimization in multiphase arterial spin labeling

    Paiva, Fernando F.; Paschoal, Andre M.; Tovar-Moll, Fernanda; Moll, Jorge

    2013-01-01

    Multiphase ASL is an effective way to overcome the regional variation of the transit time that difficult the estimation of perfusion values. However, with conventional multiple phases ASL techniques, the ASL contrast at later phases is impaired due to repeated application of excitation pulses and longitudinal relaxation making it difficult to evaluate the tissue perfusion in regions where the transit time is longer. In the present study, we show an improvement of the acquisition scheme by exploring a modulation on the flip angle of the MR acquisition to keep the ASL contrast constant over multiple phases. (author)

  10. Axisymmetric multiphase lattice Boltzmann method for generic equations of state

    Reijers, S.A.; Gelderblom, H.; Toschi, F.

    2016-01-01

    We present an axisymmetric lattice Boltzmann model based on the Kupershtokh et al. multiphase model that is capable of solving liquid–gas density ratios up to 103. Appropriate source terms are added to the lattice Boltzmann evolution equation to fully recover the axisymmetric multiphase conservation

  11. A Senior Project-Based Multiphase Motor Drive System Development

    Abdel-Khalik, Ayman S.; Massoud, Ahmed M.; Ahmed, Shehab

    2016-01-01

    Adjustable-speed drives based on multiphase motors are of significant interest for safety-critical applications that necessitate wide fault-tolerant capabilities and high system reliability. Although multiphase machines are based on the same conceptual theory as three-phase machines, most undergraduate electrical machines and electric drives…

  12. Industrial applications of multi-functional, multi-phase reactors

    Harmsen, G.J.; Chewter, L.A.

    1999-01-01

    To reveal trends in the design and operation of multi-functional, multi-phase reactors, this paper describes, in historical sequence, three industrial applications of multi-functional, multi-phase reactors developed and operated by Shell Chemicals during the last five decades. For each case, we

  13. Multiphase averaging of periodic soliton equations

    Forest, M.G.

    1979-01-01

    The multiphase averaging of periodic soliton equations is considered. Particular attention is given to the periodic sine-Gordon and Korteweg-deVries (KdV) equations. The periodic sine-Gordon equation and its associated inverse spectral theory are analyzed, including a discussion of the spectral representations of exact, N-phase sine-Gordon solutions. The emphasis is on physical characteristics of the periodic waves, with a motivation from the well-known whole-line solitons. A canonical Hamiltonian approach for the modulational theory of N-phase waves is prescribed. A concrete illustration of this averaging method is provided with the periodic sine-Gordon equation; explicit averaging results are given only for the N = 1 case, laying a foundation for a more thorough treatment of the general N-phase problem. For the KdV equation, very general results are given for multiphase averaging of the N-phase waves. The single-phase results of Whitham are extended to general N phases, and more importantly, an invariant representation in terms of Abelian differentials on a Riemann surface is provided. Several consequences of this invariant representation are deduced, including strong evidence for the Hamiltonian structure of N-phase modulational equations

  14. Multiphase forces on bend structures – critical gas fraction for transition single phase gas to multiphase flow behaviour

    Belfroid, S.P.C.; Nennie, E.D.; Lewis, M.

    2016-01-01

    Piping structures are generally subjected to high dynamic loading due to multiphase forces. In particular subsea structures are very vulnerable as large flexibility is required to cope for instance with thermal stresses. The forces due to multiphase flow are characterized by a broadband spectrum

  15. A mass-conserving multiphase lattice Boltzmann model for simulation of multiphase flows

    Niu, Xiao-Dong; Li, You; Ma, Yi-Ren; Chen, Mu-Feng; Li, Xiang; Li, Qiao-Zhong

    2018-01-01

    In this study, a mass-conserving multiphase lattice Boltzmann (LB) model is proposed for simulating the multiphase flows. The proposed model developed in the present study is to improve the model of Shao et al. ["Free-energy-based lattice Boltzmann model for simulation of multiphase flows with density contrast," Phys. Rev. E 89, 033309 (2014)] by introducing a mass correction term in the lattice Boltzmann model for the interface. The model of Shao et al. [(the improved Zheng-Shu-Chew (Z-S-C model)] correctly considers the effect of the local density variation in momentum equation and has an obvious improvement over the Zheng-Shu-Chew (Z-S-C) model ["A lattice Boltzmann model for multiphase flows with large density ratio," J. Comput. Phys. 218(1), 353-371 (2006)] in terms of solution accuracy. However, due to the physical diffusion and numerical dissipation, the total mass of each fluid phase cannot be conserved correctly. To solve this problem, a mass correction term, which is similar to the one proposed by Wang et al. ["A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio," J. Comput. Phys. 290, 336-351 (2015)], is introduced into the lattice Boltzmann equation for the interface to compensate the mass losses or offset the mass increase. Meanwhile, to implement the wetting boundary condition and the contact angle, a geometric formulation and a local force are incorporated into the present mass-conserving LB model. The proposed model is validated by verifying the Laplace law, simulating both one and two aligned droplets splashing onto a liquid film, droplets standing on an ideal wall, droplets with different wettability splashing onto smooth wax, and bubbles rising under buoyancy. Numerical results show that the proposed model can correctly simulate multiphase flows. It was found that the mass is well-conserved in all cases considered by the model developed in the present study. The developed

  16. The personality pattern of duodenal ulcer patients in relation to spontaneous ulcer healing and relapse

    Jess, P; von der Lieth, L; Matzen, Peter

    1989-01-01

    One hundred consecutive out-patients with duodenal ulceration from a hospital and a gastroenterological clinic were tested with the Minnesota Multiphasic Personality Inventory (MMPI). This was carried out in order to investigate whether neuroticism or other personality disorders were characterist......One hundred consecutive out-patients with duodenal ulceration from a hospital and a gastroenterological clinic were tested with the Minnesota Multiphasic Personality Inventory (MMPI). This was carried out in order to investigate whether neuroticism or other personality disorders were...

  17. A development of multiphase flow facility

    Ismail Mustapha; Jaafar Abdullah

    2004-01-01

    Multiphase liquid flow facility shall be enabling to transport of oil/gas/water in pipelines. In horizontal pipelines, the different flow patterns that could be observed. The flow pattern will depend mainly on the gas and liquid velocities, and gas liquid ratio. For very high liquid velocities and low gas liquid ratios, the dispersed bubble flow is observed. For low flow rates of liquid and gas, a smooth or wavy stratified flow is expected. For intermediate liquid velocities, rolling waves of liquids are formed. The rolling waves increase to the point of forming a plug flow and a slug flow. For very high gas velocities, the annular flow is observed Also include a tillable test section allowing for testing at any angle between 0 0 degree from horizontal, lowering the measurement uncertainties and increased capabilities with respect to flow rates and gas fractions. (Author)

  18. Multiphase Flow Dynamics 5 Nuclear Thermal Hydraulics

    Kolev, Nikolay Ivanov

    2012-01-01

    The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step...

  19. Multiphase flow dynamics 5 nuclear thermal hydraulics

    Kolev, Nikolay Ivanov

    2015-01-01

    This Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demons...

  20. Solidification in Multicomponent Multiphase Systems (SIMMS)

    Rex, S.; Hecht, U.

    2005-06-01

    The multiphase microstructures that evolve during the solidification of multicomponent alloys are attracting widespread interest for industrial applications and fundamental research.Thermodynamic databases are now well-established for many alloy systems. Thermodynamic calculations provide all the required information about phase equilibria, forming an integral part of both dedicated and comprehensive microstructure models. Among the latter, phase-field modelling has emerged as the method of choice. Solidification experiments are intended to trigger model development or to serve as benchmarks for model validation. For benchmarking, microgravity conditions offer a unique opportunity for avoiding buoyancy-induced convection and buoyancy forces in bulk samples. However, diffusion and the free-energy of interfaces and its anisotropy need to be determined.The measurement of chemical diffusivities in the liquid state can equally benefit from microgravity experiments.

  1. Multiphasic MDCT in small bowel volvulus

    Feng Shiting; Chan Tao; Sun Canhui; Li Ziping; Guo Huanyi; Yang Guangqi; Peng Zhenpeng; Meng Quanfei

    2010-01-01

    Objective: Evaluate the use of MDCT with 3D CT angiography (CTA) and CT portal venography (CTPV) reconstruction for the diagnosis of small bowel volvulus (SBV). Methods: Multiphasic MDCT findings in nine patients (seven males and two females, age range 2-70) with surgically proven SBV were retrospectively reviewed. Non-contrast and double phase contrast enhanced MDCT including 3D CTA and CTPV reconstruction were performed in all the patients. Two experienced abdominal radiologists evaluated the images and defined the location, direction and degree of SBV. Results: On axial MDCT images, all cases show segmental or global dilatation of small intestine. Other findings include circumferential bowel wall thickening in eight cases, halo appearance and hyperemia in seven cases, whirl sign in six cases, beak-like appearance in six cases, closed loops in six cases and ascites in one case. CTA/CTPV showed abnormal courses involving main trunks of superior mesenteric artery (SMA) and superior mesenteric vein (SMV) in seven cases, with or without distortion of their tributaries. Normal course of SMA but abnormal course of SMV was seen in the other two cases. Of all the nine cases, whirl sign was seen in six cases and barber's pole sign in five cases. Dilated SMV was observed in eight cases and abrupt termination of SMA was found in one case. Compared with surgical findings, the location, direction and degree of SBV were correctly estimated in all cases based on CTA/CTPV. Conclusion: Multiphasic MDCT with CTA/CTPV reconstruction can play an important role in the diagnosis of SBV. The location, direction and degree of SBV can all be defined preoperatively using this method.

  2. Multiphasic MDCT in small bowel volvulus

    Feng Shiting, E-mail: fst1977@163.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Chan Tao, E-mail: taochan@hku.hk [Department of Diagnostic Radiology, University of Hong Kong, Room 406, Block K, Queen Mary Hospital (Hong Kong); Sun Canhui, E-mail: canhuisun@sina.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Li Ziping, E-mail: liziping163@tom.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Guo Huanyi, E-mail: guohuanyi@163.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Yang Guangqi, E-mail: shwy03@126.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Peng Zhenpeng, E-mail: ppzhen@21cn.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Meng Quanfei, E-mail: mzycoco@gmail.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China)

    2010-11-15

    Objective: Evaluate the use of MDCT with 3D CT angiography (CTA) and CT portal venography (CTPV) reconstruction for the diagnosis of small bowel volvulus (SBV). Methods: Multiphasic MDCT findings in nine patients (seven males and two females, age range 2-70) with surgically proven SBV were retrospectively reviewed. Non-contrast and double phase contrast enhanced MDCT including 3D CTA and CTPV reconstruction were performed in all the patients. Two experienced abdominal radiologists evaluated the images and defined the location, direction and degree of SBV. Results: On axial MDCT images, all cases show segmental or global dilatation of small intestine. Other findings include circumferential bowel wall thickening in eight cases, halo appearance and hyperemia in seven cases, whirl sign in six cases, beak-like appearance in six cases, closed loops in six cases and ascites in one case. CTA/CTPV showed abnormal courses involving main trunks of superior mesenteric artery (SMA) and superior mesenteric vein (SMV) in seven cases, with or without distortion of their tributaries. Normal course of SMA but abnormal course of SMV was seen in the other two cases. Of all the nine cases, whirl sign was seen in six cases and barber's pole sign in five cases. Dilated SMV was observed in eight cases and abrupt termination of SMA was found in one case. Compared with surgical findings, the location, direction and degree of SBV were correctly estimated in all cases based on CTA/CTPV. Conclusion: Multiphasic MDCT with CTA/CTPV reconstruction can play an important role in the diagnosis of SBV. The location, direction and degree of SBV can all be defined preoperatively using this method.

  3. Multiphase Flow and Fluidization Continuum and Kinetic Theory Descriptions

    Gidaspow, Dimitri

    1994-01-01

    Useful as a reference for engineers in industry and as an advanced level text for graduate engineering students, Multiphase Flow and Fluidization takes the reader beyond the theoretical to demonstrate how multiphase flow equations can be used to provide applied, practical, predictive solutions to industrial fluidization problems. Written to help advance progress in the emerging science of multiphase flow, this book begins with the development of the conservation laws and moves on through kinetic theory, clarifying many physical concepts (such as particulate viscosity and solids pressure) and i

  4. 2nd International Conference on Multiphase Flow - ICMF '95

    Fukano, T; Bataille, Jean

    1995-01-01

    There is increasing world-wide interest in obtaining an understanding of various multiphase flow phenomena and problems in terms of a common language of multiphase flow. This volume contains state-of-the-art papers which have been contributed from all over the world by experts working on all aspects of multiphase flows. The volume also highlights international technology-sharing in the fields of energy, environment and public health, in order to create a brighter and sustainable future for man and for all life in the next century. It is intended that this volume will serve as a major source of

  5. Multiphase anodic layers and prospects of their application

    Rudnev, V.S.

    2008-01-01

    Data on the phase composition of multiphase layers prepared on valve metals (aluminium, titanium, and their alloys) by the plasma-electrochemical oxidation and deposition (PEOD) from aqueous electrolytes containing iso- and heteropolyoxoanions, polyphosphate and fluoride metal complexes (M=Eu, Y, Hf, Nb, Zr, W), as well as electrolytes evolving solid precipitates, is summarized. Possible application fields of the metal/multiphase PEOD surface structure compositions are considered [ru

  6. Fundamentals of Turbulent and Multi-Phase Combustion

    Kuo, Kenneth Kuan-yun

    2012-01-01

    Detailed coverage of advanced combustion topics from the author of Principles of Combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form-until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence

  7. Constitutive relationships and models in continuum theories of multiphase flows

    Decker, R.

    1989-09-01

    In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included

  8. Uncertainty Quantification of Multi-Phase Closures

    Nadiga, Balasubramanya T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baglietto, Emilio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-10-27

    In the ensemble-averaged dispersed phase formulation used for CFD of multiphase ows in nuclear reactor thermohydraulics, closures of interphase transfer of mass, momentum, and energy constitute, by far, the biggest source of error and uncertainty. Reliable estimators of this source of error and uncertainty are currently non-existent. Here, we report on how modern Validation and Uncertainty Quanti cation (VUQ) techniques can be leveraged to not only quantify such errors and uncertainties, but also to uncover (unintended) interactions between closures of di erent phenomena. As such this approach serves as a valuable aide in the research and development of multiphase closures. The joint modeling of lift, drag, wall lubrication, and turbulent dispersion|forces that lead to tranfer of momentum between the liquid and gas phases|is examined in the frame- work of validation of the adiabatic but turbulent experiments of Liu and Banko , 1993. An extensive calibration study is undertaken with a popular combination of closure relations and the popular k-ϵ turbulence model in a Bayesian framework. When a wide range of super cial liquid and gas velocities and void fractions is considered, it is found that this set of closures can be validated against the experimental data only by allowing large variations in the coe cients associated with the closures. We argue that such an extent of variation is a measure of uncertainty induced by the chosen set of closures. We also nd that while mean uid velocity and void fraction pro les are properly t, uctuating uid velocity may or may not be properly t. This aspect needs to be investigated further. The popular set of closures considered contains ad-hoc components and are undesirable from a predictive modeling point of view. Consequently, we next consider improvements that are being developed by the MIT group under CASL and which remove the ad-hoc elements. We use non-intrusive methodologies for sensitivity analysis and calibration (using

  9. FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)

    Wu, Yulin

    2015-01-01

    The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and

  10. International Symposium of Cavitation and Multiphase Flow (ISCM 2014)

    Wu, Yulin

    2015-01-01

    The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and

  11. Discrete modeling considerations in multiphase fluid dynamics

    Ransom, V.H.; Ramshaw, J.D.

    1988-01-01

    The modeling of multiphase flows play a fundamental role in light water reactor safety. The main ingredients in our discrete modeling Weltanschauung are the following considerations: (1) Any physical model must be cast into discrete form for a digital computer. (2) The usual approach of formulating models in differential form and then discretizing them is potentially hazardous. It may be preferable to formulate the model in discrete terms from the outset. (3) Computer time and storage constraints limit the resolution that can be employed in practical calculations. These limits effectively define the physical phenomena, length scales, and time scales which cannot be directly represented in the calculation and therefore must be modeled. This information should be injected into the model formulation process at an early stage. (4) Practical resolution limits are generally so coarse that traditional convergence and truncation-error analyses become irrelevant. (5) A discrete model constitutes a reduced description of a physical system, from which fine-scale details are eliminated. This elimination creates a statistical closure problem. Methods from statistical physics may therefore be useful in the formulation of discrete models. In the present paper we elaborate on these themes and illustrate them with simple examples. 48 refs

  12. Quantitative tomographic measurements of opaque multiphase flows

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O' HERN,TIMOTHY J.; CECCIO,STEVEN L.

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

  13. Multiphase flow metering: 4 years on

    Falcone, G.; Hewitt, G.F.; Alimonti, C.; Harrison, B.

    2005-07-01

    Since the authors' last review in 2001 [1], the use of Multiphase Flow Metering (MFM) within the oil and gas industry continues to grow apace, being more popular in some parts of the world than others. Since the early 1990's, when the first commercial meters started to appear, there have been more than 1,600 field applications of MFM for field allocation, production optimisation and mobile well testing. As the authors predicted, wet gas metering technology has improved to such an extent that its use has rapidly increased worldwide. A ''who's who'' of the MFM sector is provided, which highlights the mergers in the sector and gives an insight into the meters and measurement principles available today. Cost estimates, potential benefits and reliability in the field of the current MFM technologies are revisited and brought up to date. Several measurements technologies have resurfaced, such as passive acoustic energy patterns, infrared wavelengths, Nuclear Magnetic Resonance (NMR) and Electrical Capacitance Tomography (ECT), and they are becoming commercial. The concept of ''virtual metering'', integrated with ''classical MFM'', is now widely accepted. However, sometimes the principles of the MFM measurements themselves are forgotten, submerged in the sales and marketing hype. (author) (tk)

  14. Workshop on Scientific Issues in Multiphase Flow

    Hanratty, Thomas J. [Univ. of Illinois, Urbana, IL (United States)

    2003-01-02

    This report outlines scientific issues whose resolution will help advance and define the field of multiphase flow. It presents the findings of four study groups and of a workshop sponsored by the Program on Engineering Physics of the Department of Energy. The reason why multiphase flows are much more difficult to analyze than single phase flows is that the phases assume a large number of complicated configurations. Therefore, it should not be surprising that the understanding of why the phases configure in a certain way is the principal scientific issue. Research is needed which identifies the microphysics controlling the organization of the phases, which develops physical models for the resultant multi-scale interactions and which tests their validity in integrative experiments/theories that look at the behavior of a system. New experimental techniques and recently developed direct numerical simulations will play important roles in this endeavor. In gas-liquid flows a top priority is to develop an understanding of why the liquid phase in quasi fully-developed pipe flow changes from one configuration to another. Mixing flows offer a more complicated situation in which several patterns can exist at the same time. They introduce new physical challenges. A second priority is to provide a quantitative description of the phase distribution for selected fully-developed flows and for simple mixing flows (that could include heat transfer and phase change). Microphysical problems of interest are identified – including the coupling of molecular and macroscopic behavior that can be observed in many situations and the formation/destruction of interfaces in the coalescence/breakup of drops and bubbles. Solid-fluid flows offer a simpler system in that interfaces are not changing. However, a variety of patterns exist, that depend on the properties of the particles, their concentration and the Reynolds number characterizing the relative velocity. A top priority is the

  15. MSTS - Multiphase Subsurface Transport Simulator theory manual

    White, M.D.; Nichols, W.E.

    1993-05-01

    The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the open-quotes User's Guide and Referenceclose quotes companion document

  16. Viscous and gravitational fingering in multiphase compositional and compressible flow

    Moortgat, Joachim

    2016-03-01

    Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.

  17. Methods for compressible multiphase flows and their applications

    Kim, H.; Choe, Y.; Kim, H.; Min, D.; Kim, C.

    2018-06-01

    This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.

  18. Hysteresis in multiphase microfluidics at a T-junction.

    Zagnoni, Michele; Anderson, Jamie; Cooper, Jonathan M

    2010-06-15

    Multiphase microfluidics offer a wide range of functionalities in the fields of fluid dynamics, biology, particle synthesis, and, more recently, also in logical computation. In this article, we describe the hysteresis of immiscible, multiphase flow obtained in hydrophilic, microfluidic systems at a T-junction. Stable and unstable state behaviors, in the form of segmented and parallel flow patterns of oil and water, were reliably produced, depending upon the history of the flow rates applied to the phases. The transition mechanisms between the two states were analyzed both experimentally and using numerical simulations, describing how the physical and fluid dynamic parameters influenced the hysteretic behavior of the flow. The characteristics of these multiphase systems render them suitable to be used as pressure comparators and also for the implementation of microfluidic logic operations.

  19. A Cell-Centered Multiphase ALE Scheme With Structural Coupling

    Dunn, Timothy Alan [Univ. of California, Davis, CA (United States)

    2012-04-16

    A novel computational scheme has been developed for simulating compressible multiphase flows interacting with solid structures. The multiphase fluid is computed using a Godunov-type finite-volume method. This has been extended to allow computations on moving meshes using a direct arbitrary-Eulerian- Lagrangian (ALE) scheme. The method has been implemented within a Lagrangian hydrocode, which allows modeling the interaction with Lagrangian structural regions. Although the above scheme is general enough for use on many applications, the ultimate goal of the research is the simulation of heterogeneous energetic material, such as explosives or propellants. The method is powerful enough for application to all stages of the problem, including the initial burning of the material, the propagation of blast waves, and interaction with surrounding structures. The method has been tested on a number of canonical multiphase tests as well as fluid-structure interaction problems.

  20. Electrification of particulates in industrial and natural multiphase flows

    Gu, Zhaolin

    2017-01-01

    This book introduces comprehensive fundamentals, numerical simulations and experimental methods of electrification of particulates entrained multiphase flows. The electrifications of two particulate forms, liquid droplets and solid particles, are firstly described together. Liquid droplets can be charged under preset or associated electric fields, while solid particles can be charged through contact. Different charging ways in gas (liquid)-liquid or gas-solid multiphase flows are summarized, including ones that are beneficial to industrial processes, such as electrostatic precipitation, electrostatic spraying, and electrostatic separation, etc., ones harmful for shipping and powder industry, and ones occurring in natural phenomenon, such as wind-blown sand and thunderstorm. This book offers theoretical references to the control and utilization of the charging or charged particulates in multiphase flows as well.

  1. Multiphase flow models for hydraulic fracturing technology

    Osiptsov, Andrei A.

    2017-10-01

    drift-flux approaches. The derivation of the drift-flux model from conservation olaws is criticall revisited in order to define the list of underlying assumptions and to mark the applicability margins of the model. All these fundamental problems share the same technological application (hydraulic fracturing) and the same method of research, namely, the multi-fluid approach to multiphase flow modeling and the consistent use of asymptotic methods. Multi-fluid models are then discussed in comparison with semi-empirical (often postulated) models widely used in the industry.

  2. Direct numerical simulations of gas-liquid multiphase flows

    Tryggvason, Grétar; Zaleski, Stéphane

    2011-01-01

    Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and

  3. Recent developments in biocatalysis in multiphasic ionic liquid reaction systems.

    Meyer, Lars-Erik; von Langermann, Jan; Kragl, Udo

    2018-06-01

    Ionic liquids are well known and frequently used 'designer solvents' for biocatalytic reactions. This review highlights recent achievements in the field of multiphasic ionic liquid-based reaction concepts. It covers classical biphasic systems including supported ionic liquid phases, thermo-regulated multi-component solvent systems (TMS) and polymerized ionic liquids. These powerful concepts combine unique reaction conditions with a high potential for future applications on a laboratory and industrial scale. The presence of a multiphasic system simplifies downstream processing due to the distribution of the catalyst and reactants in different phases.

  4. CFD Modeling of a Multiphase Gravity Separator Vessel

    Narayan, Gautham

    2017-05-23

    The poster highlights a CFD study that incorporates a combined Eulerian multi-fluid multiphase and a Population Balance Model (PBM) to study the flow inside a typical multiphase gravity separator vessel (GSV) found in oil and gas industry. The simulations were performed using Ansys Fluent CFD package running on KAUST supercomputer, Shaheen. Also, a highlight of a scalability study is presented. The effect of I/O bottlenecks and using Hierarchical Data Format (HDF5) for collective and independent parallel reading of case file is presented. This work is an outcome of a research collaboration on an Aramco project on Shaheen.

  5. CFD Modeling of a Multiphase Gravity Separator Vessel

    Narayan, Gautham; Khurram, Rooh Ul Amin; Elsaadawy, Ehab

    2017-01-01

    The poster highlights a CFD study that incorporates a combined Eulerian multi-fluid multiphase and a Population Balance Model (PBM) to study the flow inside a typical multiphase gravity separator vessel (GSV) found in oil and gas industry. The simulations were performed using Ansys Fluent CFD package running on KAUST supercomputer, Shaheen. Also, a highlight of a scalability study is presented. The effect of I/O bottlenecks and using Hierarchical Data Format (HDF5) for collective and independent parallel reading of case file is presented. This work is an outcome of a research collaboration on an Aramco project on Shaheen.

  6. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    Cem Sarica; Holden Zhang

    2006-05-31

    The developments of oil and gas fields in deep waters (5000 ft and more) will become more common in the future. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas, oil and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of hydrocarbon recovery from design to operation. Recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications, including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is crucial for any multiphase separation technique, either at topside, seabed or bottom-hole, to know inlet conditions such as flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. Therefore, the development of a new generation of multiphase flow predictive tools is needed. The overall objective of the proposed study is to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). In the current multiphase modeling approach, flow pattern and flow behavior (pressure gradient and phase fractions) prediction modeling are separated. Thus, different models based on different physics are employed, causing inaccuracies and discontinuities. Moreover, oil and water are treated as a pseudo single phase, ignoring the distinct characteristics of both oil and water, and often resulting in inaccurate design that leads to operational problems. In this study, a new model is being developed through a theoretical and experimental study employing a revolutionary approach. The

  7. Application of neutron radiography to visualization of multiphase flows

    Takenaka, N.; Fujii, T.; Nishizaki, K.; Asano, H.; Ono, A.; Sonoda, K.; Akagawa, K.

    1990-01-01

    Visualizations by real-time neutron radiography are demonstrated of various flow patterns of nitrogen gas-water two-phase flow in a stainless-steel tube, water inverted annular flow in a stainless-steel tube, flashing flow in an aluminium nozzle and fluidized bed in aluminium tube and vessels. Photographs every 1/60 s are presented by an image processing method to show the dynamic behaviours of the various flow patterns. It is shown that this visualization method can be applied efficiently to multiphase flow researches and will be applicable to multiphase flows in industrial machines. (author)

  8. Multiphase Return Trajectory Optimization Based on Hybrid Algorithm

    Yi Yang

    2016-01-01

    Full Text Available A hybrid trajectory optimization method consisting of Gauss pseudospectral method (GPM and natural computation algorithm has been developed and utilized to solve multiphase return trajectory optimization problem, where a phase is defined as a subinterval in which the right-hand side of the differential equation is continuous. GPM converts the optimal control problem to a nonlinear programming problem (NLP, which helps to improve calculation accuracy and speed of natural computation algorithm. Through numerical simulations, it is found that the multiphase optimal control problem could be solved perfectly.

  9. A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis

    Du, P.; Carneiro, J.T.; Moulijn, J.A.; Mul, Guido

    2008-01-01

    A novel reactor for multi-phase photocatalysis is presented, the so-called internally illuminated monolith reactor (IIMR). In the concept of the IIMR, side light emitting fibers are placed inside the channels of a ceramic monolith, equipped with a TiO2 photocatalyst coated on the wall of each

  10. Multi-phase alternative current machine winding design | Khan ...

    ... single-phase to 18-phase excitation. Experimental results of a five-phase induction machine supplied from a static five-phase supply are provided to support the proposed design. Keywords: AC machine, Multi-phase machine, Stator winding, Five-phase. International Journal of Engineering, Science and Technology, Vol.

  11. Development and Research of Peristaltic Multiphase Piezoelectric Micro-Pump

    Vinogradov, Alexander N.; Ivanikin, Igor A.; Lubchenco, Roman V.; Matveev, Yegor V.; Titov, Pavel A.

    2016-01-01

    The paper presents the results of a study of existing models and mathematical representations of a range of truly peristaltic multiphase micro-pumps with a piezoelectric actuator (piezo drive). Piezo drives with different types of substrates use vertical movements at deformation of individual piezoelectric elements, which define device…

  12. A Transformerless Medium Voltage Multiphase Motor Drive System

    Dan Wang

    2016-04-01

    Full Text Available A multiphase motor has several major advantages, such as high reliability, fault tolerance, and high power density. It is a critical issue to develop a reliable and efficient multiphase motor drive system. In this paper, a transformerless voltage source converter-based drive system for a medium-voltage (MV multiphase motor is proposed. This drive converter employs cascaded H-bridge rectifiers loaded by H-bridge inverters as the interface between the grid and multiphase motor. The cascaded H-bridge rectifier technique makes the drive system able to be directly connected to the MV grid without the phase-shifting transformer because it can offset the voltage level gap between the MV grid and the semiconductor devices, provide near-sinusoidal AC terminal voltages without filters, and draw sinusoidal line current from the grid. Based on a digital signal processor (DSP, a complete improved Phase Disposition Pulse Width Modulation (PD-PWM method is developed to ensure the individual DC-link capacitor voltage balancing for enhancing the controllability and limiting the voltage and power stress on the H-bridge cells. A downscaled prototype is designed and developed based on a nine-phase motor. The experimental results verify the excellent performances of the proposed drive system and control strategy in steady-state and variant-frequency startup operations.

  13. Multiphase flow of immiscible fluids on unstructured moving meshes

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam

    2012-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...

  14. RAND-Based Formulations for Isothermal Multiphase Flash

    Paterson, Duncan; Michelsen, Michael L.; Stenby, Erling H.

    2018-01-01

    Two algorithms are proposed for isothermal multiphase flash. These are referred to as modified RAND and vol-RAND. The former uses the chemical potentials and molar-phase amounts as the iteration variables, while the latter uses chemical potentials and phase volumes to cosolve a pressure...

  15. Multiphase fluid structure interaction in bends and T-joints

    Cargnelutti, M.F.; Belfroid, S.P.C.; Schiferli, W.; Osch, M.M.E. van

    2010-01-01

    Air-water experiments were carried out in a horizontal 1" pipe system to measure the magnitude of the forces induced by the multiphase flow. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating conditions. Five different configurations

  16. Convection in multiphase fluid flows using lattice Boltzmann methods

    Biferale, L.; Perlekar, P.; Sbragaglia, M.; Toschi, F.

    2012-01-01

    We present high-resolution numerical simulations of convection in multiphase flows (boiling) using a novel algorithm based on a lattice Boltzmann method. We first study the thermodynamical and kinematic properties of the algorithm. Then, we perform a series of 3D numerical simulations changing the

  17. Application of multiphase flow methods to horizontal underbalanced drilling

    Smith, S. P.; Gregory, G. A.; Munro, N.; Muqeem, M.

    1998-12-31

    Ways in which multiphase flow pressure loss calculations can be used in the design and optimization of underbalanced drilling operations are demonstrated. Existing pressure loss calculation methods are evaluated using detailed field measurements for three oil wells and one gas well drilled underbalanced with coiled tubing. 10 refs., 3 tabs., 17 figs.

  18. Analysis of hygral induced crack growth in multiphase materials

    Sadouki, H.; Van Mier, J.G.M.

    1996-01-01

    In this paper a numerical model for simulating crack growth processes caused by moisture movement in a porous multiphase material like concrete is proposed. In the model, the material is schematized as a regular triangular network of beam elements. The meso-material structure of the material is

  19. A New Multiphase Equation of State for Composition B

    Coe, Joshua Damon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Margevicius, Madeline Alma [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division

    2016-07-25

    We describe the construction of a complete equation of state for the high explosive Composition B in its unreacted (inert) form, as well as chemical equilibrium calculations of its detonation products. The multiphase reactant EOS is of SESAME type, and was calibrated to ambient thermal and mechanical data, the shock initiation experiments of Dattelbaum, et al., and the melt line of trinitrotoluene (TNT).

  20. Continuum-Kinetic Models and Numerical Methods for Multiphase Applications

    Nault, Isaac Michael

    This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.

  1. Multiphase lattice Boltzmann on the Cell Broadband Engine

    Belletti, F.; Mantovani, F.; Tripiccione, R.; Biferale, L.; Schifano, S.F.; Toschi, F.

    2009-01-01

    Computational experiments are one of the most used and flexible investigation tools in fluid dynamics. The Lattice Boltzmann Equation is a well established computational method particularly promising for multi-phase flows at micro and macro scales. Here we present preliminary results on performances of the Lbe method on the Cell Broadband Engine platform.

  2. Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam

    2013-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...

  3. Accused Murderers: Five MMPI Personality Types.

    Anderson, Wayne P.; Holcomb, William R.

    1983-01-01

    Identified five types of violent criminals (N=110) using cluster analysis of Minnesota Multiphasic Personality Inventory scores, and compared them on 24 sociological and behavioral variables. Results showed differences on 16 items including family history, drug and alcohol use, events preceding the crime, and relationship between offender and…

  4. Multiphase flow parameter estimation based on laser scattering

    Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cicero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.

    2015-07-01

    The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time.

  5. Calculation of Multiphase Chemical Equilibrium by the Modified RAND Method

    Tsanas, Christos; Stenby, Erling Halfdan; Yan, Wei

    2017-01-01

    method. The modified RAND extends the classical RAND method from single-phase chemical reaction equilibrium of ideal systems to multiphase chemical equilibrium of nonideal systems. All components in all phases are treated in the same manner and the system Gibbs energy can be used to monitor convergence....... This is the first time that modified RAND was applied to multiphase chemical equilibrium systems. The combined algorithm was tested using nine examples covering vapor–liquid (VLE) and vapor–liquid–liquid equilibria (VLLE) of ideal and nonideal reaction systems. Successive substitution provided good initial......A robust and efficient algorithm for simultaneous chemical and phase equilibrium calculations is proposed. It combines two individual nonstoichiometric solving procedures: a nested-loop method with successive substitution for the first steps and final convergence with the second-order modified RAND...

  6. Eulerian Multiphase Population Balance Model of Atomizing, Swirling Flows

    Narayana P. Rayapati

    2011-06-01

    Full Text Available An Eulerian/Eulerian multiphase flow model coupled with a population balance model is used as the basis for numerical simulation of atomization in swirling flows. The objective of this exercise is to develop a methodology capable of predicting the local point-wise drop size distribution in a spray, such as would be measured by the Phase Doppler Particle Analyzer (PDA. Model predictions are compared to experimental measurements of particle size distributions in an air-blast atomizer spray to demonstrate good qualitative and quantitative agreement. It is observed that the dependence of velocity on drop size inherent in a multiphase description of the drop cloud appears necessary to capture some features of the experimental data. Using this model, we demonstrate the relative contributions of secondary atomization and transport to the variation observed in the downstream spray drop size distribution.

  7. Analysis of Voltage Forming Methods for Multiphase Inverters

    Tadas Lipinskis

    2013-05-01

    Full Text Available The article discusses advantages of the multiphase AC induction motor over three or less phase motors. It presents possible stator winding configurations for a multiphase induction motor. Various fault control strategies were reviewed for phases feeding the motor. The authors propose a method for quality evaluation of voltage forming algorithm in the inverter. Simulation of a six-phase voltage source inverter, voltage in which is formed using a simple SPWM control algorithm, was performed in Matlab Simulink. Simulation results were evaluated using the proposed method. Inverter’s power stage was powered by 400 V DC source. The spectrum of output currents was analysed and the magnitude of the main frequency component was at least 12 times greater than the next biggest-magnitude component. The value of rectified inverter voltage was 373 V.Article in Lithuanian

  8. Measurement Of Multiphase Flow Water Fraction And Water-cut

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  9. Multiphase flow parameter estimation based on laser scattering

    Vendruscolo, Tiago P; Fischer, Robert; Martelli, Cicero; Da Silva, Marco J; Rodrigues, Rômulo L P; Morales, Rigoberto E M

    2015-01-01

    The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time. (paper)

  10. Annihilation Radiation Gauge for Relative Density and Multiphase Fluid Monitoring

    Vidal A.

    2014-03-01

    Full Text Available The knowledge of the multi-phase flow parameters are important for the petroleum industry, specifically during the transport in pipelines and network related to exploitation’s wells. Crude oil flow is studied by Monte Carlo simulation and experimentally to determine transient liquid phase in a laboratory system. Relative density and fluid phase time variation is monitored employing a fast nuclear data acquisition setup that includes two large volume BaF2 scintillator detectors coupled to an electronic chain and data display in a LabView® environment. Fluid parameters are determined by the difference in count rate of coincidence pulses. The operational characteristics of the equipment indicate that 2 % deviation in the CCR corresponds to a variation, on average, of 20 % in the fraction of liquid of the multiphase fluid.

  11. Comparative FEM-based Analysis of Multiphase Induction Motor

    Leonard Livadaru

    2014-09-01

    Full Text Available This paper presents a comparative study of multiphase induction motor, which has alternately three-, five- and six-phase stator winding. The machine has been designed particularly for this purpose and has individual ring coils placed in each stator slot. The study consists in FEM analyses and mainly looks for the particularities of magnetic quantities such as air-gap flux density and electromagnetic torque.

  12. International symposium on cavitation and multiphase flow noise - 1986

    Arndt, R.E.A.; Billet, M.L.; Blake, W.K.

    1986-01-01

    This book presents the papers given at a symposium on multiphase flow and cavitation. Topics considered at the conference included the development of a cavitation-free sodium pump for a breeder reactor, the stochastic behavior (randomness) of acoustic pressure pulses in the near-subcavitating range, cavitation monitoring of two axial-flow hydroturbines, and noise generated by cavitation in orifice plates with some gaseous effects

  13. Multi-Phase Modeling of Rainbird Water Injection

    Vu, Bruce T.; Moss, Nicholas; Sampson, Zoe

    2014-01-01

    This paper describes the use of a Volume of Fluid (VOF) multiphase model to simulate the water injected from a rainbird nozzle used in the sound suppression system during launch. The simulations help determine the projectile motion for different water flow rates employed at the pad, as it is critical to know if water will splash on the first-stage rocket engine during liftoff.

  14. Multiphase pumping: indoor performance test and oilfield application

    Kong, Xiangling; Zhu, Hongwu; Zhang, Shousen; Li, Jifeng

    2010-03-01

    Multiphase pumping is essentially a means of adding energy to the unprocessed effluent which enables the liquid and gas mixture to be transported over a long distances without prior separation. A reduction, consolidation, or elimination of the production infrastructure, such as separation equipments and offshore platforms can be developed more economically. Also it successfully lowed the backpressure of wells, revived dead wells and improved the production and efficiency of oilfield. This paper reviews the issues related to indoor performance test and an oilfield application of the helico-axial multiphase pump designed by China University of Petroleum (Beijing). Pump specification and its hydraulic design are given. Results of performance testing under different condition, such as operational speed and gas volume fraction (GVF) etc are presented. Experimental studies on combination of theoretical analysis showed the multiphase pump satisfies the similitude rule, which can be used in the development of new MPP design and performance prediction. Test results showed that rising the rotation speed and suction pressure could better its performance, pressure boost improved, high efficiency zone expanding and the flow rate related to the optimum working condition increased. The pump worked unstable as GVF increased to a certain extent and slip occurred between two phases in the pump, creating surging and gas lock at a high GVF. A case of application in Nanyang oilfield is also studied.

  15. High-Voltage, Multiphasic, Nanosecond Pulses to Modulate Cellular Responses.

    Ryan, Hollie A; Hirakawa, Shinji; Yang, Enbo; Zhou, Chunrong; Xiao, Shu

    2018-04-01

    Nanosecond electric pulses are an effective power source in plasma medicine and biological stimulation, in which biophysical responses are governed by peak power and not energy. While uniphasic nanosecond pulse generators are widely available, the recent discovery that biological effects can be uniquely modulated by reversing the polarity of nanosecond duration pulses calls for the development of a multimodal pulse generator. This paper describes a method to generate nanosecond multiphasic pulses for biomedical use, and specifically demonstrates its ability to cancel or enhance cell swelling and blebbing. The generator consists of a series of the fundamental module, which includes a capacitor and a MOSFET switch. A positive or a negative phase pulse module can be produced based on how the switch is connected. Stacking the modules in series can increase the voltage up to 5 kV. Multiple stacks in parallel can create multiphase outputs. As each stack is independently controlled and charged, multiphasic pulses can be created to produce flexible and versatile pulse waveforms. The circuit topology can be used for high-frequency uniphasic or biphasic nanosecond burst pulse production, creating numerous opportunities for the generator in electroporation applications, tissue ablation, wound healing, and nonthermal plasma generation.

  16. Multiphase Interface Tracking with Fast Semi-Lagrangian Contouring.

    Li, Xiaosheng; He, Xiaowei; Liu, Xuehui; Zhang, Jian J; Liu, Baoquan; Wu, Enhua

    2016-08-01

    We propose a semi-Lagrangian method for multiphase interface tracking. In contrast to previous methods, our method maintains an explicit polygonal mesh, which is reconstructed from an unsigned distance function and an indicator function, to track the interface of arbitrary number of phases. The surface mesh is reconstructed at each step using an efficient multiphase polygonization procedure with precomputed stencils while the distance and indicator function are updated with an accurate semi-Lagrangian path tracing from the meshes of the last step. Furthermore, we provide an adaptive data structure, multiphase distance tree, to accelerate the updating of both the distance function and the indicator function. In addition, the adaptive structure also enables us to contour the distance tree accurately with simple bisection techniques. The major advantage of our method is that it can easily handle topological changes without ambiguities and preserve both the sharp features and the volume well. We will evaluate its efficiency, accuracy and robustness in the results part with several examples.

  17. Flow Rate Measurement in Multiphase Flow Rig: Radiotracer and Conventional

    Nazrul Hizam Yusoff; Noraishah Othman; Nurliyana Abdullah; Amirul Syafiq Mohd Yunos; Rasif Mohd Zain; Roslan Yahya

    2015-01-01

    Applications of radiotracer technology are prevalent throughout oil refineries worldwide, and this industry is one of the main users and beneficiaries of the technology. Radioactive tracers have been used to a great extent in many applications i.e. flow rate measurement, RTD, plant integrity evaluation and enhancing oil production in oil fields. Chemical and petrochemical plants are generally continuously operating and technically complex where the radiotracer techniques are very competitive and largely applied for troubleshooting inspection and process analysis. Flow rate measurement is a typical application of radiotracers. For flow measurements, tracer data are important, rather than the RTD models. Research is going on in refining the existing methods for single phase flow measurement, and in developing new methods for multiphase flow without sampling. The tracer techniques for single phase flow measurements are recognized as ISO standards. This paper presents technical aspect of laboratory experiments, which have been carried out using Molybdenum-99 - Mo99 (radiotracer) to study and determine the flow rate of liquid in multiphase flow rig. The multiphase flow rig consists of 58.7 m long and 20 cm diameter pipeline that can accommodate about 0.296 m 3 of liquid. Tap water was used as liquid flow in pipeline and conventional flow meters were also installed at the flow rig. The flow rate results; radiotracer and conventional flow meter were compared. The total count method was applied for radiotracer technique and showed the comparable results with conventional flow meter. (author)

  18. Incremental Validity of the MMPI-2 PSY-5 Scales in Assessing Self-Reported Personality Disorder Criteria

    Wygant, Dustin B.; Sellbom, Martin; Graham, John R.; Schenk, Paul W.

    2006-01-01

    The Minnesota Multiphasic Personality Inventory-2 (MMPI-2) Personality Psychopathology-Five (PSY-5) scales were developed to measure abnormal personality symptomatology. The present study examines the incremental validity of the PSY-5 scales beyond the clinical and content scales in assessing criteria associated with personality disorders. The…

  19. Numerical simulation of complex multi-phase fluid of casting process and its applications

    CHEN Li-liang

    2006-05-01

    Full Text Available The fluid of casting process is a typical kind of multi-phase flow. Actually, many casting phenomena have close relationship with the multi-phase flow, such as molten metal filling process, air entrapment, slag movement, venting process of die casting, gas escaping of lost foam casting and so on. Obviously, in order to analyze these phenomena accurately, numerical simulation of the multi-phase fluid is necessary. Unfortunately, so far, most of the commercial casting simulation systems do not have the ability of multi-phase flow modeling due to the difficulty in the multi-phase flow calculation. In the paper, Finite Different Method (FDM technique was adopt to solve the multi-phase fluid model. And a simple object of the muiti-phase fluid was analyzed to obtain the fluid rates of the liquid phase and the entrapped air phase.

  20. Psychometric and Structural Analysis of the MMPI-2 Personality Psychopathology Five (PSY-5) Facet Subscales

    Quilty, Lena C.; Bagby, R. Michael

    2007-01-01

    The Personality Psychopathology Five (PSY-5) is a model of personality psychopathology assessed in adult populations with a set of Minnesota Multiphasic Personality Inventory-2 (MMPI-2) scales. The authors examine the reliability and validity of recently developed lower-order facet subscales for each of these five domains, with an emphasis on…

  1. Multiphase flow measurement in the slug regime using ultrasonic measurement techniques and slug closure model

    Al-lababidi , Salem

    2006-01-01

    Multiphase flow in the oil and gas industry covers a wide range of flows. Thus, over the last decade, the investigation, development and use of multiphase flow metering system have been a major focus for the industry worldwide. However, these meters do not perform well in slug flow conditions. The present work involves experimental investigations of multiphase flow measurement under slug flow conditions. A two-phase gas/liquid facility was designed and constructed at Cranfie...

  2. Multiphase simulation of mine waters and aqueous leaching processes

    Pajarre Risto

    2016-01-01

    Full Text Available Managing of large amounts of water in mining and mineral processing sites remains a concern in both actively operated and closed mining areas. When the mining site with its metal or concentrate producing units is operational, the challenge is to find either ways for economical processing with maximum yields, while minimizing the environmental impact of the water usage and waste salt treatments. For safe closure of the site, the environmental control of possible drainage will be needed. For both challenges, the present-day multiphase process simulations tools can be used to provide improved accuracy and better economy in controlling the smooth and environmentally sound operation of the plant. One of the pioneering studies in using the multiphase thermodynamic software in simulation of hydrometallurgical processes was that of Koukkari et al. [1]. The study covered the use of Solgasmix equilibrium software for a number of practical acid digesters. The models were made for sulfuric acid treatments in titania pigment production and in NPK fertilizer manufacturing. During the past two decades the extensive data assessment has taken place particularly in geochemistry and a new versions of geochemical multiphase equilibrium software has been developed. On the other hand, there has been some progress in development of the process simulation software in all the aforementioned fields. Thus, the thermodynamic simulation has become a tool of great importance in development of hydrometallurgical processes. The presentation will cover three example cases of either true pilot or industrial systems including a South African acid mine water drainage treatment, hydrometallurgical extraction of rare earths from uranium leachate in Russia and a multistage process simulation of a Finnish heap leaching mine with its subsequent water treatment system.

  3. Noninvasive tomographic and velocimetric monitoring of multiphase flows

    Chaouki, J.; Dudukovic, M.P.

    1997-01-01

    A condensed review of recent advances accomplished in the development and the applications of noninvasive tomographic and velocimetric measurement techniques to multiphase flows and systems is presented. In recent years utilization of such noninvasive techniques has become widespread in many engineering disciplines that deal with systems involving two immiscible phases or more. Tomography provides concentration, holdup, or 2D or 3D density distribution of at least one component of the multiphase system, whereas velocimetry provides the dynamic features of the phase of interest such as the flow pattern, the velocity field, the 2D or 3D instantaneous movements, etc. The following review is divided into two parts. The first part summarizes progress and developments in flow imaging techniques using γ-ray and X-ray transmission tomography; X-ray radiography; neutron transmission tomography and radiography; positron emission tomography; X-ray diffraction tomography; nuclear magnetic resonance imaging; electrical capacitance tomography; optical tomography; microwave tomography; and ultrasonic tomography. The second part of the review summarizes progress and developments in the following velocimetry techniques: positron emission particle tracking; radioactive particle tracking; cinematography; laser-Doppler anemometry; particle image velocimetry; and fluorescence particle image velocimetry. The basic principles of tomography and velocimetry techniques are outlined, along with advantages and limitations inherent to each technique. The hydrodynamic and structural information yielded by these techniques is illustrated through a literature survey on their successful applications to the study of multiphase systems in such fields as particulate solids processes, fluidization engineering, porous media, pipe flows, transport within packed beds and sparged reactors, etc

  4. Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation

    Akbulut, Ozge; Mace, Charles R.; Martinez, Ramses V.; Kumar, Ashok A.; Nie, Zhihong; Patton, Matthew R.; Whitesides, George M.

    2012-01-01

    This paper demonstrates the use of aqueous multiphase systems (MuPSs) as media for rate-zonal centrifugation to separate nanoparticles of different shapes and sizes. The properties of MuPSs do not change with time or during centrifugation; this stability facilitates sample collection after separation. A three-phase system demonstrates the separation of the reaction products (nanorods, nanospheres, and large particles) of a synthesis of gold nanorods, and enriches the nanorods from 48 to 99% in less than ten minutes using a benchtop centrifuge. © 2012 American Chemical Society.

  5. Transient Phenomena in Multiphase and Multicomponent Systems: Research Report

    Zur Beurteilung von Stoffen in der Landwirtschaft, Senatskommission

    2000-09-01

    Due to the reinforced risk and safety-analysis of industrial plants in chemical and energy-engineering there has been increased demand in industry for more information on thermo- and fluiddynamic effects of non-equilibria during strong transients. Therefore, the 'Deutsche Forschungsgemeinschaft' initiated a special research program focusing on the study of transient phenomena in multiphase systems with one or several components. This book describes macroscopic as well as microscopic transient situations. A large part of the book deals with numerical methods for describing transients in two-phase mixtures. New developments in measuring techniques are also presented.

  6. AM363 martensitic stainless steel: A multiphase equation of state

    De Lorenzi-Venneri, Giulia; Crockett, Scott D.

    2017-01-01

    A multiphase equation of state for stainless steel AM363 has been developed within the Opensesame approach and has been entered as material 4295 in the LANL-SESAME Library. Three phases were constructed separately: the low pressure martensitic phase, the austenitic phase and the liquid. Room temperature data and the explicit introduction of a magnetic contribution to the free energy determined the martensitic phase, while shock Hugoniot data was used to determine the austenitic phase and the phase boundaries. More experimental data or First Principles calculations would be useful to better characterize the liquid.

  7. Approaching multiphase flows from the perspective of computational fluid dynamics

    Banas, A.O.

    1992-01-01

    Thermalhydraulic simulation methodologies based on subchannel and porous-medium concepts are briefly reviewed and contrasted with the general approach of Computational Fluid Dynamics (CFD). An outline of the advanced CFD methods for single-phase turbulent flows is followed by a short discussion of the unified formulation of averaged equations for turbulent and multiphase flows. Some of the recent applications of CFD at Chalk River Laboratories are discussed, and the complementary role of CFD with regard to the established thermalhydraulic methods of analysis is indicated. (author). 8 refs

  8. Slush Fund: Modeling the Multiphase Physics of Oceanic Ices

    Buffo, J.; Schmidt, B. E.

    2016-12-01

    The prevalence of ice interacting with an ocean, both on Earth and throughout the solar system, and its crucial role as the mediator of exchange between the hydrosphere below and atmosphere above, have made quantifying the thermodynamic, chemical, and physical properties of the ice highly desirable. While direct observations of these quantities exist, their scarcity increases with the difficulty of obtainment; the basal surfaces of terrestrial ice shelves remain largely unexplored and the icy interiors of moons like Europa and Enceladus have never been directly observed. Our understanding of these entities thus relies on numerical simulation, and the efficacy of their incorporation into larger systems models is dependent on the accuracy of these initial simulations. One characteristic of seawater, likely shared by the oceans of icy moons, is that it is a solution. As such, when it is frozen a majority of the solute is rejected from the forming ice, concentrating in interstitial pockets and channels, producing a two-component reactive porous media known as a mushy layer. The multiphase nature of this layer affects the evolution and dynamics of the overlying ice mass. Additionally ice can form in the water column and accrete onto the basal surface of these ice masses via buoyancy driven sedimentation as frazil or platelet ice. Numerical models hoping to accurately represent ice-ocean interactions should include the multiphase behavior of these two phenomena. While models of sea ice have begun to incorporate multiphase physics into their capabilities, no models of ice shelves/shells explicitly account for the two-phase behavior of the ice-ocean interface. Here we present a 1D multiphase model of floating oceanic ice that includes parameterizations of both density driven advection within the `mushy layer' and buoyancy driven sedimentation. The model is validated against contemporary sea ice models and observational data. Environmental stresses such as supercooling and

  9. Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation

    Akbulut, Ozge

    2012-08-08

    This paper demonstrates the use of aqueous multiphase systems (MuPSs) as media for rate-zonal centrifugation to separate nanoparticles of different shapes and sizes. The properties of MuPSs do not change with time or during centrifugation; this stability facilitates sample collection after separation. A three-phase system demonstrates the separation of the reaction products (nanorods, nanospheres, and large particles) of a synthesis of gold nanorods, and enriches the nanorods from 48 to 99% in less than ten minutes using a benchtop centrifuge. © 2012 American Chemical Society.

  10. Characterizing the stretch-flangeability of hot rolled multiphase steels

    Pathak, N.; Butcher, C.; Worswick, M.; Gao, J.

    2013-01-01

    Hole expansion tests are commonly used to characterize the edge stretching limit of a material. Traditionally, a conical punch is used to expand a punched hole until a through-thickness crack appears. However, many automotive stretch flanging operations involve in-plane edge stretching that is best captured with a flat punch. In this paper, hole expansion tests were carried out on two different hot-rolled multiphase steels using both flat and conical punches. The fracture mechanisms for both punch types were investigated using scanning electron microscopy (SEM)

  11. Downhole multiphase metering in wells by means of soft-sensing

    Leskens, M.; Kruif, B. de; Belfroid, S.P.C.; Smeulers, J.P.M.; Gryzlov, A.

    2008-01-01

    Multiphase flow meters are indispensable tools for achieving optimal operation and control of wells as these meters deliver real-time information about their performance. For example, multiphase flow meters located downhole can improve the production of multilateral and multizone wells by timely

  12. Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows

    2013-08-13

    October 2008 - December 2013 4. TITLE AND SUBTITLE Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows...influence cavity hysteresis behavior. These observations are used to guide improved supercavitating -vehicle analyses including numerical predictions...experiments, and modeling 15. SUBJECT TERMS supercavitation , computational fluid dynamics, multiphase flow 16. SECURITY CLASSIFICATION OF: a

  13. A multiphase series-resonant converter with a new topology and a reduced number of thyristors

    Huisman, H.

    1995-01-01

    Multiphase series resonant (SR) power converters provide a flexible way to transform power between a utility grid and a multiphase load or source. The current implementations all suffer from a high component count, which makes the use of these power converters unattractive from an economical point

  14. Application of GPU to computational multiphase fluid dynamics

    Nagatake, T; Kunugi, T

    2010-01-01

    The MARS (Multi-interfaces Advection and Reconstruction Solver) [1] is one of the surface volume tracking methods for multi-phase flows. Nowadays, the performance of GPU (Graphics Processing Unit) is much higher than the CPU (Central Processing Unit). In this study, the GPU was applied to the MARS in order to accelerate the computation of multi-phase flows (GPU-MARS), and the performance of the GPU-MARS was discussed. From the performance of the interface tracking method for the analyses of one-directional advection problem, it is found that the computing time of GPU(single GTX280) was around 4 times faster than that of the CPU (Xeon 5040, 4 threads parallelized). From the performance of Poisson Solver by using the algorithm developed in this study, it is found that the performance of the GPU showed around 30 times faster than that of the CPU. Finally, it is confirmed that the GPU showed the large acceleration of the fluid flow computation (GPU-MARS) compared to the CPU. However, it is also found that the double-precision computation of the GPU must perform with very high precision.

  15. Failure Mode and Effect Analysis of Subsea Multiphase Pump Equipment

    Oluwatoyin Shobowale Kafayat

    2014-07-01

    Full Text Available Finding oil and gas reserves in deep/harsh environment with challenging reservoir and field conditions, subsea multiphase pumping benefits has found its way to provide solutions to these issues. Challenges such as failure issues that are still surging the industry and with the current practice of information hiding, this issues becomes even more difficult to tackle. Although, there are some joint industry projects which are only accessible to its members, still there is a need to have a clear understanding of these equipment groups so as to know which issues to focus attention on. A failure mode and effect analysis (FMEA is a potential first aid in understanding this equipment groups. A survey questionnaire/interview was conducted with the oil and gas operating company and equipment manufacturer based on the literature review. The results indicates that these equipment’s group are similar with its onshore counterpart, but the difference is the robustness built into the equipment internal subsystems for subsea applications. The results from the manufacturer perspectives indicates that Helico-axial multiphase pump have a mean time to failure of more than 10 years, twin-screw and electrical submersible pumps are still struggling with a mean time to failure of less than 5 years.

  16. Multiphase flows in complex geometries: a UQ perspective

    Icardi, Matteo

    2015-01-01

    Nowadays computer simulations are widely used in many multiphase flow applications involving interphases, dispersed particles, and complex geometries. Most of these problems are solved with mixed models composed of fundamental physical laws, rigorous mathematical upscaling, and empirical correlations/closures. This means that classical inference techniques or forward parametric studies, for example, becomes computationally prohibitive and must take into account the physical meaning and constraints of the equations. However mathematical techniques commonly used in Uncertainty Quantification can come to the aid for the (i) modeling, (ii) simulation, and (iii) validation steps. Two relevant applications for environmental, petroleum, and chemical engineering will be presented to highlight these aspects and the importance of bridging the gaps between engineering applications, computational physics and mathematical methods. The first example is related to the mathematical modeling of sub-grid/sub-scale information with Probability Density Function (PDF) models in problems involving flow, mixing, and reaction in random environment. After a short overview of the research field, some connections and similarities with Polynomial Chaos techniques, will be investigated. In the second example, averaged correlations laws and effective parameters for multiphase flow and their statistical fluctuations, will be considered and efficient computational techniques, borrowed from high-dimensional stochastic PDE problems, will be applied. In presence of interfacial flow, where small spatial scales and fast time scales are neglected, the assessment of robustness and predictive capabilities are studied. These illustrative examples are inspired by common problems arising, for example, from the modeling and simulation of turbulent and porous media flows.

  17. Numerical modelling of diesel spray using the Eulerian multiphase approach

    Vujanović, Milan; Petranović, Zvonimir; Edelbauer, Wilfried; Baleta, Jakov; Duić, Neven

    2015-01-01

    Highlights: • Numerical model for fuel disintegration was presented. • Fuel liquid and vapour were calculated. • Good agreement with experimental data was shown for various combinations of injection and chamber pressure. - Abstract: This research investigates high pressure diesel fuel injection into the combustion chamber by performing computational simulations using the Euler–Eulerian multiphase approach. Six diesel-like conditions were simulated for which the liquid fuel jet was injected into a pressurised inert environment (100% N 2 ) through a 205 μm nozzle hole. The analysis was focused on the liquid jet and vapour penetration, describing spatial and temporal spray evolution. For this purpose, an Eulerian multiphase model was implemented, variations of the sub-model coefficients were performed, and their impact on the spray formation was investigated. The final set of sub-model coefficients was applied to all operating points. Several simulations of high pressure diesel injections (50, 80, and 120 MPa) combined with different chamber pressures (5.4 and 7.2 MPa) were carried out and results were compared to the experimental data. The predicted results share a similar spray cloud shape for all conditions with the different vapour and liquid penetration length. The liquid penetration is shortened with the increase in chamber pressure, whilst the vapour penetration is more pronounced by elevating the injection pressure. Finally, the results showed good agreement when compared to the measured data, and yielded the correct trends for both the liquid and vapour penetrations under different operating conditions

  18. Stability Analysis of Reactive Multiphase Slug Flows in Microchannels

    Alejandro A. Munera Parra

    2014-05-01

    Full Text Available Conducting multiphase reactions in micro-reactors is a promising strategy for intensifying chemical and biochemical processes. A major unresolved challenge is to exploit the considerable benefits offered by micro-scale operation for industrial scale throughputs by numbering-up whilst retaining the underlying advantageous flow characteristics of the single channel system in multiple parallel channels. Fabrication and installation tolerances in the individual micro-channels result in different pressure losses and, thus, a fluid maldistribution. In this work, an additional source of maldistribution, namely the flow multiplicities, which can arise in a multiphase reactive or extractive flow in otherwise identical micro-channels, was investigated. A detailed experimental and theoretical analysis of the flow stability with and without reaction for both gas-liquid and liquid-liquid slug flow has been developed. The model has been validated using the extraction of acetic acid from n-heptane with the ionic liquid 1-Ethyl-3-methylimidazolium ethyl sulfate. The results clearly demonstrate that the coupling between flow structure, the extent of reaction/extraction and pressure drop can result in multiple operating states, thus, necessitating an active measurement and control concept to ensure uniform behavior and optimal performance.

  19. Direct numerical simulation of incompressible multiphase flow with phase change

    Lee, Moon Soo; Riaz, Amir; Aute, Vikrant

    2017-09-01

    Simulation of multiphase flow with phase change is challenging because of the potential for unphysical pressure oscillations, spurious velocity fields and mass flux errors across the interface. The resulting numerical errors may become critical when large density contrasts are present. To address these issues, we present a new approach for multiphase flow with phase change that features, (i) a smooth distribution of sharp velocity jumps and mass flux within a narrow region surrounding the interface, (ii) improved mass flux projection from the implicit interface onto the uniform Cartesian grid and (iii) post-advection velocity correction step to ensure accurate velocity divergence in interfacial cells. These new features are implemented in combination with a sharp treatment of the jumps in pressure and temperature gradient. A series of 1-D, 2-D, axisymmetric and 3-D problems are solved to verify the improvements afforded by the new approach. Axisymmetric film boiling results are also presented, which show good qualitative agreement with heat transfer correlations as well as experimental observations of bubble shapes.

  20. Using simulation-optimization techniques to improve multiphase aquifer remediation

    Finsterle, S.; Pruess, K. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    The T2VOC computer model for simulating the transport of organic chemical contaminants in non-isothermal multiphase systems has been coupled to the ITOUGH2 code which solves parameter optimization problems. This allows one to use linear programming and simulated annealing techniques to solve groundwater management problems, i.e. the optimization of operations for multiphase aquifer remediation. A cost function has to be defined, containing the actual and hypothetical expenses of a cleanup operation which depend - directly or indirectly - on the state variables calculated by T2VOC. Subsequently, the code iteratively determines a remediation strategy (e.g. pumping schedule) which minimizes, for instance, pumping and energy costs, the time for cleanup, and residual contamination. We discuss an illustrative sample problem to discuss potential applications of the code. The study shows that the techniques developed for estimating model parameters can be successfully applied to the solution of remediation management problems. The resulting optimum pumping scheme depends, however, on the formulation of the remediation goals and the relative weighting between individual terms of the cost function.

  1. Multiphase flows in complex geometries: a UQ perspective

    Icardi, Matteo

    2015-01-07

    Nowadays computer simulations are widely used in many multiphase flow applications involving interphases, dispersed particles, and complex geometries. Most of these problems are solved with mixed models composed of fundamental physical laws, rigorous mathematical upscaling, and empirical correlations/closures. This means that classical inference techniques or forward parametric studies, for example, becomes computationally prohibitive and must take into account the physical meaning and constraints of the equations. However mathematical techniques commonly used in Uncertainty Quantification can come to the aid for the (i) modeling, (ii) simulation, and (iii) validation steps. Two relevant applications for environmental, petroleum, and chemical engineering will be presented to highlight these aspects and the importance of bridging the gaps between engineering applications, computational physics and mathematical methods. The first example is related to the mathematical modeling of sub-grid/sub-scale information with Probability Density Function (PDF) models in problems involving flow, mixing, and reaction in random environment. After a short overview of the research field, some connections and similarities with Polynomial Chaos techniques, will be investigated. In the second example, averaged correlations laws and effective parameters for multiphase flow and their statistical fluctuations, will be considered and efficient computational techniques, borrowed from high-dimensional stochastic PDE problems, will be applied. In presence of interfacial flow, where small spatial scales and fast time scales are neglected, the assessment of robustness and predictive capabilities are studied. These illustrative examples are inspired by common problems arising, for example, from the modeling and simulation of turbulent and porous media flows.

  2. Seeking simplicity for the understanding of multiphase flows

    Stone, Howard A.

    2017-10-01

    Fluid mechanics is a discipline with rich phenomena, with motions occurring over an enormous range of length scales, and spanning a wide range of laminar and turbulent flows, instabilities, and applications in industry, nature, biology, and medicine. The subfield of complex fluids typically refers to those flows where the complexity is introduced, for example, by the presence of suspended particles, multiple phases, soft boundaries, and electrokinetic effects; several distinct multiphase flows of Newtonian fluids make up the examples in this article. Interfaces play a significant role and modify the flow with feedback that further changes the shapes of the interfaces. I will provide examples of our work highlighting (i) new features of classical instabilities triggered by changes in geometry, (ii) multiphase flows relevant to the design of liquid-infused substrates exhibiting effective slip while retaining the trapped liquid, and (iii) unexpected dynamics in flow at a T-junction. The interplay of experiments and mathematical models and/or simulations is critical to the new understanding developed.

  3. Biphilicity and Superbiphilicity for Wettability Control of Multiphase Heat Transfer

    Attinger, Daniel; Betz, Amy Rachel; Schutzius, T. M.; Jenkins, J.; Kim, C.-J.; Megaridis, C. M.

    2012-11-01

    Multiphase energy transport, such as in boiling, suggests contradictory requirements on the wettability of the solid surfaces coming into contact with the working fluid. On the one hand, a hydrophobic wall promotes nucleation. On the other hand, a hydrophilic wall promotes water contact and enhances the critical heat flux. An analogous situation appears in the opposite thermodynamic process, i.e. condensation. These apparently contradictory requirements can be accommodated with biphilic surfaces, which juxtapose hydrophilic and hydrophobic regions. Biphilic surfaces were first manufactured in 1964 by Young and Hummel, who sprayed Teflon drops onto a smooth steel surface: they showed enhanced heat transfer coefficient during boiling of water. Our recent work has revisited the manufacturing of biphilic surfaces using micro- and nanofabrication processes (Betz et al. 2010, Schutzius et al. 2012); for instance, we fabricated the first superbiphilic surfaces, which juxtapose superhydrophobic and superhydrophilic areas. Using these surfaces, we measured significant enhancement during pool boiling of both the heat transfer coefficient and the critical heat flux. This enhanced performance can be explained by the inherent ability of the surfaces to control multiphase flow, decreasing nucleation energies and shaping drops, bubbles and jets, to maximize transport and prevent instabilities.

  4. Multi-phase chemistry in process simulation - MASIT04 (VISTA)

    Brink, A.; Li Bingzhi; Hupa, M. (Aabo Akademi University, Combustion and Materials Chemistry, Turku (Finland)) (and others)

    2008-07-01

    A new generation of process models has been developed by using advanced multi-phase thermochemistry. The generality of the thermodynamic free energy concept enables use of common software tools for high and low temperature processes. Reactive multi-phase phenomena are integrated to advanced simulation procedures by using local equilibrium or constrained state free energy computation. The high-temperature applications include a process model for the heat recovery of copper flash smelting and coupled models for converter and bloom casting operations in steel-making. Wet suspension models are developed for boiler and desalination water chemistry, flash evaporation of black liquor and for selected fibre-line and paper-making processes. The simulation combines quantitative physical and chemical data from reactive flows to form their visual images, thus providing efficient tools for engineering design and industrial decision-making. Economic impacts are seen as both better process operations and improved end products. The software tools developed are internationally commercialised and being used to support Finnish process technology exports. (orig.)

  5. Black hole feedback in a multiphase interstellar medium

    Bourne, Martin A.; Nayakshin, Sergei; Hobbs, Alexander

    2014-07-01

    Ultrafast outflows (UFOs) from supermassive black holes (SMBHs) are thought to regulate the growth of SMBHs and host galaxies, resulting in a number of observational correlations. We present high-resolution numerical simulations of the impact of a thermalized UFO on the ambient gas in the inner part of the host galaxy. Our results depend strongly on whether the gas is homogeneous or clumpy. In the former case all of the ambient gas is driven outward rapidly as expected based on commonly used energy budget arguments, while in the latter the flows of mass and energy de-couple. Carrying most of the energy, the shocked UFO escapes from the bulge via paths of least resistance, taking with it only the low-density phase of the host. Most of the mass is however in the high-density phase, and is affected by the UFO much less strongly, and may even continue to flow inwards. We suggest that the UFO energy leakage through the pores in the multiphase interstellar medium (ISM) may explain why observed SMBHs are so massive despite their overwhelmingly large energy production rates. The multiphase ISM effects reported here are probably under-resolved in cosmological simulations but may be included in prescriptions for active galactic nuclei feedback in future simulations and in semi-analytical models.

  6. Inconsistent Responding in a Criminal Forensic Setting: An Evaluation of the VRIN-r and TRIN-r Scales of the MMPI-2-RF.

    Gu, Wen; Reddy, Hima B; Green, Debbie; Belfi, Brian; Einzig, Shanah

    2017-01-01

    Criminal forensic evaluations are complicated by the risk that examinees will respond in an unreliable manner. Unreliable responding could occur due to lack of personal investment in the evaluation, severe mental illness, and low cognitive abilities. In this study, 31% of Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008/2011) profiles were invalid due to random or fixed-responding (T score ≥ 80 on the VRIN-r or TRIN-r scales) in a sample of pretrial criminal defendants evaluated in the context of treatment for competency restoration. Hierarchical regression models showed that symptom exaggeration variables, as measured by inconsistently reported psychiatric symptoms, contributed over and above education and intellectual functioning in their prediction of both random responding and fixed responding. Psychopathology variables, as measured by mood disturbance, better predicted fixed responding after controlling for estimates of cognitive abilities, but did not improve the prediction for random responding. These findings suggest that random responding and fixed responding are not only affected by education and intellectual functioning, but also by intentional exaggeration and aspects of psychopathology. Measures of intellectual functioning and effort and response style should be considered for administration in conjunction with self-report personality measures to rule out rival hypotheses of invalid profiles.

  7. Introduction to the Special Section: Linking the MMPI-2-RF to Contemporary Models of Psychopathology.

    Sellbom, Martin; Arbisi, Paul A

    2017-01-01

    This special section considers 9 independent articles that seek to link the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008/ 2011 ) to contemporary models of psychopathology. Sellbom ( this issue ) maps the Specific Problems scales onto hierarchical psychopathology structures, whereas Romero, Toorabally, Burchett, Tarescavage, and Glassmire ( this issue ) and Shkalim, Almagor, and Ben-Porath ( this issue ) show evidence of linking the instruments' scales to diagnostic representations of common higher order psychopathology constructs. McCord, Achee, Cannon, Harrop, and Poynter ( this issue ) link the MMPI-2-RF scales to psychophysiological constructs inspired by the National Institute of Mental Health (NIMH) Research Domain Criteria. Sellbom and Smith ( this issue ) find support for MMPI-2-RF scale hypotheses in covering personality psychopathology in general, whereas Klein Haneveld, Kamphuis, Smid, and Forbey ( this issue ) and Kutchen et al. ( this issue ) demonstrate the utility of the MMPI-2-RF in capturing contemporary conceptualizations of the psychopathic personality. Finally, Franz, Harrop, and McCord ( this issue ) and Rogers et al. ( this issue ) mapped the MMPI-2-RF scales onto more specific transdiagnostic constructs reflecting interpersonal functioning and suicide behavior proneness, respectively.

  8. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    Guenther, Chris [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Garg, Rahul [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

  9. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    Tulsa Fluid Flow

    2008-08-31

    The developments of fields in deep waters (5000 ft and more) is a common occurrence. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas-oil-and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of the hydrocarbon recovery from design to operation. The recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is very crucial to any multiphase separation technique that is employed either at topside, seabed or bottom-hole to know inlet conditions such as the flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. The overall objective was to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict the flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). The project was conducted in two periods. In Period 1 (four years), gas-oil-water flow in pipes were investigated to understand the fundamental physical mechanisms describing the interaction between the gas-oil-water phases under flowing conditions, and a unified model was developed utilizing a novel modeling approach. A gas-oil-water pipe flow database including field and laboratory data was formed in Period 2 (one year). The database was utilized in model performance demonstration. Period 1 primarily consisted of the development of a unified model and software to predict the gas-oil-water flow, and experimental studies of the gas-oil-water project, including flow behavior description and

  10. On the Grand Challenges in Physical Petrology: the Multiphase Crossroads

    Bergantz, G. W.

    2014-12-01

    Rapid progress in experimental, micro-analytical and textural analysis at the crystal scale has produced an unprecedented record of magmatic processes. However an obstacle to further progress is the lack of understanding of how mass, energy and momentum flux associated with crystal-rich, open-system events produces identifiable outcomes. Hence developing a physically-based understanding of magmatic systems linking micro-scale petrological observations with a physical template operating at the macro-scale presents a so-called "Grand Challenge." The essence of this challenge is that magmatic systems have characteristic length and feedback scales between those accessible by classical continuum and discrete methods. It has become increasingly obvious that the old-school continuum methods have limited resolution and power of explanation for multiphase (real) magma dynamics. This is, in part, because in crystal-rich systems the deformation is non-affine, and so the concept of constitutive behavior is less applicable and likely not even relevant, especially if one is interested in the emergent character of micro-scale processes. One expression of this is the cottage industry of proposing viscosity laws for magmas, which serves as "blunt force" de facto corrections for what is intrinsically multiphase behavior. Even in more fluid-rich systems many of these laws are not suitable for use in the very transport theories they aim to support. The alternative approach is the discrete method, where multiphase interactions are explicitly resolved. This is a daunting prospect given the numbers of crystals in magmas. But perhaps all crystals don't need to be modeled. I will demonstrate how discrete methods can recover critical state behavior, resolve crystal migration, the onset of visco-elastic behavior such as melt-present shear bands which sets the large-scale mixing volumes, some of the general morpho-dynamics that underlies purported rheological models, and transient controls on

  11. Further development and construct validation of MMPI-2-RF indices of global psychopathy, fearless-dominance, and impulsive-antisociality in a sample of incarcerated women.

    Phillips, Tasha R; Sellbom, Martin; Ben-Porath, Yossef S; Patrick, Christopher J

    2014-02-01

    Replicating and extending research by Sellbom et al. (M. Sellbom, Y. S. Ben-Porath, C. J. Patrick, D. B. Wygant, D. M. Gartland, & K. P. Stafford, 2012, Development and Construct Validation of the MMPI-2-RF Measures of Global Psychopathy, Fearless-Dominance, and Impulsive-Antisociality, Personality Disorders: Theory, Research, and Treatment, 3, 17-38), the current study examined the criterion-related validity of three self-report indices of psychopathy that were derived from scores on the Minnesota Multiphasic Personality Inventory (MMPI)-2-Restructured Form (MMPI-2-RF; Y. S. Ben-Porath & A. Tellegen, 2008, Minnesota Multiphasic Personality Inventory-2-Restructured Form: Manual for Administration, Scoring, and Interpretation, Minneapolis, MN: University of Minnesota Press). We estimated psychopathy indices by regressing scores from the Psychopathic Personality Inventory (PPI; S. O. Lilienfeld & B. P. Andrews, 1996, Development and Preliminary Validation of a Self-Report Measure of Psychopathic Personality Traits in Noncriminal Populations, Journal of Personality Assessment, 66, 488-524) and its two distinct facets, Fearless-Dominance and Impulsive-Antisociality, onto conceptually selected MMPI-2-RF scales. Data for a newly collected sample of 230 incarcerated women were combined with existing data from Sellbom et al.'s (2012) male correctional and mixed-gender college samples to establish regression equations with optimal generalizability. Correlation and regression analyses were then used to examine associations between the MMPI-2-RF-based estimates of PPI psychopathy and criterion measures (i.e., other well-established measures of psychopathy and conceptually related personality traits), and to evaluate whether gender moderated these associations. The MMPI-2-RF-based psychopathy indices correlated as expected with criterion measures and showed only one significant moderating effect for gender, namely, in the association between psychopathy and narcissism. These

  12. The Extreme Male Brain Theory and Gender Role Behaviour in Persons with an Autism Spectrum Condition

    Stauder, J. E. A.; Cornet, L. J. M.; Ponds, R. W. H. M.

    2011-01-01

    According to the Extreme Male Brain theory persons with autism possess masculinised cognitive traits. In this study masculinisation of gender role behaviour is evaluated in 25 persons with an autism spectrum condition (ASC) and matched controls with gender role behaviour as part of a shortened version of the Minnesota Multiphasic Personality…

  13. Mapping the MMPI-2-RF Specific Problems Scales Onto Extant Psychopathology Structures.

    Sellbom, Martin

    2017-01-01

    A main objective in developing the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008 ) was to link the hierarchical structure of the instrument's scales to contemporary psychopathology and personality models for greater enhancement of construct validity. Initial evidence published with the Restructured Clinical scales has indicated promising results in that the higher order structure of these measures maps onto those reported in the extant psychopathology literature. This study focused on evaluating the internal structure of the Specific Problems and Interest scales, which have not yet been examined in this manner. Two large, mixed-gender outpatient and correctional samples were used. Exploratory factor analyses revealed consistent evidence for a 4-factor structure representing somatization, negative affect, externalizing, and social detachment. Convergent and discriminant validity analyses in the outpatient sample yielded a pattern of results consistent with expectations. These findings add further evidence to indicate that the MMPI-2-RF hierarchy of scales map onto extant psychopathology literature, and also add support to the notion that somatization and detachment should be considered important higher order domains in the psychopathology literature.

  14. Underreporting on the MMPI-2-RF in a high-demand police officer selection context: an illustration.

    Detrick, Paul; Chibnall, John T

    2014-09-01

    Positive response distortion is common in the high-demand context of employment selection. This study examined positive response distortion, in the form of underreporting, on the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF). Police officer job applicants completed the MMPI-2-RF under high-demand and low-demand conditions, once during the preemployment psychological evaluation and once without contingencies after completing the police academy. Demand-related score elevations were evident on the Uncommon Virtues (L-r) and Adjustment Validity (K-r) scales. Underreporting was evident on the Higher-Order scales Emotional/Internalizing Dysfunction and Behavioral/Externalizing Dysfunction; 5 of 9 Restructured Clinical scales; 6 of 9 Internalizing scales; 3 of 4 Externalizing scales; and 3 of 5 Personality Psychopathology 5 scales. Regression analyses indicated that L-r predicted demand-related underreporting on behavioral/externalizing scales, and K-r predicted underreporting on emotional/internalizing scales. Select scales of the MMPI-2-RF are differentially associated with different types of underreporting among police officer applicants. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. Multiphase CFD simulation of a solid bowl centrifuge

    Romani Fernandez, X.; Nirschl, H. [Universitaet Karlsruhe, Institut fuer MVM, Karlsruhe (Germany)

    2009-05-15

    This study presents some results from the numerical simulation of the flow in an industrial solid bowl centrifuge used for particle separation in industrial fluid processing. The computational fluid dynamics (CFD) software Fluent was used to simulate this multiphase flow. Simplified two-dimensional and three-dimensional geometries were built and meshed from the real centrifuge geometry. The CFD results show a boundary layer of axially fast moving fluid at the gas-liquid interface. Below this layer there is a thin recirculation. The obtained tangential velocity values are lower than the ones for the rigid-body motion. Also, the trajectories of the solid particles are evaluated. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  16. Design of multi-phase dynamic chemical networks

    Chen, Chenrui; Tan, Junjun; Hsieh, Ming-Chien; Pan, Ting; Goodwin, Jay T.; Mehta, Anil K.; Grover, Martha A.; Lynn, David G.

    2017-08-01

    Template-directed polymerization reactions enable the accurate storage and processing of nature's biopolymer information. This mutualistic relationship of nucleic acids and proteins, a network known as life's central dogma, is now marvellously complex, and the progressive steps necessary for creating the initial sequence and chain-length-specific polymer templates are lost to time. Here we design and construct dynamic polymerization networks that exploit metastable prion cross-β phases. Mixed-phase environments have been used for constructing synthetic polymers, but these dynamic phases emerge naturally from the growing peptide oligomers and create environments suitable both to nucleate assembly and select for ordered templates. The resulting templates direct the amplification of a phase containing only chain-length-specific peptide-like oligomers. Such multi-phase biopolymer dynamics reveal pathways for the emergence, self-selection and amplification of chain-length- and possibly sequence-specific biopolymers.

  17. 4. Workshop - Measurement techniques of stationary and transient multiphase flow

    Prasser, H.M. (ed.)

    2001-05-01

    In November 2000, the 4th Workshop on Measurement Techniques for Stationary and Transient Multiphase Flows took place in Rossendorf. Three previous workshops of this series were national meetings; this time participants from different countries took part. The programme comprised 14 oral presentations, 9 of which are included in these proceedings in full length. A special highlight of the meeting was the main lecture ''Ultrasonic doppler method for bubbly flow measurement'' of Professor Masanori Aritomi, Dr. Hiroshige Kikura and Dr. Yumiko Suzuki. The workshop again dealt with high-resolution phase distribution and phase velocity measurement techniques based on electrical conductivity, ultrasound, laser light and high-speed cinematography. A number of presentations were dedicated to the application of wire-mesh sensors developed by FZR for different applications used by the Technical Universities of Delft and Munich and the Tokyo Institute of Technology. (orig.)

  18. Universality Results for Multi-phase Hele-Shaw Flows

    Daripa, Prabir

    2013-03-01

    Saffman-Taylor instability is a well known viscosity driven instability of an interface separating two immiscible fluids. We study linear stability of displacement processes in a Hele-Shaw cell involving an arbitrary number of immiscible fluid phases. This is a problem involving many interfaces. Universal stability results have been obtained for this multi-phase immiscible flow in the sense that the results hold for arbitrary number of interfaces. These stability results have been applied to design displacement processes that are considerably less unstable than the pure Saffman-Taylor case. In particular, we derive universal formula which gives specific values of the viscosities of the fluid layers corresponding to smallest unstable band. Other similar universal results will also be presented. The talk is based on the following paper. This work was supported by the Qatar National Research Fund (a member of The Qatar Foundation).

  19. Segmented motor drive - with multi-phase induction motor

    Bendixen, Flemming Buus

    of the induction motor is set up. The model is able to calculate dynamical electric, magnetic and mechanic state variables, but initially it is used to calculate static characteristics in motors with different number of phases and different voltage supply shapes. This analysis show i.e. that the efficiency....... The multi-phase motor is selected for further analysis. The project is limited to examine if increasing the number of phases can improve the characteristics for induction motor drives. In the literature it is demonstrated that torque production in a six-phase motor can be increased, if a 3rd harmonic......This PhD project commences in modulation of motor drives, i.e. having the advantage of reducing the number of variants and improves the system reliability at error situations. Four different motor drive topologies with modular construction as common denominator are compared on a general level...

  20. Multi-phase outflows as probes of AGN accretion history

    Nardini, Emanuele; Zubovas, Kastytis

    2018-05-01

    Powerful outflows with a broad range of properties (such as velocity, ionization, radial scale and mass loss rate) represent a key feature of active galactic nuclei (AGN), even more so since they have been simultaneously revealed also in individual objects. Here we revisit in a simple analytical framework the recent remarkable cases of two ultraluminous infrared quasars, IRAS F11119+3257 and Mrk 231, which allow us to investigate the physical connection between multi-phase AGN outflows across the ladder of distance from the central supermassive black hole (SMBH). We argue that any major deviations from the standard outflow propagation models might encode unique information on the past SMBH accretion history, and briefly discuss how this could help address some controversial aspects of the current picture of AGN feedback.

  1. Quantitative multiphase analysis of archaeological bronzes by neutron diffraction

    Siano, S; Celli, M; Pini, R; Salimbeni, R; Zoppi, M; Kockelmann, W A; Iozzo, M; Miccio, M; Moze, O

    2002-01-01

    In this paper, we report the first investigation on the potentials of neutron diffraction to characterize archaeological bronze artifacts. The preliminary feasibility of phase and structural analysis was demonstrated on standardised specimens with a typical bronze alloy composition. These were realised through different hardening and annealing cycles, simulating possible ancient working techniques. The Bragg peak widths that resulted were strictly dependent on the working treatment, thus providing an important analytical element to investigate ancient making techniques. The diagnostic criteria developed on the standardised specimens were then applied to study two Etruscan museum pieces. Quantitative multiphase analysis by Rietveld refinement of the diffraction patterns was successfully demonstrated. Furthermore, the analysis of patterns associated with different artifact elements also yielded evidence for some peculiar perspective of the neutron diffraction diagnostics in archeometric applications. (orig.)

  2. A programmable CCD driver circuit for multiphase CCD operation

    Ewin, A.J.; Reed, K.V.

    1989-01-01

    A programmable CCD driver circuit was designed to drive CCD's in multiphased modes. The purpose of the drive electronics was to operate developmental CCD imaging arrays for NASA's Moderate Resolution Imaging Spectrometer - Tiltable (MODIS-T). Five prototype arrays were designed. Valid's Graphics Editor (GED) was used to design the driver. With this driver design, any of the five arrays can be readout. Designing the driver with GED allowed functional simulation, timing verification, and certain packaging analyses to be done on the design before fabrication. The driver verified its function with the master clock running up to 10 MHz. This suggests a maximum rate of 400 Kpixels/sec. Timing and packaging parameters were verified. the design uses 54 TTL component chips

  3. FEM Modeling of Crack Propagation in a Model Multiphase Alloy

    Lihe QIAN; Seishi NISHIDO; Hiroyuki TODA; Tosliro KOBAYASHI

    2006-01-01

    In this paper, several widely applied fracture criteria were first numerically examined and the crack-tip-region Jintegral criterion was confirmed to be more applicable to predict fracture angle in an elastic-plastic multiphase material. Then, the crack propagation in an idealized dendritic two-phase Al-7%Si alloy was modeled using an elastic-plastic finite element method. The variation of crack growth driving force with crack extension was also demonstrated. It is found that the crack path is significantly influenced by the presence of α-phase near the crack tip, and the crack growth driving force varies drastically from place to place. Lastly, the simulated fracture path in the two-phase model alloy was compared with the experimentally observed fracture path.

  4. Cesium incorporation in hollandite-rich multiphasic ceramic waste forms

    Tumurugoti, P.; Clark, B.M. [Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred University, Alfred, NY 14802 (United States); Edwards, D.J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Amoroso, Jake [Savannah River National Laboratory, Aiken, SC 29808 (United States); Sundaram, S.K. [Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred University, Alfred, NY 14802 (United States)

    2017-02-15

    Hollandite-rich multiphase waste form compositions processed by melt-solidification and spark plasma sintering (SPS) were characterized, compared, and validated for nuclear waste incorporation. Phase identification by x-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) confirmed hollandite as the major phase present in these samples along with perovskite, pyrochlore and zirconolite. Distribution of selected elements observed by wavelength dispersive spectroscopy (WDS) maps indicated that Cs formed a secondary phase during SPS processing, which was considered undesirable. On the other hand, Cs partitioned into the hollandite phase in melt-processed samples. Further analysis of hollandite structure in melt-processed composition by selected area electron diffraction (SAED) revealed ordered arrangement of tunnel ions (Ba/Cs) and vacancies, suggesting efficient Cs incorporation into the lattice.

  5. RF sensor for multiphase flow measurement through an oil pipeline

    Wylie, S. R.; Shaw, A.; Al-Shamma'a, A. I.

    2006-08-01

    We have developed, in conjunction with Solartron ISA, an electromagnetic cavity resonator based sensor for multiphase flow measurement through an oil pipeline. This sensor is non-intrusive and transmits low power (10 mW) radio frequencies (RF) in the range of 100-350 MHz and detects the pipeline contents using resonant peaks captured instantaneously. The multiple resonances from each captured RF spectrum are analysed to determine the phase fractions in the pipeline. An industrial version of the sensor for a 102 mm (4 inch) diameter pipe has been constructed and results from this sensor are compared to those given by simulations performed using the electromagnetic high frequency structure simulator software package HFSS. This paper was presented at the 13th International Conference on Sensors and held in Chatham, Kent, on 6-7 September 2005.

  6. Current and Voltage Mode Multiphase Sinusoidal Oscillators Using CBTAs

    M. Sagbas

    2013-04-01

    Full Text Available Current-mode (CM and voltage-mode (VM multiphase sinusoidal oscillator (MSO structures using current backward transconductance amplifier (CBTA are proposed. The proposed oscillators can generate n current or voltage signals (n being even or odd equally spaced in phase. n+1 CBTAs, n grounded capacitors and a grounded resistor are used for nth-state oscillator. The oscillation frequency can be independently controlled through transconductance (gm of the CBTAs which are adjustable via their bias currents. The effects caused by the non-ideality of the CBTA on the oscillation frequency and condition have been analyzed. The performance of the proposed circuits is demonstrated on third-stage and fifth-stage MSOs by using PSPICE simulations based on the 0.25 µm TSMC level-7 CMOS technology parameters.

  7. 4. Workshop - Measurement techniques of stationary and transient multiphase flow

    Prasser, H.M.

    2001-05-01

    In November 2000, the 4th Workshop on Measurement Techniques for Stationary and Transient Multiphase Flows took place in Rossendorf. Three previous workshops of this series were national meetings; this time participants from different countries took part. The programme comprised 14 oral presentations, 9 of which are included in these proceedings in full length. A special highlight of the meeting was the main lecture ''Ultrasonic doppler method for bubbly flow measurement'' of Professor Masanori Aritomi, Dr. Hiroshige Kikura and Dr. Yumiko Suzuki. The workshop again dealt with high-resolution phase distribution and phase velocity measurement techniques based on electrical conductivity, ultrasound, laser light and high-speed cinematography. A number of presentations were dedicated to the application of wire-mesh sensors developed by FZR for different applications used by the Technical Universities of Delft and Munich and the Tokyo Institute of Technology. (orig.)

  8. Thermodynamic framework for discrete optimal control in multiphase flow systems

    Sieniutycz, Stanislaw

    1999-08-01

    Bellman's method of dynamic programming is used to synthesize diverse optimization approaches to active (work producing) and inactive (entropy generating) multiphase flow systems. Thermal machines, optimally controlled unit operations, nonlinear heat conduction, spontaneous relaxation processes, and self-propagating wave fronts are all shown to satisfy a discrete Hamilton-Jacobi-Bellman equation and a corresponding discrete optimization algorithm of Pontryagin's type, with the maximum principle for a Hamiltonian. The extremal structures are always canonical. A common unifying criterion is set for all considered systems, which is the criterion of a minimum generated entropy. It is shown that constraints can modify the entropy functionals in a different way for each group of the processes considered; thus the resulting structures of these functionals may differ significantly. Practical conclusions are formulated regarding the energy savings and energy policy in optimally controlled systems.

  9. Microstructural modelling of nuclear graphite using multi-phase models

    Berre, C.; Fok, S.L.; Marsden, B.J.; Mummery, P.M.; Marrow, T.J.; Neighbour, G.B.

    2008-01-01

    This paper presents a new modelling technique using three-dimensional multi-phase finite element models in which meshes representing the microstructure of thermally oxidised nuclear graphite were generated from X-ray micro-tomography images. The density of the material was related to the image greyscale using Beer-Lambert's law, and multiple phases could thus be defined. The local elastic and non-linear properties of each phase were defined as a function of density and changes in Young's modulus, tensile and compressive strength with thermal oxidation were calculated. Numerical predictions compared well with experimental data and with other numerical results obtained using two-phase models. These models were found to be more representative of the actual microstructure of the scanned material than two-phase models and, possibly because of pore closure occurring during compression, compressive tests were also predicted to be less sensitive to the microstructure geometry than tensile tests

  10. Linear Power-Flow Models in Multiphase Distribution Networks: Preprint

    Bernstein, Andrey; Dall' Anese, Emiliano

    2017-05-26

    This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- from advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.

  11. Insitu multiphase fluid experiments in hydrothermal carbon nanotubes

    Gogotsi, Yury; Libera, Joseph A.; Guevenc -Yazicioglu, Almila; Megaridis, Constantine M.

    2001-01-01

    Hydrothermal multiwall closed carbon nanotubes are shown to contain an encapsulated multiphase aqueous fluid, thus offering an attractive test platform for unique in situ nanofluidic experiments in the vacuum of a transmission electron microscope. The excellent wettability of the graphitic inner tube walls by the aqueous liquid and the mobility of this liquid in the nanotube channels are observed. Complex interface dynamic behavior is induced by means of electron irradiation. Strong atomic-scale interactions between the entrapped liquid phase and the wetted terminated graphite layers are revealed by means of high-resolution electron microscopy. The documented phenomena in this study demonstrate the potential of implementing such tubes in future nanofluidic devices. Copyright 2001 American Institute of Physics

  12. Damage mechanisms and metallic materials development in multiphase flow

    Zheng, Yugui; Liu, Wei; Yao, Zhiming; Ke, Wei

    2002-01-01

    The investigation on the synergistic effects among corrosion, slurry erosion and cavitation erosion has special significance for hydraulic turbines operated in Yangtze River and Yellow River where the high concentration solid particles exist in water. Two typical metallic materials i.e. Cr-Mn-N stainless steel and Ni-Ti shapememory-alloy, and two typical materials used for hydraulic turbines 20SiMn and 0Cr13Ni5Mo as compared materials were selected in order to investigate the roles of work-hardening ability and martensitic transformation as well as pseudoelastics in damage mechanism in multiphase flow. Both modified rotating disk rig and ultrasonic vibration facility were used to simulate the possible damage mechanism of materials in multiphase flow. The effects of corrosion on cavitation erosion were investigated through adding 3wt% NaCl. The degradation mechanism was analyzed by electrochemical test, SEM observation, hardness and roughness measurement. The results showed that there was a strong synergistic interaction among electrochemical corrosion, slurry erosion and cavitation erosion for 20SiMn in liquid-solid two-phase medium. In contrast, corrosion played little role for 0Cr13Ni5Mo. Cr-Mn-N stainless steel with high Mn content showed better resistance to cavitation erosion and slurry erosion than 0Cr13Ni5Mo, which was mainly due to its good work-hardening ability as well as strain-induced martensite transformation. The cavitation micro-cracks for Cr-Mn-N stainless steel were parallel to the specimen surface in contrast with 0Cr13Ni5Mo whose micro-cracks were perpendicular to the surface. Ni-Ti alloy with pseudoelasticity showed excellent resistance to combined interaction of cavitation erosion and slurry erosion

  13. Multiphase flow analysis using population balance modeling bubbles, drops and particles

    Yeoh, Guan Heng; Tu, Jiyuan

    2013-01-01

    Written by leading multiphase flow and CFD experts, this book enables engineers and researchers to understand the use of PBM and CFD frameworks. Population balance approaches can now be used in conjunction with CFD, effectively driving more efficient and effective multiphase flow processes. Engineers familiar with standard CFD software, including ANSYS-CFX and ANSYS-Fluent, will be able to use the tools and approaches presented in this book in the effective research, modeling and control of multiphase flow problems. Builds a complete understanding of the theory behind the

  14. Development and application of a fully implicit fluid dynamics code for multiphase flow

    Morii, Tadashi; Ogawa, Yumi

    1996-01-01

    Multiphase flow frequently occurs in a progression of accidents of nuclear reactor severe core damage. The CHAMPAGNE code has been developed to analyze thermohydraulic behavior of multiphase and multicomponent fluid, which requires for its characterization more than one set of velocities, temperatures, masses per unit volume, and so forth at each location in the calculation domain. Calculations of multiphase flow often show physical and numerical instability. The effect of numerical stabilization obtained by the upwind differencing and the fully implicit techniques gives one a convergent solution more easily than other techniques. Several results calculated by the CHAMPAGNE code are explained

  15. The Schedule for Nonadaptive and Adaptive Personality for Youth (SNAP-Y): a new measure for assessing adolescent personality and personality pathology.

    Linde, Jennifer A; Stringer, Deborah; Simms, Leonard J; Clark, Lee Anna

    2013-08-01

    The Schedule for Nonadaptive and Adaptive Personality-Youth Version (SNAP-Y) is a new, reliable self-report questionnaire that assesses 15 personality traits relevant to both normal-range personality and the alternative DSM-5 model for personality disorder. Community adolescents, 12 to 18 years old (N = 364), completed the SNAP-Y; 347 also completed the Big Five Inventory-Adolescent, 144 provided 2-week retest data, and 128 others completed the Minnesota Multiphasic Personality Inventory-Adolescent. Outpatient adolescents (N = 103) completed the SNAP-Y, and 97 also completed the Minnesota Multiphasic Personality Inventory-Adolescent. The SNAP-Y demonstrated strong psychometric properties, and structural, convergent, discriminant, and external validities. Consistent with the continuity of personality, results paralleled those in adult and college samples using the adult Schedule for Nonadaptive and Adaptive Personality-Second Edition (SNAP-2), from which the SNAP-Y derives and which has established validity in personality-trait assessment across the normal-abnormal continuum. The SNAP-Y thus provides a new, clinically useful instrument to assess personality traits and personality pathology in adolescents.

  16. Development of axisymmetric lattice Boltzmann flux solver for complex multiphase flows

    Wang, Yan; Shu, Chang; Yang, Li-Ming; Yuan, Hai-Zhuan

    2018-05-01

    This paper presents an axisymmetric lattice Boltzmann flux solver (LBFS) for simulating axisymmetric multiphase flows. In the solver, the two-dimensional (2D) multiphase LBFS is applied to reconstruct macroscopic fluxes excluding axisymmetric effects. Source terms accounting for axisymmetric effects are introduced directly into the governing equations. As compared to conventional axisymmetric multiphase lattice Boltzmann (LB) method, the present solver has the kinetic feature for flux evaluation and avoids complex derivations of external forcing terms. In addition, the present solver also saves considerable computational efforts in comparison with three-dimensional (3D) computations. The capability of the proposed solver in simulating complex multiphase flows is demonstrated by studying single bubble rising in a circular tube. The obtained results compare well with the published data.

  17. Parametric Study on the Characteristics of Multiphase Laminar Flow with Density Difference in Various Microchannels

    Paek, Seung Ho; Kim, Dong Sung; Choi, Young Ki

    2009-01-01

    In this paper, we have performed a parametric study on the characteristics of multiphase laminar flow with density difference in various microchannels. The interface between multiphase fluids is rotated by the gravitational forces induced by density difference. The numerical simulations were carried out via commercial CFD package to study the characteristics of multiphase laminar flow. The results of the numerical simulations in this study were verified by comparing with the previously reported experimental results in the literature. We have also proposed a new dimensionless relationship between dimensionless rotation angle of interface and dimensionless parameters are proposed for square microchannels with various aspect ratios. The dimensionless relationship could be widely applied to the reliable design of various microfluidic devices dealing with multiphase laminar flow

  18. Novel image reconstruction algorithm for multi-phase flow tomography system using γ ray method

    Hao Kuihong; Wang Huaxiang; Gao Mei

    2007-01-01

    After analyzing the reason of image reconstructed algorithm by using the conventional back projection (IBP) is prone to produce spurious line, and considering the characteristic of multi-phase flow tomography, a novel image reconstruction algorithm is proposed, which carries out the intersection calculation using back projection data. This algorithm can obtain a perfect system point spread function, and can eliminate spurious line better. Simulating results show that the algorithm is effective for identifying multi-phase flow pattern. (authors)

  19. Efficiency Improvement of a High Dynamic BLDC Linear Motor by Multiphase Control

    Lemmens, Joris; Vanvlasselaer, Kris; Mulier, Kristof; Goossens, Stijn; Symens, Wim; Driesen, Johan

    2013-01-01

    This paper proposes a multiphase control strategy for a high dynamic brushless DC linear motor as an alternative for conventional three-phase field-oriented control. Analysis of the magnetic field waveforms shows that three-phase control is not optimal for the 6-slot 7-pole motor topology. Therefore, a multiphase control strategy is elaborated which injects currents proportional to the electromotive force into each of the nine stator coil groups. This results in a maximal alignment force ...

  20. Associations Between Pre-Implant Psychosocial Factors and Spinal Cord Stimulation Outcome: Evaluation Using the MMPI-2-RF.

    Block, Andrew R; Marek, Ryan J; Ben-Porath, Yossef S; Kukal, Deborah

    2017-01-01

    Spinal cord stimulation (SCS) has variable effectiveness in controlling chronic pain. Previous research has demonstrated that psychosocial factors are associated with diminished results of SCS. The objective of this investigation is to examine associations between pre-implant psychological functioning as measured by the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) and SCS outcomes. SCS candidates at two sites (total N = 319) completed the MMPI-2-RF and measures of pain, emotional distress, and functional ability as part of a pre-implant psychological evaluation. At an average of 5 months post-implant, patients completed the measures of pain and emotional distress a second time. Poorer SCS outcomes and poorer patient satisfaction were associated with higher pre-implant MMPI-2-RF scores on scales used to assess emotional dysfunction, somatic/cognitive complaints, and interpersonal problems. Ways through which pre-implant psychological evaluations of spinal cord stimulator candidates can be informed by MMPI-2-RF findings are discussed. © The Author(s) 2015.

  1. Psychometric Examination, Adaptation, and Evaluation of the Hebrew Translation of the MMPI-2-RF VRIN-r and TRIN-r Validity Scales.

    Shkalim, Eleanor; Ben-Porath, Yossef S; Handel, Richard W; Almagor, Moshe; Tellegen, Auke

    2016-01-01

    In this study we examined the utility of the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008/2011; Tellegen & Ben-Porath, 2008/2011) Variable Response Inconsistency-Revised (VRIN-r) and True Response Inconsistency-Revised (TRIN-r) scales, including alternative versions of the scales, in the Hebrew translation of the test. First, we examined the applicability of the U.S. VRIN-r and TRIN-r scales in an Israeli Hebrew-speaking mixed clinical sample, and replaced original item pairs that did not meet the development criteria with substitution item pairs that did. Then, using the Israeli normative sample and a pure clinical sample, we compared the psychometric functioning of the adapted Hebrew-language VRIN-r and TRIN-r scales with that of the original versions of these scales under various conditions of simulated non-content-based (random and fixed) responding. Overall, results showed that the adapted versions of the scales did not improve on the original ones. We therefore recommend using the U.S. VRIN-r and TRIN-r versions, which could also facilitate cross-cultural comparisons.

  2. Development and Validation of MMPI-2-RF Scales for Indexing Triarchic Psychopathy Constructs.

    Sellbom, Martin; Drislane, Laura E; Johnson, Alexandria K; Goodwin, Brandee E; Phillips, Tasha R; Patrick, Christopher J

    2016-10-01

    The triarchic model characterizes psychopathy in terms of three distinct dispositional constructs of boldness, meanness, and disinhibition. The model can be operationalized through scales designed specifically to index these domains or by using items from other inventories that provide coverage of related constructs. The present study sought to develop and validate scales for assessing the triarchic model domains using items from the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF). A consensus rating approach was used to identify items relevant to each triarchic domain, and following psychometric refinement, the resulting MMPI-2-RF-based triarchic scales were evaluated for convergent and discriminant validity in relation to multiple psychopathy-relevant criterion variables in offender and nonoffender samples. Expected convergent and discriminant associations were evident very clearly for the Boldness and Disinhibition scales and somewhat less clearly for the Meanness scale. Moreover, hierarchical regression analyses indicated that all MMPI-2-RF triarchic scales incremented standard MMPI-2-RF scale scores in predicting extant triarchic model scale scores. The widespread use of MMPI-2-RF in clinical and forensic settings provides avenues for both clinical and research applications in contexts where traditional psychopathy measures are less likely to be administered. © The Author(s) 2015.

  3. A Response to Odland et al.'s Misleading, Alarmist Estimates of Risk for Overpathologizing when Interpreting the MMPI-2-RF.

    Tarescavage, Anthony M; Ben-Porath, Yossef S

    2015-01-01

    In a recently published article in this journal, Odland, Lammy, Perle, Martin, and Grote report Monte Carlo-simulated normative base rates of scale elevations on the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF). Their primary conclusion--reflected in the title of their article--is that MMPI-2-RF interpretation is associated with "high risk of pathologizing healthy adults" when the 40 substantive scales of the test are simultaneously interpreted. In this paper, we describe how their conclusion follows from several faulty premises, three of which were already debunked in an earlier article and remain false despite counterarguments proposed by Odland and colleagues. We also address these authors' misinterpretation of their analyses and, furthermore, their premise that MMPI-2-RF interpretive guidelines are flawed because they "currently do not account for a basic statistical principle: Type I (or alpha) error inflation" (p. 1). This premise is irrelevant to psychological test interpretation and misaligned with neuropsychological testing literature cited in support of it. Consistent with suggestions by some of the authors they cite, we reiterate MMPI-2-RF interpretive guidelines designed to mitigate the impact of measurement error (not alpha error) by way of a scientific assessment approach that relies on integration of information derived from multiple sources.

  4. A Prorating Method for Estimating MMPI-2-RF Scores From MMPI Responses: Examination of Score Fidelity and Illustration of Empirical Utility in the PERSEREC Police Integrity Study Sample.

    Tarescavage, Anthony M; Corey, David M; Ben-Porath, Yossef S

    2016-04-01

    The purpose of the current study was to identify Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) correlates of police officer integrity violations and other problem behaviors in an archival database with original MMPI item responses and collateral information regarding integrity violations obtained for 417 male officers. In Study 1, we estimated MMPI-2-RF scores from the MMPI item pool (which includes approximately 80% of the MMPI-2-RF items) in a normative sample, a psychiatric inpatient sample, and a police officer sample, and conducted analyses that demonstrated the comparability of estimated and full scale scores for 41 of the 51 MMPI-2-RF scales. In Study 2, we correlated estimated MMPI-2-RF scores with information about subsequent integrity violations and problem behaviors from the integrity violation data set. Several meaningful associations were obtained, predominately with scales from the emotional, thought, and behavioral dysfunction domains of the MMPI-2-RF. Application of a correction for range restriction yielded substantially improved validity estimates. Finally, we calculated relative risk ratios for the statistically significant findings using cutoffs lower than 65T, which is traditionally used to identify clinically significant elevations, and found several meaningful relative risk ratios. © The Author(s) 2015.

  5. Mapping the MMPI-2-RF Substantive Scales Onto Internalizing, Externalizing, and Thought Dysfunction Dimensions in a Forensic Inpatient Setting.

    Romero, Isabella E; Toorabally, Nasreen; Burchett, Danielle; Tarescavage, Anthony M; Glassmire, David M

    2017-01-01

    Contemporary models of psychopathology-encompassing internalizing, externalizing, and thought dysfunction factors-have gained significant support. Although research indicates the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008 /2011) measures these domains of psychopathology, this study addresses extant limitations in MMPI-2-RF diagnostic validity research by examining associations between all MMPI-2-RF substantive scales and broad dichotomous indicators of internalizing, externalizing, and thought dysfunction diagnoses in a sample of 1,110 forensic inpatients. Comparing those with and without internalizing diagnoses, notable effects were observed for Negative Emotionality/Neuroticism-Revised (NEGE-r), Emotional/Internalizing Dysfunction (EID), Dysfunctional Negative Emotions (RC7), Demoralization (RCd), and several other internalizing and somatic/cognitive scales. Comparing those with and without thought dysfunction diagnoses, the largest hypothesized differences occurred for Thought Dysfunction (THD), Aberrant Experiences (RC8), and Psychoticism-Revised (PSYC-r), although unanticipated differences were observed on internalizing and interpersonal scales, likely reflecting the high prevalence of internalizing dysfunction in forensic inpatients not experiencing thought dysfunction. Comparing those with and without externalizing diagnoses, the largest effects were for Substance Abuse (SUB), Antisocial Behavior (RC4), Behavioral/Externalizing Dysfunction (BXD), Juvenile Conduct Problems (JCP), and Disconstraint-Revised (DISC-r). Multivariate models evidenced similar results. Findings support the construct validity of MMPI-2-RF scales as measures of internalizing, thought, and externalizing dysfunction.

  6. Susceptibility of the MMPI-2-RF neurological complaints and cognitive complaints scales to over-reporting in simulated head injury.

    Bolinger, Elizabeth; Reese, Caitlin; Suhr, Julie; Larrabee, Glenn J

    2014-02-01

    We examined the effect of simulated head injury on scores on the Neurological Complaints (NUC) and Cognitive Complaints (COG) scales of the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF). Young adults with a history of mild head injury were randomly assigned to simulate head injury or give their best effort on a battery of neuropsychological tests, including the MMPI-2-RF. Simulators who also showed poor effort on performance validity tests (PVTs) were compared with controls who showed valid performance on PVTs. Results showed that both scales, but especially NUC, are elevated in individuals simulating head injury, with medium to large effect sizes. Although both scales were highly correlated with all MMPI-2-RF over-reporting validity scales, the relationship of Response Bias Scale to both NUC and COG was much stronger in the simulators than controls. Even accounting for over-reporting on the MMPI-2-RF, NUC was related to general somatic complaints regardless of group membership, whereas COG was related to both psychological distress and somatic complaints in the control group only. Neither scale was related to actual neuropsychological performance, regardless of group membership. Overall, results provide further evidence that self-reported cognitive symptoms can be due to many causes, not necessarily cognitive impairment, and can be exaggerated in a non-credible manner.

  7. Using the Research Domain Criteria Framework to Explore Associations Between MMPI-2-RF Constructs and Physiological Variables Assessed by Eye-Tracker Technology.

    McCord, David M; Achee, Margaret C; Cannon, Elissa M; Harrop, Tiffany M; Poynter, William D

    2017-01-01

    The National Institute of Mental Health has proposed a paradigm shift in the conceptualization of psychopathology, abandoning the traditional categorical model in favor of one based on hierarchically organized dimensional constructs (Insel et al., 2010 ). One explicit goal of this initiative, the Research Domain Criteria (RDoC) project, is to facilitate the incorporation of newly available neurobiologic variables into research on psychopathology. The Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008/2011 ) represents a similar paradigm shift, also adopting a hierarchical arrangement of dimensional constructs. This study examined associations between MMPI-2-RF measures of psychopathology and eye-movement metrics. Participants were college students (n = 270) who completed the MMPI-2-RF and then viewed a sequence of 30-s video clips. Results show a pattern of positive correlations between pupil size and emotional/internalizing dysfunction scales when viewing video eliciting negative emotional reactions, reflecting greater arousability in individuals with higher scores on these measures. In contrast, when viewing stimuli depicting angry, threatening material, a clear pattern of negative correlations was found between pupil size and behavioral/externalizing trait measures. These data add to the construct validity of the MMPI-2-RF and support the use of the RDoC matrix as a framework for research on psychopathology.

  8. Predicting Postprobationary Job Performance of Police Officers Using CPI and MMPI-2-RF Test Data Obtained During Preemployment Psychological Screening.

    Roberts, Ryan M; Tarescavage, Anthony M; Ben-Porath, Yossef S; Roberts, Michael D

    2018-02-09

    We examined associations between prehire California Psychological Inventory (CPI) and prorated Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF) scores (calculated from MMPI profiles) and supervisor ratings for a sample of 143 male police officers. Substantive scale scores in this sample were meaningfully lower than those obtained by the tests' normative samples in the case of the MMPI-2-RF and meaningfully higher in the case of the CPI (indicating less psychological dysfunction). Test scores from both instruments showed substantial range restriction, consistent with those produced by members of the police candidate comparison groups (Corey & Ben-Porath, 2014 ; Roberts & Johnson, 2001 ). After applying a statistical correction for range restriction, we found a number of meaningful associations between both CPI and MMPI-2-RF substantive scale scores and supervisor ratings. For the MMPI-2-RF, findings for scales from the emotional dysfunction and interpersonal functioning domains of the test were particularly strong. For the CPI, findings for scales indicating conformity with social norms, integrity, and tolerance were strong, as were the findings for an index indicating risk of termination. Hierarchical regression analyses showed that MMPI-2-RF and CPI scores complement each other, accounting for incremental variance in the prediction of job-related variables over and above each other. Implications of these findings for assessment science and practice are discussed.

  9. The Cross-Cultural Validity of the MMPI-2-RF Higher-Order Scales in a Sample of North Korean Female Refugees.

    Kim, Seong-Hyeon; Goodman, Grace M; Toruno, Joseph A; Sherry, Alissa R; Kim, Hee Kyung

    2015-10-01

    We investigated the cross-cultural factorial validity of the three Higher-Order (H-O) scales in the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF) among a sample of North Korean female refugees (N = 2,732). Given the importance of the H-O scales in the overall structure of the MMPI-2-RF scales and in interpretation, we were interested in exploring their cross-cultural validity. We conducted an exploratory factor analysis (EFA) on the nine Restructured Clinical (RC) scale raw scores and fitted and compared one- to three-factor models. The three-factor model, akin to the model in Tellegen and Ben-Porath, demonstrated the best fit to the data. Furthermore, the pattern matrices of loadings across the current sample and the U.S. samples were comparable despite some differences, such as the RC2 scale's salient, negative loading on a factor analogous to the Behavioral/Externalizing Dysfunction scale. We also investigated the unique psychological characteristics of the refugees, possibly resulting from the arduous, perilous journeys out of North Korea taken by this group of female refugees and discussed the results of EFA in light of those singular psychological traits and experiences. Overall, the three H-O scales of the Korean MMPI-2-RF evidenced reasonable cross-cultural factorial validity among the sample of North Korean female refugees. © The Author(s) 2014.

  10. Evaluation of the MMPI-2-RF for Detecting Over-reported Symptoms in a Civil Forensic and Disability Setting.

    Nguyen, Constance T; Green, Debbie; Barr, William B

    2015-01-01

    This study investigated the classification accuracy of the Minnesota Multiphasic Personality Inventory-2-Restructured Form validity scales in a sample of disability claimants and civil forensic litigants. A criterion-groups design was used, classifying examinees as "Failed Slick Criteria" through low performance on at least two performance validity indices (stand-alone or embedded) and "Passed Slick Criteria." The stand-alone measures included the Test of Memory Malingering and the Dot Counting Test. The embedded indices were extracted from the Wechsler Adult Intelligence Scales Digit Span and Vocabulary subtests, the California Verbal Learning Test-II, and the Wisconsin Card Sorting Test. Among groups classified by primary complaints at the time of evaluation, those alleging neurological conditions were more frequently classified as Failed Slick Criteria than those alleging psychiatric or medical conditions. Among those with neurological or psychiatric complaints, the F-r, FBS-r, and RBS scales differentiated between those who Passed Slick Criteria from those who Failed Slick Criteria. The Fs scale was also significantly higher in the Failed Slick Criteria compared to Passed Slick Criteria examinees within the psychiatric complaints group. Results indicated that interpretation of scale scores should take into account the examinees' presenting illness. While this study has limitations, it highlights the possibility of different cutoffs depending on the presenting complaints and the need for further studies to cross-validate the results.

  11. Screening Air Traffic Control Specialists for Psychopathology Using the Minnesota Multiphasic Personality Inventory-2

    2008-06-01

    ng . Clinical scales Scale 1 – Hypochondriasis . hgh scores reflect ndvdu- als who have an excessve number of vague nonspecfic complants and...one reflects a general denal of physcal health and ncludes rather specfic somat c complants . The other group nvolves a general denal of

  12. Response Distortion in Applications of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) in Offender Rehabilitation

    Helmes, Edward

    2008-01-01

    The MMPI-2 continues to be widely used in many areas of professional forensic psychology, including the evaluation of criminal offenders for rehabilitation purposes. While many possible applications of the MMPI exist, not all are well-supported by strong empirical evidence. The origins of the scale among psychiatric populations suggest some…

  13. Screening Air Traffic Control Specialists for Psychopathology Using the Minnesota Multiphasic Personality Inventory-2

    King, Raymond E; Schroeder, David J; Manning, Carol A; Retzlaff, Paul D; Williams, Clara A

    2008-01-01

    ...) as a psychological screening tool for conditionally selected FAA Air Traffic Control Specialists (ATCSs). A sample of 1,014 ATCSs in training voluntarily completed the MMPI-2 as part of a research program...

  14. Multiphase porous media modelling: A novel approach to predicting food processing performance.

    Khan, Md Imran H; Joardder, M U H; Kumar, Chandan; Karim, M A

    2018-03-04

    The development of a physics-based model of food processing is essential to improve the quality of processed food and optimize energy consumption. Food materials, particularly plant-based food materials, are complex in nature as they are porous and have hygroscopic properties. A multiphase porous media model for simultaneous heat and mass transfer can provide a realistic understanding of transport processes and thus can help to optimize energy consumption and improve food quality. Although the development of a multiphase porous media model for food processing is a challenging task because of its complexity, many researchers have attempted it. The primary aim of this paper is to present a comprehensive review of the multiphase models available in the literature for different methods of food processing, such as drying, frying, cooking, baking, heating, and roasting. A critical review of the parameters that should be considered for multiphase modelling is presented which includes input parameters, material properties, simulation techniques and the hypotheses. A discussion on the general trends in outcomes, such as moisture saturation, temperature profile, pressure variation, and evaporation patterns, is also presented. The paper concludes by considering key issues in the existing multiphase models and future directions for development of multiphase models.

  15. Compositional multiphase flow and transport in heterogeneous porous media

    Huber, R U

    2000-07-01

    This work first treats the conceptual models for the description of multiphase flow processes in porous media. The thermodynamic laws are explained and the description and quantification of multi-fluid equilibria are discussed in order to account for fluid composition. The fully and weakly coupled approaches for the mathematical description of such flow processes with respect to systems consisting of two and three fluid phases as well as with respect to compositional single and multiphase systems are assessed. For the discretization of the two-phase flow equations node- and cell-centered finite volume methods and mixed and mixed-hybrid finite element approaches are applied. Based upon these methods five solution algorithms are developed. Four of these algorithms are based on the simultaneous solution of the discretized equations in combination with the Newton-Raphson technique. Methods 1 and 2 treat two- three-phase flow processes, Method 3 applies to the solution of partially miscible three-component systems while Method 4 is created for three-phase three-component systems. The latter method uses a variable substitution dependent on the local presence of the fluid phases. Method 5 is based on the IMPES/IMPESC concept. The time-implicit pressure equation is discretized with the mixed-hybrid finite element method. The saturation and concentration equations, respectively, are solved with a cell-centered finite volume scheme. The developed algorithms are applied to the two- and three-phase Buckley-Leverett problems. A partitioning interwell tracer test is simulated. The propagation behavior of nonaqueous phase liquids (NAPLs) in the saturated and unsaturated ground zone under the influence of heterogeneities are examined. In addition, a larger-scale experiment is simulated, which involves an injection of trichloroethylene into the subsurface and the subsequent distribution. Here, the development of a dissolved contaminant plume as well as the behavior of organic

  16. Gastric acid secretion in relation to personality, affect and coping ability in duodenal ulcer patients. A multivariate analysis. Hvidovre Ulcer Project Group

    Jess, P

    1994-01-01

    The role of personality, mood state (affect) and coping ability (ego strength) on basal and stimulated gastric acid secretion were assessed in 56 duodenal ulcer patients using the Minnesota, Multiphasic Personality Inventory. The patients had high scores on most MMPI scales, but basal acid output...... disorders found in peptic ulcer patients may evidently be consequences of the disease rather than causal factors.......The role of personality, mood state (affect) and coping ability (ego strength) on basal and stimulated gastric acid secretion were assessed in 56 duodenal ulcer patients using the Minnesota, Multiphasic Personality Inventory. The patients had high scores on most MMPI scales, but basal acid output...

  17. Transfers in multiphase environment; Transferts en milieu multiphasique

    Marinhas, S.; Delahaye, A.; Fournaison, L. [Cemagref - GPAN, 92 - Antony (France); Dalmazzone, D.; Furst, W. [Ecole Nationale Superieure de Techniques Avancees (ENSTA), 75 - Paris (France); Petitet, J.P. [Laboratoire d' Ingenierie des Materiaux et des Hautes Pressions (LIMHP), CNRS, 93 - Villetaneuse (France); Trinquet, F.; Royon, L.; Kayossi, H.; Guiffant, G. [Laboratoire Matiere Systeme Complexe, CNRS UMR 7057, 75 - Paris (France); El Omari, L.; Baonga, J.B.; Louahlia-Gualous, H.; Panday, P.K. [Institut FEMTO, Dept. C.R.E.S.T.-UTBM-UFC, UMR CNRS 6174, 90 - Belfort (France); Asbik, M.; Ansari, O. [UFR de Modelisation, Optimisation et Ingenierie des Systemes Energetiques, Faculte des Sciences et Techniques, Errachidia (Morocco); Zeghmati, B. [Perpignan Univ., Laboratoire de Mathematiques et Physique des Systemes, Groupe de Mecanique Energetique (M.E.P.S.-G.M.E.), EA 3086, 66 (France); Jamil, A.; Zeraouli, Y.; Dumas, J.P. [Pau Univ. et des Pays de l' Adour, Lab. de Thermique, Energetique et Procedes (LaTEP), 64 (France); Roux, P.; Fichot, F. [CEA Cadarache, Institut de Radioprotection et de Surete Nucleaire (IRSN), 13 - Saint-Paul-lez-Durance (France); Gobin, D.; Goyeau, B. [Laboratoire FAST, 91 - Orsay (France); Quintard, M. [Institut de Mecanique des Fluides, 31 - Toulouse (France); Barthes, M.; Reynard, Ch.; Santini, R.; Tadrist, L. [Laboratoire IUSTI CNRS UMR 6595, 13 - Marseille (France)

    2005-07-01

    This session about heat and mass transfers in multiphase flows gathers 17 papers dealing with: dynamic study of gas hydrate slurry applied to secondary refrigeration; ice melting inside an agitated reactor: experiment and phenomenological approach; experimental and numerical investigation of the local thickness change of a liquid film dripping around an horizontal tube; evaporation of a liquid film dripping around the external wall of an horizontal tube: laminar-turbulent transition phenomenon; coldness distribution by stabilized ice slurries, study of the behaviour under thermal cycling; study of phases disequilibria of two-phase refrigerating fluids; solidification of binary mixtures, influence of the local chemical non-equilibrium and of the effective transport properties; analysis of heat transfers during the growth of a vapor bubble; forecasting of micro-porosity inside Al-Si alloy smelting parts; estimation of a source term in a 2D transient problem: application to electron beam welding; mesoscopic approach of thermal flows; experimental and numerical study of the impact of a circular jet on a heated disc; inverse conduction method for a jet impacting a rotating cylinder: feasibility study; experimental follow up of a fusion-solidification front with and without transfer promoter; parametric study of a latent heat storage tank during horizontal drainage; stability between two layers of a same supercritical fluid; numerical modeling of the heat transfer inside a stainless steel slab. (J.S.)

  18. Modeling Subgrid Scale Droplet Deposition in Multiphase-CFD

    Agostinelli, Giulia; Baglietto, Emilio

    2017-11-01

    The development of first-principle-based constitutive equations for the Eulerian-Eulerian CFD modeling of annular flow is a major priority to extend the applicability of multiphase CFD (M-CFD) across all two-phase flow regimes. Two key mechanisms need to be incorporated in the M-CFD framework, the entrainment of droplets from the liquid film, and their deposition. Here we focus first on the aspect of deposition leveraging a separate effects approach. Current two-field methods in M-CFD do not include appropriate local closures to describe the deposition of droplets in annular flow conditions. As many integral correlations for deposition have been proposed for lumped parameters methods applications, few attempts exist in literature to extend their applicability to CFD simulations. The integral nature of the approach limits its applicability to fully developed flow conditions, without geometrical or flow variations, therefore negating the scope of CFD application. A new approach is proposed here that leverages local quantities to predict the subgrid-scale deposition rate. The methodology is first tested into a three-field approach CFD model.

  19. Random Walk Particle Tracking For Multiphase Heat Transfer

    Lattanzi, Aaron; Yin, Xiaolong; Hrenya, Christine

    2017-11-01

    As computing capabilities have advanced, direct numerical simulation (DNS) has become a highly effective tool for quantitatively predicting the heat transfer within multiphase flows. Here we utilize a hybrid DNS framework that couples the lattice Boltzmann method (LBM) to the random walk particle tracking (RWPT) algorithm. The main challenge of such a hybrid is that discontinuous fields pose a significant challenge to the RWPT framework and special attention must be given to the handling of interfaces. We derive a method for addressing discontinuities in the diffusivity field, arising at the interface between two phases. Analytical means are utilized to develop an interfacial tracer balance and modify the RWPT algorithm. By expanding the modulus of the stochastic (diffusive) step and only allowing a subset of the tracers within the high diffusivity medium to undergo a diffusive step, the correct equilibrium state can be restored (globally homogeneous tracer distribution). The new RWPT algorithm is implemented within the SUSP3D code and verified against a variety of systems: effective diffusivity of a static gas-solids mixture, hot sphere in unbounded diffusion, cooling sphere in unbounded diffusion, and uniform flow past a hot sphere.

  20. Thermal expansion model for multiphase electronic packaging materials

    Allred, B.E.; Warren, W.E.

    1991-01-01

    Control of thermal expansion is often necessary in the design and selection of electronic packages. In some instances, it is desirable to have a coefficient of thermal expansion intermediate between values readily attainable with single or two phase materials. The addition of a third phase in the form of fillers, whiskers, or fibers can be used to attain intermediate expansions. To help design the thermal expansion of multiphase materials for specific applications, a closed form model has been developed that accurately predicts the effective elastic properties of isotropic filled materials and transversely isotropic lamina. Properties of filled matrix materials are used as inputs to the lamina model to obtain the composite elastic properties as a function of the volume fraction of each phase. Hybrid composites with two or more fiber types are easily handled with this model. This paper reports that results for glass, quartz, and Kevlar fibers with beta-eucryptite filled polymer matrices show good agreement with experimental results for X, Y, and Z thermal expansion coefficients

  1. Speed Control of Multiphase Cage Induction Motors Incorporating Supply Sequence

    Drozdowski Piotr

    2014-12-01

    Full Text Available The subject of this paper is the control possibility of the multiphase cage induction motors having number of phases greater than 3. These motors have additional properties for speed control that distinguish them from the standard 3 phase motors: operation at various sequences of supplying voltages due to the inverter control and possible operation with few open-circuited phases. For each supply sequence different no load speeds at the same frequency can be obtained. This feature extends the motor application for miscellaneous drive demands including vector or scalar control. This depends mainly on the type of the stator winding for a given number of phases, since the principle of motor operation is based on co-operation of higher harmonics of magnetic field. Examples of operation are presented for a 9-phase motor, though general approach has been discussed. This motor was fed by a voltage source inverter at field oriented control with forced currents. The mathematical model of the motor was reduced to the form incorporating all most important physical features and appropriate for the control law formulation. The operation was illustrated for various supply sequences for “healthy” motor and for the motor operating at one phase broken. The obtained results have shown that parasitic influence of harmonic fields interaction has negligible influence on motor operation with respect to the useful coupling for properly designed stator winding.

  2. Radial Flow in a Multiphase Transport Model at FAIR Energies

    Soumya Sarkar

    2018-01-01

    Full Text Available Azimuthal distributions of radial velocities of charged hadrons produced in nucleus-nucleus (AB collisions are compared with the corresponding azimuthal distribution of charged hadron multiplicity in the framework of a multiphase transport (AMPT model at two different collision energies. The mean radial velocity seems to be a good probe for studying radial expansion. While the anisotropic parts of the distributions indicate a kind of collective nature in the radial expansion of the intermediate “fireball,” their isotropic parts characterize a thermal motion. The present investigation is carried out keeping the upcoming Compressed Baryonic Matter (CBM experiment to be held at the Facility for Antiproton and Ion Research (FAIR in mind. As far as high-energy heavy-ion interactions are concerned, CBM will supplement the Relativistic Heavy-Ion Collider (RHIC and Large Hadron Collider (LHC experiments. In this context our simulation results at high baryochemical potential would be interesting, when scrutinized from the perspective of an almost baryon-free environment achieved at RHIC and LHC.

  3. Dynamic dielectrophoresis model of multi-phase ionic fluids.

    Ying Yan

    Full Text Available Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.

  4. Dynamic dielectrophoresis model of multi-phase ionic fluids.

    Yan, Ying; Luo, Jing; Guo, Dan; Wen, Shizhu

    2015-01-01

    Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.

  5. On the predictive capabilities of multiphase Darcy flow models

    Icardi, Matteo; Prudhomme, Serge

    2016-01-01

    Darcy s law is a widely used model and the limit of its validity is fairly well known. When the flow is sufficiently slow and the porosity relatively homogeneous and low, Darcy s law is the homogenized equation arising from the Stokes and Navier- Stokes equations and depends on a single effective parameter (the absolute permeability). However when the model is extended to multiphase flows, the assumptions are much more restrictive and less realistic. Therefore it is often used in conjunction with empirical models (such as relative permeability and capillary pressure curves), derived usually from phenomenological speculations and experimental data fitting. In this work, we present the results of a Bayesian calibration of a two-phase flow model, using high-fidelity DNS numerical simulation (at the pore-scale) in a realistic porous medium. These reference results have been obtained from a Navier-Stokes solver coupled with an explicit interphase-tracking scheme. The Bayesian inversion is performed on a simplified 1D model in Matlab by using adaptive spectral method. Several data sets are generated and considered to assess the validity of this 1D model.

  6. Electromagnetic fields in small systems from a multiphase transport model

    Zhao, Xin-Li; Ma, Yu-Gang; Ma, Guo-Liang

    2018-02-01

    We calculate the electromagnetic fields generated in small systems by using a multiphase transport (AMPT) model. Compared to A +A collisions, we find that the absolute electric and magnetic fields are not small in p +Au and d +Au collisions at energies available at the BNL Relativistic Heavy Ion Collider and in p +Pb collisions at energies available at the CERN Large Hadron Collider. We study the centrality dependencies and the spatial distributions of electromagnetic fields. We further investigate the azimuthal fluctuations of the magnetic field and its correlation with the fluctuating geometry using event-by-event simulations. We find that the azimuthal correlation 〈" close="〉cos(ϕα+ϕβ-2 ΨRP)〉">cos2 (ΨB-Ψ2) between the magnetic field direction and the second-harmonic participant plane is almost zero in small systems with high multiplicities, but not in those with low multiplicities. This indicates that the charge azimuthal correlation is not a valid probe to study the chiral magnetic effect (CME) in small systems with high multiplicities. However, we suggest searching for possible CME effects in small systems with low multiplicities.

  7. Generating a Multiphase Equation of State with Swarm Intelligence

    Cox, Geoffrey

    2017-06-01

    Hydrocode calculations require knowledge of the variation of pressure of a material with density and temperature, which is given by the equation of state. An accurate model needs to account for discontinuities in energy, density and properties of a material across a phase boundary. When generating a multiphase equation of state the modeller attempts to balance the agreement between the available data for compression, expansion and phase boundary location. However, this can prove difficult because minor adjustments in the equation of state for a single phase can have a large impact on the overall phase diagram. Recently, Cox and Christie described a method for combining statistical-mechanics-based condensed matter physics models with a stochastic analysis technique called particle swarm optimisation. The models produced show good agreement with experiment over a wide range of pressure-temperature space. This talk details the general implementation of this technique, shows example results, and describes the types of analysis that can be performed with this method.

  8. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows.

    Li, Q; Luo, K H; Li, X J

    2012-07-01

    The pseudopotential lattice Boltzmann (LB) model is a widely used multiphase model in the LB community. In this model, an interaction force, which is usually implemented via a forcing scheme, is employed to mimic the molecular interactions that cause phase segregation. The forcing scheme is therefore expected to play an important role in the pseudoepotential LB model. In this paper, we aim to address some key issues about forcing schemes in the pseudopotential LB model. First, theoretical and numerical analyses will be made for Shan-Chen's forcing scheme [Shan and Chen, Phys. Rev. E 47, 1815 (1993)] and the exact-difference-method forcing scheme [Kupershtokh et al., Comput. Math. Appl. 58, 965 (2009)]. The nature of these two schemes and their recovered macroscopic equations will be shown. Second, through a theoretical analysis, we will reveal the physics behind the phenomenon that different forcing schemes exhibit different performances in the pseudopotential LB model. Moreover, based on the analysis, we will present an improved forcing scheme and numerically demonstrate that the improved scheme can be treated as an alternative approach to achieving thermodynamic consistency in the pseudopotential LB model.

  9. Couplings in multiphasic geo-materials: temperature and chemistry effects

    Ghasemzadeh, H.

    2006-05-01

    Transport of chemical components in soil through water is the major cause of pollution of the soil. This transport takes place around landfills and nuclear waste storage areas, tailings and mine wastes, and so on. A great number of these sites are unsaturated of water and in some cases heat can change the fate of chemical species, that lead us to a coupled problem. In this dissertation, numerical simulation with an existent thermo-hydro-mechanical model and theoretical modeling and numerical simulation of transport and interactions of one chemical species in multiphase media are presented. Integrated THM model in the Code-Aster is presented. Excavation, engineering barrier and thermal load of waste nuclear storage well are modeled. Verification of model is presented with these simulations. A thermo-hydro-mechanical behaviour coupled with chemical phenomena is presented with a fully coupled method that water, gas, chemical species and soil skeleton were considered as constituents and corresponding unknowns are temperature, water pressure, gas pressure, chemical concentration and displacements. For each constituent, mass balance equation and linear momentum equation are written and solved simultaneously to find related unknowns. The results of this model have been compared with the theoretical and experimental results existing in the literature. Furthermore, results of some applications of this model are included. Some areas where further work is required are identified. In particular, there is a need to perform experiments to obtain necessary soil parameters to permit accurate modelling of the heat and contaminant transport in unsaturated soils. (author)

  10. SAGD production optimization : combination of ESP and multiphase metering

    Pinguet, B.G.; Guerra, E.; Drever, C. [Schlumberger Canada Ltd., Edmonton, AB (Canada)

    2008-07-01

    Many commercial oil reservoirs in Canada are completed using electric submersible pumps (ESP) due to low reservoir pressures and extra heavy oils and bitumens. This paper presented details of an optimization process for steam-assisted gravity drainage (SAGD) wells. The process used ESP and a multiphase flow meter (MFM) based on Vx technology. The MFM was based on a Venturi and nuclear fraction meter combination that was engineered to measure the steam phases during SAGD processes. The technology was designed to measure total mass or total volumetric flow rates as well as oil, water and gas in producing wells. Length fractions of oil, water, and gas were calculated based on the attenuation of Gamma-rays as they passed through the Venturi section. Production was optimized in real time using the frequency control of the pump to improve oil flow rates. The results of field tests showed that the optimization process resulted in longer life cycles for the ESP. It was concluded that use of the meter results in changes to lift system operating parameters at the well site as well as improved monitoring during the workflow process. 3 refs., 1 tab., 11 figs.

  11. On the predictive capabilities of multiphase Darcy flow models

    Icardi, Matteo

    2016-01-09

    Darcy s law is a widely used model and the limit of its validity is fairly well known. When the flow is sufficiently slow and the porosity relatively homogeneous and low, Darcy s law is the homogenized equation arising from the Stokes and Navier- Stokes equations and depends on a single effective parameter (the absolute permeability). However when the model is extended to multiphase flows, the assumptions are much more restrictive and less realistic. Therefore it is often used in conjunction with empirical models (such as relative permeability and capillary pressure curves), derived usually from phenomenological speculations and experimental data fitting. In this work, we present the results of a Bayesian calibration of a two-phase flow model, using high-fidelity DNS numerical simulation (at the pore-scale) in a realistic porous medium. These reference results have been obtained from a Navier-Stokes solver coupled with an explicit interphase-tracking scheme. The Bayesian inversion is performed on a simplified 1D model in Matlab by using adaptive spectral method. Several data sets are generated and considered to assess the validity of this 1D model.

  12. The entropy concept. A powerful tool for multiphase flow analysis

    Kolev, Nikolay Ivanov

    2007-01-01

    This work summarizes the system of partial differential equations describing multiphase, multi-component flows in arbitrary geometry including porous structures with arbitrary thermal and mechanical interactions among the fields and between each field and the structure. Each of the fluids is designed as a universal mixture of miscible and immiscible component. The system contains the rigorously derived entropy equations which are used instead of the primitive form of the energy conservation. Based on well established mathematical theorems the equations are local volume and time averaged. The so called volume conservation equation allowing establishing close coupling between pressure and density changes of all of the participating velocity fields is presented. It replaces one of the mass conservation equations. The system is solved within the computer code system IVA together with large number of constitutive relationships for closing it in arbitrary geometry. The extensive validation on many hundreds of simple- and complex experiments, including the many industrial applications, demonstrates the versatility and the power of this analytical tool for designing complex processes in the industry and analyzing complex processes in the nature. (author)

  13. The thyroid function of Graves' disease patients is aggravated by depressive personality during antithyroid drug treatment

    Miyauchi Akira; Kubota Sumihisa; Takamatsu Junta; Fukao Atsushi; Hanafusa Toshiaki

    2011-01-01

    Abstract Background We previously reported that depressive personality (the scores of hypochondriasis, depression and psychasthenia determined by the Minnesota Multiphasic Personality Inventory (MMPI)) and daily hassles of Graves' disease (GD) patients treated long trem with antithyroid drug (ATD) were significantly higher in a relapsed group than in a remitted group, even in the euthyroid state. The present study aims to examine the relationship among depressive personality, emotional stress...

  14. Modelling the Multiphase Flow in Dense Medium Cyclones

    Kaiwei Chu

    2010-12-01

    Full Text Available Dense medium cyclone (DMC is widely used in mineral industry to separate solids by density. It is simple in design but the flow pattern within it is complex due to the size and density distributions of the feed and process medium solids, and the turbulent vortex formed. Recently, the so-called combined computational fluid dynamics (CFD and discrete element method (DEM (CFD-DEM was extended from two-phase flow to model the flow in DMCs at the University of New South Wales (UNSW. In the CFD-DEM model, the flow of coal particles is modelled by DEM and that of medium flow by CFD, allowing consideration of medium-coal mutual interaction and particle-particle collisions. In the DEM model, Newton's laws of motion are applied to individual particles, and in the CFD model the local-averaged Navier-Stokes equations combined with the volume of fluid (VOF and mixture multiphase flow models are solved. The application to the DMC studies requires intensive computational effort. Therefore, various simplified versions have been proposed, corresponding to the approaches such as Lagrangian particle tracking (LPT method where dilute phase flow is assumed so that the interaction between particles can be ignored, one-way coupling where the effect of particle flow on fluid flow is ignored, and the use of the concept of parcel particles whose properties are empirically determined. In this paper, the previous works on the modelling of DMCs at UNSW are summarized and the features and applicability of the models used are discussed.

  15. The Multiphase Rheology of Monte Nuovo's Eruption (Campi Flegrei, Italy)

    Vona, A.; Romano, C.; Giordano, D.; Russell, K.

    2011-12-01

    We present a study of high-temperature, uniaxial deformation experiments of natural, partially crystallized samples from the Monte Nuovo (1538 AD) trachytic eruption. The experiments were performed at dry atmospheric conditions and controlled deformation rate using a high-temperature uniaxial Geocomp LoadTrac II press. Experiments were performed isothermally by deforming cores of the natural (i.e., crystal- and vesicle-bearing) samples at constant displacement rates (CDR) corresponding to constant strain rates between 10-7 and 10-4 s-1. The measurements were all performed in the viscous-flow regime and showed non-Newtonian shear thinning behavior. Measured viscosities vary between 1010 and 1013 Pa s. As no yield stress was detected, the flow behavior of the investigated specimens could be described with a simplified Herschel-Bulkley equation in terms of consistency K and flow index n. As the pure liquid and the liquid+crystal rheology of these samples were already measured in previous studies, we were able to estimate the net effects of crystals and vesicles on the rheology of the multiphase suspensions. The results revealed that the presence of vesicles has a major impact on the rheological response of magmas leading to a marked decrease of their viscosity, which partially balances the increase of viscosity due to the presence of crystals. At the same time, the presence of bubbles leads to a strong decrease in the shear strength of the magma inducing local and temporal variation in the deformation regimes (viscous vs. brittle). Brittle and ductile failure were in fact observed at T=600°C and strain rates of 10-5 s-1 and at T=800°C for the higher applied strain rate (10-4 s-1), respectively. During lava flow emplacement, this may explain the origin of the flow banding textures frequently observed in many silicic obsidian lava flows.

  16. Multiphase modelling of vascular tumour growth in two spatial dimensions

    Hubbard, M.E.

    2013-01-01

    In this paper we present a continuum mathematical model of vascular tumour growth which is based on a multiphase framework in which the tissue is decomposed into four distinct phases and the principles of conservation of mass and momentum are applied to the normal/healthy cells, tumour cells, blood vessels and extracellular material. The inclusion of a diffusible nutrient, supplied by the blood vessels, allows the vasculature to have a nonlocal influence on the other phases. Two-dimensional computational simulations are carried out on unstructured, triangular meshes to allow a natural treatment of irregular geometries, and the tumour boundary is captured as a diffuse interface on this mesh, thereby obviating the need to explicitly track the (potentially highly irregular and ill-defined) tumour boundary. A hybrid finite volume/finite element algorithm is used to discretise the continuum model: the application of a conservative, upwind, finite volume scheme to the hyperbolic mass balance equations and a finite element scheme with a stable element pair to the generalised Stokes equations derived from momentum balance, leads to a robust algorithm which does not use any form of artificial stabilisation. The use of a matrix-free Newton iteration with a finite element scheme for the nutrient reaction-diffusion equations allows full nonlinearity in the source terms of the mathematical model.Numerical simulations reveal that this four-phase model reproduces the characteristic pattern of tumour growth in which a necrotic core forms behind an expanding rim of well-vascularised proliferating tumour cells. The simulations consistently predict linear tumour growth rates. The dependence of both the speed with which the tumour grows and the irregularity of the invading tumour front on the model parameters is investigated. © 2012 Elsevier Ltd.

  17. Added value of multiphase CTA imaging for thrombus perviousness assessment

    Santos, E.M.M. [Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Erasmus Medical Center, Department of Medical Informatics, Rotterdam (Netherlands); D' Esterre, C.D.; Najm, M.; Goyal, M.; Demchuk, A.M.; Menon, B.K. [University of Calgary, Departments of Neurosciences, Radiology and Community Health Sciences, Calgary (Canada); Treurniet, K.M.; Majoie, C.B. [Academic Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Niessen, W.J. [Erasmus Medical Center, Department of Medical Informatics, Rotterdam (Netherlands); Delft University of Technology, Faculty of Applied Sciences, Delft (Netherlands); Marquering, H.A. [Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Academic Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Mandzia, Jennifer; Fainardi, Enrico; Rubiera, Marta; Khaw, Alexander V.; Zini, Andrea; Shankar, JJ.; Collaboration: PRove-IT investigators

    2018-01-15

    Thrombus perviousness has been associated with favorable functional outcome in acute ischemic stroke (AIS) patients. Measuring thrombus perviousness on CTA may be suboptimal due to potential delay in contrast agent arrival in occluded arteries at the moment of imaging. Dynamic sequences acquired over time can potentially overcome this issue. We investigate if dynamic CTA has added value in assessing thrombus perviousness. Prospectively collected image data of AIS patients with proven occlusion of the anterior or posterior circulation with thin-slice multi-phase CTA (MCTA) and non-contrast CT were co-registered (n = 221). Thrombus attenuation increase (TAI; a perviousness measure) was measured for the arterial, venous, and delayed phase of the MCTA and time-invariant CTAs (TiCTA). Associations with favorable clinical outcome (90-day mRS ≤ 2) were assessed using univariate and multivariable regressions and calculating areas under receiver operating curves (AUC). TAI determined from the arterial phase CTA was superior in the association with favorable outcome with OR = 1.21 per 10 HU increase (95%CI 1.04-1.41, AUC 0.62, p = 0.014) compared to any other phase (venous 1.14(95%CI 1.01-1.30, AUC 0.58, p = 0.033), delayed 1.046(95%CI 0.919-1.19, AUC 0.53, p = 0.50)), and TiCTA 1.15(95%CI 1.02-1.30, AUC 0.60, p = 0.022). In the multivariable model, only TAI on arterial phase was significantly associated with favorable outcome (aOR 1.59, 95%CI 1.04-2.43, p = 0.032). Association between TAI with functional outcome was optimal on arterial-phase CTA such that dynamic CTA imaging has no additional benefits in current thrombus perviousness assessment, thereby suggesting that the delay of contrast arrival at the clot is a key variable for patient functional outcome. (orig.)

  18. Advanced subgrid modeling for Multiphase CFD in CASL VERA tools

    Baglietto, Emilio; Gilman, Lindsey; Sugrue, Rosie

    2014-01-01

    This work introduces advanced modeling capabilities that are being developed to improve the accuracy and extend the applicability of Multiphase CFD. Specifics of the advanced and hardened boiling closure model are described in this work. The development has been driven by new physical understanding, derived from the innovative experimental techniques available at MIT. A new experimental-based mechanistic approach to heat partitioning is proposed. The model introduces a new description of the bubble evaporation, sliding and interaction on the heated surface to accurately capture the evaporation occurring at the heated surface, while also tracking the local surface conditions. The model is being assembled to cover an extended application area, up to Critical Heat Flux (CHF). The accurate description of the bubble interaction, effective microlayer and dry surface area are considered to be the enabling quantities towards innovated CHF capturing methodologies. Further, improved mechanistic force-balance models for bubble departure predictions and lift-off diameter predictions are implemented in the model. Studies demonstrate the influence of the newly implemented partitioning components. Finally, the development work towards a more consistent and integrated hydrodynamic closure is presented. The main objective here is to develop a set of robust momentum closure relations which focuses on the specific application to PWR conditions, but will facilitate the application to other geometries, void fractions, and flow regimes. The innovative approach considers local flow conditions on a cell-by-cell basis to ensure robustness. Closure relations of interest initially include drag, lift, and turbulence dispersion, with near wall corrections applied for both drag and lift. (author)

  19. Multiphase region of helimagnetic superlattices at low temperature in an extended six-state clock model

    Lovelady, D. C.; Harper, H. M.; Brodsky, I. E.; Rabson, D. A.

    2006-05-01

    The variety of magnetic phases observed in rare-earth heterostructures at low temperatures (Jehan et al 1993 Phys. Rev. B 48 5594-606), such as Ho/Y, may be elucidated by an ANNNI-like model Hamiltonian. In previous work modelling bulk Ho (Seno, Rabson and Yeomans 1993 J. Phys. A: Math. Gen. 26 4887-905), such a Hamiltonian with a one-dimensional parameter space produced a single multiphase point. In contrast, the parameter space of the heterostructure model is three dimensional, and instead of an isolated multiphase point, we find two-dimensional multiphase regions. In an example of Villain's 'order from disorder' (Villain, Bidaux, Carton and Conte 1980 J. Physique 41 1263-72 Pimpinelli, Uimin and Villain 1991 J. Phys.: Condens. Matter 3 4693-719), an infinitesimal temperature breaks the ground-state degeneracy. In first order of a low-temperature expansion, we find that the degeneracy is broken everywhere in a multiphase region except on a line. A segment of the line appears to remain multiphase to all orders in a low-temperature expansion when the number L of magnetic layers between non-magnetic spacers is 4 but not for other values of L. For L = 4, the hierarchy of phases more closely resembles that in the ANNNI model than in the bulk six-state clock model on which the present model is based.

  20. Multiphase region of helimagnetic superlattices at low temperature in an extended six-state clock model

    Lovelady, D C; Harper, H M; Brodsky, I E; Rabson, D A

    2006-01-01

    The variety of magnetic phases observed in rare-earth heterostructures at low temperatures (Jehan et al 1993 Phys. Rev. B 48 5594-606), such as Ho/Y, may be elucidated by an ANNNI-like model Hamiltonian. In previous work modelling bulk Ho (Seno, Rabson and Yeomans 1993 J. Phys. A: Math. Gen. 26 4887-905), such a Hamiltonian with a one-dimensional parameter space produced a single multiphase point. In contrast, the parameter space of the heterostructure model is three dimensional, and instead of an isolated multiphase point, we find two-dimensional multiphase regions. In an example of Villain's 'order from disorder' (Villain, Bidaux, Carton and Conte 1980 J. Physique 41 1263-72; Pimpinelli, Uimin and Villain 1991 J. Phys.: Condens. Matter 3 4693-719), an infinitesimal temperature breaks the ground-state degeneracy. In first order of a low-temperature expansion, we find that the degeneracy is broken everywhere in a multiphase region except on a line. A segment of the line appears to remain multiphase to all orders in a low-temperature expansion when the number L of magnetic layers between non-magnetic spacers is 4 but not for other values of L. For L = 4, the hierarchy of phases more closely resembles that in the ANNNI model than in the bulk six-state clock model on which the present model is based

  1. Design and fabrication of biomimetic multiphased scaffolds for ligament-to-bone fixation.

    He, Jiankang; Zhang, Wenyou; Liu, Yaxiong; Li, Xiang; Li, Dichen; Jin, Zhongmin

    2015-05-01

    Conventional ligament grafts with single material composition cannot effectively integrate with the host bones due to mismatched properties and eventually affect their long-term function in vivo. Here we presented a multi-material strategy to design and fabricate composite scaffolds including ligament, interface and bone multiphased regions. The interface region consists of triphasic layers with varying material composition and porous structure to mimic native ligament-to-bone interface while the bone region contains polycaprolactone (PCL) anchor and microchanneled ceramic scaffolds to potentially provide combined mechanical and biological implant-bone fixation. Finite element analysis (FEA) demonstrated that the multiphased scaffolds with interference value smaller than 0.5 mm could avoid the fracture of ceramic scaffold during the implantation process, which was validated by in-vitro implanting the multiphased scaffolds into porcine joint bones. Pull-out experiment showed that the initial fixation between the multiphased scaffolds with 0.47 mm interference and the host bones could withstand the maximum force of 360.31±97.51 N, which can be improved by reinforcing the ceramic scaffolds with biopolymers. It is envisioned that the multiphased scaffold could potentially induce the regeneration of a new bone as well as interfacial tissue with the gradual degradation of the scaffold and subsequently realize long-term biological fixation of the implant with the host bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. High-temperature multiphase flowmeters in heavy-oil thermal production

    Mehdizadeh, P. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Production Technology Inc. (United States)

    2005-11-01

    A review of field tests assessing the capability and advantages of multi-phase metering technology in high temperature thermal recovery processes such as cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD) was presented. A number of different tank gauging procedures were conducted to obtain a reference flow rate. Subsequent performance tests of metered data and tank data verified the accuracy of the meter, and that water cut sampling can be attained under practical field conditions. A 12 well field test was then conducted, and an allocation factor was obtained from conventional test separators and production measurements. An improvement in the allocation factor was noted. However, a full evaluation of the multiphase meter data obtained in the field was limited by the quality of the reference field data. A 30 day well testing campaign showed a comparison of well rate data from the multi-phase meter with data from an emulsion meter. It was concluded that the multiphase meter provided consistent measurements, matching the level of accuracy attained from rigorous tank measurements. In addition, the multiphase meter eliminated the need for the equipment modifications and extra personnel interventions needed to perform tank testing and manual and automatic water cut sampling. 15 refs., 2 tabs., 6 figs.

  3. Prediction of Separation Length of Turbulent Multiphase Flow Using Radiotracer and Computational Fluid Dynamics Simulation

    Sugiharto, S.; Kurniadi, R.; Abidin, Z.; Stegowski, Z.; Furman, L.

    2013-01-01

    Multiphase flow modeling presents great challenges due to its extreme importance in various industrial and environmental applications. In the present study, prediction of separation length of multiphase flow is examined experimentally by injection of two kinds of iodine-based radiotracer solutions into a hydrocarbon transport pipeline (HCT) having an inner diameter of 24 in (60,96 m). The main components of fluids in the pipeline are water 95%, crude oil 3% and gas 2%. A radiotracing experiment was carried out at the segment of pipe which is located far from branch points with assumptions that stratified flows in such segment were achieved. Two radiation detectors located at 80 and 100 m from injection point were used to generate residence time distribution (RTD) curve resulting from injection of radiotracer solutions. Multiphase computational fluid dynamics (CFD) simulations using Eulerian-Eulerian control volume and commercial CFD package Fluent 6.2 were employed to simulate separation length of multiphase flow. The results of study shows that the flow velocity of water is higher than the flow rate of crude oil in water-dominated system despite the higher density of water than the density of the crude oil. The separation length in multiphase flow predicted by Fluent mixture model is approximately 20 m, measured from injection point. This result confirms that the placement of the first radiation detector at the distance 80 m from the injection point was correct. (author)

  4. Prediction of Separation Length of Turbulent Multiphase Flow Using Radiotracer and Computational Fluid Dynamics Simulation

    S. Sugiharto1

    2013-04-01

    Full Text Available Multiphase flow modeling presents great challenges due to its extreme importance in various industrial and environmental applications. In the present study, prediction of separation length of multiphase flow is examined experimentally by injection of two kinds of iodine-based radiotracer solutions into a hydrocarbon transport pipeline (HCT having an inner diameter of 24 in (60,96 m. The main components of fluids in the pipeline are water 95%, crude oil 3% and gas 2%. A radiotracing experiment was carried out at the segment of pipe which is located far from branch points with assumptions that stratified flows in such segment were achieved. Two radiation detectors located at 80 and 100 m from injection point were used to generate residence time distribution (RTD curve resulting from injection of radiotracer solutions. Multiphase computational fluid dynamics (CFD simulations using Eulerian-Eulerian control volume and commercial CFD package Fluent 6.2 were employed to simulate separation length of multiphase flow. The results of study shows that the flow velocity of water is higher than the flow rate of crude oil in water-dominated system despite the higher density of water than the density of the crude oil. The separation length in multiphase flow predicted by Fluent mixture model is approximately 20 m, measured from injection point. This result confirms that the placement of the first radiation detector at the distance 80 m from the injection point was correct

  5. Multi-phase flow monitoring with electrical impedance tomography using level set based method

    Liu, Dong; Khambampati, Anil Kumar; Kim, Sin; Kim, Kyung Youn

    2015-01-01

    Highlights: • LSM has been used for shape reconstruction to monitor multi-phase flow using EIT. • Multi-phase level set model for conductivity is represented by two level set functions. • LSM handles topological merging and breaking naturally during evolution process. • To reduce the computational time, a narrowband technique was applied. • Use of narrowband and optimization approach results in efficient and fast method. - Abstract: In this paper, a level set-based reconstruction scheme is applied to multi-phase flow monitoring using electrical impedance tomography (EIT). The proposed scheme involves applying a narrowband level set method to solve the inverse problem of finding the interface between the regions having different conductivity values. The multi-phase level set model for the conductivity distribution inside the domain is represented by two level set functions. The key principle of the level set-based method is to implicitly represent the shape of interface as the zero level set of higher dimensional function and then solve a set of partial differential equations. The level set-based scheme handles topological merging and breaking naturally during the evolution process. It also offers several advantages compared to traditional pixel-based approach. Level set-based method for multi-phase flow is tested with numerical and experimental data. It is found that level set-based method has better reconstruction performance when compared to pixel-based method

  6. Applied multiphase flow in pipes and flow assurance oil and gas production

    Al-Safran, Eissa M

    2017-01-01

    Applied Multiphase Flow in Pipes and Flow Assurance - Oil and Gas Production delivers the most recent advancements in multiphase flow technology while remaining easy to read and appropriate for undergraduate and graduate petroleum engineering students. Responding to the need for a more up-to-the-minute resource, this highly anticipated new book represents applications on the fundamentals with new material on heat transfer in production systems, flow assurance, transient multiphase flow in pipes and the TUFFP unified model. The complex computation procedure of mechanistic models is simplified through solution flowcharts and several example problems. Containing over 50 solved example problems and 140 homework problems, this new book will equip engineers with the skills necessary to use the latest steady-state simulators available.

  7. Investigation of free vibration characteristics for skew multiphase magneto-electro-elastic plate

    Kiran, M. C.; Kattimani, S.

    2018-04-01

    This article presents the investigation of skew multiphase magneto-electro-elastic (MMEE) plate to assess its free vibration characteristics. A finite element (FE) model is formulated considering the different couplings involved via coupled constitutive equations. The transformation matrices are derived to transform local degrees of freedom into the global degrees of freedom for the nodes lying on the skew edges. Effect of different volume fraction (Vf) on the free vibration behavior is explicitly studied. In addition, influence of width to thickness ratio, the aspect ratio, and the stacking arrangement on natural frequencies of skew multiphase MEE plate investigated. Particular attention has been paid to investigate the effect of skew angle on the non-dimensional Eigen frequencies of multiphase MEE plate with simply supported edges.

  8. Multiphase Microstructure in a Metastability-Assisted Medium Carbon Alloy Steel

    Liu, Cheng; Cui, Xixi; Yang, Chen

    2018-05-01

    A medium carbon alloy steel is processed by austenizing at 900 °C for 30 min, then rapid quenching into a patented quenching liquid and holding at 170 °C for 5 min, finally isothermally holding at 250 °C for different times. The morphology and mechanical properties are performed by using optical microscopy and scanning electron microscopy. A multiphase microstructure characterized by a mixture of lenticular prior martensite (PM), fine needle bainitic ferrite and filmy retained austenite (RA) is obtained. It is found that the PM formed firstly upon quenching can accelerate the subsequent bainitic transformation and promote refinement of multiphase colonies. The results show that an optimum mechanical property of a 4000.9 MPa bending strength and a 2030 MPa tensile strength is achieved at 250 °C for 120 min, which is attributed to the multiphase microstructural characteristics and a high product of the volume fraction of RA and the carbon content of austenite.

  9. Performance analysis of variable speed multiphase induction motor with pole phase modulation

    Liu Huijuan

    2016-09-01

    Full Text Available The pole phase modulation (PPM technique is an effective method to extend speed range and torque capabilities for an integrated starter and hybrid electric vehicles applications. In this paper, the five pole-phase combination types of a multiphase induction motor (IM with 36 stator slots and 36 stator conductors are presented and compared quantitatively by using the time-stepping finite element method (TS-FEM. The 36 stator conductors of the proposed multiphase IM are fed by a 36 leg inverter and the current phase angle and amplitude of each stator conductor can be controlled independently. This paper focuses on the winding connection, the PPM technique and the performance comparative analysis of each pole-phase combination types of the proposed multiphase IM. The flux distribution, air-gap flux density, output torque, core losses and efficiency of five pole-phase combination types have been investigated.

  10. Modelling and simulation of multi-phase effects on X-ray elasticity constants

    Freour, S; Guillen, R; François, M X

    2003-01-01

    This paper deals with the calculation of X-ray Elasticity Constants (XEC) of phases embedded in multi-phase polycrystals. A three scales (macroscopic, pseudo-macroscopic, mesoscopic) model based on the classical self-consistent formalism is developed in order to analyse multi-phase effects on XEC values. Simulations are performed for cubic or hexagonal crystallographic structure phases embedded in several two-phases materials. In fact, it is demonstrated that XEC vary with the macroscopic stiffness of the whole polycrystal. In consequence, the constants of one particular phase depend on the elastic behaviour and the volume fraction of all the phases constituting the material. Now, XEC play a leading role in pseudo-macroscopic stresses determination by X-Ray Diffraction (XRD) methods. In this work, a quantitative analysis of the multi-phase effects on stresses determination by XRD methods was performed. Numerical results will be compared and discussed. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  11. A Multi-Phase Equation of State and Strength Model for Tin

    Cox, G. A.

    2006-01-01

    This paper considers a multi-phase equation of state and a multi-phase strength model for tin in the β, γ and liquid phases. At a phase transition there are changes in volume, energy, and properties of a material that should be included in an accurate model. The strength model will also be affected by a solid-solid phase transition. For many materials there is a lack of experimental data for strength at high pressures making the derivation of strength parameters for some phases difficult. In the case of tin there are longitudinal sound speed data on the Hugoniot available that have been used here in conjunction with a multi-phase equation of state to derive strength parameters for the γ phase, a phase which does not exist at room temperature and pressure

  12. A QCQP Approach for OPF in Multiphase Radial Networks with Wye and Delta Connections: Preprint

    Zamzam, Ahmed, S.; Zhaoy, Changhong; Dall' Anesey, Emiliano; Sidiropoulos, Nicholas D.

    2017-06-27

    This paper examines the AC Optimal Power Flow (OPF) problem for multiphase distribution networks featuring renewable energy resources (RESs). We start by outlining a power flow model for radial multiphase systems that accommodates wye-connected and delta-connected RESs and non-controllable energy assets. We then formalize an AC OPF problem that accounts for both types of connections. Similar to various AC OPF renditions, the resultant problem is a non convex quadratically-constrained quadratic program. However, the so-called Feasible Point Pursuit-Successive Convex Approximation algorithm is leveraged to obtain a feasible and yet locally-optimal solution. The merits of the proposed solution approach are demonstrated using two unbalanced multiphase distribution feeders with both wye and delta connections.

  13. Multiphase Flow Dynamics 4 Turbulence, Gas Adsorption and Release, Diesel Fuel Properties

    Kolev, Nikolay Ivanov

    2012-01-01

    The present Volume 4 of the successful monograh package “Multiphase Flow Dynamics”is devoted to selected Chapters of the multiphase fluid dynamics that are important for practical applications but did not find place in the previous volumes. The state of the art of the turbulence modeling in multiphase flows is presented. As introduction, some basics of the single phase boundary layer theory including some important scales and flow oscillation characteristics in pipes and rod bundles are presented. Then the scales characterizing the dispersed flow systems are presented. The description of the turbulence is provided at different level of complexity: simple algebraic models for eddy viscosity, simple algebraic models based on the Boussinesq hypothesis, modification of the boundary layer share due to modification of the bulk turbulence, modification of the boundary layer share due to nucleate boiling. The role of the following forces on the mathematical description of turbulent flows is discussed: the lift fo...

  14. Application of the level set method for multi-phase flow computation in fusion engineering

    Luo, X-Y.; Ni, M-J.; Ying, A.; Abdou, M.

    2006-01-01

    Numerical simulation of multi-phase flow is essential to evaluate the feasibility of a liquid protection scheme for the power plant chamber. The level set method is one of the best methods for computing and analyzing the motion of interface among the multi-phase flow. This paper presents a general formula for the second-order projection method combined with the level set method to simulate unsteady incompressible multi-phase flow with/out phase change flow encountered in fusion science and engineering. The third-order ENO scheme and second-order semi-implicit Crank-Nicholson scheme is used to update the convective and diffusion term. The numerical results show this method can handle the complex deformation of the interface and the effect of liquid-vapor phase change will be included in the future work

  15. Personality Characteristics of the Mothers of Children with Disruptive Behavior Disorder.

    Lahey, Benjamin B.; And Others

    1989-01-01

    Administered Minnesota Multiphasic Personality Inventory (MMPI) to biological mothers of children aged 6-13 (N=100). Found conduct disordered (CD) children (N=13) had mothers with higher MMPI antisocial, histrionic, and disturbed adjustment scores; attention deficit disorder with hyperactivity (ADD/H) children (N=22) had no significant association…

  16. The MMPI-2: A New Standard for Personality Assessment and Research in Counseling Settings.

    Butcher, James N.; Graham, John R.

    1994-01-01

    Highlights the application of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) in college counseling, couples counseling, medical problem assessment, military applications, personnel screening programs, and other areas. Provides a general description of the MMPI-2, discusses continuity of MMPI and MMPI-2 scales, and describes new scales…

  17. MMPI-2 Personality Profiles of High-Functioning Adults With Autism Spectrum Disorders

    Ozonoff, Sally; Garcia, Nicanor; Clark, Elaine; Lainhart, Janet E.

    2005-01-01

    The Minnesota Multiphasic Personality Inventory-Second Edition was administered to 20 adults with autism spectrum disorders (ASD) who fell in the average to above average range of intelligence and 24 age-, intelligence-, and gender-matched college students. Large group differences, with the ASD group scoring higher, were found on the L validity…

  18. Pattern recognition techniques for horizontal and vertically upward multiphase flow measurement

    Arubi, Tesi I. M.; Yeung, Hoi

    2012-03-01

    The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves that has led oil companies to develop smaller and marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective solutions of on-line continuous multiphase flow measurement for well testing, production monitoring, production optimisation, process control and automation. The pattern recognition approach for clamp-on multiphase measurement employed in this study provides one means for meeting this need. High speed caesium-137 radioisotope-based densitometers were installed vertically at the top of a 50.8mm and 101.6mm riser as well as horizontally at the riser base in the Cranfield University multiphase flow test facility. A comprehensive experimental campaign comprising flow conditions typical of operating conditions found in the Petroleum Industry was conducted. The application of a single gamma densitometer unit, in conjunction with pattern recognition techniques to determine both the phase volume fractions and velocities to yield the individual phase flow rates of horizontal and vertically upward multiphase flows was investigated. The pattern recognition systems were trained to map the temporal fluctuations in the multiphase mixture density with the individual phase flow rates using statistical features extracted from the gamma counts signals as their inputs. Initial results yielded individual phase flow rate predictions to within ±5% relative error for the two phase airwater flows and ±10% for three phase air-oil-water flows data.

  19. A multiphase series-resonant converter with a reduced number of thyristors and common grounds for inputs and outputs

    Huisman, H.

    1993-01-01

    Multiphase series-resonant (SR) power converters provide a flexible way to transform power between a utility grid and a multiphase load or source. The current implementations all suffer from a high component count, which makes the use of these converters unattractive from an economical point of

  20. Computation of multiphase systems with phase field models

    Badalassi, V.E.; Ceniceros, H.D.; Banerjee, S.

    2003-01-01

    Phase field models offer a systematic physical approach for investigating complex multiphase systems behaviors such as near-critical interfacial phenomena, phase separation under shear, and microstructure evolution during solidification. However, because interfaces are replaced by thin transition regions (diffuse interfaces), phase field simulations require resolution of very thin layers to capture the physics of the problems studied. This demands robust numerical methods that can efficiently achieve high resolution and accuracy, especially in three dimensions. We present here an accurate and efficient numerical method to solve the coupled Cahn-Hilliard/Navier-Stokes system, known as Model H, that constitutes a phase field model for density-matched binary fluids with variable mobility and viscosity. The numerical method is a time-split scheme that combines a novel semi-implicit discretization for the convective Cahn-Hilliard equation with an innovative application of high-resolution schemes employed for direct numerical simulations of turbulence. This new semi-implicit discretization is simple but effective since it removes the stability constraint due to the nonlinearity of the Cahn-Hilliard equation at the same cost as that of an explicit scheme. It is derived from a discretization used for diffusive problems that we further enhance to efficiently solve flow problems with variable mobility and viscosity. Moreover, we solve the Navier-Stokes equations with a robust time-discretization of the projection method that guarantees better stability properties than those for Crank-Nicolson-based projection methods. For channel geometries, the method uses a spectral discretization in the streamwise and spanwise directions and a combination of spectral and high order compact finite difference discretizations in the wall normal direction. The capabilities of the method are demonstrated with several examples including phase separation with, and without, shear in two and three

  1. Identifying PTSD personality subtypes in a workplace trauma sample.

    Sellbom, Martin; Bagby, R Michael

    2009-10-01

    The authors sought to identify personality clusters derived from the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) Personality Psychopathology Five Scales in a sample of workplace claimants with posttraumatic stress disorder (PTSD). Three clusters--low pathology, internalizing, and externalizing were recovered similar to those obtained by M. W. Miller and colleagues (2003, 2004, 2007) in samples of combat veterans and sexual assault victims. Internalizers and externalizers scored comparably on measures of PTSD symptom severity, general distress, and negative affect. Internalizers were uniquely characterized by anhedonia and depressed mood; externalizers by antisocial behavior, substance abuse, and anger/aggression.

  2. A multiphase electrokinetic flow model for electrolytes with liquid/liquid interfaces

    Berry, J.D., E-mail: joe.d.berry@gmail.com; Davidson, M.R., E-mail: m.davidson@unimelb.edu.au; Harvie, D.J.E., E-mail: daltonh@unimelb.edu.au

    2013-10-15

    A numerical model for electrokinetic flow of multiphase systems with deformable interfaces is presented, based on a combined level set-volume of fluid technique. A new feature is a multiphase formulation of the Nernst–Planck transport equation for advection, diffusion and conduction of individual charge carrier species that ensures their conservation in each fluid phase. The numerical model is validated against the analytical results of Zholkovskij et al. (2002) [1], and results for the problem of two drops coalescing in the presence of mobile charge carriers are presented. The time taken for two drops containing ions to coalesce decreases with increasing ion concentration.

  3. Invasion percolation of single component, multiphase fluids with lattice Boltzmann models

    Sukop, M.C.; Or, Dani

    2003-01-01

    Application of the lattice Boltzmann method (LBM) to invasion percolation of single component multiphase fluids in porous media offers an opportunity for more realistic modeling of the configurations and dynamics of liquid/vapor and liquid/solid interfaces. The complex geometry of connected paths in standard invasion percolation models arises solely from the spatial arrangement of simple elements on a lattice. In reality, fluid interfaces and connectivity in porous media are naturally controlled by the details of the pore geometry, its dynamic interaction with the fluid, and the ambient fluid potential. The multiphase LBM approach admits realistic pore geometry derived from imaging techniques and incorporation of realistic hydrodynamics into invasion percolation models

  4. New Multiphase Hybrid Boost Converter with Wide Conversion Ratio for PV System

    Ioana-Monica Pop-Calimanu

    2014-01-01

    Full Text Available A new multiphase hybrid boost converter, with wide conversion ratio as a solution for photovoltaic energy system, is presented in this paper. To ensure that all the phases of the converter operate at the same switching frequency we use interleaving topology. The proposed converter can be used as an interface between the PV system and the DC load/inverter. This multiphase converter has the advantage of reduced value and physical size of the input and output capacitor as well as the effort for the inductors. To validate the operation of the converter we provide the analyses and the simulation results of the converter.

  5. Computational Flow Modeling of Hydrodynamics in Multiphase Trickle-Bed Reactors

    Lopes, Rodrigo J. G.; Quinta-Ferreira, Rosa M.

    2008-05-01

    This study aims to incorporate most recent multiphase models in order to investigate the hydrodynamic behavior of a TBR in terms of pressure drop and liquid holdup. Taking into account transport phenomena such as mass and heat transfer, an Eulerian k-fluid model was developed resulting from the volume averaging of the continuity and momentum equations and solved for a 3D representation of the catalytic bed. Computational fluid dynamics (CFD) model predicts hydrodynamic parameters quite well if good closures for fluid/fluid and fluid/particle interactions are incorporated in the multiphase model. Moreover, catalytic performance is investigated with the catalytic wet oxidation of a phenolic pollutant.

  6. Multiphase evolution of population and its application to optics and colliding-beam experiments

    Srinivasan, S.K.; Sridharan, V.

    1990-01-01

    In this paper we have analysed a multiphase evolution of population growth. Individual birth and immigration are assumed to be the consequence of the evolution of an individual through a sequence of phases whose duration form a family of independent non-negative random variables. The population model is then adapted to describe the evolution of photons in a cavity and, in particular, it is shown that a multiphase immigration model corresponds to the photons resulting from a stream obtained by amplitude mixing of coherent and chaotic beams. The model is also shown to bring out the characteristics of the multiplicity distribution of particles produced in high-energy collisions. (author)

  7. Using a multiphase flow code to model the coupled effects of repository consolidation and multiphase brine and gas flow at the Waste Isolation Pilot Plant

    Freeze, G.A.; Larson, K.W.; Davies, P.B.; Webb, S.W.

    1995-01-01

    Long-term repository assessment must consider the processes of (1) gas generation, (2) room closure and expansions due to salt creep, and (3) multiphase (brine and gas) fluid flow, as well as the complex coupling between these three processes. The mechanical creep closure code SANCHO was used to simulate the closure of a single, perfectly sealed disposal room filled with water and backfill. SANCHO uses constitutive models to describe salt creep, waste consolidation, and backfill consolidation, Five different gas-generation rate histories were simulated, differentiated by a rate multiplier, f, which ranged from 0.0 (no gas generation) to 1.0 (expected gas generation under brine-dominated conditions). The results of the SANCHO f-series simulations provide a relationship between gas generation, room closure, and room pressure for a perfectly sealed room. Several methods for coupling this relationship with multiphase fluid flow into and out of a room were examined. Two of the methods are described

  8. Multi-phase AC/AC step-down converter for distribution systems

    Aeloiza, Eddy C.; Burgos, Rolando P.

    2017-10-25

    A step-down AC/AC converter for use in an electric distribution system includes at least one chopper circuit for each one of a plurality of phases of the AC power, each chopper circuit including a four-quadrant switch coupled in series between primary and secondary sides of the chopper circuit and a current-bidirectional two-quadrant switch coupled between the secondary side of the chopper circuit and a common node. Each current-bidirectional two-quadrant switch is oriented in the same direction, with respect to the secondary side of the corresponding chopper circuit and the common node. The converter further includes a control circuit configured to pulse-width-modulate control inputs of the switches, to convert a first multiphase AC voltage at the primary sides of the chopper circuits to a second multiphase AC voltage at the secondary sides of the chopper circuits, the second multiphase AC voltage being lower in voltage than the first multiphase AC voltage.

  9. Simultaneous measurement of hysteresis in capillary pressure and electric permittivity for multiphase flow through porous media

    Plug, W.J.; Slob, E.C.; Bruining, J.; Moreno Tirado, L.M.

    2007-01-01

    We present a tool that simultaneously measures the complex permittivity and the capillary pressure characteristics for multiphase flow. The sample holder is a parallel plate capacitor. A precision component analyzer is used to measure the impedance amplitude and phase angle as a function of

  10. Forces on bends and T-joints due to multiphase flow

    Belfroid, S.P.C.; Cargnelutti, M.F.; Schiferli, W.; Osch, M.M.E. van

    2010-01-01

    To be able to assess the mechanical integrity of piping structures for loading to multiphase flow conditions, air-water experiments were carried out in a horizontal 1" pipe system. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating

  11. Non-isothermal effects on multi-phase flow in porous medium

    Singh, Ashok; Wang, W; Park, C. H.

    2010-01-01

    In this paper a ppT -formulation for non-isothermal multi-phase flow is given including diffusion and latent heat effects. Temperature and pressure dependencies of governing parameters are considered, in particular surface tension variation on phase interfaces along with temperature changes. A we...

  12. Multiphase volume-preserving interface motions via localized signed distance vector scheme

    Muhammad, R. Z.; Švadlenka, Karel

    2015-01-01

    Roč. 8, č. 5 (2015), s. 969-988 ISSN 1937-1632 Institutional support: RVO:67985840 Keywords : multiphase mean curvature flow * vector-valued signed distance * volume preservation Subject RIV: BA - General Mathematics Impact factor: 0.737, year: 2015 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11386

  13. Euler-Lagrange modeling of the hydrodynamics of dense multiphase flows

    Padding, J.T.; Deen, N.G.; Peters, E. A. J. F.; Kuipers, J. A. M.

    2015-01-01

    The large-scale hydrodynamic behavior of relatively dense dispersed multiphase flows, such as encountered in fluidized beds, bubbly flows, and liquid sprays, can be predicted efficiently by use of Euler-Lagrange models. In these models, grid-averaged equations for the continuous-phase flow field are

  14. Optimization of multi-phase compressible lattice Boltzmann codes on massively parallel multi-core systems

    Biferale, L.; Mantovani, F.; Pivanti, M.; Pozzati, F.; Sbragaglia, M.; Schifano, S.F.; Toschi, F.; Tripiccione, R.

    2011-01-01

    We develop a Lattice Boltzmann code for computational fluid-dynamics and optimize it for massively parallel systems based on multi-core processors. Our code describes 2D multi-phase compressible flows. We analyze the performance bottlenecks that we find as we gradually expose a larger fraction of

  15. Crystallographically based model for transformation-induced plasticity in multiphase carbon steels

    Tjahjanto, D.D.; Turteltaub, S.; Suiker, A.S.J.

    2007-01-01

    The microstructure of multiphase steels assisted by transformation-induced plasticity consists of grains of retained austenite embedded in a ferrite-based matrix. Upon mechanical loading, retained austenite may transform into martensite, as a result of which plastic deformations are induced in the

  16. Crystallographically based model for transformation-induced plasticity in multiphase carbon steels

    Tjahjanto, D.D.; Turteltaub, S.R.; Suiker, A.S.J.

    2008-01-01

    The microstructure of multiphase steels assisted by transformation-induced plasticity consists of grains of retained austenite embedded in a ferrite-based matrix. Upon mechanical loading, retained austenite may transform into martensite, as a result of which plastic deformations are induced in the

  17. Carbon-steel corrosion in multiphase slug flow and CO2

    Villarreal, J.; Laverde, D.; Fuentes, C.

    2006-01-01

    Hydrocarbon multiphase flow may exhibit various geometric configurations or flow patterns. One of these flow patterns is known as multiphase slug flow. If CO 2 is present in hydrocarbons, the steel pipelines can be corroded as this process is probably enhanced by slug flow turbulence. A hydrodynamic circuit was built to study the CO 2 corrosion rates under different slug flow conditions. The experimental results show how the corrosion rate of a carbon-steel electrode varies according to the flow turbulence. The higher slug frequency used in this study was 80 slugs/min. Experimental results for pressure drop and slug length are in agreement with the Dukler and Hubbard [A model for gas-liquid slug flow in horizontal and near horizontal tubes, Ind. Eng. Chem. Fundam. 14 (1975) 337-347] multiphase flow model. Furthermore, the experimental slug frequencies are well correlated by the Shell and Gregory [Correlation of the liquid volume fraction in the slug for horizontal gas-liquid slug flow. Int. J. Multiphase Flow 4 (1978) 33-39] equations in horizontal pipes

  18. Multi-phase flow modeling of soil contamination and soil remediation

    Dijke, van M.I.J.

    1997-01-01


    In this thesis multi-phase flow models are used to study the flow behavior of liquid contaminants in aquifers and of gases that are injected below the groundwater table for remediation purposes. Considered problems are redistribution of a lens of light nonaqueous phase

  19. Grain size effects in multiphase steels assisted by transformation-induced plasticity

    Turteltaub, S.R.; Suiker, A.S.J.

    2006-01-01

    The influence of the austenitic grain size on the overall stress-strain behavior in a multiphase carbon steel is analyzed through three-dimensional finite element simulations. A recently developed multiscale martensitic transformation model is combined with a plasticity model to simulate the

  20. The multiphase physics of sea ice: a review for model developers

    E. C. Hunke

    2011-11-01

    Full Text Available Rather than being solid throughout, sea ice contains liquid brine inclusions, solid salts, microalgae, trace elements, gases, and other impurities which all exist in the interstices of a porous, solid ice matrix. This multiphase structure of sea ice arises from the fact that the salt that exists in seawater cannot be incorporated into lattice sites in the pure ice component of sea ice, but remains in liquid solution. Depending on the ice permeability (determined by temperature, salinity and gas content, this brine can drain from the ice, taking other sea ice constituents with it. Thus, sea ice salinity and microstructure are tightly interconnected and play a significant role in polar ecosystems and climate. As large-scale climate modeling efforts move toward "earth system" simulations that include biological and chemical cycles, renewed interest in the multiphase physics of sea ice has strengthened research initiatives to observe, understand and model this complex system. This review article provides an overview of these efforts, highlighting known difficulties and requisite observations for further progress in the field. We focus on mushy layer theory, which describes general multiphase materials, and on numerical approaches now being explored to model the multiphase evolution of sea ice and its interaction with chemical, biological and climate systems.

  1. Dynamics of multiphase systems with complex microstructure. I. Development of the governing equations through nonequilibrium thermodynamics

    Sagis, L.M.C.; Öttinger, H.C.

    2013-01-01

    In this paper we present a general model for the dynamic behavior of multiphase systems in which the bulk phases and interfaces have a complex microstructure (for example, immiscible polymer blends with added compatibilizers, or polymer stabilized emulsions with thickening agents dispersed in the

  2. Enhancement pattern of small hepatic hemangioma: findings on multiphase spiral CT and dynamic MRI

    Choi, Byung In; Lee, Seung Koo; Kim, Myeong Jin; Chung, Jae Joon; Yoo, Hyung Sik; Lee, Jong Tae

    1999-01-01

    To compare the enhancement characteristics of small hemangiomas seen on multiphase spiral CT and dynamic MR imaging. Thirteen patients with 20 hepatic hemangiomas less than 25mm in diameter underwent both multiphase spiral CT and dynamic MR imaging. All lesions were assigned to one of three classified into 3 categories according to the enhancement pattern seen on multiphase spiral CT : typical delayed pooling, atypical early enhancement, or continuous low attenuation. The enhancement patterns seen on spiral CT and on dynamic MRI were correlated. On CT scans, ten lesions (50%) showed delayed pooling. Six (30%) showed early arterial enhancement and four (20%) showed continuous low attenuation. On delayed-phase MRI, all lesions showed delayed high signal intensity compared to adjacent liver parenchyma. Four of six lesions with early enhancement on CT showed peripheral globular enhancement on early arterial-phase MRI. On multiphase spiral CT scans, small hemangiomas can show variable atypical enhancement features. In this situation, contrast-enhanced dynamic MRI is helpful for the diagnosis of hemangiomas

  3. Twenty-five years of modeling multiphase flow and heat transfer

    Lyczkowski, R.W.

    1999-01-01

    This presentation will cover some of the highlights of multiphase modeling in collaboration with Professor Dimitri Gidaspow (DG) over the last roughly twenty-five years. It all started in 1972 in Idaho Falls with Charles Solbrig, who planned and initiated a project for the former USAEC to develop a computer code to replace RELAP4 to analyze the loss of coolant accident (LOCA). DG spent his sabbatical on the project in 1973. One highlight was the discovery of complex characteristics, the implications of which are still pondered by some. Fluidization research began in 1978 when the author collaboratively developed a step-by-step building-block approach to understanding the hydrodynamics of fluidized beds, an approach closely coupled to validation experiments. A grant from the USDOE to study solids circulation around a jet in a fluidized bed was awarded to DG in 1978. Following that, grants from GRI, NSF, and a contract from Westinghouse Electric Corp. allowed the early work to continue. Progress was slow since computer costs were high. Subsequent continuing support from the USDOE, NSF, EPRI, and industry has allowed research to continue, as has his collaboration. A highlight of this collaboration was the development of the monolayer energy dissipation (MED) erosion model. Multiphase flow and fluidization theory took quantum leaps with the publication of DG's Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions (MFF), Academic Press, San Diego (1994), for which there is essentially no competition. Only the late Professor S.L. Soo's Particulates and Continuum: Multiphase Fluid Dynamics, Hemisphere Publishing Corp., New York (1989), a textbook version of the classic monograph Multiphase Fluid Dynamics, Science Press, Beijing, China (1990), comes close. In MFF, the kinetic theory of granular flow has evolved as a potentially viable adjunct to the continuum multiphase theory, of which fluidization is one important manifestation. It must be

  4. Multiphase flow and phase change in microgravity: Fundamental research and strategic research for exploration of space

    Singh, Bhim S.

    2003-01-01

    NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel

  5. Surface Tension of Multi-phase Flow with Multiple Junctions Governed by the Variational Principle

    Matsutani, Shigeki; Nakano, Kota; Shinjo, Katsuhiko

    2011-01-01

    We explore a computational model of an incompressible fluid with a multi-phase field in three-dimensional Euclidean space. By investigating an incompressible fluid with a two-phase field geometrically, we reformulate the expression of the surface tension for the two-phase field found by Lafaurie et al. (J Comput Phys 113:134–147, 1994) as a variational problem related to an infinite dimensional Lie group, the volume-preserving diffeomorphism. The variational principle to the action integral with the surface energy reproduces their Euler equation of the two-phase field with the surface tension. Since the surface energy of multiple interfaces even with singularities is not difficult to be evaluated in general and the variational formulation works for every action integral, the new formulation enables us to extend their expression to that of a multi-phase (N-phase, N ≥ 2) flow and to obtain a novel Euler equation with the surface tension of the multi-phase field. The obtained Euler equation governs the equation for motion of the multi-phase field with different surface tension coefficients without any difficulties for the singularities at multiple junctions. In other words, we unify the theory of multi-phase fields which express low dimensional interface geometry and the theory of the incompressible fluid dynamics on the infinite dimensional geometry as a variational problem. We apply the equation to the contact angle problems at triple junctions. We computed the fluid dynamics for a two-phase field with a wall numerically and show the numerical computational results that for given surface tension coefficients, the contact angles are generated by the surface tension as results of balances of the kinematic energy and the surface energy.

  6. Evaluation of the atmospheric significance of multiphase reactions in atmospheric secondary organic aerosol formation

    Gelencsér

    2005-01-01

    Full Text Available In a simple conceptual cloud-aerosol model the mass of secondary organic aerosol (SOA that may be formed in multiphase reaction in an idealized scenario involving two cloud cycles separated with a cloud-free period is evaluated. The conditions are set to those typical of continental clouds, and each parameter used in the model calculations is selected as a mean of available observational data of individual species for which the multiphase SOA formation route has been established. In the idealized setting gas and aqueous-phase reactions are both considered, but only the latter is expected to yield products of sufficiently low volatility to be retained by aerosol particles after the cloud dissipates. The key variable of the model is the Henry-constant which primarily determines how important multiphase reactions are relative to gas-phase photooxidation processes. The precursor considered in the model is assumed to already have some affinity to water, i.e. it is a compound having oxygen-containing functional group(s. As a principal model output an aerosol yield parameter is calculated for the multiphase SOA formation route as a function of the Henry-constant, and has been found to be significant already above H~103 M atm-1. Among the potential precursors that may be eligible for this mechanism based on their Henry constants, there are a suite of oxygenated compounds such as primary oxidation products of biogenic and anthropogenic hydrocarbons, including, for example, pinonaldehyde. Finally, the analogy of multiphase SOA formation to in-cloud sulfate production is exploited.

  7. Calculation model of non-linear dynamic deformation of composite multiphase rods

    Mishchenko Andrey Viktorovich

    2014-05-01

    Full Text Available The method of formulating non-linear physical equations for multiphase rods is suggested in the article. Composite multiphase rods possess various structures, include shear, polar, radial and axial inhomogeneity. The Timoshenko’s hypothesis with the large rotation angles is used. The method is based on the approximation of longitudinal normal stress low by basic functions expansions regarding the linear viscosity low. The shear stresses are calculated with the equilibrium equation using the subsidiary function of the longitudinal shift force. The system of differential equations connecting the internal forces and temperature with abstract deformations are offered by the basic functions. The application of power functions with arbitrary index allows presenting the compact form equations. The functional coefficients in this system are the highest order rigidity characteristics. The whole multiphase cross-section rigidity characteristics are offered the sums of the rigidity characteristics of the same phases individually. The obtained system allows formulating the well-known particular cases. Among them: hard plasticity and linear elastic deformation, different module deformation and quadratic Gerstner’s low elastic deformation. The reform of differential equations system to the quasilinear is suggested. This system contains the secant variable rigidity characteristics depending on abstract deformations. This system includes the sum of the same uniform blocks of different order. The rods phases defined the various set of uniform blocks phase materials. The integration of dynamic, kinematic and physical equations taking into account initial and edge condition defines the full dynamical multiphase rods problem. The quasilinear physical equations allow getting the variable flexibility matrix of multiphase rod and rods system.

  8. Diagnostic accuracy of the MMPI-2 with the Mexican criminal personality: The ROC curve analysis

    Ampudia Rueda, Amada; Sánchez Crespo, Guadalupe; Jiménez Gómez, Fernando 

    2016-01-01

    The objective of this study is to assess the diagnostic accuracy of the personality of the Mexican criminal with the Minnesota Multiphasic Personality Inventory-2 (MMPI-2). The inventory was administered to 1,740 Mexican participants of which 870 (728 male and 142 female) are prison inmates, processed and/or sentenced for various crimes from various prisons in Mexico City, and the other 870 participants (728 male and 142 female) are not prison inmates. The ROC (Receiver Operating Characterist...

  9. [Methodological aspects of risk assessment of work related stress. Italian experience of R Karasek JCQ application, a multiphase approach].

    Ferrario, M M; Cesana, G

    2009-01-01

    Due to a new legislation, the assessment of work stress has become compulsory in Italy for all the enterprise. Work stress is become a leading health problem in work settings all over Europe. The two major approaches, the expert-based direct observations and the measurements of the perceived job strain, are briefly introduced emphasizing on strengthens and weaknesses. Among the methods to assess perceived job stress, the Karasek's Job Content Questionnaire has been extensively used in Italy, and the available results support its use because reliable and able to pick up major constrictiveness at work. In addition, because it is now possible to have reference levels, comparisons are possible for either public or private enterprises. Acknowledging the complexity of carrying out reliable assessment of work stress, a multiphase approach is emphasised: first an analysis or current data can be used to estimate the levels of turnover, down-sizing, outsourcing, extra hours, shift work, sickness absenteeism, changes of job titles, work accidents and work-related diseases. At a second step, on groups of workers selected because recognised at risk at the first phase and on control groups, the JCQ can be used to assess workers stress perception. Finally, when constrain conditions emerge,further investigations are required, including: intervention of experts in work organisation analysis, clinical psychological examinations of selected workers, to separate between work-related and personal psychological problems and health consequences.

  10. Online recognition of the multiphase flow regime and study of slug flow in pipeline

    Guo Liejin; Bai Bofeng; Zhao Liang; Wang Xin; Gu Hanyang

    2009-01-01

    Multiphase flow is the phenomenon existing widely in nature, daily life, as well as petroleum and chemical engineering industrial fields. The interface structure among multiphase and their movement are complicated, which distribute random and heterogeneously in the spatial and temporal scales and have multivalue of the flow structure and state. Flow regime is defined as the macro feature about the multiphase interface structure and its distribution, which is an important feature to describe multiphase flow. The energy and mass transport mechanism differ much for each flow regimes. It is necessary to solve the flow regime recognition to get a clear understanding of the physical phenomena and their mechanism of multiphase flow. And the flow regime is one of the main factors affecting the online measurement accuracy of phase fraction, flow rate and other phase parameters. Therefore, it is of great scientific and technological importance to develop new principles and methods of multiphase flow regime online recognition, and of great industrial background. In this paper, the key reasons that the present method cannot be used to solve the industrial multiphase flow pattern recognition are clarified firstly. Then the prerequisite to realize the online recognition of multiphase flow regime is analyzed, and the recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of single

  11. Is it possible to design universal multi-phase flow analyzer?

    Ivanov Kolev, N.

    2005-01-01

    Transient 3D-multiphase flows consisting of many chemical constituents in nature and technology (Figs. 1 and 2) are the common case of flows. In many technical applications we have to do with particular realization of the multi-phase flows like steady state flows, or single component flows or single phase flows etc. Engineers and scientists created hundreds of computer codes for description of more or less specific realizations of multi-phase flows. If one compares the structure of these codes one is astonished by the waste of the human resources for programming repeating model elements like equations of state, friction lows in variety of geometry, heat transfer coefficients, mathematical equation solvers, data handling procedures, graphical environment etc. It is hardly to expect, that the best solution for the specific sub-phenomenon is available in all codes. Looking in other branches of the technology like computer chips production we realize that the revolutionary idea of having common ''chips'' within complex applications is very far from its practical realization in the computational multi-phase flow dynamics. Following this line of arguments I expressed several times in my publications explicitly or implicitly the idea, that it is possible to create a universal multi-phase flow analyzer in the sense of computer architecture, that is capable to absorb the adequate multi-phase knowledge data base specified in Appendix 1. The subject of this paper is to summarize some of the main ideas, some of them already realized by this author, on the way of creating such computer code architecture, to illustrate haw they work, and to make an outlook regarding what are the challenges in the future developments. We confine deliberately our attention to the solution of the so called local volume and time averaged system of PDE's for a simple reason: Direct numerical resolution of interacting fluids is possible as demonstrated for small scales by many researchers, but for

  12. THE WORK SIMULATION OF FLOW RATE FOR CARRIAGES' REPAIR AS A MULTIPHASE, MULTIPLEX AND MULTIDISCIPLINARY SYSTEM OF MASS SERVICE

    V. V. Myamlin

    2011-04-01

    Full Text Available The algorithm of computer simulation of the flexible flow for repair of cars as a multiphase polychannel manyobject queuing system is presented. The basic operators of the model are given and their work is described.

  13. Final Project Report CFA-14-6357: A New Paradigm for Understanding Multiphase Ceramic Waste Form Performance

    Brinkman, Kyle [Clemson Univ., SC (United States); Bordia, Rajendra [Clemson Univ., SC (United States); Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States); Chiu, Wilson [Univ. of Connecticut, Storrs, CT (United States); Amoroso, Jake [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-28

    This project fabricated model multiphase ceramic waste forms with processing-controlled microstructures followed by advanced characterization with synchrotron and electron microscopy-based 3D tomography to provide elemental and chemical state-specific information resulting in compositional phase maps of ceramic composites. Details of 3D microstructural features were incorporated into computer-based simulations using durability data for individual constituent phases as inputs in order to predict the performance of multiphase waste forms with varying microstructure and phase connectivity.

  14. TOURGHREACT: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-01-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between ...

  15. Panic disorder: Psychobiological aspects of personality dimensions

    Draganić-Gajić Saveta

    2005-01-01

    Full Text Available Attempts to understand the underlying mechanisms of association between psychological factors and panic disorder have been mostly based on psychodynamic description. Evidence of the importance of serotonergic (5-HT system in panic disorder (PD, however, has substanti ally increased in recent years. OBJECTIVE The objective of our study was to determine whether there was a specific personality profile of panic disorder patients and how it was related to possible neurobiological mechanisms underlying personality dimensions. PATIENTS AND METHODS Sample consisted of 14 inpatients with ICD-X diagnosis of panic disorder and 34 healthy control subjects. Personality dimensions were assessed by Minnesota Multiphasic Personality Inventory (MMPI-201 and Tridimensional Personality Questionnaire (TPQ. To assess central 5-HT function, platelet monoamine-oxidase (MAO activity was measured. RESULTS In panic disorder group, higher scores of histrionic, depressive and hypochondriac subscales and significant increase of harm avoidance (HA scale as well as low MAO activity were found. Negative correlation was established between MAO activity and psychopathic deviance MMPI scale. CONCLUSION The obtained results might indicate a specific personality profile of patients with panic disorder, which is characterized by high neuroticism, fearfulness, inhibition, shyness and apprehensive worry. Low MAO activity and high HA scores possibly indicate underlying hyperserotonergic state. The observed correlation between personality traits and MAO activity provide additional support for the hypothesized functional relationship between underlying central monoaminergic activity and temperament traits associated with anxiety, depression and impulsivity.

  16. Multiphase boudinage: a case study of amphibolites in marble in the Naxos migmatite core

    Virgo, Simon; von Hagke, Christoph; Urai, Janos L.

    2018-02-01

    In multiply deformed terrains multiphase boudinage is common, but identification and analysis of these is difficult. Here we present an analysis of multiphase boudinage and fold structures in deformed amphibolite layers in marble from the migmatitic centre of the Naxos metamorphic core complex. Overprinting between multiple boudinage generations is shown in exceptional 3-D outcrop. We identify five generations of boudinage, reflecting the transition from high-strain high-temperature ductile deformation to medium- to low-strain brittle boudins formed during cooling and exhumation. All boudin generations indicate E-W horizontal shortening and variable direction of bedding parallel extension, evolving from subvertical extension in the earliest boudins to subhorizontal N-S extension during exhumation. Two phases of E-W shortening can be inferred, the first associated with lower crustal synmigmatic convergent flow and the second associated with exhumation and N-S extension, possibly related to movement of the North Anatolian Fault.

  17. Laboratory setup and results of experiments on two-dimensional multiphase flow in porous media

    McBride, J.F.; Graham, D.N.

    1990-10-01

    In the event of an accidental release into earth's subsurface of an immiscible organic liquid, such as a petroleum hydrocarbon or chlorinated organic solvent, the spatial and temporal distribution of the organic liquid is of great interest when considering efforts to prevent groundwater contamination or restore contaminated groundwater. An accurate prediction of immiscible organic liquid migration requires the incorporation of relevant physical principles in models of multiphase flow in porous media; these physical principles must be determined from physical experiments. This report presents a series of such experiments performed during the 1970s at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. The experiments were designed to study the transient, two-dimensional displacement of three immiscible fluids in a porous medium. This experimental study appears to be the most detailed published to date. The data obtained from these experiments are suitable for the validation and test calibration of multiphase flow codes. 73 refs., 140 figs

  18. Adverse Condition and Critical Event Prediction in Cranfield Multiphase Flow Facility

    Egedorf, Søren; Shaker, Hamid Reza

    2017-01-01

    , or even to the environment. To cope with these, adverse condition and critical event prediction plays an important role. Adverse Condition and Critical Event Prediction Toolbox (ACCEPT) is a tool which has been recently developed by NASA to allow for a timely prediction of an adverse event, with low false...... alarm and missed detection rates. While ACCEPT has shown to be an effective tool in some applications, its performance has not yet been evaluated on practical well-known benchmark examples. In this paper, ACCEPT is used for adverse condition and critical event prediction in a multiphase flow facility....... Cranfield multiphase flow facility is known to be an interesting benchmark which has been used to evaluate different methods from statistical process monitoring. In order to allow for the data from the flow facility to be used in ACCEPT, methods such as Kernel Density Estimation (KDE), PCA-and CVA...

  19. Speed-sensorless control strategy for multi-phase induction generator in wind energy conversion systems

    Dumnić Boris P.

    2016-01-01

    Full Text Available Renewable energy sources, especially wind energy conversion systems (WECS, exhibit constant growth. Increase in power and installed capacity led to advances in WECS topologies. Multi-phase approach presents a new development direction, with several key advantages over three-phase systems. Paired with a sensorless control strategy, multi-phase machines are expected to take primacy over standard solutions. This paper presents speed sensorless vector control of an asymmetrical six-phase induction generator based on a model reference adaptive system (MRAS. Suggested topology and developed control algorithm show that sensorless control can yield appropriate dynamic characteristics for the use in WECS with increase in reliability and robustness. [Projekat Ministarstva nauke Republike Srbije, br. III 042004: Smart Electricity Distribution Grids Based on Distribution Management System and Distributed Generation

  20. Isothermal Multiphase Flash Calculations with the PC-SAFT Equation of State

    Justo-Garcia, Daimler N.; Garcia-Sanchez, Fernando; Romero-Martinez, Ascencion

    2008-01-01

    A computational approach for isothermal multiphase flash calculations with the PC-SAFT (Perturbed-Chain Statistical Associating Fluid Theory) equation of state is presented. In the framework of the study of fluid phase equilibria of multicomponent systems, the general multiphase problem is the single most important calculation which consists of finding the correct number and types of phases and their corresponding equilibrium compositions such that the Gibbs energy of the system is a minimum. For solving this problem, the system Gibbs energy was minimized using a rigorous method for thermodynamic stability analysis to find the most stable state of the system. The efficiency and reliability of the approach to predict and calculate complex phase equilibria are illustrated by solving three typical problems encountered in the petroleum industry

  1. Microstructure and Tribological Properties of Mo-40Ni-13Si Multiphase Intermetallic Alloy.

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-12-06

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo-40Ni-13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo-Ni-Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy-including wear resistance, friction coefficient, and metallic tribological compatibility-were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  2. Multiphase flow modeling of molten material-vapor-liquid mixtures in thermal nonequilibrium

    Park, Ik Kyu; Park, Goon Cherl; Bang, Kwang Hyun

    2000-01-01

    This paper presents a numerical model of multiphase flow of the mixtures of molten material-liquid-vapor, particularly in thermal nonequilibrium. It is a two-dimensional, transient, three-fluid model in Eulerian coordinates. The equations are solved numerically using the finite difference method that implicitly couples the rates of phase changes, momentum, and energy exchange to determine the pressure, density, and velocity fields. To examine the model's ability to predict an experimental data, calculations have been performed for tests of pouring hot particles and molten material into a water pool. The predictions show good agreement with the experimental data. It appears, however, that the interfacial heat transfer and breakup of molten material need improved models that can be applied to such high temperature, high pressure, multiphase flow conditions

  3. Experimental analysis of influence of different lubricants types on the multi-phase ironing process

    Milan Djordjević

    2013-05-01

    Full Text Available This paper is aimed at presenting results of an experimental analysis of the different types of lubricants influence on the multi-phase ironing process. Based on sliding of the metal strip between the two contact elements a special tribological model was adopted. The subject of experimental investigations was variations of the drawing force, contact pressure and the friction coefficient for each type of the applied lubricants. The ironing process was conducted in three-phases at the constant sliding velocity. The objective of this analysis was to compare all the applied lubricants in order to estimate their quality from the point of view of their applicability in the multi-phase ironing process.

  4. EXPERIMENTAL ANALYSIS OF INFLUENCE OF DIFFERENT LUBRICANTS TYPES ON THE MULTI-PHASE IRONING PROCESS

    Milan Djordjević

    2013-09-01

    Full Text Available This paper is aimed at presenting results of an experimental analysis of the different types of lubricants influence on the multi-phase ironing process. Based on sliding of the metal strip between the two contact elements a special tribological model was adopted. The subject of experimental investigations was variations of the drawing force, contact pressure and the friction coefficient for each type of the applied lubricants. The ironing process was conducted in three-phases at the constant sliding velocity. The objective of this analysis was to compare all the applied lubricants in order to estimate their quality from the point of view of their applicability in the multi-phase ironing process.

  5. Numerical simulation of single-phase and multiphase non-Darcy flowin porous and fractured reservoirs

    Wu, Yu-Shu

    2000-06-02

    A numerical method as well as a theoretical study of non-Darcy fluid flow of through porous and fractured reservoirs is described. The non-Darcy flow is handled in a three-dimensional, multiphase flow reservoir simulator, while the model formulation incorporates the Forchheimer equation for describing single-phase or multiphase non-Darcy flow and displacement. The numerical scheme has been verified by comparing its results against those of analytical methods. Numerical solutions are used to obtain some insight into the physics of non-Darcy flow and displacement in reservoirs. In addition, several type curves are provided for well-test analyses of non-Darcy flow to demonstrate a methodology for modeling this type of flow in porous and fractured rocks, including flow in geothermal reservoirs.

  6. Nonequilibrium Physics and Phase-Field Modeling of Multiphase Flow in Porous Media

    Juanes, Ruben [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-09-01

    The overarching goal of this project was to develop a new continuum theory of multiphase flow in porous media. The theory follows a phase-field modeling approach, and therefore has a sound thermodynamical basis. It is a phenomenological theory in the sense that its formulation is driven by macroscopic phenomena, such as viscous instabilities during multifluid displacement. The research agenda was organized around a set of hypothesis on hitherto unexplained behavior of multiphase flow. All these hypothesis are nontrivial, and testable. Indeed, a central aspect of the project was testing each hypothesis by means of carefully-designed laboratory experiments, therefore probing the validity of the proposed theory. The proposed research places an emphasis on the fundamentals of flow physics, but is motivated by important energy-driven applications in earth sciences, as well as microfluidic technology.

  7. A novel anti-frictional multiphase layer produced by plasma nitriding of PVD titanium coated ZL205A aluminum alloy

    Lu, C.; Yao, J. W.; Wang, Y. X.; Zhu, Y. D.; Guo, J. H.; Wang, Y.; Fu, H. Y.; Chen, Z. B.; Yan, M. F.

    2018-02-01

    The heat treatment (consisting of solid solution and aging), is integrated with the nitriding process of titanium coated ZL205A aluminum alloy to improve the surface and matrix mechanical properties simultaneously. Two-step duplex treatment is adopted to prepare the gradient multiphase layer on a magnesium-free ZL205A aluminum-copper based alloy. Firstly, pure titanium film is deposited on the aluminum alloy substrate using magnetron sputtering. Secondly, the Ti-coated specimen is nitrided at the solid solution temperature of the substrate alloying elements in a gas mixture of N2 and H2 and aged at 175 °C. The microstructure evolution, microhardness as well as the wear resistance of obtained multiphase layers are investigated by means of scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), microhardness tester and pin-on-disc tribometer. The multiphase layer, dominated by TiN0.3 or Al3Ti, is prepared with significantly increased layer depth after duplex treatment. The surface hardness of multiphase layer is remarkably improved from 23.7HV to 457HV. The core matrix hardness is also increased to 65HV after aging. The wear rate of the multiphase layer decreases about 55.22% and 49.28% in comparison with the aged and Ti coated specimens, respectively. The predominant wear mechanism for the multiphase layer is abrasive and oxidation, but severe adhesive wear for the aged and Ti coated specimens.

  8. Well-posedness and stability characteristics of multi-phase models

    Ransom, V.H.; Trapp, J.A.

    1984-01-01

    The ill-posed characteristic associated with the basic two-fluid model for multi-phase flow is a natural consequence of the idealized physical model and the mean flow modeling approach. Two approaches are discussed whereby including added physics of the flow results in a well-posed system of partial differential equations. These models offer the possibility of improved accuracy and numerical efficiency compared to the numerical models used in the existing light water reactor safety analysis codes

  9. An efficient numerical approach for transient simulation of multiphase flow behavior in centrifuges

    Hammerich, Simon; Nirschl, Hermann

    2016-01-01

    The separation process of particles and liquids in centrifuge is a widely used operation in industry. In spite of the long term usage of centrifuges, the knowledge for a detailed characterization of the interaction of the macroscopic processes due the separation is lacking. Reason for this is the complex multiphase flow and the sediment built-up within the machines. The sediment shape influences the flow behavior. The shape is dependent of the rheological behavior of the sediment. Computation...

  10. Entropic lattice Boltzmann model for charged leaky dielectric multiphase fluids in electrified jets.

    Lauricella, Marco; Melchionna, Simone; Montessori, Andrea; Pisignano, Dario; Pontrelli, Giuseppe; Succi, Sauro

    2018-03-01

    We present a lattice Boltzmann model for charged leaky dielectric multiphase fluids in the context of electrified jet simulations, which are of interest for a number of production technologies including electrospinning. The role of nonlinear rheology on the dynamics of electrified jets is considered by exploiting the Carreau model for pseudoplastic fluids. We report exploratory simulations of charged droplets at rest and under a constant electric field, and we provide results for charged jet formation under electrospinning conditions.

  11. Realization of Electronically Tunable Current- Mode Multiphase Sinusoidal Oscillators Using CFTAs

    Prungsak Uttaphut

    2012-01-01

    An implementation of current-mode multiphase sinusoidal oscillators is presented. Using CFTA-based lossy integrators, odd and odd/even phase systems can be realized with following advantages. The condition of oscillation and frequency of oscillation can be orthogonally tuned. The high output impedances facilitate easy driving an external load without additional current buffers. The proposed MSOs provide odd or even phase signals that are equally spaced in phase and equal amplitude. The circui...

  12. Droplet and multiphase effects in a shock-driven hydrodynamic instability with reshock

    Middlebrooks, John B.; Avgoustopoulos, Constantine G.; Black, Wolfgang J.; Allen, Roy C.; McFarland, Jacob A.

    2018-06-01

    Shock-driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching applications in engineering and science such as high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase field is impulsively accelerated by a shock wave and evolves as a result of gradients in particle-gas momentum transfer. A new shock tube facility has been constructed to study the SDMI. Experiments were conducted to investigate liquid particle and multiphase effects in the SDMI. A multiphase cylindrical interface was created with water droplet laden air in our horizontal shock tube facility. The interface was accelerated by a Mach 1.66 shock wave, and its reflection from the end wall. The interface development was captured using laser illumination and a high-resolution CCD camera. Laser interferometry was used to determine the droplet size distribution. A particle filtration technique was used to determine mass loading within an interface and verify particle size distribution. The effects of particle number density, particle size, and a secondary acceleration (reshock) of the interface were noted. Particle number density effects were found comparable to Atwood number effects in the Richtmyer-Meshkov instability for small (˜ 1.7 {μ }m) droplets. Evaporation was observed to alter droplet sizes and number density, markedly after reshock. For large diameter droplets (˜ 10.7 {μ }m), diminished development was observed with larger droplets lagging far behind the interface. These lagging droplets were also observed to breakup after reshock into structured clusters of smaller droplets. Mixing width values were reported to quantify mixing effects seen in images.

  13. Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors

    Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.

    2014-12-01

    Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.

  14. Shaken Snow Globes: Kinematic Tracers of the Multiphase Condensation Cascade in Massive Galaxies, Groups, and Clusters

    Gaspari, M.; McDonald, M.; Hamer, S. L.; Brighenti, F.; Temi, P.; Gendron-Marsolais, M.; Hlavacek-Larrondo, J.; Edge, A. C.; Werner, N.; Tozzi, P.; Sun, M.; Stone, J. M.; Tremblay, G. R.; Hogan, M. T.; Eckert, D.; Ettori, S.; Yu, H.; Biffi, V.; Planelles, S.

    2018-02-01

    We propose a novel method to constrain turbulence and bulk motions in massive galaxies, galaxy groups, and clusters, exploring both simulations and observations. As emerged in the recent picture of top-down multiphase condensation, hot gaseous halos are tightly linked to all other phases in terms of cospatiality and thermodynamics. While hot halos (∼107 K) are perturbed by subsonic turbulence, warm (∼104 K) ionized and neutral filaments condense out of the turbulent eddies. The peaks condense into cold molecular clouds (runs, and is corroborated by the combined Hitomi and new Integral Field Unit measurements in the Perseus cluster. The ensemble multiphase gas distributions (from the UV to the radio band) are characterized by substantial spectral line broadening (σ v,los ≈ 100–200 {km} {{{s}}}-1) with a mild line shift. On the other hand, pencil-beam detections (as H I absorption against the AGN backlight) sample the small-scale clouds displaying smaller broadening and significant line shifts of up to several 100 {km} {{{s}}}-1 (for those falling toward the AGN), with increased scatter due to the turbulence intermittency. We present new ensemble σ v,los of the warm Hα+[N II] gas in 72 observed cluster/group cores: the constraints are consistent with the simulations and can be used as robust proxies for the turbulent velocities, in particular for the challenging hot plasma (otherwise requiring extremely long X-ray exposures). Finally, we show that the physically motivated criterion C ≡ t cool/t eddy ≈ 1 best traces the condensation extent region and the presence of multiphase gas in observed clusters and groups. The ensemble method can be applied to many available spectroscopic data sets and can substantially advance our understanding of multiphase halos in light of the next-generation multiwavelength missions.

  15. Case study in Venezuela : performance of multiphase meter in extra heavy oil

    Marin, A. [Petroleos de Venezuela SA, Caracas (Venezuela); Bornia, O.; Pinguet, B. [Schlumberger Canada Ltd., Edmonton, AB (Canada)

    2008-10-15

    The performance of a multiphase meter that combines Venturi and multi energy gamma rays was investigated during operation in an extra heavy oil field in Venezuela. The Orocual field in Monagas is one of the most diverse oilfields in Venezuela. It produces gas condensate, light and medium oil and has recently started to produce from a heavy and extra-heavy oil reservoir, with a gravity between 8.6 and 11 API and a viscosity range from 6 Pa.s to more than 20 Pa.s at line conditions. Petroleos de Venezuela SA (PDVSA) is currently using cold production systems in this field. PDVSA attempted to estimate the liquid flow rate using conventional storage tanks but was unable to evaluate the gas production in such an environment of low GOR with emulsion, large amounts of foam and high viscosity. Since the density of heavy oil is close to the density of water, gravity separation cannot be applied. Also, since heavy oil is very viscous, proper separation requires a long retention time, which is not feasible in terms of space or economy. In addition, gas bubbles could not flow freely and remained as a gas phase trapped inside the liquid, resulting in an overestimation of some of the liquid flow rate. In order to measure the field's oil, water and gas flow rates, PDVSA tried several multiphase meters but found that a Venturi and multi energy gamma ray combination was the only solution able to accurately measure multiphase flow in its extra heavy oil. A test demonstrated that, compared to a tank system, the overall uncertainty of the Venturi combination was better than 2 per cent. This extended the operating envelope for PDVSA for using this multiphase metering technology, providing the capability to monitor and optimize in real-time the production in this extra heavy oil field. 15 refs., 10 figs.

  16. Differential treatment response of subtypes of patients with borderline personality organization, as assessed with theory-driven profiles of the Dutch short form of the MMPI: a naturalistic follow-up study

    Eurelings-Bontekoe, E.H.M.; Peen, J.; Noteboom, A.; Alkema, M.; Dekker, J.J.M.

    2012-01-01

    We investigated the validity of different subtypes of borderline personality organization (BPO) as assessed by theory-driven profiles of the Minnesota Multiphasic Personality Disorder (MMPI; Hathaway & McKinley, 1943) Dutch Short Form (DSFM; Eurelings-Bontekoe, Onnink, Williams, & Snellen, 2008) in

  17. A review of spurious currents in the lattice Boltzmann method for multiphase flows

    Conning Ton, Kevin; Lee, Tae Hun [The City College of the City Univ. of New York, New York (United States)

    2012-12-15

    A spurious current is a small amplitude artificial velocity field which arises from an imbalance between discretized forces in multiphase/multi component flows. If it occurs, the velocity field may persist indefinitely, preventing the achievement of a true equilibrium state. Spurious velocities can sometimes be as large as the characteristic velocities of the problem, causing severe instability and ambiguity between physical and spurious velocities. They are typically exacerbated by large values of numerical surface tension or when the two fluids being simulated have large density ratios. The resulting instability can restrict what parameters may be simulated. To varying degrees, spurious currents are found in all multiphase flow models of the lattice Boltzmann method (LBM). There have been many studies of the occurrence of the phenomenon, and many suggestions on how to eliminate it. This paper reviews the three main models of simulating multiphase/multi component flow in the lattice Boltzmann method, as well as the subsequent modifications made in order to reduce or eliminate spurious currents.

  18. Diagnosis of myocardial ischemia combining multiphase postmortem CT-angiography, histology, and postmortem biochemistry.

    Vanhaebost, Jessica; Ducrot, Kewin; de Froidmont, Sébastien; Scarpelli, Maria Pia; Egger, Coraline; Baumann, Pia; Schmit, Gregory; Grabherr, Silke; Palmiere, Cristian

    2017-02-01

    The aim of this study was to assess whether the identification of pathological myocardial enhancement at multiphase postmortem computed tomography angiography was correlated with increased levels of troponin T and I in postmortem serum from femoral blood as well as morphological findings of myocardial ischemia. We further aimed to investigate whether autopsy cases characterized by increased troponin T and I concentrations as well as morphological findings of myocardial ischemia were also characterized by pathological myocardial enhancement at multiphase postmortem computed tomography angiography. Two different approaches were used. In one, 40 forensic autopsy cases that had pathological enhancement of the myocardium (mean Hounsfield units ≥95) observed at postmortem angiography were retrospectively selected. In the second approach, 40 forensic autopsy cases that had a cause of death attributed to acute myocardial ischemia were retrospectively selected. The preliminary results seem to indicate that the identification of a pathological enhancement of the myocardium at postmortem angiography is associated with the presence of increased levels of cardiac troponins in postmortem serum and morphological findings of ischemia. Analogously, a pathological enhancement of the myocardium at postmortem angiography can be retrospectively found in the great majority of autopsy cases characterized by increased cardiac troponin levels in postmortem serum and morphological findings of myocardial ischemia. Multiphase postmortem computed tomography angiography is a useful tool in the postmortem setting for investigating ischemically damaged myocardium.

  19. Multiphasic on/off pheromone signalling in moths as neural correlates of a search strategy.

    Dominique Martinez

    Full Text Available Insects and robots searching for odour sources in turbulent plumes face the same problem: the random nature of mixing causes fluctuations and intermittency in perception. Pheromone-tracking male moths appear to deal with discontinuous flows of information by surging upwind, upon sensing a pheromone patch, and casting crosswind, upon losing the plume. Using a combination of neurophysiological recordings, computational modelling and experiments with a cyborg, we propose a neuronal mechanism that promotes a behavioural switch between surge and casting. We show how multiphasic On/Off pheromone-sensitive neurons may guide action selection based on signalling presence or loss of the pheromone. A Hodgkin-Huxley-type neuron model with a small-conductance calcium-activated potassium (SK channel reproduces physiological On/Off responses. Using this model as a command neuron and the antennae of tethered moths as pheromone sensors, we demonstrate the efficiency of multiphasic patterning in driving a robotic searcher toward the source. Taken together, our results suggest that multiphasic On/Off responses may mediate olfactory navigation and that SK channels may account for these responses.

  20. Multiphasic on/off pheromone signalling in moths as neural correlates of a search strategy.

    Martinez, Dominique; Chaffiol, Antoine; Voges, Nicole; Gu, Yuqiao; Anton, Sylvia; Rospars, Jean-Pierre; Lucas, Philippe

    2013-01-01

    Insects and robots searching for odour sources in turbulent plumes face the same problem: the random nature of mixing causes fluctuations and intermittency in perception. Pheromone-tracking male moths appear to deal with discontinuous flows of information by surging upwind, upon sensing a pheromone patch, and casting crosswind, upon losing the plume. Using a combination of neurophysiological recordings, computational modelling and experiments with a cyborg, we propose a neuronal mechanism that promotes a behavioural switch between surge and casting. We show how multiphasic On/Off pheromone-sensitive neurons may guide action selection based on signalling presence or loss of the pheromone. A Hodgkin-Huxley-type neuron model with a small-conductance calcium-activated potassium (SK) channel reproduces physiological On/Off responses. Using this model as a command neuron and the antennae of tethered moths as pheromone sensors, we demonstrate the efficiency of multiphasic patterning in driving a robotic searcher toward the source. Taken together, our results suggest that multiphasic On/Off responses may mediate olfactory navigation and that SK channels may account for these responses.

  1. Analysis of a bubble coalescence in the multiphase lattice Boltzmann method

    Ryu, Seung Yeob; Park, Cheon Tae; Lee, Chung Chan; Kim, Keung Koo

    2008-01-01

    Recently, the lattice Boltzmann method (LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over a conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for a pressure, and (3) an ease with multiphase flows, complex geometries and interfacial dynamics may be treated. To study the effect of the mobility coefficient Γ and the width of the interface layer, two stationary bubbles without a collision are considered. The gap of the two bubbles is taken as 4, while the width of the interface (w) and the mobility coefficient Γ are varied. In the present work, the lattice Boltzmann model for multiphase flows proposed by Zheng et al. is used for simulating two stationary bubbles without a collision. By adopting a finite difference gradient operator of a sufficient isotropy, the spurious currents can be made smaller. The main objective of the present work is to establish the lattice Boltzmann method as a viable tool for the simulation of multiphase or multi-component flows

  2. Application of multiphase modelling for vortex occurrence in vertical pump intake - a review

    Samsudin, M. L.; Munisamy, K. M.; Thangaraju, S. K.

    2015-09-01

    Vortex formation within pump intake is one of common problems faced for power plant cooling water system. This phenomenon, categorised as surface and sub-surface vortices, can lead to several operational problems and increased maintenance costs. Physical model study was recommended from published guidelines but proved to be time and resource consuming. Hence, the use of Computational Fluid Dynamics (CFD) is an attractive alternative in managing the problem. At the early stage, flow analysis was conducted using single phase simulation and found to find good agreement with the observation from physical model study. With the development of computers, multiphase simulation found further enhancement in obtaining accurate results for representing air entrainment and sub-surface vortices which were earlier not well predicted from the single phase simulation. The purpose of this paper is to describe the application of multiphase modelling with CFD analysis for investigating vortex formation for a vertically inverted pump intake. In applying multiphase modelling, there ought to be a balance between the acceptable usage for computational time and resources and the degree of accuracy and realism in the results as expected from the analysis.

  3. Pore scale study of multiphase multicomponent reactive transport during CO2 dissolution trapping

    Chen, Li; Wang, Mengyi; Kang, Qinjun; Tao, Wenquan

    2018-06-01

    Solubility trapping is crucial for permanent CO2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO2-water two-phase flow, multicomponent (CO2(aq), H+, HCO3-, CO32- and OH-) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO2(aq) concentration, scCO2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is required by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Finally, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.

  4. Multi-Phase Modular Drive System: A Case Study in Electrical Aircraft Applications

    Charles Onambele

    2017-12-01

    Full Text Available In this article, an advanced multiphase modular power drive prototype is developed for More Electric Aircraft (MEA. The proposed drive is designed to supply a multi-phase permanent magnet (PM motor rating 120 kW with 24 slots and 11 pole pairs. The power converter of the drive system is based on Silicon Carbide Metal Oxide Semiconductor Field-Effect Transistor (SiC MOSFET technology to operate at high voltage, high frequency and low reverse recovery current. Firstly, an experimental characterization test is performed for the selected SiC power module in harsh conditions to evaluate the switching energy losses. Secondly, a finite element thermal analysis based on Ansys-Icepak is accomplished to validate the selected cooling system for the power converter. Thirdly, a co-simulation model is developed using Matlab-Simulink and LTspice® to evaluate the SiC power module impact on the performance of a multiphase drive system at different operating conditions. The results obtained show that the dynamic performance and efficiency of the power drive are significantly improved, which makes the proposed system an excellent candidate for future aircraft applications.

  5. A Radiative Transfer Modeling Methodology in Gas-Liquid Multiphase Flow Simulations

    Gautham Krishnamoorthy

    2014-01-01

    Full Text Available A methodology for performing radiative transfer calculations in computational fluid dynamic simulations of gas-liquid multiphase flows is presented. By considering an externally irradiated bubble column photoreactor as our model system, the bubble scattering coefficients were determined through add-on functions by employing as inputs the bubble volume fractions, number densities, and the fractional contribution of each bubble size to the bubble volume from four different multiphase modeling options. The scattering coefficient profiles resulting from the models were significantly different from one another and aligned closely with their predicted gas-phase volume fraction distributions. The impacts of the multiphase modeling option, initial bubble diameter, and gas flow rates on the radiation distribution patterns within the reactor were also examined. An increase in air inlet velocities resulted in an increase in the fraction of larger sized bubbles and their contribution to the scattering coefficient. However, the initial bubble sizes were found to have the strongest impact on the radiation field.

  6. Eliminating cubic terms in the pseudopotential lattice Boltzmann model for multiphase flow

    Huang, Rongzong; Wu, Huiying; Adams, Nikolaus A.

    2018-05-01

    It is well recognized that there exist additional cubic terms of velocity in the lattice Boltzmann (LB) model based on the standard lattice. In this work, elimination of these cubic terms in the pseudopotential LB model for multiphase flow is investigated, where the force term and density gradient are considered. By retaining high-order (≥3 ) Hermite terms in the equilibrium distribution function and the discrete force term, as well as introducing correction terms in the LB equation, the additional cubic terms of velocity are entirely eliminated. With this technique, the computational simplicity of the pseudopotential LB model is well maintained. Numerical tests, including stationary and moving flat and circular interface problems, are carried out to show the effects of such cubic terms on the simulation of multiphase flow. It is found that the elimination of additional cubic terms is beneficial to reduce the numerical error, especially when the velocity is relatively large. Numerical results also suggest that these cubic terms mainly take effect in the interfacial region and that the density-gradient-related cubic terms are more important than the other cubic terms for multiphase flow.

  7. Application of multiphase modelling for vortex occurrence in vertical pump intake - a review

    Samsudin, M L; Munisamy, K M; Thangaraju, S K

    2015-01-01

    Vortex formation within pump intake is one of common problems faced for power plant cooling water system. This phenomenon, categorised as surface and sub-surface vortices, can lead to several operational problems and increased maintenance costs. Physical model study was recommended from published guidelines but proved to be time and resource consuming. Hence, the use of Computational Fluid Dynamics (CFD) is an attractive alternative in managing the problem. At the early stage, flow analysis was conducted using single phase simulation and found to find good agreement with the observation from physical model study. With the development of computers, multiphase simulation found further enhancement in obtaining accurate results for representing air entrainment and sub-surface vortices which were earlier not well predicted from the single phase simulation.The purpose of this paper is to describe the application of multiphase modelling with CFD analysis for investigating vortex formation for a vertically inverted pump intake. In applying multiphase modelling, there ought to be a balance between the acceptable usage for computational time and resources and the degree of accuracy and realism in the results as expected from the analysis. (paper)

  8. The use of magnetic resonance imaging to quantify multi-phase flow patterns and transitions

    Reyes, J.N. Jr.; Lafi, A.Y.; Saloner, D.

    1998-01-01

    Conventional measurement techniques have given limited insights into the complex structure of multi-phase flows. This has led to highly subjective flow pattern classifications which have been cast in terms of flow regime maps. Rather than using static flow regime maps, some of the next generation of multi-phase flow analysis codes will implement interfacial area transport equations that would calculate the flow patterns that evolve spatially and temporally. To assess these new codes, a large data base needs to be established to quantify the essential characteristics of multi-phase flow structure. One such characteristic is the interfacial area concentration. In this paper, we discuss the current benefits and limitations of using Magnetic Resonance Imaging (MRI) to examine multi- phase flow patterns and transitions. Of particular interest, are the MRI measurements of interfacial area concentration for slug flow in an air-water system. These tests were performed at the University of California, San Francisco (UCSF) School of Medicine MRI Center as a collaborative research effort with Oregon State University (OSU). The special scanning sequences designed by UCSF were capable of imaging at repetition intervals as fast as 7 milliseconds. (author)

  9. The use of magnetic resonance imaging to quantify multi-phase flow patterns and transitions

    Reyes, Jr, J N; Lafi, A Y [Department of Nuclear Engineering, Oregon State University, Corvallis, OR (United States); Saloner, D [University of California, San Francisco School of Medicine, Veterans Administration Medical Center, San Francisco, CA (United States)

    1998-09-01

    Conventional measurement techniques have given limited insights into the complex structure of multi-phase flows. This has led to highly subjective flow pattern classifications which have been cast in terms of flow regime maps. Rather than using static flow regime maps, some of the next generation of multi-phase flow analysis codes will implement interfacial area transport equations that would calculate the flow patterns that evolve spatially and temporally. To assess these new codes, a large data base needs to be established to quantify the essential characteristics of multi-phase flow structure. One such characteristic is the interfacial area concentration. In this paper, we discuss the current benefits and limitations of using Magnetic Resonance Imaging (MRI) to examine multi- phase flow patterns and transitions. Of particular interest, are the MRI measurements of interfacial area concentration for slug flow in an air-water system. These tests were performed at the University of California, San Francisco (UCSF) School of Medicine MRI Center as a collaborative research effort with Oregon State University (OSU). The special scanning sequences designed by UCSF were capable of imaging at repetition intervals as fast as 7 milliseconds. (author)

  10. The comparison of MSCT multi-phase scan features between benign prostatic hyperplasia and prostate cancer

    Liu Jingang; Wang Xizhen; Niu Qingliang; Lu Hongkai; Wang Bin

    2009-01-01

    Objective: To investigate the multi-phase contrast-enhanced features of multi-slice computed tomography (MSCT) of benign prostatic hyperplasia (BPH) and prostate cancer (PCa). Methods: Thirty-five BPH and twenty- seven PCa were examined with multi-phase contrast-enhanced MSCT scan. The peak time, maximum attenuation value (MAV) and time density curve (TDC) were recorded, and the slope of the contrast media uptake curve was calculated. Result: Significant differences between BPH and PCa in the type of the curves and the peak time were observed (P<0.01). The slopes of BPH and PCa were 0.45+0.25 and 0.7 6+0.34 respectively, the slope of PCa was higher than that of BPH (P<0.05). MAVs of BPH and PCa were (44.057±10.261) HU and (46.778±11.140) HU respectively, and there was no significant difference between them (P>0.05). Conclusion: The multi-phase MSCT scan can reflect the blood supply and enhancement characters of BPH and PCa, which are important in detection and differential diagnosis of the prostate diseases. (authors)

  11. Analysis of multiphase flows using dual-energy gamma densitometry and neural networks

    Bishop, C.M.; James, G.D.

    1993-01-01

    Dual-energy gamma densitometry offers a powerful technique for the non-intrusive analysis of multiphase flows. By employing multiple beam lines, information on the phase configuration can be obtained. Once the configuration is known, it then becomes possible in principle to determine the phase fractions. In practice, however, the extraction of the phase fractions from the densitometer data is complicated by the wide variety of phase configurations which can arise, and by the considerable difficulties of modelling multiphase flows. In this paper we show that neural network techniques provide a powerful approach to the analysis of data from dual-energy gamma densitometers, allowing both the phase configuration and the phase fractions to be determined with high accuracy, whilst avoiding the uncertainties associated with modelling. The technique is well suited to the determination of oil, water and gas fractions in multiphase oil pipelines. Results from linear and non-linear network models are compared, and a new technique for validating the network output is described. (orig.)

  12. Directional Acoustic Wave Manipulation by a Porpoise via Multiphase Forehead Structure

    Zhang, Yu; Song, Zhongchang; Wang, Xianyan; Cao, Wenwu; Au, Whitlow W. L.

    2017-12-01

    Porpoises are small-toothed whales, and they can produce directional acoustic waves to detect and track prey with high resolution and a wide field of view. Their sound-source sizes are rather small in comparison with the wavelength so that beam control should be difficult according to textbook sonar theories. Here, we demonstrate that the multiphase material structure in a porpoise's forehead is the key to manipulating the directional acoustic field. Computed tomography (CT) derives the multiphase (bone-air-tissue) complex, tissue experiments obtain the density and sound-velocity multiphase gradient distributions, and acoustic fields and beam formation are numerically simulated. The results suggest the control of wave propagations and sound-beam formations is realized by cooperation of the whole forehead's tissues and structures. The melon size significantly impacts the side lobes of the beam and slightly influences the main beams, while the orientation of the vestibular sac mainly adjusts the main beams. By compressing the forehead complex, the sound beam can be expanded for near view. The porpoise's biosonar allows effective wave manipulations for its omnidirectional sound source, which can help the future development of miniaturized biomimetic projectors in underwater sonar, medical ultrasonography, and other ultrasonic imaging applications.

  13. Hypervascular hepatocellular carcinomas: detection with gadoxetate disodium-enhanced MR imaging and multiphasic multidetector CT

    Onishi, Hiromitsu; Kim, Tonsok; Hori, Masatoshi; Nakaya, Yasuhiro; Tsuboyama, Takahiro; Nakamoto, Atsushi; Tatsumi, Mitsuaki; Tomiyama, Noriyuki [Osaka University Graduate School of Medicine, Department of Radiology, Suita, Osaka (Japan); Imai, Yasuharu [Ikeda Municipal Hospital, Department of Gastroenterology, Ikeda, Osaka (Japan); Nagano, Hiroaki [Osaka University Graduate School of Medicine, Department of Surgery, Suita, Osaka (Japan); Kumano, Seishi; Okada, Masahiro; Murakami, Takamichi [Kinki University School of Medicine, Department of Radiology, Osakasayama, Osaka (Japan); Takamura, Manabu [Ikeda Municipal Hospital, Department of Radiology, Ikeda, Osaka (Japan); Wakasa, Kenichi [Osaka City University Graduate School of Medicine, Department of Diagnostic Pathology, Osaka, Osaka (Japan)

    2012-04-15

    To retrospectively compare the accuracy of detection of hypervascular hepatocellular carcinoma (HCC) by multiphasic multidetector CT and by gadoxetate disodium-enhanced MR imaging. After ethical approval, we analysed a total of 73 hypervascular HCC lesions from 31 patients suspected of having HCC, who underwent both gadoxetate disodium-enhanced MR imaging and multiphasic multidetector CT. Five blinded observers independently reviewed CT images, as well as dynamic MR images alone and combined with hepatobiliary phase MR images. Diagnostic accuracy (Az values), sensitivities and positive predictive values were compared by using the Scheffe post hoc test. The mean Az value for dynamic and hepatobiliary phase MR combined (0.81) or dynamic MR images alone (0.78) was significantly higher than that for CT images (0.67, P < 0.001, 0.005, respectively). The mean sensitivity of the combined MR images (0.67) was significantly higher than that of dynamic MR alone (0.52, P < 0.05) or CT images (0.44, P < 0.05). The mean positive predictive values were 0.96, 0.95 and 0.94, for CT, dynamic MR alone and combined MR images, respectively. Compared with multiphasic multidetector CT, gadoxetate disodium-enhanced MR imaging combining dynamic and hepatobiliary phase images results in significantly improved sensitivity and diagnostic accuracy for detection of hypervascular HCC. (orig.)

  14. Energy Performance and Pressure Fluctuation of a Multiphase Pump with Different Gas Volume Fractions

    Jinsong Zhang

    2018-05-01

    Full Text Available Large petroleum resources in deep sea, and huge market demands for petroleum need advanced petroleum extraction technology. The multiphase pump, which can simultaneously transport oil and gas with considerable efficiency, has been a crucial technology in petroleum extraction. A numerical approach with mesh generation and a Navier-Stokes equation solution is employed to evaluate the effects of gas volume fraction on energy performance and pressure fluctuations of a multiphase pump. Good agreement of experimental and calculation results indicates that the numerical approach can accurately simulate the multiphase flow in pumps. The pressure rise of a pump decreases with the increasing of flow rate, and the pump efficiency decreases with the increasing of GVF (the ratio of the gas volume to the whole volume. Results show that the dominant frequencies of pressure fluctuation in the impeller and diffuser are eleven and three times those of the impeller rotational frequency, respectively. Due to the larger density of water and centrifugal forces, the water aggregates to the shroud and the gas gathers to the hub, which renders the distribution of GVF in the pump uneven. A vortex develops at the blade suction side, near the leading edge, induced by the leakage flow, and further affects the pressure fluctuation in the impeller. The obvious vortex in the diffuser indicates that the design of the divergence angle of the diffuser is not optimal, which induces flow separation due to large diffusion ratio. A uniform flow pattern in the impeller indicates good hydraulic performance of the pump.

  15. The validity of multiphase DNS initialized on the basis of single--point statistics

    Subramaniam, Shankar

    1999-11-01

    A study of the point--process statistical representation of a spray reveals that single--point statistical information contained in the droplet distribution function (ddf) is related to a sequence of single surrogate--droplet pdf's, which are in general different from the physical single--droplet pdf's. The results of this study have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single--point statistics such as the average number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets.

  16. Experimental and computational analysis of pressure response in a multiphase flow loop

    Morshed, Munzarin; Amin, Al; Rahman, Mohammad Azizur; Imtiaz, Syed

    2016-07-01

    The characteristics of multiphase fluid flow in pipes are useful to understand fluid mechanics encountered in the oil and gas industries. In the present day oil and gas exploration is successively inducing subsea operation in the deep sea and arctic condition. During the transport of petroleum products, understanding the fluid dynamics inside the pipe network is important for flow assurance. In this case the information regarding static and dynamic pressure response, pressure loss, optimum flow rate, pipe diameter etc. are the important parameter for flow assurance. The principal aim of this research is to represents computational analysis and experimental analysis of multi-phase (L/G) in a pipe network. This computational study considers a two-phase fluid flow through a horizontal flow loop with at different Reynolds number in order to determine the pressure distribution, frictional pressure loss profiles by volume of fluid (VOF) method. However, numerical simulations are validated with the experimental data. The experiment is conducted in 76.20 mm ID transparent circular pipe using water and air in the flow loop. Static pressure transducers are used to measure local pressure response in multiphase pipeline.

  17. Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications

    Lee, Taehun [City Univ. (CUNY), NY (United States)

    2015-10-20

    The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations, better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.

  18. Designing of Multiphase Fly Ash/MWCNT/PU Composite Sheet Against Electromagnetic Environmental Pollution

    Gujral, Parth; Varshney, Swati; Dhawan, S. K.

    2016-06-01

    Fly ash and multiwalled carbon nanotubes (MWCNT) reinforced multiphase polyurethane (PU) composite sheets have been fabricated by using a solution casting technique. Utilization of fly ash was the prime objective in order to reduce environmental pollution and to enhance the shielding properties of PU polymer. Our study proves that fly ash particles with MWCNTs in a PU matrix leads to novel hybrid high performance electromagnetic shielding interference material. Scanning electron microscopy confirms the existence of fly ash particles along with MWCNTs in a PU matrix. This multiphase composite shows total shielding effectiveness of 35.8 dB (>99.99% attenuation) in the Ku-band (12.4-18 GHz) frequency range. This is attributed to high dielectric losses of reinforcement present in the polymers matrix. The Nicolson-Ross-Weir algorithm has been applied to calculate the electromagnetic attributes and dielectric parameters of the PU samples by using scattering parameters ( S 11, S 22, S 12, S 21). The synthesized multiphase composites were further characterized by using x-ray diffraction, Fourier transform infrared spectroscopy, and thermo gravimetric analysis.

  19. Synthesis of nanostructured multiphase Ti(C,N)/a-C films by a plasma focus device

    Ghareshabani, E.; Rawat, R.S.; Sobhanian, S.; Verma, R.; Karamat, S.; Pan, Z.Y.

    2010-01-01

    Nanostructured multiphase Ti(C,N)/a-C films were deposited using a 3.3 kJ pulsed plasma focus device onto silicon (1 0 0) substrates at room temperature. The plasma focus device, fitted with solid titanium anode instead of usual hollow copper anode, was operated with nitrogen and Ar/CH 4 as the filling gas. Films were deposited with different number of shots, at 80 mm from top of the anode and at zero angular position with respect to anode axis. X-ray diffraction results show the diffraction peaks related to different compounds such as TiC 2 , TiN, Ti 2 CN, Ti and TiC 0.62 confirming the deposition of multiphase titanium carbo-nitride composite films on silicon. X-ray photoelectron spectroscopy confirms the formation of Ti-C, C-N, Ti-N, Ti-O and C-C bonds in the films. Scanning electron microscopy reveals that the nanostructure grains are agglomerates of smaller nanoparticles about 10-20 nm in size. Raman studies verify the formation of multiphase Ti(C,N) and also of amorphous graphite in the films. The maximum microhardness value of the composite film is 14.8 ± 1.3 GPa for 30 shots.

  20. Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance.

    Zhang, Kunyu; Nagarajan, Vidhya; Misra, Manjusri; Mohanty, Amar K

    2014-08-13

    Multiphase blends of poly(lactic acid) (PLA), ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) terpolymer, and a series of renewable poly(ether-b-amide) elastomeric copolymer (PEBA) were fabricated through reactive melt blending in an effort to improve the toughness of the PLA. Supertoughened PLA blend showing impact strength of ∼500 J/m with partial break impact behavior was achieved at an optimized blending ratio of 70 wt % PLA, 20 wt % EMA-GMA, and 10 wt % PEBA. Miscibility and thermal behavior of the binary blends PLA/PEBA and PLA/EMA-GMA, and the multiphase blends were also investigated through differential scanning calorimetric (DSC) and dynamic mechanical analysis (DMA). Phase morphology and fracture surface morphology of the blends were studied through scanning electron microscopy (SEM) and atomic force microscopy (AFM) to understand the strong corelation between the morphology and its significant effect on imparting tremendous improvement in toughness. A unique "multiple stacked structure" with partial encapsulation of EMA-GMA and PEBA minor phases was observed for the PLA/EMA-GMA/PEBA (70/20/10) revealing the importance of particular blend composition in enhancing the toughness. Toughening mechanism behind the supertoughened PLA blends have been established by studying the impact fractured surface morphology at different zones of fracture. Synergistic effect of good interfacial adhesion and interfacial cavitations followed by massive shear yielding of the matrix was believed to contribute to the enormous toughening effect observed in these multiphase blends.

  1. Personality Disorders

    Personality disorders are a group of mental illnesses. They involve long-term patterns of thoughts and behaviors ... serious problems with relationships and work. People with personality disorders have trouble dealing with everyday stresses and ...

  2. Personality Disorders

    ... Disorders in Adults Data Sources Share Personality Disorders Definitions Personality disorders represent “an enduring pattern of inner ... MSC 9663 Bethesda, MD 20892-9663 Follow Us Facebook Twitter YouTube Google Plus NIMH Newsletter NIMH RSS ...

  3. Is it a must to add upstream devices for high GVF multiphase

    Dou, Jianwen; Guo, Jason; Gokulnath, R.

    2005-07-01

    High accuracies in measurement of the gross liquid and net oil flow rates at high GVF levels in the multiphase flow is identified as one of the most demanding needs of the industry, especially in high water cut environments. The underlying factor that decides the accuracy of the net oil flow rate measurement is the accuracy at which the gross liquid and water cut are measured and the prevailing water cut in the flow. It is an established fact that accuracies falter with increasing GVF in the multiphase flow. The purpose of this paper is to present the performance results of a newly developed Compact High GVF Haimo multiphase meter that addresses the above needs, without having to use an Upstream Separation Device for high GVF application while retaining the accuracies within +2% absolute for water cut and 10% relative for liquid and gas flow rates at 90% confidence level. while also optimising the footprint, the cost, the weight of the solution Further developmental work and trials are in progress to achieve the targeted accuracy levels under very high GVF conditions as well. Contents of the Paper:1) Definitions. 2) MFM 2000 + Upstream Separation Device. 3) Haimo's experience with upstream devices. 4) Motivation to develop the new Compact meter solution. 5) Description of the Compact solution. 6) Performance testing of the Compact solution in a third party test facility. 7) Conclusion and Benefit which are: The objective of working out a new solution for high GVF without having to use a Upstream Separation Device seem to have been achieved with excellent test results; The new configuration of Compact High GVF meter successfully met and exceeded its Acceptance criteria. The main objective was to asses its performance, confirm the quality of the measurements and check its compliance with the Accuracy specifications. The consistency of the absolute error on water cut much lower than 2% for the full range of the GVF and liquid flow rates re-establishes the

  4. Clinical utility of the Neurobehavioral Symptom Inventory validity scales to screen for symptom exaggeration following traumatic brain injury.

    Lange, Rael T; Brickell, Tracey A; Lippa, Sara M; French, Louis M

    2015-01-01

    The purpose of this study was to examine the clinical utility of three recently developed validity scales (Validity-10, NIM5, and LOW6) designed to screen for symptom exaggeration using the Neurobehavioral Symptom Inventory (NSI). Participants were 272 U.S. military service members who sustained a mild, moderate, severe, or penetrating traumatic brain injury (TBI) and who were evaluated by the neuropsychology service at Walter Reed Army Medical Center within 199 weeks post injury. Participants were divided into two groups based on the Negative Impression Management scale of the Personality Assessment Inventory: (a) those who failed symptom validity testing (SVT-fail; n = 27) and (b) those who passed symptom validity testing (SVT-pass; n = 245). Participants in the SVT-fail group had significantly higher scores (pscales (range: d = 0.76 to 2.34). Similarly high sensitivity, specificity, positive predictive power (PPP), and negative predictive (NPP) values were found when using all three validity scales to differentiate SVT-fail versus SVT-pass groups. However, the Validity-10 scale consistently had the highest overall values. The optimal cutoff score for the Validity-10 scale to identify possible symptom exaggeration was ≥19 (sensitivity = .59, specificity = .89, PPP = .74, NPP = .80). For the majority of people, these findings provide support for the use of the Validity-10 scale as a screening tool for possible symptom exaggeration. When scores on the Validity-10 exceed the cutoff score, it is recommended that (a) researchers and clinicians do not interpret responses on the NSI, and (b) clinicians follow up with a more detailed evaluation, using well-validated symptom validity measures (e.g., Minnesota Multiphasic Personality Inventory-2 Restructured Form, MMPI-2-RF, validity scales), to seek confirmatory evidence to support an hypothesis of symptom exaggeration.

  5. Personal Branding

    Climent i Martí, Jordi

    2017-01-01

    Proyecto Fin de Grado leído en la Universidad Rey Juan Carlos en el curso académico 2013/2014. Director: Cristina Ayala del Pino Con este Trabajo Fin de Grado he querido aproximar el concepto del Personal Branding y de marca personal como la herramienta para diferenciarse en el entorno profesional. Partiendo con la definición del concepto, su construcción, el panorama actual, compaginar empleo con marca personal y acabando con la visión personal de un gurú de la Marca Person...

  6. Multiphasic helical CT of hepatocellular carcinoma. Evaluation after chemoembolization; Tomografia Computerizzata spirale multifasica dell'epatocarcinoma. Valutazione dopo chemioembolizzazione

    Catalano, O.; Esposito, M.; Sandomenico, F.; Siani, A. [Ospedale S. Maria delle Grazie, Pozzuoli, NA (Italy). Servizio di Radiologia; Nunziata, A. [Ospedale S. Maria delle Grazie, Naples (Italy). Area di Diagnostica per Immagini

    2000-06-01

    The main purpose of this work is to report the personal experience with addition of contrast-enhanced multiphase helical CT to unenhanced CT (Lipiodol CT) in the evaluation of patients with hepatocellular carcinoma treated with chemoembolization and to analyze the present role of oily agent CT. It has been retrospectively reviewed the examinations of 42 consecutive patients submitted to global chemoembolization over a 2-year period. CT was performed 18-30 days after the treatment. The Lipiodol CT study was carried out with volume acquisitions. It has been considered as nodules all well-defined areas with dense oily agent uptake; uptake itself was classified as: 0=absent, I=lower than 10% of the tumor volume; II=lower than 50%, III=50%, IV=homogeneous. Contrast-enhanced helical CT was performed with the 2-phase technique in 28 patients and with the 3-phase technique in 14; it has been considered as nodules all well-defined and relatively homogeneous areas with hyper attenuation in the arterial phase and hypo-iso attenuation in the portal and/or delayed phase, or with hypo-iso attenuation in the arterial phase and in the portal and/or delayed phase. Lipiodol CT permitted to recognize 65 nodules (1-5/patient, mean 1.5), namely 15 grade I, 21 grade II, 20 grade III and 9 grade IV. Multiphase CT identified 6 additional nodules in 5 patients, 5 hyper vascular and 1 hypo vascular, and better assessed the correct morphology and volume of grade I nodules. Only 4 of 6 nodules missed on Lipiodol CT showed oily agent uptake after a new chemo embolization session. Moreover after retreatment, carried out in 6 of 9 patients with grade I uptake (11 nodules in all), it has been found persistence of the grade I pattern in 5 nodules, grade II in 5, and grade III in 1. Lipiodol CT may miss liver nodules and underestimate the volume of nodules with poor uptake. Though Lipiodol CT should still be considered slightly more sensitive than multiphase CT, in the general opinion this

  7. Personality and personal network type

    Doeven-Eggens, Lilian; De Fruyt, Filip; Hendriks, A. A. Jolijn; Bosker, Roel J.; Van der Werf, Margaretha P. C.

    2008-01-01

    The association between personality and personal relationships is mostly studied within dyadic relationships. We examined these variables within the context of personal network types. We used Latent Class Analysis to identify groups Of Students with similar role relationships with three focal

  8. Subsurface Transport Over Reactive Multiphases (STORM): A general, coupled, nonisothermal multiphase flow, reactive transport, and porous medium alteration simulator, Version 2 user's guide

    Bacon, D.H.; White, M.D.; McGrail, B.P.

    2000-01-01

    The Hanford Site, in southeastern Washington State, has been used extensively to produce nuclear materials for the US strategic defense arsenal by the Department of Energy (DOE) and its predecessors, the US Atomic Energy Commission and the US Energy Research and Development Administration. A large inventory of radioactive and mixed waste has accumulated in 177 buried single- and double shell tanks. Liquid waste recovered from the tanks will be pretreated to separate the low-activity fraction from the high-level and transuranic wastes. Vitrification is the leading option for immobilization of these wastes, expected to produce approximately 550,000 metric tons of Low Activity Waste (LAW) glass. This total tonnage, based on nominal Na 2 O oxide loading of 20% by weight, is destined for disposal in a near-surface facility. Before disposal of the immobilized waste can proceed, the DOE must approve a performance assessment, a document that described the impacts, if any, of the disposal facility on public health and environmental resources. Studies have shown that release rates of radionuclides from the glass waste form by reaction with water determine the impacts of the disposal action more than any other independent parameter. This report describes the latest accomplishments in the development of a computational tool, Subsurface Transport Over Reactive Multiphases (STORM), Version 2, a general, coupled non-isothermal multiphase flow and reactive transport simulator. The underlying mathematics in STORM describe the rate of change of the solute concentrations of pore water in a variably saturated, non-isothermal porous medium, and the alteration of waste forms, packaging materials, backfill, and host rocks

  9. Racial Bias in Personality Assessment: Using the MMPI-2 to Predict Psychiatric Diagnoses of African American and Caucasian Chemical Dependency Inpatients

    Monnot, Matthew J.; Quirk, Stuart W.; Hoerger, Michael; Brewer, Linda

    2009-01-01

    An assessment of predictive bias was conducted on numerous scales of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2; J. N. Butcher, W. G. Dahlstrom, J. R. Graham, A. Tellegen, & B. Kaemmer, 1989), including the Restructured Clinical (RC) scales, in the prediction of clinical diagnostic status for African American and Caucasian male…

  10. The personality patterns in patients with duodenal ulcer and ulcer-like dyspepsia and their relationship to the course of the diseases. Hvidovre Ulcer Project Group

    Jess, P; Eldrup, J

    1994-01-01

    . A prospective study using the Minnesota Multiphasic Personality Inventory (MMPI) with retesting of a subgroup of patients after a median observation period of 14 months. SETTING. Departments of Medical and Surgical Gastroenterology, Hvidovre University Hospital, and the primary health sector in Roskilde County...

  11. Personality Development

    Osman Ozdemir

    2012-12-01

    Full Text Available Personality is the integration of characteristics acquired or brought by birth which separate the individual from others. Personality involves aspects of the individual's mental, emotional, social, and physical features in continuum. Several theories were suggested to explain developmental processes of personality. Each theory concentrates on one feature of human development as the focal point, then integrates with other areas of development in general. Most theories assume that childhood, especially up to 5-6 years, has essential influence on development of personality. The interaction between genetic and environmental factors reveals a unique personality along growth and developmental process. It could be said that individual who does not have any conflict between his/her basic needs and society's, has well-developed and psychologically healthy personality.

  12. Can lymphovascular invasion be predicted by preoperative multiphasic dynamic CT in patients with advanced gastric cancer?

    Ma, Zelan; Liang, Cuishan; Huang, Xiaomei; Liu, Zaiyi [Southern Medical University, Guangzhou, Guangdong (China); Guangdong General Hospital, Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); Liang, Changhong; Huang, Yanqi [Guangdong General Hospital, Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); He, Lan [Guangdong General Hospital, Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); South China University of Technology, School of Medicine, Guangzhou, Guangdong (China); Chen, Xin [The Affiliated Guangzhou First People' Hospital, Guangzhou Medical University, Department of Radiology, Guangzhou, Guangdong (China); Xiong, Yabing [Southern Medical University, Guangzhou, Guangdong (China)

    2017-08-15

    To determine whether multiphasic dynamic CT can preoperatively predict lymphovascular invasion (LVI) in advanced gastric cancer (AGC). 278 patients with AGC who underwent preoperative multiphasic dynamic CT were retrospectively recruited. Tumour CT attenuation difference between non-contrast and arterial (Δ{sub AP}), portal (Δ{sub PP}) and delayed phase (Δ{sub DP}), tumour-spleen attenuation difference in the portal phase (Δ{sub T-S}), tumour contrast enhancement ratios (CERs), tumour-to-spleen ratio (TSR) and tumour volumes were obtained. All CT-derived parameters and clinicopathological variables associated with LVI were analysed by univariate analysis, followed by multivariate and receiver operator characteristics (ROC) analysis. Associations between CT predictors for LVI and histopathological characteristics were evaluated by the chi-square test. Δ{sub PP} (OR, 1.056; 95% CI: 1.032-1.080) and Δ{sub T-S} (OR, 1.043; 95% CI: 1.020-1.066) are independent predictors for LVI in AGC. Δ{sub PP}, Δ{sub T-S} and their combination correctly predicted LVI in 74.8% (AUC, 0.775; sensitivity, 88.6%; specificity, 54.1%), 68.7% (AUC, 0.747; sensitivity, 68.3%; specificity, 69.4%) and 71.7% (AUC, 0.800; sensitivity, 67.6%; specificity, 77.8%), respectively. There were significant associations between CT predictors for LVI with tumour histological differentiation and Lauren classification. Multiphasic dynamic CT provides a non-invasive method to predict LVI in AGC through quantitative enhancement measurement. (orig.)

  13. Toward a General Theory for Multiphase Turbulence Part I: Development and Gauging of the Model Equations

    B. A. Kashiwa; W. B. VanderHeyden

    2000-12-01

    A formalism for developing multiphase turbulence models is introduced by analogy to the phenomenological method used for single-phase turbulence. A sample model developed using the formalism is given in detail. The procedure begins with ensemble averaging of the exact conservation equations, with closure accomplished by using a combination of analytical and experimental results from the literature. The resulting model is applicable to a wide range of common multiphase flows including gas-solid, liquid-solid and gas-liquid (bubbly) flows. The model is positioned for ready extension to three-phase turbulence, or for use in two-phase turbulence in which one phase is accounted for in multiple size classes, representing polydispersivity. The formalism is expected to suggest directions toward a more fundamentally based theory, similar to the way that early work in single-phase turbulence has led to the spectral theory. The approach is unique in that a portion of the total energy decay rate is ascribed to each phase, as is dictated by the exact averaged equations, and results in a transport equation for energy decay rate associated with each phase. What follows is a straightforward definition of a turbulent viscosity for each phase, and accounts for the effect of exchange of fluctuational energy among phases on the turbulent shear viscosity. The model also accounts for the effect of slip momentum transfer among the phases on the production of turbulence kinetic energy and on the tensor character of the Reynolds stress. Collisional effects, when appropriate, are included by superposition. The model reduces to a standard form in limit of a single, pure material, and is expected to do a credible job of describing multiphase turbulent flows in a wide variety of regimes using a single set of coefficients.

  14. Viscosity and surface tension effects during multiphase flow in propped fractures

    Dzikowski, Michał; Dąbrowski, Marcin

    2017-04-01

    Geological sequestration of CO2 was proposed as an important mechanism to reduce its emission into atmosphere. CO2 exhibits a higher affinity to organic matter than methane molecules and, potentially, it could be pumped and stored in shale reservoirs while enhancing late stage shale gas production. A successful analysis of CO2 sequestration in low matrix permeability rocks such as shales requires a thorough understanding of multiphase flow in stimulated rock fractures, which provide most significant pathways for fluids in such systems. Multiphase fracture flows are also of great relevance to brine, oil and gas migration in petroleum systems, water and stream circulation in geothermal reservoirs, and chemical transport of non-aqueous phase liquids in shallow hydrogeological systems, particularly in partially saturated zones. There are various physical models that describe phenomena taking place during multiphase flow through porous media. One of key aspects that need to be considered are pore-scale effects related to capillarity. Unfortunately, detailed models that describe motion and evolution of phase or component boundary require direct numerical simulations and spatial resolutions that are hard to reach when considering industrial relevant systems. Main aim of the presented work was the development of reduced 2.5D models based on Brinkman approximation of thin domain flow that would be able to capture local scale phenomena without expensive 3D simulations. Presented approach was designed specifically to tackle incompressible and immiscible systems and is based on Continuous Surface Force approach presented by Brackbill et al., implemented using Lattice Boltzmann Method. Presented approach where firstly validated against standard test cases with known classical solution and known experimental data. In the second part, we present and discuss two component, immiscible permeability data for rough and propped fracture obtained with our code for a rage of proppants

  15. Multiphase numerical analysis of heat pipe with different working fluids for solar applications

    Aswath, S.; Netaji Naidu, V. H.; Padmanathan, P.; Raja Sekhar, Y.

    2017-11-01

    Energy crisis is a prognosis predicted in many cases with the indiscriminate encroachment of conventional energy sources for applications on a massive scale. This prediction, further emboldened by the marked surge in global average temperatures, attributed to climate change and global warming, the necessity to conserve the environment and explore alternate sources of energy is at an all-time high. Despite being among the lead candidates for such sources, solar energy is utilized far from its vast potential possibilities due to predominant economic constraints. Even while there is a growing need for solar panels at more affordable rates, the other options to harness better out of sun’s energy is to optimize and improvise existing technology. One such technology is the heat pipe used in Evacuated Tube Collectors (ETC). The applications of heat pipe have been gaining momentum in various fields since its inception and substantial volumes of research have explored optimizing and improving the technology which is proving effective in heat recovery and heat transfer better than conventional systems. This paper carries out a computational analysis on a comparative simulation between two working fluids within heat pipe of same geometry. It further endeavors to study the multiphase transitions within the heat pipe. The work is carried out using ANSYS Fluent with inputs taken from solar data for the location of Vellore, Tamil Nadu. A wickless, gravity-assisted heat pipe (GAHP) is taken for the simulation. Water and ammonia are used as the working fluids for comparative multiphase analysis to arrive at the difference in heat transfer at the condenser section. It is demonstrated that a heat pipe ETC with ammonia as working fluid showed higher heat exchange (temperature difference) as against that of water as working fluid. The multiphase model taken aided in study of phase transitions within both cases and supported the result of ammonia as fluid being a better candidate.

  16. On the extension of multi-phase models to sub-residual saturations

    Lingineni, S.; Chen, Y.T.; Boehm, R.F.

    1995-01-01

    This paper focuses on the limitations of applying multi-phase flow and transport models to simulate the hydrothermal processes occurring when the liquid saturation falls below residual levels. A typical scenario of a heat-generating high-level waste package emplaced in a backfilled drift of a waste repository is presented. The hydrothermal conditions in the vicinity of the waste package as well as in the far-field are determined using multi-phase, non-isothermal codes such as TOUGH2 and FEHM. As the waste package temperature increases, heat-pipe effects are created and water is driven away from the package into colder regions where it condenses. The variations in the liquid saturations close to the waste package are determined using these models with extended capillary pressure-saturations relationships to sub-residual regime. The predictions indicate even at elevated temperatures, waste package surroundings are not completely dry. However, if transport based modeling is used to represent liquid saturation variations in the sub-residual regime, then complete dry conditions are predicted within the backfill for extended periods of time. The relative humidity conditions near the waste package are also found to be sensitive to the representation of capillary pressure-saturation relationship used for sub-residual regime. An experimental investigation is carried out to study the variations in liquid saturations and relative humidity conditions in sub-residual regimes. Experimental results indicated that extended multi-phase models without interphase transport can not predict dry-out conditions and the simulations underpredict the humidity conditions near the waste package

  17. Multiphase flow experiments, mathematical modeling and numerical simulation of the water - gas - solute movement

    Li, Y.; Ma, X.; Su, N.

    2013-12-01

    The movement of water and solute into and through the vadose zone is, in essence, an issue of immiscible displacement in pore-space network of a soil. Therefore, multiphase flow and transport in porous media, referring to three medium: air, water, and the solute, pose one of the largest unresolved challenges for porous medium fluid seepage. However, this phenomenon has always been largely neglected. It is expected that a reliable analysis model of the multi-phase flow in soil can truly reflect the process of natural movement about the infiltration, which is impossible to be observed directly. In such cases, geophysical applications of the nuclear magnetic resonance (NMR) provides the opportunity to measure the water movements into soils directly over a large scale from tiny pore to regional scale, accordingly enable it available both on the laboratory and on the field. In addition, the NMR provides useful information about the pore space properties. In this study, we proposed both laboratory and field experiments to measure the multi-phase flow parameters, together with optimize the model in computer programming based on the fractional partial differential equations (fPDE). In addition, we establish, for the first time, an infiltration model including solute flowing with water, which has huge influence on agriculture and soil environment pollution. Afterwards, with data collected from experiments, we simulate the model and analyze the spatial variability of parameters. Simulations are also conducted according to the model to evaluate the effects of airflow on water infiltration and other effects such as solute and absorption. It has significant meaning to oxygen irrigation aiming to higher crop yield, and shed more light into the dam slope stability. In summary, our framework is a first-time model added in solute to have a mathematic analysis with the fPDE and more instructive to agriculture activities.

  18. Complementary Constrains on Component based Multiphase Flow Problems, Should It Be Implemented Locally or Globally?

    Shao, H.; Huang, Y.; Kolditz, O.

    2015-12-01

    Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in

  19. Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets

    Gaspari, M.; Ruszkowski, M.; Sharma, P.

    2012-02-01

    Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI/t ff) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments "rain" down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI/t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI/t ff fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

  20. CAUSE AND EFFECT OF FEEDBACK: MULTIPHASE GAS IN CLUSTER CORES HEATED BY AGN JETS

    Gaspari, M.; Ruszkowski, M.; Sharma, P.

    2012-01-01

    Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI /t ff ) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments 'rain' down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI /t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI /t ff ∼< 10. This occurs despite the fact that the energy from AGN jets is supplied to the core in a highly anisotropic fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

  1. A combined single-multiphase flow formulation of the premixing phase using the level set method

    Leskovar, M.; Marn, J.

    1999-01-01

    The premixing phase of a steam explosion covers the interaction of the melt jet or droplets with the water prior to any steam explosion occurring. To get a better insight of the hydrodynamic processes during the premixing phase beside hot premixing experiments, where the water evaporation is significant, also cold isothermal premixing experiments are performed. The specialty of isothermal premixing experiments is that three phases are involved: the water, the air and the spheres phase, but only the spheres phase mixes with the other two phases whereas the water and air phases do not mix and remain separated by a free surface. Our idea therefore was to treat the isothermal premixing process with a combined single-multiphase flow model. In this combined model the water and air phase are treated as a single phase with discontinuous phase properties at the water air interface, whereas the spheres are treated as usually with a multiphase flow model, where the spheres represent the dispersed phase and the common water-air phase represents the continuous phase. The common water-air phase was described with the front capturing method based on the level set formulation. In the level set formulation, the boundary of two-fluid interfaces is modeled as the zero set of a smooth signed normal distance function defined on the entire physical domain. The boundary is then updated by solving a nonlinear equation of the Hamilton-Jacobi type on the whole domain. With this single-multiphase flow model the Queos isothermal premixing Q08 has been simulated. A numerical analysis using different treatments of the water-air interface (level set, high-resolution and upwind) has been performed for the incompressible and compressible case and the results were compared to experimental measurements.(author)

  2. An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry

    Hoffmann, Erik Hans; Tilgner, Andreas; Schrödner, Roland; Bräuer, Peter; Wolke, Ralf; Herrmann, Hartmut

    2016-01-01

    Oceans dominate emissions of dimethyl sulfide (DMS), the major natural sulfur source. DMS is important for the formation of non-sea salt sulfate (nss-SO42−) aerosols and secondary particulate matter over oceans and thus, significantly influence global climate. The mechanism of DMS oxidation has accordingly been investigated in several different model studies in the past. However, these studies had restricted oxidation mechanisms that mostly underrepresented important aqueous-phase chemical processes. These neglected but highly effective processes strongly impact direct product yields of DMS oxidation, thereby affecting the climatic influence of aerosols. To address these shortfalls, an extensive multiphase DMS chemistry mechanism, the Chemical Aqueous Phase Radical Mechanism DMS Module 1.0, was developed and used in detailed model investigations of multiphase DMS chemistry in the marine boundary layer. The performed model studies confirmed the importance of aqueous-phase chemistry for the fate of DMS and its oxidation products. Aqueous-phase processes significantly reduce the yield of sulfur dioxide and increase that of methyl sulfonic acid (MSA), which is needed to close the gap between modeled and measured MSA concentrations. Finally, the simulations imply that multiphase DMS oxidation produces equal amounts of MSA and sulfate, a result that has significant implications for nss-SO42− aerosol formation, cloud condensation nuclei concentration, and cloud albedo over oceans. Our findings show the deficiencies of parameterizations currently used in higher-scale models, which only treat gas-phase chemistry. Overall, this study shows that treatment of DMS chemistry in both gas and aqueous phases is essential to improve the accuracy of model predictions. PMID:27688763

  3. TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows

    Pruess, K. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such `compositional` systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application of MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate `equation-of-state` (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for `transport of unsaturated groundwater and heat` and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.

  4. Antiferromagnetic-ferromagnetic crossover in UO2-TiOx multi-phase systems

    Nakamura, Akio; Tsutsui, Satoshi; Yoshii, Kenji

    2001-01-01

    An antiferromagnetic (AF)-weakly ferromagnetic (WF) crossover has been found for UO 2 -TiO x multi-phase systems, (1-y)UO 2 +yTiO x (y=0.05-0.72, x=0, 1.0, 1.5 and 2.0), when these mixtures are heat treated at high temperature in vacuum. From the powder X-ray diffraction and electron-microprobe analyses, their phase assemblies were as follows: for x=0, 1.0 and 1.5, a heterogeneous two-phase mixture of UO 2 +TiO x ; for x=2.0, that of UO 2 +UTi 2 O 6 for y 0.67 that of UTi 2 O 6 +TiO 2 (plus residual minor UO 2 ). Magnetic susceptibility (χ) of the present UO 2 powder was confirmed to exhibit an antiferromagnetic sharp drop at T N (=30.5 K). In contrast, χ of these multi-phase systems was found to exhibit a sharp upturn at the respective T N , while their T N values remained almost constant with varying y. This χ upturn at T N is most pronounced for UO 2 +Ti-oxide (titania) systems (x=1.0, 1.5 and 2.0) over the wide mixture ratio above y∼0.10. These observations indicate that an AF-WF crossover is induced for these multi-phase systems, plausibly due to the interfacial magnetic modification of UO 2 in contact with the oxide partners

  5. Contrast optimization in multiphase arterial spin labeling; Otimizacao do contraste em ASL multi-fase

    Paiva, Fernando F.; Paschoal, Andre M., E-mail: paiva@ifsc.usp.br [Universidade de Sao Paulo (CIERMag/USP), Sao Carlos, SP (Brazil). Instituto de Fisica; Foerster, Bernd U. [Philips Medical Systems LatAm, Sao Paulo, SP (Brazil); Tovar-Moll, Fernanda; Moll, Jorge [Instituto D' Or de Pesquisa e Ensino, Rio de Janeiro, RJ (Brazil)

    2013-08-15

    Multiphase ASL is an effective way to overcome the regional variation of the transit time that difficult the estimation of perfusion values. However, with conventional multiple phases ASL techniques, the ASL contrast at later phases is impaired due to repeated application of excitation pulses and longitudinal relaxation making it difficult to evaluate the tissue perfusion in regions where the transit time is longer. In the present study, we show an improvement of the acquisition scheme by exploring a modulation on the flip angle of the MR acquisition to keep the ASL contrast constant over multiple phases. (author)

  6. Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramics

    Zhang, Wei; Kuhn, Luise Theil; Jørgensen, Peter Stanley

    2013-01-01

    An optimum method is proposed to prepare thin foil transmission electron microscopy (TEM) lamellae of multiphase porous functional ceramics: prefilling the pore space of these materials with an epoxy resin prior to focused ion beam milling. Several advantages of epoxy impregnation are demonstrated...... by successful preparation of TEM specimens that maintain the structural integrity of the entire lamella. Feasibility of the TEM alignment procedure is demonstrated, and ideal TEM analyses are illustrated on solid oxide fuel cell and solid oxide electrolysis cell materials. Some potential drawbacks of the TEM...

  7. Design and Analysis of Multi-Phase BLDC Motors for Electric Vehicles

    Boztas, Gullu; Yildirim, Merve; Aydogmus, Omur

    2018-01-01

    This paper presents a design and analysis of multiphase brushless direct current (BLDC) motor for electric vehicles (EV). In this work, hub-wheels having 110Nm, 900rpm rated values have been designed for the proposed EV. This EV can produce 440 Nm without using transmission, differential and other mechanical components which have very high losses due to the mechanical fraction. The motors to be used in the EV have been designed as 3-, 5- and 7-phase by Infolytica/Motor Solve Software to compa...

  8. Definition of a matrix of the generalized parameters asymmetrical multiphase transmission lines

    Suslov V.M.

    2005-12-01

    Full Text Available Idle time, without introduction of wave characteristics, algorithm of definition of a matrix of the generalized parameters asymmetrical multiphase transmission lines is offered. Definition of a matrix of parameters is based on a matrix primary specific of parameters of line and simple iterative procedure. The amount of iterations of iterative procedure is determined by a set error of performance of the resulted matrix ratio between separate blocks of a determined matrix. The given error is connected by close image of with a margin error determined matrix.

  9. Sampling device for withdrawing a representative sample from single and multi-phase flows

    Apley, Walter J.; Cliff, William C.; Creer, James M.

    1984-01-01

    A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.

  10. Evaluation of factors affecting the edge formability of two hot rolled multiphase steels

    Mukherjee, Monideepa; Tiwari, Sumit; Bhattacharya, Basudev

    2018-02-01

    In this study, the effect of various factors on the hole expansion ratio and hence on the edge formability of two hot rolled multiphase steels, one with a ferrite-martensite microstructure and the other with a ferrite-bainite microstructure, was investigated through systematic microstructural and mechanical characterization. The study revealed that the microstructure of the steels, which determines their strain hardening capacity and fracture resistance, is the principal factor controlling edge formability. The influence of other factors such as tensile strength, ductility, anisotropy, and thickness, though present, are secondary. A critical evaluation of the available empirical models for hole expansion ratio prediction is also presented.

  11. New approach to multiphase equilibria: application to high-pressure physics problems

    Ree, F.H.

    1985-06-01

    A multiphase, multicomponent equation-of-state (EOS) model based on first principles of statistical mechanics is described. The model has been used to study fluid-fluid phase separations in binary (H 2 -He, Ar-Ne, Xe-He, and N 2 -H 2 O) and ternary or more complex systems involving species with C, H, N, and O atoms. Results of these calculations and a brief description of a new theory which can simultaneously describe both solid and fluid EOS properties are given. 26 refs., 4 figs

  12. How Galaxies Acquire their Gas: A Map of Multiphase Accretion and Feedback in Gaseous Galaxy Halos

    Tumlinson, Jason

    2009-07-01

    We propose to address two of the biggest open questions in galaxy formation - how galaxies acquire their gas and how they return it to the IGM - with a concentrated COS survey of diffuse multiphase gas in the halos of SDSS galaxies at z = 0.15 - 0.35. Our chief science goal is to establish a basic set of observational facts about the physical state, metallicity, and kinematics of halo gas, including the sky covering fraction of hot and cold material, the metallicity of infall and outflow, and correlations with galaxy stellar mass, type, and color - all as a function of impact parameter from 10 - 150 kpc. Theory suggests that the bimodality of galaxy colors, the shape of the luminosity function, and the mass-metallicity relation are all influenced at a fundamental level by accretion and feedback, yet these gas processes are poorly understood and cannot be predicted robustly from first principles. We lack even a basic observational assessment of the multiphase gaseous content of galaxy halos on 100 kpc scales, and we do not know how these processes vary with galaxy properties. This ignorance is presently one of the key impediments to understanding galaxy formation in general. We propose to use the high-resolution gratings G130M and G160M on the Cosmic Origins Spectrograph to obtain sensitive column density measurements of a comprehensive suite of multiphase ions in the spectra of 43 z sound map of the physical state and metallicity of gaseous halos, and subsets of the data with cuts on galaxy mass, color, and SFR will seek out predicted variations of gas properties with galaxy properties. Our interpretation of these data will be aided by state-of-the-art hydrodynamic simulations of accretion and feedback, in turn providing information to refine and test such models. We will also use Keck, MMT, and Magellan {as needed} to obtain optical spectra of the QSOs to measure cold gas with Mg II, and optical spectra of the galaxies to measure SFRs and to look for outflows. In

  13. Modelling multiphase flow inside the porous media of a polymer electrolyte membrane fuel cell

    Berning, Torsten; Kær, Søren Knudsen

    2011-01-01

    Transport processes inside polymer electrolyte membrane fuel cells (PEMFC’s) are highly complex and involve convective and diffusive multiphase, multispecies flow through porous media along with heat and mass transfer and electrochemical reactions in conjunction with water transport through...... an electrolyte membrane. We will present a computational model of a PEMFC with focus on capillary transport of water through the porous layers and phase change and discuss the impact of the liquid phase boundary condition between the porous gas diffusion layer and the flow channels, where water droplets can...

  14. A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks

    Petitpas, Fabien; Franquet, Erwin; Saurel, Richard; Le Metayer, Olivier

    2007-01-01

    The relaxation-projection method developed in Saurel et al. [R. Saurel, E. Franquet, E. Daniel, O. Le Metayer, A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, J. Comput. Phys. (2007) 822-845] is extended to the non-conservative hyperbolic multiphase flow model of Kapila et al. [A.K. Kapila, Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration to detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024]. This model has the ability to treat multi-temperatures mixtures evolving with a single pressure and velocity and is particularly interesting for the computation of interface problems with compressible materials as well as wave propagation in heterogeneous mixtures. The non-conservative character of this model poses however computational challenges in the presence of shocks. The first issue is related to the Riemann problem resolution that necessitates shock jump conditions. Thanks to the Rankine-Hugoniot relations proposed and validated in Saurel et al. [R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump conditions for multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (3) (2007) 209-232] exact and approximate 2-shocks Riemann solvers are derived. However, the Riemann solver is only a part of a numerical scheme and non-conservative variables pose extra difficulties for the projection or cell average of the solution. It is shown that conventional Godunov schemes are unable to converge to the exact solution for strong multiphase shocks. This is due to the incorrect partition of the energies or entropies in the cell averaged mixture. To circumvent this difficulty a specific Lagrangian scheme is developed. The correct partition of the energies is achieved by using an artificial heat exchange in the shock layer. With the help of an asymptotic analysis this heat exchange takes a similar form as

  15. A Multiphase Non-Linear Mixed Effects Model: An Application to Spirometry after Lung Transplantation

    Rajeswaran, Jeevanantham; Blackstone, Eugene H.

    2014-01-01

    In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time varying coefficients. PMID:24919830

  16. Proposed Novel Multiphase-Multilevel Inverter Configuration for Open-End Winding Loads

    Padamanaban, Sanjeevi Kumar; Wheeler, Patrick; Blaabjerg, Frede

    2016-01-01

    This paper presents a new multiphase-multilevel inverter configuration for open-winding loads and suitable for medium power (low-voltage/high-current) applications such as `More Electric Aircraft'. Modular structure comprised of standard dual three-phase voltage source inverter (VSI) along with one...... is developed in this work and overcomes the complexity of standard space vector modulations, easy for real implementation purposes in digital processors. Proposed six-phase multilevel inverter configuration generates multilevel outputs with benefit in comprises with standard multilevel inverter topologies...

  17. A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks

    Petitpas, Fabien; Franquet, Erwin; Saurel, Richard; Le Metayer, Olivier

    2007-08-01

    The relaxation-projection method developed in Saurel et al. [R. Saurel, E. Franquet, E. Daniel, O. Le Metayer, A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, J. Comput. Phys. (2007) 822-845] is extended to the non-conservative hyperbolic multiphase flow model of Kapila et al. [A.K. Kapila, Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration to detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024]. This model has the ability to treat multi-temperatures mixtures evolving with a single pressure and velocity and is particularly interesting for the computation of interface problems with compressible materials as well as wave propagation in heterogeneous mixtures. The non-conservative character of this model poses however computational challenges in the presence of shocks. The first issue is related to the Riemann problem resolution that necessitates shock jump conditions. Thanks to the Rankine-Hugoniot relations proposed and validated in Saurel et al. [R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump conditions for multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (3) (2007) 209-232] exact and approximate 2-shocks Riemann solvers are derived. However, the Riemann solver is only a part of a numerical scheme and non-conservative variables pose extra difficulties for the projection or cell average of the solution. It is shown that conventional Godunov schemes are unable to converge to the exact solution for strong multiphase shocks. This is due to the incorrect partition of the energies or entropies in the cell averaged mixture. To circumvent this difficulty a specific Lagrangian scheme is developed. The correct partition of the energies is achieved by using an artificial heat exchange in the shock layer. With the help of an asymptotic analysis this heat exchange takes a similar form as

  18. THE MULTIPHASE STRUCTURE AND POWER SOURCES OF GALACTIC WINDS IN MAJOR MERGERS

    Rupke, David S. N.; Veilleux, Sylvain

    2013-01-01

    Massive, galaxy-scale outflows are known to be ubiquitous in major mergers of disk galaxies in the local universe. In this paper, we explore the multiphase structure and power sources of galactic winds in six ultraluminous infrared galaxies (ULIRGs) at z –1 , and the highest velocities (2000-3000 km s –1 ) are seen only in ionized gas. The outflow energy and momentum in the QSOs are difficult to produce from a starburst alone, but are consistent with the QSO contributing significantly to the driving of the flow. Finally, when all gas phases are accounted for, the outflows are massive enough to provide negative feedback to star formation.

  19. Multi-phase physicochemical modeling of soil-cementitious material interaction

    Nakarai, Kenichiro; Ishida, Tetsuya; Maekawa, Koichi

    2005-01-01

    Multi-phase physicochemical modeling based on thermodynamic approach is studied on gel and capillary pores of nano-micrometers and large voids of micro-millimeters among soil foundation. A computational method about transportation of moisture and ions in pore structure for simulating concrete performance was extended for predicting time-dependent material properties of cemented soil. The proposed model was verified with experimental results of cement hydration, change of relative humidity and leaching of calcium ion from cement hydrate to underground water. (author)

  20. Multi-phase induced inflation in theories with non-minimal coupling to gravity

    Artymowski, Michał [Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Lalak, Zygmunt; Lewicki, Marek, E-mail: Michal.Artymowski@uj.edu.pl, E-mail: Zygmunt.Lalak@fuw.edu.pl, E-mail: Marek.Lewicki@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw ul. Hoża 69, 00-681 Warszawa (Poland)

    2017-01-01

    In this paper we investigate the induced inflation with two flat regions: one Starobinsky-like plateau in strong coupling regime and one shorter plateau around the saddle point of the Einstein frame potential. This multi-phase inflationary scenario can be used to solve problems of classical cosmology as well as the problem of initial conditions for inflation. The inflation at the saddle-point plateau is consistent with the data and can have arbitrarily low scale. The results can be useful in the context of the Higgs-Axion relaxation and in a certain limit they are equivalent to the α-attractors.

  1. Chronic daily headache: personality study by means of computerized MMPI-2

    De Fidio, Dario; Sciruicchio, Vittorio; Pastore, Beatrice; Prudenzano, Maria Pia; Di Pietro, Elisa; Tramontano, Alfonso; Lorizio, Angelo; Granella, Franco; Bussone, Gennaro; Grazzi, Licia; Sarchielli, Paola

    2000-01-01

    Unresolved questions in headache research are the roles of drug abuse and psychopathology in headache disorder, especially in chronic daily headache. We investigated the utility of the revised version of the Minnesota Multiphasic Personality Inventory (MMPI-2) for assessing psychopathology in chronic daily headache patients. Chronic headache sufferers gave characteristic responses on Hy (hypochondria), D (depression) and Hs (hysteria) scales which are known as the ?neurotic triad?. Although o...

  2. Personal Reflections

    Home; Journals; Resonance – Journal of Science Education. Personal Reflections. Articles in Resonance – Journal of Science Education. Volume 6 Issue 3 March 2001 pp 90-93 Personal Reflections. Why did I opt for Career in Science? Jayant V Narlikar · More Details Fulltext PDF. Volume 9 Issue 8 August 2004 pp 89-89 ...

  3. Symptom and performance validity with veterans assessed for attention-deficit/hyperactivity disorder (ADHD).

    Shura, Robert D; Denning, John H; Miskey, Holly M; Rowland, Jared A

    2017-12-01

    Little is known about attention-deficit/hyperactivity disorder (ADHD) in veterans. Practice standards recommend the use of both symptom and performance validity measures in any assessment, and there are salient external incentives associated with ADHD evaluation (stimulant medication access and academic accommodations). The purpose of this study was to evaluate symptom and performance validity measures in a clinical sample of veterans presenting for specialty ADHD evaluation. Patients without a history of a neurocognitive disorder and for whom data were available on all measures (n = 114) completed a clinical interview structured on DSM-5 ADHD symptoms, the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF), and the Test of Memory Malingering Trial 1 (TOMM1) as part of a standardized ADHD diagnostic evaluation. Veterans meeting criteria for ADHD were not more likely to overreport symptoms on the MMPI-2-RF nor to fail TOMM1 (score ≤ 41) compared with those who did not meet criteria. Those who overreported symptoms did not endorse significantly more ADHD symptoms; however, those who failed TOMM1 did report significantly more ADHD symptoms (g = 0.90). In the total sample, 19.3% failed TOMM1, 44.7% overreported on the MMPI-2-RF, and 8.8% produced both an overreported MMPI-2-RF and invalid TOMM1. F-r had the highest correlation to TOMM1 scores (r = -.30). These results underscore the importance of assessing both symptom and performance validity in a clinical ADHD evaluation with veterans. In contrast to certain other conditions (e.g., mild traumatic brain injury), ADHD as a diagnosis is not related to higher rates of invalid report/performance in veterans. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. The detection of content-based invalid responding: a meta-analysis of the MMPI-2-Restructured Form's (MMPI-2-RF) over-reporting validity scales.

    Ingram, Paul B; Ternes, Michael S

    2016-05-01

    This study synthesized research evaluation of the effectiveness of the over-reporting validity scales of the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) for detecting intentionally feigned over-endorsements of symptoms using a moderated meta-analysis. After identifying experimental and quasi-experimental studies for inclusion (k = 25) in which the validity scales of the MMPI-2-RF were compared between groups of respondents, moderated meta-analyses were conducted for each of its five over-reporting scales. These meta-analyses explored the general effectiveness of each scale across studies, as well as the impact that several moderators had on scale performance, including comparison group, study type (i.e. real versus simulation), age, education, sex, and diagnosis. The over-reporting scales of the MMPI-2-RF act as effective general measures for the detection of malingering and over endorsement of symptoms with individual scales ranging in effectiveness from an effect size of 1.08 (Symptom Validity; FBS-r) to 1.43 (Infrequent Pathology; Fp-r), each with different patterns of moderating influence. The MMPI-2-RF validity scales effectively discriminate between groups of respondents presenting in either an honest manner or with patterned exaggeration and over-endorsement of symptoms. The magnitude of difference observed between honest and malingering groups was substantially narrower than might be expected using traditional cut-scores for the validity scales, making interpretation within the evaluation context particularly important. While all over-reporting scales are effective, the FBS-r and RBS scales are those least influenced by common and context specific moderating influences, such as respondent or comparison grouping.

  5. Clinical utility of the MMPI-2-RF SUI items and scale in a forensic inpatient setting: Association with interview self-report and future suicidal behaviors.

    Glassmire, David M; Tarescavage, Anthony M; Burchett, Danielle; Martinez, Jennifer; Gomez, Anthony

    2016-11-01

    In this study, we examined whether the 5 Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008/2011) Suicidal/Death Ideation (SUI) items (93, 120, 164, 251, and 334) would provide incremental suicide-risk assessment information after accounting for information garnered from clinical interview questions. Among 229 forensic inpatients (146 men, 83 women) who were administered the MMPI-2-RF, 34.9% endorsed at least 1 SUI item. We found that patients who endorsed SUI items on the MMPI-2-RF concurrently denied conceptually related suicide-risk information during the clinical interview. For instance, 8% of the sample endorsed Item 93 (indicating recent suicidal ideation), yet denied current suicidal ideation upon interview. Conversely, only 2.2% of the sample endorsed current suicidal ideation during the interview, yet denied recent suicidal ideation on Item 93. The SUI scale, as well as the MMPI-2-RF Demoralization (RCd) and Low Positive Emotions (RC2) scales, correlated significantly and meaningfully with conceptually related suicide-risk information from the interview, including history of suicide attempts, history of suicidal ideation, current suicidal ideation, and months since last suicide attempt. We also found that the SUI scale added incremental variance (after accounting for information garnered from the interview and after accounting for scores on RCd and RC2) to predictions of future suicidal behavior within 1 year of testing. Relative risk ratios indicated that both SUI-item endorsement and the presence of interview-reported risk information significantly and meaningfully increased the risk of suicidal behavior in the year following testing, particularly when endorsement of suicidal ideation occurred for both methods of self-report. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. The clinical utility of the MMPI-2-RF Suicidal/Death Ideation Scale.

    Gottfried, Emily; Bodell, Lindsay; Carbonell, Joyce; Joiner, Thomas

    2014-12-01

    Suicide is a major public health concern, with over 100 individuals dying by suicide per day in the United States alone. Therefore, suicide risk assessment is an essential aspect of mental health care. The Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008-2011; Tellegen & Ben-Porath, 2008) has a Suicidal/Death Ideation (SUI) scale consisting of 5 items that describe recent suicidal ideation or behaviors. Although this scale has clear face validity, few studies have examined the clinical utility of this scale. The purpose of the current study was to examine associations between the SUI scale and other established measures of suicidal ideation and behavior, including the Depressive Symptom Inventory Suicidality Subscale (DSI-SS; Metalsky & Joiner, 1997), Beck Scale for Suicide Ideation (BSS; Beck & Steer, 1991; Beck, Steer, & Ranieri, 1988), self-report of lifetime suicide attempts, and clinician ratings of suicide risk. Participants were 998 therapy- and assessment-seeking outpatients. Analyses indicated that the SUI scale was positively associated with other self-reported measures of suicidal ideation and behavior. Significant differences in SUI scale scores also emerged among the clinician rating categories of suicide risk. The SUI scale was able to predict previous suicide attempts over and above age, gender, and other MMPI-2-RF scales related to depression. Finally, relative risk ratios for suicide attempts indicate increased risk of suicidality, with higher T scores on the SUI scale. Overall, findings suggest that the MMPI-2-RF SUI scale may be a useful tool for identifying individuals at risk for suicidal ideation and behavior in clinical settings. (c) 2014 APA, all rights reserved.

  7. Increased odds and predictive rates of MMPI-2-RF scale elevations in patients with psychogenic non-epileptic seizures and observed sex differences.

    Del Bene, Victor A; Arce Rentería, Miguel; Maiman, Moshe; Slugh, Mitch; Gazzola, Deana M; Nadkarni, Siddhartha S; Barr, William B

    2017-07-01

    The Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) is a self-report instrument, previously shown to differentiate patients with epileptic seizures (ES) and psychogenic non-epileptic seizures (PNES). At present, the odds of MMPI-2-RF scale elevations in PNES patients, as well as the diagnostic predictive value of such scale elevations, remain largely unexplored. This can be of clinical utility, particularly when a diagnosis is uncertain. After looking at mean group differences, we applied contingency table derived odds ratios to a sample of ES (n=92) and PNES (n=77) patients from a video EEG (vEEG) monitoring unit. We also looked at the positive and negative predictive values (PPV, NPV), as well as the false discovery rate (FDR) and false omission rate (FOR) for scales found to have increased odds of elevation in PNES patients. This was completed for the overall sample, as well as the sample stratified by sex. The odds of elevations related to somatic concerns, negative mood, and suicidal ideation in the PNES sample ranged from 2 to 5 times more likely. Female PNES patients had 3-6 times greater odds of such scale elevations, while male PNES patients had odds of 5-15 times more likely. PPV rates ranged from 53.66% to 84.62%, while NPV rates ranged from 47.52% to 90.91%. FDR across scales ranged from 15.38% to 50%, while the FOR ranged from 9.09% to 52.47%. Consistent with prior research, PNES patients have greater odds of MMPI-2-RF scale elevations, particularly related to somatic concerns and mood disturbance. Female PNES patients endorsed greater emotional distress, including endorsement of suicide related items. Elevations of these scales could aid in differentiating PNES from ES patients, although caution is warranted due to the possibility of both false positives and the incorrect omissions of PNES cases. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Addressing challenges to MMPI-2-RF-based testimony: questions and answers.

    Ben-Porath, Yossef S

    2012-11-01

    Introduction of a new version of a psychological test brings with it challenges that can be accentuated by the adversarial nature of the legal process. In the case of the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF), these challenges can be addressed by becoming familiar with the rationale for and the methods used in revising the inventory, the information contained in the test manuals, and the growing peer-reviewed literature on the test. Potential challenges to MMPI-2-RF-based testimony are identified in this article and discussed in question and answer format. The questions guiding this discussion are based on the Daubert factors, established in 1993 by the US Supreme Court as criteria for gauging the scientific validity of proffered expert testimony. The answers to these questions apply more broadly to testimony in depositions, pre-trial hearings, and at trial. Consideration of the MMPI-2-RF in light of the Daubert factors indicates that the instrument has been subjected to extensive empirical testing and that a substantial peer-reviewed literature is available to guide and support its use. Information about the known and potential rate of error associated with MMPI-2-RF scores is available, and standard procedures for administration, scoring, and interpretation of the inventory are detailed in the test administration manual. Indicators of MMPI-2-RF acceptance can be cited, and criticisms of the MMPI-2-RF can be addressed with information available in the test documents and an extensive, modern, and actively growing peer-reviewed literature.

  9. Introduction of a conceptual model for integrating the MMPI-2-RF into HCR-20V3 violence risk assessments and associations between the MMPI-2-RF and institutional violence.

    Tarescavage, Anthony M; Glassmire, David M; Burchett, Danielle

    2016-12-01

    Reflecting the need to prevent violence, structured professional judgment assessment tools have been developed specifically to assess the likelihood of future violence. These tools typically integrate data from clinical interviews and collateral records to assist in the conceptualization of violence risk, but objective psychological testing may also be useful in completing the instruments. The authors describe the advantages of using the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) in this manner with the Historical Clinical Management-20 Version 3 (HCR-20 V3 ). Accordingly, they have 2 purposes. First, they sought to identify conceptual links between the constructs measured by the tools and introduce a model to integrate MMPI-2-RF findings into an HCR-20 V3 risk assessment. Second, although the authors did not have collateral HCR-20 V3 ratings, they sought to examine associations between the MMPI-2-RF scales and future violence in a sample of 303 psychiatric patients (233 males, 70 females) adjudicated as not guilty by reason of insanity. The authors found that the MMPI-2-RF scales demonstrated significant, meaningful associations with a count of future violent acts at the hospital. The largest associations involved scales measuring emotional dysregulation and externalizing dysfunction. These associations were qualified by relative risk ratio analyses indicating that patients producing elevations on these scales were at 1.5 to 2.5 times greater risk of future violence than those without elevations. Overall, the findings indicated that most MMPI-2-RF scales conceptually linked to the HCR-20 V3 risk factors were associated with future violence. In light of these findings, the authors discuss recommendations for integrating the MMPI-2-RF when interpreting HCR-20 V3 risk factors. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Utility of the Mild Brain Injury Atypical Symptoms Scale to detect symptom exaggeration: an analogue simulation study.

    Lange, Rael T; Edmed, Shannon L; Sullivan, Karen A; French, Louis M; Cooper, Douglas B

    2013-01-01

    Brief self-report symptom checklists are often used to screen for postconcussional disorder (PCD) and posttraumatic stress disorder (PTSD) and are highly susceptible to symptom exaggeration. This study examined the utility of the five-item Mild Brain Injury Atypical Symptoms Scale (mBIAS) designed for use with the Neurobehavioral Symptom Inventory (NSI) and the PTSD Checklist-Civilian (PCL-C). Participants were 85 Australian undergraduate students who completed a battery of self-report measures under one of three experimental conditions: control (i.e., honest responding, n = 24), feign PCD (n = 29), and feign PTSD (n = 32). Measures were the mBIAS, NSI, PCL-C, Minnesota Multiphasic Personality Inventory-2, Restructured Form (MMPI-2-RF), and the Structured Inventory of Malingered Symptomatology (SIMS). Participants instructed to feign PTSD and PCD had significantly higher scores on the mBIAS, NSI, PCL-C, and MMPI-2-RF than did controls. Few differences were found between the feign PCD and feign PTSD groups, with the exception of scores on the NSI (feign PCD > feign PTSD) and PCL-C (feign PTSD > feign PCD). Optimal cutoff scores on the mBIAS of ≥8 and ≥6 were found to reflect "probable exaggeration" (sensitivity = .34; specificity = 1.0; positive predictive power, PPP = 1.0; negative predictive power, NPP = .74) and "possible exaggeration" (sensitivity = .72; specificity = .88; PPP = .76; NPP = .85), respectively. Findings provide preliminary support for the use of the mBIAS as a tool to detect symptom exaggeration when administering the NSI and PCL-C.

  11. Examination of the Mild Brain Injury Atypical Symptom Scale and the Validity-10 Scale to detect symptom exaggeration in US military service members.

    Lange, Rael T; Brickell, Tracey A; French, Louis M

    2015-01-01

    The purpose of this study was to examine the clinical utility of two validity scales designed for use with the Neurobehavioral Symptom Inventory (NSI) and the PTSD Checklist-Civilian Version (PCL-C); the Mild Brain Injury Atypical Symptoms Scale (mBIAS) and Validity-10 scale. Participants were 63 U.S. military service members (age: M = 31.9 years, SD = 12.5; 90.5% male) who sustained a mild traumatic brain injury (MTBI) and were prospectively enrolled from Walter Reed National Military Medical Center. Participants were divided into two groups based on the validity scales of the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF): (a) symptom validity test (SVT)-Fail (n = 24) and (b) SVT-Pass (n = 39). Participants were evaluated on average 19.4 months postinjury (SD = 27.6). Participants in the SVT-Fail group had significantly higher scores (p scales (d = 0.69 to d = 2.47). Sensitivity, specificity, and predictive power values were calculated across the range of mBIAS and Validity-10 scores to determine the optimal cutoff to detect symptom exaggeration. For the mBIAS, a cutoff score of ≥8 was considered optimal, which resulted in low sensitivity (.17), high specificity (1.0), high positive predictive power (1.0), and moderate negative predictive power (.69). For the Validity-10 scale, a cutoff score of ≥13 was considered optimal, which resulted in moderate-high sensitivity (.63), high specificity (.97), and high positive (.93) and negative predictive power (.83). These findings provide strong support for the use of the Validity-10 as a tool to screen for symptom exaggeration when administering the NSI and PCL-C. The mBIAS, however, was not a reliable tool for this purpose and failed to identify the vast majority of people who exaggerated symptoms.

  12. Further Validation of the Conner's Adult Attention Deficit/Hyperactivity Rating Scale Infrequency Index (CII) for Detection of Non-Credible Report of Attention Deficit/Hyperactivity Disorder Symptoms.

    Cook, Carolyn M; Bolinger, Elizabeth; Suhr, Julie

    2016-06-01

    Attention deficit/hyperactivity disorder (ADHD) can be easily presented in a non-credible manner, through non-credible report of ADHD symptoms and/or by non-credible performance on neuropsychological tests. While most studies have focused on detection of non-credible performance using performance validity tests, there are few studies examining the ability to detect non-credible report of ADHD symptoms. We provide further validation data for a recently developed measure of non-credible ADHD symptom report, the Conner's Adult ADHD Rating Scales (CAARS) Infrequency Index (CII). Using archival data from 86 adults referred for concerns about ADHD, we examined the accuracy of the CII in detecting extreme scores on the CAARS and invalid reporting on validity indices of the Minnesota Multiphasic Personality Inventory-2 Restructured Format (MMPI-2-RF). We also examined the accuracy of the CII in detecting non-credible performance on standalone and embedded performance validity tests. The CII was 52% sensitive to extreme scores on CAARS DSM symptom subscales (with 97% specificity) and 20%-36% sensitive to invalid responding on MMPI-2-RF validity scales (with near 90% specificity), providing further evidence for the interpretation of the CII as an indicator of non-credible ADHD symptom report. However, the CII detected only 18% of individuals who failed a standalone performance validity test (Word Memory Test), with 87.8% specificity, and was not accurate in detecting non-credible performance using embedded digit span cutoffs. Future studies should continue to examine how best to assess for non-credible symptom report in ADHD referrals. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Fibromyalgia and chronic pain: Are there discriminating patterns by using the Minnesota Multiphasic Personality Inventory-2 (MMPI-2?

    Javier Pérez-Pareja

    2010-01-01

    Full Text Available El objetivo del estudio ex post fact es explorar la amplia variedad de síntomas somáticos y psicopatológicos de pacientes con fibromialgia mediante el Inventario Multifásico de Personalidad de Minnesota ¿ 2 (MMPI-2, así como establecer patrones diferenciales de respuesta entre pacientes con fibromialgia, con dolor crónico no fibromiálgico y sujetos controles sanos. Se han considerado tres submuestras, utilizando un diseño ex post facto: pacientes con fibromialgia (n = 36, pacientes con dolor crónico (n = 44 y controles sanos (n = 34. La adaptación española del MMPI- 2 fue administrada individualmente a todas las personas participantes. Los análisis diferenciales indicaron que a el grupo de fibromialgia puntuó más alto en todas las escalas de validez y clínicas del MMPI-2, en comparación con los otros dos grupos; b el perfil clínico MMPI-2 del grupo de fibromialgia se caracteriza por la expresión de una amplia variedad de quejas somáticas, problemas de salud y disfunciones físicas; c el grupo de fibromialgia presentó un patrón de respuestas sobredimensionadas que lleva a hipotetizar que algunos pacientes pueden presentar estados de hipersensibilidad y sensibilidad ante la ansiedad, y que otros reflejen un patrón de búsqueda de recompensas psicológicas, manteniendo un rol de enfermedad crónica y de comportamientos de dolor crónico. Los resultados indican que el MMPI-2 es una herramienta psicométrica útil para caracterizar un patrón de respuesta específico de pacientes con fibromialgia, y se recomienda especialmente para aportar luz en su evaluación clínica.

  14. Multiphasic modeling of charged solute transport across articular cartilage: Application of multi-zone finite-bath model.

    Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A

    2016-06-14

    Charged and uncharged solutes penetrate through cartilage to maintain the metabolic function of chondrocytes and to possibly restore or further breakdown the cartilage tissue in different stages of osteoarthritis. In this study the transport of charged solutes across the various zones of cartilage was quantified, taken into account the physicochemical interactions between the solute and the cartilage constituents. A multiphasic finite-bath finite element (FE) model was developed to simulate equine cartilage diffusion experiments that used a negatively charged contrast agent (ioxaglate) in combination with serial micro-computed tomography (micro-CT) to measure the diffusion. By comparing the FE model with the experimental data both the diffusion coefficient of ioxaglate and the fixed charge density (FCD) were obtained. In the multiphasic model, cartilage was divided into multiple (three) zones to help understand how diffusion coefficient and FCD vary across cartilage thickness. The direct effects of charged solute-FCD interaction on diffusion were investigated by comparing the diffusion coefficients derived from the multiphasic and biphasic-solute models. We found a relationship between the FCD obtained by the multiphasic model and ioxaglate partitioning obtained from micro-CT experiments. Using our multi-zone multiphasic model, diffusion coefficient of the superficial zone was up to ten-fold higher than that of the middle zone, while the FCD of the middle zone was up to almost two-fold higher than that of the superficial zone. In conclusion, the developed finite-bath multiphasic model provides us with a non-destructive method by which we could obtain both diffusion coefficient and FCD of different cartilage zones. The outcomes of the current work will also help understand how charge of the bath affects the diffusion of a charged molecule and also predict the diffusion behavior of a charged solute across articular cartilage. Copyright © 2016 Elsevier Ltd. All

  15. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  16. PhaseWatcher Vx subsea for HPHT - a new deepwater multiphase and wet gas flowmeter for HPHT

    Rustad, Rolf

    2010-07-01

    A new deepwater multiphase and wet gas flowmeter for HPHT applications has been developed. The flowmeter covers all multiphase and wet gas applications from heavy oil to lean and dry gas. Key features include a pressure rating of 15,000psi, a maximum process temperature of 205 C (400F) and a maximum water depth of 3500m (11500feet). This paper will discuss the design, the qualification program and the application of industry standards and codes in the qualification program. The qualification philosophy and the selected standards and codes may be applied in qualification of most types of equipment for the deepwater HPHT oil and gas industry. (Author)

  17. Juvenile sex offenders: Personality profile, coping styles and parental care.

    Margari, Francesco; Lecce, Paola Alessandra; Craig, Francesco; Lafortezza, Elena; Lisi, Andrea; Pinto, Floriana; Stallone, Valentina; Pierri, Grazia; Pisani, Rossella; Zagaria, Giuseppina; Margari, Lucia; Grattagliano, Ignazio

    2015-09-30

    In recent years, there has been an increasing interest in juvenile sex offenders showing that this population is highly heterogeneous. The aim of the present study was to identify possible different profiles that could help understand the motivation behind offending, comparing 31 Juvenile Sexual Offenders (JSOs), 31 Juvenile Sexual Non Offenders (JSNOs) and 31 Juvenile Non Offenders (Control Group). A data collection form, the Minnesota Multiphasic Personality Inventory-Adolescent (MMPI-A) or Minnesota Multiphasic Personality Inventory-2 (MMPI-2), the Coping Inventory for Stressful Situations (CISS) and the Parental Bonding Inventory (PBI) were administered to all participants. The results show that JSOs differs from JNSOs in some domains, such as living in single-parent homes, while maintain some common aspects such as academic failure and previous sexual intercourse. Moreover, JNSOs showed more abnormal personality traits, such as Authority Problems, MacAndrew Alcoholism, Acknowledgement and Alcohol-Drug Problem Proneness compared to JSOs and the Control Group, while JSOs and JNSOs use a coping strategy more oriented to Avoidance and Distraction compared to the Control group. Finally, JSOs described the relationships with fathers characterized by higher care and protection than JNSOs. These findings provide additional evidence with respect the prevention and treatment of criminal sexual behavior in adolescent. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu

    2015-07-01

    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  19. Unstructured Finite Elements and Dynamic Meshing for Explicit Phase Tracking in Multiphase Problems

    Chandra, Anirban; Yang, Fan; Zhang, Yu; Shams, Ehsan; Sahni, Onkar; Oberai, Assad; Shephard, Mark

    2017-11-01

    Multi-phase processes involving phase change at interfaces, such as evaporation of a liquid or combustion of a solid, represent an interesting class of problems with varied applications. Large density ratio across phases, discontinuous fields at the interface and rapidly evolving geometries are some of the inherent challenges which influence the numerical modeling of multi-phase phase change problems. In this work, a mathematically consistent and robust computational approach to address these issues is presented. We use stabilized finite element methods on mixed topology unstructured grids for solving the compressible Navier-Stokes equations. Appropriate jump conditions derived from conservations laws across the interface are handled by using discontinuous interpolations, while the continuity of temperature and tangential velocity is enforced using a penalty parameter. The arbitrary Lagrangian-Eulerian (ALE) technique is utilized to explicitly track the interface motion. Mesh at the interface is constrained to move with the interface while elsewhere it is moved using the linear elasticity analogy. Repositioning is applied to the layered mesh that maintains its structure and normal resolution. In addition, mesh modification is used to preserve the quality of the volumetric mesh. This work is supported by the U.S. Army Grants W911NF1410301 and W911NF16C0117.

  20. Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions

    Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta

    2018-03-01

    Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.

  1. Design and Analysis of Multi-Phase BLDC Motors for Electric Vehicles

    G. Boztas

    2018-04-01

    Full Text Available This paper presents a design and analysis of multi-phase brushless direct current (BLDC motor for electric vehicles (EV. In this work, hub-wheels having 110Nm, 900rpm rated values have been designed for the proposed EV. This EV can produce 440 Nm without using transmission, differential and other mechanical components which have very high losses due to the mechanical fraction. The motors to be used in the EV have been designed as 3-, 5- and 7-phase by Infolytica/Motor Solve Software to compare their performances at the same load conditions. The same rotor geometry has been utilized for the motors. However, slot numbers and dimensions of the stator have been determined by considering the motor phase number. Performance curves of phase-currents, output powers, torques, efficiencies and power factors have been presented for these motors at the same operating conditions. It can be possible to use lower power switches in motor drive system thanks to the phase current reduction since the phase currents decrease proportionally to motor phase number. This work shows that the multi-phase BLDC motors are a good alternative in order to obtain lower torque and lower power inverter structure than the 3-phase BLDC motors which are used as standard.

  2. Modeling studies for multiphase fluid and heat flow processes in nuclear waste isolation

    Pruess, K.

    1988-07-01

    Multiphase fluid and heat flow plays an important role in many problems relating to the disposal of nuclear wastes in geologic media. Examples include boiling and condensation processes near heat-generating wastes, flow of water and formation gas in partially saturated formations, evolution of a free gas phase from waste package corrosion in initially water-saturated environments, and redistribution (dissolution, transport, and precipitation) of rock minerals in non-isothermal flow fields. Such processes may strongly impact upon waste package and repository design considerations and performance. This paper summarizes important physical phenomena occurring in multiphase and nonisothermal flows, as well as techniques for their mathematical modeling and numerical simulation. Illustrative applications are given for a number of specific fluid and heat flow problems, including: thermohydrologic conditions near heat-generating waste packages in the unsaturated zone; repository-wide convection effects in the unsaturated zone; effects of quartz dissolution and precipitation for disposal in the saturated zone; and gas pressurization and flow corrosion of low-level waste packages. 34 refs; 7 figs; 2 tabs

  3. Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing

    Jacques, P.J.; Furnemont, Q.; Lani, F.; Pardoen, T.; Delannay, F.

    2007-01-01

    The mechanical behaviour of transformation-induced plasticity (TRIP)-assisted multiphase steels is addressed based on three different microstructures generated from the same steel grade. The mechanisms responsible for the work-hardening capacity and the resulting balance between strength and resistance to plastic localization are investigated at different length scales. The macroscopic mechanical response is determined by simple shear, uniaxial tension, Marciniak and equibiaxial tension supplemented by earlier tensile tests on notched and cracked specimens. It is shown that the transformation rate reaches a maximum for stress states intermediate between uniaxial tension and equibiaxial tension. At an intermediate length scale, the true in situ flow properties of the individual ferrite-bainite and retained austenite phases are determined by combining neutron diffraction and digital image correlation. This combined analysis elucidates the partitioning of stress and strain between the different constitutive phases. Based on these results, supplemented by transmission electron microscopy and electron backscattered diffraction observations, a general overview of the hardening behaviour of TRIP-assisted multiphase steels is depicted

  4. Self-assembly of silica microparticles in magnetic multiphase flows: Experiment and simulation

    Li, Xiang; Niu, Xiao-Dong; Li, You; Chen, Mu-Feng

    2018-04-01

    Dynamic self-assembly, especially self-assembly under magnetic field, is vital not only for its marvelous phenomenon but also for its mechanisms. Revealing the underlying mechanisms is crucial for a deeper understanding of self-assembly. In this paper, several magnetic induced self-assembly experiments by using the mixed magnetic multiphase fluids comprised of silica microspheres were carried out. The relations of the strength of external magnetic field, the inverse magnetorheological effect, and the structures of self-assembled particles were investigated. In addition, a momentum-exchanged immersed boundary-based lattice Boltzmann method (MEIB-LBM) for modeling multi-physical coupling multiphase flows was employed to numerically study the magnetic induced self-assembly process in detail. The present work showed that the external magnetic field can be used to control the form of self-assembly of nonmagnetic microparticles in a chain-like structure, and the self-assembly process can be classified into four stages with magnetic hysteresis, magnetization of nonmagnetic microparticles, self-assembly in chain-like structures, and the stable chain state. The combination of experimental and numerical results could offer a method to control the self-assembled nonmagnetic microparticles, which can provide the technical and theoretical support for the design and fabrication of micro/nanomaterials.

  5. CHARACTERISATION OF MULTIPHASE FLUID-STRUCTURE INTERACTION USING NON-INTRUSIVE OPTICAL TECHNIQUES

    M. AL-ATABI

    2011-04-01

    Full Text Available The purpose of this study is to determine experimentally the effectiveness of passive drag reduction techniques (which involve adjusting surface geometry within a chaotic multiphase flow system. To quantify the intrusion and disturbance caused, a liquid-air blast atomiser continuously discharges within a test section of air at atmospheric pressure, with a circular cylinder placed 25 cylinder diameters (250 mm downstream of the nozzle. This cylinder is then replaced with other cylinders which have modified surface geometry. The data was obtained using Particle Image Velocimetry (PIV and determines the fluid motion resulting from spray structure interaction of a liquid spray with a circular cylinder. Subtraction of non intruded spray images from intruded spray images at the same locations, using the time averaged analysis allows the direct comparison of the amount of disturbance each geometric variant has on the spray. Using this data alongside velocity profiles time averaged trends were compared. Drag reduction from V-shaped grooves provides the greatest disturbance reduction. This is due to the reduced shear stress around its cross section and the addition of small liquid eddies within each V-groove creates a gliding surface. These features proved to be most effective when monitoring drag reduction in multiphase flow-structure interaction.

  6. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    Kushner, Mark Jay [University of Michigan

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  7. Modeling studies of multiphase fluid and heat flow processes in nuclear waste isolation

    Pruess, K.

    1989-01-01

    Multiphase fluid and heat flow plays an important role in many problems relating to the disposal of nuclear wastes in geologic media. Examples include boiling and condensation processes near heat-generating wastes, flow of water and formation gas in partially saturated formations, evolution of a free gas phase from waste package corrosion in initially water-saturated environments, and redistribution (dissolution, transport and precipitation) of rock minerals in non-isothermal flow fields. Such processes may strongly impact upon waste package and repository design considerations and performance. This paper summarizes important physical phenomena occurring in multiphase and nonisothermal flows, as well as techniques for their mathematical modeling and numerical simulation. Illustrative applications are given for a number of specific fluid and heat flow problems, including: thermohydrologic conditions near heat-generating waste packages in the unsaturated zone; repositorywide convection effects in the unsaturated zone; effects of quartz dissolution and precipitation for disposal in the saturated zone; and gas pressurization and flow effects from corrosion of low-level waste packages

  8. Microstructure and Tribological Properties of Mo–40Ni–13Si Multiphase Intermetallic Alloy

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-01-01

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo–40Ni–13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo–Ni–Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy—including wear resistance, friction coefficient, and metallic tribological compatibility—were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear. PMID:28774106

  9. Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes

    McGrath, T.; St. Clair, J.; Balachandar, S.

    2018-05-01

    Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.

  10. Multiphase turbulence mechanisms identification from consistent analysis of direct numerical simulation data

    Ben Magolan

    2017-09-01

    Full Text Available Direct Numerical Simulation (DNS serves as an irreplaceable tool to probe the complexities of multiphase flow and identify turbulent mechanisms that elude conventional experimental measurement techniques. The insights unlocked via its careful analysis can be used to guide the formulation and development of turbulence models used in multiphase computational fluid dynamics simulations of nuclear reactor applications. Here, we perform statistical analyses of DNS bubbly flow data generated by Bolotnov (Reτ = 400 and Lu–Tryggvason (Reτ = 150, examining single-point statistics of mean and turbulent liquid properties, turbulent kinetic energy budgets, and two-point correlations in space and time. Deformability of the bubble interface is shown to have a dramatic impact on the liquid turbulent stresses and energy budgets. A reduction in temporal and spatial correlations for the streamwise turbulent stress (uu is also observed at wall-normal distances of y+ = 15, y/δ = 0.5, and y/δ = 1.0. These observations motivate the need for adaptation of length and time scales for bubble-induced turbulence models and serve as guidelines for future analyses of DNS bubbly flow data.

  11. A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids

    Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar

    2014-11-01

    We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.

  12. A hybrid interface tracking - level set technique for multiphase flow with soluble surfactant

    Shin, Seungwon; Chergui, Jalel; Juric, Damir; Kahouadji, Lyes; Matar, Omar K.; Craster, Richard V.

    2018-04-01

    A formulation for soluble surfactant transport in multiphase flows recently presented by Muradoglu and Tryggvason (JCP 274 (2014) 737-757) [17] is adapted to the context of the Level Contour Reconstruction Method, LCRM, (Shin et al. IJNMF 60 (2009) 753-778, [8]) which is a hybrid method that combines the advantages of the Front-tracking and Level Set methods. Particularly close attention is paid to the formulation and numerical implementation of the surface gradients of surfactant concentration and surface tension. Various benchmark tests are performed to demonstrate the accuracy of different elements of the algorithm. To verify surfactant mass conservation, values for surfactant diffusion along the interface are compared with the exact solution for the problem of uniform expansion of a sphere. The numerical implementation of the discontinuous boundary condition for the source term in the bulk concentration is compared with the approximate solution. Surface tension forces are tested for Marangoni drop translation. Our numerical results for drop deformation in simple shear are compared with experiments and results from previous simulations. All benchmarking tests compare well with existing data thus providing confidence that the adapted LCRM formulation for surfactant advection and diffusion is accurate and effective in three-dimensional multiphase flows with a structured mesh. We also demonstrate that this approach applies easily to massively parallel simulations.

  13. Partial and Complete Wetting in Ultralow Interfacial Tension Multiphase Blends with Polylactide.

    Zolali, Ali M; Favis, Basil D

    2016-12-15

    The control of phase structuring in multiphase blends of polylactide (PLA) with other polymers is a viable approach to promote its broader implementation. In this article, ternary and quaternary blends of PLA with poly(butylene succinate) (PBS), poly(butylene adipate-co-terephthalate) (PBAT), and poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) are prepared by melt blending. The interfacial tensions between components are measured using three different techniques, and a Fourier transform infrared imaging technique is developed for the purpose of unambiguous phase identification. A tricontinuous complete wetting behavior is observed for the ternary 33PLA/33PBS/33PBAT blend before and after quiescent annealing, which correlates closely with spreading theory analysis. In the quaternary PLA/PBS/PBAT/PHBV blend, a concentration-dependent wetting behavior is found. At 10 vol % PBAT, self-assembled partially wet droplets of PBAT are observed at the interface of PBS and PHBV, and they remain stable after quiescent annealing as predicted by spreading theory. In contrast, at 25 vol % PBAT, a quadruple continuous system is observed after mixing, which only transforms to partially wet PBAT droplets after subsequent annealing. These results clearly indicate the potential of composition control during the mixing of multiphase systems to result in a complete change of spreading behavior.

  14. Excitation of multiphase waves of the nonlinear Schroedinger equation by capture into resonances

    Friedland, L.; Shagalov, A.G.

    2005-01-01

    A method for adiabatic excitation and control of multiphase (N-band) waves of the periodic nonlinear Schroedinger (NLS) equation is developed. The approach is based on capturing the system into successive resonances with external, small amplitude plane waves having slowly varying frequencies. The excitation proceeds from zero and develops in stages, as an (N+1)-band (N=0,1,2,...), growing amplitude wave is formed in the (N+1)th stage from an N-band solution excited in the preceding stage. The method is illustrated in simulations, where the excited multiphase waves are analyzed via the spectral approach of the inverse scattering transform method. The theory of excitation of 0- and 1-band NLS solutions by capture into resonances is developed on the basis of a weakly nonlinear version of Whitham's averaged variational principle. The phenomenon of thresholds on the driving amplitudes for capture into successive resonances and the stability of driven, phase-locked solutions in these cases are discussed

  15. The Pore-scale modeling of multiphase flows in reservoir rocks using the lattice Boltzmann method

    Mu, Y.; Baldwin, C. H.; Toelke, J.; Grader, A.

    2011-12-01

    Digital rock physics (DRP) is a new technology to compute the physical and fluid flow properties of reservoir rocks. In this approach, pore scale images of the porous rock are obtained and processed to create highly accurate 3D digital rock sample, and then the rock properties are evaluated by advanced numerical methods at the pore scale. Ingrain's DRP technology is a breakthrough for oil and gas companies that need large volumes of accurate results faster than the current special core analysis (SCAL) laboratories can normally deliver. In this work, we compute the multiphase fluid flow properties of 3D digital rocks using D3Q19 immiscible LBM with two relaxation times (TRT). For efficient implementation on GPU, we improved and reformulated color-gradient model proposed by Gunstensen and Rothmann. Furthermore, we only use one-lattice with the sparse data structure: only allocate memory for pore nodes on GPU. We achieved more than 100 million fluid lattice updates per second (MFLUPS) for two-phase LBM on single Fermi-GPU and high parallel efficiency on Multi-GPUs. We present and discuss our simulation results of important two-phase fluid flow properties, such as capillary pressure and relative permeabilities. We also investigate the effects of resolution and wettability on multiphase flows. Comparison of direct measurement results with the LBM-based simulations shows practical ability of DRP to predict two-phase flow properties of reservoir rock.

  16. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B., E-mail: otero@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: brandao@ien.gov.b [Instituto de Engenharia Nuclear (DIRA/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos

    2011-07-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  17. A novel approach of solid waste management via aromatization using multiphase catalytic pyrolysis of waste polyethylene.

    Gaurh, Pramendra; Pramanik, Hiralal

    2018-01-01

    A new and innovative approach was adopted to increase the yield of aromatics like, benzene, toluene and xylene (BTX) in the catalytic pyrolysis of waste polyethylene (PE). The BTX content was significantly increased due to effective interaction between catalystZSM-5 and target molecules i.e., lower paraffins within the reactor. The thermal and catalytic pyrolysis both were performed in a specially designed semi-batch reactor at the temperature range of 500 °C-800 °C. Catalytic pyrolysis were performed in three different phases within the reactor batch by batch systematically, keeping the catalyst in A type- vapor phase, B type- liquid phase and C type- vapor and liquid phase (multiphase), respectively. Total aromatics (BTX) of 6.54 wt% was obtained for thermal pyrolysis at a temperature of 700 °C. In contrary, for the catalytic pyrolysis A, B and C types reactor arrangement, the aromatic (BTX) contents were progressively increased, nearly 6 times from 6.54 wt% (thermal pyrolysis) to 35.06 wt% for C-type/multiphase (liquid and vapor phase). The pyrolysis oil were characterized using GC-FID, FT-IR, ASTM distillation and carbon residue test to evaluate its end use and aromatic content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Microstructure and Tribological Properties of Mo–40Ni–13Si Multiphase Intermetallic Alloy

    Chunyan Song

    2016-12-01

    Full Text Available Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo–40Ni–13Si (at %. Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo–Ni–Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy—including wear resistance, friction coefficient, and metallic tribological compatibility—were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  19. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B.

    2011-01-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  20. A Novel Multi-Phase Stochastic Model for Lithium-Ion Batteries’ Degradation with Regeneration Phenomena

    Jianxun Zhang

    2017-10-01

    Full Text Available A lithium-Ion battery is a typical degradation product, and its performance will deteriorate over time. In its degradation process, regeneration phenomena have been frequently encountered, which affect both the degradation state and rate. In this paper, we focus on how to build the degradation model and estimate the lifetime. Toward this end, we first propose a multi-phase stochastic degradation model with random jumps based on the Wiener process, where the multi-phase model and random jumps at the changing point are used to describe the variation of degradation rate and state caused by regeneration phenomena accordingly. Owing to the complex structure and random variables, the traditional Maximum Likelihood Estimation (MLE is not suitable for the proposed model. In this case, we treat these random variables as latent parameters, and then develop an approach for model identification based on expectation conditional maximum (ECM algorithm. Moreover, depending on the proposed model, how to estimate the lifetime with fixed changing point is presented via the time-space transformation technique, and the approximate analytical solution is derived. Finally, a numerical simulation and a practical case are provided for illustration.

  1. On the influence of internal interfaces and properties of multiphase hard material coatings

    Hilz, G.

    1992-04-01

    In the system TiC-TiB 2 -B 4 C-SiC coatings with different amounts of phase boundaries were prepared by magnetron sputtering: multilayer coatings with 10, 100 and 1000 individual layers and a total thickness of 5 μm as well as single layer multiphase coatings deposited from multiphase targets on heated and unheated substrates. To know the influence of internal interfaces in those coatings, structure and properties of the corresponding single phase coatings were studied also. TEM examinations of cross-section samples showed that B 4 C and SiC coatings are amorphous whereas TiC and TiB 2 coatings are crystalline with a texture which depends on deposition parameters and is developed with growing thickness of the coating. Therefore the texture of TiC and TiB 2 layers in multilayer coatings depends on the thickness of the individual layer. While the texture of single layers in multilayer SiC-TiC, SiC-TiB 2 , B 4 C-TiB 2 , and B 4 C-SiC coatings corresponds to the structure of single phase coatings of the same thickness, in TiC-TiB 2 coatings the texture of the individual layers is also influenced by the texture of the previous layer. The occurence of mixing zones between the layers depends on the materials, but also on the crystallinity of the previous layer. (orig.(MM) [de

  2. A New Concept for an Effective Leak Detection and Loclisation in Multiphase Fluid Pipelines

    Mahmoud Meribout

    2011-02-01

    Full Text Available The aim of this paper is to present a secure wireless sensor network-based infrastructure for fast and accurate detection of eventual leaks that might occur in multiphase pipelines (i.e., pipelines which carry simultaneously more than one fluid. The system is scalable to monitor long distances of pipelines. It consists of a newly designed low cost pipeline set which is composed of an inner pipe that carries the multiphase fluid, surrounded by a second outer pipe that holds the leak detection unit. This latest comprises an air-ultrasonic sensor which continuously senses the presence of the leak. The location of the leak is determined by a bidirectional microphone. Both these sensors are interfaced to a wireless sensor module which performs control, signal processing, and transmission tasks. Hence, the second contribution of the paper is to provide a new secure and reliable communication protocol that takes into consideration the nature of the network in terms of packets patterns and hardware constraints of the communicating nodes. Online tests in a laboratory scale flow loop indicate that the system is capable to accurately determine the location of the leak and its rate (in l/min in fast response time for different scenarios of leaks.

  3. Electrical properties of multiphase composites based on carbon nanotubes and an optimized clay content

    Egiziano, Luigi; Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi

    2016-05-01

    The experimental results concerning the characterization of a multiphase nanocomposite systems based on epoxy matrix, loaded with different amount of multi-walled carbon nanotubes (MWCNTs) and an optimized Hydrotalcite (HT) clay content (i.e. 0.6 wt%), duly identified by an our previous theoretical study based on Design of Experiment (DoE), are presented. Dynamic-mechanical analysis (DMA) reveal that even the introduction of higher HT loading (up to 1%wt) don't affect significantly the mechanical properties of the nanocomposites while morphological investigations show an effective synergy between clay and carbon nanotubes that leads to peculiar micro/nanostructures that favor the creation of the electrical conductive network inside the insulating resin. An electrical characterization is carried out in terms of DC electrical conductivity, percolation threshold (EPT) and frequency response in the range 10Hz-1MHz. In particular, the measurements of the DC conductivity allow to obtain the typical "percolation" curve also found for classical CNT-polymer mixtures and a value of about 2 S/m for the electrical conductivity is achieved at the highest considered CNTs concentration (i.e. 1 wt%). The results suggest that multiphase nanocomposites obtained incorporating dispersive nanofillers, in addition to the conductive one, may be a valid alternative to the polymer blends, to improve the properties of the polymeric materials thus able to meet high demands, particularly concerning their mechanical and thermal stability and electrical features required in the aircraft engineering.

  4. Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction

    Kent E. Wardle

    2013-01-01

    Full Text Available The flows in stage-wise liquid-liquid extraction devices include both phase segregated and dispersed flow regimes. As a additional layer of complexity, for extraction equipment such as the annular centrifugal contactor, free-surface flows also play a critical role in both the mixing and separation regions of the device and cannot be neglected. Traditionally, computional fluid dynamics (CFD of multiphase systems is regime dependent—different methods are used for segregated and dispersed flows. A hybrid multiphase method based on the combination of an Eulerian multifluid solution framework (per-phase momentum equations and sharp interface capturing using Volume of Fluid (VOF on selected phase pairs has been developed using the open-source CFD toolkit OpenFOAM. Demonstration of the solver capability is presented through various examples relevant to liquid-liquid extraction device flows including three-phase, liquid-liquid-air simulations in which a sharp interface is maintained between each liquid and air, but dispersed phase modeling is used for the liquid-liquid interactions.

  5. An open-source toolbox for multiphase flow in porous media

    Horgue, P.; Soulaine, C.; Franc, J.; Guibert, R.; Debenest, G.

    2015-02-01

    Multiphase flow in porous media provides a wide range of applications: from the environmental understanding (aquifer, site-pollution) to industrial process improvements (oil production, waste management). Modeling of such flows involves specific volume-averaged equations and therefore specific computational fluid dynamics (CFD) tools. In this work, we develop a toolbox for modeling multiphase flow in porous media with OpenFOAM®, an open-source platform for CFD. The underlying idea of this approach is to provide an easily adaptable tool that can be used in further studies to test new mathematical models or numerical methods. The package provides the most common effective properties models of the literature (relative permeability, capillary pressure) and specific boundary conditions related to porous media flows. To validate this package, solvers based on the IMplicit Pressure Explicit Saturation (IMPES) method are developed in the toolbox. The numerical validation is performed by comparison with analytical solutions on academic cases. Then, a satisfactory parallel efficiency of the solver is shown on a more complex configuration.

  6. Convex Relaxation of OPF in Multiphase Radial Networks with Wye and Delta Connections

    Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Low, Steven [California Institute of Technology

    2017-08-01

    This panel presentation focuses on multiphase radial distribution networks with wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power flow models are developed to facilitate the integration of delta-connected loads or generation resources in the OPF problem. The first model is referred to as the extended branch flow model (EBFM). The second model leverages a linear relationship between phase-to-ground power injections and delta connections that holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinite programs (SDPs). Numerical studies on IEEE test feeders show that the proposed SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidence also indicates that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is further shown that the SDP solution under BVA has a small optimality gap, and the BVA model is accurate in the sense that it reproduces actual system voltages.

  7. Diode-rectified multiphase AC arc for the improvement of electrode erosion characteristics

    Tanaka, Manabu; Hashizume, Taro; Saga, Koki; Matsuura, Tsugio; Watanabe, Takayuki

    2017-11-01

    An innovative multiphase AC arc (MPA) system was developed on the basis of a diode-rectification technique to improve electrode erosion characteristics. Conventionally, electrode erosion in AC arc is severer than that in DC arc. This originated from the fact that the required properties for the cathode and anode are different, although an AC electrode works as the cathode and the anode periodically. To solve this problem, a separation of AC electrodes into pairs of thoriated tungsten cathode and copper anode by diode-rectification was attempted. A diode-rectified multiphase AC arc (DRMPA) system was then successfully established, resulting in a drastic improvement of the erosion characteristics. The electrode erosion rate in the DRMPA was less than one-third of that in the conventional MPA without the diode rectification. In order to clarify its erosion mechanism, electrode phenomena during discharge were visualized by a high-speed camera system with appropriate band-pass filters. Fluctuation characteristics of the electrode temperature in the DRMPA were revealed.

  8. Optimal Power Flow in Multiphase Radial Networks with Delta Connections: Preprint

    Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Low, Steven H. [California Institute of Technology

    2017-11-27

    This paper focuses on multiphase radial distribution networks with mixed wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power-flow models are developed to facilitate the integration of delta-connected generation units/loads in the OPF problem. The first model extends traditional branch flow models - and it is referred to as extended branch flow model (EBFM). The second model leverages a linear relationship between per-phase power injections and delta connections, which holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinite programs (SDPs). Numerical studies on IEEE test feeders show that SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidences indicate that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is also shown that the SDP solution under BVA has a small optimality gap, while the BVA model is accurate in the sense that it reflects actual system voltages.

  9. Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media

    Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.

    1997-07-01

    The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.

  10. A Case-controlled Study on Personality Characteristics of Suicidal and Homicidal Schizophrenics%有自杀和凶杀行为的精神分裂症患者人格特征比较研究

    王小平; 蔡伟雄; 刘铁桥

    2001-01-01

    Objective:To examine differences in personality characteristics between suicidal and homicidal schizophrenic patients.Methods:A case-control study was conducted with 27 suicidal schizophrenic patients and 22 homicidal schizophrenic patients. Minnesota Multiphasic Personality Inventory (MMPI) was employed to assess these patients. Results: The results showed no reliable differences on all of the MMPI scale scores. Conclusion: It was concluded that schizophrenic patients with suicidal and homicidal tendencies have similar personality characteristics.

  11. Personality and psychopathological profiles in individuals exposed to mobbing.

    Girardi, Paolo; Monaco, Edoardo; Prestigiacomo, Claudio; Talamo, Alessandra; Ruberto, Amedeo; Tatarelli, Roberto

    2007-01-01

    Increasingly, mental health and medical professionals have been asked to assess claims of psychological harm arising from harassment at the workplace, or "mobbing." This study assessed the personality and psychopathological profiles of 146 individuals exposed to mobbing using validity, clinical, and content scales of the Minnesota Multiphasic Personality Inventory 2. Profiles and factor analyses were obtained. Two major dimensions emerged among those exposed to mobbing: (a) depressed mood, difficulty in making decisions, change-related anguish, and passive-aggressive traits (b) somatic symptoms, and need for attention and affection. This cross-sectional pilot study provides evidence that personality profiles of mobbing victims and psychological damage resulting from mobbing may be evaluated using standardized assessments, though a longitudinal study is needed to delineate cause-and-effect relationships.

  12. Personal Computers.

    Toong, Hoo-min D.; Gupta, Amar

    1982-01-01

    Describes the hardware, software, applications, and current proliferation of personal computers (microcomputers). Includes discussions of microprocessors, memory, output (including printers), application programs, the microcomputer industry, and major microcomputer manufacturers (Apple, Radio Shack, Commodore, and IBM). (JN)

  13. AOI 1— COMPUTATIONAL ENERGY SCIENCES:MULTIPHASE FLOW RESEARCH High-fidelity multi-phase radiation module for modern coal combustion systems

    Modest, Michael

    2013-11-15

    The effects of radiation in particle-laden flows were the object of the present research. The presence of particles increases optical thickness substantially, making the use of the “optically thin” approximation in most cases a very poor assumption. However, since radiation fluxes peak at intermediate optical thicknesses, overall radiative effects may not necessarily be stronger than in gas combustion. Also, the spectral behavior of particle radiation properties is much more benign, making spectral models simpler (and making the assumption of a gray radiator halfway acceptable, at least for fluidized beds when gas radiation is not large). On the other hand, particles scatter radiation, making the radiative transfer equation (RTE) much more di fficult to solve. The research carried out in this project encompassed three general areas: (i) assessment of relevant radiation properties of particle clouds encountered in fluidized bed and pulverized coal combustors, (ii) development of proper spectral models for gas–particulate mixtures for various types of two-phase combustion flows, and (iii) development of a Radiative Transfer Equation (RTE) solution module for such applications. The resulting models were validated against artificial cases since open literature experimental data were not available. The final models are in modular form tailored toward maximum portability, and were incorporated into two research codes: (i) the open-source CFD code OpenFOAM, which we have extensively used in our previous work, and (ii) the open-source multi-phase flow code MFIX, which is maintained by NETL.

  14. Integrating personality structure, personality process, and personality development

    Baumert, Anna; Schmitt, Manfred; Perugini, Marco; Johnson, Wendy; Blum, Gabriela; Borkenau, Peter; Costantini, Giulio; Denissen, J.J.A.; Fleeson, William; Grafton, Ben; Jayawickreme, Eranda; Kurzius, Elena; MacLeod, Colin; Miller, Lynn C.; Read, Stephen J.; Robinson, Michael D.; Wood, Dustin; Wrzus, Cornelia

    2017-01-01

    In this target article, we argue that personality processes, personality structure, and personality development have to be understood and investigated in integrated ways in order to provide comprehensive responses to the key questions of personality psychology. The psychological processes and

  15. Extension of modified RAND to multiphase flash specifications based on state functions other than (T,P)

    Paterson, Duncan; Michelsen, Michael Locht; Yan, Wei

    2017-01-01

    The recently proposed modified RAND formulation is extended from isothermal multiphase flash to several other state function based flash specifications. The obtained general formulation is applicable to chemical equilibrium although this study is focused on flash with only phase equilibrium. It i...

  16. Multi-Phase Sub-Sampling Fractional-N PLL with soft loop switching for fast robust locking

    Liao, Dongyi; Dai, FA Foster; Nauta, Bram; Klumperink, Eric A.M.

    2017-01-01

    This paper presents a low phase noise sub-sampling PLL (SSPLL) with multi-phase outputs. Automatic soft switching between the sub-sampling phase loop and frequency loop is proposed to improve robustness against perturbations and interferences that may cause a traditional SSPLL to lose lock. A

  17. Prediction of critical transport velocity for preventing sand deposition in gas-oil multiphase production and well systems

    Bello, O.O.; Reinicke, K.M. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. of Petroleum Engineering; Teodoriu, C. [Texas A and M Univ., College Station, TX (United States). Dept. of Petroleum Engineering

    2008-10-23

    The critical transport velocity is one of the key parameters for gas-oil-sand multiphase production and well system design and safe operation. Existing American Petroleum Institute Recommended Practice 14E (API RP 14E) for the sizing of multiphase flow systems suggests an equation to calculate threshold transport velocity. This equation only considers mixture density and does not account for factors such as fluid properties, gas-liquid flow patterns, sand loading, sand particle size, size distributions, shape factor and density. This work presents an improved computational methodology, which can be applied to estimate the critical transport velocity required to ensure efficient performance of gas-oil-sand multiphase production and well systems. The improved method is based on the modelling of three-phase gas-oil-sand pipe flow physics from first principle. Computations of the critical transport velocities show reasonable agreement with values calculated from mechanistic model (Danielson, 2007) for a relatively wide range of design and operating conditions. Compared with the mechanistic model (Danielson, 2007), the present method has no imposed limitations to the range of applicability. It is also takes into adequate account the effects of operating pressure, flow geometry, sand particle size, size distribution and shape factor, which have considerable influence on the critical transport velocity in gas-oil-sand multiphase production and well systems. (orig.)

  18. From damage to fracture, from micro to macro : a systematic study of ductile fracture in multi-phase microstructures

    de Geus, T.W.J.

    2016-01-01

    Multi-phase materials are of great importance for engineering applications, because of their favorable combination of strength and ductility. This unique combination of properties enables lightweight yet safe design for instance in the automotive industry. The in-depth understanding of the

  19. Integration of Gas Enhanced Oil Recovery in Multiphase Fermentations for the Microbial Production of Fuels and Chemicals

    Pedraza de la Cuesta, S.; van der Wielen, L.A.M.; Cuellar Soares, M.C.

    2018-01-01

    In multiphase fermentations where the product forms a second liquid phase or where solvents are added for product extraction, turbulent conditions disperse the oil phase as droplets. Surface-active components (SACs) present in the fermentation broth can stabilize the product droplets thus forming

  20. Multiphasic contrast-enhanced CT and MRI findings of adult mesoblastic nephroma: A report of two cases

    Yuqin Ding

    2013-01-01

    Full Text Available Mesoblastic nephroma (MN presenting in an adult is extremely rare. The computed tomography (CT and magnetic resonance imaging (MRI features of this tumor in adulthood have not been widely reported. We present two additional cases of adult MN and describe the multiphasic contrast-enhanced CT and MRI findings.

  1. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  2. Comparative validity of MMPI-2 and MCMI-II personality disorder classifications.

    Wise, E A

    1996-06-01

    Minnesota Multiphasic Personality Inventory-2 (MMPI-2) overlapping and nonoverlapping scales were demonstrated to perform comparably to their original MMPI forms. They were then evaluated for convergent and discriminant validity with the Million Clinical Multiaxial Inventory-II (MCMI-II) personality disorder scales. The MMPI-2 and MCMI-II personality disorder scales demonstrated convergent and discriminant coefficients similar to their original forms. However, the MMPI-2 personality scales classified significantly more of the sample as Dramatic, whereas the MCMI-II diagnosed more of the sample as Anxious. Furthermore, single-scale and 2-point code type classification rates were quite low, indicating that at the level of the individual, the personality disorder scales are not measuring comparable constructs. Hence, each instrument is providing similar and unique information, justifying their continued use together for the purpose of diagnosing personality disorders.

  3. A novel consistent and well-balanced algorithm for simulations of multiphase flows on unstructured grids

    Patel, Jitendra Kumar; Natarajan, Ganesh

    2017-12-01

    We discuss the development and assessment of a robust numerical algorithm for simulating multiphase flows with complex interfaces and high density ratios on arbitrary polygonal meshes. The algorithm combines the volume-of-fluid method with an incremental projection approach for incompressible multiphase flows in a novel hybrid staggered/non-staggered framework. The key principles that characterise the algorithm are the consistent treatment of discrete mass and momentum transport and the similar discretisation of force terms appearing in the momentum equation. The former is achieved by invoking identical schemes for convective transport of volume fraction and momentum in the respective discrete equations while the latter is realised by representing the gravity and surface tension terms as gradients of suitable scalars which are then discretised in identical fashion resulting in a balanced formulation. The hybrid staggered/non-staggered framework employed herein solves for the scalar normal momentum at the cell faces, while the volume fraction is computed at the cell centroids. This is shown to naturally lead to similar terms for pressure and its correction in the momentum and pressure correction equations respectively, which are again treated discretely in a similar manner. We show that spurious currents that corrupt the solution may arise both from an unbalanced formulation where forces (gravity and surface tension) are discretised in dissimilar manner and from an inconsistent approach where different schemes are used to convect the mass and momentum, with the latter prominent in flows which are convection-dominant with high density ratios. Interestingly, the inconsistent approach is shown to perform as well as the consistent approach even for high density ratio flows in some cases while it exhibits anomalous behaviour for other scenarios, even at low density ratios. Using a plethora of test problems of increasing complexity, we conclusively demonstrate that the

  4. Abnormal functional brain connectivity and personality traits in myotonic dystrophy type 1.

    Serra, Laura; Silvestri, Gabriella; Petrucci, Antonio; Basile, Barbara; Masciullo, Marcella; Makovac, Elena; Torso, Mario; Spanò, Barbara; Mastropasqua, Chiara; Harrison, Neil A; Bianchi, Maria L E; Giacanelli, Manlio; Caltagirone, Carlo; Cercignani, Mara; Bozzali, Marco

    2014-05-01

    Myotonic dystrophy type 1 (DM1), the most common muscular dystrophy observed in adults, is a genetic multisystem disorder affecting several other organs besides skeletal muscle, including the brain. Cognitive and personality abnormalities have been reported; however, no studies have investigated brain functional networks and their relationship with personality traits/disorders in patients with DM1. To use resting-state functional magnetic resonance imaging to assess the potential relationship between personality traits/disorders and changes to functional connectivity within the default mode network (DMN) in patients with DM1. We enrolled 27 patients with genetically confirmed DM1 and 16 matched healthy control individuals. Patients underwent personality assessment using clinical interview and Minnesota Multiphasic Personality Inventory-2 administration; all participants underwent resting-state functional magnetic resonance imaging. Investigations were conducted at the Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Catholic University of Sacred Heart, and Azienda Ospedaliera San Camillo Forlanini. Resting-state functional magnetic resonance imaging. Measures of personality traits in patients and changes in functional connectivity within the DMN in patients and controls. Changes in functional connectivity and atypical personality traits in patients were correlated. We combined results obtained from the Minnesota Multiphasic Personality Inventory-2 and clinical interview to identify a continuum of atypical personality profiles ranging from schizotypal personality traits to paranoid personality disorder within our DM1 patients. We also demonstrated an increase in functional connectivity in the bilateral posterior cingulate and left parietal DMN nodes in DM1 patients compared with controls. Moreover, patients with DM1 showed strong associations between DMN functional connectivity and schizotypal-paranoid traits. Our findings provide novel

  5. Personality Profile of Male Adolescents With Tourette Syndrome: A Controlled Study.

    Balottin, Laura; Selvini, Claudia; Luoni, Chiara; Mannarini, Stefania; Chiappedi, Matteo; Seri, Stefano; Termine, Cristiano; Cavanna, Andrea E

    2016-03-01

    Tourette syndrome is a neurodevelopmental disorder characterized by multiple tics and commonly associated with behavioral problems, especially obsessive-compulsive disorder and attention-deficit hyperactivity disorder (ADHD). The presence of specific personality traits has been documented in adult clinical populations with Tourette syndrome but has been underresearched in younger patients. We assessed the personality profiles of 17 male adolescents with Tourette syndrome and 51 age- and gender-matched healthy controls using the Minnesota Multiphasic Personality Inventory-Adolescent version, along with a standardized psychometric battery. All participants scored within the normal range across all Minnesota Multiphasic Personality Inventory-Adolescent version scales. Patients with Tourette syndrome scored significantly higher than healthy controls on the Obsessiveness Content Scale only (P = .046). Our findings indicate that younger male patients with Tourette syndrome do not report abnormal personality traits and have similar personality profiles to healthy peers, with the exception of obsessionality traits, which are likely to be related to the presence of comorbid obsessive compulsive symptoms rather than tics. © The Author(s) 2015.

  6. Personality disorder

    Tyrer, Peter; Mulder, Roger; Crawford, Mike

    2010-01-01

    and to society, and interferes, usually negatively, with progress in the treatment of other mental disorders. We now have evidence that personality disorder, as currently classified, affects around 6% of the world population, and the differences between countries show no consistent variation. We are also getting......Personality disorder is now being accepted as an important condition in mainstream psychiatry across the world. Although it often remains unrecognized in ordinary practice, research studies have shown it is common, creates considerable morbidity, is associated with high costs to services...... increasing evidence that some treatments, mainly psychological, are of value in this group of disorders. What is now needed is a new classification that is of greater value to clinicians, and the WPA Section on Personality Disorders is currently undertaking this task....

  7. Personality disorders

    Simonsen, Sebastian; Heinskou, Torben; Sørensen, Per

    2017-01-01

    BACKGROUND: In this naturalistic study, patients with personality disorders (N = 388) treated at Stolpegaard Psychotherapy Center, Mental Health Services, Capital Region of Denmark were allocated to two different kinds of treatment: a standardized treatment package with a preset number of treatment...... characteristics associated with clinicians' allocation of patients to the two different personality disorder services. METHODS: Patient characteristics across eight domains were collected in order to study whether there were systematic differences between patients allocated to the two different treatments....... Patient characteristics included measures of symptom severity, personality pathology, trauma and socio-demographic characteristics. Significance testing and binary regression analysis were applied to identify important predictors. RESULTS: Patient characteristics on fifteen variables differed...

  8. Dynamic studies of cardiac valvular disease using a new fast multiphase MR imaging technique

    Pettigrew, R.; Churchwell, A.; Parks, W.J.; Dannels, W.; Smith, H. III; Baron, M.G.

    1986-01-01

    To determine the potential utility of fast multiphase (FM) imaging for the assessment of cardiac valvular disease, ten healthy volunteers and 18 patients were studied. The FM technique employed gradient echoes with TE -- 15 msec and small exitation angles with TR -- 50 msec. Cine display of the electrocardiographically gated FM images allowed clear visualization of regurgitant blood flow in each of 15 patients with tricuspid or mitral insufficiency. Magnetic field distortions in two patients with Bjork-Shiley aortic prostheses and regurgitation prevented definitive visualization of the flow patterns. An equivocal flow pattern was seen in one case of mitral stenosis. Thus, FM imaging may have significant utility as an adjunctive procedure for the assessment of atrioventricular valve insufficiently, without requiring a contrast agent. Difficulties may exist with some prosthetic valves

  9. Multiscale mechanics of TRIP-assisted multiphase steels: II. Micromechanical modelling

    Lani, F.; Furnemont, Q.; Van Rompaey, T.; Delannay, F.; Jacques, P.J.; Pardoen, T.

    2007-01-01

    The stress and strain partitioning between the different phases of transformation-induced plasticity (TRIP)-aided multiphase steels is evaluated using a mean field homogenization approach. The change of the austenite volume fraction under straining is predicted using a micromechanics-based criterion for the martensitic transformation adapted to the case of small, isolated, transforming austenite grains. The parameters of the model are identified from the mechanical response and transformation kinetics measured under uniaxial tension for two steels differing essentially by the austenite stability. The model is validated by comparing the predictions with tests performed under different loading conditions: pure shear, intermediate biaxial and equibiaxial. An analysis of the effect of the austenite stability on strength and ductility provides guidelines for optimizing properties according to the stress state

  10. Two-Fluid Models for Simulating Dispersed Multiphase Flows-A Review

    L.X. Zhou

    2009-01-01

    Full Text Available The development of two-fluid models for simulating dispersed multiphase flows (gas-particle, gas-droplet, bubble-liquid, liquid-particle flows by the present author within the last 20 years is systematically reviewed. The two-fluid models based on Reynolds expansion, time averaging and mass-weighed averaging, and also PDF transport equations are described. Different versions of two-phase turbulence models, including the unified second-order moment (USM and k-ε-kp models, the DSM-PDF model, the SOM-MC model, the nonlinear k-e-kp model, and the USM-Θ model for dense gas-particle flows and their application and experimental validation are discussed.

  11. Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles

    Owis, F.M.; Nayfeh, A.H. [Blacksburg State University, Dept. of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute, VA (United States)

    2004-04-01

    The hydrodynamic cavitation over axisymmetric projectiles is computed using the unsteady incompressible Navier-Stokes equations for multi-fluid elements. The governing equations are discretized on a structured grid using an upwind difference scheme with flux limits. A preconditioning dual-time stepping method is used for the unsteady computations. The Eigen-system is derived for the Jacobian matrices. This Eigen-system is suitable for high-density ratio multi-fluid flows and it provides high numerical stability and fast convergence. This method can be used to compute single- as well as multi-phase flows. Cavitating flows over projectiles with different geometries are computed and the results are in good agreement with available experimental data and other published computations. (authors)

  12. Load-Flow in Multiphase Distribution Networks: Existence, Uniqueness, Non-Singularity, and Linear Models

    Bernstein, Andrey [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Cong [Ecole Polytechnique Federale de Lausanne (EPFL); Le Boudec, Jean-Yves [Ecole Polytechnique Federale de Lausanne (EPFL)

    2018-04-06

    This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for the non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.

  13. A multi-phase equation of state for solid and liquid lead

    Robinson, C.M.

    2004-01-01

    This paper considers a multi-phase equation of state for solid and liquid lead. The thermodynamically consistent equation of state is constructed by calculating separate equations of state for the solid and liquid phases. The melt curve is the curve in the pressure, temperature plane where the Gibb's free energy of the solid and liquid phases are equal. In each phase a complete equation of state is obtained using the assumptions that the specific heat capacity is constant and that the Grueneisen parameter is proportional to the specific volume. The parameters for the equation of state are obtained from experimental data. In particular they are chosen to match melt curve and principal Hugoniot data. Predictions are made for the shock pressure required for melt to occur on shock and release

  14. Revisiting directed flow in relativistic heavy-ion collisions from a multiphase transport model

    Guo, Chong-Qiang; Zhang, Chun-Jian; Xu, Jun

    2017-12-01

    We have revisited several interesting questions on how the rapidity-odd directed flow is developed in relativistic 197Au+197Au collisions at √{s_{NN}} = 200 and 39 GeV based on a multiphase transport model. As the partonic phase evolves with time, the slope of the parton directed flow at midrapidity region changes from negative to positive as a result of the later dynamics at 200 GeV, while it remains negative at 39 GeV due to the shorter life time of the partonic phase. The directed flow splitting for various quark species due to their different initial eccentricities is observed at 39 GeV, while the splitting is very small at 200GeV. From a dynamical coalescence algorithm with Wigner functions, we found that the directed flow of hadrons is a result of competition between the coalescence in momentum and coordinate space as well as further modifications by the hadronic rescatterings.

  15. Microstructure and mechanical properties of multiphase NiAl-based alloys

    Pank, D. R.; Koss, D. A.; Nathal, M. V.

    1990-01-01

    The effect of the gamma-prime phase on the deformation behavior and fracture resistance of melt-spun ribbons and consolidated bulk specimens of a series of Nial-based alloys with Co and Hf additions has been examined. The morphology, location, and volume fraction of the gamma-prime phase are significant factors in enhancing the fracture resistance of the normally brittle NiAl-based alloys. In particular, the results indicate that a continuous-grain-boundary film of gamma-prime can impart limited room-temperature ductility regardless of whether B2 or L10 NiAl is present. Guidelines for microstructure control in multiphase NiAl-based alloys are also presented.

  16. Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions

    Herrmann, Christoph; Schoof, Ephraim; Schneider, Daniel; Schwab, Felix; Reiter, Andreas; Selzer, Michael; Nestler, Britta

    2018-04-01

    We introduce a small strain elasto-plastic multiphase-field model according to the mechanical jump conditions. A rate-independent J_2 -plasticity model with linear isotropic hardening and without kinematic hardening is applied exemplary. Generally, any physically nonlinear mechanical model is compatible with the subsequently presented procedure. In contrast to models with interpolated material parameters, the proposed model is able to apply different nonlinear mechanical constitutive equations for each phase separately. The Hadamard compatibility condition and the static force balance are employed as homogenization approaches to calculate the phase-inherent stresses and strains. Several verification cases are discussed. The applicability of the proposed model is demonstrated by simulations of the martensitic transformation and quantitative parameters.

  17. Investigating the NCQ scaling of elliptic flow at LHC with a multiphase transport model

    Zheng, Liang [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan (China); Central China Normal University, School of Mathematics and Statistics, Wuhan (China); Li, Hui; Shou, Qi-Ye; Yin, Zhong-Bao [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan (China); Qin, Hong [Central China Normal University, School of Mathematics and Statistics, Wuhan (China)

    2017-06-15

    The number of constituent quark (NCQ) scaling behavior of elliptic flow has been systematically studied at the LHC energy within the framework of a multiphase transport model (AMPT) in this work. With the variation of the fragmentation parameters, collision centrality and system energy, we find that the initial conditions of parton dynamics are more important than the final state parton cascade process for the existence of NCQ scaling when the hadronic interaction is off in Pb-Pb collisions. By turning on the hadron interaction process, the impacts of hadronic evolution are found to be responsible for a significant violation to the well established scaling structure. Our study suggests that the interpretation of NCQ scaling is not only subject to the hadronization mechanism but also to the initial conditions of parton evolution as well as the hadronic interactions especially for the LHC experiments. (orig.)

  18. Optimization of behavioral, biobehavioral, and biomedical interventions the multiphase optimization strategy (MOST)

    Collins, Linda M

    2018-01-01

    This book presents a framework for development, optimization, and evaluation of behavioral,  biobehavioral, and biomedical interventions.  Behavioral, biobehavioral, and biomedical interventions are programs with the objective of improving and maintaining human health and well-being, broadly defined, in individuals, families, schools, organizations, or communities.  These interventions may be aimed at, for example, preventing or treating disease, promoting physical and mental health, preventing violence, or improving academic achievement.   This volume introduces the Multiphase Optimization Strategy (MOST), pioneered at The Methodology Center at the Pennsylvania State University, as an alternative to the classical approach of relying solely on the randomized controlled trial (RCT).  MOST borrows heavily from perspectives taken and approaches used in engineering, and also integrates concepts from statistics and behavioral science, including the RCT.  As described in detail in this book, MOST consists of ...

  19. Application of PNA-technique for the measurement of multi-phase flow

    Loevhoeiden, G.; Andersen, E.; Garder, K.; Rambaek, J.P.

    1986-09-01

    The pulsed neutron activation (PNA) technique is proposed for multi-phase flow monitoring of hydrocarbons. The reactions 12 C(n,p) 12 B and 12 C(n,n') 12 C both yeld 4.4 MeV in the form of gamma radiation as a measure of carbon content. Intensity measurement of the 4.4 MeV gamma line gives a measure of the carbon content in the irradiation zone. By use of a pulsed neutron source, an estimation of the carbon content time variation is possible. In the presence of sulphur in petroleum, the reaction 34 S(n,p) 34 P offers a better possibility for flow rate determination

  20. Quantitative, three-dimensional diagnostics of multiphase drop fragmentation via digital in-line holography.

    Gao, Jian; Guildenbecher, Daniel R; Reu, Phillip L; Kulkarni, Varun; Sojka, Paul E; Chen, Jun

    2013-06-01

    Quantitative application of digital in-line holography (DIH) to characterize multiphase fragmentation is demonstrated. DIH is applied to record sequential holograms of the breakup of an ethanol droplet in an aerodynamic flow field. Various stages of the breakup process are recorded, including deformation, bag growth, bag breakup, and rim breakup. A recently proposed hybrid method is applied to extract the three-dimensional (3D) location and size of secondary droplets as well as the 3D morphology of the rim. Particle matching between sequential frames is used to determine the velocity. Coincidence with the results obtained from phase Doppler anemometry measurement demonstrates the accuracy of measurement by DIH and the hybrid method.