WorldWideScience

Sample records for multiphase reactive geochemical

  1. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive geochemical Transport in Variably Saturated Geologic Media

    International Nuclear Information System (INIS)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-01-01

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of mineral alteration in hydrothermal systems, waste disposal sites, acid mine drainage remediation, contaminant transport, and groundwater quality. A comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator, TOUGHREACT, has been developed. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The program can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. Changes in porosity and permeability due to mineral dissolution and precipitation can be considered. Linear adsorption and decay can be included. For the purpose of future extensions, surface complexation by double layer model is coded in the program. Xu and Pruess (1998) developed a first version of a non-isothermal reactive geochemical transport model, TOUGHREACT, by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). Xu, Pruess, and their colleagues have applied the program to a variety of problems such as: (1) supergene copper enrichment (Xu et al, 2001), (2) caprock mineral alteration in a hydrothermal system (Xu and Pruess, 2001a), and (3) mineral trapping for CO 2 disposal in deep saline aquifers (Xu et al, 2003b and 2004a). For modeling the coupled thermal, hydrological, and chemical processes during heater

  2. TOURGHREACT: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media

    OpenAIRE

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-01-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between ...

  3. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1

    International Nuclear Information System (INIS)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2008-01-01

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas reactive-transport under boiling conditions, (2) an improved HKF activity model for aqueous species, (3) gas species diffusion coefficients calculated as a function of pressure, temperature, and molecular properties, (4) mineral reactive surface area formulations for fractured

  4. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2008-09-29

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas reactive-transport under boiling conditions, (2) an improved HKF activity model for aqueous species, (3) gas species diffusion coefficients calculated as a function of pressure, temperature, and molecular properties, (4) mineral reactive surface area formulations for fractured

  5. Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.

    1997-07-01

    The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.

  6. Stability Analysis of Reactive Multiphase Slug Flows in Microchannels

    Directory of Open Access Journals (Sweden)

    Alejandro A. Munera Parra

    2014-05-01

    Full Text Available Conducting multiphase reactions in micro-reactors is a promising strategy for intensifying chemical and biochemical processes. A major unresolved challenge is to exploit the considerable benefits offered by micro-scale operation for industrial scale throughputs by numbering-up whilst retaining the underlying advantageous flow characteristics of the single channel system in multiple parallel channels. Fabrication and installation tolerances in the individual micro-channels result in different pressure losses and, thus, a fluid maldistribution. In this work, an additional source of maldistribution, namely the flow multiplicities, which can arise in a multiphase reactive or extractive flow in otherwise identical micro-channels, was investigated. A detailed experimental and theoretical analysis of the flow stability with and without reaction for both gas-liquid and liquid-liquid slug flow has been developed. The model has been validated using the extraction of acetic acid from n-heptane with the ionic liquid 1-Ethyl-3-methylimidazolium ethyl sulfate. The results clearly demonstrate that the coupling between flow structure, the extent of reaction/extraction and pressure drop can result in multiple operating states, thus, necessitating an active measurement and control concept to ensure uniform behavior and optimal performance.

  7. Subsurface Transport Over Reactive Multiphases (STORM): A Parallel, Coupled, Nonisothermal Multiphase Flow, Reactive Transport, and Porous Medium Alteration Simulator, Version 3.0

    International Nuclear Information System (INIS)

    Bacon, Diana H.; White, Mark D.; McGrail, B PETER

    2004-01-01

    The U.S. Department of Energy must approve a performance assessment (PA) to support the design, construction, approval, and closure of disposal facilities for immobilized low-activity waste (ILAW) currently stored in underground tanks at Hanford, Washington. A critical component of the PA is to provide quantitative estimates of radionuclide release rates from the engineered portion of the disposal facilities. Computer simulations are essential for this purpose because impacts on groundwater resources must be projected to periods of 10,000 years and longer. The computer code selected for simulating the radionuclide release rates is the Subsurface Transport Over Reactive Multiphases (STORM) simulator. The STORM simulator solves coupled conservation equations for component mass and energy that describe subsurface flow over aqueous and gas phases through variably saturated geologic media. The resulting flow fields are used to sequentially solve conservation equations for reactive aqueous phase transport through variably saturated geologic media. These conservation equations for component mass, energy, and solute mass are partial differential equations that mathematically describe flow and transport through porous media. The STORM simulator solves the governing-conservation equations and constitutive functions using numerical techniques for nonlinear systems. The partial differential equations governing thermal and fluid flow processes are solved by the integral volume finite difference method. These governing equations are solved simultaneously using Newton-Raphson iteration. The partial differential equations governing reactive solute transport are solved using either an operator split technique where geochemical reactions and solute transport are solved separately, or a fully coupled technique where these equations are solved simultaneously. The STORM simulator is written in the FORTRAN 77 language, following American National Standards Institute (ANSI) standards

  8. Geochemical reactivity of rocks of the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Chuman, T.; Gürtlerová, P.; Hruška, Jakub; Adamová, M.

    2014-01-01

    Roč. 10, č. 2 (2014), s. 341-349 ISSN 1744-5647 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : geochemical reactivity * Czech Republic * susceptibility to weathering Subject RIV: EH - Ecology, Behaviour Impact factor: 1.193, year: 2014

  9. Uncertainty in reactive transport geochemical modelling

    International Nuclear Information System (INIS)

    Oedegaard-Jensen, A.; Ekberg, C.

    2005-01-01

    Full text of publication follows: Geochemical modelling is one way of predicting the transport of i.e. radionuclides in a rock formation. In a rock formation there will be fractures in which water and dissolved species can be transported. The composition of the water and the rock can either increase or decrease the mobility of the transported entities. When doing simulations on the mobility or transport of different species one has to know the exact water composition, the exact flow rates in the fracture and in the surrounding rock, the porosity and which minerals the rock is composed of. The problem with simulations on rocks is that the rock itself it not uniform i.e. larger fractures in some areas and smaller in other areas which can give different water flows. The rock composition can be different in different areas. In additions to this variance in the rock there are also problems with measuring the physical parameters used in a simulation. All measurements will perturb the rock and this perturbation will results in more or less correct values of the interesting parameters. The analytical methods used are also encumbered with uncertainties which in this case are added to the uncertainty from the perturbation of the analysed parameters. When doing simulation the effect of the uncertainties must be taken into account. As the computers are getting faster and faster the complexity of simulated systems are increased which also increase the uncertainty in the results from the simulations. In this paper we will show how the uncertainty in the different parameters will effect the solubility and mobility of different species. Small uncertainties in the input parameters can result in large uncertainties in the end. (authors)

  10. Multiphasic fluid models and multicomponents reactive transport in porous media

    International Nuclear Information System (INIS)

    Juncosa, R.

    2001-01-01

    The design and construction of repositories for toxic waste, such as radioactive waste of medium and high activity, require tools, that will enable us to predict how the system will behave. The rational behind this Dissertation is based precisely on developing numerical models to study and predict coupled thermal, mechanical, hydrodynamic and geochemical behavior of clays intended to be used as engineered barriers in radioactive waste repository. In order to meet the requirements of the FEBEX Project (Full Scale Engineered Barriers Experiment) it was necessary to develop thermo-hydro-geochemical conceptual and numerical models (THG). For this purpose a THG code was developed to simulate and predict the THG behavior of the clay barrier. The code was created after considering two options. a) The development of a completely new code, or b) the coupling of existing codes. In this Dissertation we chose the second option, and developed a new program (FADES-CORE), which was obtained by using the FADES thermo-hydro-mechanical code (Navarro, 1997) and the CORE-LE code (Samper et al., 1998). This process entailed the modification of FADES, the addition of new subroutines for the calculation of solute transport, the modification of CORE-LE and the introduction of additional geochemical and transport processes. (Author)

  11. Subsurface Transport Over Reactive Multiphases (STORM): A general, coupled, nonisothermal multiphase flow, reactive transport, and porous medium alteration simulator, Version 2 user's guide

    International Nuclear Information System (INIS)

    Bacon, D.H.; White, M.D.; McGrail, B.P.

    2000-01-01

    The Hanford Site, in southeastern Washington State, has been used extensively to produce nuclear materials for the US strategic defense arsenal by the Department of Energy (DOE) and its predecessors, the US Atomic Energy Commission and the US Energy Research and Development Administration. A large inventory of radioactive and mixed waste has accumulated in 177 buried single- and double shell tanks. Liquid waste recovered from the tanks will be pretreated to separate the low-activity fraction from the high-level and transuranic wastes. Vitrification is the leading option for immobilization of these wastes, expected to produce approximately 550,000 metric tons of Low Activity Waste (LAW) glass. This total tonnage, based on nominal Na 2 O oxide loading of 20% by weight, is destined for disposal in a near-surface facility. Before disposal of the immobilized waste can proceed, the DOE must approve a performance assessment, a document that described the impacts, if any, of the disposal facility on public health and environmental resources. Studies have shown that release rates of radionuclides from the glass waste form by reaction with water determine the impacts of the disposal action more than any other independent parameter. This report describes the latest accomplishments in the development of a computational tool, Subsurface Transport Over Reactive Multiphases (STORM), Version 2, a general, coupled non-isothermal multiphase flow and reactive transport simulator. The underlying mathematics in STORM describe the rate of change of the solute concentrations of pore water in a variably saturated, non-isothermal porous medium, and the alteration of waste forms, packaging materials, backfill, and host rocks

  12. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media

    Science.gov (United States)

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu

    2015-07-01

    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  13. Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance.

    Science.gov (United States)

    Zhang, Kunyu; Nagarajan, Vidhya; Misra, Manjusri; Mohanty, Amar K

    2014-08-13

    Multiphase blends of poly(lactic acid) (PLA), ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) terpolymer, and a series of renewable poly(ether-b-amide) elastomeric copolymer (PEBA) were fabricated through reactive melt blending in an effort to improve the toughness of the PLA. Supertoughened PLA blend showing impact strength of ∼500 J/m with partial break impact behavior was achieved at an optimized blending ratio of 70 wt % PLA, 20 wt % EMA-GMA, and 10 wt % PEBA. Miscibility and thermal behavior of the binary blends PLA/PEBA and PLA/EMA-GMA, and the multiphase blends were also investigated through differential scanning calorimetric (DSC) and dynamic mechanical analysis (DMA). Phase morphology and fracture surface morphology of the blends were studied through scanning electron microscopy (SEM) and atomic force microscopy (AFM) to understand the strong corelation between the morphology and its significant effect on imparting tremendous improvement in toughness. A unique "multiple stacked structure" with partial encapsulation of EMA-GMA and PEBA minor phases was observed for the PLA/EMA-GMA/PEBA (70/20/10) revealing the importance of particular blend composition in enhancing the toughness. Toughening mechanism behind the supertoughened PLA blends have been established by studying the impact fractured surface morphology at different zones of fracture. Synergistic effect of good interfacial adhesion and interfacial cavitations followed by massive shear yielding of the matrix was believed to contribute to the enormous toughening effect observed in these multiphase blends.

  14. Modeling of multi-phase interactions of reactive nitrogen between snow and air in Antarctica

    Science.gov (United States)

    McCrystall, M.; Chan, H. G. V.; Frey, M. M.; King, M. D.

    2016-12-01

    In polar and snow-covered regions, the snowpack is an important link between atmospheric, terrestrial and oceanic systems. Trace gases, including nitrogen oxides, produced via photochemical reactions in snow are partially released to the lower atmosphere with considerable impact on its composition. However, the post-depositional processes that change the chemical composition and physical properties of the snowpack are still poorly understood. Most current snow chemistry models oversimplify as they assume air-liquid interactions and aqueous phase chemistry taking place at the interface between the snow grain and air. Here, we develop a novel temperature dependent multi-phase (gas-liquid-ice) physical exchange model for reactive nitrogen. The model is validated with existing year-round observations of nitrate in the top 0.5-2 cm of snow and the overlying atmosphere at two very different Antarctic locations: Dome C on the East Antarctic Plateau with very low annual mean temperature (-54ºC) and accumulation rate (rate and high background level of sea salt aerosol. We find that below the eutectic temperature of the H2O/dominant ion mixture the surface snow nitrate is controlled by kinetic adsorption onto the surface of snow grains followed by grain diffusion. Above the eutectic temperature, in addition to the former two processes, thermodynamic equilibrium of HNO3 between interstitial air and liquid water pockets, possibly present at triple junctions or grooves at grain boundaries, greatly enhances the nitrate uptake by snow in agreement with the concentration peak observed in summer.

  15. Modeling and observational constraints on the sulfur cycle in the marine troposphere: a focus on reactive halogens and multiphase chemistry

    Science.gov (United States)

    Chen, Q.; Breider, T.; Schmidt, J.; Sherwen, T.; Evans, M. J.; Xie, Z.; Quinn, P.; Bates, T. S.; Alexander, B.

    2017-12-01

    The radiative forcing from marine boundary layer clouds is still highly uncertain, which partly stems from our poor understanding of cloud condensation nuclei (CCN) formation. The oxidation of dimethyl sulfide (DMS) and subsequent chemical evolution of its products (e.g. DMSO) are key processes in CCN formation, but are generally very simplified in large-scale models. Recent research has pointed out the importance of reactive halogens (e.g. BrO and Cl) and multiphase chemistry in the tropospheric sulfur cycle. In this study, we implement a series of sulfur oxidation mechanisms into the GEOS-Chem global chemical transport model, involving both gas-phase and multiphase oxidation of DMS, DMSO, MSIA and MSA, to improve our understanding of the sulfur cycle in the marine troposphere. DMS observations from six locations around the globe and MSA/nssSO42- ratio observations from two ship cruises covering a wide range of latitudes and longitudes are used to assess the model. Preliminary results reveal the important role of BrO for DMS oxidation at high latitudes (up to 50% over Southern Ocean). Oxidation of DMS by Cl radicals is small in the model (within 10% in the marine troposphere), probably due to an underrepresentation of Cl sources. Multiphase chemistry (e.g. oxidation by OH and O3 in cloud droplets) is not important for DMS oxidation but is critical for DMSO oxidation and MSA production and removal. In our model, about half of the DMSO is oxidized in clouds, leading to the formation of MSIA, which is further oxidized to form MSA. Overall, with the addition of reactive halogens and multiphase chemistry, the model is able to better reproduce observations of seasonal variations of DMS and MSA/nssSO42- ratios.

  16. Preliminary reactive geochemical transport simulation study on CO2 geological sequestration at the Changhua Coastal Industrial Park Site, Taiwan

    Science.gov (United States)

    Sung, R.; Li, M.

    2013-12-01

    assumed throughout the simulation domain. Comparisons among simulated results with different mesh systems of nested meshes and non-nested meshes and considerations of multiphase reactive transport and physical transport were demonstrated in this study. Preliminary results of injection CO2 for 50 years are: (1) about 7 wt.% of injected CO2 was trapped as carbonate minerals mainly as ankerite; (2) porosities were decreased by 0.014 % and increased by 0.102 % at the injection point and beneath the cap rock, respectively, and were subsequently decreased with time due to minerals precipitation mostly as illite and ankerite; (3) differences of simulated aquifer responses between reactive transport and physical transport were insignificant; and (4) projected CO2 plumes with the nested meshes was smaller than those by the non-nested meshes after cease of CO2 injection. Keywords: CO2-Saline-Mineral Interaction, Reactive Geochemical Transport, TOUGHREACT, Mineral Trapping Assessment, Changhua Costal Industrial Park Site, Taiwan Reference: Marini, L., 2006, Geological Sequestration of Carbon Dioxide, Volume 11: Thermodynamics, Kinetics, and Reaction Path Modeling, Elsevier Science, pp.470. Xu, T., J. A. Apps and K. Pruess, 2004, Numerical simulation of CO2 disposal by mineral trapping in deep aquifers, Applied Geochemistry, Vol. 19:917-936.

  17. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T.; Spycher, N.; Sonnenthal, E.; Zhang, G.; Zheng, L.; Pruess, K.

    2010-08-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO{sub 2} geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO{sub 2} in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.

  18. Numerical Tools for Multicomponent, Multiphase, Reactive Processes: Flow of CO{sub 2} in Porous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Khattri, Sanjay Kumar

    2006-07-01

    The thesis is concerned with numerically simulating multicomponent, multiphase, reactive transport in heterogeneous porous medium. Such processes are ubiquitous, for example, deposition of green house gases, flow of hydrocarbons and groundwater remediation. Understanding such processes is important from social and economic point of view. For the success of geological sequestration, an accurate estimation of migration patterns of green-house gases is essential. Due to an ever increasing computer power, computational mathematics has become an important tool for predicting dynamics of porous media fluids. Numerical and mathematical modelling of processes in a domain requires grid generation in the domain, discretization of the continuum equations on the generated grid, solution of the formed linear or nonlinear system of discrete equations and finally visualization of the results. The thesis is composed of three chapters and eight papers. Chapter 2 presents two techniques for generating structured quadrilateral and hexahedral meshes. These techniques are called algebraic and elliptic methods. Algebraic techniques are by far the most simple and computationally efficient method for grid generation. Transfinite interpolation operators are a kind of algebraic grid generation technique. In this chapter, many transfinite interpolation operators for grid generation are derived from 1D projection operators. In this chapter, some important properties of hexahedral elements are also mentioned. These properties are useful in discretization of partial differential equations on hexahedral mesh, improving quality of the hexahedral mesh, mesh generation and visualization. Chapter 3 is about CO{sub 2} flow in porous media. In this chapter, we present the mathematical models and their discretization for capturing major physical processes associated with CO{sub 2} deposition in geological formations. Some important simulations of practical applications in 2D and 3D are presented

  19. Numerical Tools for Multicomponent, Multiphase, Reactive Processes: Flow of CO{sub 2} in Porous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Khattri, Sanjay Kumar

    2006-07-01

    The thesis is concerned with numerically simulating multicomponent, multiphase, reactive transport in heterogeneous porous medium. Such processes are ubiquitous, for example, deposition of green house gases, flow of hydrocarbons and groundwater remediation. Understanding such processes is important from social and economic point of view. For the success of geological sequestration, an accurate estimation of migration patterns of green-house gases is essential. Due to an ever increasing computer power, computational mathematics has become an important tool for predicting dynamics of porous media fluids. Numerical and mathematical modelling of processes in a domain requires grid generation in the domain, discretization of the continuum equations on the generated grid, solution of the formed linear or nonlinear system of discrete equations and finally visualization of the results. The thesis is composed of three chapters and eight papers. Chapter 2 presents two techniques for generating structured quadrilateral and hexahedral meshes. These techniques are called algebraic and elliptic methods. Algebraic techniques are by far the most simple and computationally efficient method for grid generation. Transfinite interpolation operators are a kind of algebraic grid generation technique. In this chapter, many transfinite interpolation operators for grid generation are derived from 1D projection operators. In this chapter, some important properties of hexahedral elements are also mentioned. These properties are useful in discretization of partial differential equations on hexahedral mesh, improving quality of the hexahedral mesh, mesh generation and visualization. Chapter 3 is about CO{sub 2} flow in porous media. In this chapter, we present the mathematical models and their discretization for capturing major physical processes associated with CO{sub 2} deposition in geological formations. Some important simulations of practical applications in 2D and 3D are presented

  20. Pore scale study of multiphase multicomponent reactive transport during CO2 dissolution trapping

    Science.gov (United States)

    Chen, Li; Wang, Mengyi; Kang, Qinjun; Tao, Wenquan

    2018-06-01

    Solubility trapping is crucial for permanent CO2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO2-water two-phase flow, multicomponent (CO2(aq), H+, HCO3-, CO32- and OH-) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO2(aq) concentration, scCO2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is required by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Finally, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.

  1. Laboratory investigations into the reactive transport module of carbon dioxide sequestration and geochemical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Heidaryan, E. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Masjidosolayman Branch; Enayati, M.; Mokhtari, B. [Iranian Offshore Oil Co., Tehran (Iran, Islamic Republic of)

    2008-07-01

    Over long time periods, geological sequestration in some systems shows mineralization effects or mineral sequestration of carbon dioxide, converting the carbon dioxide to a less mobile form. However, a detailed investigation of these geological systems is needed before disposing of carbon dioxide into these formations. Depleted oil and gas reservoirs and underground aquifers are proposed candidates for carbon dioxide injection. This paper presented an experimental investigation into the reactive transport module for handling aquifer sequestration of carbon dioxide and modeling of simultaneous geochemical reactions. Two cases of laboratory carbon dioxide sequestration experiments, conducted for different rock systems were modeled using the fully coupled geochemical compositional simulator. The relevant permeability relationships were compared to determine the best fit with the experimental results. The paper discussed the theory of modeling; geochemical reactions and mineral trapping of carbon dioxide; and application simulator for modeling including the remodeling of flow experiments. It was concluded that simulated changes in porosity and permeability could mimic experimental results to some extent. The study satisfactorily simulated the results of experimental observations and permeability results could be improved if the Kozeny-Carman equation was replaced by the Civan power law. 6 refs., 2 tabs., 21 figs.

  2. Simulation of reactive geochemical transport in groundwater using a semi-analytical screening model

    Science.gov (United States)

    McNab, Walt W.

    1997-10-01

    A reactive geochemical transport model, based on a semi-analytical solution to the advective-dispersive transport equation in two dimensions, is developed as a screening tool for evaluating the impact of reactive contaminants on aquifer hydrogeochemistry. Because the model utilizes an analytical solution to the transport equation, it is less computationally intensive than models based on numerical transport schemes, is faster, and it is not subject to numerical dispersion effects. Although the assumptions used to construct the model preclude consideration of reactions between the aqueous and solid phases, thermodynamic mineral saturation indices are calculated to provide qualitative insight into such reactions. Test problems involving acid mine drainage and hydrocarbon biodegradation signatures illustrate the utility of the model in simulating essential hydrogeochemical phenomena.

  3. Multiphase, multicomponent simulations and experiments of reactive flow, relevant for combining geologic CO2 sequestration with geothermal energy capture

    Science.gov (United States)

    Saar, Martin O.

    2011-11-01

    Understanding the fluid dynamics of supercritical carbon dioxide (CO2) in brine- filled porous media is important for predictions of CO2 flow and brine displacement during geologic CO2 sequestration and during geothermal energy capture using sequestered CO2 as the subsurface heat extraction fluid. We investigate multiphase fluid flow in porous media employing particle image velocimetry experiments and lattice-Boltzmann fluid flow simulations at the pore scale. In particular, we are interested in the motion of a drop (representing a CO2 bubble) through an orifice in a plate, representing a simplified porous medium. In addition, we study single-phase/multicomponent reactive transport experimentally by injecting water with dissolved CO2 into rocks/sediments typically considered for CO2 sequestration to investigate how resultant fluid-mineral reactions modify permeability fields. Finally, we investigate numerically subsurface CO2 and heat transport at the geologic formation scale.

  4. Multiphase composition changes and reactive oxygen species formation during limonene oxidation in the new Cambridge Atmospheric Simulation Chamber (CASC)

    Science.gov (United States)

    Gallimore, Peter J.; Mahon, Brendan M.; Wragg, Francis P. H.; Fuller, Stephen J.; Giorio, Chiara; Kourtchev, Ivan; Kalberer, Markus

    2017-08-01

    The chemical composition of organic aerosols influences their impacts on human health and the climate system. Aerosol formation from gas-to-particle conversion and in-particle reaction was studied for the oxidation of limonene in a new facility, the Cambridge Atmospheric Simulation Chamber (CASC). Health-relevant oxidising organic species produced during secondary organic aerosol (SOA) formation were quantified in real time using an Online Particle-bound Reactive Oxygen Species Instrument (OPROSI). Two categories of reactive oxygen species (ROS) were identified based on time series analysis: a short-lived component produced during precursor ozonolysis with a lifetime of the order of minutes, and a stable component that was long-lived on the experiment timescale (˜ 4 h). Individual organic species were monitored continuously over this time using Extractive Electrospray Ionisation (EESI) Mass Spectrometry (MS) for the particle phase and Proton Transfer Reaction (PTR) MS for the gas phase. Many first-generation oxidation products are unsaturated, and we observed multiphase aging via further ozonolysis reactions. Volatile products such as C9H14O (limonaketone) and C10H16O2 (limonaldehyde) were observed in the gas phase early in the experiment, before reacting again with ozone. Loss of C10H16O4 (7-hydroxy limononic acid) from the particle phase was surprisingly slow. A combination of reduced C = C reactivity and viscous particle formation (relative to other SOA systems) may explain this, and both scenarios were tested in the Pretty Good Aerosol Model (PG-AM). A range of characterisation measurements were also carried out to benchmark the chamber against existing facilities. This work demonstrates the utility of CASC, particularly for understanding the reactivity and health-relevant properties of organic aerosols using novel, highly time-resolved techniques.

  5. Arsenic in groundwater of the Red River floodplain, Vietnam: Controlling geochemical processes and reactive transport modeling

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Larsen, Flemming; Hue, N.T.M.

    2007-01-01

    The mobilization of arsenic (As) to the groundwater was studied in a shallow Holocene aquifer on the Red River flood plain near Hanoi, Vietnam. The groundwater chemistry was investigated in a transect of 100 piezometers. Results show an anoxic aquifer featuring organic carbon decomposition......(III) but some As(V) is always found. Arsenic correlates well with NH4, relating its release to organic matter decomposition and the source of As appears to be the Fe-oxides being reduced. Part of the produced Fe(II) is apparently reprecipitated as siderite containing less As. Results from sediment extraction...... chemistry over depth is homogeneous and a reactive transport model was constructed to quantify the geochemical processes along the vertical groundwater flow component. A redox zonation model was constructed using the partial equilibrium approach with organic carbon degradation in the sediment as the only...

  6. Design of in-situ reactive wall systems - a combined hydraulical-geochemical-economical simulation study

    International Nuclear Information System (INIS)

    Teutsch, G.; Tolksdorff, J.; Schad, H.

    1997-01-01

    The paper presents a coupled hydraulical-geochemical-economical simulation model for the design of in-situ reactive wall systems. More specific, the model is used for cost-optimization and sensitivity analysis of a funnel-and-gate system with an in-situ sorption reactor. The groundwater flow and advective transport are simulated under steady-state conditions using a finite-difference numerical model. This model is coupled to an analytical solution describing the sorption kinetics of hydrophobic organic compounds within the reactor (gate). The third part of the model system is an economical model which calculates (a) the investment costs for the funnel-and-gate construction and (b) the operation cost based on the number of reactor refills, which depends on the breakthrough time for a given contaminant and the anticipated total operation time. For practical applications a simplified approximation of the cost-function is derived and tested

  7. Multiphase Reactive Transport and Platelet Ice Accretion in the Sea Ice of McMurdo Sound, Antarctica

    Science.gov (United States)

    Buffo, J. J.; Schmidt, B. E.; Huber, C.

    2018-01-01

    Sea ice seasonally to interannually forms a thermal, chemical, and physical boundary between the atmosphere and hydrosphere over tens of millions of square kilometers of ocean. Its presence affects both local and global climate and ocean dynamics, ice shelf processes, and biological communities. Accurate incorporation of sea ice growth and decay, and its associated thermal and physiochemical processes, is underrepresented in large-scale models due to the complex physics that dictate oceanic ice formation and evolution. Two phenomena complicate sea ice simulation, particularly in the Antarctic: the multiphase physics of reactive transport brought about by the inhomogeneous solidification of seawater, and the buoyancy driven accretion of platelet ice formed by supercooled ice shelf water onto the basal surface of the overlying ice. Here a one-dimensional finite difference model capable of simulating both processes is developed and tested against ice core data. Temperature, salinity, liquid fraction, fluid velocity, total salt content, and ice structure are computed during model runs. The model results agree well with empirical observations and simulations highlight the effect platelet ice accretion has on overall ice thickness and characteristics. Results from sensitivity studies emphasize the need to further constrain sea ice microstructure and the associated physics, particularly permeability-porosity relationships, if a complete model of sea ice evolution is to be obtained. Additionally, implications for terrestrial ice shelves and icy moons in the solar system are discussed.

  8. KIVA-hpFE: Predictive turublent reactive and multiphase flow in engines : Science Supporting Mission of the Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, David Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Waters, Jiajia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-26

    Research and development of KIVA-hpFE for turbulent reactive and multiphase flow particularly as related to engine modeling program has relevance to National energy security and climate change. Climate change is a source problem, and energy national security is consumption of petroleum products problem. Accurately predicting engine processes leads to, lower greenhouse gas (GHG) emission, where engines in the transportation sector currently account for 26% of the U.S. GHG emissions. Less dependence on petroleum products leads to greater energy security. By Environmental Protection Agency standards, some vehicles are now reaching 42 to the 50 mpg mark. These are conventional gasoline engines. Continued investment and research into new technical innovations, the potential exists to save more than 4 million barrels of oil per day or approximately $200 to $400 million per day. This would be a significant decrease in emission and use of petroleum and a very large economic stimulus too! It is estimated with further advancements in combustion, the current emissions can be reduced up to 40%. Enabling better understanding of fuel injection and fuel-air mixing, thermodynamic combustion losses, and combustion/emission formation processes enhances our ability to help solve both problems. To provide adequate capability for accurately simulating these processes, minimize time and labor for development of engine technology, are the goals of our KIVA development program.

  9. Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer

    NARCIS (Netherlands)

    Sedighi, M.; Thomas, H.R.; Al Masum, S.; Vardon, P.J.; Nicholson, D.; Chen, Q.

    2014-01-01

    This paper presents an investigation of the transport and fate of hydrogen gas through compacted bentonite buffer. Various geochemical reactions that may occur in the multiphase and multicomponent system of the unsaturated bentonite buffer are considered. A reactive gas transport model, developed

  10. Probabilistic, sediment-geochemical parameterisation of the groundwater compartment of the Netherlands for spatially distributed, reactive transport modelling

    Science.gov (United States)

    Janssen, Gijs; Gunnink, Jan; van Vliet, Marielle; Goldberg, Tanya; Griffioen, Jasper

    2017-04-01

    Pollution of groundwater aquifers with contaminants as nitrate is a common problem. Reactive transport models are useful to predict the fate of such contaminants and to characterise the efficiency of mitigating or preventive measures. Parameterisation of a groundwater transport model on reaction capacity is a necessary step during building the model. Two Dutch, national programs are combined to establish a methodology for building a probabilistic model on reaction capacity of the groundwater compartment at the national scale: the Geological Survey program and the NHI Netherlands Hydrological Instrument program. Reaction capacity is considered as a series of geochemical characteristics that control acid/base condition, redox condition and sorption capacity. Five primary reaction capacity variables are characterised: 1. pyrite, 2. non-pyrite, reactive iron (oxides, siderite and glauconite), 3. clay fraction, 4. organic matter and 5. Ca-carbonate. Important reaction capacity variables that are determined by more than one solid compound are also deduced: 1. potential reduction capacity (PRC) by pyrite and organic matter, 2. cation-exchange capacity (CEC) by organic matter and clay content, 3. carbonate buffering upon pyrite oxidation (CPBO) by carbonate and pyrite. Statistical properties of these variables are established based on c. 16,000 sediment geochemical analyses. The first tens of meters are characterised based on 25 regions using combinations of lithological class and geological formation as strata. Because of both less data and more geochemical uniformity, the deeper subsurface is characterised in a similar way based on 3 regions. The statistical data is used as input in an algoritm that probabilistically calculates the reaction capacity per grid cell. First, the cumulative frequency distribution (cfd) functions are calculated from the statistical data for the geochemical strata. Second, all voxel cells are classified into the geochemical strata. Third, the

  11. Reactive and multiphase modelling for the identification of monitoring parameters to detect CO2 intrusion into freshwater aquifers

    Science.gov (United States)

    Fahrner, S.; Schaefer, D.; Wiegers, C.; Köber, R.; Dahmke, A.

    2011-12-01

    A monitoring at geological CO2 storage sites has to meet environmental, regulative, financial and public demands and thus has to enable the detection of CO2 leakages. Current monitoring concepts for the detection of CO2 intrusion into freshwater aquifers located above saline storage formations in course of leakage events lack the identification of monitoring parameters. Their response to CO2 intrusion still has to be enlightened. Scenario simulations of CO2 intrusion in virtual synthetic aquifers are performed using the simulators PhreeqC and TOUGH2 to reveal relevant CO2-water-mineral interactions and multiphase behaviour on potential monitoring parameters. The focus is set on pH, total dissolved inorganic carbon (TIC) and the hydroelectric conductivity (EC). The study aims at identifying at which conditions the parameters react rapidly, durable and in a measurable degree. The depth of the aquifer, the mineralogy, the intrusion rates, the sorption specification and capacities, and groundwater flow velocities are varied in the course of the scenario modelling. All three parameters have been found suited in most scenarios. However, in case of a lack of calcite combined with low saturation of the water with respect to CO2 and shallow conditions, changes are close to the measurement resolution. Predicted changes in EC result from the interplay between carbonic acid production and its dissociation, and pH buffering by mineral dissolution. The formation of a discrete gas phase in cases of full saturation of the groundwater in confined aquifers illustrates the potential bipartite resistivity response: An increased hydroelectric conductivity at locations with dissolved CO2, and a high resistivity where the gas phase dominates the pore volume occupation. Increased hydrostatic pressure with depth and enhanced groundwater flow velocities enforce gas dissolution and diminish the formation of a discrete gas phase. Based on the results, a monitoring strategy is proposed which

  12. Dual continuum models of fully coupled non-isothermal multiphase flow and reactive transport in porous media

    International Nuclear Information System (INIS)

    Zheng, L.; Samper, J.

    2005-01-01

    Full text of publication follows: Double porosity, double permeability and dual continuum models (DCM) are widely used for modeling preferential water flow and mass transport in unsaturated and fractured media. Here we present a DCM of fully coupled non-isothermal multiphase flow and reactive transport model for the FEBEX compacted bentonite, a material which exhibits a double porosity behavior.. FEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of a high level radioactive waste repository. Our DCM considers inter-aggregate macro-pores, and intra-aggregate and interlayer micro-pores. Two types of DCMs are tested: the dual continuum connected matrix (DCCM) and the dual continuum dis connected matrix (DCDM). Liquid flow in macro-pores is described with a mass conservation equation accounting for Darcian flow, chemical and thermal osmosis. In DCCM, water flux in micropores is calculated with a modified Darcy's law by adding a chemical osmosis term. A simple mass balance equation is used for DCDM which contains a storage and a water exchange term for water in micropores. A mixed type of water exchange term is adopted which includes a second order term accounting for water transfer due to the difference in liquid pressure and a first order term accounting for the gradient in chemical osmosis pressure. Equations of mass conservation for liquid, gas and heat in macro-pores and liquid mass conservation in micropores are solved by using a Newton-Raphson method. Two transport equations with a coupling interaction term are used to describe solute transport in macro- and micro-pores. The coupling term contains a first order diffusion term and a convection term (solute exchange due to water exchange). Transport equations as well as chemical reactions in the two domains are solved by means of a sequential iteration method. All these feature have been

  13. The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity.

    Science.gov (United States)

    Rocha, L; Rodrigues, S M; Lopes, I; Soares, A M V M; Duarte, A C; Pereira, E

    2011-09-01

    To better understand the impacts posed by soil contamination to aquatic ecosystems it is crucial to characterise the links between ecotoxicity, chemical availability and geochemical reactivity of potentially toxic elements (PTE's) in soils. We evaluated the adverse effects of water extracts obtained from soils contaminated by chemical industry and mining, using a test battery including organisms from different trophic levels (bacteria, algae and daphnids). These tests provided a quick assessment of the ecotoxicity of soils with respect to possible adverse effects on aquatic organisms although the ecotoxicological responses could be related to the solubility of PTE's only to a limited extent. The analysis of results of bioassays together with the chemical characterisation of water extracts provided additional relevant insight into the role of conductivity, pH, Al, Fe, and Mn of soil extracts on toxicity to organisms. Furthermore, an important conclusion of this study was that the toxicity of extracts to the aquatic organisms could also be related to the soil properties (pH, Org C and Fe(ox)) and to the reactivity of PTE's in soils which in fact control the soluble fraction of the contaminants. The combined assessment of ecotoxicity in water fractions, solubility and geochemical reactivity of PTE's in soils provided a more comprehensive understanding of the bioavailability of inorganic contaminants than ecotoxicological or chemical studies alone and can therefore be most useful for environmental risks assessment of contaminated soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Reactivity of the calcite–water-interface, from molecular scale processes to geochemical engineering

    International Nuclear Information System (INIS)

    Heberling, Frank; Bosbach, Dirk; Eckhardt, Jörg-Detlef; Fischer, Uwe; Glowacky, Jens; Haist, Michael; Kramar, Utz; Loos, Steffen; Müller, Harald S.; Neumann, Thomas; Pust, Christopher; Schäfer, Thorsten; Stelling, Jan

    2014-01-01

    Highlights: • The current state of some aspects of calcite–water-interface chemistry is reviewed. • The interface structure is characterized at a molecular scale. • Experimental and theoretical studies on contaminant sorption at calcite are presented. • The influence of phosphonates on calcite growth is investigated. • The effect of limestone on the workability of cement suspensions is addressed. - Abstract: Surface reactions on calcite play an important role in geochemical and environmental systems, as well as many areas of industry. In this review, we present investigations of calcite that were performed in the frame of the joint research project “RECAWA” (reactivity of calcite–water-interfaces: molecular process understanding for technical applications). As indicated by the project title, work within the project comprised a large range of length scales. The molecular scale structure of the calcite (1 0 4)–water-interface is refined based on surface diffraction data. Structural details are related to surface charging phenomena, and a simplified basic stern surface complexation model is proposed. As an example for trace metal interactions with calcite surfaces we review and present new spectroscopic and macroscopic experimental results on Selenium interactions with calcite. Results demonstrate that selenate (SeO 4 2− ) shows no significant interaction with calcite at our experimental conditions, while selenite (SeO 3 2− ) adsorbs at the calcite surface and can be incorporated into the calcite structure. Atomistic calculations are used to assess the thermodynamics of sulfate (SO 4 2− ), selenate (SeO 4 2− ), and selenite (SeO 3 2− ) partitioning in calcite and aragonite. The results show that incorporation of these oxo-anions into the calcite structure is so highly endothermic that incorporation is practically impossible at bulk equilibrium and standard conditions. This indicates that entrapment processes are involved when

  15. Performance of a Zerovalent Iron Reactive Barrier for the Treatment of Arsenic in Groundwater: Part 2. Geochemical Modeling and Solid Phase Studies

    Science.gov (United States)

    Arsenic uptake processes were evaluated in a zerovalent iron reactive barrier installed at a lead smelting facility using geochemical modeling, solid-phase analysis, and X-ray absorption spectroscopy techniques. Aqueous speciation of arsenic plays a key role in directing arsenic...

  16. Testing single extraction methods and in vitro tests to assess the geochemical reactivity and human bioaccessibility of silver in urban soils amended with silver nanoparticles

    NARCIS (Netherlands)

    Cruz, N.; Rodrigues, S.M.; Tavares, D.; Monteiro, R.J.R.; Carvalho, L.; Trindade, T.; Duarte, A.C.; Pereira, E.; Romkens, Paul

    2015-01-01

    To assess if the geochemical reactivity and human bioaccessibility of silver nanoparticles (AgNPs) in soils can be determined by routine soil tests commonly applied to other metals in soil, colloidal Ag was introduced to five pots containing urban soils (equivalent to 6.8mgAgkg-1

  17. Lattice Boltzmann based multicomponent reactive transport model coupled with geochemical solver for scale simulations

    NARCIS (Netherlands)

    Patel, R.A.; Perko, J.; Jaques, D.; De Schutter, G.; Ye, G.; Van Breugel, K.

    2013-01-01

    A Lattice Boltzmann (LB) based reactive transport model intended to capture reactions and solid phase changes occurring at the pore scale is presented. The proposed approach uses LB method to compute multi component mass transport. The LB multi-component transport model is then coupled with the

  18. Coupled processes of fluid flow, solute transport, and geochemical reactions in reactive barriers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeongkon; Schwartz, Franklin W.; Xu, Tianfu; Choi, Heechul, and Kim, In S.

    2004-01-02

    A complex pattern of coupling between fluid flow and mass transport develops when heterogeneous reactions occur. For instance, dissolution and precipitation reactions can change a porous medium's physical properties, such as pore geometry and thus permeability. These changes influence fluid flow, which in turn impacts the composition of dissolved constituents and the solid phases, and the rate and direction of advective transport. Two-dimensional modeling studies using TOUGHREACT were conducted to investigate the coupling between flow and transport developed as a consequence of differences in density, dissolution precipitation, and medium heterogeneity. The model includes equilibrium reactions for aqueous species, kinetic reactions between the solid phases and aqueous constituents, and full coupling of porosity and permeability changes resulting from precipitation and dissolution reactions in porous media. In addition, a new permeability relationship is implemented in TOUGHREACT to examine the effects of geochemical reactions and density difference on plume migration in porous media. Generally, the evolutions in the concentrations of the aqueous phase are intimately related to the reaction-front dynamics. Plugging of the medium contributed to significant transients in patterns of flow and mass transport.

  19. Modeling reactive geochemical transport of concentrated aqueous solutions in variably saturated media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoxiang; Zheng, Zuoping; Wan, Jiamin

    2004-01-28

    Concentrated aqueous solutions (CAS) have unique thermodynamic and physical properties. Chemical components in CAS are incompletely dissociated, especially those containing divalent or polyvalent ions. The problem is further complicated by the interaction between CAS flow processes and the naturally heterogeneous sediments. As the CAS migrates through the porous media, the composition may be altered subject to fluid-rock interactions. To effectively model reactive transport of CAS, we must take into account ion-interaction. A combination of the Pitzer ion-interaction and the ion-association model would be an appropriate way to deal with multiple-component systems if the Pitzer' parameters and thermodynamic data of dissolved components and the related minerals are available. To quantify the complicated coupling of CAS flow and transport, as well as the involved chemical reactions in natural and engineered systems, we have substantially extended an existing reactive biogeochemical transport code, BIO-CORE{sup 2D}{copyright}, by incorporating a comprehensive Pitzer ion-interaction model. In the present paper, the model, and two test cases against measured data were briefly introduced. Finally we present an application to simulate a laboratory column experiment studying the leakage of the high alkaline waste fluid stored in Hanford (a site of the U.S. Department of Energy, located in Washington State, USA). With the Pitzer ion-interaction ionic activity model, our simulation captures measured pH evolution. The simulation indicates that all the reactions controlling the pH evolution, including cation exchanges, mineral precipitation and dissolution, are coupled.

  20. Coupled multiphase reactive flow and mineral dissolution-precipitation kinetics: Examples of long-term CO2 sequestration in Utsira Sand, Norway and Mt. Simon Formation, Midwest USA

    Science.gov (United States)

    Zhang, Y.; Zhang, G.; Lu, P.; Hu, B.; Zhu, C.

    2017-12-01

    The extent of CO2 mineralization after CO2 injection into deep saline aquifers is a result of the complex coupling of multiphase fluid flow, mass transport, and brine-mineral reactions. The effects of dissolution rate laws and groundwater flow on the long-term fate of CO2 have been seriously overlooked. To investigate these effects, we conducted multiphase (CO2 and brine) coupled reactive transport modeling of CO2 storage in two sandy formations (Utsira Sand, Norway1,2 and Mt. Simon formation, USA 3) using ToughReact and simulated a series of scenarios. The results indicated that: (1) Different dissolution rate laws for feldspars can significantly affect the amount of CO2 mineralization. Increased feldspar dissolution will promote CO2 mineral trapping through the coupling between feldspar dissolution and carbonate mineral precipitation at raised pH. The predicted amount of CO2 mineral trapping when using the principle of detailed balancing-based rate law for feldspar dissolution is about twice as much as that when using sigmoidal rate laws in the literature. (2) Mineral trapping is twice as much when regional groundwater flow is taken into consideration in long-term simulations (e.g., 10,000 years) whereas most modeling studies neglected the regional groundwater flow back and effectively simulated a batch reactor process. Under the influence of regional groundwater flow, the fresh brine from upstream continuously dissolves CO2 at the tail of CO2 plume, generating a large acidified area where large amount of CO2 mineralization takes place. The upstream replenishment of groundwater results in ˜22% mineral trapping at year 10,000, compared to ˜4% when this effect is ignored. Refs: 1Zhang, G., Lu, P., Wei, X., Zhu, C. (2016). Impacts of Mineral Reaction Kinetics and Regional Groundwater Flow on Long-Term CO2 Fate at Sleipner. Energy & Fuels, 30(5), 4159-4180. 2Zhu, C., Zhang, G., Lu, P., Meng, L., Ji, X. (2015). Benchmark modeling of the Sleipner CO2 plume

  1. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    Science.gov (United States)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    diffusion model at the scale of a single rock is developed incorporating the proposed kinetic rate expressions. Simulations of initiation, washout and AMD flows are discussed to gain a better understanding of the role of porosity, effective diffusivity and reactive surface area in generating AMD. Simulations indicate that flow boundary conditions control generation of acid rock drainage as porosity increases.

  2. Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawai’i and Maui

    Energy Technology Data Exchange (ETDEWEB)

    Fercho, Steven [Ormat Nevada, Inc., Reno, NV (United States); Owens, Lara [Ormat Nevada, Inc., Reno, NV (United States); Walsh, Patrick [Ormat Nevada, Inc., Reno, NV (United States); Drakos, Peter [Ormat Nevada, Inc., Reno, NV (United States); Martini, Brigette [Corescan Inc., Ascot (Australia); Lewicki, Jennifer L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kennedy, Burton M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    Suites of new geophysical and geochemical exploration surveys were conducted to provide evidence for geothermal resource at the Haleakala Southwest Rift Zone (HSWRZ) on Maui Island, Hawai’i. Ground-based gravity (~400 stations) coupled with heli-bourne magnetics (~1500 line kilometers) define both deep and shallow fractures/faults, while also delineating potentially widespread subsurface hydrothermal alteration on the lower flanks (below approximately 1800 feet a.s.l.). Multi-level, upward continuation calculations and 2-D gravity and magnetic modeling provide information on source depths, but lack of lithologic information leaves ambiguity in the estimates. Additionally, several well-defined gravity lows (possibly vent zones) lie coincident with magnetic highs suggesting the presence of dike intrusions at depth which may represent a potentially young source of heat. Soil CO2 fluxes were measured along transects across geophysically-defined faults and fractures as well as young cinder cones along the HSWRZ. This survey generally did not detect CO2 levels above background, with the exception of a weak anomalous flux signal over one young cinder cone. The general lack of observed CO2 flux signals on the HSWRZ is likely due to a combination of lower magmatic CO2 fluxes and relatively high biogenic surface CO2 fluxes which mix with the magmatic signal. Similar surveys at the Puna geothermal field on the Kilauea Lower East Rift Zone (KLERZ) also showed a lack of surface CO2 flux signals, however aqueous geochemistry indicated contribution of magmatic CO2 and He to shallow groundwater here. As magma has been intercepted in geothermal drilling at the Puna field, the lack of measured surface CO2 flux indicative of upflow of magmatic fluids here is likely due to effective “scrubbing” by high groundwater and a mature hydrothermal system. Dissolved inorganic carbon (DIC) concentrations, δ13C compositions and 3He/4He values were sampled at Maui from several shallow

  3. Rifting to India-Asia Reactivation: Multi-phase Structural Evolution of the Barmer Basin, Rajasthan, northwest India

    Science.gov (United States)

    Kelly, M. J.; Bladon, A.; Clarke, S.; Najman, Y.; Copley, A.; Kloppenburg, A.

    2015-12-01

    The Barmer Basin, situated within the West Indian Rift System, is an intra-cratonic rift basin produced during Gondwana break-up. Despite being a prominent oil and gas province, the structural evolution and context of the rift within northwest India remains poorly understood. Substantial subsurface datasets acquired during hydrocarbon exploration provide an unrivalled tool to investigate the tectonic evolution of the Barmer Basin rift and northwest India during India-Asia collision. Here we present a structural analysis using seismic datasets to investigate Barmer Basin evolution and place findings within the context of northwest India development. Present day rift structural architectures result from superposition of two non-coaxial extensional events; an early mid-Cretaceous rift-oblique event (NW-SE), followed by a main Paleocene rifting phase (NE-SW). Three phases of fault reactivation follow rifting: A transpressive, Late Paleocene inversion along localised E-W and NNE-SSW-trending faults; a widespread Late Paleocene-Early Eocene inversion and Late Miocene-Present Day transpressive strike-slip faulting along NW-SE-trending faults and isolated inversion structures. A major Late Eocene-Miocene unconformity in the basin is also identified, approximately coeval with those identified within the Himalayan foreland basin, suggesting a common cause related to India-Asia collision, and calling into question previous explanations that are not compatible with spatial extension of the unconformity beyond the foreland basin. Although, relatively poorly age constrained, extensional and compressional events within the Barmer Basin can be correlated with regional tectonic processes including the fragmentation of Gondwana, the rapid migration of the Greater Indian continent, to subsequent collision with Asia. New insights into the Barmer Basin development have important implications not only for ongoing hydrocarbon exploration but the temporal evolution of northwest India.

  4. LONG-TERM GEOCHEMICAL BEHAVIOR OF A ZEROVALENT IRON PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM IN GROUNDWATER

    Science.gov (United States)

    Passive, in-situ reactive barriers have proven to be viable, cost-effective systems for the remediation of Cr-contaminated groundwater at some sites. Permeable reactive barriers (PRBs) are installed in the flow-path of groundwater, most typically as vertical treatment walls. Re...

  5. Role of Dissolved Organic Matter and Geochemical Controls on Arsenic Cycling from Sediments to Groundwater along the Meghna River, Bangladesh: Tracking possible links to permeable natural reactive barrier

    Science.gov (United States)

    Datta, S.; Berube, M.; Knappett, P.; Kulkarni, H. V.; Vega, M.; Jewell, K.; Myers, K.

    2017-12-01

    Elevated levels of dissolved arsenic (As), iron (Fe) and manganese (Mn) are seen in the shallow groundwaters of southeast Bangladesh on the Ganges Brahmaputra Meghna River delta. This study takes a multi disciplinary approach to understand the extent of the natural reactive barrier (NRB) along the Meghna River and evaluate the role of the NRB in As sequestration and release in groundwater aquifers. Shallow sediment cores, and groundwater and river water samples were collected from the east and west banks of the Meghna. Groundwater and river water samples were tested for FeT, MnT, and AsT concentrations. Fluorescence spectroscopic characterization of groundwater dissolved organic matter (DOM) provided insight into the hydro geochemical reactions active in the groundwater and the hyporheic zones. Eight sediment cores of 1.5 m depth were collected 10 m away from the edge of the river. Vertical solid phase concentration profiles of Fe, Mn and As were measured via 1.2 M HCl digestion which revealed solid phase As accumulation along the riverbanks up to concentrations of 1500 mg/kg As. Microbial interactions with DOM prompts the reduction of Fe3+ to Fe2+, causing As to mobilize into groundwater and humic-like DOM present in the groundwater may catalyze this process. The extent to which microbially mediated release of As occurs is limited by labile dissolved organic carbon (DOC) availability. Aqueous geochemical results showed the highest dissolved As concentrations in shallow wells (groundwater was found to contain microbial and terrestrial derived DOC, and decomposed, humified and aromatic DOM. Deeper aquifers had a significantly larger microbial OM signature than the shallower aquifers and was less aromatic, decomposed and humified. The results from this study illustrate the potential for humic substances to contribute to As cycling and quantify the extent of As accumulation in the sediments and groundwater along a 1 km stretch of the Meghna. These findings contribute

  6. Geochemical investigations into the retention of reactive carbon compounds for toxic heavy metals. Final report; Geochemische Untersuchungen zur Retention von reaktiven Kohlenstoffverbindungen fuer toxische Schwermetalle. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kupsch, H.; Mansel, A.; Crustewitz, C.

    2003-03-01

    The composition, reactivity and stability of reactive organic carbon compounds adsorbed on geogenic matrices was investigated. The surface deposits of NOM and its dependence on geochemical parameters was investigated in selected geomatrices. The retention of toxic heavy metals on these surface deposits of NOM was investigated in consideration of the presence of hydroxy species and inorganic ligands. The investigations of the reactivity of the NOM species requires analyses of these compounds and of the heavy metals in the ultratracer region. This was possible by means of radiochemical methods that were further developed in the context of this project. Radioactive labeling of identified reactive carbon compounds, e.g. with radioactive iodine, on the one hand, and the use of radioactive Cu, Pb, Hg isotopes on the other hand enabled speciation analyses in the binary systems (heavy metal + geomatrix, heavy metal + reactive carbon compounds, reactive carbon compounds + geomatrix) and especially in the ternary system (heavy metal + geomatrix + reactive carbon compounds) in defined conditions. The special labelling techniques were a precondition for distribution measurements in the near-natural, low concentration range. (orig.) [German] Ziel des Projektes war es, mit der vorhandenen Analytik und Expertise die Zusammensetzung, die Reaktivitaet und die Stabilitaet der auf den geogenen Matrizes sorbierten reaktiven organischen Kohlenstoffverbindungen und die damit verbundenen Stoffumsaetze aufzuklaeren. An ausgewaehlten Geomatrizes wurde die Ausbildung von Oberflaechendepositen des NOM und deren Abhaengigkeit gegenueber geochemischen Parametern untersucht. Unter der Beruecksichtigung der Gegenwart von Hydroxyspezies und anorganischen Liganden wurde die Retention toxischer Schwermetalle an diesen Oberflaechendepositen des NOM untersucht. Die Untersuchungen zur Reaktivitaet der NOM-Spezies setzt eine Analytik dieser Verbindungen und der Schwermetalle im Ultraspurenbereich

  7. Geochemical reactivity of subsurface sediments as potential buffer to anthropogenic inputs: A strategy for regional characterization in the Netherlands

    NARCIS (Netherlands)

    Gaans, P.F.M. van; Griffioen, J.; Mol, G.; Klaver, G.

    2011-01-01

    Purpose: Sedimentary aquifers are prone to anthropogenic disturbance. Measures aimed at mitigation or adaptation require sound information on the reactivity of soil/sediments towards the infiltrating water, as this determines the chemical quality of the groundwater and receiving surface waters.

  8. Geochemical reactivity of subsurface sediments as potential buffer to anthropogenic inputs: a strategy for regional characterization in the Netherlands

    NARCIS (Netherlands)

    van Gaans, P.F.M.; Griffioen, J.; Mol, Gerben; Klaver, G.T.

    2011-01-01

    Purpose Sedimentary aquifers are prone to anthropogenic disturbance. Measures aimed at mitigation or adaptation require sound information on the reactivity of soil/sediments towards the infiltrating water, as this determines the chemical quality of the groundwater and receiving surface waters. Here,

  9. Multiphasic fluid models and multicomponents reactive transport in porous media; Modelos de flujo multifasico no isotermo y de transporte reactivo multicomponente en medios porosos

    Energy Technology Data Exchange (ETDEWEB)

    Juncosa, R [Universidad Politecnica de Madrid (Spain)

    2001-07-01

    The design and construction of repositories for toxic waste, such as radioactive waste of medium and high activity, require tools, that will enable us to predict how the system will behave. The rational behind this Dissertation is based precisely on developing numerical models to study and predict coupled thermal, mechanical, hydrodynamic and geochemical behavior of clays intended to be used as engineered barriers in radioactive waste repository. In order to meet the requirements of the FEBEX Project (Full Scale Engineered Barriers Experiment) it was necessary to develop thermo-hydro-geochemical conceptual and numerical models (THG). For this purpose a THG code was developed to simulate and predict the THG behavior of the clay barrier. The code was created after considering two options. (a) The development of a completely new code, or (b) the coupling of existing codes. In this Dissertation we chose the second option, and developed a new program (FADES-CORE), which was obtained by using the FADES thermo-hydro-mechanical code (Navarro, 1997) and the CORE-LE code (Samper et al., 1998). This process entailed the modification of FADES, the addition of new subroutines for the calculation of solute transport, the modification of CORE-LE and the introduction of additional geochemical and transport processes. (Author)

  10. Final Report: Molecular Mechanisms of Interfacial Reactivity in Near Surface and Extreme Geochemical Environments (DE-SC0009362)

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David A [Univ. of Alabama, Tuscaloosa, AL (United States)

    2016-03-27

    The prediction of the long-term stability and safety of geologic sequestration of greenhouse gases requires a detailed understanding of subsurface transport and chemical interactions between the disposed greenhouse gases and the geologic media. In this regard, mineral-fluid interactions are of prime importance since reactions that occur on or near the interface can assist in the long term sequestration of CO2 by trapping in mineral phases such as carbonates, as well as influencing the subsurface migration of the disposed fluids via creation or plugging of pores or fractures in the host rock strata. Previous research on mineral-fluid interaction for subsurface CO2 storage has focused almost entirely on the aqueous phase, i.e., reactivity with aqueous solutions or brines containing dissolved CO2. However, interactions with neat to water-saturated non-aqueous fluids are of equal if not greater importance since supercritical CO2 (scCO2) is less dense than the aqueous phase or oil which will create a buoyant scCO2 plume that ultimately will dominate the pore volume within the caprock, and the injected scCO2 will contain water soon after injection and this water can be highly reactive. Collectively, therefore, mineral interactions with water-saturated scCO2-dominated fluids are pivotal and could result in the stable sequestration of CO2 by trapping in mineral phases such as metal carbonates within otherwise permeable zones in the caprock. The primary objective is to unravel the molecular mechanisms governing the reactivity of mineral phases important in the geologic sequestration of CO2 with variably wet supercritical carbon dioxide as a function of T, P, and mineral structure using computational chemistry. This work is in close collaboration with the PNNL Geosciences effort. The focus of the work at The University of Alabama is computational studies of the formation of magnesium and calcium carbonates and oxides and their reactivity and providing computational support

  11. Imaging geochemical heterogeneities using inverse reactive transport modeling: An example relevant for characterizing arsenic mobilization and distribution

    DEFF Research Database (Denmark)

    Fakhreddine, Sarah; Lee, Jonghyun; Kitanidis, Peter K.

    2016-01-01

    groundwater parameters. Specifically, we simulate the mobilization of arsenic via kinetic oxidative dissolution of As-bearing pyrite due to dissolved oxygen in the ambient groundwater, which is an important mechanism for arsenic release in groundwater both under natural conditions and engineering applications......The spatial distribution of reactive minerals in the subsurface is often a primary factor controlling the fate and transport of contaminants in groundwater systems. However, direct measurement and estimation of heterogeneously distributed minerals are often costly and difficult to obtain. While...

  12. Modeling multiphase materials processes

    CERN Document Server

    Iguchi, Manabu

    2010-01-01

    ""Modeling Multiphase Materials Processes: Gas-Liquid Systems"" describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing. The book focuses on systems involving gas-liquid interaction, the most prevalent in current metallurgical processes. The performance characteristics of these processes are largely dependent on transport phenomena. This volume covers the inherent characteristics that complicate the modeling of transport phenomena in such systems, including complex multiphase structure, intense turbulence, opacity of

  13. Multidomain multiphase fluid mechanics

    International Nuclear Information System (INIS)

    Sha, W.T.; Soo, S.L.

    1976-10-01

    A set of multiphase field equations--conversion of mass, momentum and energy--based on multiphase mechanics is developed. Multiphase mechanics applies to mixtures of phases which are separated by interfaces and are mutually exclusive. Based on the multiphase mechanics formulation, additional terms appear in the field equations when the physical size of the dispersed phase (bubble or droplet) is many times larger than the inter-molecular spacing. These terms are the inertial coupling due to virtual mass and the additional viscous coupling due to unsteadiness of the flow field. The multiphase formulation given here takes into account the discreteness of particles of dispersed phases and, at the same time, the necessity of the distributive representation of field variables via space-time averaging when handling a large number of particles. The provision for multidomain transition further permits us to treat dispersed phases which are large compared to the characteristic dimension of the flow system via interdomain relations. The multidomain multiphase approach provides a framework for us to model the various flow regimes. Because some of the transport parameters associated with the system equations are not well known at the present time, an idealized two-domain two-phase solution approach is proposed as a first step. Finally, comparisons are made between the field equations formulated based on the multidomain-multiphase fluid mechanics and the pertinent existing models, and their relative significances are discussed. The desirability of consistent approximation and simplifications possible for dilute suspensions are discussed

  14. Shock tube Multiphase Experiments

    Science.gov (United States)

    Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob

    2017-11-01

    Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.

  15. Chemical reactor modeling multiphase reactive flows

    CERN Document Server

    Jakobsen, Hugo A

    2014-01-01

    Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics.  The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling, and in a post graduate course in modern reactor m...

  16. Multi-phase reactive transport theory

    International Nuclear Information System (INIS)

    Lichtner, P.C.

    1995-07-01

    Physicochemical processes in the near-field region of a high-level waste repository may involve a diverse set of phenomena including flow of liquid and gas, gaseous diffusion, and chemical reaction of the host rock with aqueous solutions at elevated temperatures. This report develops some of the formalism for describing simultaneous multicomponent solute and heat transport in a two-phase system for partially saturated porous media. Diffusion of gaseous species is described using the Dusty Gas Model which provides for simultaneous Knudsen and Fickian diffusion in addition to Darcy flow. A new form of the Dusty Gas Model equations is derived for binary diffusion which separates the total diffusive flux into segregative and nonsegregative components. Migration of a wetting front is analyzed using the quasi-stationary state approximation to the Richards' equation. Heat-pipe phenomena are investigated for both gravity- and capillary-driven reflux of liquid water. An expression for the burnout permeability is derived for a gravity-driven heat-pipe. Finally an estimate is given for the change in porosity and permeability due to mineral dissolution which could occur in the region of condensate formation in a heat-pipe

  17. Multiphase modelling of mud volcanoes

    Science.gov (United States)

    Colucci, Simone; de'Michieli Vitturi, Mattia; Clarke, Amanda B.

    2015-04-01

    Mud volcanism is a worldwide phenomenon, classically considered as the surface expression of piercement structures rooted in deep-seated over-pressured sediments in compressional tectonic settings. The release of fluids at mud volcanoes during repeated explosive episodes has been documented at numerous sites and the outflows resemble the eruption of basaltic magma. As magma, the material erupted from a mud volcano becomes more fluid and degasses while rising and decompressing. The release of those gases from mud volcanism is estimated to be a significant contributor both to fluid flux from the lithosphere to the hydrosphere, and to the atmospheric budget of some greenhouse gases, particularly methane. For these reasons, we simulated the fluid dynamics of mud volcanoes using a newly-developed compressible multiphase and multidimensional transient solver in the OpenFOAM framework, taking into account the multicomponent nature (CH4, CO2, H2O) of the fluid mixture, the gas exsolution during the ascent and the associated changes in the constitutive properties of the phases. The numerical model has been tested with conditions representative of the LUSI, a mud volcano that has been erupting since May 2006 in the densely populated Sidoarjo regency (East Java, Indonesia), forcing the evacuation of 40,000 people and destroying industry, farmland, and over 10,000 homes. The activity of LUSI mud volcano has been well documented (Vanderkluysen et al., 2014) and here we present a comparison of observed gas fluxes and mud extrusion rates with the outcomes of numerical simulations. Vanderkluysen, L.; Burton, M. R.; Clarke, A. B.; Hartnett, H. E. & Smekens, J.-F. Composition and flux of explosive gas release at LUSI mud volcano (East Java, Indonesia) Geochem. Geophys. Geosyst., Wiley-Blackwell, 2014, 15, 2932-2946

  18. Porosity Development in a Coastal Setting: A Reactive Transport Model to Assess the Influence of Heterogeneity of Hydrological, Geochemical and Lithological Conditions

    Science.gov (United States)

    Maqueda, A.; Renard, P.; Cornaton, F. J.

    2014-12-01

    Coastal karst networks are formed by mineral dissolution, mainly calcite, in the freshwater-saltwater mixing zone. The problem has been approached first by studying the kinetics of calcite dissolution and then coupling ion-pairing software with flow and mass transport models. Porosity development models require high computational power. A workaround to reduce computational complexity is to assume the calcite dissolution reaction is relatively fast, thus equilibrium chemistry can be used to model it (Sanford & Konikow, 1989). Later developments allowed the full coupling of kinetics and transport in a model. However kinetics effects of calcite dissolution were found negligible under the single set of assumed hydrological and geochemical boundary conditions. A model is implemented with the coupling of FeFlow software as the flow & transport module and PHREEQC4FEFLOW (Wissmeier, 2013) ion-pairing module. The model is used to assess the influence of heterogeneities in hydrological, geochemical and lithological boundary conditions on porosity evolution. The hydrologic conditions present in the karst aquifer of Quintana Roo coast in Mexico are used as a guide for generating inputs for simulations.

  19. Multiphase Flow Dynamics 1 Fundamentals

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its fourth extended edition the successful monograph package “Multiphase Flow Dynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the...

  20. Multiphase flow dynamics 1 fundamentals

    CERN Document Server

    Kolev, Nikolay Ivanov

    2004-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this monograph contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the fundamentals of multiphase dynamics are provided. This third edition includes various updates, extensions and improvements in all book chapters.

  1. Numerical simulation of in-situ chemical oxidation (ISCO) and biodegradation of petroleum hydrocarbons using a coupled model for bio-geochemical reactive transport

    Science.gov (United States)

    Marin, I. S.; Molson, J. W.

    2013-05-01

    Petroleum hydrocarbons (PHCs) are a major source of groundwater contamination, being a worldwide and well-known problem. Formed by a complex mixture of hundreds of organic compounds (including BTEX - benzene, toluene, ethylbenzene and xylenes), many of which are toxic and persistent in the subsurface and are capable of creating a serious risk to human health. Several remediation technologies can be used to clean-up PHC contamination. In-situ chemical oxidation (ISCO) and intrinsic bioremediation (IBR) are two promising techniques that can be applied in this case. However, the interaction of these processes with the background aquifer geochemistry and the design of an efficient treatment presents a challenge. Here we show the development and application of BIONAPL/Phreeqc, a modeling tool capable of simulating groundwater flow, contaminant transport with coupled biological and geochemical processes in porous or fractured porous media. BIONAPL/Phreeqc is based on the well-tested BIONAPL/3D model, using a powerful finite element simulation engine, capable of simulating non-aqueous phase liquid (NAPL) dissolution, density-dependent advective-dispersive transport, and solving the geochemical and kinetic processes with the library Phreeqc. To validate the model, we compared BIONAPL/Phreeqc with results from the literature for different biodegradation processes and different geometries, with good agreement. We then used the model to simulate the behavior of sodium persulfate (NaS2O8) as an oxidant for BTEX degradation, coupled with sequential biodegradation in a 2D case and to evaluate the effect of inorganic geochemistry reactions. The results show the advantages of a treatment train remediation scheme based on ISCO and IBR. The numerical performance and stability of the integrated BIONAPL/Phreeqc model was also verified.

  2. Tomographic multiphase flow measurement

    International Nuclear Information System (INIS)

    Sætre, C.; Johansen, G.A.; Tjugum, S.A.

    2012-01-01

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. - Highlights: ► Multiphase flow gas-fraction and flow regime measurements by multi gamma ray beams. ► High-speed gamma ray tomograph as reference for the flow pattern and gas fraction. ► Dual modality

  3. Tomographic multiphase flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Saetre, C., E-mail: camilla@ift.uib.no [Department of Physics and Technology, University of Bergen (Norway); Michelsen Centre for Industrial Measurement Science and Technology (Norway); Johansen, G.A. [Department of Physics and Technology, University of Bergen (Norway); Michelsen Centre for Industrial Measurement Science and Technology (Norway); Tjugum, S.A. [Michelsen Centre for Industrial Measurement Science and Technology (Norway); Roxar Flow Measurement, Bergen (Norway)

    2012-07-15

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. - Highlights: Black-Right-Pointing-Pointer Multiphase flow gas-fraction and flow regime measurements by multi gamma ray beams. Black-Right-Pointing-Pointer High-speed gamma ray tomograph as reference for the flow

  4. Challenges in Downhole Multiphase Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Aspelund, A.; Midttveit, Oe.; Richards, A.

    1996-12-31

    Permanent downhole multi-phase monitoring (DMM) can have several advantages in field development, such as increased flexibility in the development of multi-lateral and horizontal wells, optimisation of artificial lift systems and monitoring of multi-layered wells. This paper gives an overview of existing permanent downhole measurement systems and a status of topside and subsea multi-phase flow meters (MFM). The main focus is on the challenges in downhole multi-phase measurements. Topics to be taken into consideration for realization of a downhole multi-phase meter are discussed, such as actual flow conditions occurring at the point of measurement, which quantities that need to be measured, sensor principles, data processing needs and signal transmission capability. 9 refs., 9 figs.

  5. Multiphase flow dynamics 1 fundamentals

    CERN Document Server

    Kolev, Nikolay Ivanov

    2015-01-01

    In its fifth extended edition the successful monograph package “Multiphase Flow Dynamics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the obtained system of partial differential equations. Finally the analysis is repeated for boundary fitted curvilinear coordinate systems designing methods applicable for interconnected multi-blocks. This fifth edition includes various updates, extensions, improvements and corrections, as well as  a completely new chapter containing the basic physics describing the multi-phase flow in tu...

  6. User's Guide of TOUGH2-EGS. A Coupled Geomechanical and Reactive Geochemical Simulator for Fluid and Heat Flow in Enhanced Geothermal Systems Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Fakcharoenphol, Perapon [Colorado School of Mines, Golden, CO (United States); Xiong, Yi [Colorado School of Mines, Golden, CO (United States); Hu, Litang [Colorado School of Mines, Golden, CO (United States); Winterfeld, Philip H. [Colorado School of Mines, Golden, CO (United States); Xu, Tianfu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, Yu-Shu [Colorado School of Mines, Golden, CO (United States)

    2013-05-01

    TOUGH2-EGS is a numerical simulation program coupling geomechanics and chemical reactions for fluid and heat flows in porous media and fractured reservoirs of enhanced geothermal systems. The simulator includes the fully-coupled geomechanical (THM) module, the fully-coupled geochemical (THC) module, and the sequentially coupled reactive geochemistry (THMC) module. The fully-coupled flow-geomechanics model is developed from the linear elastic theory for the thermo-poro-elastic system and is formulated with the mean normal stress as well as pore pressure and temperature. The chemical reaction is sequentially coupled after solution of flow equations, which provides the flow velocity and phase saturation for the solute transport calculation at each time step. In addition, reservoir rock properties, such as porosity and permeability, are subjected to change due to rock deformation and chemical reactions. The relationships between rock properties and geomechanical and chemical effects from poro-elasticity theories and empirical correlations are incorporated into the simulator. This report provides the user with detailed information on both mathematical models and instructions for using TOUGH2-EGS for THM, THC or THMC simulations. The mathematical models include the fluid and heat flow equations, geomechanical equation, reactive geochemistry equations, and discretization methods. Although TOUGH2-EGS has the capability for simulating fluid and heat flows coupled with both geomechanical and chemical effects, it is up to the users to select the specific coupling process, such as THM, THC, or THMC in a simulation. There are several example problems illustrating the applications of this program. These example problems are described in details and their input data are presented. The results demonstrate that this program can be used for field-scale geothermal reservoir simulation with fluid and heat flow, geomechanical effect, and chemical reaction in porous and fractured media.

  7. Multiphase flows with phase change

    Indian Academy of Sciences (India)

    Multiphase flows with phase change are ubiquitous in many industrial sectors ranging from energy and infra-structure to specialty chemicals and pharmaceuticals. My own interest in mul- tiphase flows with phase change started more than 15 years ago when I had initiated work on riser reactor for fluid catalytic cracking and ...

  8. Geochemical modelling baseline compositions of groundwater

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard

    2008-01-01

    and variations in water chemistry that are caused by large scale geochemical processes taking place at the timescale of thousands of years. The most important geochemical processes are ion exchange (Valreas and Aveiro) where freshwater solutes are displacing marine ions from the sediment surface, and carbonate......Reactive transport models, were developed to explore the evolution in groundwater chemistry along the flow path in three aquifers; the Triassic East Midland aquifer (UK), the Miocene aquifer at Valreas (F) and the Cretaceous aquifer near Aveiro (P). All three aquifers contain very old groundwaters...... dissolution (East Midlands, Valreas and Aveiro). Reactive transport models, employing the code PHREEQC, which included these geochemical processes and one-dimensional solute transport were able to duplicate the observed patterns in water quality. These models may provide a quantitative understanding...

  9. Multiphase Flow Dynamics 2 Mechanical Interactions

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present second volume the methods for describing the mechanical interactions in multiphase dynamics are provided. This fourth edition includes various updates, extensions, improvements and corrections.   "The literature in the field of multiphase flows is numerous. Therefore, it i...

  10. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Kenneth M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2010-09-01

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ΔfG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than

  11. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration - Literature Review

    International Nuclear Information System (INIS)

    Krupka, Kenneth M.; Cantrell, Kirk J.; McGrail, B. Peter

    2010-01-01

    Permanent storage of anthropogenic CO 2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO 2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO 2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO 2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO 2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO 2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO 2 sequestration. A review of thermodynamic data for CO 2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO 2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO 2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO 2 and CH 4 gases, carbonate aqueous species, and carbonate minerals. Values of Δ f G 298 o and/or log K r,298 o are available for essentially all of these compounds. However, log K r,T o or heat capacity values at temperatures above 298 K exist

  12. Multiphase-Multifunctional Ceramic Coatings

    Science.gov (United States)

    2013-06-30

    systems for high temperatura applications” “ Estudios de Ferroelasticidad en Sistemas Cerámicos Multifásicos para Aplicaciones en Alta Temperatura ...Ceramic Coatings Performing Organization names: Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional – Unidad Queretaro...materials, Cinvestav. Thesis: “Ferroelasticity studies in multiphase ceramic systems for high temperatura applications”. Her work mainly focused in the

  13. Integrating surrogate models into subsurface simulation framework allows computation of complex reactive transport scenarios

    Science.gov (United States)

    De Lucia, Marco; Kempka, Thomas; Jatnieks, Janis; Kühn, Michael

    2017-04-01

    Reactive transport simulations - where geochemical reactions are coupled with hydrodynamic transport of reactants - are extremely time consuming and suffer from significant numerical issues. Given the high uncertainties inherently associated with the geochemical models, which also constitute the major computational bottleneck, such requirements may seem inappropriate and probably constitute the main limitation for their wide application. A promising way to ease and speed-up such coupled simulations is achievable employing statistical surrogates instead of "full-physics" geochemical models [1]. Data-driven surrogates are reduced models obtained on a set of pre-calculated "full physics" simulations, capturing their principal features while being extremely fast to compute. Model reduction of course comes at price of a precision loss; however, this appears justified in presence of large uncertainties regarding the parametrization of geochemical processes. This contribution illustrates the integration of surrogates into the flexible simulation framework currently being developed by the authors' research group [2]. The high level language of choice for obtaining and dealing with surrogate models is R, which profits from state-of-the-art methods for statistical analysis of large simulations ensembles. A stand-alone advective mass transport module was furthermore developed in order to add such capability to any multiphase finite volume hydrodynamic simulator within the simulation framework. We present 2D and 3D case studies benchmarking the performance of surrogates and "full physics" chemistry in scenarios pertaining the assessment of geological subsurface utilization. [1] Jatnieks, J., De Lucia, M., Dransch, D., Sips, M.: "Data-driven surrogate model approach for improving the performance of reactive transport simulations.", Energy Procedia 97, 2016, p. 447-453. [2] Kempka, T., Nakaten, B., De Lucia, M., Nakaten, N., Otto, C., Pohl, M., Chabab [Tillner], E., Kühn, M

  14. MSTS - Multiphase Subsurface Transport Simulator theory manual

    International Nuclear Information System (INIS)

    White, M.D.; Nichols, W.E.

    1993-05-01

    The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the open-quotes User's Guide and Referenceclose quotes companion document

  15. Multiphase Flow Dynamics 3 Thermal Interactions

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present third volume methods for describing of the thermal interactions in multiphase dynamics are provided. In addition a large number of valuable experiments is collected and predicted using the methods introduced in this monograph. In this way the accuracy of the methods is reve...

  16. Geochemical Constraints for Mercury's PCA-Derived Geochemical Terranes

    Science.gov (United States)

    Stockstill-Cahill, K. R.; Peplowski, P. N.

    2018-05-01

    PCA-derived geochemical terranes provide a robust, analytical means of defining these terranes using strictly geochemical inputs. Using the end members derived in this way, we are able to assess the geochemical implications for Mercury.

  17. Multiphase simulation of mine waters and aqueous leaching processes

    Directory of Open Access Journals (Sweden)

    Pajarre Risto

    2016-01-01

    Full Text Available Managing of large amounts of water in mining and mineral processing sites remains a concern in both actively operated and closed mining areas. When the mining site with its metal or concentrate producing units is operational, the challenge is to find either ways for economical processing with maximum yields, while minimizing the environmental impact of the water usage and waste salt treatments. For safe closure of the site, the environmental control of possible drainage will be needed. For both challenges, the present-day multiphase process simulations tools can be used to provide improved accuracy and better economy in controlling the smooth and environmentally sound operation of the plant. One of the pioneering studies in using the multiphase thermodynamic software in simulation of hydrometallurgical processes was that of Koukkari et al. [1]. The study covered the use of Solgasmix equilibrium software for a number of practical acid digesters. The models were made for sulfuric acid treatments in titania pigment production and in NPK fertilizer manufacturing. During the past two decades the extensive data assessment has taken place particularly in geochemistry and a new versions of geochemical multiphase equilibrium software has been developed. On the other hand, there has been some progress in development of the process simulation software in all the aforementioned fields. Thus, the thermodynamic simulation has become a tool of great importance in development of hydrometallurgical processes. The presentation will cover three example cases of either true pilot or industrial systems including a South African acid mine water drainage treatment, hydrometallurgical extraction of rare earths from uranium leachate in Russia and a multistage process simulation of a Finnish heap leaching mine with its subsequent water treatment system.

  18. Proceedings of submicron multiphase materials

    International Nuclear Information System (INIS)

    Baney, R.; Gilliom, L.; Hirano, S.I.; Schmidt, H.

    1992-01-01

    This book contains the papers presented at Symposium R of the spring 1992 Materials Research Society meeting held in San Francisco, California. The title of the symposium, Submicron Multiphase Materials, was selected by the organizers to encompass the realm of composite materials from those smaller than conventional fiber matrix composites to those with phase separation dimensions approaching molecular dimensions. The development of composite materials is as old as the development of materials. Humans quickly learned that, by combining materials, the best properties of each can be realized and that, in fact, synergistic effects often arise. For example, chopped straw was used by the Israelites to limit cracking in bricks. The famed Japanese samurai swords were multilayers of hard oxide and tough ductile materials. One also finds in nature examples of composite materials. These range form bone to wood, consisting of a hard phase which provides strength and stiffness and a softer phase for toughness. Advanced composites are generally thought of as those which are based on a high modulus, discontinuous, chopped or woven fiber phase and a continuous polymer phase. In multiphase composites, dimensions can range from meters in materials such as steel rod-reinforced concrete structures to angstroms. In macrophase separated composite materials, properties frequently follow the rule of mixtures with the properties approximating the arithmetic mean of the properties of each individual phase, if there is good coupling between the phases. As the phases become smaller, the surface to volume ratio grows in importance with respect to properties. Interfacial and interphase phenomena being to dominate. Surface free energies play an ever increasing role in controlling properties. In recent years, much research in materials science has been directed at multiphase systems where phase separations are submicron in at least some dimension

  19. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    1988-01-01

    This Technical Report is designed mainly to introduce the methods and techniques of uranium geochemical exploration to exploration geologists who may not have had experience with geochemical exploration methods in their uranium programmes. The methods presented have been widely used in the uranium exploration industry for more than two decades. The intention has not been to produce an exhaustive, detailed manual, although detailed instructions are given for a field and laboratory data recording scheme and a satisfactory analytical method for the geochemical determination of uranium. Rather, the intention has been to introduce the concepts and methods of uranium exploration geochemistry in sufficient detail to guide the user in their effective use. Readers are advised to consult general references on geochemical exploration to increase their understanding of geochemical techniques for uranium

  20. Problems of multiphase fluid filtration

    CERN Document Server

    Konovalov, AN

    1994-01-01

    This book deals with a spectrum of problems related to the mathematical modeling of multiphase filtration. Emphasis is placed on an inseparable triad: model - algorithm - computer code. An analysis of new and traditional filtration problems from the point of view of both their numerical implementation and the reproduction of one or another technological characteristics of the processes under consideration is given. The basic principles which underlie the construction of efficient numerical methods taking into account the filtration problems are discussed: non-evolutionary nature, degeneration,

  1. Reductive immobilization of U(VI) in Fe(III) oxide-reducing subsurface sediments: Analysis of coupled microbial-geochemical processes in experimental reactive transport systems. Final Scientific/Technical Report-EMSP 73914

    International Nuclear Information System (INIS)

    Eric E. Roden Matilde M. Urrutia Mark O. Barnett Clifford R. Lange

    2005-01-01

    The purpose of this research was to provide information to DOE on microbiological and geochemical processes underlying the potential use of dissimilatory metal-reducing bacteria (DMRB) to create subsurface redox barriers for immobilization of uranium and other redox-sensitive metal/radionuclide contaminants that were released to the environment in large quantities during Cold War nuclear weapons manufacturing operations. Several fundamental scientific questions were addressed in order to understand and predict how such treatment procedures would function under in situ conditions in the subsurface. These questions revolved the coupled microbial-geochemical phenomena which are likely to occur within a redox barrier treatment zone, and on the dynamic interactions between hydrologic flux and biogeochemical process rates. First, we assembled a robust conceptual understanding and numerical framework for modeling the kinetics of microbial Fe(III) oxide reduction and associated DMRB growth in sediments. Development of this framework is a critical prerequisite for predicting the potential effectiveness of DMRB-promoted subsurface bioremediation, since Fe(III) oxides are expected to be the primary source of electron-accepting capacity for growth and maintenance of DMRB in subsurface environments. We also defined in detail the kinetics of microbial (enzymatic) versus abiotic, ferrous iron-promoted reduction of U(VI) in the presence and absence of synthetic and natural Fe(III) oxide materials. The results of these studies suggest that (i) the efficiency of dissolved U(VI) scavenging may be influenced by the kinetics of enzymatic U(VI) reduction in systems with relative short fluid residence times; (2) association of U(VI) with diverse surface sites in natural soils and sediments has the potential to limit the rate and extent of microbial U(VI) reduction, and in turn modulate the effectiveness of in situ U(VI) bioremediation; and (3) abiotic, ferrous iron (Fe(II)) drive n U

  2. Advances in multiphase flow and related problems

    International Nuclear Information System (INIS)

    Papanicolaou, G.

    1986-01-01

    Proceedings of a workshop in multiphase flow held at Leesburg, Va. in June 1986 representing a cross-disciplinary approach to theoretical as well as computational problems in multiphase flow. Topics include composites, phase transitions, fluid-particle systems, and bubbly liquids

  3. A multiphase compressible model for the simulation of multiphase flows

    International Nuclear Information System (INIS)

    Caltagirone, J.P.; Vincent, St.; Caruyer, C.

    2011-01-01

    A compressible model able to manage incompressible two-phase flows as well as compressible motions is proposed. After a presentation of the multiphase compressible concept, the new model and related numerical methods are detailed on fixed structured grids. The presented model is a 1-fluid model with a reformulated mass conservation equation which takes into account the effects of compressibility. The coupling between pressure and flow velocity is ensured by introducing mass conservation terms in the momentum and energy equations. The numerical model is then validated with four test cases involving the compression of an air bubble by water, the liquid injection in a closed cavity filled with air, a bubble subjected to an ultrasound field and finally the oscillations of a deformed air bubble in melted steel. The numerical results are compared with analytical results and convergence orders in space are provided. (authors)

  4. Multi-phase chemistry in process simulation - MASIT04 (VISTA)

    Energy Technology Data Exchange (ETDEWEB)

    Brink, A.; Li Bingzhi; Hupa, M. (Aabo Akademi University, Combustion and Materials Chemistry, Turku (Finland)) (and others)

    2008-07-01

    A new generation of process models has been developed by using advanced multi-phase thermochemistry. The generality of the thermodynamic free energy concept enables use of common software tools for high and low temperature processes. Reactive multi-phase phenomena are integrated to advanced simulation procedures by using local equilibrium or constrained state free energy computation. The high-temperature applications include a process model for the heat recovery of copper flash smelting and coupled models for converter and bloom casting operations in steel-making. Wet suspension models are developed for boiler and desalination water chemistry, flash evaporation of black liquor and for selected fibre-line and paper-making processes. The simulation combines quantitative physical and chemical data from reactive flows to form their visual images, thus providing efficient tools for engineering design and industrial decision-making. Economic impacts are seen as both better process operations and improved end products. The software tools developed are internationally commercialised and being used to support Finnish process technology exports. (orig.)

  5. Reconnaissance Geochemical Study

    African Journals Online (AJOL)

    distribution patterns. The geochemical distribution maps of the elements reveal that Cu, Pb, Zn, Co, Sc, Ni, Cr, .... After filtration, the leached solutions were diluted with ultra ...... some other rare earth elements in the study area. The occurrence ...

  6. Frontiers and progress in multiphase flow

    CERN Document Server

    2014-01-01

    This volume presents state-of-the-art of reviews in the field of multiphase flow. In focusses on nonlinear aspects of multiphase flow networks as well as visualization experiments. The first chapter presents nonlinear aspects or deterministic chaos issues in the systems of multi-phase reactors.  The second chapter reviews two-phase flow dynamics in combination with complex network theory. The third chapter discusses evaporation mechanism in the wick of copper heat pipes. The last chapter investigates numerically the flow dynamics and heat and mass transfer in the laminar and turbulent boundary layer on the flat vertical plate.

  7. Geochemical Investigations of Groundwater Stability

    International Nuclear Information System (INIS)

    Bath, Adrian

    2006-05-01

    The report describes geochemical parameters and methods that provide information about the hydrodynamic stability of groundwaters in low permeability fractured rocks that are potential hosts for radioactive waste repositories. Hydrodynamic stability describes the propensity for changes in groundwater flows over long timescales, in terms of flow rates and flow directions. Hydrodynamic changes may also cause changes in water compositions, but the related issue of geochemical stability of a potential repository host rock system is outside the scope of this report. The main approaches to assessing groundwater stability are numerical modelling, measurement and interpretation of geochemical indicators in groundwater compositions, and analyses and interpretations of secondary minerals and fluid inclusions in these minerals. This report covers the latter two topics, with emphasis on geochemical indicators. The extent to which palaeohydrogeology and geochemical stability indicators have been used in past safety cases is reviewed. It has been very variable, both in terms of the scenarios considered, the stability indicators considered and the extent to which the information was explicitly or implicitly used in assessing FEPs and scenarios in the safety cases. Geochemical indicators of hydrodynamic stability provide various categories of information that are of hydrogeological relevance. Information about groundwater mixing, flows and water sources is potentially provided by the total salinity of groundwaters, their contents of specific non-reactive solutes (principally chloride) and possibly of other solutes, the stable isotopic ratio of water, and certain characteristics of secondary minerals and fluid inclusions. Information pertaining directly to groundwater ages and the timing of water and solute movements is provided by isotopic systems including tritium, carbon-14, chlorine-36, stable oxygen and hydrogen isotopes, uranium isotopes and dissolved mobile gases in

  8. Geochemical Investigations of Groundwater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2006-05-15

    The report describes geochemical parameters and methods that provide information about the hydrodynamic stability of groundwaters in low permeability fractured rocks that are potential hosts for radioactive waste repositories. Hydrodynamic stability describes the propensity for changes in groundwater flows over long timescales, in terms of flow rates and flow directions. Hydrodynamic changes may also cause changes in water compositions, but the related issue of geochemical stability of a potential repository host rock system is outside the scope of this report. The main approaches to assessing groundwater stability are numerical modelling, measurement and interpretation of geochemical indicators in groundwater compositions, and analyses and interpretations of secondary minerals and fluid inclusions in these minerals. This report covers the latter two topics, with emphasis on geochemical indicators. The extent to which palaeohydrogeology and geochemical stability indicators have been used in past safety cases is reviewed. It has been very variable, both in terms of the scenarios considered, the stability indicators considered and the extent to which the information was explicitly or implicitly used in assessing FEPs and scenarios in the safety cases. Geochemical indicators of hydrodynamic stability provide various categories of information that are of hydrogeological relevance. Information about groundwater mixing, flows and water sources is potentially provided by the total salinity of groundwaters, their contents of specific non-reactive solutes (principally chloride) and possibly of other solutes, the stable isotopic ratio of water, and certain characteristics of secondary minerals and fluid inclusions. Information pertaining directly to groundwater ages and the timing of water and solute movements is provided by isotopic systems including tritium, carbon-14, chlorine-36, stable oxygen and hydrogen isotopes, uranium isotopes and dissolved mobile gases in

  9. Designing of Synergistic Waste Mixtures for Multiphase Reactive Smelting

    Directory of Open Access Journals (Sweden)

    Vaso Manojlović

    2016-06-01

    Full Text Available Electric arc furnace (EAF dust, together with a mill scale and coke were smelted in a laboratory electric arc furnace. These metallurgical wastes consist of a many different phases and elements, making the reaction process complex. Thermo-chemical analysis of the reactions in metal, slag, and gas phases was done, and used for modeling of the mixture composition and energy consumption required for smelting. Modelling was performed with the software named RikiAlC. The crude ZnO, slag, and metal phase were analyzed using the atomic absorption spectrometry (AAS, the optical emission spectrometry with inductively coupled plasma (ICP-OES, the X-ray diffraction (XRD, the scanning electron microscopy (SEM equipped with energy dispersive spectrometry (EDS, and reflected and transmitted light microscopy. Also, in order to follow the behavior of this process the exhausted gases were monitored. The synergetic effects of the designed mixture may be recognized in minimizing energy consumption for the smelting process, improving the product yield efficiency, and reducing the negative environmental effects.

  10. On multiphase negative flash for ideal solutions

    DEFF Research Database (Denmark)

    Yan, Wei; Stenby, Erling Halfdan

    2012-01-01

    simpler than the corresponding normal flash algorithm. Unlike normal flash, multiphase negative flash for ideal solutions can diverge if the feasible domain for phase amounts is not closed. This can be judged readily during the iteration process. The algorithm can also be extended to the partial negative......There is a recent interest to solve multiphase negative flash problems where the phase amounts can be negative for normal positive feed composition. Solving such a negative flash problem using successive substitution needs an inner loop for phase distribution calculation at constant fugacity...... coefficients. It is shown that this inner loop, named here as multiphase negative flash for ideal solutions, can be solved either by Michelsen's algorithm for multiphase normal flash, or by its variation which uses F−1 phase amounts as independent variables. In either case, the resulting algorithm is actually...

  11. Accurate solution algorithms for incompressible multiphase flows

    International Nuclear Information System (INIS)

    Rider, W.J.; Kothe, D.B.; Mosso, S.J.; Cerutti, J.H.; Hochstein, J.I.

    1994-01-01

    A number of advances in modeling multiphase incompressible flow are described. These advances include high-order Godunov projection methods, piecewise linear interface reconstruction and tracking and the continuum surface force model. Examples are given

  12. Methods for geochemical analysis

    Science.gov (United States)

    Baedecker, Philip A.

    1987-01-01

    The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.

  13. PHAST Version 2-A Program for Simulating Groundwater Flow, Solute Transport, and Multicomponent Geochemical Reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Charlton, Scott R.

    2010-01-01

    The computer program PHAST (PHREEQC And HST3D) simulates multicomponent, reactive solute transport in three-dimensional saturated groundwater flow systems. PHAST is a versatile groundwater flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. Major enhancements in PHAST Version 2 allow spatial data to be defined in a combination of map and grid coordinate systems, independent of a specific model grid (without node-by-node input). At run time, aquifer properties are interpolated from the spatial data to the model grid; regridding requires only redefinition of the grid without modification of the spatial data. PHAST is applicable to the study of natural and contaminated groundwater systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock/water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, or density-dependent flow. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux (specified-flux), and leaky (head-dependent) conditions, as well as the special cases of rivers, drains, and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association or Pitzer specific interaction thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, ion exchange sites, surface complexation sites, solid solutions, and gases; and

  14. Retention/sorption and geochemical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, D.; Grandia, F.; Domenech, C. [Enviros Spain, S.L., Barcelona (Spain); SCK-CEN, Mol (Belgium); Sellin, P. [SKB - Swedish Nuclear Fuel and Waste Management, SE, Stockholm (Sweden); Hunter, F.M.I.; Bate, F.; Heath, T.G.; Hoch, A. [Serco Assurance, Oxfordshire (United Kingdom); Werme, L.O. [SKB - Svensk Karnbranslehantering AB, Stockholm (Sweden); Bruggeman, C.; Maes, I.A.; Breynaert, E.; Vancluysen, J. [Leuven Katholieke Univ., Lab. for Colloid Chemistry (Belgium); Montavon, G.; Guo, Z. [Ecole des Mines, 44 - Nantes (France); Riebe, B.; Bunnenberg, C.; Meleshyn, A. [Leibniz Univ. Hannover, Zentrum fur Strahlenschutz und Radiookologie, Hannover (Germany); Dultz, S. [Leibniz Univ. Hannover, Institut fur Bodenkunde, Hannover (Germany)

    2007-07-01

    This session gathers 4 articles dealing with: the long-term geochemical evolution of the near field of a KBS-3 HLNW repository: insights from reactive transport modelling (D. Arcos, F. Grandia, C. Domenech, P. Sellin); the investigation of iron transport into bentonite from anaerobically corroding steel: a geochemical modelling study (F.M.I. Hunter, F. Bate, T.G. Heath, A. Hoch, L.O. Werme); SeO{sub 3}{sup 2-} adsorption on conditioned Na-illite: XAS spectroscopy, kinetics, surface complexation model and influence of compaction (C. Bruggeman, A. Maes, G. Montavon, E. Breynaert, Z. Guo, J. Vancluysen); the influence of temperature and gamma-irradiation on the anion sorption capacity of modified bentonites (B. Riebe, C. Bunnenberg, A. Meleshyn, S. Dultz)

  15. Geochemical prospecting in Guiana

    International Nuclear Information System (INIS)

    Coulomb, R.

    1957-01-01

    During the last few years geochemical prospecting techniques have become common usage in the field of mineral deposit prospecting. The real scope of these methods lies in their use in the prospecting of large areas. The most promising use of the geochemistry and hydro-geochemistry of uranium is in heavily forested tropical territories, with few outcrops, where radiometry is strongly handicapped. (author) [fr

  16. Slush Fund: Modeling the Multiphase Physics of Oceanic Ices

    Science.gov (United States)

    Buffo, J.; Schmidt, B. E.

    2016-12-01

    The prevalence of ice interacting with an ocean, both on Earth and throughout the solar system, and its crucial role as the mediator of exchange between the hydrosphere below and atmosphere above, have made quantifying the thermodynamic, chemical, and physical properties of the ice highly desirable. While direct observations of these quantities exist, their scarcity increases with the difficulty of obtainment; the basal surfaces of terrestrial ice shelves remain largely unexplored and the icy interiors of moons like Europa and Enceladus have never been directly observed. Our understanding of these entities thus relies on numerical simulation, and the efficacy of their incorporation into larger systems models is dependent on the accuracy of these initial simulations. One characteristic of seawater, likely shared by the oceans of icy moons, is that it is a solution. As such, when it is frozen a majority of the solute is rejected from the forming ice, concentrating in interstitial pockets and channels, producing a two-component reactive porous media known as a mushy layer. The multiphase nature of this layer affects the evolution and dynamics of the overlying ice mass. Additionally ice can form in the water column and accrete onto the basal surface of these ice masses via buoyancy driven sedimentation as frazil or platelet ice. Numerical models hoping to accurately represent ice-ocean interactions should include the multiphase behavior of these two phenomena. While models of sea ice have begun to incorporate multiphase physics into their capabilities, no models of ice shelves/shells explicitly account for the two-phase behavior of the ice-ocean interface. Here we present a 1D multiphase model of floating oceanic ice that includes parameterizations of both density driven advection within the `mushy layer' and buoyancy driven sedimentation. The model is validated against contemporary sea ice models and observational data. Environmental stresses such as supercooling and

  17. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    Science.gov (United States)

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  18. The simulation of multidimensional multiphase flows

    International Nuclear Information System (INIS)

    Lahey, Richard T.

    2005-01-01

    This paper presents an assessment of various models which can be used for the multidimensional simulation of multiphase flows, such as may occur in nuclear reactors. In particular, a model appropriate for the direct numerical simulation (DNS) of multiphase flows and a mechanistically based, three-dimensional, four-field, turbulent, two-fluid computational multiphase fluid dynamics (CMFD) model are discussed. A two-fluid bubbly flow model, which was derived using potential flow theory, can be extended to other flow regimes, but this will normally involve ensemble-averaging the results from direct numerical simulations (DNS) of various flow regimes to provide the detailed numerical data necessary for the development of flow-regime-specific interfacial and wall closure laws

  19. Multiphase reacting flows modelling and simulation

    CERN Document Server

    Marchisio, Daniele L

    2007-01-01

    The papers in this book describe the most widely applicable modeling approaches and are organized in six groups covering from fundamentals to relevant applications. In the first part, some fundamentals of multiphase turbulent reacting flows are covered. In particular the introduction focuses on basic notions of turbulence theory in single-phase and multi-phase systems as well as on the interaction between turbulence and chemistry. In the second part, models for the physical and chemical processes involved are discussed. Among other things, particular emphasis is given to turbulence modeling strategies for multiphase flows based on the kinetic theory for granular flows. Next, the different numerical methods based on Lagrangian and/or Eulerian schemes are presented. In particular the most popular numerical approaches of computational fluid dynamics codes are described (i.e., Direct Numerical Simulation, Large Eddy Simulation, and Reynolds-Averaged Navier-Stokes approach). The book will cover particle-based meth...

  20. GEOCHEMICAL CONTROLS ON NUCLEAR MAGNETIC RESONANCE MEASUREMENTS

    International Nuclear Information System (INIS)

    Knight, Rosemary

    2008-01-01

    Proton nuclear magnetic resonance (NMR) is used in the Earth Sciences as a means of obtaining information about the molecular-scale environment of fluids in porous geological materials. Laboratory experiments were conducted to advance our fundamental understanding of the link between the NMR response and the geochemical properties of geological materials. In the first part of this research project, we studied the impact of both the surface-area-to-volume ratio (S/V) of the pore space and the surface relaxivity on the NMR response of fluids in sand-clay mixtures. This study highlighted the way in which these two parameters control our ability to use NMR measurements to detect and quantify fluid saturation in multiphase saturated systems. The second part of the project was designed to explore the way in which the mineralogic form of iron, as opposed to simply the concentration of iron, affects the surface relaxation rate and, more generally, the NMR response of porous materials. We found that the magnitude of the surface relaxation rate was different for the various iron-oxide minerals because of changes in both the surface-area-to-volume ratio of the pore space, and the surface relaxivity. Of particular significance from this study was the finding of an anomalously large surface relaxivity of magnetite compared to that of the other iron minerals. Differences in the NMR response of iron minerals were seen in column experiments during the reaction of ferrihydrite-coated quartz sand with aqueous Fe(II) solutions to form goethite, lepidocrocite and magnetite; indicating the potential use of NMR as a means of monitoring geochemical reactions. The final part of the research project investigated the impact of heterogeneity, at the pore-scale, on the NMR response. This work highlighted the way in which the geochemistry, by controlling the surface relaxivity, has a significant impact on the link between NMR data and the microgeometry of the pore space.

  1. Multiphase flow in wells and pipelines

    International Nuclear Information System (INIS)

    Sharma, M.P.; Rohatgi, U.S.

    1992-01-01

    This conference focuses primarily on multi-phase flow modeling and calculation methods for oil and gas although two papers focus more on the fluid mechanics of fluidized beds. Papers include theoretical, numerical modeling, experimental investigation, and state-of-the-art review aspects of multiphase flow. The theme of the symposium being general, the papers reflect generality of gas-liquid, liquid-solid, and gas solid flows. One paper deals with nuclear reactor safety as it relates to fluid flow through the reactor

  2. Geochemical modeling: a review

    International Nuclear Information System (INIS)

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted

  3. Geochemical modeling: a review

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted.

  4. Multiphase flow dynamics 2 thermal and mechanical interactions

    CERN Document Server

    Kolev, Nikolay I

    2007-01-01

    The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. This book contains theory, methods and practical experience for describing complex transient multi-phase processes. It provides a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics.

  5. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    Science.gov (United States)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  6. Sharp fronts within geochemical transport problems

    International Nuclear Information System (INIS)

    Grindrod, P.

    1995-01-01

    The authors consider some reactive geochemical transport problems in groundwater systems. When incoming fluid is in disequilibrium with the mineralogy sharp transition fronts may develop. They show that this is a generic property for a class of systems where the timescales associated with reaction and diffusion phenomena are much shorter than those associated with advective transport. Such multiple timescale problems are relevant to a variety of processes in natural systems: mathematically methods of singular perturbation theory reduce the dimension of the problems to be solved locally. Furthermore, they consider how spatial heterogeneous mineralogy can impact upon the propagation of sharp geochemical fronts. The authors developed an asymptotic approach in which they solve equations for the evolving geometry of the front and indicate how the non-smooth perturbations due to natural heterogeneity of the mineralogy on underlying ground water flow field are balanced against the smoothing effect of diffusion/dispersive processes. Fronts are curvature damped, and the results here indicate the generic nature of separate front propagation within both model (idealized) and natural (heterogeneous) geochemical systems

  7. Multiphase flow and transport in porous media

    Science.gov (United States)

    Parker, J. C.

    1989-08-01

    Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. In petroleum reservoir engineering, efficient recovery of energy reserves is the principal goal. Unfortunately, some of these hydrocarbons and other organic chemicals often find their way unwanted into the soils and groundwater supplies. Removal in the latter case is predicated on ensuring the public health and safety. In this paper, principles of modeling fluid flow in systems containing up to three fluid phases (namely, water, air, and organic liquid) are described. Solution of the governing equations for multiphase flow requires knowledge of functional relationships between fluid pressures, saturations, and permeabilities which may be formulated on the basis of conceptual models of fluid-porous media interactions. Mechanisms of transport in multicomponent multiphase systems in which species may partition between phases are also described, and the governing equations are presented for the case in which local phase equilibrium may be assumed. A number of hypothetical numerical problems are presented to illustrate the physical behavior of systems in which multiphase flow and transport arise.

  8. A Multiphase Model for the Intracluster Medium

    Science.gov (United States)

    Nagai, Daisuke; Sulkanen, Martin E.; Evrard, August E.

    1999-01-01

    Constraints on the clustered mass density of the universe derived from the observed population mean intracluster gas fraction of x-ray clusters may be biased by reliance on a single-phase assumption for the thermodynamic structure of the intracluster medium (ICM). We propose a descriptive model for multiphase structure in which a spherically symmetric ICM contains isobaric density perturbations with a radially dependent variance. Fixing the x-ray emission and emission weighted temperature, we explore two independently observable signatures of the model in the parameter space. For bremsstrahlung dominated emission, the central Sunyaev-Zel'dovich (SZ) decrement in the multiphase case is increased over the single-phase case and multiphase x-ray spectra in the range 0.1-20 keV are flatter in the continuum and exhibit stronger low energy emission lines than their single-phase counterpart. We quantify these effects for a fiducial 10e8 K cluster and demonstrate how the combination of SZ and x-ray spectroscopy can be used to identify a preferred location in the plane of the model parameter space. From these parameters the correct value of mean intracluster gas fraction in the multiphase model results, allowing an unbiased estimate of clustered mass density to he recovered.

  9. Multiphase flow in porous media using CFD

    DEFF Research Database (Denmark)

    Hemmingsen, Casper Schytte; Walther, Jens Honore

    . This approach is widely used for single phase flow, but not for multiphase flow in porous media. This might be due to the complexity of introducing relative permeability and capillary pressure in the CFD solver.The introduction of relative permeability and capillary pressure may cause numerical instabilities...

  10. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mecartnery, Martha [Univ. of California, Irvine, CA (United States); Graeve, Olivia [Univ. of California, San Diego, CA (United States); Patel, Maulik [Univ. of Liverpool (United Kingdom)

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  11. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    International Nuclear Information System (INIS)

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-01-01

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  12. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  13. Non-Equilibrium Thermodynamics in Multiphase Flows

    CERN Document Server

    Mauri, Roberto

    2013-01-01

    Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...

  14. Multiphase Microfluidics The Diffuse Interface Model

    CERN Document Server

    2012-01-01

    Multiphase flows are typically described assuming that the different phases are separated by a sharp interface, with appropriate boundary conditions. This approach breaks down whenever the lengthscale of the phenomenon that is being studied is comparable with the real interface thickness, as it happens, for example, in the coalescence and breakup of bubbles and drops, the wetting and dewetting of solid surfaces and, in general, im micro-devices. The diffuse interface model resolves these probems by assuming that all quantities can vary continuously, so that interfaces have a non-zero thickness, i.e. they are "diffuse". The contributions in this book review the theory and describe some relevant applications of the diffuse interface model for one-component, two-phase fluids and for liquid binary mixtures, to model multiphase flows in confined geometries.

  15. Visualization of multiphase flow by neutron radiography

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Takenaka, Nobuyuki.

    1991-01-01

    Neutron radiography (NRG) is a technique which produces images of the internal structure of a body, making use of the attenuation characteristics of neutrons in the materials being observed. Recently, attempts have been made to expand the application of this technique not only to non-destructive testing but also to a variety of industrial and basic research fields. The attenuation of neutrons is large in a light material like water and small in ordinary metals, which difference may make it possible to visualize a multiphase flow in a metallic container. Particularly, the neutron television, which is one of the applied techniques of NRG, is expected to be a useful tool for observing the behavior of two-phase flow, since it produces images in real time. In this paper the basic idea and the method of NRG are presented along with examples of visualization of multiphase flow by NRG. (author)

  16. Multiphase composite coatings: structure and properties

    International Nuclear Information System (INIS)

    Yurov, V M; Guchenko, S A; Platonova, E S; Syzdykova, A Sh; Lysenko, E N

    2015-01-01

    The paper discusses the results of the research into the formation of ion-plasma multiphase coatings. The types of the formed structures are found to be not so diverse, as those formed, for example, in alloy crystallization. The structures observed are basically of globular type and, more rarely, of unclosed dissipative and cellular structures. It is shown that the properties of the coating formed in deposition are largely determined by its surface energy or surface tension. Since the magnitude of the surface tension (surface energy) in most cases is an additive quantity, each of the elements of the coating composition contributes to the total surface energy. In case of simultaneous sputtering of multiphase cathodes, high entropy coatings with an ordered cellular structure and improved mechanical properties are formed. (paper)

  17. Application and Perspectives of Multiphase Induction Motors

    Directory of Open Access Journals (Sweden)

    Benas Kundrotas

    2012-04-01

    Full Text Available The article considers the areas of applying multiphase induction motors. Their advantages against three phase motors have become the main reason for employing them in multiphase drives. The paper deals with the six-phase induction motor having two similar three phase windings in the stator shifted by 30 degrees in space and three phase windings in the rotor. Differential equations for this motor are presented and transformed to dq synchronous reference frame. The transformed equations are expressed in a matrix form and solved by MATLAB software using the Dormand-Prince (ode45 method. The transient characteristics of the torque, speed and current of the six-phase induction motor are calculated and discussed.Article in Lithuanian

  18. Variational continuum multiphase poroelasticity theory and applications

    CERN Document Server

    Serpieri, Roberto

    2017-01-01

    This book collects the theoretical derivation of a recently presented general variational macroscopic continuum theory of multiphase poroelasticity (VMTPM), together with its applications to consolidation and stress partitioning problems of interest in several applicative engineering contexts, such as in geomechanics and biomechanics. The theory is derived based on a purely-variational deduction, rooted in the least-Action principle, by considering a minimal set of kinematic descriptors. The treatment herein considered keeps a specific focus on the derivation of most general medium-independent governing equations. It is shown that VMTPM recovers paradigms of consolidated use in multiphase poroelasticity such as Terzaghi's stress partitioning principle and Biot's equations for wave propagation. In particular, the variational treatment permits the derivation of a general medium-independent stress partitioning law, and the proposed variational theory predicts that the external stress, the fluid pressure, and the...

  19. Modeling variability in porescale multiphase flow experiments

    Science.gov (United States)

    Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.

    2017-07-01

    Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e., fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rates. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.

  20. Isotopic-geochemical investigation of Vitosh pluton (Bulgaria)

    International Nuclear Information System (INIS)

    Amelin, Yu.V.; Drubetskoj, E.R.; Monchev, N.B.; Nejmark, L.A.; Ovchinnikova, G.V.; Levskij, L.K.

    1989-01-01

    A set of isotope-geochronological (Rb-Sr, K-Ar, uranium fission tracks) and isotope-geochemical (Sr, Pb, Nd, He) methods was used to establish genesis and age of multi-phase Vitosh pluton. The investigation results have shown that primary magma from which pluton rocks were formed is generated at the level of high mantle - low crust. Insignificant difference in time of implantation and crystallization between variuos pluton phases is established. In the interval 84-79 millions of years the velocity of rock cooling and the velocity of pluton lift to the surface were estimated. In the interval 79-0 millions of years these velocities decrease essentially. After formation the rocks were not subjected to additional heat affects

  1. On modeling of structured multiphase mixtures

    International Nuclear Information System (INIS)

    Dobran, F.

    1987-01-01

    The usual modeling of multiphase mixtures involves a set of conservation and balance equations of mass, momentum, energy and entropy (the basic set) constructed by an averaging procedure or postulated. The averaged models are constructed by averaging, over space or time segments, the local macroscopic field equations of each phase, whereas the postulated models are usually motivated by the single phase multicomponent mixture models. In both situations, the resulting equations yield superimposed continua models and are closed by the constitutive equations which place restrictions on the possible material response during the motion and phase change. In modeling the structured multiphase mixtures, the modeling of intrinsic motion of grains or particles is accomplished by adjoining to the basic set of field equations the additional balance equations, thereby placing restrictions on the motion of phases only within the imposed extrinsic and intrinsic sources. The use of the additional balance equations has been primarily advocated in the postulatory theories of multiphase mixtures and are usually derived through very special assumptions of the material deformation. Nevertheless, the resulting mixture models can predict a wide variety of complex phenomena such as the Mohr-Coulomb yield criterion in granular media, Rayleigh bubble equation, wave dispersion and dilatancy. Fundamental to the construction of structured models of multiphase mixtures are the problems pertaining to the existence and number of additional balance equations to model the structural characteristics of a mixture. Utilizing a volume averaging procedure it is possible not only to derive the basic set of field equation discussed above, but also a very general set of additional balance equations for modeling of structural properties of the mixture

  2. NMR studies of multiphase flows II

    Energy Technology Data Exchange (ETDEWEB)

    Altobelli, S.A.; Caprihan, A.; Fukushima, E. [Lovelace Institutes, Albuquerque, NM (United States)] [and others

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  3. Modified Invasion Percolation Models for Multiphase Processes

    Energy Technology Data Exchange (ETDEWEB)

    Karpyn, Zuleima [Pennsylvania State Univ., State College, PA (United States)

    2015-01-31

    This project extends current understanding and modeling capabilities of pore-scale multiphase flow physics in porous media. High-resolution X-ray computed tomography imaging experiments are used to investigate structural and surface properties of the medium that influence immiscible displacement. Using experimental and computational tools, we investigate the impact of wetting characteristics, as well as radial and axial loading conditions, on the development of percolation pathways, residual phase trapping and fluid-fluid interfacial areas.

  4. Clinical significance of multiphase skeletal scintiscanning

    International Nuclear Information System (INIS)

    Zimmermann, P.

    1984-01-01

    A total of 61 patients were included in this study, which was performed to find out, if multiphase skeletal scintiscanning using 99mTc-DPD is a more accurate investigational method in terms of diagnostic differentiation than conventional scintiscanning. All patients were subjected to additional diagnostic procedures using X-rays, CT, etc. and the findings revealed were compared. In order to ensure an objective assessment of the density patterns obtained in the individual study phase (initial phase (1); vascular phase (2); soft tissue phase (3); standard phase (4)), special care was taken that only regions of similar vascularity were compared. In acute osteomyelitis, osteitis deformans according to Paget and osteoid osteoma multiphase scintiscanning yielded valuable additional information which, from the diagnostic point of view, proved to be much more meaningful than that provided by conventional scintiscanning, as very characteristic activity patterns were discernible in the initial study phases. In patients showing artificial limb infection or fractures this supplementary information was also found to be of some value, although the behaviour of activity in the initial study phases gave less conclusive evidence here than in the diseases mentioned before. In inflammatory disorders involving only minor histological changes or those of a chronic nature as well as in special forms of inflammation and artificial limb dislocation multiphase scintiscanning was not found to offer any advantages over conventional scintiscanning. (TRV) [de

  5. How winning changes motivation in multiphase competitions.

    Science.gov (United States)

    Huang, Szu-Chi; Etkin, Jordan; Jin, Liyin

    2017-06-01

    What drives motivation in multiphase competitions? Adopting a dynamic approach, this research examines how temporary standing-being ahead of (vs. behind) one's opponent-in a multiphase competition shapes subsequent motivation. Six competitions conducted in the lab and in the field demonstrate that the impact of being ahead on contestants' motivation depends on when (i.e., in which phase of the competition) contestants learn they are in the lead. In the early phase, contestants are concerned about whether they can win; being ahead increases motivation by making winning seem more attainable. In the later phase, however, contestants are instead driven by how much additional effort they believe they need to invest; being ahead decreases motivation by reducing contestants' estimate of the remaining effort needed to win. Temporary standing thus has divergent effects on motivation in multiphase competitions, driven by a shift in contestants' main concern from the early to the later phase and thus the meaning they derive from being ahead of their opponent. By leveraging insights gained from approaching individuals' self-regulation as a dynamic process, this research advances understanding of how motivation evolves in a unique interdependent self-regulatory context. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Modeling reproducibility of porescale multiphase flow experiments

    Science.gov (United States)

    Ling, B.; Tartakovsky, A. M.; Bao, J.; Oostrom, M.; Battiato, I.

    2017-12-01

    Multi-phase flow in porous media is widely encountered in geological systems. Understanding immiscible fluid displacement is crucial for processes including, but not limited to, CO2 sequestration, non-aqueous phase liquid contamination and oil recovery. Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.

  7. Geochemical Survey of Pernambuco

    International Nuclear Information System (INIS)

    Horowitz, A.; Duarte, P.J.; Almeida, M.G. de; Medeiros, M.O.

    1988-01-01

    The area studied i this work is located in a triangle formed by the Sibiro and Boca da Mata Sugar-Mills and Serinhaem country. In the Cabo Formation the search determinated conglomerates, arcos and clays. Although the highest geochemical activity have been done in the decomposed crystalin, and the values from Cabo Formation don't be encourager, this formation has lithology compatible with uranium mineralization. The Cabo Formation's sediments presents lithologic variations very expressives, with conglomerates, arcoses and clay silts, which determinate the choise of the area. This area presented favorable to uranium prospecting and to others elements interesting to ragional geochemistry. The atomic absorption analysis, fluorimetry and spectrometry were done for the following elements: Zn, V, Ti, Ni, Pb, Mn, Ga, Cu, Co, Bi, Ag, B, Mo, and U. (C.D.G.) [pt

  8. Long-term Performance of Permeable Reactive Barriers Using Zero-valent Iron: An Evaluation at Two Sites

    National Research Council Canada - National Science Library

    Wilkin, Richard T; Puls, Robert W; Sewell, Guy W

    2002-01-01

    Research described in this research brief explores the geochemical and microbiological processes occurring within zero-valent iron treatment zones in permeable reactive barriers that may contribute...

  9. Significance of geochemical characterization to performance at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Simmons, A.M.

    1993-01-01

    The U.S. concept for permanent disposal of high-level radioactive waste resembles those of other countries in that it relies upon burial in a deep geologic medium. This concept relies upon multiple barriers to retard transport of radionuclides to the accessible environment; those barriers consist of the waste form, waste container, engineered barrier system (including possible backfill) and retardant properties of the host rock. Because mobilization of radionuclides is fundamentally a geochemical problem, an understanding of past, present, and future geochemical processes is a requisite part of site characterization studies conducted by the U.S. Department of Energy at Yucca Mountain, Nevada. Geochemical information is needed for evaluating three favorable conditions (the rates of geochemical processes, conditions that promote precipitation or sorption of radionuclides or prohibit formation of colloids, and stable mineral assemblages) and four potentially adverse conditions of the site (groundwater conditions that could increase the chemical reactivity of the engineered barried system or reduce sorption, potential for gaseous radionuclide movement, and oxidizing groundwaters) for key issues of radionuclide release, groundwater quality, and stability of the geochemical environment. Preliminary results of long-term heating experiments indicate that although zeolites can be modified by long-term, low temperature reactions, their beneficial sorptive properties will not be adversely affected. Mineral reactions will be controlled by the aqueous activity of silica in groundwater with which the minerals are in contact. Geochemical barriers alone may satisfy release requirements to the accessible environment for many radionuclides; however, additional site specific geochemical and mineralogical data are needed to test existing and future radionuclide transport models

  10. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    Science.gov (United States)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  11. Impact of Diagenetic Alterations on the Petrophysical and Multiphase Flow Properties of Carbonate Rocks Using a Reactive Pore Network Modeling Approach Impact des altérations diagénétiques sur les propriétés pétrophysiques et d’écoulement polyphasique de roches carbonates en utilisant une modélisation par l’approche réseau de pores

    Directory of Open Access Journals (Sweden)

    Algive L.

    2012-02-01

    replacing the original complex pore structure of real porous media by a conceptual network. The second step consists of resolving the governing equations of the precipitation and dissolution phenomena (i.e. reactive convection diffusion equation in the conceptual 3D pore network and deducing the local reactive fluxes and the motion of the fluid-solid interface. The third step consists of updating the new pore structure and calculating the new petrophysical properties of the modified porous media. Those steps are repeated in order to mimic a given diagenetic scenario. Finally, the multiphase flow properties of the current porous media are calculated. The impact of one diagenetic cycle of dissolution and precipitation on the pore networks’ heterogeneity and consequently on the petrophysical properties (i.e. porosity and permeability and multiphase flow properties (i.e. relative permeability and capillary pressure have been investigated. The permeability and porosity evolution during a given diagenetic cycle are calculated and analyzed as a function of the relevant dimensionless numbers (Peclet and Damköhler numbers that characterize the flow and reaction regime. The correlation between these numbers and the dissolved/precipitated layer thickness distribution is investigated. This work contributes to improve the understanding of the impact of dissolution and precipitation on permeability and porosity modification. Using the PNM approach, multiphase flow properties and permeability-porosity relationship have been determined for different reactive flow regimes. These relationships are relevant input data to improve the quality of reservoir simulation predictions. Les roches sédimentaires présentent souvent une structure porale hétérogène qui est intrinsèquement liée à la texture de la roche d’origine et aux modifications diagénétiques subies. Ces altérations sont régies par la texture de la roche d’origine, les fluides impliqués (et les interactions rock

  12. Statistical interpretation of geochemical data

    International Nuclear Information System (INIS)

    Carambula, M.

    1990-01-01

    Statistical results have been obtained from a geochemical research from the following four aerial photographies Zapican, Carape, Las Canias, Alferez. They have been studied 3020 samples in total, to 22 chemical elements using plasma emission spectrometry methods.

  13. Contrast optimization in multiphase arterial spin labeling

    International Nuclear Information System (INIS)

    Paiva, Fernando F.; Paschoal, Andre M.; Tovar-Moll, Fernanda; Moll, Jorge

    2013-01-01

    Multiphase ASL is an effective way to overcome the regional variation of the transit time that difficult the estimation of perfusion values. However, with conventional multiple phases ASL techniques, the ASL contrast at later phases is impaired due to repeated application of excitation pulses and longitudinal relaxation making it difficult to evaluate the tissue perfusion in regions where the transit time is longer. In the present study, we show an improvement of the acquisition scheme by exploring a modulation on the flip angle of the MR acquisition to keep the ASL contrast constant over multiple phases. (author)

  14. PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan; Mills, Richard T.

    2012-04-18

    PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface processes, has been designed from the ground up to run efficiently on machines ranging from leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++ codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to manage parallel solvers, data structures and communication. Features of the code include a modular input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple realization simulations with multiple processors per realization in a seamless manner, and multiple modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently implemented in the code include homogeneous aqueous complexing reactions and heterogeneous mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption model. PFLOTRAN has demonstrated petascale performance using 2{sup 17} processor cores with over 2 billion degrees of freedom. Accomplishments achieved to date include applications to the Hanford 300 Area and modeling CO{sub 2} sequestration in deep geologic formations.

  15. Axisymmetric multiphase lattice Boltzmann method for generic equations of state

    NARCIS (Netherlands)

    Reijers, S.A.; Gelderblom, H.; Toschi, F.

    2016-01-01

    We present an axisymmetric lattice Boltzmann model based on the Kupershtokh et al. multiphase model that is capable of solving liquid–gas density ratios up to 103. Appropriate source terms are added to the lattice Boltzmann evolution equation to fully recover the axisymmetric multiphase conservation

  16. A Senior Project-Based Multiphase Motor Drive System Development

    Science.gov (United States)

    Abdel-Khalik, Ayman S.; Massoud, Ahmed M.; Ahmed, Shehab

    2016-01-01

    Adjustable-speed drives based on multiphase motors are of significant interest for safety-critical applications that necessitate wide fault-tolerant capabilities and high system reliability. Although multiphase machines are based on the same conceptual theory as three-phase machines, most undergraduate electrical machines and electric drives…

  17. Industrial applications of multi-functional, multi-phase reactors

    NARCIS (Netherlands)

    Harmsen, G.J.; Chewter, L.A.

    1999-01-01

    To reveal trends in the design and operation of multi-functional, multi-phase reactors, this paper describes, in historical sequence, three industrial applications of multi-functional, multi-phase reactors developed and operated by Shell Chemicals during the last five decades. For each case, we

  18. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    Rose, A.W.

    1977-01-01

    The processes and types of dispersion that produce anomalies in stream water, stream sediment, and ground water, and the factors that must be considered in planning and interpreting geochemical surveys are reviewed. Examples of surveys near known deposits show the types of results to be expected. Background values depend mainly on the content of U in rocks of the drainage area. In igneous rocks, U tends to increase with potassium from ultramafic rocks (0.01 ppM) to granitic rocks (1 to 5 ppM). Some alkalic rocks have unusually high contents of U (15 to 100 ppM). Uranium-rich provinces marked by igneous rocks unusually rich in U are recognized in several areas and appear to have a deep crustal or mantle origin. In western U.S., many tertiary tuffaceous rocks have a high U content. Sandstones, limestones, and many shales approximate the crustal abundance at 0.5 to 4 ppM, but black shales, phosphates, and some organic materials are notably enriched in U. Uranium is very soluble in most oxidizing waters at the earth's surface, but is precipitated by reducing agents (organic matter, H 2 S) and adsorbed by organic material and some Fe oxides. In most surface and ground waters, U correlates approximately with the total dissolved solids, conductivity, and bicarbonate concentration of the water, and with the U content of rocks it comes into contact with. Most surveys of stream water near known districts show distinct anomalies extending a few km to tens of km downstream. A complication with water is the large variability with time, up to x 50, as a result of changes in the ratio of ground water to direct runoff, and changes in rate of oxidation and leaching. Collection and analysis of water samples also pose some difficulties

  19. Two-dimensional simulation of reactive diffusion in binary systems

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Stopka, J.; Fischer, F. D.

    2014-01-01

    Roč. 95, DEC (2014), s. 309-315 ISSN 0927-0256 R&D Projects: GA ČR(CZ) GA14-24252S Institutional support: RVO:68081723 Keywords : Phase transformation * Diffusion-controlled interface migration * Reactive diffusion * Multiphase system * Intermetallic compounds Subject RIV: BJ - Thermodynamics Impact factor: 2.131, year: 2014

  20. Multiphase averaging of periodic soliton equations

    International Nuclear Information System (INIS)

    Forest, M.G.

    1979-01-01

    The multiphase averaging of periodic soliton equations is considered. Particular attention is given to the periodic sine-Gordon and Korteweg-deVries (KdV) equations. The periodic sine-Gordon equation and its associated inverse spectral theory are analyzed, including a discussion of the spectral representations of exact, N-phase sine-Gordon solutions. The emphasis is on physical characteristics of the periodic waves, with a motivation from the well-known whole-line solitons. A canonical Hamiltonian approach for the modulational theory of N-phase waves is prescribed. A concrete illustration of this averaging method is provided with the periodic sine-Gordon equation; explicit averaging results are given only for the N = 1 case, laying a foundation for a more thorough treatment of the general N-phase problem. For the KdV equation, very general results are given for multiphase averaging of the N-phase waves. The single-phase results of Whitham are extended to general N phases, and more importantly, an invariant representation in terms of Abelian differentials on a Riemann surface is provided. Several consequences of this invariant representation are deduced, including strong evidence for the Hamiltonian structure of N-phase modulational equations

  1. Multiphase forces on bend structures – critical gas fraction for transition single phase gas to multiphase flow behaviour

    NARCIS (Netherlands)

    Belfroid, S.P.C.; Nennie, E.D.; Lewis, M.

    2016-01-01

    Piping structures are generally subjected to high dynamic loading due to multiphase forces. In particular subsea structures are very vulnerable as large flexibility is required to cope for instance with thermal stresses. The forces due to multiphase flow are characterized by a broadband spectrum

  2. A mass-conserving multiphase lattice Boltzmann model for simulation of multiphase flows

    Science.gov (United States)

    Niu, Xiao-Dong; Li, You; Ma, Yi-Ren; Chen, Mu-Feng; Li, Xiang; Li, Qiao-Zhong

    2018-01-01

    In this study, a mass-conserving multiphase lattice Boltzmann (LB) model is proposed for simulating the multiphase flows. The proposed model developed in the present study is to improve the model of Shao et al. ["Free-energy-based lattice Boltzmann model for simulation of multiphase flows with density contrast," Phys. Rev. E 89, 033309 (2014)] by introducing a mass correction term in the lattice Boltzmann model for the interface. The model of Shao et al. [(the improved Zheng-Shu-Chew (Z-S-C model)] correctly considers the effect of the local density variation in momentum equation and has an obvious improvement over the Zheng-Shu-Chew (Z-S-C) model ["A lattice Boltzmann model for multiphase flows with large density ratio," J. Comput. Phys. 218(1), 353-371 (2006)] in terms of solution accuracy. However, due to the physical diffusion and numerical dissipation, the total mass of each fluid phase cannot be conserved correctly. To solve this problem, a mass correction term, which is similar to the one proposed by Wang et al. ["A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio," J. Comput. Phys. 290, 336-351 (2015)], is introduced into the lattice Boltzmann equation for the interface to compensate the mass losses or offset the mass increase. Meanwhile, to implement the wetting boundary condition and the contact angle, a geometric formulation and a local force are incorporated into the present mass-conserving LB model. The proposed model is validated by verifying the Laplace law, simulating both one and two aligned droplets splashing onto a liquid film, droplets standing on an ideal wall, droplets with different wettability splashing onto smooth wax, and bubbles rising under buoyancy. Numerical results show that the proposed model can correctly simulate multiphase flows. It was found that the mass is well-conserved in all cases considered by the model developed in the present study. The developed

  3. Geochemical computer codes. A review

    International Nuclear Information System (INIS)

    Andersson, K.

    1987-01-01

    In this report a review of available codes is performed and some code intercomparisons are also discussed. The number of codes treating natural waters (groundwater, lake water, sea water) is large. Most geochemical computer codes treat equilibrium conditions, although some codes with kinetic capability are available. A geochemical equilibrium model consists of a computer code, solving a set of equations by some numerical method and a data base, consisting of thermodynamic data required for the calculations. There are some codes which treat coupled geochemical and transport modeling. Some of these codes solve the equilibrium and transport equations simultaneously while other solve the equations separately from each other. The coupled codes require a large computer capacity and have thus as yet limited use. Three code intercomparisons have been found in literature. It may be concluded that there are many codes available for geochemical calculations but most of them require a user that us quite familiar with the code. The user also has to know the geochemical system in order to judge the reliability of the results. A high quality data base is necessary to obtain a reliable result. The best results may be expected for the major species of natural waters. For more complicated problems, including trace elements, precipitation/dissolution, adsorption, etc., the results seem to be less reliable. (With 44 refs.) (author)

  4. A coupling alternative to reactive transport simulations for long-term prediction of chemical reactions in heterogeneous CO2 storage systems

    Directory of Open Access Journals (Sweden)

    M. De Lucia

    2015-02-01

    Full Text Available Fully coupled, multi-phase reactive transport simulations of CO2 storage systems can be approximated by a simplified one-way coupling of hydrodynamics and reactive chemistry. The main characteristics of such systems, and hypotheses underlying the proposed alternative coupling, are (i that the presence of CO2 is the only driving force for chemical reactions and (ii that its migration in the reservoir is only marginally affected by immobilisation due to chemical reactions. In the simplified coupling, the exposure time to CO2 of each element of the hydrodynamic grid is estimated by non-reactive simulations and the reaction path of one single batch geochemical model is applied to each grid element during its exposure time. In heterogeneous settings, analytical scaling relationships provide the dependency of velocity and amount of reactions to porosity and gas saturation. The analysis of TOUGHREACT fully coupled reactive transport simulations of CO2 injection in saline aquifer, inspired to the Ketzin pilot site (Germany, both in homogeneous and heterogeneous settings, confirms that the reaction paths predicted by fully coupled simulations in every element of the grid show a high degree of self-similarity. A threshold value for the minimum concentration of dissolved CO2 considered chemically active is shown to mitigate the effects of the discrepancy between dissolved CO2 migration in non-reactive and fully coupled simulations. In real life, the optimal threshold value is unknown and has to be estimated, e.g. by means of 1-D or 2-D simulations, resulting in an uncertainty ultimately due to the process de-coupling. However, such uncertainty is more than acceptable given that the alternative coupling enables using grids of the order of millions of elements, profiting from much better description of heterogeneous reservoirs at a fraction of the calculation time of fully coupled models.

  5. A development of multiphase flow facility

    International Nuclear Information System (INIS)

    Ismail Mustapha; Jaafar Abdullah

    2004-01-01

    Multiphase liquid flow facility shall be enabling to transport of oil/gas/water in pipelines. In horizontal pipelines, the different flow patterns that could be observed. The flow pattern will depend mainly on the gas and liquid velocities, and gas liquid ratio. For very high liquid velocities and low gas liquid ratios, the dispersed bubble flow is observed. For low flow rates of liquid and gas, a smooth or wavy stratified flow is expected. For intermediate liquid velocities, rolling waves of liquids are formed. The rolling waves increase to the point of forming a plug flow and a slug flow. For very high gas velocities, the annular flow is observed Also include a tillable test section allowing for testing at any angle between 0 0 degree from horizontal, lowering the measurement uncertainties and increased capabilities with respect to flow rates and gas fractions. (Author)

  6. Multiphase Flow Dynamics 5 Nuclear Thermal Hydraulics

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step...

  7. Multiphase flow dynamics 5 nuclear thermal hydraulics

    CERN Document Server

    Kolev, Nikolay Ivanov

    2015-01-01

    This Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demons...

  8. Solidification in Multicomponent Multiphase Systems (SIMMS)

    Science.gov (United States)

    Rex, S.; Hecht, U.

    2005-06-01

    The multiphase microstructures that evolve during the solidification of multicomponent alloys are attracting widespread interest for industrial applications and fundamental research.Thermodynamic databases are now well-established for many alloy systems. Thermodynamic calculations provide all the required information about phase equilibria, forming an integral part of both dedicated and comprehensive microstructure models. Among the latter, phase-field modelling has emerged as the method of choice. Solidification experiments are intended to trigger model development or to serve as benchmarks for model validation. For benchmarking, microgravity conditions offer a unique opportunity for avoiding buoyancy-induced convection and buoyancy forces in bulk samples. However, diffusion and the free-energy of interfaces and its anisotropy need to be determined.The measurement of chemical diffusivities in the liquid state can equally benefit from microgravity experiments.

  9. Multiphasic MDCT in small bowel volvulus

    International Nuclear Information System (INIS)

    Feng Shiting; Chan Tao; Sun Canhui; Li Ziping; Guo Huanyi; Yang Guangqi; Peng Zhenpeng; Meng Quanfei

    2010-01-01

    Objective: Evaluate the use of MDCT with 3D CT angiography (CTA) and CT portal venography (CTPV) reconstruction for the diagnosis of small bowel volvulus (SBV). Methods: Multiphasic MDCT findings in nine patients (seven males and two females, age range 2-70) with surgically proven SBV were retrospectively reviewed. Non-contrast and double phase contrast enhanced MDCT including 3D CTA and CTPV reconstruction were performed in all the patients. Two experienced abdominal radiologists evaluated the images and defined the location, direction and degree of SBV. Results: On axial MDCT images, all cases show segmental or global dilatation of small intestine. Other findings include circumferential bowel wall thickening in eight cases, halo appearance and hyperemia in seven cases, whirl sign in six cases, beak-like appearance in six cases, closed loops in six cases and ascites in one case. CTA/CTPV showed abnormal courses involving main trunks of superior mesenteric artery (SMA) and superior mesenteric vein (SMV) in seven cases, with or without distortion of their tributaries. Normal course of SMA but abnormal course of SMV was seen in the other two cases. Of all the nine cases, whirl sign was seen in six cases and barber's pole sign in five cases. Dilated SMV was observed in eight cases and abrupt termination of SMA was found in one case. Compared with surgical findings, the location, direction and degree of SBV were correctly estimated in all cases based on CTA/CTPV. Conclusion: Multiphasic MDCT with CTA/CTPV reconstruction can play an important role in the diagnosis of SBV. The location, direction and degree of SBV can all be defined preoperatively using this method.

  10. Multiphasic MDCT in small bowel volvulus

    Energy Technology Data Exchange (ETDEWEB)

    Feng Shiting, E-mail: fst1977@163.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Chan Tao, E-mail: taochan@hku.hk [Department of Diagnostic Radiology, University of Hong Kong, Room 406, Block K, Queen Mary Hospital (Hong Kong); Sun Canhui, E-mail: canhuisun@sina.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Li Ziping, E-mail: liziping163@tom.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Guo Huanyi, E-mail: guohuanyi@163.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Yang Guangqi, E-mail: shwy03@126.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Peng Zhenpeng, E-mail: ppzhen@21cn.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Meng Quanfei, E-mail: mzycoco@gmail.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China)

    2010-11-15

    Objective: Evaluate the use of MDCT with 3D CT angiography (CTA) and CT portal venography (CTPV) reconstruction for the diagnosis of small bowel volvulus (SBV). Methods: Multiphasic MDCT findings in nine patients (seven males and two females, age range 2-70) with surgically proven SBV were retrospectively reviewed. Non-contrast and double phase contrast enhanced MDCT including 3D CTA and CTPV reconstruction were performed in all the patients. Two experienced abdominal radiologists evaluated the images and defined the location, direction and degree of SBV. Results: On axial MDCT images, all cases show segmental or global dilatation of small intestine. Other findings include circumferential bowel wall thickening in eight cases, halo appearance and hyperemia in seven cases, whirl sign in six cases, beak-like appearance in six cases, closed loops in six cases and ascites in one case. CTA/CTPV showed abnormal courses involving main trunks of superior mesenteric artery (SMA) and superior mesenteric vein (SMV) in seven cases, with or without distortion of their tributaries. Normal course of SMA but abnormal course of SMV was seen in the other two cases. Of all the nine cases, whirl sign was seen in six cases and barber's pole sign in five cases. Dilated SMV was observed in eight cases and abrupt termination of SMA was found in one case. Compared with surgical findings, the location, direction and degree of SBV were correctly estimated in all cases based on CTA/CTPV. Conclusion: Multiphasic MDCT with CTA/CTPV reconstruction can play an important role in the diagnosis of SBV. The location, direction and degree of SBV can all be defined preoperatively using this method.

  11. Multiphase Flow and Fluidization Continuum and Kinetic Theory Descriptions

    CERN Document Server

    Gidaspow, Dimitri

    1994-01-01

    Useful as a reference for engineers in industry and as an advanced level text for graduate engineering students, Multiphase Flow and Fluidization takes the reader beyond the theoretical to demonstrate how multiphase flow equations can be used to provide applied, practical, predictive solutions to industrial fluidization problems. Written to help advance progress in the emerging science of multiphase flow, this book begins with the development of the conservation laws and moves on through kinetic theory, clarifying many physical concepts (such as particulate viscosity and solids pressure) and i

  12. 2nd International Conference on Multiphase Flow - ICMF '95

    CERN Document Server

    Fukano, T; Bataille, Jean

    1995-01-01

    There is increasing world-wide interest in obtaining an understanding of various multiphase flow phenomena and problems in terms of a common language of multiphase flow. This volume contains state-of-the-art papers which have been contributed from all over the world by experts working on all aspects of multiphase flows. The volume also highlights international technology-sharing in the fields of energy, environment and public health, in order to create a brighter and sustainable future for man and for all life in the next century. It is intended that this volume will serve as a major source of

  13. Geochemical and mineralogical characteristics of Lithomargic clay

    African Journals Online (AJOL)

    Administrator

    Geochemical and mineralogical characteristics of Lithomargic clay. GEOCHEMICAL AND .... tries, as filling material in the pulp and paper, toothpaste and paint industries as well ..... tions very vital to human health and other ac- tivities of man.

  14. NOAA and MMS Marine Minerals Geochemical Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Minerals Geochemical Database was created by NGDC as a part of a project to construct a comprehensive computerized bibliography and geochemical database...

  15. Oak Ridge Geochemical Reconnaissance Program

    International Nuclear Information System (INIS)

    Arendt, J.W.

    1977-03-01

    The Oak Ridge reconnaissance program is responsible for the geochemical survey in a 12-state area covering Texas, Oklahoma, Kansas, Nebraska, South Dakota, North Dakota, Minnesota, Wisconsin, Michigan, Iowa, Indiana, and Illinois as part of the National Uranium Resource Evaluation Program. The program concept is outlined and the planning and organization of the program is discussed

  16. Granite-repository - geochemical environment

    International Nuclear Information System (INIS)

    1979-04-01

    Some geochemical data of importance for a radioactive waste repository in hard rock are reviewed. The ground water composition at depth is assessed. The ground water chemistry in the vicinity of uranium ores is discussed. The redox system in Swedish bedrock is described. Influences of extreme climatic changes and of repository mining and construction are also evaluated

  17. Multiphase anodic layers and prospects of their application

    International Nuclear Information System (INIS)

    Rudnev, V.S.

    2008-01-01

    Data on the phase composition of multiphase layers prepared on valve metals (aluminium, titanium, and their alloys) by the plasma-electrochemical oxidation and deposition (PEOD) from aqueous electrolytes containing iso- and heteropolyoxoanions, polyphosphate and fluoride metal complexes (M=Eu, Y, Hf, Nb, Zr, W), as well as electrolytes evolving solid precipitates, is summarized. Possible application fields of the metal/multiphase PEOD surface structure compositions are considered [ru

  18. Fundamentals of Turbulent and Multi-Phase Combustion

    CERN Document Server

    Kuo, Kenneth Kuan-yun

    2012-01-01

    Detailed coverage of advanced combustion topics from the author of Principles of Combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form-until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence

  19. Constitutive relationships and models in continuum theories of multiphase flows

    International Nuclear Information System (INIS)

    Decker, R.

    1989-09-01

    In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included

  20. Uncertainty Quantification of Multi-Phase Closures

    Energy Technology Data Exchange (ETDEWEB)

    Nadiga, Balasubramanya T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baglietto, Emilio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-10-27

    In the ensemble-averaged dispersed phase formulation used for CFD of multiphase ows in nuclear reactor thermohydraulics, closures of interphase transfer of mass, momentum, and energy constitute, by far, the biggest source of error and uncertainty. Reliable estimators of this source of error and uncertainty are currently non-existent. Here, we report on how modern Validation and Uncertainty Quanti cation (VUQ) techniques can be leveraged to not only quantify such errors and uncertainties, but also to uncover (unintended) interactions between closures of di erent phenomena. As such this approach serves as a valuable aide in the research and development of multiphase closures. The joint modeling of lift, drag, wall lubrication, and turbulent dispersion|forces that lead to tranfer of momentum between the liquid and gas phases|is examined in the frame- work of validation of the adiabatic but turbulent experiments of Liu and Banko , 1993. An extensive calibration study is undertaken with a popular combination of closure relations and the popular k-ϵ turbulence model in a Bayesian framework. When a wide range of super cial liquid and gas velocities and void fractions is considered, it is found that this set of closures can be validated against the experimental data only by allowing large variations in the coe cients associated with the closures. We argue that such an extent of variation is a measure of uncertainty induced by the chosen set of closures. We also nd that while mean uid velocity and void fraction pro les are properly t, uctuating uid velocity may or may not be properly t. This aspect needs to be investigated further. The popular set of closures considered contains ad-hoc components and are undesirable from a predictive modeling point of view. Consequently, we next consider improvements that are being developed by the MIT group under CASL and which remove the ad-hoc elements. We use non-intrusive methodologies for sensitivity analysis and calibration (using

  1. FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)

    Science.gov (United States)

    Wu, Yulin

    2015-01-01

    The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and

  2. International Symposium of Cavitation and Multiphase Flow (ISCM 2014)

    International Nuclear Information System (INIS)

    Wu, Yulin

    2015-01-01

    The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and

  3. Modeling and simulation of reactive flows

    CERN Document Server

    Bortoli, De AL; Pereira, Felipe

    2015-01-01

    Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and va

  4. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment.

    Science.gov (United States)

    Singh, Rajveer; Sivaguru, Mayandi; Fried, Glenn A; Fouke, Bruce W; Sanford, Robert A; Carrera, Martin; Werth, Charles J

    2017-09-01

    Physical, chemical, and biological interactions between groundwater and sedimentary rock directly control the fundamental subsurface properties such as porosity, permeability, and flow. This is true for a variety of subsurface scenarios, ranging from shallow groundwater aquifers to deeply buried hydrocarbon reservoirs. Microfluidic flow cells are now commonly being used to study these processes at the pore scale in simplified pore structures meant to mimic subsurface reservoirs. However, these micromodels are typically fabricated from glass, silicon, or polydimethylsiloxane (PDMS), and are therefore incapable of replicating the geochemical reactivity and complex three-dimensional pore networks present in subsurface lithologies. To address these limitations, we developed a new microfluidic experimental test bed, herein called the Real Rock-Microfluidic Flow Cell (RR-MFC). A porous 500μm-thick real rock sample of the Clair Group sandstone from a subsurface hydrocarbon reservoir of the North Sea was prepared and mounted inside a PDMS microfluidic channel, creating a dynamic flow-through experimental platform for real-time tracking of subsurface reactive transport. Transmitted and reflected microscopy, cathodoluminescence microscopy, Raman spectroscopy, and confocal laser microscopy techniques were used to (1) determine the mineralogy, geochemistry, and pore networks within the sandstone inserted in the RR-MFC, (2) analyze non-reactive tracer breakthrough in two- and (depth-limited) three-dimensions, and (3) characterize multiphase flow. The RR-MFC is the first microfluidic experimental platform that allows direct visualization of flow and transport in the pore space of a real subsurface reservoir rock sample, and holds potential to advance our understandings of reactive transport and other subsurface processes relevant to pollutant transport and cleanup in groundwater, as well as energy recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Discrete modeling considerations in multiphase fluid dynamics

    International Nuclear Information System (INIS)

    Ransom, V.H.; Ramshaw, J.D.

    1988-01-01

    The modeling of multiphase flows play a fundamental role in light water reactor safety. The main ingredients in our discrete modeling Weltanschauung are the following considerations: (1) Any physical model must be cast into discrete form for a digital computer. (2) The usual approach of formulating models in differential form and then discretizing them is potentially hazardous. It may be preferable to formulate the model in discrete terms from the outset. (3) Computer time and storage constraints limit the resolution that can be employed in practical calculations. These limits effectively define the physical phenomena, length scales, and time scales which cannot be directly represented in the calculation and therefore must be modeled. This information should be injected into the model formulation process at an early stage. (4) Practical resolution limits are generally so coarse that traditional convergence and truncation-error analyses become irrelevant. (5) A discrete model constitutes a reduced description of a physical system, from which fine-scale details are eliminated. This elimination creates a statistical closure problem. Methods from statistical physics may therefore be useful in the formulation of discrete models. In the present paper we elaborate on these themes and illustrate them with simple examples. 48 refs

  6. Quantitative tomographic measurements of opaque multiphase flows

    Energy Technology Data Exchange (ETDEWEB)

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O' HERN,TIMOTHY J.; CECCIO,STEVEN L.

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

  7. Multiphase flow metering: 4 years on

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, G.; Hewitt, G.F.; Alimonti, C.; Harrison, B.

    2005-07-01

    Since the authors' last review in 2001 [1], the use of Multiphase Flow Metering (MFM) within the oil and gas industry continues to grow apace, being more popular in some parts of the world than others. Since the early 1990's, when the first commercial meters started to appear, there have been more than 1,600 field applications of MFM for field allocation, production optimisation and mobile well testing. As the authors predicted, wet gas metering technology has improved to such an extent that its use has rapidly increased worldwide. A ''who's who'' of the MFM sector is provided, which highlights the mergers in the sector and gives an insight into the meters and measurement principles available today. Cost estimates, potential benefits and reliability in the field of the current MFM technologies are revisited and brought up to date. Several measurements technologies have resurfaced, such as passive acoustic energy patterns, infrared wavelengths, Nuclear Magnetic Resonance (NMR) and Electrical Capacitance Tomography (ECT), and they are becoming commercial. The concept of ''virtual metering'', integrated with ''classical MFM'', is now widely accepted. However, sometimes the principles of the MFM measurements themselves are forgotten, submerged in the sales and marketing hype. (author) (tk)

  8. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, Mark Jay [University of Michigan

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  9. Predictive geophysics: geochemical simulations to geophysical targets

    Science.gov (United States)

    Chopping, R. G.; Cleverley, J.

    2017-12-01

    With an increasing focus on deep exploration for covered targets, new methods are required to target mineral systems under cover. Geophysical responses are driven by physical property contrasts; for example, density contrasts provide a gravity signal, acoustic impedance contrasts provide a seismic reflection signal. In turn, the physical properties for basement, crystalline rocks which host the vast majority of mineral systems are determined almost wholly by the mineralogy of the rocks in question. Mineral systems, through the transport of heat and reactive fluids, will serve to modify the physical properties of country rock as they chemically alter the hosting strata. To understand these changes, we have performed 2D reactive transport modelling that simulates the formation of Archean gold deposits of the Yilgarn Craton, Western Australia. From this, we derive a model of mineralogy that we can use to predict the density, magnetic susceptibility and seismic reflection changes associated with ore formation. It is then possible to predict the gravity, magnetic and seismic reflection responses associated with these deposits. Scenario mapping, such as testing the ability to resolve buried ore bodies or the geophysical survey spacing required to resolve the mineral system, can be performed to produce geophysical targets from these geochemical simulations. We find that there is a gravity response of around 9% of the unaltered response for deposits even buried by 1km of cover, and there is a magnetic spike associated with proximal alteration of the ore system. Finally, seismic reflection response is mostly characterised by additional reflections along faults that plumb the alteration system.

  10. A reactive transport investigation of a seawater intrusion experiment in a shallow aquifer, Skansehage Denmark

    DEFF Research Database (Denmark)

    Christensen, Flemming Damgaard; Engesgaard, Peter Knudegaard; Kipp, K.L.

    2001-01-01

    Previous investigations on seawater intrusion have mainly focused on either the physical density flow system with transport of a single non-reactive species or focused on the geochemical aspects neglecting density effects. This study focuses on both the geochemical and physical aspects of seawate...

  11. Workshop on Scientific Issues in Multiphase Flow

    Energy Technology Data Exchange (ETDEWEB)

    Hanratty, Thomas J. [Univ. of Illinois, Urbana, IL (United States)

    2003-01-02

    This report outlines scientific issues whose resolution will help advance and define the field of multiphase flow. It presents the findings of four study groups and of a workshop sponsored by the Program on Engineering Physics of the Department of Energy. The reason why multiphase flows are much more difficult to analyze than single phase flows is that the phases assume a large number of complicated configurations. Therefore, it should not be surprising that the understanding of why the phases configure in a certain way is the principal scientific issue. Research is needed which identifies the microphysics controlling the organization of the phases, which develops physical models for the resultant multi-scale interactions and which tests their validity in integrative experiments/theories that look at the behavior of a system. New experimental techniques and recently developed direct numerical simulations will play important roles in this endeavor. In gas-liquid flows a top priority is to develop an understanding of why the liquid phase in quasi fully-developed pipe flow changes from one configuration to another. Mixing flows offer a more complicated situation in which several patterns can exist at the same time. They introduce new physical challenges. A second priority is to provide a quantitative description of the phase distribution for selected fully-developed flows and for simple mixing flows (that could include heat transfer and phase change). Microphysical problems of interest are identified – including the coupling of molecular and macroscopic behavior that can be observed in many situations and the formation/destruction of interfaces in the coalescence/breakup of drops and bubbles. Solid-fluid flows offer a simpler system in that interfaces are not changing. However, a variety of patterns exist, that depend on the properties of the particles, their concentration and the Reynolds number characterizing the relative velocity. A top priority is the

  12. Viscous and gravitational fingering in multiphase compositional and compressible flow

    Science.gov (United States)

    Moortgat, Joachim

    2016-03-01

    Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.

  13. Methods for compressible multiphase flows and their applications

    Science.gov (United States)

    Kim, H.; Choe, Y.; Kim, H.; Min, D.; Kim, C.

    2018-06-01

    This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.

  14. NO2-initiated multiphase oxidation of SO2 by O2 on CaCO3 particles

    Science.gov (United States)

    Yu, Ting; Zhao, Defeng; Song, Xiaojuan; Zhu, Tong

    2018-05-01

    The reaction of SO2 with NO2 on the surface of aerosol particles has been suggested to be important in sulfate formation during severe air pollution episodes in China. However, we found that the direct oxidation of SO2 by NO2 was slow and might not be the main reason for sulfate formation in ambient air. In this study, we investigated the multiphase reaction of SO2 with an O2 / NO2 mixture on single CaCO3 particles using Micro-Raman spectroscopy. The reaction converted the CaCO3 particle to a Ca(NO3)2 droplet, with CaSO4 ⚫ 2H2O solid particles embedded in it, which constituted a significant fraction of the droplet volume at the end of the reaction. The reactive uptake coefficient of SO2 for sulfate formation was on the order of 10-5, which was higher than that for the multiphase reaction of SO2 directly with NO2 by 2-3 orders of magnitude. According to our observations and the literature, we found that in the multiphase reaction of SO2 with the O2 / NO2 mixture, O2 was the main oxidant of SO2 and was necessary for radical chain propagation. NO2 acted as the initiator of radical formation, but not as the main oxidant. The synergy of NO2 and O2 resulted in much faster sulfate formation than the sum of the reaction rates with NO2 and with O2 alone. We estimated that the multiphase oxidation of SO2 by O2 initiated by NO2 could be an important source of sulfate and a sink of SO2, based on the calculated lifetime of SO2 regarding the loss through the multiphase reaction versus the loss through the gas-phase reaction with OH radicals. Parameterization of the reactive uptake coefficient of the reaction observed in our laboratory for further model simulation is needed, as well as an integrated assessment based on field observations, laboratory study results, and model simulations to evaluate the importance of the reaction in ambient air during severe air pollution episodes, especially in China.

  15. Hysteresis in multiphase microfluidics at a T-junction.

    Science.gov (United States)

    Zagnoni, Michele; Anderson, Jamie; Cooper, Jonathan M

    2010-06-15

    Multiphase microfluidics offer a wide range of functionalities in the fields of fluid dynamics, biology, particle synthesis, and, more recently, also in logical computation. In this article, we describe the hysteresis of immiscible, multiphase flow obtained in hydrophilic, microfluidic systems at a T-junction. Stable and unstable state behaviors, in the form of segmented and parallel flow patterns of oil and water, were reliably produced, depending upon the history of the flow rates applied to the phases. The transition mechanisms between the two states were analyzed both experimentally and using numerical simulations, describing how the physical and fluid dynamic parameters influenced the hysteretic behavior of the flow. The characteristics of these multiphase systems render them suitable to be used as pressure comparators and also for the implementation of microfluidic logic operations.

  16. A Cell-Centered Multiphase ALE Scheme With Structural Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Timothy Alan [Univ. of California, Davis, CA (United States)

    2012-04-16

    A novel computational scheme has been developed for simulating compressible multiphase flows interacting with solid structures. The multiphase fluid is computed using a Godunov-type finite-volume method. This has been extended to allow computations on moving meshes using a direct arbitrary-Eulerian- Lagrangian (ALE) scheme. The method has been implemented within a Lagrangian hydrocode, which allows modeling the interaction with Lagrangian structural regions. Although the above scheme is general enough for use on many applications, the ultimate goal of the research is the simulation of heterogeneous energetic material, such as explosives or propellants. The method is powerful enough for application to all stages of the problem, including the initial burning of the material, the propagation of blast waves, and interaction with surrounding structures. The method has been tested on a number of canonical multiphase tests as well as fluid-structure interaction problems.

  17. Electrification of particulates in industrial and natural multiphase flows

    CERN Document Server

    Gu, Zhaolin

    2017-01-01

    This book introduces comprehensive fundamentals, numerical simulations and experimental methods of electrification of particulates entrained multiphase flows. The electrifications of two particulate forms, liquid droplets and solid particles, are firstly described together. Liquid droplets can be charged under preset or associated electric fields, while solid particles can be charged through contact. Different charging ways in gas (liquid)-liquid or gas-solid multiphase flows are summarized, including ones that are beneficial to industrial processes, such as electrostatic precipitation, electrostatic spraying, and electrostatic separation, etc., ones harmful for shipping and powder industry, and ones occurring in natural phenomenon, such as wind-blown sand and thunderstorm. This book offers theoretical references to the control and utilization of the charging or charged particulates in multiphase flows as well.

  18. Integration of remote sensing, geochemical and field data in the Qena-Safaga shear zone: Implications for structural evolution of the Eastern Desert, Egypt

    Science.gov (United States)

    El-Din, Gamal Kamal; Abdelkareem, Mohamed

    2018-05-01

    The Qena-Safaga shear zone (QSSZ) represents a significant structural characteristic in the Eastern Desert of Egypt. Remote Sensing, field and geochemical data were utilized in the present study. The results revealed that the QSSZ dominated by metamorphic complex (MC) that intruded by syn-tectonic granitoids. The low angle thrust fault brings calc-alkaline metavolcanics to overlie MC and its association. Subsequently, the area is dissected by strike-slip faults and the small elongated basins of Hammamat sediments of Precambrian were accumulated. The MC intruded by late-to post-tectonic granites (LPG) and Dokhan Volcanics which comprise felsic varieties forming distinctive columnar joints. Remote sensing analysis and field data revealed that major sub-vertical conspicuous strike-slip faults (SSF) including sinistral NW-SE and dextral ca. E-W shaped the study area. Various shear zones that accompanying the SSF are running NW-SE, NE-SW, E-W, N-S and ENE-WSW. The obtained shear sense presented a multiphase of deformation on each trend. i.e., the predominant NW-SE strike-slip fault trend started with sinistral displacement and is reactivated during later events to be right (dextral) strike slip cutting with dextral displacement the E-W trending faults; while NE-SW movements are cut by both the N-S and NNW - SSE trends. Remote sensing data revealed that the NW-SE direction that dominated the area is associated with hydrothermal alteration processes. This allowed modifying the major and trace elements of the highly deformed rocks that showed depletion in SiO2 and enrichments in Fe2O3, MnO, Al2O3, TiO2, Na2O, K2O, Cu, Zn and Pb contents. The geochemical signatures of major and trace elements revealed two types of granites including I-type calc-alkaline granites (late-to post-tectonic) that formed during an extensional regime. However, syn-tectonic granitoids are related to subduction-related environment.

  19. Multiphase flow models for hydraulic fracturing technology

    Science.gov (United States)

    Osiptsov, Andrei A.

    2017-10-01

    drift-flux approaches. The derivation of the drift-flux model from conservation olaws is criticall revisited in order to define the list of underlying assumptions and to mark the applicability margins of the model. All these fundamental problems share the same technological application (hydraulic fracturing) and the same method of research, namely, the multi-fluid approach to multiphase flow modeling and the consistent use of asymptotic methods. Multi-fluid models are then discussed in comparison with semi-empirical (often postulated) models widely used in the industry.

  20. Direct numerical simulations of gas-liquid multiphase flows

    CERN Document Server

    Tryggvason, Grétar; Zaleski, Stéphane

    2011-01-01

    Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and

  1. Recent developments in biocatalysis in multiphasic ionic liquid reaction systems.

    Science.gov (United States)

    Meyer, Lars-Erik; von Langermann, Jan; Kragl, Udo

    2018-06-01

    Ionic liquids are well known and frequently used 'designer solvents' for biocatalytic reactions. This review highlights recent achievements in the field of multiphasic ionic liquid-based reaction concepts. It covers classical biphasic systems including supported ionic liquid phases, thermo-regulated multi-component solvent systems (TMS) and polymerized ionic liquids. These powerful concepts combine unique reaction conditions with a high potential for future applications on a laboratory and industrial scale. The presence of a multiphasic system simplifies downstream processing due to the distribution of the catalyst and reactants in different phases.

  2. CFD Modeling of a Multiphase Gravity Separator Vessel

    KAUST Repository

    Narayan, Gautham

    2017-05-23

    The poster highlights a CFD study that incorporates a combined Eulerian multi-fluid multiphase and a Population Balance Model (PBM) to study the flow inside a typical multiphase gravity separator vessel (GSV) found in oil and gas industry. The simulations were performed using Ansys Fluent CFD package running on KAUST supercomputer, Shaheen. Also, a highlight of a scalability study is presented. The effect of I/O bottlenecks and using Hierarchical Data Format (HDF5) for collective and independent parallel reading of case file is presented. This work is an outcome of a research collaboration on an Aramco project on Shaheen.

  3. CFD Modeling of a Multiphase Gravity Separator Vessel

    KAUST Repository

    Narayan, Gautham; Khurram, Rooh Ul Amin; Elsaadawy, Ehab

    2017-01-01

    The poster highlights a CFD study that incorporates a combined Eulerian multi-fluid multiphase and a Population Balance Model (PBM) to study the flow inside a typical multiphase gravity separator vessel (GSV) found in oil and gas industry. The simulations were performed using Ansys Fluent CFD package running on KAUST supercomputer, Shaheen. Also, a highlight of a scalability study is presented. The effect of I/O bottlenecks and using Hierarchical Data Format (HDF5) for collective and independent parallel reading of case file is presented. This work is an outcome of a research collaboration on an Aramco project on Shaheen.

  4. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    Energy Technology Data Exchange (ETDEWEB)

    Cem Sarica; Holden Zhang

    2006-05-31

    The developments of oil and gas fields in deep waters (5000 ft and more) will become more common in the future. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas, oil and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of hydrocarbon recovery from design to operation. Recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications, including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is crucial for any multiphase separation technique, either at topside, seabed or bottom-hole, to know inlet conditions such as flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. Therefore, the development of a new generation of multiphase flow predictive tools is needed. The overall objective of the proposed study is to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). In the current multiphase modeling approach, flow pattern and flow behavior (pressure gradient and phase fractions) prediction modeling are separated. Thus, different models based on different physics are employed, causing inaccuracies and discontinuities. Moreover, oil and water are treated as a pseudo single phase, ignoring the distinct characteristics of both oil and water, and often resulting in inaccurate design that leads to operational problems. In this study, a new model is being developed through a theoretical and experimental study employing a revolutionary approach. The

  5. Application of neutron radiography to visualization of multiphase flows

    International Nuclear Information System (INIS)

    Takenaka, N.; Fujii, T.; Nishizaki, K.; Asano, H.; Ono, A.; Sonoda, K.; Akagawa, K.

    1990-01-01

    Visualizations by real-time neutron radiography are demonstrated of various flow patterns of nitrogen gas-water two-phase flow in a stainless-steel tube, water inverted annular flow in a stainless-steel tube, flashing flow in an aluminium nozzle and fluidized bed in aluminium tube and vessels. Photographs every 1/60 s are presented by an image processing method to show the dynamic behaviours of the various flow patterns. It is shown that this visualization method can be applied efficiently to multiphase flow researches and will be applicable to multiphase flows in industrial machines. (author)

  6. Multiphase Return Trajectory Optimization Based on Hybrid Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2016-01-01

    Full Text Available A hybrid trajectory optimization method consisting of Gauss pseudospectral method (GPM and natural computation algorithm has been developed and utilized to solve multiphase return trajectory optimization problem, where a phase is defined as a subinterval in which the right-hand side of the differential equation is continuous. GPM converts the optimal control problem to a nonlinear programming problem (NLP, which helps to improve calculation accuracy and speed of natural computation algorithm. Through numerical simulations, it is found that the multiphase optimal control problem could be solved perfectly.

  7. Status report on geochemical modelling

    International Nuclear Information System (INIS)

    Read, D.

    1991-12-01

    This report describes the findings of a review undertaken on behalf of the project management group of the programme 'Endlagersicherheit in der Nachbetriebsphase' based at GSF-IfT (Forschungszentrum fuer Umwelt und Gesundheit - Institut fuer Tieflagerung) to establish the current status of research into the simulation of geochemical processes relevant to radiological assessment. The review is intended to contribute to Stage 1 of a strategy formulated to enhance the use of geochemical models in Germany. Emphasis has been placed on processes deemed to be of greatest relevance to performance assessment for a HLW-repository in a salt dome principally, speciation-solubility in high salinity solutions, complexation by natural organics and generation-transport of colloids. For each of these and other topics covered, a summary is given of fundamental concepts, theoretical representations and their limitations, highlighting, where appropriate, the advantages and disadvantages of alternative approaches. The availability of data to quantify any given representation is addressed, taking into account the need for information at elevated temperatures and pressures. Mass transfer is considered in terms of aqueous, particulate and gas-mediated transport, respectively. (orig.) [de

  8. Reactive Arthritis

    Directory of Open Access Journals (Sweden)

    Eren Erken

    2013-06-01

    Full Text Available Reactive arthritis is an acute, sterile, non-suppurative and inflammatory arthropaty which has occured as a result of an infectious processes, mostly after gastrointestinal and genitourinary tract infections. Reiter syndrome is a frequent type of reactive arthritis. Both reactive arthritis and Reiter syndrome belong to the group of seronegative spondyloarthropathies, associated with HLA-B27 positivity and characterized by ongoing inflammation after an infectious episode. The classical triad of Reiter syndrome is defined as arthritis, conjuctivitis and urethritis and is seen only in one third of patients with Reiter syndrome. Recently, seronegative asymmetric arthritis and typical extraarticular involvement are thought to be adequate for the diagnosis. However, there is no established criteria for the diagnosis of reactive arthritis and the number of randomized and controlled studies about the therapy is not enough. [Archives Medical Review Journal 2013; 22(3.000: 283-299

  9. TAPIR--Finnish national geochemical baseline database.

    Science.gov (United States)

    Jarva, Jaana; Tarvainen, Timo; Reinikainen, Jussi; Eklund, Mikael

    2010-09-15

    In Finland, a Government Decree on the Assessment of Soil Contamination and Remediation Needs has generated a need for reliable and readily accessible data on geochemical baseline concentrations in Finnish soils. According to the Decree, baseline concentrations, referring both to the natural geological background concentrations and the diffuse anthropogenic input of substances, shall be taken into account in the soil contamination assessment process. This baseline information is provided in a national geochemical baseline database, TAPIR, that is publicly available via the Internet. Geochemical provinces with elevated baseline concentrations were delineated to provide regional geochemical baseline values. The nationwide geochemical datasets were used to divide Finland into geochemical provinces. Several metals (Co, Cr, Cu, Ni, V, and Zn) showed anomalous concentrations in seven regions that were defined as metal provinces. Arsenic did not follow a similar distribution to any other elements, and four arsenic provinces were separately determined. Nationwide geochemical datasets were not available for some other important elements such as Cd and Pb. Although these elements are included in the TAPIR system, their distribution does not necessarily follow the ones pre-defined for metal and arsenic provinces. Regional geochemical baseline values, presented as upper limit of geochemical variation within the region, can be used as trigger values to assess potential soil contamination. Baseline values have also been used to determine upper and lower guideline values that must be taken into account as a tool in basic risk assessment. If regional geochemical baseline values are available, the national guideline values prescribed in the Decree based on ecological risks can be modified accordingly. The national geochemical baseline database provides scientifically sound, easily accessible and generally accepted information on the baseline values, and it can be used in various

  10. REDUCING UNCERTAINTIES IN MODEL PREDICTIONS VIA HISTORY MATCHING OF CO2 MIGRATION AND REACTIVE TRANSPORT MODELING OF CO2 FATE AT THE SLEIPNER PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chen

    2015-03-31

    An important question for the Carbon Capture, Storage, and Utility program is “can we adequately predict the CO2 plume migration?” For tracking CO2 plume development, the Sleipner project in the Norwegian North Sea provides more time-lapse seismic monitoring data than any other sites, but significant uncertainties still exist for some of the reservoir parameters. In Part I, we assessed model uncertainties by applying two multi-phase compositional simulators to the Sleipner Benchmark model for the uppermost layer (Layer 9) of the Utsira Sand and calibrated our model against the time-lapsed seismic monitoring data for the site from 1999 to 2010. Approximate match with the observed plume was achieved by introducing lateral permeability anisotropy, adding CH4 into the CO2 stream, and adjusting the reservoir temperatures. Model-predicted gas saturation, CO2 accumulation thickness, and CO2 solubility in brine—none were used as calibration metrics—were all comparable with the interpretations of the seismic data in the literature. In Part II & III, we evaluated the uncertainties of predicted long-term CO2 fate up to 10,000 years, due to uncertain reaction kinetics. Under four scenarios of the kinetic rate laws, the temporal and spatial evolution of CO2 partitioning into the four trapping mechanisms (hydrodynamic/structural, solubility, residual/capillary, and mineral) was simulated with ToughReact, taking into account the CO2-brine-rock reactions and the multi-phase reactive flow and mass transport. Modeling results show that different rate laws for mineral dissolution and precipitation reactions resulted in different predicted amounts of trapped CO2 by carbonate minerals, with scenarios of the conventional linear rate law for feldspar dissolution having twice as much mineral trapping (21% of the injected CO2) as scenarios with a Burch-type or Alekseyev et al.–type rate law for feldspar dissolution (11%). So far, most reactive transport modeling (RTM) studies for

  11. Coupled geochemical and solute transport code development

    International Nuclear Information System (INIS)

    Morrey, J.R.; Hostetler, C.J.

    1985-01-01

    A number of coupled geochemical hydrologic codes have been reported in the literature. Some of these codes have directly coupled the source-sink term to the solute transport equation. The current consensus seems to be that directly coupling hydrologic transport and chemical models through a series of interdependent differential equations is not feasible for multicomponent problems with complex geochemical processes (e.g., precipitation/dissolution reactions). A two-step process appears to be the required method of coupling codes for problems where a large suite of chemical reactions must be monitored. Two-step structure requires that the source-sink term in the transport equation is supplied by a geochemical code rather than by an analytical expression. We have developed a one-dimensional two-step coupled model designed to calculate relatively complex geochemical equilibria (CTM1D). Our geochemical module implements a Newton-Raphson algorithm to solve heterogeneous geochemical equilibria, involving up to 40 chemical components and 400 aqueous species. The geochemical module was designed to be efficient and compact. A revised version of the MINTEQ Code is used as a parent geochemical code

  12. Proceedings of the workshop on geochemical modeling

    International Nuclear Information System (INIS)

    1986-01-01

    The following collection of papers was presented at a workshop on geochemical modeling that was sponsored by the Office of Civilian Radioactive Waste Management Program at the Lawrence Livermore National Laboratory (LLNL). The LLNL Waste Management Program sponsored this conference based on their belief that geochemical modeling is particularly important to the radioactive waste disposal project because of the need to predict the consequences of long-term water-rock interactions at the proposed repository site. The papers included in this volume represent a subset of the papers presented at the Fallen Leaf Lake Conference and cover a broad spectrum of detail and breadth in a subject that reflects the diverse research interests of the conference participants. These papers provide an insightful look into the current status of geochemical modeling and illustrate how various geochemical modeling codes have been applied to problems of geochemical interest. The emphasis of these papers includes traditional geochemical modeling studies of individual geochemical systems, the mathematical and theoretical development and refinement of new modeling capabilities, and enhancements of data bases on which the computations are based. The papers in this proceedings volume have been organized into the following four areas: Geochemical Model Development, Hydrothermal and Geothermal Systems, Sedimentary and Low Temperature Environments, and Data Base Development. The participants of this symposium and a complete list of the talks presented are listed in the appendices

  13. Proceedings of the workshop on geochemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The following collection of papers was presented at a workshop on geochemical modeling that was sponsored by the Office of Civilian Radioactive Waste Management Program at the Lawrence Livermore National Laboratory (LLNL). The LLNL Waste Management Program sponsored this conference based on their belief that geochemical modeling is particularly important to the radioactive waste disposal project because of the need to predict the consequences of long-term water-rock interactions at the proposed repository site. The papers included in this volume represent a subset of the papers presented at the Fallen Leaf Lake Conference and cover a broad spectrum of detail and breadth in a subject that reflects the diverse research interests of the conference participants. These papers provide an insightful look into the current status of geochemical modeling and illustrate how various geochemical modeling codes have been applied to problems of geochemical interest. The emphasis of these papers includes traditional geochemical modeling studies of individual geochemical systems, the mathematical and theoretical development and refinement of new modeling capabilities, and enhancements of data bases on which the computations are based. The papers in this proceedings volume have been organized into the following four areas: Geochemical Model Development, Hydrothermal and Geothermal Systems, Sedimentary and Low Temperature Environments, and Data Base Development. The participants of this symposium and a complete list of the talks presented are listed in the appendices.

  14. Geochemical prospecting for uranium and thorium deposits

    International Nuclear Information System (INIS)

    Boyle, R.W.

    1980-01-01

    A brief review of analytical geochemical prospecting methods for uranium and thorium is given excluding radiometric techniques, except those utilized in the determination of radon. The indicator (pathfinder) elements useful in geochemical surveys are listed for each of the types of known uranium and thorium deposits; this is followed by sections on analytical geochemical surveys based on rocks (lithochemical surveys), unconsolidated materials (pedochemical surveys), natural waters and sediments (hydrochemical surveys), biological materials (biogeochemical surveys) and gases (atmochemical surveys). All of the analytical geochemical methods are applicable in prospecting for thorium and uranium, particularly where radiometric methods fail due to attenuation by overburden, water, deep leaching and so on. Efficiency in the discovery of uranium and/or thorium orebodies is promoted by an integrated methods approach employing geological pattern recognition in the localization of deposits, analytical geochemical surveys, and radiometric surveys. (author)

  15. A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis

    NARCIS (Netherlands)

    Du, P.; Carneiro, J.T.; Moulijn, J.A.; Mul, Guido

    2008-01-01

    A novel reactor for multi-phase photocatalysis is presented, the so-called internally illuminated monolith reactor (IIMR). In the concept of the IIMR, side light emitting fibers are placed inside the channels of a ceramic monolith, equipped with a TiO2 photocatalyst coated on the wall of each

  16. Multi-phase alternative current machine winding design | Khan ...

    African Journals Online (AJOL)

    ... single-phase to 18-phase excitation. Experimental results of a five-phase induction machine supplied from a static five-phase supply are provided to support the proposed design. Keywords: AC machine, Multi-phase machine, Stator winding, Five-phase. International Journal of Engineering, Science and Technology, Vol.

  17. Development and Research of Peristaltic Multiphase Piezoelectric Micro-Pump

    Science.gov (United States)

    Vinogradov, Alexander N.; Ivanikin, Igor A.; Lubchenco, Roman V.; Matveev, Yegor V.; Titov, Pavel A.

    2016-01-01

    The paper presents the results of a study of existing models and mathematical representations of a range of truly peristaltic multiphase micro-pumps with a piezoelectric actuator (piezo drive). Piezo drives with different types of substrates use vertical movements at deformation of individual piezoelectric elements, which define device…

  18. A Transformerless Medium Voltage Multiphase Motor Drive System

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2016-04-01

    Full Text Available A multiphase motor has several major advantages, such as high reliability, fault tolerance, and high power density. It is a critical issue to develop a reliable and efficient multiphase motor drive system. In this paper, a transformerless voltage source converter-based drive system for a medium-voltage (MV multiphase motor is proposed. This drive converter employs cascaded H-bridge rectifiers loaded by H-bridge inverters as the interface between the grid and multiphase motor. The cascaded H-bridge rectifier technique makes the drive system able to be directly connected to the MV grid without the phase-shifting transformer because it can offset the voltage level gap between the MV grid and the semiconductor devices, provide near-sinusoidal AC terminal voltages without filters, and draw sinusoidal line current from the grid. Based on a digital signal processor (DSP, a complete improved Phase Disposition Pulse Width Modulation (PD-PWM method is developed to ensure the individual DC-link capacitor voltage balancing for enhancing the controllability and limiting the voltage and power stress on the H-bridge cells. A downscaled prototype is designed and developed based on a nine-phase motor. The experimental results verify the excellent performances of the proposed drive system and control strategy in steady-state and variant-frequency startup operations.

  19. Multiphase flow of immiscible fluids on unstructured moving meshes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam

    2012-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...

  20. RAND-Based Formulations for Isothermal Multiphase Flash

    DEFF Research Database (Denmark)

    Paterson, Duncan; Michelsen, Michael L.; Stenby, Erling H.

    2018-01-01

    Two algorithms are proposed for isothermal multiphase flash. These are referred to as modified RAND and vol-RAND. The former uses the chemical potentials and molar-phase amounts as the iteration variables, while the latter uses chemical potentials and phase volumes to cosolve a pressure...

  1. Multiphase fluid structure interaction in bends and T-joints

    NARCIS (Netherlands)

    Cargnelutti, M.F.; Belfroid, S.P.C.; Schiferli, W.; Osch, M.M.E. van

    2010-01-01

    Air-water experiments were carried out in a horizontal 1" pipe system to measure the magnitude of the forces induced by the multiphase flow. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating conditions. Five different configurations

  2. Convection in multiphase fluid flows using lattice Boltzmann methods

    NARCIS (Netherlands)

    Biferale, L.; Perlekar, P.; Sbragaglia, M.; Toschi, F.

    2012-01-01

    We present high-resolution numerical simulations of convection in multiphase flows (boiling) using a novel algorithm based on a lattice Boltzmann method. We first study the thermodynamical and kinematic properties of the algorithm. Then, we perform a series of 3D numerical simulations changing the

  3. Application of multiphase flow methods to horizontal underbalanced drilling

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S. P.; Gregory, G. A.; Munro, N.; Muqeem, M.

    1998-12-31

    Ways in which multiphase flow pressure loss calculations can be used in the design and optimization of underbalanced drilling operations are demonstrated. Existing pressure loss calculation methods are evaluated using detailed field measurements for three oil wells and one gas well drilled underbalanced with coiled tubing. 10 refs., 3 tabs., 17 figs.

  4. Analysis of hygral induced crack growth in multiphase materials

    NARCIS (Netherlands)

    Sadouki, H.; Van Mier, J.G.M.

    1996-01-01

    In this paper a numerical model for simulating crack growth processes caused by moisture movement in a porous multiphase material like concrete is proposed. In the model, the material is schematized as a regular triangular network of beam elements. The meso-material structure of the material is

  5. A New Multiphase Equation of State for Composition B

    Energy Technology Data Exchange (ETDEWEB)

    Coe, Joshua Damon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Margevicius, Madeline Alma [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division

    2016-07-25

    We describe the construction of a complete equation of state for the high explosive Composition B in its unreacted (inert) form, as well as chemical equilibrium calculations of its detonation products. The multiphase reactant EOS is of SESAME type, and was calibrated to ambient thermal and mechanical data, the shock initiation experiments of Dattelbaum, et al., and the melt line of trinitrotoluene (TNT).

  6. Continuum-Kinetic Models and Numerical Methods for Multiphase Applications

    Science.gov (United States)

    Nault, Isaac Michael

    This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.

  7. Multiphase lattice Boltzmann on the Cell Broadband Engine

    International Nuclear Information System (INIS)

    Belletti, F.; Mantovani, F.; Tripiccione, R.; Biferale, L.; Schifano, S.F.; Toschi, F.

    2009-01-01

    Computational experiments are one of the most used and flexible investigation tools in fluid dynamics. The Lattice Boltzmann Equation is a well established computational method particularly promising for multi-phase flows at micro and macro scales. Here we present preliminary results on performances of the Lbe method on the Cell Broadband Engine platform.

  8. Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam

    2013-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...

  9. Reactive transport modeling of the ABM experiment with Comsol Multiphysics

    International Nuclear Information System (INIS)

    Pekala, Marek; Idiart, Andres; Arcos, David

    2012-01-01

    solution) in a stack of 30 bentonite blocks of 11 distinct initial compositions. In the model, ion diffusion is allowed between the individual bentonite blocks and between the bentonite blocks and a sand layer filling the bentonite-rock gap. The effective diffusion coefficient values for individual bentonite blocks were estimated based on the dry density of the bentonite, and the temperature-dependent evolution of the diffusion coefficients is approximated in the course of the simulation. In order to solve the problem, a set of non-linear algebraic equations (mass action law for the cation-exchange reactions, and charge and mass balance equations) have been coupled with Fickian diffusion equations. As mentioned above, the Finite Element code COMSOL Multiphysics has been used to carry out the simulations. Preliminary results for the studied problem indicate that the effect of diffusion for the studied cations and chloride is significant and has the potential to explain quantitatively the observed patterns of homogenisation in the chemical composition in the bentonite package. However, the work is currently in progress and further analyses, including a sensitivity study of variables such as diffusion coefficients and boundary conditions, are on-going. A model simulating coupled cation-exchange and diffusion of major ions in the Package 1 of the ABM field experiment has been developed. This work demonstrates the feasibility of implementing a reactive transport model directly into Comsol Multiphysics using conservation and mass action equations. Comsol offers an intuitive and at the same time powerful modelling environment for simulating coupled multiphase, multi-species reactive transport phenomena and mechanical effects in complex geometries. For this reason, Amphos 21 has been involved in work aiming to couple Comsol with other codes such as the geochemical code PHREEQC. Such code integration has the potential to provide tools uniquely suited to solving complicated reactive

  10. Adaptive Multiscale Modeling of Geochemical Impacts on Fracture Evolution

    Science.gov (United States)

    Molins, S.; Trebotich, D.; Steefel, C. I.; Deng, H.

    2016-12-01

    Understanding fracture evolution is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, and geothermal energy extraction. Geochemical processes in particular play a significant role in the evolution of fractures through dissolution-driven widening, fines migration, and/or fracture sealing due to precipitation. One obstacle to understanding and exploiting geochemical fracture evolution is that it is a multiscale process. However, current geochemical modeling of fractures cannot capture this multi-scale nature of geochemical and mechanical impacts on fracture evolution, and is limited to either a continuum or pore-scale representation. Conventional continuum-scale models treat fractures as preferential flow paths, with their permeability evolving as a function (often, a cubic law) of the fracture aperture. This approach has the limitation that it oversimplifies flow within the fracture in its omission of pore scale effects while also assuming well-mixed conditions. More recently, pore-scale models along with advanced characterization techniques have allowed for accurate simulations of flow and reactive transport within the pore space (Molins et al., 2014, 2015). However, these models, even with high performance computing, are currently limited in their ability to treat tractable domain sizes (Steefel et al., 2013). Thus, there is a critical need to develop an adaptive modeling capability that can account for separate properties and processes, emergent and otherwise, in the fracture and the rock matrix at different spatial scales. Here we present an adaptive modeling capability that treats geochemical impacts on fracture evolution within a single multiscale framework. Model development makes use of the high performance simulation capability, Chombo-Crunch, leveraged by high resolution characterization and experiments. The modeling framework is based on the adaptive capability in Chombo

  11. Slush Fund: The Multiphase Nature of Oceanic Ices and Its Role in Shaping Europa's Icy Shell

    Science.gov (United States)

    Buffo, J.; Schmidt, B. E.; Huber, C.

    2017-12-01

    The role of Europa's ice shell in mediating ocean-surface interaction, constraining potential habitability of the underlying hydrosphere, and dictating the surface morphology of the moon is discussed extensively in the literature, yet the dynamics and characteristics of the shell itself remain largely unconstrained. Some of the largest unknowns arise from underrepresented physics and varying a priori assumptions built into the current ice shell models. Here we modify and apply a validated one-dimensional reactive transport model designed to simulate the formation and evolution of terrestrial sea ice to the Europa environment. The top-down freezing of sea ice due to conductive heat loss to the atmosphere is akin to the formation of the Jovian moon's outer ice shell, albeit on a different temporal and spatial scale. Nevertheless, the microscale physics that govern the formation of sea ice on Earth (heterogenous solidification leading to brine pockets and channels, multiphase reactive transport phenomena, gravity drainage) likely operate in a similar manner at the ice-ocean interface of Europa, dictating the thermal, chemical, and mechanical properties of the ice shell. Simulations of the European ice-ocean interface at different stages during the ice shell's evolution are interpolated to produce vertical profiles of temperature, salinity, solid fraction, and eutectic points throughout the entire shell. Additionally, the model is coupled to the equilibrium chemistry package FREZCHEM to investigate the impact a diverse range of putative European ocean chemistries has on ice shell properties. This method removes the need for a priori assumptions of impurity entrainment rates and ice shell properties, thus providing a first principles constraint on the stratigraphic characteristics of a simulated European ice shell. These insights have the potential to improve existing estimates for the onset of solid state convection, melt lens formation due to eutectic melting, ice

  12. Compilation of kinetic data for geochemical calculations

    International Nuclear Information System (INIS)

    Arthur, R.C.; Savage, D.; Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu

    2000-01-01

    Kinetic data, including rate constants, reaction orders and activation energies, are compiled for 34 hydrolysis reactions involving feldspars, sheet silicates, zeolites, oxides, pyroxenes and amphiboles, and for similar reactions involving calcite and pyrite. The data are compatible with a rate law consistent with surface reaction control and transition-state theory, which is incorporated in the geochemical software package EQ3/6 and GWB. Kinetic data for the reactions noted above are strictly compatible with the transition-state rate law only under far-from-equilibrium conditions. It is possible that the data are conceptually consistent with this rate law under both far-from-equilibrium and near-to-equilibrium conditions, but this should be confirmed whenever possible through analysis of original experimental results. Due to limitations in the availability of kinetic data for mine-water reactions, and in order to simplify evaluations of geochemical models of groundwater evolution, it is convenient to assume local-equilibrium in such models whenever possible. To assess whether this assumption is reasonable, a modeling approach accounting for couple fluid flow and water-rock interaction is described that can be use to estimate spatial and temporal scale of local equilibrium. The approach is demonstrated for conditions involving groundwater flow in fractures at JNC's Kamaishi in-situ tests site, and is also used to estimate the travel time necessary for oxidizing surface waters to migrate to the level of a HLW repository in crystalline rock. The question of whether local equilibrium is a reasonable assumption must be addressed using an appropriate modeling approach. To be appropriate for conditions at the Kamaishi site using the modeling approach noted above, the fracture fill must closely approximate a porous mine, groundwater flow must be purely advective and diffusion of solutes across the fracture-host rock boundary must not occur. Moreover, the mineralogical and

  13. Toward a better understanding of the complex geochemical processes governing subsurface contaminant transport

    International Nuclear Information System (INIS)

    Puls, R.W.

    1990-01-01

    Identification and understanding of the geochemical processes, including ion exchange, precipitation, organic partitioning, chemisorption, aqueous complexation, and colloidal stability and transport, controlling subsurface contamination is essential for making accurate predictions of the fate and transport of these constituents. Current approaches to quantify the effect of these processes primarily involve laboratory techniques, including the use of closed static systems (batch experiments) where small amounts of aquifer solids or minerals are contacted with an aqueous phase containing the components of interest for relatively short durations; and dynamic systems (column experiments) where a larger segment of the aquifer is investigated by analyzing the breakthrough profiles of reactive and non-reactive species. Both approaches are constrained by differences in scale, alteration of media during sample collection and use, and spatial variability. More field reactivity studies are needed to complement established laboratory approaches for the determination of retardation factors and scaling factors, corroboration of batch and column results, and validation of sampling techniques. These studies also serve to accentuate areas of geochemical process research where data deficiencies exist, such as the kinetics of adsorption-desorption, metal-organic-mineral interactions, and colloidal mobility. The advantages and disadvantages of the above approaches are discussed in the context of achieving a more completely integrated approach to geochemical transport experiments, with supportive data presented from selected studies. (Author) (16 refs., 4 figs., 2 tabs.)

  14. Collected radiochemical and geochemical procedures

    Energy Technology Data Exchange (ETDEWEB)

    Kleinberg, J [comp.

    1990-05-01

    This revision of LA-1721, 4th Ed., Collected Radiochemical Procedures, reflects the activities of two groups in the Isotope and Nuclear Chemistry Division of the Los Alamos National Laboratory: INC-11, Nuclear and radiochemistry; and INC-7, Isotope Geochemistry. The procedures fall into five categories: I. Separation of Radionuclides from Uranium, Fission-Product Solutions, and Nuclear Debris; II. Separation of Products from Irradiated Targets; III. Preparation of Samples for Mass Spectrometric Analysis; IV. Dissolution Procedures; and V. Geochemical Procedures. With one exception, the first category of procedures is ordered by the positions of the elements in the Periodic Table, with separate parts on the Representative Elements (the A groups); the d-Transition Elements (the B groups and the Transition Triads); and the Lanthanides (Rare Earths) and Actinides (the 4f- and 5f-Transition Elements). The members of Group IIIB-- scandium, yttrium, and lanthanum--are included with the lanthanides, elements they resemble closely in chemistry and with which they occur in nature. The procedures dealing with the isolation of products from irradiated targets are arranged by target element.

  15. Proceedings of 2. Brazilian Geochemical Congress

    International Nuclear Information System (INIS)

    1989-01-01

    Some works about geochemistry are presented, including themes about geochemical exploration, lithogeochemistry and isotope geochemistry, environmental geochemistry, analytical geochemistry, geochemistry of carbonatites and rare earth elements and organic geochemistry. (C.G.C.) [pt

  16. Reactive Multiphase behavior of CO2 in Saline Aquifers beneath the Colorado Plateau

    International Nuclear Information System (INIS)

    R. G. Allis; J. Moore; S. White

    2002-01-01

    Gas reservoirs developed within the Colorado Plateau and Southern Rocky Mountains region are natural laboratories for studying the factors that promote long-term storage of CO 2 . They also provide sites for storing additional CO 2 if it can be separated from the flue gases of coal-fired power plants in this part of the U.S.A. These natural reservoirs are developed primarily in sandstones and dolomites; shales, mudstones and anhydrite form seals. In many fields, stacked reservoirs are present, indicating that the gas has migrated up through the section. There are also geologically young travertine deposits at the surface, and CO 2 -charged groundwater and springs in the vicinity of known CO 2 occurrences. These near-surface geological and hydrological features also provide examples of the environmental effects of leakage of CO 2 from reservoirs, and justify further study. During reporting period covered here (the second quarter of Year 2 of the project, i.e. January 1-March 31, 2002), the main achievements were: (1) Field trips to the central Utah and eastern Arizona travertine areas to collect data and water samples to support study of surface CO 2 -rich fluid leakage in these two areas. (2) Partial completion of a manuscript on natural analogues CO 2 leakage from subsurface reservoirs. The remaining section on the chemistry of the fluids is in progress. (3) Improvements to CHEMTOUGH code to incorporate kinetic effects on reaction progress. (4) Submission of two abstracts (based on the above work) to the topical session at the upcoming GSA meeting in Denver titled ''Experimental, Field, and Modeling Studies of Geological Carbon Sequestration''. (5) Submission of paper to upcoming GGHT-6 conference in Kyoto. Co-PI S. White will attend this conference, and will also be involved in three other papers

  17. Multiphase flow parameter estimation based on laser scattering

    Science.gov (United States)

    Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cicero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.

    2015-07-01

    The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time.

  18. Calculation of Multiphase Chemical Equilibrium by the Modified RAND Method

    DEFF Research Database (Denmark)

    Tsanas, Christos; Stenby, Erling Halfdan; Yan, Wei

    2017-01-01

    method. The modified RAND extends the classical RAND method from single-phase chemical reaction equilibrium of ideal systems to multiphase chemical equilibrium of nonideal systems. All components in all phases are treated in the same manner and the system Gibbs energy can be used to monitor convergence....... This is the first time that modified RAND was applied to multiphase chemical equilibrium systems. The combined algorithm was tested using nine examples covering vapor–liquid (VLE) and vapor–liquid–liquid equilibria (VLLE) of ideal and nonideal reaction systems. Successive substitution provided good initial......A robust and efficient algorithm for simultaneous chemical and phase equilibrium calculations is proposed. It combines two individual nonstoichiometric solving procedures: a nested-loop method with successive substitution for the first steps and final convergence with the second-order modified RAND...

  19. Eulerian Multiphase Population Balance Model of Atomizing, Swirling Flows

    Directory of Open Access Journals (Sweden)

    Narayana P. Rayapati

    2011-06-01

    Full Text Available An Eulerian/Eulerian multiphase flow model coupled with a population balance model is used as the basis for numerical simulation of atomization in swirling flows. The objective of this exercise is to develop a methodology capable of predicting the local point-wise drop size distribution in a spray, such as would be measured by the Phase Doppler Particle Analyzer (PDA. Model predictions are compared to experimental measurements of particle size distributions in an air-blast atomizer spray to demonstrate good qualitative and quantitative agreement. It is observed that the dependence of velocity on drop size inherent in a multiphase description of the drop cloud appears necessary to capture some features of the experimental data. Using this model, we demonstrate the relative contributions of secondary atomization and transport to the variation observed in the downstream spray drop size distribution.

  20. Analysis of Voltage Forming Methods for Multiphase Inverters

    Directory of Open Access Journals (Sweden)

    Tadas Lipinskis

    2013-05-01

    Full Text Available The article discusses advantages of the multiphase AC induction motor over three or less phase motors. It presents possible stator winding configurations for a multiphase induction motor. Various fault control strategies were reviewed for phases feeding the motor. The authors propose a method for quality evaluation of voltage forming algorithm in the inverter. Simulation of a six-phase voltage source inverter, voltage in which is formed using a simple SPWM control algorithm, was performed in Matlab Simulink. Simulation results were evaluated using the proposed method. Inverter’s power stage was powered by 400 V DC source. The spectrum of output currents was analysed and the magnitude of the main frequency component was at least 12 times greater than the next biggest-magnitude component. The value of rectified inverter voltage was 373 V.Article in Lithuanian

  1. Measurement Of Multiphase Flow Water Fraction And Water-cut

    Science.gov (United States)

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  2. Multiphase flow parameter estimation based on laser scattering

    International Nuclear Information System (INIS)

    Vendruscolo, Tiago P; Fischer, Robert; Martelli, Cicero; Da Silva, Marco J; Rodrigues, Rômulo L P; Morales, Rigoberto E M

    2015-01-01

    The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time. (paper)

  3. Annihilation Radiation Gauge for Relative Density and Multiphase Fluid Monitoring

    Directory of Open Access Journals (Sweden)

    Vidal A.

    2014-03-01

    Full Text Available The knowledge of the multi-phase flow parameters are important for the petroleum industry, specifically during the transport in pipelines and network related to exploitation’s wells. Crude oil flow is studied by Monte Carlo simulation and experimentally to determine transient liquid phase in a laboratory system. Relative density and fluid phase time variation is monitored employing a fast nuclear data acquisition setup that includes two large volume BaF2 scintillator detectors coupled to an electronic chain and data display in a LabView® environment. Fluid parameters are determined by the difference in count rate of coincidence pulses. The operational characteristics of the equipment indicate that 2 % deviation in the CCR corresponds to a variation, on average, of 20 % in the fraction of liquid of the multiphase fluid.

  4. Reactive Systems

    DEFF Research Database (Denmark)

    Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand

    A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems......, the need for mathematically based formal methodology is increasingly important. There are many books that look at particular methodologies for such systems. This book offers a more balanced introduction for graduate students and describes the various approaches, their strengths and weaknesses, and when...... they are best used. Milner's CCS and its operational semantics are introduced, together with the notions of behavioural equivalences based on bisimulation techniques and with recursive extensions of Hennessy-Milner logic. In the second part of the book, the presented theories are extended to take timing issues...

  5. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    This report considers mass transport in the far-field of a radioactive waste repository, and detailed geochemical modelling of the ground-water in the near-field. A parallel approach to this problem of coupling transport and geochemical codes is the subject of another CEC report (ref. EUR 10226). Both studies were carried out in the framework of the CEC project MIRAGE. (Migration of radionuclides in the geosphere)

  6. Comparative FEM-based Analysis of Multiphase Induction Motor

    Directory of Open Access Journals (Sweden)

    Leonard Livadaru

    2014-09-01

    Full Text Available This paper presents a comparative study of multiphase induction motor, which has alternately three-, five- and six-phase stator winding. The machine has been designed particularly for this purpose and has individual ring coils placed in each stator slot. The study consists in FEM analyses and mainly looks for the particularities of magnetic quantities such as air-gap flux density and electromagnetic torque.

  7. International symposium on cavitation and multiphase flow noise - 1986

    International Nuclear Information System (INIS)

    Arndt, R.E.A.; Billet, M.L.; Blake, W.K.

    1986-01-01

    This book presents the papers given at a symposium on multiphase flow and cavitation. Topics considered at the conference included the development of a cavitation-free sodium pump for a breeder reactor, the stochastic behavior (randomness) of acoustic pressure pulses in the near-subcavitating range, cavitation monitoring of two axial-flow hydroturbines, and noise generated by cavitation in orifice plates with some gaseous effects

  8. Multi-Phase Modeling of Rainbird Water Injection

    Science.gov (United States)

    Vu, Bruce T.; Moss, Nicholas; Sampson, Zoe

    2014-01-01

    This paper describes the use of a Volume of Fluid (VOF) multiphase model to simulate the water injected from a rainbird nozzle used in the sound suppression system during launch. The simulations help determine the projectile motion for different water flow rates employed at the pad, as it is critical to know if water will splash on the first-stage rocket engine during liftoff.

  9. Modeling coupled thermal, flow, transport and geochemical processes controlling near field long-term evolution

    International Nuclear Information System (INIS)

    Zhou, W.; Arthur, R.; Xu, T.; Pruess, K.

    2005-01-01

    precipitation/dissolution and solute transport. Preliminary results show that during the early heating phase, reactions strongly depend on the magnitude of the temperature gradient across the buffer. As the temperature gradient diminishes, reactions are increasingly dominated by groundwater solutes diffusing into the bentonite pore water from the host rock. Bentonite effective diffusion coefficient plays an important role to long-term solute transport. [1] Arthur, R., W. Zhou, and B. Stromberg, (2003), 'THC modeling of the non-isothermal phase of near-field evolution' in Proceedings of the 10. International High-Level Radioactive Waste Management Conference, March 30-April 2, 2003, Las Vegas, Nevada, USA. [2] Hoekmark, H. and B. Faelth, (2003), Thermal dimensioning of the deep repository, SKB TR-03- 09, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden. [3] Bruno, J. D. Arcos, and L. Duro, (1999), Processes and features affecting the near field hydro-chemistry, SKB TR-99-29, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden. [4] Xu, T., E. Sonnenthal, N. Spycher, and K. Pruess, (2003), TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, LBNL-55460, Lawrence Berkeley National Laboratory, Berkeley, California, USA. (authors)

  10. Multiphase pumping: indoor performance test and oilfield application

    Science.gov (United States)

    Kong, Xiangling; Zhu, Hongwu; Zhang, Shousen; Li, Jifeng

    2010-03-01

    Multiphase pumping is essentially a means of adding energy to the unprocessed effluent which enables the liquid and gas mixture to be transported over a long distances without prior separation. A reduction, consolidation, or elimination of the production infrastructure, such as separation equipments and offshore platforms can be developed more economically. Also it successfully lowed the backpressure of wells, revived dead wells and improved the production and efficiency of oilfield. This paper reviews the issues related to indoor performance test and an oilfield application of the helico-axial multiphase pump designed by China University of Petroleum (Beijing). Pump specification and its hydraulic design are given. Results of performance testing under different condition, such as operational speed and gas volume fraction (GVF) etc are presented. Experimental studies on combination of theoretical analysis showed the multiphase pump satisfies the similitude rule, which can be used in the development of new MPP design and performance prediction. Test results showed that rising the rotation speed and suction pressure could better its performance, pressure boost improved, high efficiency zone expanding and the flow rate related to the optimum working condition increased. The pump worked unstable as GVF increased to a certain extent and slip occurred between two phases in the pump, creating surging and gas lock at a high GVF. A case of application in Nanyang oilfield is also studied.

  11. High-Voltage, Multiphasic, Nanosecond Pulses to Modulate Cellular Responses.

    Science.gov (United States)

    Ryan, Hollie A; Hirakawa, Shinji; Yang, Enbo; Zhou, Chunrong; Xiao, Shu

    2018-04-01

    Nanosecond electric pulses are an effective power source in plasma medicine and biological stimulation, in which biophysical responses are governed by peak power and not energy. While uniphasic nanosecond pulse generators are widely available, the recent discovery that biological effects can be uniquely modulated by reversing the polarity of nanosecond duration pulses calls for the development of a multimodal pulse generator. This paper describes a method to generate nanosecond multiphasic pulses for biomedical use, and specifically demonstrates its ability to cancel or enhance cell swelling and blebbing. The generator consists of a series of the fundamental module, which includes a capacitor and a MOSFET switch. A positive or a negative phase pulse module can be produced based on how the switch is connected. Stacking the modules in series can increase the voltage up to 5 kV. Multiple stacks in parallel can create multiphase outputs. As each stack is independently controlled and charged, multiphasic pulses can be created to produce flexible and versatile pulse waveforms. The circuit topology can be used for high-frequency uniphasic or biphasic nanosecond burst pulse production, creating numerous opportunities for the generator in electroporation applications, tissue ablation, wound healing, and nonthermal plasma generation.

  12. Multiphase Interface Tracking with Fast Semi-Lagrangian Contouring.

    Science.gov (United States)

    Li, Xiaosheng; He, Xiaowei; Liu, Xuehui; Zhang, Jian J; Liu, Baoquan; Wu, Enhua

    2016-08-01

    We propose a semi-Lagrangian method for multiphase interface tracking. In contrast to previous methods, our method maintains an explicit polygonal mesh, which is reconstructed from an unsigned distance function and an indicator function, to track the interface of arbitrary number of phases. The surface mesh is reconstructed at each step using an efficient multiphase polygonization procedure with precomputed stencils while the distance and indicator function are updated with an accurate semi-Lagrangian path tracing from the meshes of the last step. Furthermore, we provide an adaptive data structure, multiphase distance tree, to accelerate the updating of both the distance function and the indicator function. In addition, the adaptive structure also enables us to contour the distance tree accurately with simple bisection techniques. The major advantage of our method is that it can easily handle topological changes without ambiguities and preserve both the sharp features and the volume well. We will evaluate its efficiency, accuracy and robustness in the results part with several examples.

  13. Flow Rate Measurement in Multiphase Flow Rig: Radiotracer and Conventional

    International Nuclear Information System (INIS)

    Nazrul Hizam Yusoff; Noraishah Othman; Nurliyana Abdullah; Amirul Syafiq Mohd Yunos; Rasif Mohd Zain; Roslan Yahya

    2015-01-01

    Applications of radiotracer technology are prevalent throughout oil refineries worldwide, and this industry is one of the main users and beneficiaries of the technology. Radioactive tracers have been used to a great extent in many applications i.e. flow rate measurement, RTD, plant integrity evaluation and enhancing oil production in oil fields. Chemical and petrochemical plants are generally continuously operating and technically complex where the radiotracer techniques are very competitive and largely applied for troubleshooting inspection and process analysis. Flow rate measurement is a typical application of radiotracers. For flow measurements, tracer data are important, rather than the RTD models. Research is going on in refining the existing methods for single phase flow measurement, and in developing new methods for multiphase flow without sampling. The tracer techniques for single phase flow measurements are recognized as ISO standards. This paper presents technical aspect of laboratory experiments, which have been carried out using Molybdenum-99 - Mo99 (radiotracer) to study and determine the flow rate of liquid in multiphase flow rig. The multiphase flow rig consists of 58.7 m long and 20 cm diameter pipeline that can accommodate about 0.296 m 3 of liquid. Tap water was used as liquid flow in pipeline and conventional flow meters were also installed at the flow rig. The flow rate results; radiotracer and conventional flow meter were compared. The total count method was applied for radiotracer technique and showed the comparable results with conventional flow meter. (author)

  14. Numerical simulation of complex multi-phase fluid of casting process and its applications

    Directory of Open Access Journals (Sweden)

    CHEN Li-liang

    2006-05-01

    Full Text Available The fluid of casting process is a typical kind of multi-phase flow. Actually, many casting phenomena have close relationship with the multi-phase flow, such as molten metal filling process, air entrapment, slag movement, venting process of die casting, gas escaping of lost foam casting and so on. Obviously, in order to analyze these phenomena accurately, numerical simulation of the multi-phase fluid is necessary. Unfortunately, so far, most of the commercial casting simulation systems do not have the ability of multi-phase flow modeling due to the difficulty in the multi-phase flow calculation. In the paper, Finite Different Method (FDM technique was adopt to solve the multi-phase fluid model. And a simple object of the muiti-phase fluid was analyzed to obtain the fluid rates of the liquid phase and the entrapped air phase.

  15. Groundwater sources and geochemical processes in a crystalline fault aquifer

    Science.gov (United States)

    Roques, Clément; Aquilina, Luc; Bour, Olivier; Maréchal, Jean-Christophe; Dewandel, Benoît; Pauwels, Hélène; Labasque, Thierry; Vergnaud-Ayraud, Virginie; Hochreutener, Rebecca

    2014-11-01

    The origin of water flowing in faults and fractures at great depth is poorly known in crystalline media. This paper describes a field study designed to characterize the geochemical compartmentalization of a deep aquifer system constituted by a graben structure where a permeable fault zone was identified. Analyses of the major chemical elements, trace elements, dissolved gases and stable water isotopes reveal the origin of dissolved components for each permeable domain and provide information on various water sources involved during different seasonal regimes. The geochemical response induced by performing a pumping test in the fault-zone is examined, in order to quantify mixing processes and contribution of different permeable domains to the flow. Reactive processes enhanced by the pumped fluxes are also identified and discussed. The fault zone presents different geochemical responses related to changes in hydraulic regime. They are interpreted as different water sources related to various permeable structures within the aquifer. During the low water regime, results suggest mixing of recent water with a clear contribution of older water of inter-glacial origin (recharge temperature around 7 °C), suggesting the involvement of water trapped in a local low-permeability matrix domain or the contribution of large scale circulation loops. During the high water level period, due to inversion of the hydraulic gradient between the major permeable fault zone and its surrounding domains, modern water predominantly flows down to the deep bedrock and ensures recharge at a local scale within the graben. Pumping in a permeable fault zone induces hydraulic connections with storage-reservoirs. The overlaid regolith domain ensures part of the flow rate for long term pumping (around 20% in the present case). During late-time pumping, orthogonal fluxes coming from the fractured domains surrounding the major fault zone are dominant. Storage in the connected fracture network within the

  16. Multiphase flow measurement in the slug regime using ultrasonic measurement techniques and slug closure model

    OpenAIRE

    Al-lababidi , Salem

    2006-01-01

    Multiphase flow in the oil and gas industry covers a wide range of flows. Thus, over the last decade, the investigation, development and use of multiphase flow metering system have been a major focus for the industry worldwide. However, these meters do not perform well in slug flow conditions. The present work involves experimental investigations of multiphase flow measurement under slug flow conditions. A two-phase gas/liquid facility was designed and constructed at Cranfie...

  17. Pore-scale Simulation and Imaging of Multi-phase Flow and Transport in Porous Media (Invited)

    Science.gov (United States)

    Crawshaw, J.; Welch, N.; Daher, I.; Yang, J.; Shah, S.; Grey, F.; Boek, E.

    2013-12-01

    We combine multi-scale imaging and computer simulation of multi-phase flow and reactive transport in rock samples to enhance our fundamental understanding of long term CO2 storage in rock formations. The imaging techniques include Confocal Laser Scanning Microscopy (CLSM), micro-CT and medical CT scanning, with spatial resolutions ranging from sub-micron to mm respectively. First, we report a new sample preparation technique to study micro-porosity in carbonates using CLSM in 3 dimensions. Second, we use micro-CT scanning to generate high resolution 3D pore space images of carbonate and cap rock samples. In addition, we employ micro-CT to image the processes of evaporation in fractures and cap rock degradation due to exposure to CO2 flow. Third, we use medical CT scanning to image spontaneous imbibition in carbonate rock samples. Our imaging studies are complemented by computer simulations of multi-phase flow and transport, using the 3D pore space images obtained from the scanning experiments. We have developed a massively parallel lattice-Boltzmann (LB) code to calculate the single phase flow field in these pore space images. The resulting flow fields are then used to calculate hydrodynamic dispersion using a novel scheme to predict probability distributions for molecular displacements using the LB method and a streamline algorithm, modified for optimal solid boundary conditions. We calculate solute transport on pore-space images of rock cores with increasing degree of heterogeneity: a bead pack, Bentheimer sandstone and Portland carbonate. We observe that for homogeneous rock samples, such as bead packs, the displacement distribution remains Gaussian with time increasing. In the more heterogeneous rocks, on the other hand, the displacement distribution develops a stagnant part. We observe that the fraction of trapped solute increases from the beadpack (0 %) to Bentheimer sandstone (1.5 %) to Portland carbonate (8.1 %), in excellent agreement with PFG

  18. The geochemical atlas of Alaska, 2016

    Science.gov (United States)

    Lee, Gregory K.; Yager, Douglas B.; Mauk, Jeffrey L.; Granitto, Matthew; Denning, Paul; Wang, Bronwen; Werdon, Melanie B.

    2016-06-21

    A rich legacy of geochemical data produced since the early 1960s covers the great expanse of Alaska; careful treatment of such data may provide significant and revealing geochemical maps that may be used for landscape geochemistry, mineral resource exploration, and geoenvironmental investigations over large areas. To maximize the spatial density and extent of data coverage for statewide mapping of element distributions, we compiled and integrated analyses of more than 175,000 sediment and soil samples from three major, separate sources: the U.S. Geological Survey, the National Uranium Resource Evaluation program, and the Alaska Division of Geological & Geophysical Surveys geochemical databases. Various types of heterogeneity and deficiencies in these data presented major challenges to our development of coherently integrated datasets for modeling and mapping of element distributions. Researchers from many different organizations and disparate scientific studies collected samples that were analyzed using highly variable methods throughout a time period of more than 50 years, during which many changes in analytical techniques were developed and applied. Despite these challenges, the U.S. Geological Survey has produced a new systematically integrated compilation of sediment and soil geochemical data with an average sample site density of approximately 1 locality per 10 square kilometers (km2) for the entire State of Alaska, although density varies considerably among different areas. From that compilation, we have modeled and mapped the distributions of 68 elements, thus creating an updated geochemical atlas for the State.

  19. Modeling biogechemical reactive transport in a fracture zone

    Energy Technology Data Exchange (ETDEWEB)

    Molinero, Jorge; Samper, Javier; Yang, Chan Bing, and Zhang, Guoxiang; Guoxiang, Zhang

    2005-01-14

    A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes in biochemical parameters.

  20. Modeling biogeochemical reactive transport in a fracture zone

    International Nuclear Information System (INIS)

    Molinero, Jorge; Samper, Javier; Yang, Chan Bing; Zhang, Guoxiang; Guoxiang, Zhang

    2005-01-01

    A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes in biochemical parameters

  1. Contribution of the study of thermal interaction: modelling of a thermal blast in a multi-phase medium

    International Nuclear Information System (INIS)

    Scott, Edouard

    1978-01-01

    This research thesis aims at being a contribution to the safety of nuclear facilities by reporting the study of the interaction between nuclear fuel and coolant in simplified conditions. It focuses on the thermal aspect of this interaction between a very hot body and an easily vaporized cold body, which could produce a blast. Thus, this author addresses the field of existence of a thermal blast, and reports the development of a hydrodynamic model which takes the heterogeneous nature of the interacting medium into account, in order to precisely describe the conditions of fuel fragmentation. This model includes the propagation of a shock in a mixture, and the calculation of a multi-phase flow in the reaction zone, and proposes criteria for a self-sustained shock wave propagation in the reactive medium. Results are compared with those obtained with the Bankoff model [fr

  2. The influence of maternal care and overprotection on youth adrenocortical stress response: a multiphase growth curve analysis.

    Science.gov (United States)

    Vergara-Lopez, Chrystal; Chaudoir, Stephenie; Bublitz, Margaret; O'Reilly Treter, Maggie; Stroud, Laura

    2016-11-01

    We examined the association between two dimensions of maternal parenting style (care and overprotection) and cortisol response to an acute laboratory-induced stressor in healthy youth. Forty-three participants completed the Parental Bonding Instrument and an adapted version of the Trier Social Stress Test-Child (TSST-C). Nine cortisol samples were collected to investigate heterogeneity in different phases of youth's stress response. Multiphase growth-curve modeling was utilized to create latent factors corresponding to individual differences in cortisol during baseline, reactivity, and recovery to the TSST-C. Youth report of maternal overprotection was associated with lower baseline cortisol levels, and a slower cortisol decline during recovery, controlling for maternal care, puberty, and gender. No additive or interactive effects involving maternal care emerged. These findings suggest that maternal overprotection may exert a unique and important influence on youth's stress response.

  3. Geochemical prospecting for thorium and uranium deposits

    International Nuclear Information System (INIS)

    Boyle, R.W.

    1982-01-01

    The basic purpose of this book is to present an analysis of the various geochemical methods applicable in the search for all types of thorium and uranium deposits. The general chemistry and geochemistry of thorium and uranium are briefly described in the opening chapter, and this is followed by a chapter on the deposits of the two elements with emphasis on their indicator (pathfinder) elements and on the primary and secondary dispersion characteristics of thorium and uranium in the vicinity of their deposits. The next seven chapters form the main part of the book and describe geochemical prospecting for thorium and uranium, stressing selection of areas in which to prospect, radiometric surveys, analytical geochemical surveys based on rocks (lithochemical surveys), unconsolidated materials (pedochemical surveys), natural waters and sediments (hydrochemical surveys), biological materials (biogeochemical surveys), gases (atmochemical surveys), and miscellaneous methods. A final brief chapter reviews radiometric and analytical methods for the detection and estimation of thorium and uranium. (Auth.)

  4. Noninvasive tomographic and velocimetric monitoring of multiphase flows

    International Nuclear Information System (INIS)

    Chaouki, J.; Dudukovic, M.P.

    1997-01-01

    A condensed review of recent advances accomplished in the development and the applications of noninvasive tomographic and velocimetric measurement techniques to multiphase flows and systems is presented. In recent years utilization of such noninvasive techniques has become widespread in many engineering disciplines that deal with systems involving two immiscible phases or more. Tomography provides concentration, holdup, or 2D or 3D density distribution of at least one component of the multiphase system, whereas velocimetry provides the dynamic features of the phase of interest such as the flow pattern, the velocity field, the 2D or 3D instantaneous movements, etc. The following review is divided into two parts. The first part summarizes progress and developments in flow imaging techniques using γ-ray and X-ray transmission tomography; X-ray radiography; neutron transmission tomography and radiography; positron emission tomography; X-ray diffraction tomography; nuclear magnetic resonance imaging; electrical capacitance tomography; optical tomography; microwave tomography; and ultrasonic tomography. The second part of the review summarizes progress and developments in the following velocimetry techniques: positron emission particle tracking; radioactive particle tracking; cinematography; laser-Doppler anemometry; particle image velocimetry; and fluorescence particle image velocimetry. The basic principles of tomography and velocimetry techniques are outlined, along with advantages and limitations inherent to each technique. The hydrodynamic and structural information yielded by these techniques is illustrated through a literature survey on their successful applications to the study of multiphase systems in such fields as particulate solids processes, fluidization engineering, porous media, pipe flows, transport within packed beds and sparged reactors, etc

  5. A compositional multiphase model for groundwater contamination by petroleum products: 1. Theoretical considerations

    Science.gov (United States)

    Corapcioglu, M. Yavuz; Baehr, Arthur L.

    1987-01-01

    A mathematical model is developed to describe the fate of hydrocarbon constituents of petroleum products introduced to soils as an immiscible liquid from sources such as leaking underground storage tanks and ruptured pipelines. The problem is one of multiphase transport (oil (immiscible), air, and water phases) of a reactive contaminant with constituents such as benzene, toluene, and xylene found in refined petroleum products like gasoline. In the unsaturated zone, transport of each constituent can occur as a solute in the water phase, vapor in the air phase, and as an unaltered constituent in the oil phase. Additionally, the model allows for adsorption. Molecular transformations, microbially mediated or abiotic, are incorporated as sink terms in the conservation of mass equations. An equilibrium approximation, applicable to any immiscible organic contaminant is applied to partition constituent mass between the air, oil, water, and adsorbed phases for points in the region where the oil phase exists. Outside the oil plume the equilibrium approximation takes on a simpler form to partition constituent mass between the air, water, and adsorbed phases only. Microbial degradation of petroleum products is first discussed in a general model, then the conservation of mass equation for oxygen is incorporated into the analysis which takes advantage of the key role played by oxygen in the metabolism of hydrocarbon utilizing microbes in soil environments. Approximations to two subproblems, oil plume establishment in the unsaturated zone, and solute and vapor transport subsequent to immiscible plume establishment are then developed from the general model.

  6. Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation

    KAUST Repository

    Akbulut, Ozge; Mace, Charles R.; Martinez, Ramses V.; Kumar, Ashok A.; Nie, Zhihong; Patton, Matthew R.; Whitesides, George M.

    2012-01-01

    This paper demonstrates the use of aqueous multiphase systems (MuPSs) as media for rate-zonal centrifugation to separate nanoparticles of different shapes and sizes. The properties of MuPSs do not change with time or during centrifugation; this stability facilitates sample collection after separation. A three-phase system demonstrates the separation of the reaction products (nanorods, nanospheres, and large particles) of a synthesis of gold nanorods, and enriches the nanorods from 48 to 99% in less than ten minutes using a benchtop centrifuge. © 2012 American Chemical Society.

  7. Transient Phenomena in Multiphase and Multicomponent Systems: Research Report

    Science.gov (United States)

    Zur Beurteilung von Stoffen in der Landwirtschaft, Senatskommission

    2000-09-01

    Due to the reinforced risk and safety-analysis of industrial plants in chemical and energy-engineering there has been increased demand in industry for more information on thermo- and fluiddynamic effects of non-equilibria during strong transients. Therefore, the 'Deutsche Forschungsgemeinschaft' initiated a special research program focusing on the study of transient phenomena in multiphase systems with one or several components. This book describes macroscopic as well as microscopic transient situations. A large part of the book deals with numerical methods for describing transients in two-phase mixtures. New developments in measuring techniques are also presented.

  8. Multiphasic helical CT of hepatocellular carcinoma. Evaluation after chemo embolization

    International Nuclear Information System (INIS)

    Catalano, O.; Esposito, M.; Sandomenico, F.; Siani, A.; Nunziata, A.

    2000-01-01

    The main purpose of this work is to report the personal experience with addition of contrast-enhanced multiphase helical CT to unenhanced CT (Lipiodol CT) in the evaluation of patients with hepatocellular carcinoma treated with chemoembolization and to analyze the present role of oily agent CT. It has been retrospectively reviewed the examinations of 42 consecutive patients submitted to globla chemoembolization over a 2-year period. CT was performed 18-30 days after the treatment. The Lipiodol CT study was carried out with volume acquisitions. It has been considered as nodules all well-defined areas with dense oily agent uptake; uptake itself was classified as: 0=absent, I=lower tha 10% of the tumor volume; II=lower than 50%, III=50%, IV=homogeneous. Contrast-enhanced helical CT was performed with the 2-phase technique in 28 patients and with the 3-phase technique in 14; it has been considered as nodules all well-defined and relatively homogeneous areas with hyperattenuation in the arterial phase and hypo-isoattenuation in the portal and/or delayed phase, or with hypo-isoattenuation in the arterial phase and in the portal and/or delayed phase. Lipiodol CT permitted to recognize 65 nodules (1-5/patient, mean 1.5), namely 15 grade I, 21 grade II, 20 grade III and 9 grade IV. Multiphase CT identified 6 additional nodules in 5 patients, 5 hypervascular and 1 hypovascular, and better assessed the correct morphology and volume of grade I nodules. Only 4 of 6 nodules missed on Lipiodol CT showed oily agent uptake after a new chemoembolization session. Moreover after retreatment, carried out in 6 of 9 patients with grade I uptake (11 nodules in all), it has been found persistence of the grade I pattern in 5 nodules, grade II in 5, and grade III in 1. Lipiodol CT may miss liver nodules and underestimate the volume of nodules with poor uptake. Though Lipiodol CT should still be considered slightly more sensitive than multiphase CT, in the general opinion this technique has

  9. AM363 martensitic stainless steel: A multiphase equation of state

    Science.gov (United States)

    De Lorenzi-Venneri, Giulia; Crockett, Scott D.

    2017-01-01

    A multiphase equation of state for stainless steel AM363 has been developed within the Opensesame approach and has been entered as material 4295 in the LANL-SESAME Library. Three phases were constructed separately: the low pressure martensitic phase, the austenitic phase and the liquid. Room temperature data and the explicit introduction of a magnetic contribution to the free energy determined the martensitic phase, while shock Hugoniot data was used to determine the austenitic phase and the phase boundaries. More experimental data or First Principles calculations would be useful to better characterize the liquid.

  10. Approaching multiphase flows from the perspective of computational fluid dynamics

    International Nuclear Information System (INIS)

    Banas, A.O.

    1992-01-01

    Thermalhydraulic simulation methodologies based on subchannel and porous-medium concepts are briefly reviewed and contrasted with the general approach of Computational Fluid Dynamics (CFD). An outline of the advanced CFD methods for single-phase turbulent flows is followed by a short discussion of the unified formulation of averaged equations for turbulent and multiphase flows. Some of the recent applications of CFD at Chalk River Laboratories are discussed, and the complementary role of CFD with regard to the established thermalhydraulic methods of analysis is indicated. (author). 8 refs

  11. Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation

    KAUST Repository

    Akbulut, Ozge

    2012-08-08

    This paper demonstrates the use of aqueous multiphase systems (MuPSs) as media for rate-zonal centrifugation to separate nanoparticles of different shapes and sizes. The properties of MuPSs do not change with time or during centrifugation; this stability facilitates sample collection after separation. A three-phase system demonstrates the separation of the reaction products (nanorods, nanospheres, and large particles) of a synthesis of gold nanorods, and enriches the nanorods from 48 to 99% in less than ten minutes using a benchtop centrifuge. © 2012 American Chemical Society.

  12. Characterizing the stretch-flangeability of hot rolled multiphase steels

    International Nuclear Information System (INIS)

    Pathak, N.; Butcher, C.; Worswick, M.; Gao, J.

    2013-01-01

    Hole expansion tests are commonly used to characterize the edge stretching limit of a material. Traditionally, a conical punch is used to expand a punched hole until a through-thickness crack appears. However, many automotive stretch flanging operations involve in-plane edge stretching that is best captured with a flat punch. In this paper, hole expansion tests were carried out on two different hot-rolled multiphase steels using both flat and conical punches. The fracture mechanisms for both punch types were investigated using scanning electron microscopy (SEM)

  13. Robust statistics and geochemical data analysis

    International Nuclear Information System (INIS)

    Di, Z.

    1987-01-01

    Advantages of robust procedures over ordinary least-squares procedures in geochemical data analysis is demonstrated using NURE data from the Hot Springs Quadrangle, South Dakota, USA. Robust principal components analysis with 5% multivariate trimming successfully guarded the analysis against perturbations by outliers and increased the number of interpretable factors. Regression with SINE estimates significantly increased the goodness-of-fit of the regression and improved the correspondence of delineated anomalies with known uranium prospects. Because of the ubiquitous existence of outliers in geochemical data, robust statistical procedures are suggested as routine procedures to replace ordinary least-squares procedures

  14. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1985-01-01

    This contract stipulated separate pieces of work to consider mass transport in the far-field of a repository, and more detailed geochemical modelling of the groundwater in the near-field. It was envisaged that the far-field problem would be tackled by numerical solutions to the classical advection-diffusion equation obtained by the finite element method. For the near-field problem the feasibility of coupling existing geochemical equilibrium codes to the three dimensional groundwater flow codes was to be investigated. This report is divided into two sections with one part devoted to each aspect of this contract. (author)

  15. Downhole multiphase metering in wells by means of soft-sensing

    NARCIS (Netherlands)

    Leskens, M.; Kruif, B. de; Belfroid, S.P.C.; Smeulers, J.P.M.; Gryzlov, A.

    2008-01-01

    Multiphase flow meters are indispensable tools for achieving optimal operation and control of wells as these meters deliver real-time information about their performance. For example, multiphase flow meters located downhole can improve the production of multilateral and multizone wells by timely

  16. Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows

    Science.gov (United States)

    2013-08-13

    October 2008 - December 2013 4. TITLE AND SUBTITLE Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows...influence cavity hysteresis behavior. These observations are used to guide improved supercavitating -vehicle analyses including numerical predictions...experiments, and modeling 15. SUBJECT TERMS supercavitation , computational fluid dynamics, multiphase flow 16. SECURITY CLASSIFICATION OF: a

  17. A multiphase series-resonant converter with a new topology and a reduced number of thyristors

    NARCIS (Netherlands)

    Huisman, H.

    1995-01-01

    Multiphase series resonant (SR) power converters provide a flexible way to transform power between a utility grid and a multiphase load or source. The current implementations all suffer from a high component count, which makes the use of these power converters unattractive from an economical point

  18. Geochemical prospect ion results of Treinta y Tres aerial photo

    International Nuclear Information System (INIS)

    Zeegers, H.; Bonnefoy, D.; Garau, M.; Spangenberg, J.

    1981-01-01

    This report shows the geochemical prospect ion results carried out within the framework of the multielemental geochemical strategy. The samples were studied by e spectrometry in the laboratories of Orleans.

  19. Application of GPU to computational multiphase fluid dynamics

    International Nuclear Information System (INIS)

    Nagatake, T; Kunugi, T

    2010-01-01

    The MARS (Multi-interfaces Advection and Reconstruction Solver) [1] is one of the surface volume tracking methods for multi-phase flows. Nowadays, the performance of GPU (Graphics Processing Unit) is much higher than the CPU (Central Processing Unit). In this study, the GPU was applied to the MARS in order to accelerate the computation of multi-phase flows (GPU-MARS), and the performance of the GPU-MARS was discussed. From the performance of the interface tracking method for the analyses of one-directional advection problem, it is found that the computing time of GPU(single GTX280) was around 4 times faster than that of the CPU (Xeon 5040, 4 threads parallelized). From the performance of Poisson Solver by using the algorithm developed in this study, it is found that the performance of the GPU showed around 30 times faster than that of the CPU. Finally, it is confirmed that the GPU showed the large acceleration of the fluid flow computation (GPU-MARS) compared to the CPU. However, it is also found that the double-precision computation of the GPU must perform with very high precision.

  20. Failure Mode and Effect Analysis of Subsea Multiphase Pump Equipment

    Directory of Open Access Journals (Sweden)

    Oluwatoyin Shobowale Kafayat

    2014-07-01

    Full Text Available Finding oil and gas reserves in deep/harsh environment with challenging reservoir and field conditions, subsea multiphase pumping benefits has found its way to provide solutions to these issues. Challenges such as failure issues that are still surging the industry and with the current practice of information hiding, this issues becomes even more difficult to tackle. Although, there are some joint industry projects which are only accessible to its members, still there is a need to have a clear understanding of these equipment groups so as to know which issues to focus attention on. A failure mode and effect analysis (FMEA is a potential first aid in understanding this equipment groups. A survey questionnaire/interview was conducted with the oil and gas operating company and equipment manufacturer based on the literature review. The results indicates that these equipment’s group are similar with its onshore counterpart, but the difference is the robustness built into the equipment internal subsystems for subsea applications. The results from the manufacturer perspectives indicates that Helico-axial multiphase pump have a mean time to failure of more than 10 years, twin-screw and electrical submersible pumps are still struggling with a mean time to failure of less than 5 years.

  1. Multiphase flows in complex geometries: a UQ perspective

    KAUST Repository

    Icardi, Matteo

    2015-01-01

    Nowadays computer simulations are widely used in many multiphase flow applications involving interphases, dispersed particles, and complex geometries. Most of these problems are solved with mixed models composed of fundamental physical laws, rigorous mathematical upscaling, and empirical correlations/closures. This means that classical inference techniques or forward parametric studies, for example, becomes computationally prohibitive and must take into account the physical meaning and constraints of the equations. However mathematical techniques commonly used in Uncertainty Quantification can come to the aid for the (i) modeling, (ii) simulation, and (iii) validation steps. Two relevant applications for environmental, petroleum, and chemical engineering will be presented to highlight these aspects and the importance of bridging the gaps between engineering applications, computational physics and mathematical methods. The first example is related to the mathematical modeling of sub-grid/sub-scale information with Probability Density Function (PDF) models in problems involving flow, mixing, and reaction in random environment. After a short overview of the research field, some connections and similarities with Polynomial Chaos techniques, will be investigated. In the second example, averaged correlations laws and effective parameters for multiphase flow and their statistical fluctuations, will be considered and efficient computational techniques, borrowed from high-dimensional stochastic PDE problems, will be applied. In presence of interfacial flow, where small spatial scales and fast time scales are neglected, the assessment of robustness and predictive capabilities are studied. These illustrative examples are inspired by common problems arising, for example, from the modeling and simulation of turbulent and porous media flows.

  2. Numerical modelling of diesel spray using the Eulerian multiphase approach

    International Nuclear Information System (INIS)

    Vujanović, Milan; Petranović, Zvonimir; Edelbauer, Wilfried; Baleta, Jakov; Duić, Neven

    2015-01-01

    Highlights: • Numerical model for fuel disintegration was presented. • Fuel liquid and vapour were calculated. • Good agreement with experimental data was shown for various combinations of injection and chamber pressure. - Abstract: This research investigates high pressure diesel fuel injection into the combustion chamber by performing computational simulations using the Euler–Eulerian multiphase approach. Six diesel-like conditions were simulated for which the liquid fuel jet was injected into a pressurised inert environment (100% N 2 ) through a 205 μm nozzle hole. The analysis was focused on the liquid jet and vapour penetration, describing spatial and temporal spray evolution. For this purpose, an Eulerian multiphase model was implemented, variations of the sub-model coefficients were performed, and their impact on the spray formation was investigated. The final set of sub-model coefficients was applied to all operating points. Several simulations of high pressure diesel injections (50, 80, and 120 MPa) combined with different chamber pressures (5.4 and 7.2 MPa) were carried out and results were compared to the experimental data. The predicted results share a similar spray cloud shape for all conditions with the different vapour and liquid penetration length. The liquid penetration is shortened with the increase in chamber pressure, whilst the vapour penetration is more pronounced by elevating the injection pressure. Finally, the results showed good agreement when compared to the measured data, and yielded the correct trends for both the liquid and vapour penetrations under different operating conditions

  3. Direct numerical simulation of incompressible multiphase flow with phase change

    Science.gov (United States)

    Lee, Moon Soo; Riaz, Amir; Aute, Vikrant

    2017-09-01

    Simulation of multiphase flow with phase change is challenging because of the potential for unphysical pressure oscillations, spurious velocity fields and mass flux errors across the interface. The resulting numerical errors may become critical when large density contrasts are present. To address these issues, we present a new approach for multiphase flow with phase change that features, (i) a smooth distribution of sharp velocity jumps and mass flux within a narrow region surrounding the interface, (ii) improved mass flux projection from the implicit interface onto the uniform Cartesian grid and (iii) post-advection velocity correction step to ensure accurate velocity divergence in interfacial cells. These new features are implemented in combination with a sharp treatment of the jumps in pressure and temperature gradient. A series of 1-D, 2-D, axisymmetric and 3-D problems are solved to verify the improvements afforded by the new approach. Axisymmetric film boiling results are also presented, which show good qualitative agreement with heat transfer correlations as well as experimental observations of bubble shapes.

  4. Using simulation-optimization techniques to improve multiphase aquifer remediation

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, S.; Pruess, K. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    The T2VOC computer model for simulating the transport of organic chemical contaminants in non-isothermal multiphase systems has been coupled to the ITOUGH2 code which solves parameter optimization problems. This allows one to use linear programming and simulated annealing techniques to solve groundwater management problems, i.e. the optimization of operations for multiphase aquifer remediation. A cost function has to be defined, containing the actual and hypothetical expenses of a cleanup operation which depend - directly or indirectly - on the state variables calculated by T2VOC. Subsequently, the code iteratively determines a remediation strategy (e.g. pumping schedule) which minimizes, for instance, pumping and energy costs, the time for cleanup, and residual contamination. We discuss an illustrative sample problem to discuss potential applications of the code. The study shows that the techniques developed for estimating model parameters can be successfully applied to the solution of remediation management problems. The resulting optimum pumping scheme depends, however, on the formulation of the remediation goals and the relative weighting between individual terms of the cost function.

  5. Multiphase flows in complex geometries: a UQ perspective

    KAUST Repository

    Icardi, Matteo

    2015-01-07

    Nowadays computer simulations are widely used in many multiphase flow applications involving interphases, dispersed particles, and complex geometries. Most of these problems are solved with mixed models composed of fundamental physical laws, rigorous mathematical upscaling, and empirical correlations/closures. This means that classical inference techniques or forward parametric studies, for example, becomes computationally prohibitive and must take into account the physical meaning and constraints of the equations. However mathematical techniques commonly used in Uncertainty Quantification can come to the aid for the (i) modeling, (ii) simulation, and (iii) validation steps. Two relevant applications for environmental, petroleum, and chemical engineering will be presented to highlight these aspects and the importance of bridging the gaps between engineering applications, computational physics and mathematical methods. The first example is related to the mathematical modeling of sub-grid/sub-scale information with Probability Density Function (PDF) models in problems involving flow, mixing, and reaction in random environment. After a short overview of the research field, some connections and similarities with Polynomial Chaos techniques, will be investigated. In the second example, averaged correlations laws and effective parameters for multiphase flow and their statistical fluctuations, will be considered and efficient computational techniques, borrowed from high-dimensional stochastic PDE problems, will be applied. In presence of interfacial flow, where small spatial scales and fast time scales are neglected, the assessment of robustness and predictive capabilities are studied. These illustrative examples are inspired by common problems arising, for example, from the modeling and simulation of turbulent and porous media flows.

  6. Seeking simplicity for the understanding of multiphase flows

    Science.gov (United States)

    Stone, Howard A.

    2017-10-01

    Fluid mechanics is a discipline with rich phenomena, with motions occurring over an enormous range of length scales, and spanning a wide range of laminar and turbulent flows, instabilities, and applications in industry, nature, biology, and medicine. The subfield of complex fluids typically refers to those flows where the complexity is introduced, for example, by the presence of suspended particles, multiple phases, soft boundaries, and electrokinetic effects; several distinct multiphase flows of Newtonian fluids make up the examples in this article. Interfaces play a significant role and modify the flow with feedback that further changes the shapes of the interfaces. I will provide examples of our work highlighting (i) new features of classical instabilities triggered by changes in geometry, (ii) multiphase flows relevant to the design of liquid-infused substrates exhibiting effective slip while retaining the trapped liquid, and (iii) unexpected dynamics in flow at a T-junction. The interplay of experiments and mathematical models and/or simulations is critical to the new understanding developed.

  7. Biphilicity and Superbiphilicity for Wettability Control of Multiphase Heat Transfer

    Science.gov (United States)

    Attinger, Daniel; Betz, Amy Rachel; Schutzius, T. M.; Jenkins, J.; Kim, C.-J.; Megaridis, C. M.

    2012-11-01

    Multiphase energy transport, such as in boiling, suggests contradictory requirements on the wettability of the solid surfaces coming into contact with the working fluid. On the one hand, a hydrophobic wall promotes nucleation. On the other hand, a hydrophilic wall promotes water contact and enhances the critical heat flux. An analogous situation appears in the opposite thermodynamic process, i.e. condensation. These apparently contradictory requirements can be accommodated with biphilic surfaces, which juxtapose hydrophilic and hydrophobic regions. Biphilic surfaces were first manufactured in 1964 by Young and Hummel, who sprayed Teflon drops onto a smooth steel surface: they showed enhanced heat transfer coefficient during boiling of water. Our recent work has revisited the manufacturing of biphilic surfaces using micro- and nanofabrication processes (Betz et al. 2010, Schutzius et al. 2012); for instance, we fabricated the first superbiphilic surfaces, which juxtapose superhydrophobic and superhydrophilic areas. Using these surfaces, we measured significant enhancement during pool boiling of both the heat transfer coefficient and the critical heat flux. This enhanced performance can be explained by the inherent ability of the surfaces to control multiphase flow, decreasing nucleation energies and shaping drops, bubbles and jets, to maximize transport and prevent instabilities.

  8. Black hole feedback in a multiphase interstellar medium

    Science.gov (United States)

    Bourne, Martin A.; Nayakshin, Sergei; Hobbs, Alexander

    2014-07-01

    Ultrafast outflows (UFOs) from supermassive black holes (SMBHs) are thought to regulate the growth of SMBHs and host galaxies, resulting in a number of observational correlations. We present high-resolution numerical simulations of the impact of a thermalized UFO on the ambient gas in the inner part of the host galaxy. Our results depend strongly on whether the gas is homogeneous or clumpy. In the former case all of the ambient gas is driven outward rapidly as expected based on commonly used energy budget arguments, while in the latter the flows of mass and energy de-couple. Carrying most of the energy, the shocked UFO escapes from the bulge via paths of least resistance, taking with it only the low-density phase of the host. Most of the mass is however in the high-density phase, and is affected by the UFO much less strongly, and may even continue to flow inwards. We suggest that the UFO energy leakage through the pores in the multiphase interstellar medium (ISM) may explain why observed SMBHs are so massive despite their overwhelmingly large energy production rates. The multiphase ISM effects reported here are probably under-resolved in cosmological simulations but may be included in prescriptions for active galactic nuclei feedback in future simulations and in semi-analytical models.

  9. Geochemical Processes During Managed Aquifer Recharge With Desalinated Seawater

    Science.gov (United States)

    Ganot, Y.; Holtzman, R.; Weisbrod, N.; Russak, A.; Katz, Y.; Kurtzman, D.

    2018-02-01

    We study geochemical processes along the variably-saturated zone during managed aquifer recharge (MAR) with reverse-osmosis desalinated seawater (DSW). The DSW, post-treated at the desalination plant by calcite dissolution (remineralization) to meet the Israeli water quality standards, is recharged into the Israeli Coastal Aquifer through an infiltration pond. Water quality monitoring during two MAR events using suction cups and wells inside the pond indicates that cation exchange is the dominant subsurface reaction, driven by the high Ca2+ concentration in the post-treated DSW. Stable isotope analysis shows that the shallow groundwater composition is similar to the recharged DSW, except for enrichment of Mg2+, Na+, Ca2+, and HCO3-. A calibrated variably-saturated reactive transport model is used to predict the geochemical evolution during 50 years of MAR for two water quality scenarios: (i) post-treated DSW (current practice) and (ii) soft DSW (lacking the remineralization post-treatment process). The latter scenario was aimed to test soil-aquifer-treatment (SAT) as an alternative post-treatment technique. Both scenarios provide an enrichment of ˜2.5 mg L-1 in Mg2+ due to cation exchange, compared to practically zero Mg2+ currently found in the Israeli DSW. Simulations of the alternative SAT scenario provide Ca2+ and HCO3- remineralization due to calcite dissolution at levels that meet the Israeli standard for DSW. The simulated calcite content reduction in the sediments below the infiltration pond after 50 years of MAR was low (<1%). Our findings suggest that remineralization using SAT for DSW is a potentially sustainable practice at MAR sites overlying calcareous sandy aquifers.

  10. Geochemical processes during managed aquifer recharge with desalinated seawater

    Science.gov (United States)

    Ganot, Y.; Holtzman, R.; Weisbrod, N.; Russak, A.; Katz, Y.; Kurtzman, D.

    2017-12-01

    In this work we study the geochemical processes along the variably-saturated zone during managed aquifer recharge (MAR) with reverse-osmosis desalinated seawater (DSW) to an infiltration pond at the Menashe site, located above the Israeli coastal aquifer. The DSW is post-treated by calcite dissolution (remineralization) in order to meet the Israeli desalinated water quality criteria. Suction cups and monitoring wells inside the pond were used to monitor water quality during two MAR events on 2015 and 2016. Results show that cation exchange is dominant, driven by the high Ca2+ concentration in the post-treated DSW. Stable isotope analysis shows that the composition of the shallow groundwater is similar to the recharged DSW, but with enrichment of Mg2+, Na+, Ca2+ and HCO3-. A calibrated variably-saturated reactive transport model was used to predict the geochemical evolution during 50 years of MAR with two water quality scenarios: post-treated DSW and soft DSW (without post-treatment). The latter scenario was aimed to test soil-aquifer-treatment as an alternative post-treatment technique. In terms of water quality, the results of the two scenarios were found within the range of the desalinated water criteria. Mg2+ enrichment was stable ( 2.5 mg L-1), higher than the zero concentration found in the Israeli DSW. Calcite content reduction was low (<1%) along the variably-saturated profile, after 50 years of MAR. This suggests that using soil-aquifer-treatment as a remineralization technique for DSW is potentially a sustainable practice, which is limited only by the current hydraulic capacity of the Menashe MAR site.

  11. Baseline and premining geochemical characterization of mined sites

    Science.gov (United States)

    Nordstrom, D. Kirk

    2015-01-01

    A rational goal for environmental restoration of new, active, or inactive mine sites would be ‘natural background’ or the environmental conditions that existed before any mining activities or other related anthropogenic activities. In a strictly technical sense, there is no such thing as natural background (or entirely non-anthropogenic) existing today because there is no part of the planet earth that has not had at least some chemical disturbance from anthropogenic activities. Hence, the terms ‘baseline’ and ‘pre-mining’ are preferred to describe these conditions. Baseline conditions are those that existed at the time of the characterization which could be pre-mining, during mining, or post-mining. Protocols for geochemically characterizing pre-mining conditions are not well-documented for sites already mined but there are two approaches that seem most direct and least ambiguous. One is characterization of analog sites along with judicious application of geochemical modeling. The other is reactive-transport modeling (based on careful synoptic sampling with tracer-injection) and subtracting inputs from known mining and mineral processing. Several examples of acidic drainage are described from around the world documenting the range of water compositions produced from pyrite oxidation in the absence of mining. These analog sites provide insight to the processes forming mineralized waters in areas untouched by mining. Natural analog water-chemistry data is compared with the higher metal concentrations, metal fluxes, and weathering rates found in mined areas in the few places where comparisons are possible. The differences are generally 1–3 orders of magnitude higher for acid mine drainage.

  12. Geochemical fractionation of 210Pb in oxic estuarine sediments of Coatzacoalcos River, Gulf of Mexico

    International Nuclear Information System (INIS)

    Ontiveros-Cuadras, J.F.; Ruiz-Fernandez, A.C.; Perez-Bernal, L.H.; Sanchez-Cabeza, J.A.; Universitat Autonoma de Barcelona; Wee-Kwong, L.L.

    2012-01-01

    210 Pb activities were analyzed in surface sediments from the Coatzacoalcos River (Gulf of Mexico) to evaluate its distribution according to sediment grain size and in different geochemical compartments by using sequential extraction techniques. The geochemical fractionation experiments provided compatible results: by using the Tessier's method more than 90% of the 210 Pb activity in the samples was found the residual fraction (primary and secondary minerals) and the remaining ( 210 Pb content was found in comparative amounts in the reactive, the silicate, and the pyrite fractions (accounting together for >80%), and the rest was found in the residual fraction. The grain size fractionation analyses showed that the 210 Pb activities were mostly retained in the clay fraction, accounting up to 60-70% of the 210 Pb total activity in the sediment sample and therefore, it is concluded that the separation of the clay fraction can be useful to improve the analysis of low 210 Pb content sediments for dating purposes. (author)

  13. Geochemical modelling of CO2-water-rock interactions for carbon storage : data requirements and outputs

    International Nuclear Information System (INIS)

    Kirste, D.

    2008-01-01

    A geochemical model was used to predict the short-term and long-term behaviour of carbon dioxide (CO 2 ), formation water, and reservoir mineralogy at a carbon sequestration site. Data requirements for the geochemical model included detailed mineral petrography; formation water chemistry; thermodynamic and kinetic data for mineral phases; and rock and reservoir physical characteristics. The model was used to determine the types of outputs expected for potential CO 2 storage sites and natural analogues. Reaction path modelling was conducted to determine the total reactivity or CO 2 storage capability of the rock by applying static equilibrium and kinetic simulations. Potential product phases were identified using the modelling technique, which also enabled the identification of the chemical evolution of the system. Results of the modelling study demonstrated that changes in porosity and permeability over time should be considered during the site selection process.

  14. Geochemical fingerprints and pebbles zircon geochronology

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 7. Geochemical fingerprints and pebbles zircon geochronology: Implications for the provenance and tectonic setting of Lower Cretaceous sediments in the Zhucheng Basin (Jiaodong peninsula, North China). Jin-Long Ni Jun-Lai Liu Xiao-Ling Tang ...

  15. Kriging - a challenge in geochemical mapping

    Czech Academy of Sciences Publication Activity Database

    Štojdl, J.; Matys Grygar, Tomáš; Elznicová, J.; Popelka, J.; Váchová, T.; Hošek, Michal

    2017-01-01

    Roč. 19, APR (2017) ISSN 1607-7962. [EGU General Assembly 2017. 23.04.2017-28.04.2017, Vienna] Institutional support: RVO:61388980 Keywords : kriging * geochemical mapping Subject RIV: DD - Geochemistry http://meetingorganizer.copernicus.org/EGU2017/EGU2017-3615.pdf

  16. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Chris [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Garg, Rahul [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

  17. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    Energy Technology Data Exchange (ETDEWEB)

    Tulsa Fluid Flow

    2008-08-31

    The developments of fields in deep waters (5000 ft and more) is a common occurrence. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas-oil-and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of the hydrocarbon recovery from design to operation. The recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is very crucial to any multiphase separation technique that is employed either at topside, seabed or bottom-hole to know inlet conditions such as the flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. The overall objective was to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict the flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). The project was conducted in two periods. In Period 1 (four years), gas-oil-water flow in pipes were investigated to understand the fundamental physical mechanisms describing the interaction between the gas-oil-water phases under flowing conditions, and a unified model was developed utilizing a novel modeling approach. A gas-oil-water pipe flow database including field and laboratory data was formed in Period 2 (one year). The database was utilized in model performance demonstration. Period 1 primarily consisted of the development of a unified model and software to predict the gas-oil-water flow, and experimental studies of the gas-oil-water project, including flow behavior description and

  18. Appliance of geochemical engineering in radioactive waste disposal

    International Nuclear Information System (INIS)

    Li Shuang; Zhang Chengjiang; Ni Shijun; Li Kuanliang

    2008-01-01

    The basic foundation of applying geochemical engineering to control environment, common engineering models of disposal radioactive waste and the functions of the engineering barriers are introduced in this paper. The authors take the geochemical engineering barrier materiel research of a radioactive waste repository as an example to explain the appliance of geochemical engineering in the disposal of radioactive waste. And the results show that it can enhance the security of the nuclear waste repository if we use geochemical engineering barrier. (authors)

  19. Aspects of geochemical evolution of the SKB near field in the frame of SR-Site

    International Nuclear Information System (INIS)

    Sena, Clara; Salas, Joaquin; Arcos, David

    2010-09-01

    The concept for the final disposal of high level nuclear waste (HLNW) developed by the Swedish Nuclear Waste Management Company (SKB) entails a multi-barrier system that surrounds the HLNW, which is also known as the near-field. In the near-field, the buffer is initially subject to a high thermal gradient induced by the heat generated by the radioactive decay of the HLNW. During this period, the buffer is also subject to a hydrodynamic pressure induced by the surrounding water saturated rock massif which progressively leads to the saturation of the buffer. After saturation and cooling of the near-field, the interaction of groundwater with the bentonite buffer may result in an evolving distribution of some aqueous species in the bentonite porewater, as well as the redistribution of accessory minerals and the cation exchanger composition in the montmorillonite interlayer. The distribution of aqueous and solid species in the buffer can affect, directly or indirectly, some of the relevant safety function indicators defined by. In this context, the work developed by Arcos et al is revisited in the present work and, based on new data from SKB, additional models are developed for the SR-Site Safety Assessment. The work presented here represents an update of the model conducted within the SR-Can exercise and, therefore, similar simulation cases are developed. Three aspects must be considered regarding the geochemical evolution of the near field: (1) the effect of the thermal period; (2) the processes during the saturation of bentonite; and, (3) the interaction of the water-saturated bentonite with the local groundwater. In this numerical exercise, two types of bentonite are analysed: the MX-80 and the Deponit CA-N. The effect of the thermal period and the water saturation are analysed in a series of one-dimensional radial-symmetric simulations performed using TOUGHREACT which is a reactive transport code that accounts for variably saturated multi-phase flow under non

  20. Aspects of geochemical evolution of the SKB near field in the frame of SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Clara; Salas, Joaquin; Arcos, David (Amphos 21, Barcelona (Spain))

    2010-09-15

    The concept for the final disposal of high level nuclear waste (HLNW) developed by the Swedish Nuclear Waste Management Company (SKB) entails a multi-barrier system that surrounds the HLNW, which is also known as the near-field. In the near-field, the buffer is initially subject to a high thermal gradient induced by the heat generated by the radioactive decay of the HLNW. During this period, the buffer is also subject to a hydrodynamic pressure induced by the surrounding water saturated rock massif which progressively leads to the saturation of the buffer. After saturation and cooling of the near-field, the interaction of groundwater with the bentonite buffer may result in an evolving distribution of some aqueous species in the bentonite porewater, as well as the redistribution of accessory minerals and the cation exchanger composition in the montmorillonite interlayer. The distribution of aqueous and solid species in the buffer can affect, directly or indirectly, some of the relevant safety function indicators defined by. In this context, the work developed by Arcos et al is revisited in the present work and, based on new data from SKB, additional models are developed for the SR-Site Safety Assessment. The work presented here represents an update of the model conducted within the SR-Can exercise and, therefore, similar simulation cases are developed. Three aspects must be considered regarding the geochemical evolution of the near field: (1) the effect of the thermal period; (2) the processes during the saturation of bentonite; and, (3) the interaction of the water-saturated bentonite with the local groundwater. In this numerical exercise, two types of bentonite are analysed: the MX-80 and the Deponit CA-N. The effect of the thermal period and the water saturation are analysed in a series of one-dimensional radial-symmetric simulations performed using TOUGHREACT which is a reactive transport code that accounts for variably saturated multi-phase flow under non

  1. Proceedings of 13. International Geochemical Exploration Symposium. 2. Brazilian Geochemical Congress

    International Nuclear Information System (INIS)

    1989-01-01

    Some works about geochemistry are presented, including themes about geochemical exploration, lithogeochemistry and isotope geochemistry, environmental geochemistry, analyical geochemistry, geochemistry of carbonatites and rare earth elements and organic geochemistry. (C.G.C.) [pt

  2. Alaska Geochemical Database (AGDB)-Geochemical data for rock, sediment, soil, mineral, and concentrate sample media

    Science.gov (United States)

    Granitto, Matthew; Bailey, Elizabeth A.; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.

    2011-01-01

    The Alaska Geochemical Database (AGDB) was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This Microsoft Access database serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed in USGS laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects from 1962 to 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy mineral concentrate samples are included in this database. The AGDB includes historical geochemical data originally archived in the USGS Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the USGS PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all USGS geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest USGS geochemical databases, or were once excluded for programmatic reasons

  3. Geochemical modelling: what phenomena are missing

    International Nuclear Information System (INIS)

    Jacquier, P.

    1989-12-01

    In the framework of safety assessment of radioactive waste disposal, retention phenomena are usually taken into account by the Kd concept. It is well recognized that this concept is not enough for safety assessment models, because of the several and strong assumptions which are involved in this kind of representation. One way to have a better representation of the retention phenomena, is to substitute for this Kd concept an explicit description of geochemical phenomena and then couple transport codes with geochemical codes in a fully or a two-step procedure. We use currently such codes, but the scope of this paper is to display the limits today of the geochemical modelling in connection with sites analysis for deep disposal. In this paper, we intend to give an overview of phenomena which are missing in the geochemical models, or which are not completely introduced in the models. We can distinguish, on one hand phenomena for which modelling concepts exist such as adsorption/desorption and, on the other hand, phenomena for which modelling concepts do not exist for the moment such as colloids, and complexation by polyelectrolyte solutions (organics). Moreover we have to take care of very low concentrations of radionuclides, which can be expected from the leaching processes in the repository. Under those conditions, some reactions may not occur. After a critical review of the involved phenomena, we intend to stress the main directions of the wishful evolution of the geochemical modelling. This evolution should improve substantially the quality of the above-mentioned site assessments

  4. Geochemical mapping study of Panjang island

    International Nuclear Information System (INIS)

    Sutisna; Sumardjo

    2010-01-01

    Impact of industrial and regional development are not only related to an improvement of socio-economic, but also to an environmental conservation and sustainable. This impact could be observed on a change of geochemical mapping before and after an operational of the industry. In the relation with a regional development and resources utilization, the geochemical mapping have been done in the aim to know a resources and an elemental distribution at Panjang island. In this research, ko-Instrumental Neutron Activation Analysis (k_0-INAA) have been applied in an elemental quantification on the geochemical mapping. Pencuplikan of geochemical sample have been carried out by using a grid systematic method with a sample density of about 10 sample per square kilometre involved 85 pencuplikan point. The geochemical sample of sediment and soil have been provided as a dry weight of 100 mesh. Internal quality control have done by using a number of Standard Reference Materials obtained from US. Geological Survey. Fifteen elements of Sc, Co, In, Rb, Mo, Ba, Ce, Nd, Eu, La, Yb, Th, U, lr and Hf contained in standard materials have been evaluated. The analysis result show that a relative standard deviation less than 11 %, except for Mo (13 %) and lr (26 %). Fourteen elements of Al, Br, Ca, Co, Eu, Fe, La, U, Na, Ce, Mn, As, Sc and Th have been mapped and presented in this paper. The major elements of Ca, Al and Fe, and minor elements of Mn, U and Sc are distributed at all region. The lanthanide elements of La, Ce and Eu have vary concentration and could be found at the middle to the north of the island. (author)

  5. Geochemical baseline studies of soil in Finland

    Science.gov (United States)

    Pihlaja, Jouni

    2017-04-01

    The soil element concentrations regionally vary a lot in Finland. Mostly this is caused by the different bedrock types, which are reflected in the soil qualities. Geological Survey of Finland (GTK) is carrying out geochemical baseline studies in Finland. In the previous phase, the research is focusing on urban areas and mine environments. The information can, for example, be used to determine the need for soil remediation, to assess environmental impacts or to measure the natural state of soil in industrial areas or mine districts. The field work is done by taking soil samples, typically at depth between 0-10 cm. Sampling sites are chosen to represent the most vulnerable areas when thinking of human impacts by possible toxic soil element contents: playgrounds, day-care centers, schools, parks and residential areas. In the mine districts the samples are taken from the areas locating outside the airborne dust effected areas. Element contents of the soil samples are then analyzed with ICP-AES and ICP-MS, Hg with CV-AAS. The results of the geochemical baseline studies are published in the Finnish national geochemical baseline database (TAPIR). The geochemical baseline map service is free for all users via internet browser. Through this map service it is possible to calculate regional soil baseline values using geochemical data stored in the map service database. Baseline data for 17 elements in total is provided in the map service and it can be viewed on the GTK's web pages (http://gtkdata.gtk.fi/Tapir/indexEN.html).

  6. Alligator Rivers Analogue project. Geochemical Data Bases

    International Nuclear Information System (INIS)

    Bennett, D.G.; Read, D.

    1992-01-01

    The Koongarra uranium deposit in the Northern Territory of Australia is being studied to evaluate the processes involved in the geochemical alteration of the ore body and the formation of the uranium dispersion fan. A broad range of research is being undertaken into the geochemistry and hydrology of the site with the aim of understanding the transport of radionuclides through the system. During the project a range of geochemical and hydrogeochemical models have been developed to account for measured data from the site and with which to predict site evolution. The majority of these models are based on the premise of thermodynamic chemical equilibrium and employ fundamental thermodynamic data to characterise the chemistry of the system. From the differences which exist between the thermodynamic data bases (Appendices I and II) it is possible to gain a view of the level of uncertainty associated with thermodynamic data in each set of calculations. This report gives a brief introduction to the geochemical processes underlying the models, and details the equations used to quantify the more common of these processes (e.g. aqueous speciation and mineral solubility). A description is given of the computer codes (EQ3/6, PHREEQE, MINTEQ) most commonly used during the project for geochemical modelling. Their key features are highlighted and comparisons made. It is concluded that the degree of uncertainty in geochemical modelling studies arising as a result of using one code rather than another is relatively insignificant when compared to that related to differences in the underlying data bases. 73 refs., 3 figs

  7. Geochemical and numerical modelling of interactions between solid solutions and an aqueous solution. Extension of a reactive transport computer code called Archimede and application to reservoirs diagenesis; Modelisation geochimique et numerique des interactions entre des solutions solides et une solution aqueuse: extension du logiciel de reaction-transport archimede et application a la diagenese des reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nourtier-Mazauric, E.

    2003-03-15

    This thesis presents a thermodynamic and kinetic model of interactions between a fluid and ideal solid solutions represented by several end-members. The reaction between a solid solution and the aqueous solution results from the competition between the stoichiometric dissolution of the initial solid solution and the co-precipitation of the least soluble solid solution in the fluid at considered time. This model was implemented in ARCHIMEDE, a computer code of reactive transport in porous media, then applied to various examples. In the case of binary solid solutions, a graphical method allowed to determine the compositions of the precipitating solid solutions, with the aid of the end-member chemical potentials. The obtained program could be used to notably model the diagenesis of clayey or carbonated oil reservoirs, or the ground pollutant dispersion. (author)

  8. The reactivity meter and core reactivity

    International Nuclear Information System (INIS)

    Siltanen, P.

    1999-01-01

    This paper discussed in depth the point kinetic equations and the characteristics of the point kinetic reactivity meter, particularly for large negative reactivities. From a given input signal representing the neutron flux seen by a detector, the meter computes a value of reactivity in dollars (ρ/β), based on inverse point kinetics. The prompt jump point of view is emphasised. (Author)

  9. Modeling multicomponent ionic transport in groundwater with IPhreeqc coupling: Electrostatic interactions and geochemical reactions in homogeneous and heterogeneous domains

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2016-01-01

    is coupled with the geochemical code PHREEQC-3 by utilizing the IPhreeqc module, thus enabling to perform the geochemical calculations included in the PHREEQC's reaction package. The multicomponent reactive transport code is benchmarked with different 1-D and 2-D transport problems. Successively...... the electrostatic interactions during transport of charged ions in physically and chemically heterogeneous porous media. The modeling approach is based on the local charge balance and on the description of compound-specific and spatially variable diffusive/dispersive fluxes. The multicomponent ionic transport code......, conservative and reactive transport examples are presented to demonstrate the capability of the proposed model to simulate transport of charged species in heterogeneous porous media with spatially variable physical and chemical properties. The results reveal that the Coulombic cross-coupling between dispersive...

  10. On the Grand Challenges in Physical Petrology: the Multiphase Crossroads

    Science.gov (United States)

    Bergantz, G. W.

    2014-12-01

    Rapid progress in experimental, micro-analytical and textural analysis at the crystal scale has produced an unprecedented record of magmatic processes. However an obstacle to further progress is the lack of understanding of how mass, energy and momentum flux associated with crystal-rich, open-system events produces identifiable outcomes. Hence developing a physically-based understanding of magmatic systems linking micro-scale petrological observations with a physical template operating at the macro-scale presents a so-called "Grand Challenge." The essence of this challenge is that magmatic systems have characteristic length and feedback scales between those accessible by classical continuum and discrete methods. It has become increasingly obvious that the old-school continuum methods have limited resolution and power of explanation for multiphase (real) magma dynamics. This is, in part, because in crystal-rich systems the deformation is non-affine, and so the concept of constitutive behavior is less applicable and likely not even relevant, especially if one is interested in the emergent character of micro-scale processes. One expression of this is the cottage industry of proposing viscosity laws for magmas, which serves as "blunt force" de facto corrections for what is intrinsically multiphase behavior. Even in more fluid-rich systems many of these laws are not suitable for use in the very transport theories they aim to support. The alternative approach is the discrete method, where multiphase interactions are explicitly resolved. This is a daunting prospect given the numbers of crystals in magmas. But perhaps all crystals don't need to be modeled. I will demonstrate how discrete methods can recover critical state behavior, resolve crystal migration, the onset of visco-elastic behavior such as melt-present shear bands which sets the large-scale mixing volumes, some of the general morpho-dynamics that underlies purported rheological models, and transient controls on

  11. Predictive geochemical mapping using environmental correlation

    International Nuclear Information System (INIS)

    Wilford, John; Caritat, Patrice de; Bui, Elisabeth

    2016-01-01

    The distribution of chemical elements at and near the Earth's surface, the so-called critical zone, is complex and reflects the geochemistry and mineralogy of the original substrate modified by environmental factors that include physical, chemical and biological processes over time. Geochemical data typically is illustrated in the form of plan view maps or vertical cross-sections, where the composition of regolith, soil, bedrock or any other material is represented. These are primarily point observations that frequently are interpolated to produce rasters of element distributions. Here we propose the application of environmental or covariate regression modelling to predict and better understand the controls on major and trace element geochemistry within the regolith. Available environmental covariate datasets (raster or vector) representing factors influencing regolith or soil composition are intersected with the geochemical point data in a spatial statistical correlation model to develop a system of multiple linear correlations. The spatial resolution of the environmental covariates, which typically is much finer (e.g. ∼90 m pixel) than that of geochemical surveys (e.g. 1 sample per 10-10,000 km 2 ), carries over to the predictions. Therefore the derived predictive models of element concentrations take the form of continuous geochemical landscape representations that are potentially much more informative than geostatistical interpolations. Environmental correlation is applied to the Sir Samuel 1:250,000 scale map sheet in Western Australia to produce distribution models of individual elements describing the geochemical composition of the regolith and exposed bedrock. As an example we model the distribution of two elements – chromium and sodium. We show that the environmental correlation approach generates high resolution predictive maps that are statistically more accurate and effective than ordinary kriging and inverse distance weighting interpolation

  12. Multiphase CFD simulation of a solid bowl centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Romani Fernandez, X.; Nirschl, H. [Universitaet Karlsruhe, Institut fuer MVM, Karlsruhe (Germany)

    2009-05-15

    This study presents some results from the numerical simulation of the flow in an industrial solid bowl centrifuge used for particle separation in industrial fluid processing. The computational fluid dynamics (CFD) software Fluent was used to simulate this multiphase flow. Simplified two-dimensional and three-dimensional geometries were built and meshed from the real centrifuge geometry. The CFD results show a boundary layer of axially fast moving fluid at the gas-liquid interface. Below this layer there is a thin recirculation. The obtained tangential velocity values are lower than the ones for the rigid-body motion. Also, the trajectories of the solid particles are evaluated. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  13. Design of multi-phase dynamic chemical networks

    Science.gov (United States)

    Chen, Chenrui; Tan, Junjun; Hsieh, Ming-Chien; Pan, Ting; Goodwin, Jay T.; Mehta, Anil K.; Grover, Martha A.; Lynn, David G.

    2017-08-01

    Template-directed polymerization reactions enable the accurate storage and processing of nature's biopolymer information. This mutualistic relationship of nucleic acids and proteins, a network known as life's central dogma, is now marvellously complex, and the progressive steps necessary for creating the initial sequence and chain-length-specific polymer templates are lost to time. Here we design and construct dynamic polymerization networks that exploit metastable prion cross-β phases. Mixed-phase environments have been used for constructing synthetic polymers, but these dynamic phases emerge naturally from the growing peptide oligomers and create environments suitable both to nucleate assembly and select for ordered templates. The resulting templates direct the amplification of a phase containing only chain-length-specific peptide-like oligomers. Such multi-phase biopolymer dynamics reveal pathways for the emergence, self-selection and amplification of chain-length- and possibly sequence-specific biopolymers.

  14. 4. Workshop - Measurement techniques of stationary and transient multiphase flow

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M. (ed.)

    2001-05-01

    In November 2000, the 4th Workshop on Measurement Techniques for Stationary and Transient Multiphase Flows took place in Rossendorf. Three previous workshops of this series were national meetings; this time participants from different countries took part. The programme comprised 14 oral presentations, 9 of which are included in these proceedings in full length. A special highlight of the meeting was the main lecture ''Ultrasonic doppler method for bubbly flow measurement'' of Professor Masanori Aritomi, Dr. Hiroshige Kikura and Dr. Yumiko Suzuki. The workshop again dealt with high-resolution phase distribution and phase velocity measurement techniques based on electrical conductivity, ultrasound, laser light and high-speed cinematography. A number of presentations were dedicated to the application of wire-mesh sensors developed by FZR for different applications used by the Technical Universities of Delft and Munich and the Tokyo Institute of Technology. (orig.)

  15. Universality Results for Multi-phase Hele-Shaw Flows

    Science.gov (United States)

    Daripa, Prabir

    2013-03-01

    Saffman-Taylor instability is a well known viscosity driven instability of an interface separating two immiscible fluids. We study linear stability of displacement processes in a Hele-Shaw cell involving an arbitrary number of immiscible fluid phases. This is a problem involving many interfaces. Universal stability results have been obtained for this multi-phase immiscible flow in the sense that the results hold for arbitrary number of interfaces. These stability results have been applied to design displacement processes that are considerably less unstable than the pure Saffman-Taylor case. In particular, we derive universal formula which gives specific values of the viscosities of the fluid layers corresponding to smallest unstable band. Other similar universal results will also be presented. The talk is based on the following paper. This work was supported by the Qatar National Research Fund (a member of The Qatar Foundation).

  16. Segmented motor drive - with multi-phase induction motor

    DEFF Research Database (Denmark)

    Bendixen, Flemming Buus

    of the induction motor is set up. The model is able to calculate dynamical electric, magnetic and mechanic state variables, but initially it is used to calculate static characteristics in motors with different number of phases and different voltage supply shapes. This analysis show i.e. that the efficiency....... The multi-phase motor is selected for further analysis. The project is limited to examine if increasing the number of phases can improve the characteristics for induction motor drives. In the literature it is demonstrated that torque production in a six-phase motor can be increased, if a 3rd harmonic......This PhD project commences in modulation of motor drives, i.e. having the advantage of reducing the number of variants and improves the system reliability at error situations. Four different motor drive topologies with modular construction as common denominator are compared on a general level...

  17. Multi-phase outflows as probes of AGN accretion history

    Science.gov (United States)

    Nardini, Emanuele; Zubovas, Kastytis

    2018-05-01

    Powerful outflows with a broad range of properties (such as velocity, ionization, radial scale and mass loss rate) represent a key feature of active galactic nuclei (AGN), even more so since they have been simultaneously revealed also in individual objects. Here we revisit in a simple analytical framework the recent remarkable cases of two ultraluminous infrared quasars, IRAS F11119+3257 and Mrk 231, which allow us to investigate the physical connection between multi-phase AGN outflows across the ladder of distance from the central supermassive black hole (SMBH). We argue that any major deviations from the standard outflow propagation models might encode unique information on the past SMBH accretion history, and briefly discuss how this could help address some controversial aspects of the current picture of AGN feedback.

  18. Quantitative multiphase analysis of archaeological bronzes by neutron diffraction

    CERN Document Server

    Siano, S; Celli, M; Pini, R; Salimbeni, R; Zoppi, M; Kockelmann, W A; Iozzo, M; Miccio, M; Moze, O

    2002-01-01

    In this paper, we report the first investigation on the potentials of neutron diffraction to characterize archaeological bronze artifacts. The preliminary feasibility of phase and structural analysis was demonstrated on standardised specimens with a typical bronze alloy composition. These were realised through different hardening and annealing cycles, simulating possible ancient working techniques. The Bragg peak widths that resulted were strictly dependent on the working treatment, thus providing an important analytical element to investigate ancient making techniques. The diagnostic criteria developed on the standardised specimens were then applied to study two Etruscan museum pieces. Quantitative multiphase analysis by Rietveld refinement of the diffraction patterns was successfully demonstrated. Furthermore, the analysis of patterns associated with different artifact elements also yielded evidence for some peculiar perspective of the neutron diffraction diagnostics in archeometric applications. (orig.)

  19. A programmable CCD driver circuit for multiphase CCD operation

    International Nuclear Information System (INIS)

    Ewin, A.J.; Reed, K.V.

    1989-01-01

    A programmable CCD driver circuit was designed to drive CCD's in multiphased modes. The purpose of the drive electronics was to operate developmental CCD imaging arrays for NASA's Moderate Resolution Imaging Spectrometer - Tiltable (MODIS-T). Five prototype arrays were designed. Valid's Graphics Editor (GED) was used to design the driver. With this driver design, any of the five arrays can be readout. Designing the driver with GED allowed functional simulation, timing verification, and certain packaging analyses to be done on the design before fabrication. The driver verified its function with the master clock running up to 10 MHz. This suggests a maximum rate of 400 Kpixels/sec. Timing and packaging parameters were verified. the design uses 54 TTL component chips

  20. FEM Modeling of Crack Propagation in a Model Multiphase Alloy

    Institute of Scientific and Technical Information of China (English)

    Lihe QIAN; Seishi NISHIDO; Hiroyuki TODA; Tosliro KOBAYASHI

    2006-01-01

    In this paper, several widely applied fracture criteria were first numerically examined and the crack-tip-region Jintegral criterion was confirmed to be more applicable to predict fracture angle in an elastic-plastic multiphase material. Then, the crack propagation in an idealized dendritic two-phase Al-7%Si alloy was modeled using an elastic-plastic finite element method. The variation of crack growth driving force with crack extension was also demonstrated. It is found that the crack path is significantly influenced by the presence of α-phase near the crack tip, and the crack growth driving force varies drastically from place to place. Lastly, the simulated fracture path in the two-phase model alloy was compared with the experimentally observed fracture path.

  1. Cesium incorporation in hollandite-rich multiphasic ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Tumurugoti, P.; Clark, B.M. [Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred University, Alfred, NY 14802 (United States); Edwards, D.J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Amoroso, Jake [Savannah River National Laboratory, Aiken, SC 29808 (United States); Sundaram, S.K. [Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred University, Alfred, NY 14802 (United States)

    2017-02-15

    Hollandite-rich multiphase waste form compositions processed by melt-solidification and spark plasma sintering (SPS) were characterized, compared, and validated for nuclear waste incorporation. Phase identification by x-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) confirmed hollandite as the major phase present in these samples along with perovskite, pyrochlore and zirconolite. Distribution of selected elements observed by wavelength dispersive spectroscopy (WDS) maps indicated that Cs formed a secondary phase during SPS processing, which was considered undesirable. On the other hand, Cs partitioned into the hollandite phase in melt-processed samples. Further analysis of hollandite structure in melt-processed composition by selected area electron diffraction (SAED) revealed ordered arrangement of tunnel ions (Ba/Cs) and vacancies, suggesting efficient Cs incorporation into the lattice.

  2. RF sensor for multiphase flow measurement through an oil pipeline

    Science.gov (United States)

    Wylie, S. R.; Shaw, A.; Al-Shamma'a, A. I.

    2006-08-01

    We have developed, in conjunction with Solartron ISA, an electromagnetic cavity resonator based sensor for multiphase flow measurement through an oil pipeline. This sensor is non-intrusive and transmits low power (10 mW) radio frequencies (RF) in the range of 100-350 MHz and detects the pipeline contents using resonant peaks captured instantaneously. The multiple resonances from each captured RF spectrum are analysed to determine the phase fractions in the pipeline. An industrial version of the sensor for a 102 mm (4 inch) diameter pipe has been constructed and results from this sensor are compared to those given by simulations performed using the electromagnetic high frequency structure simulator software package HFSS. This paper was presented at the 13th International Conference on Sensors and held in Chatham, Kent, on 6-7 September 2005.

  3. Current and Voltage Mode Multiphase Sinusoidal Oscillators Using CBTAs

    Directory of Open Access Journals (Sweden)

    M. Sagbas

    2013-04-01

    Full Text Available Current-mode (CM and voltage-mode (VM multiphase sinusoidal oscillator (MSO structures using current backward transconductance amplifier (CBTA are proposed. The proposed oscillators can generate n current or voltage signals (n being even or odd equally spaced in phase. n+1 CBTAs, n grounded capacitors and a grounded resistor are used for nth-state oscillator. The oscillation frequency can be independently controlled through transconductance (gm of the CBTAs which are adjustable via their bias currents. The effects caused by the non-ideality of the CBTA on the oscillation frequency and condition have been analyzed. The performance of the proposed circuits is demonstrated on third-stage and fifth-stage MSOs by using PSPICE simulations based on the 0.25 µm TSMC level-7 CMOS technology parameters.

  4. 4. Workshop - Measurement techniques of stationary and transient multiphase flow

    International Nuclear Information System (INIS)

    Prasser, H.M.

    2001-05-01

    In November 2000, the 4th Workshop on Measurement Techniques for Stationary and Transient Multiphase Flows took place in Rossendorf. Three previous workshops of this series were national meetings; this time participants from different countries took part. The programme comprised 14 oral presentations, 9 of which are included in these proceedings in full length. A special highlight of the meeting was the main lecture ''Ultrasonic doppler method for bubbly flow measurement'' of Professor Masanori Aritomi, Dr. Hiroshige Kikura and Dr. Yumiko Suzuki. The workshop again dealt with high-resolution phase distribution and phase velocity measurement techniques based on electrical conductivity, ultrasound, laser light and high-speed cinematography. A number of presentations were dedicated to the application of wire-mesh sensors developed by FZR for different applications used by the Technical Universities of Delft and Munich and the Tokyo Institute of Technology. (orig.)

  5. Thermodynamic framework for discrete optimal control in multiphase flow systems

    Science.gov (United States)

    Sieniutycz, Stanislaw

    1999-08-01

    Bellman's method of dynamic programming is used to synthesize diverse optimization approaches to active (work producing) and inactive (entropy generating) multiphase flow systems. Thermal machines, optimally controlled unit operations, nonlinear heat conduction, spontaneous relaxation processes, and self-propagating wave fronts are all shown to satisfy a discrete Hamilton-Jacobi-Bellman equation and a corresponding discrete optimization algorithm of Pontryagin's type, with the maximum principle for a Hamiltonian. The extremal structures are always canonical. A common unifying criterion is set for all considered systems, which is the criterion of a minimum generated entropy. It is shown that constraints can modify the entropy functionals in a different way for each group of the processes considered; thus the resulting structures of these functionals may differ significantly. Practical conclusions are formulated regarding the energy savings and energy policy in optimally controlled systems.

  6. Microstructural modelling of nuclear graphite using multi-phase models

    International Nuclear Information System (INIS)

    Berre, C.; Fok, S.L.; Marsden, B.J.; Mummery, P.M.; Marrow, T.J.; Neighbour, G.B.

    2008-01-01

    This paper presents a new modelling technique using three-dimensional multi-phase finite element models in which meshes representing the microstructure of thermally oxidised nuclear graphite were generated from X-ray micro-tomography images. The density of the material was related to the image greyscale using Beer-Lambert's law, and multiple phases could thus be defined. The local elastic and non-linear properties of each phase were defined as a function of density and changes in Young's modulus, tensile and compressive strength with thermal oxidation were calculated. Numerical predictions compared well with experimental data and with other numerical results obtained using two-phase models. These models were found to be more representative of the actual microstructure of the scanned material than two-phase models and, possibly because of pore closure occurring during compression, compressive tests were also predicted to be less sensitive to the microstructure geometry than tensile tests

  7. Linear Power-Flow Models in Multiphase Distribution Networks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Andrey; Dall' Anese, Emiliano

    2017-05-26

    This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- from advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.

  8. Insitu multiphase fluid experiments in hydrothermal carbon nanotubes

    International Nuclear Information System (INIS)

    Gogotsi, Yury; Libera, Joseph A.; Guevenc -Yazicioglu, Almila; Megaridis, Constantine M.

    2001-01-01

    Hydrothermal multiwall closed carbon nanotubes are shown to contain an encapsulated multiphase aqueous fluid, thus offering an attractive test platform for unique in situ nanofluidic experiments in the vacuum of a transmission electron microscope. The excellent wettability of the graphitic inner tube walls by the aqueous liquid and the mobility of this liquid in the nanotube channels are observed. Complex interface dynamic behavior is induced by means of electron irradiation. Strong atomic-scale interactions between the entrapped liquid phase and the wetted terminated graphite layers are revealed by means of high-resolution electron microscopy. The documented phenomena in this study demonstrate the potential of implementing such tubes in future nanofluidic devices. Copyright 2001 American Institute of Physics

  9. Application of cluster analysis to geochemical compositional data for identifying ore-related geochemical anomalies

    Science.gov (United States)

    Zhou, Shuguang; Zhou, Kefa; Wang, Jinlin; Yang, Genfang; Wang, Shanshan

    2017-12-01

    Cluster analysis is a well-known technique that is used to analyze various types of data. In this study, cluster analysis is applied to geochemical data that describe 1444 stream sediment samples collected in northwestern Xinjiang with a sample spacing of approximately 2 km. Three algorithms (the hierarchical, k-means, and fuzzy c-means algorithms) and six data transformation methods (the z-score standardization, ZST; the logarithmic transformation, LT; the additive log-ratio transformation, ALT; the centered log-ratio transformation, CLT; the isometric log-ratio transformation, ILT; and no transformation, NT) are compared in terms of their effects on the cluster analysis of the geochemical compositional data. The study shows that, on the one hand, the ZST does not affect the results of column- or variable-based (R-type) cluster analysis, whereas the other methods, including the LT, the ALT, and the CLT, have substantial effects on the results. On the other hand, the results of the row- or observation-based (Q-type) cluster analysis obtained from the geochemical data after applying NT and the ZST are relatively poor. However, we derive some improved results from the geochemical data after applying the CLT, the ILT, the LT, and the ALT. Moreover, the k-means and fuzzy c-means clustering algorithms are more reliable than the hierarchical algorithm when they are used to cluster the geochemical data. We apply cluster analysis to the geochemical data to explore for Au deposits within the study area, and we obtain a good correlation between the results retrieved by combining the CLT or the ILT with the k-means or fuzzy c-means algorithms and the potential zones of Au mineralization. Therefore, we suggest that the combination of the CLT or the ILT with the k-means or fuzzy c-means algorithms is an effective tool to identify potential zones of mineralization from geochemical data.

  10. Damage mechanisms and metallic materials development in multiphase flow

    International Nuclear Information System (INIS)

    Zheng, Yugui; Liu, Wei; Yao, Zhiming; Ke, Wei

    2002-01-01

    The investigation on the synergistic effects among corrosion, slurry erosion and cavitation erosion has special significance for hydraulic turbines operated in Yangtze River and Yellow River where the high concentration solid particles exist in water. Two typical metallic materials i.e. Cr-Mn-N stainless steel and Ni-Ti shapememory-alloy, and two typical materials used for hydraulic turbines 20SiMn and 0Cr13Ni5Mo as compared materials were selected in order to investigate the roles of work-hardening ability and martensitic transformation as well as pseudoelastics in damage mechanism in multiphase flow. Both modified rotating disk rig and ultrasonic vibration facility were used to simulate the possible damage mechanism of materials in multiphase flow. The effects of corrosion on cavitation erosion were investigated through adding 3wt% NaCl. The degradation mechanism was analyzed by electrochemical test, SEM observation, hardness and roughness measurement. The results showed that there was a strong synergistic interaction among electrochemical corrosion, slurry erosion and cavitation erosion for 20SiMn in liquid-solid two-phase medium. In contrast, corrosion played little role for 0Cr13Ni5Mo. Cr-Mn-N stainless steel with high Mn content showed better resistance to cavitation erosion and slurry erosion than 0Cr13Ni5Mo, which was mainly due to its good work-hardening ability as well as strain-induced martensite transformation. The cavitation micro-cracks for Cr-Mn-N stainless steel were parallel to the specimen surface in contrast with 0Cr13Ni5Mo whose micro-cracks were perpendicular to the surface. Ni-Ti alloy with pseudoelasticity showed excellent resistance to combined interaction of cavitation erosion and slurry erosion

  11. Uranium geochemical exploration in northwestern Luzon

    International Nuclear Information System (INIS)

    Santos, G. Jr.; Fernandez, L.; Ogena, M.; Tauli, G.

    1980-01-01

    A reconnaissance geochemical stream water and sediment survey which was conducted in northwestern Luzon was able to detect ten (10) uranium anomalous areas. These anomalous areas are located along a north-south trending zone of Miocene marine clastics and sedimentary rocks with tuffaceous sediment intercalations. In general, northwest Luzon has low radioactivity except for two anomalous areas which have 3 to 6 times background radioactivity. Radon anomalies occur in sparsely scattered locations. The anomalous zones appear to be related to major north-south faults and secondary northeast-southwest trending structures. Geochemical correlations between uranium and other elements such as copper, lead, zinc, manganese, silver, cobalt and nickel are generally very poor. (author)

  12. Multiphase flow analysis using population balance modeling bubbles, drops and particles

    CERN Document Server

    Yeoh, Guan Heng; Tu, Jiyuan

    2013-01-01

    Written by leading multiphase flow and CFD experts, this book enables engineers and researchers to understand the use of PBM and CFD frameworks. Population balance approaches can now be used in conjunction with CFD, effectively driving more efficient and effective multiphase flow processes. Engineers familiar with standard CFD software, including ANSYS-CFX and ANSYS-Fluent, will be able to use the tools and approaches presented in this book in the effective research, modeling and control of multiphase flow problems. Builds a complete understanding of the theory behind the

  13. Development and application of a fully implicit fluid dynamics code for multiphase flow

    International Nuclear Information System (INIS)

    Morii, Tadashi; Ogawa, Yumi

    1996-01-01

    Multiphase flow frequently occurs in a progression of accidents of nuclear reactor severe core damage. The CHAMPAGNE code has been developed to analyze thermohydraulic behavior of multiphase and multicomponent fluid, which requires for its characterization more than one set of velocities, temperatures, masses per unit volume, and so forth at each location in the calculation domain. Calculations of multiphase flow often show physical and numerical instability. The effect of numerical stabilization obtained by the upwind differencing and the fully implicit techniques gives one a convergent solution more easily than other techniques. Several results calculated by the CHAMPAGNE code are explained

  14. Geochemical approach to evaluate deforest of mangroves

    OpenAIRE

    Ishiga, Hiroaki; Diallo, Ibrahima M'bemba; Bah Mamadou Lamine Malick,; Ngulimi. Faustine Miguta,; Magai. Paschal Justin,; Shati Samwel Stanley,

    2016-01-01

    Processes of mangrove deforest related human activities were examined. To evaluate changes of soil feature, multielements geochemical compositions of mangrove muds and soils of deforest were analyzed. To describe present situation of the mangrove, Conakry in Guinea, Dar es Salaam in Tanzania, Sundarbans of Bangladesh and Nago in Okinawa of Japan were selected. Soil samples of the forests were evaluated enrichment of biologically concentrated heavy metals such as Zn, Cu and Fe, and TS (total s...

  15. Geochemical indicators of gold ore fields

    International Nuclear Information System (INIS)

    Shcherbakov, Yu.G.

    1995-01-01

    The principles of selection of indicators for genetic reconstructions and prognostic valuations of gold mineralization of diverse morphological and geochemical types have been substantiated. The neutron-activation analysis with radiochemical separation and detection limit of 1-10 -8 %, instrumental neutron-activation analysis and atomic-absorption analysis are the main methods of determination of gold low contents in the rocks, as well as diverse elements, including transition, rare earth elements and tellurium, in gold. 50 refs.; 1 fig.; 3 tabs

  16. Synthesizing Earth's geochemical data for hydrogeochemical analysis

    Science.gov (United States)

    Brantley, S. L.; Kubicki, J.; Miller, D.; Richter, D.; Giles, L.; Mitra, P.

    2007-12-01

    For over 200 years, geochemical, microbiological, and chemical data have been collected to describe the evolution of the surface earth. Many of these measurements are data showing variations in time or in space. To forward predict hydrologic response to changing tectonic, climatic, or anthropogenic forcings requires synthesis of these data and utilization in hydrogeochemical models. Increasingly, scientists are attempting to synthesize such data in order to make predictions for new regions or for future time periods. However, to make such complex geochemical data accessible requires development of sophisticated cyberinfrastructures that both invite uploading as well as usage of data. Two such cyberinfrastructure (CI) initiatives are currently developing, one to invite and promote the use of environmental kinetics data (laboratory time course data) through ChemxSeer, and the other to invite and promote the use of spatially indexed geochemical data for the Earth's Critical Zone through CZEN.org. The vision of these CI initiatives is to provide cyber-enhanced portals that encourage domain scientists to upload their data before publication (in private cyberspace), and to make these data eventually publicly accessible (after an embargo period). If the CI can be made to provide services to the domain specialist - e.g. to provide data analysis services or data comparison services - we envision that scientists will upload data. In addition, the CI can promote the use and comparison of datasets across disciplines. For example, the CI can facilitate the use of spatially indexed geochemical data by scientists more accustomed to dealing with time-course data for hydrologic flow, and can provide user-friendly interfaces with CI established to facilitate the use of hydrologic data. Examples of the usage of synthesized data to predict soil development over the last 13ky and its effects on active hydrological flow boundaries in surficial systems will be discussed for i) a N

  17. Summary report on geochemical barrier special study

    International Nuclear Information System (INIS)

    1988-12-01

    Long-term management of uranium mill tailings must provide assurance that soluble contaminants will not migrate beyond the Point of Compliance. Conventional management alternatives provide containment through the use of physical barriers which are designed to prevent migration of water through the tailings pile. An alternative is to geochemically modify the tailings to immobilize the contaminants. This investigation examined three potential geochemical modifiers to determine their ability to immobilize inorganic groundwater contaminants found in uranium mill tailings. These modifiers were hydrated lime (Ca(OH) 2 ), limestone (CaCO 3 ), and a sphaegnum peat moss. This investigation focused on both the geochemical interactions between the tailings and the modifiers, and the effects the modifiers had on the physical strength of the tailings. The geochemical investigations began with characterization of the tailings by X-ray diffraction and scanning electron microscopy. This was followed by batch leaching experiments in which various concentrations of each modifier were added to tailings in shaker flasks and allowed to come to equilibrium. Finally, column experiments were conducted to simulate flow through a tailings pile. The results show that all of the modifiers were at least moderately effective at immobilizing most of the groundwater contaminants of concern at uranium mill tailings sites. Hydrated lime was able to achieve 90 percent concentration reduction of arsenic, cadmium, selenium, uranium, and sulfate when added at a two percent concentration. Limestone was somewhat less effective and peat removed greater than 90 percent of arsenic, lead, uranium, and sulfate at a one percent concentration. The column tests showed that kinetic and/or mass transfer limitations are important and that sufficient time must be allowed for the immobilization reactions to occur

  18. Monitoring active volcanoes: The geochemical approach

    Directory of Open Access Journals (Sweden)

    Takeshi Ohba

    2011-06-01

    Full Text Available

    The geochemical surveillance of an active volcano aims to recognize possible signals that are related to changes in volcanic activity. Indeed, as a consequence of the magma rising inside the volcanic "plumbing system" and/or the refilling with new batches of magma, the dissolved volatiles in the magma are progressively released as a function of their relative solubilities. When approaching the surface, these fluids that are discharged during magma degassing can interact with shallow aquifers and/or can be released along the main volcano-tectonic structures. Under these conditions, the following main degassing processes represent strategic sites to be monitored.

    The main purpose of this special volume is to collect papers that cover a wide range of topics in volcanic fluid geochemistry, which include geochemical characterization and geochemical monitoring of active volcanoes using different techniques and at different sites. Moreover, part of this volume has been dedicated to the new geochemistry tools.

  19. Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research

    Directory of Open Access Journals (Sweden)

    J. Wang

    2011-11-01

    Full Text Available A new simulation chamber has been built at the Interuniversitary Laboratory of Atmospheric Systems (LISA. The CESAM chamber (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber is designed to allow research in multiphase atmospheric (photo- chemistry which involves both gas phase and condensed phase processes including aerosol and cloud chemistry. CESAM has the potential to carry out variable temperature and pressure experiments under a very realistic artificial solar irradiation. It consists of a 4.2 m3 stainless steel vessel equipped with three high pressure xenon arc lamps which provides a controlled and steady environment. Initial characterization results, all carried out at 290–297 K under dry conditions, concerning lighting homogeneity, mixing efficiency, ozone lifetime, radical sources, NOy wall reactivity, particle loss rates, background PM, aerosol formation and cloud generation are given. Photolysis frequencies of NO2 and O3 related to chamber radiation system were found equal to (4.2 × 10−3 s−1 for JNO2 and (1.4 × 10−5 s−1 for JO1D which is comparable to the solar radiation in the boundary layer. An auxiliary mechanism describing NOy wall reactions has been developed. Its inclusion in the Master Chemical Mechanism allowed us to adequately model the results of experiments on the photo-oxidation of propene-NOx-Air mixtures. Aerosol yields for the α-pinene + O3 system chosen as a reference were determined and found in good agreement with previous studies. Particle lifetime in the chamber ranges from 10 h to 4 days depending on particle size distribution which indicates that the chamber can provide high quality data on aerosol aging processes and their effects. Being evacuable, it is possible to generate in this new chamber

  20. Geochemical sensitivity analysis: Identification of important geochemical parameters for performance assessment studies

    International Nuclear Information System (INIS)

    Siegel, M.; Guzowski, R.; Rechard, R.; Erickson, K.

    1986-01-01

    The EPA Standard for geologic disposal of high level waste requires demonstration that the cumulative discharge of individual radioisotopes over a 10,000 year period at points 5 kilometers from the engineered barrier system will not exceed the limits prescribed in 40 CFR Part 191. The roles of the waste package, engineered facility, hydrogeology and geochemical processes in limiting radionuclide releases all must be considered in calculations designed to assess compliance of candidate repositories with the EPA Standard. In this talk, they will discuss the geochemical requirements of calculations used in these compliance assessments. In addition, they will describe the complementary roles of (1) simple models designed to bound the radionuclide discharge over the widest reasonable range of geochemical conditions and scenarios and (2) detailed geochemical models which can provide insights into the actual behavior of the radionuclides in the ground water. Finally, they will discuss development of sensitivity/uncertainty techniques designed to identify important site-specific geochemical parameters and processes using data from a basalt formation

  1. Pore-scale studies of multiphase flow and reaction involving CO2 sequestration in geologic formations

    Science.gov (United States)

    Kang, Q.; Wang, M.; Lichtner, P. C.

    2008-12-01

    In geologic CO2 sequestration, pore-scale interfacial phenomena ultimately govern the key processes of fluid mobility, chemical transport, adsorption, and reaction. However, spatial heterogeneity at the pore scale cannot be resolved at the continuum scale, where averaging occurs over length scales much larger than typical pore sizes. Natural porous media, such as sedimentary rocks and other geological media encountered in subsurface formations, are inherently heterogeneous. This pore-scale heterogeneity can produce variabilities in flow, transport, and reaction processes that take place within a porous medium, and can result in spatial variations in fluid velocity, aqueous concentrations, and reaction rates. Consequently, the unresolved spatial heterogeneity at the pore scale may be important for reactive transport modeling at the larger scale. In addition, current continuum models of surface complexation reactions ignore a fundamental property of physical systems, namely conservation of charge. Therefore, to better understand multiphase flow and reaction involving CO2 sequestration in geologic formations, it is necessary to quantitatively investigate the influence of the pore-scale heterogeneity on the emergent behavior at the field scale. We have applied the lattice Boltzmann method to simulating the injection of CO2 saturated brine or supercritical CO2 into geological formations at the pore scale. Multiple pore-scale processes, including advection, diffusion, homogeneous reactions among multiple aqueous species, heterogeneous reactions between the aqueous solution and minerals, ion exchange and surface complexation, as well as changes in solid and pore geometry are all taken into account. The rich pore scale information will provide a basis for upscaling to the continuum scale.

  2. Geochemical evolution of the near field of a KBS-3 repository

    International Nuclear Information System (INIS)

    Arcos, David; Grandia, Fidel; Domenech, Cristina

    2006-09-01

    The Swedish concept developed by SKB for deep radioactive waste disposal, envisages an engineered multi-barrier system surrounding the nuclear waste (near field). In the present study we developed a numerical model to assess the geochemical evolution of the near field in the frame of the SKB's safety assessment SR-Can. These numerical models allow us to predict the long-term geochemical evolution of the near field system by means of reactive-transport codes and the information gathered in underground laboratory experiments and natural analogues. Two different scenarios have been defined to model this near field evolution, according to the pathway used by groundwater to contact the near field: a) through a fracture in the host rock intersecting the deposition hole; and b) through the material used to backfill the deposition tunnel. Moreover, we also modelled the effect of different groundwater compositions reaching the near field, as the up-rise of deep-seated brines and the intrusion of ice-melting derived groundwater. We also modelled the effect of the thermal stage due to the heat generated by spent fuel on the geochemical evolution of the bentonite barrier

  3. Geochemical evolution of the near field of a KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, David; Grandia, Fidel; Domenech, Cristina [Enviros Spain S.L., Barcelona (Spain)

    2006-09-15

    The Swedish concept developed by SKB for deep radioactive waste disposal, envisages an engineered multi-barrier system surrounding the nuclear waste (near field). In the present study we developed a numerical model to assess the geochemical evolution of the near field in the frame of the SKB's safety assessment SR-Can. These numerical models allow us to predict the long-term geochemical evolution of the near field system by means of reactive-transport codes and the information gathered in underground laboratory experiments and natural analogues. Two different scenarios have been defined to model this near field evolution, according to the pathway used by groundwater to contact the near field: a) through a fracture in the host rock intersecting the deposition hole; and b) through the material used to backfill the deposition tunnel. Moreover, we also modelled the effect of different groundwater compositions reaching the near field, as the up-rise of deep-seated brines and the intrusion of ice-melting derived groundwater. We also modelled the effect of the thermal stage due to the heat generated by spent fuel on the geochemical evolution of the bentonite barrier.

  4. Development of axisymmetric lattice Boltzmann flux solver for complex multiphase flows

    Science.gov (United States)

    Wang, Yan; Shu, Chang; Yang, Li-Ming; Yuan, Hai-Zhuan

    2018-05-01

    This paper presents an axisymmetric lattice Boltzmann flux solver (LBFS) for simulating axisymmetric multiphase flows. In the solver, the two-dimensional (2D) multiphase LBFS is applied to reconstruct macroscopic fluxes excluding axisymmetric effects. Source terms accounting for axisymmetric effects are introduced directly into the governing equations. As compared to conventional axisymmetric multiphase lattice Boltzmann (LB) method, the present solver has the kinetic feature for flux evaluation and avoids complex derivations of external forcing terms. In addition, the present solver also saves considerable computational efforts in comparison with three-dimensional (3D) computations. The capability of the proposed solver in simulating complex multiphase flows is demonstrated by studying single bubble rising in a circular tube. The obtained results compare well with the published data.

  5. Parametric Study on the Characteristics of Multiphase Laminar Flow with Density Difference in Various Microchannels

    International Nuclear Information System (INIS)

    Paek, Seung Ho; Kim, Dong Sung; Choi, Young Ki

    2009-01-01

    In this paper, we have performed a parametric study on the characteristics of multiphase laminar flow with density difference in various microchannels. The interface between multiphase fluids is rotated by the gravitational forces induced by density difference. The numerical simulations were carried out via commercial CFD package to study the characteristics of multiphase laminar flow. The results of the numerical simulations in this study were verified by comparing with the previously reported experimental results in the literature. We have also proposed a new dimensionless relationship between dimensionless rotation angle of interface and dimensionless parameters are proposed for square microchannels with various aspect ratios. The dimensionless relationship could be widely applied to the reliable design of various microfluidic devices dealing with multiphase laminar flow

  6. Novel image reconstruction algorithm for multi-phase flow tomography system using γ ray method

    International Nuclear Information System (INIS)

    Hao Kuihong; Wang Huaxiang; Gao Mei

    2007-01-01

    After analyzing the reason of image reconstructed algorithm by using the conventional back projection (IBP) is prone to produce spurious line, and considering the characteristic of multi-phase flow tomography, a novel image reconstruction algorithm is proposed, which carries out the intersection calculation using back projection data. This algorithm can obtain a perfect system point spread function, and can eliminate spurious line better. Simulating results show that the algorithm is effective for identifying multi-phase flow pattern. (authors)

  7. Efficiency Improvement of a High Dynamic BLDC Linear Motor by Multiphase Control

    OpenAIRE

    Lemmens, Joris; Vanvlasselaer, Kris; Mulier, Kristof; Goossens, Stijn; Symens, Wim; Driesen, Johan

    2013-01-01

    This paper proposes a multiphase control strategy for a high dynamic brushless DC linear motor as an alternative for conventional three-phase field-oriented control. Analysis of the magnetic field waveforms shows that three-phase control is not optimal for the 6-slot 7-pole motor topology. Therefore, a multiphase control strategy is elaborated which injects currents proportional to the electromotive force into each of the nine stator coil groups. This results in a maximal alignment force ...

  8. Multiphase porous media modelling: A novel approach to predicting food processing performance.

    Science.gov (United States)

    Khan, Md Imran H; Joardder, M U H; Kumar, Chandan; Karim, M A

    2018-03-04

    The development of a physics-based model of food processing is essential to improve the quality of processed food and optimize energy consumption. Food materials, particularly plant-based food materials, are complex in nature as they are porous and have hygroscopic properties. A multiphase porous media model for simultaneous heat and mass transfer can provide a realistic understanding of transport processes and thus can help to optimize energy consumption and improve food quality. Although the development of a multiphase porous media model for food processing is a challenging task because of its complexity, many researchers have attempted it. The primary aim of this paper is to present a comprehensive review of the multiphase models available in the literature for different methods of food processing, such as drying, frying, cooking, baking, heating, and roasting. A critical review of the parameters that should be considered for multiphase modelling is presented which includes input parameters, material properties, simulation techniques and the hypotheses. A discussion on the general trends in outcomes, such as moisture saturation, temperature profile, pressure variation, and evaporation patterns, is also presented. The paper concludes by considering key issues in the existing multiphase models and future directions for development of multiphase models.

  9. Modeling of multiphase flow with solidification and chemical reaction in materials processing

    Science.gov (United States)

    Wei, Jiuan

    moving the side insulation layer upward. It is possible to produce high quality crystal with a good combination of heating and cooling. SiC based ceramic materials fabricated by polymer pyrolysis and synthesis becomes a promising candidate for nuclear applications. To obtain high uniformity of microstructure/concentration fuel without crack at high operating temperature, it is important to understand transport phenomena in material processing at different scale levels. In our prior work, a system level model based on reactive porous media theory was developed to account for the pyrolysis process in uranium-ceramic nuclear fabrication In this thesis, a particle level mesoscopic model based on the Smoothed Particle Hydrodynamics (SPH) is developed for modeling the synthesis of filler U3O8 particles and SiC matrix. The system-level model provides the thermal boundary conditions needed in the particle level simulation. The evolution of particle concentration and structure as well as composition of composite produced will be investigated. Since the process temperature and heat flux play the important roles in material quality and uniformity, the effects of heating rate at different directions, filler particle size and distribution on uniformity and microstructure of the final product are investigated. Uncertainty issue is also discussed. For the multiphase flow with directional solidification, a system level based on FVM is established. In this model, melt convection, temperature distribution, phase change and solidification interface can be investigated. For the multiphase flow with chemical reaction, a particle level model based on SPH method is developed to describe the pyrolysis and synthesis process of uranium-ceramic nuclear fuel. Due to its mesh-free nature, SPH can easily handle the problems with multi phases and components, large deformation, chemical reactions and even solidifications. A multi-scale meso-macroscopic approach, which combine a mesoscopic model based

  10. Compositional multiphase flow and transport in heterogeneous porous media

    Energy Technology Data Exchange (ETDEWEB)

    Huber, R U

    2000-07-01

    This work first treats the conceptual models for the description of multiphase flow processes in porous media. The thermodynamic laws are explained and the description and quantification of multi-fluid equilibria are discussed in order to account for fluid composition. The fully and weakly coupled approaches for the mathematical description of such flow processes with respect to systems consisting of two and three fluid phases as well as with respect to compositional single and multiphase systems are assessed. For the discretization of the two-phase flow equations node- and cell-centered finite volume methods and mixed and mixed-hybrid finite element approaches are applied. Based upon these methods five solution algorithms are developed. Four of these algorithms are based on the simultaneous solution of the discretized equations in combination with the Newton-Raphson technique. Methods 1 and 2 treat two- three-phase flow processes, Method 3 applies to the solution of partially miscible three-component systems while Method 4 is created for three-phase three-component systems. The latter method uses a variable substitution dependent on the local presence of the fluid phases. Method 5 is based on the IMPES/IMPESC concept. The time-implicit pressure equation is discretized with the mixed-hybrid finite element method. The saturation and concentration equations, respectively, are solved with a cell-centered finite volume scheme. The developed algorithms are applied to the two- and three-phase Buckley-Leverett problems. A partitioning interwell tracer test is simulated. The propagation behavior of nonaqueous phase liquids (NAPLs) in the saturated and unsaturated ground zone under the influence of heterogeneities are examined. In addition, a larger-scale experiment is simulated, which involves an injection of trichloroethylene into the subsurface and the subsequent distribution. Here, the development of a dissolved contaminant plume as well as the behavior of organic

  11. Reactive Kripke semantics

    CERN Document Server

    Gabbay, Dov M

    2013-01-01

    This text offers an extension to the traditional Kripke semantics for non-classical logics by adding the notion of reactivity. Reactive Kripke models change their accessibility relation as we progress in the evaluation process of formulas in the model. This feature makes the reactive Kripke semantics strictly stronger and more applicable than the traditional one. Here we investigate the properties and axiomatisations of this new and most effective semantics, and we offer a wide landscape of applications of the idea of reactivity. Applied topics include reactive automata, reactive grammars, rea

  12. Some results of NURE uranium geochemical studies

    International Nuclear Information System (INIS)

    Price, V. Jr.

    1979-01-01

    Some technical developments of the National Uranium Resource Evaluation Program which are of general application in geochemical exploration are being studied. Results of stream water and suspended and bottom sediment analyses are compared for an area near Williamsport, Pennsylvania. Variations of uranium content of water samples with time in the North Carolina Piedmont are seen to correlate with rainfall. Ground water samples from coastal and piedmont areas were analyzed for helium. All media sampled provide useful information when properly analyzed and interpreted as part of a total geological analysis of an area

  13. Panay carborne radiometric and geochemical surveys

    International Nuclear Information System (INIS)

    Santos, G. Jr.

    1981-09-01

    A carborne radiometric survey and stream sediments collection were conducted in Panay and Guimaras Islands. An area in Nabas, Aklan, situated in the northwestern tip of Panay (Buruanga Peninsula) which indicated 2 to 3 times above background radioactivity was delineated. Uranium content in the stream sediment samples collected from Buruanga Peninsula was generally higher than those obtained in other parts of the island. Radioactivity measurements and uranium content in stream sediments were found to be within background levels. It is recommended that follow-up radiometric and geochemical surveys be undertaken in Buruanga Peninsula and additional stream sediments samples be collected in Panay to achieve better sampling density and coverage. (author)

  14. Landscape-geochemical factors of deposit formation

    International Nuclear Information System (INIS)

    Batulin, S.G.

    1980-01-01

    Effect of landscape-geochemical factors on hydrogenic formation of uranium ores is considered. The primary attention is paid to finding reasons for hydrogeochemical background increase in the regions of arid climate. Problems of uranium distribution in alluvial landscapes, hydrogeochemical regime of ground waters, reflecting the effect of waters of the zone of aeration are revealed. Chemical composition of porous solutions in the zone of aeration, as well as historical geochemindstry of landscape a its role from the view point of uranium solution formation in the arid zone are considered [ru

  15. DNA-based methods of geochemical prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Matthew [Mill Valley, CA

    2011-12-06

    The present invention relates to methods for performing surveys of the genetic diversity of a population. The invention also relates to methods for performing genetic analyses of a population. The invention further relates to methods for the creation of databases comprising the survey information and the databases created by these methods. The invention also relates to methods for analyzing the information to correlate the presence of nucleic acid markers with desired parameters in a sample. These methods have application in the fields of geochemical exploration, agriculture, bioremediation, environmental analysis, clinical microbiology, forensic science and medicine.

  16. Geochemical modelling. Pt.1, Pt.2

    International Nuclear Information System (INIS)

    Skytte Jensen, B.; Jensen, H.; Pearson, F.J.

    1992-01-01

    This work is carried out under cost-sharing contract with the European Atomic Energy Community in the framework of its fourth research programme on radioactive waste management and radioactive waste storage. This final report is subdivided into two parts. In the first part, JENSEN, a computer code for the computation of chemical equilibria in aqueous systems, describes the structure, function and use of a new geochemical computer program intended for PC's. The program, which is written in Turbo Pascal, version 4, is fundamentally similar to most other geochemical programs, but combines in one program several of the merits these programs have. The intention has been to make an advanced program, which also should be user friendly and fast, and to attain this several new algorithms have been developed and implemented. The program has a built-in database mainly based on the CHEMVAL compilation containing data for 395 soluble species and 149 minerals. The program can find equilibria in the presence of all or some of these soluble species, under conditions or fixed or floating pH and / or Redox potential. The program by itself eliminates a bad guess of a candidate for precipitation. In the present version, the program can identify which minerals and how much of them there will be formed when equilibrium is established. In the second part, LITTLE JOE, an expert system to support geochemical modelling, describes the construction of a minor expert system for use in the evaluation of analytical data for the composition of ground waters from limestone formation. Although the example given is rather limited in scope, the application of the expert system for the evaluation of the analytical data clearly demonstrates the mature expert knowledge imbedded in the system which is contrasted with the uncritical acceptance of analytical or theoretical data. With the overall neglect of ion-exchange and the formation of solid solutions in geochemical calculations, geochemistry is

  17. PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC

    Science.gov (United States)

    Parkhurst, David L.; Wissmeier, Laurin

    2015-01-01

    PhreeqcRM is a geochemical reaction module designed specifically to perform equilibrium and kinetic reaction calculations for reactive transport simulators that use an operator-splitting approach. The basic function of the reaction module is to take component concentrations from the model cells of the transport simulator, run geochemical reactions, and return updated component concentrations to the transport simulator. If multicomponent diffusion is modeled (e.g., Nernst–Planck equation), then aqueous species concentrations can be used instead of component concentrations. The reaction capabilities are a complete implementation of the reaction capabilities of PHREEQC. In each cell, the reaction module maintains the composition of all of the reactants, which may include minerals, exchangers, surface complexers, gas phases, solid solutions, and user-defined kinetic reactants.PhreeqcRM assigns initial and boundary conditions for model cells based on standard PHREEQC input definitions (files or strings) of chemical compositions of solutions and reactants. Additional PhreeqcRM capabilities include methods to eliminate reaction calculations for inactive parts of a model domain, transfer concentrations and other model properties, and retrieve selected results. The module demonstrates good scalability for parallel processing by using multiprocessing with MPI (message passing interface) on distributed memory systems, and limited scalability using multithreading with OpenMP on shared memory systems. PhreeqcRM is written in C++, but interfaces allow methods to be called from C or Fortran. By using the PhreeqcRM reaction module, an existing multicomponent transport simulator can be extended to simulate a wide range of geochemical reactions. Results of the implementation of PhreeqcRM as the reaction engine for transport simulators PHAST and FEFLOW are shown by using an analytical solution and the reactive transport benchmark of MoMaS.

  18. Transfers in multiphase environment; Transferts en milieu multiphasique

    Energy Technology Data Exchange (ETDEWEB)

    Marinhas, S.; Delahaye, A.; Fournaison, L. [Cemagref - GPAN, 92 - Antony (France); Dalmazzone, D.; Furst, W. [Ecole Nationale Superieure de Techniques Avancees (ENSTA), 75 - Paris (France); Petitet, J.P. [Laboratoire d' Ingenierie des Materiaux et des Hautes Pressions (LIMHP), CNRS, 93 - Villetaneuse (France); Trinquet, F.; Royon, L.; Kayossi, H.; Guiffant, G. [Laboratoire Matiere Systeme Complexe, CNRS UMR 7057, 75 - Paris (France); El Omari, L.; Baonga, J.B.; Louahlia-Gualous, H.; Panday, P.K. [Institut FEMTO, Dept. C.R.E.S.T.-UTBM-UFC, UMR CNRS 6174, 90 - Belfort (France); Asbik, M.; Ansari, O. [UFR de Modelisation, Optimisation et Ingenierie des Systemes Energetiques, Faculte des Sciences et Techniques, Errachidia (Morocco); Zeghmati, B. [Perpignan Univ., Laboratoire de Mathematiques et Physique des Systemes, Groupe de Mecanique Energetique (M.E.P.S.-G.M.E.), EA 3086, 66 (France); Jamil, A.; Zeraouli, Y.; Dumas, J.P. [Pau Univ. et des Pays de l' Adour, Lab. de Thermique, Energetique et Procedes (LaTEP), 64 (France); Roux, P.; Fichot, F. [CEA Cadarache, Institut de Radioprotection et de Surete Nucleaire (IRSN), 13 - Saint-Paul-lez-Durance (France); Gobin, D.; Goyeau, B. [Laboratoire FAST, 91 - Orsay (France); Quintard, M. [Institut de Mecanique des Fluides, 31 - Toulouse (France); Barthes, M.; Reynard, Ch.; Santini, R.; Tadrist, L. [Laboratoire IUSTI CNRS UMR 6595, 13 - Marseille (France)

    2005-07-01

    This session about heat and mass transfers in multiphase flows gathers 17 papers dealing with: dynamic study of gas hydrate slurry applied to secondary refrigeration; ice melting inside an agitated reactor: experiment and phenomenological approach; experimental and numerical investigation of the local thickness change of a liquid film dripping around an horizontal tube; evaporation of a liquid film dripping around the external wall of an horizontal tube: laminar-turbulent transition phenomenon; coldness distribution by stabilized ice slurries, study of the behaviour under thermal cycling; study of phases disequilibria of two-phase refrigerating fluids; solidification of binary mixtures, influence of the local chemical non-equilibrium and of the effective transport properties; analysis of heat transfers during the growth of a vapor bubble; forecasting of micro-porosity inside Al-Si alloy smelting parts; estimation of a source term in a 2D transient problem: application to electron beam welding; mesoscopic approach of thermal flows; experimental and numerical study of the impact of a circular jet on a heated disc; inverse conduction method for a jet impacting a rotating cylinder: feasibility study; experimental follow up of a fusion-solidification front with and without transfer promoter; parametric study of a latent heat storage tank during horizontal drainage; stability between two layers of a same supercritical fluid; numerical modeling of the heat transfer inside a stainless steel slab. (J.S.)

  19. Modeling Subgrid Scale Droplet Deposition in Multiphase-CFD

    Science.gov (United States)

    Agostinelli, Giulia; Baglietto, Emilio

    2017-11-01

    The development of first-principle-based constitutive equations for the Eulerian-Eulerian CFD modeling of annular flow is a major priority to extend the applicability of multiphase CFD (M-CFD) across all two-phase flow regimes. Two key mechanisms need to be incorporated in the M-CFD framework, the entrainment of droplets from the liquid film, and their deposition. Here we focus first on the aspect of deposition leveraging a separate effects approach. Current two-field methods in M-CFD do not include appropriate local closures to describe the deposition of droplets in annular flow conditions. As many integral correlations for deposition have been proposed for lumped parameters methods applications, few attempts exist in literature to extend their applicability to CFD simulations. The integral nature of the approach limits its applicability to fully developed flow conditions, without geometrical or flow variations, therefore negating the scope of CFD application. A new approach is proposed here that leverages local quantities to predict the subgrid-scale deposition rate. The methodology is first tested into a three-field approach CFD model.

  20. Random Walk Particle Tracking For Multiphase Heat Transfer

    Science.gov (United States)

    Lattanzi, Aaron; Yin, Xiaolong; Hrenya, Christine

    2017-11-01

    As computing capabilities have advanced, direct numerical simulation (DNS) has become a highly effective tool for quantitatively predicting the heat transfer within multiphase flows. Here we utilize a hybrid DNS framework that couples the lattice Boltzmann method (LBM) to the random walk particle tracking (RWPT) algorithm. The main challenge of such a hybrid is that discontinuous fields pose a significant challenge to the RWPT framework and special attention must be given to the handling of interfaces. We derive a method for addressing discontinuities in the diffusivity field, arising at the interface between two phases. Analytical means are utilized to develop an interfacial tracer balance and modify the RWPT algorithm. By expanding the modulus of the stochastic (diffusive) step and only allowing a subset of the tracers within the high diffusivity medium to undergo a diffusive step, the correct equilibrium state can be restored (globally homogeneous tracer distribution). The new RWPT algorithm is implemented within the SUSP3D code and verified against a variety of systems: effective diffusivity of a static gas-solids mixture, hot sphere in unbounded diffusion, cooling sphere in unbounded diffusion, and uniform flow past a hot sphere.

  1. Thermal expansion model for multiphase electronic packaging materials

    International Nuclear Information System (INIS)

    Allred, B.E.; Warren, W.E.

    1991-01-01

    Control of thermal expansion is often necessary in the design and selection of electronic packages. In some instances, it is desirable to have a coefficient of thermal expansion intermediate between values readily attainable with single or two phase materials. The addition of a third phase in the form of fillers, whiskers, or fibers can be used to attain intermediate expansions. To help design the thermal expansion of multiphase materials for specific applications, a closed form model has been developed that accurately predicts the effective elastic properties of isotropic filled materials and transversely isotropic lamina. Properties of filled matrix materials are used as inputs to the lamina model to obtain the composite elastic properties as a function of the volume fraction of each phase. Hybrid composites with two or more fiber types are easily handled with this model. This paper reports that results for glass, quartz, and Kevlar fibers with beta-eucryptite filled polymer matrices show good agreement with experimental results for X, Y, and Z thermal expansion coefficients

  2. Speed Control of Multiphase Cage Induction Motors Incorporating Supply Sequence

    Directory of Open Access Journals (Sweden)

    Drozdowski Piotr

    2014-12-01

    Full Text Available The subject of this paper is the control possibility of the multiphase cage induction motors having number of phases greater than 3. These motors have additional properties for speed control that distinguish them from the standard 3 phase motors: operation at various sequences of supplying voltages due to the inverter control and possible operation with few open-circuited phases. For each supply sequence different no load speeds at the same frequency can be obtained. This feature extends the motor application for miscellaneous drive demands including vector or scalar control. This depends mainly on the type of the stator winding for a given number of phases, since the principle of motor operation is based on co-operation of higher harmonics of magnetic field. Examples of operation are presented for a 9-phase motor, though general approach has been discussed. This motor was fed by a voltage source inverter at field oriented control with forced currents. The mathematical model of the motor was reduced to the form incorporating all most important physical features and appropriate for the control law formulation. The operation was illustrated for various supply sequences for “healthy” motor and for the motor operating at one phase broken. The obtained results have shown that parasitic influence of harmonic fields interaction has negligible influence on motor operation with respect to the useful coupling for properly designed stator winding.

  3. Radial Flow in a Multiphase Transport Model at FAIR Energies

    Directory of Open Access Journals (Sweden)

    Soumya Sarkar

    2018-01-01

    Full Text Available Azimuthal distributions of radial velocities of charged hadrons produced in nucleus-nucleus (AB collisions are compared with the corresponding azimuthal distribution of charged hadron multiplicity in the framework of a multiphase transport (AMPT model at two different collision energies. The mean radial velocity seems to be a good probe for studying radial expansion. While the anisotropic parts of the distributions indicate a kind of collective nature in the radial expansion of the intermediate “fireball,” their isotropic parts characterize a thermal motion. The present investigation is carried out keeping the upcoming Compressed Baryonic Matter (CBM experiment to be held at the Facility for Antiproton and Ion Research (FAIR in mind. As far as high-energy heavy-ion interactions are concerned, CBM will supplement the Relativistic Heavy-Ion Collider (RHIC and Large Hadron Collider (LHC experiments. In this context our simulation results at high baryochemical potential would be interesting, when scrutinized from the perspective of an almost baryon-free environment achieved at RHIC and LHC.

  4. Dynamic dielectrophoresis model of multi-phase ionic fluids.

    Directory of Open Access Journals (Sweden)

    Ying Yan

    Full Text Available Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.

  5. Dynamic dielectrophoresis model of multi-phase ionic fluids.

    Science.gov (United States)

    Yan, Ying; Luo, Jing; Guo, Dan; Wen, Shizhu

    2015-01-01

    Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.

  6. On the predictive capabilities of multiphase Darcy flow models

    KAUST Repository

    Icardi, Matteo; Prudhomme, Serge

    2016-01-01

    Darcy s law is a widely used model and the limit of its validity is fairly well known. When the flow is sufficiently slow and the porosity relatively homogeneous and low, Darcy s law is the homogenized equation arising from the Stokes and Navier- Stokes equations and depends on a single effective parameter (the absolute permeability). However when the model is extended to multiphase flows, the assumptions are much more restrictive and less realistic. Therefore it is often used in conjunction with empirical models (such as relative permeability and capillary pressure curves), derived usually from phenomenological speculations and experimental data fitting. In this work, we present the results of a Bayesian calibration of a two-phase flow model, using high-fidelity DNS numerical simulation (at the pore-scale) in a realistic porous medium. These reference results have been obtained from a Navier-Stokes solver coupled with an explicit interphase-tracking scheme. The Bayesian inversion is performed on a simplified 1D model in Matlab by using adaptive spectral method. Several data sets are generated and considered to assess the validity of this 1D model.

  7. Electromagnetic fields in small systems from a multiphase transport model

    Science.gov (United States)

    Zhao, Xin-Li; Ma, Yu-Gang; Ma, Guo-Liang

    2018-02-01

    We calculate the electromagnetic fields generated in small systems by using a multiphase transport (AMPT) model. Compared to A +A collisions, we find that the absolute electric and magnetic fields are not small in p +Au and d +Au collisions at energies available at the BNL Relativistic Heavy Ion Collider and in p +Pb collisions at energies available at the CERN Large Hadron Collider. We study the centrality dependencies and the spatial distributions of electromagnetic fields. We further investigate the azimuthal fluctuations of the magnetic field and its correlation with the fluctuating geometry using event-by-event simulations. We find that the azimuthal correlation 〈" close="〉cos(ϕα+ϕβ-2 ΨRP)〉">cos2 (ΨB-Ψ2) between the magnetic field direction and the second-harmonic participant plane is almost zero in small systems with high multiplicities, but not in those with low multiplicities. This indicates that the charge azimuthal correlation is not a valid probe to study the chiral magnetic effect (CME) in small systems with high multiplicities. However, we suggest searching for possible CME effects in small systems with low multiplicities.

  8. Generating a Multiphase Equation of State with Swarm Intelligence

    Science.gov (United States)

    Cox, Geoffrey

    2017-06-01

    Hydrocode calculations require knowledge of the variation of pressure of a material with density and temperature, which is given by the equation of state. An accurate model needs to account for discontinuities in energy, density and properties of a material across a phase boundary. When generating a multiphase equation of state the modeller attempts to balance the agreement between the available data for compression, expansion and phase boundary location. However, this can prove difficult because minor adjustments in the equation of state for a single phase can have a large impact on the overall phase diagram. Recently, Cox and Christie described a method for combining statistical-mechanics-based condensed matter physics models with a stochastic analysis technique called particle swarm optimisation. The models produced show good agreement with experiment over a wide range of pressure-temperature space. This talk details the general implementation of this technique, shows example results, and describes the types of analysis that can be performed with this method.

  9. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows.

    Science.gov (United States)

    Li, Q; Luo, K H; Li, X J

    2012-07-01

    The pseudopotential lattice Boltzmann (LB) model is a widely used multiphase model in the LB community. In this model, an interaction force, which is usually implemented via a forcing scheme, is employed to mimic the molecular interactions that cause phase segregation. The forcing scheme is therefore expected to play an important role in the pseudoepotential LB model. In this paper, we aim to address some key issues about forcing schemes in the pseudopotential LB model. First, theoretical and numerical analyses will be made for Shan-Chen's forcing scheme [Shan and Chen, Phys. Rev. E 47, 1815 (1993)] and the exact-difference-method forcing scheme [Kupershtokh et al., Comput. Math. Appl. 58, 965 (2009)]. The nature of these two schemes and their recovered macroscopic equations will be shown. Second, through a theoretical analysis, we will reveal the physics behind the phenomenon that different forcing schemes exhibit different performances in the pseudopotential LB model. Moreover, based on the analysis, we will present an improved forcing scheme and numerically demonstrate that the improved scheme can be treated as an alternative approach to achieving thermodynamic consistency in the pseudopotential LB model.

  10. Couplings in multiphasic geo-materials: temperature and chemistry effects

    International Nuclear Information System (INIS)

    Ghasemzadeh, H.

    2006-05-01

    Transport of chemical components in soil through water is the major cause of pollution of the soil. This transport takes place around landfills and nuclear waste storage areas, tailings and mine wastes, and so on. A great number of these sites are unsaturated of water and in some cases heat can change the fate of chemical species, that lead us to a coupled problem. In this dissertation, numerical simulation with an existent thermo-hydro-mechanical model and theoretical modeling and numerical simulation of transport and interactions of one chemical species in multiphase media are presented. Integrated THM model in the Code-Aster is presented. Excavation, engineering barrier and thermal load of waste nuclear storage well are modeled. Verification of model is presented with these simulations. A thermo-hydro-mechanical behaviour coupled with chemical phenomena is presented with a fully coupled method that water, gas, chemical species and soil skeleton were considered as constituents and corresponding unknowns are temperature, water pressure, gas pressure, chemical concentration and displacements. For each constituent, mass balance equation and linear momentum equation are written and solved simultaneously to find related unknowns. The results of this model have been compared with the theoretical and experimental results existing in the literature. Furthermore, results of some applications of this model are included. Some areas where further work is required are identified. In particular, there is a need to perform experiments to obtain necessary soil parameters to permit accurate modelling of the heat and contaminant transport in unsaturated soils. (author)

  11. SAGD production optimization : combination of ESP and multiphase metering

    Energy Technology Data Exchange (ETDEWEB)

    Pinguet, B.G.; Guerra, E.; Drever, C. [Schlumberger Canada Ltd., Edmonton, AB (Canada)

    2008-07-01

    Many commercial oil reservoirs in Canada are completed using electric submersible pumps (ESP) due to low reservoir pressures and extra heavy oils and bitumens. This paper presented details of an optimization process for steam-assisted gravity drainage (SAGD) wells. The process used ESP and a multiphase flow meter (MFM) based on Vx technology. The MFM was based on a Venturi and nuclear fraction meter combination that was engineered to measure the steam phases during SAGD processes. The technology was designed to measure total mass or total volumetric flow rates as well as oil, water and gas in producing wells. Length fractions of oil, water, and gas were calculated based on the attenuation of Gamma-rays as they passed through the Venturi section. Production was optimized in real time using the frequency control of the pump to improve oil flow rates. The results of field tests showed that the optimization process resulted in longer life cycles for the ESP. It was concluded that use of the meter results in changes to lift system operating parameters at the well site as well as improved monitoring during the workflow process. 3 refs., 1 tab., 11 figs.

  12. On the predictive capabilities of multiphase Darcy flow models

    KAUST Repository

    Icardi, Matteo

    2016-01-09

    Darcy s law is a widely used model and the limit of its validity is fairly well known. When the flow is sufficiently slow and the porosity relatively homogeneous and low, Darcy s law is the homogenized equation arising from the Stokes and Navier- Stokes equations and depends on a single effective parameter (the absolute permeability). However when the model is extended to multiphase flows, the assumptions are much more restrictive and less realistic. Therefore it is often used in conjunction with empirical models (such as relative permeability and capillary pressure curves), derived usually from phenomenological speculations and experimental data fitting. In this work, we present the results of a Bayesian calibration of a two-phase flow model, using high-fidelity DNS numerical simulation (at the pore-scale) in a realistic porous medium. These reference results have been obtained from a Navier-Stokes solver coupled with an explicit interphase-tracking scheme. The Bayesian inversion is performed on a simplified 1D model in Matlab by using adaptive spectral method. Several data sets are generated and considered to assess the validity of this 1D model.

  13. The entropy concept. A powerful tool for multiphase flow analysis

    International Nuclear Information System (INIS)

    Kolev, Nikolay Ivanov

    2007-01-01

    This work summarizes the system of partial differential equations describing multiphase, multi-component flows in arbitrary geometry including porous structures with arbitrary thermal and mechanical interactions among the fields and between each field and the structure. Each of the fluids is designed as a universal mixture of miscible and immiscible component. The system contains the rigorously derived entropy equations which are used instead of the primitive form of the energy conservation. Based on well established mathematical theorems the equations are local volume and time averaged. The so called volume conservation equation allowing establishing close coupling between pressure and density changes of all of the participating velocity fields is presented. It replaces one of the mass conservation equations. The system is solved within the computer code system IVA together with large number of constitutive relationships for closing it in arbitrary geometry. The extensive validation on many hundreds of simple- and complex experiments, including the many industrial applications, demonstrates the versatility and the power of this analytical tool for designing complex processes in the industry and analyzing complex processes in the nature. (author)

  14. Reactive perforating collagenosis

    Directory of Open Access Journals (Sweden)

    Yadav Mukesh

    2009-01-01

    Full Text Available Reactive perforating collagenosis is a rare cutaneous disorder of unknown etiology. We hereby describe a case of acquired reactive perforating collagenosis in a patient of diabetes and chronic renal failure.

  15. Reactivity on the Web

    OpenAIRE

    Bailey, James; Bry, François; Eckert, Michael; Patrânjan, Paula Lavinia

    2005-01-01

    Reactivity, the ability to detect simple and composite events and respond in a timely manner, is an essential requirement in many present-day information systems. With the emergence of new, dynamic Web applications, reactivity on the Web is receiving increasing attention. Reactive Web-based systems need to detect and react not only to simple events but also to complex, real-life situations. This paper introduces XChange, a language for programming reactive behaviour on the Web,...

  16. Archean crust-mantle geochemical differentiation

    Science.gov (United States)

    Tilton, G. R.

    Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.

  17. Archean crust-mantle geochemical differentiation

    Science.gov (United States)

    Tilton, G. R.

    1983-01-01

    Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.

  18. Research on geochemical exploration in geotherm development

    International Nuclear Information System (INIS)

    Hirowatari, Kazuo; Imaizumi, Yukio; Koga, Akito; Iwanaga, Tatsuto.

    1987-01-01

    The decisive factor of geotherm development is to improve the exploration techniques. By effectively carrying out the selection of promising development spots and the decision of well drilling positions, the geotherm development exceeding existing energy sources becomes feasible. There have been many problems in conventional geotherm exploration such as the high cost and long work period, therefore, it was decided to advance the research on geochemical exploration techniques which are relatively simple and can be carried out with low cost. When the techniques of geochemistry are used, for example, in the case that there are hot springs or fumaroles, the temperature, origin, properties and so on of underground hot water reservoirs can be estimated from their chemical composition. The method of examining the mercury concentration in soil and soil air has been in practical use in the geothermal districts where the ground surface symptom lacks. This time, the method of investigation using radon, thoron and gamma ray as the exploration indices was newly studied. The index compositions for geochemical exploration, new exploration index compositions, the method of measurement, the basic investigation and on-the-spot investigation are reported. (Kako, I.)

  19. Geochemical signature of radioactive waste: oil NORM

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Gilberto T. de Paula; Costa-de-Moura, Jorge; Gomes, Carlos de Almeida; Sampaio, Emidio A. Lopes, E-mail: gilberto.costa@cnen.gov.br, E-mail: jcmoura@cnen.gov.br, E-mail: cgomes@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Div. de Controle de Rejeitos e Transporte de Materiais Radioativos

    2017-07-01

    The Brazilian Nuclear Agency (CNEN) rules all nuclear activity in Brazil as demanded by the Federal Constitution, articles 21, XXIII, and 177, V, and by the Federal Acts 4.118/62 and 10.308/2001. Therefore, the CNEN is responsible for any radioactive waste disposal in the country. Oil Naturally Occurring Radioactive Materials (Oil NORM) in this paper refers to waste coming from oil exploration. Oil NORM has called much attention during the last decades, mostly because it is not possible to determine its primary source due to the actual absence of regulatory control mechanism. There is no efficient regulatory tool which allows determining the origin of such NORM wastes even among those facilities under regulatory control. This fact may encourage non-authorized radioactive material transportation, smuggling and terrorism. The aim of this project is to provide a geochemical signature for each oil NORM waste using its naturally occurring isotopic composition to identify its origin. The here proposed method is a specific geochemical modeling of oil sludge NORM samples which are analyzed for radioisotopes normally present in oil pipes, such as {sup 228}Ac, {sup 214}Bi and {sup 214}Pb. The activity ratios are plotted in scatter diagrams. This method was successfully tested with data of different sources obtained from analysis reports from the Campos Basin/Brazil and from literature. (author)

  20. Neutron activation analysis of geochemical samples

    International Nuclear Information System (INIS)

    Rosenberg, R.; Zilliacus, R.; Kaistila, M.

    1983-06-01

    The present paper will describe the work done at the Technical Research Centre of Finland in developing methods for the large-scale activation analysis of samples for the geochemical prospecting of metals. The geochemical prospecting for uranium started in Finland in 1974 and consequently a manually operated device for the delayed neutron activation analysis of uranium was taken into use. During 1974 9000 samples were analyzed. The small capacity of the analyzer made it necessary to develop a completely automated analyzer which was taken into use in August 1975. Since then 20000-30000 samples have been analyzed annually the annual capacity being about 60000 samples when running seven hours per day. Multielemental instrumental neutron activation analysis is used for the analysis of more than 40 elements. Using instrumental epithermal neutron activation analysis 25-27 elements can be analyzed using one irradiation and 20 min measurement. During 1982 12000 samples were analyzed for mining companies and Geological Survey of Finland. The capacity is 600 samples per week. Besides these two analytical methods the analysis of lanthanoids is an important part of the work. 11 lanthanoids have been analyzed using instrumental neutron activation analysis. Radiochemical separation methods have been developed for several elements to improve the sensitivity of the analysis

  1. Geochemical signature of radioactive waste: oil NORM

    International Nuclear Information System (INIS)

    Costa, Gilberto T. de Paula; Costa-de-Moura, Jorge; Gomes, Carlos de Almeida; Sampaio, Emidio A. Lopes

    2017-01-01

    The Brazilian Nuclear Agency (CNEN) rules all nuclear activity in Brazil as demanded by the Federal Constitution, articles 21, XXIII, and 177, V, and by the Federal Acts 4.118/62 and 10.308/2001. Therefore, the CNEN is responsible for any radioactive waste disposal in the country. Oil Naturally Occurring Radioactive Materials (Oil NORM) in this paper refers to waste coming from oil exploration. Oil NORM has called much attention during the last decades, mostly because it is not possible to determine its primary source due to the actual absence of regulatory control mechanism. There is no efficient regulatory tool which allows determining the origin of such NORM wastes even among those facilities under regulatory control. This fact may encourage non-authorized radioactive material transportation, smuggling and terrorism. The aim of this project is to provide a geochemical signature for each oil NORM waste using its naturally occurring isotopic composition to identify its origin. The here proposed method is a specific geochemical modeling of oil sludge NORM samples which are analyzed for radioisotopes normally present in oil pipes, such as 228 Ac, 214 Bi and 214 Pb. The activity ratios are plotted in scatter diagrams. This method was successfully tested with data of different sources obtained from analysis reports from the Campos Basin/Brazil and from literature. (author)

  2. Investigation of a natural geochemical barrier

    International Nuclear Information System (INIS)

    1991-02-01

    Groundwater data from lysimeters and monitor wells in the vicinity of the Bowman, North Dakota, Uranium Mill Tailings Remedial Action (UMTRA) Project site indicated that there is a mechanism in the subsurface which cleans up downward-percolating fluids. It was hypothesized that clays and organic materials in the sediments sequestered hazardous constituents from infiltrating fluids. A program was designed to collect sediment cores from various locations on and around the site and to analyze the sediments to determine whether there has been a build up of hazardous constituents in any specific type of sedimentary material. Materials that concentrate the hazardous constituents would be potential candidates to be used in constructed geochemical barriers. The water quality of the groundwater contained within the sedimentary section indicates that there is a transport of contaminants down through the sediments and that these contaminants are removed from solution by the iron-bearing minerals in the organic-rich lignite beds. The data gathered during the course of this investigation indicate that the lignite ashing operations have added very little of the hazardous constituents of concern--arsenic, chromium, molybdenum, selenium, or uranium--to the sediments beneath the UMTRA Project site. At both locations, the hazardous constituents are concentrated in the upper most lignite bed. These data offer a natural analog for laboratory tests in which sphagnum peat was used to sequester hazardous constituents. Constructed geochemical barriers are a viable mechanism for the clean-up of the majority of hazardous constituents from uranium mill tailings in groundwater

  3. Geochemical controls on groundwater chemistry in shales

    International Nuclear Information System (INIS)

    Von Damm, K.L.

    1989-01-01

    The chemistry of groundwaters is one of the most important parameters in determining the mobility of species within a rock formation. A three pronged approach was used to determine the composition of, and geochemical controls, on groundwaters specifically within shale formations: (1) available data were collected from the literature, the US Geological Survey WATSTORE data base, and field sampling, (2) the geochemical modeling code EQ3/6 was used to simulate interaction of various shales and groundwaters, and (3) several types of shale were reacted with synthetic groundwaters in the laboratory. The comparison of model results to field and laboratory data provide a means of validating the models, as well as a means of deconvoluting complex field interactions. Results suggest that groundwaters in shales have a wide range in composition and are primarily of the Na-Cl-HCO 3 - type. The constancy of the Na:Cl (molar) ratio at 1:1 and the Ca:Mg ratio from 3:1 to 1:1 suggests the importance of halite and carbonates in controlling groundwater compositions. In agreement with the reaction path modeling, most of the groundwaters are neutral to slightly alkaline at low temperatures. Model and experimental results suggest that reaction (1) at elevated temperatures, or (2) in the presence of oxygen will lead to more acidic conditions. Some acetate was found to be produced in the experiments; depending on the constraints applied, large amounts of acetate were produced in the model results. 13 refs., 1 tab

  4. Risk evaluation of uranium mining: A geochemical inverse modelling approach

    Science.gov (United States)

    Rillard, J.; Zuddas, P.; Scislewski, A.

    2011-12-01

    It is well known that uranium extraction operations can increase risks linked to radiation exposure. The toxicity of uranium and associated heavy metals is the main environmental concern regarding exploitation and processing of U-ore. In areas where U mining is planned, a careful assessment of toxic and radioactive element concentrations is recommended before the start of mining activities. A background evaluation of harmful elements is important in order to prevent and/or quantify future water contamination resulting from possible migration of toxic metals coming from ore and waste water interaction. Controlled leaching experiments were carried out to investigate processes of ore and waste (leached ore) degradation, using samples from the uranium exploitation site located in Caetité-Bahia, Brazil. In experiments in which the reaction of waste with water was tested, we found that the water had low pH and high levels of sulphates and aluminium. On the other hand, in experiments in which ore was tested, the water had a chemical composition comparable to natural water found in the region of Caetité. On the basis of our experiments, we suggest that waste resulting from sulphuric acid treatment can induce acidification and salinization of surface and ground water. For this reason proper storage of waste is imperative. As a tool to evaluate the risks, a geochemical inverse modelling approach was developed to estimate the water-mineral interaction involving the presence of toxic elements. We used a method earlier described by Scislewski and Zuddas 2010 (Geochim. Cosmochim. Acta 74, 6996-7007) in which the reactive surface area of mineral dissolution can be estimated. We found that the reactive surface area of rock parent minerals is not constant during time but varies according to several orders of magnitude in only two months of interaction. We propose that parent mineral heterogeneity and particularly, neogenic phase formation may explain the observed variation of the

  5. A geochemical atlas of North Carolina, USA

    Science.gov (United States)

    Reid, J.C.

    1993-01-01

    A geochemical atlas of North Carolina, U.S.A., was prepared using National Uranium Resource Evaluation (NURE) stream-sediment data. Before termination of the NURE program, sampling of nearly the entire state (48,666 square miles of land area) was completed and geochemical analyses were obtained. The NURE data are applicable to mineral exploration, agriculture, waste disposal siting issues, health, and environmental studies. Applications in state government include resource surveys to assist mineral exploration by identifying geochemical anomalies and areas of mineralization. Agriculture seeks to identify areas with favorable (or unfavorable) conditions for plant growth, disease, and crop productivity. Trace elements such as cobalt, copper, chromium, iron, manganese, zinc, and molybdenum must be present within narrow ranges in soils for optimum growth and productivity. Trace elements as a contributing factor to disease are of concern to health professionals. Industry can use pH and conductivity data for water samples to site facilities which require specific water quality. The North Carolina NURE database consists of stream-sediment samples, groundwater samples, and stream-water analyses. The statewide database consists of 6,744 stream-sediment sites, 5,778 groundwater sample sites, and 295 stream-water sites. Neutron activation analyses were provided for U, Br, Cl, F, Mn, Na, Al, V, Dy in groundwater and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in stream sediments. Supplemental analyses by other techniques were reported on U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn for 4,619 stream-sediment samples. A small subset of 334 stream samples was analyzed for gold. The goal of the atlas was to make available the statewide NURE data with minimal interpretation to enable prospective users to modify and manipulate the data for their end use. The atlas provides only

  6. Monadic Functional Reactive Programming

    NARCIS (Netherlands)

    A.J. van der Ploeg (Atze); C Shan

    2013-01-01

    htmlabstractFunctional Reactive Programming (FRP) is a way to program reactive systems in functional style, eliminating many of the problems that arise from imperative techniques. In this paper, we present an alternative FRP formulation that is based on the notion of a reactive computation: a

  7. Digital reactivity meter

    International Nuclear Information System (INIS)

    Akkus, B.; Anac, H.; Alsan, S.; Erk, S.

    1991-01-01

    Nowadays, various digital methods making use of microcomputers for neutron detector signals and determining the reactivity by numerical calculations are used in reactor control systems in place of classical reactivity meters. In this work, a calculation based on the ''The Time Dependent Transport Equation'' has been developed for determining the reactivity numerically. The reactivity values have been obtained utilizing a computer-based data acquisition and control system and compared with the analog reactivity meter values as well as the values calculated from the ''Inhour Equation''

  8. Behaviour of nature and technogenic radioisotopes in buried geochemical barriers

    International Nuclear Information System (INIS)

    Kuznetsov, V.A.; Onoshko, M.P.; Generalova, V.A.

    1998-01-01

    Behaviour of potassium 40, radium 226, thorium 232, strontium 90 and cesium 137 on geochemical barriers connected with buried soils and cut-off meander sediments of the Holocene age of the Sozh river valley are examined. Some sides of the barrier geochemical structure caused by syngeneic and epigenetic processes have been taken into consideration

  9. Modelling the Multiphase Flow in Dense Medium Cyclones

    Directory of Open Access Journals (Sweden)

    Kaiwei Chu

    2010-12-01

    Full Text Available Dense medium cyclone (DMC is widely used in mineral industry to separate solids by density. It is simple in design but the flow pattern within it is complex due to the size and density distributions of the feed and process medium solids, and the turbulent vortex formed. Recently, the so-called combined computational fluid dynamics (CFD and discrete element method (DEM (CFD-DEM was extended from two-phase flow to model the flow in DMCs at the University of New South Wales (UNSW. In the CFD-DEM model, the flow of coal particles is modelled by DEM and that of medium flow by CFD, allowing consideration of medium-coal mutual interaction and particle-particle collisions. In the DEM model, Newton's laws of motion are applied to individual particles, and in the CFD model the local-averaged Navier-Stokes equations combined with the volume of fluid (VOF and mixture multiphase flow models are solved. The application to the DMC studies requires intensive computational effort. Therefore, various simplified versions have been proposed, corresponding to the approaches such as Lagrangian particle tracking (LPT method where dilute phase flow is assumed so that the interaction between particles can be ignored, one-way coupling where the effect of particle flow on fluid flow is ignored, and the use of the concept of parcel particles whose properties are empirically determined. In this paper, the previous works on the modelling of DMCs at UNSW are summarized and the features and applicability of the models used are discussed.

  10. The Multiphase Rheology of Monte Nuovo's Eruption (Campi Flegrei, Italy)

    Science.gov (United States)

    Vona, A.; Romano, C.; Giordano, D.; Russell, K.

    2011-12-01

    We present a study of high-temperature, uniaxial deformation experiments of natural, partially crystallized samples from the Monte Nuovo (1538 AD) trachytic eruption. The experiments were performed at dry atmospheric conditions and controlled deformation rate using a high-temperature uniaxial Geocomp LoadTrac II press. Experiments were performed isothermally by deforming cores of the natural (i.e., crystal- and vesicle-bearing) samples at constant displacement rates (CDR) corresponding to constant strain rates between 10-7 and 10-4 s-1. The measurements were all performed in the viscous-flow regime and showed non-Newtonian shear thinning behavior. Measured viscosities vary between 1010 and 1013 Pa s. As no yield stress was detected, the flow behavior of the investigated specimens could be described with a simplified Herschel-Bulkley equation in terms of consistency K and flow index n. As the pure liquid and the liquid+crystal rheology of these samples were already measured in previous studies, we were able to estimate the net effects of crystals and vesicles on the rheology of the multiphase suspensions. The results revealed that the presence of vesicles has a major impact on the rheological response of magmas leading to a marked decrease of their viscosity, which partially balances the increase of viscosity due to the presence of crystals. At the same time, the presence of bubbles leads to a strong decrease in the shear strength of the magma inducing local and temporal variation in the deformation regimes (viscous vs. brittle). Brittle and ductile failure were in fact observed at T=600°C and strain rates of 10-5 s-1 and at T=800°C for the higher applied strain rate (10-4 s-1), respectively. During lava flow emplacement, this may explain the origin of the flow banding textures frequently observed in many silicic obsidian lava flows.

  11. Multiphase modelling of vascular tumour growth in two spatial dimensions

    KAUST Repository

    Hubbard, M.E.

    2013-01-01

    In this paper we present a continuum mathematical model of vascular tumour growth which is based on a multiphase framework in which the tissue is decomposed into four distinct phases and the principles of conservation of mass and momentum are applied to the normal/healthy cells, tumour cells, blood vessels and extracellular material. The inclusion of a diffusible nutrient, supplied by the blood vessels, allows the vasculature to have a nonlocal influence on the other phases. Two-dimensional computational simulations are carried out on unstructured, triangular meshes to allow a natural treatment of irregular geometries, and the tumour boundary is captured as a diffuse interface on this mesh, thereby obviating the need to explicitly track the (potentially highly irregular and ill-defined) tumour boundary. A hybrid finite volume/finite element algorithm is used to discretise the continuum model: the application of a conservative, upwind, finite volume scheme to the hyperbolic mass balance equations and a finite element scheme with a stable element pair to the generalised Stokes equations derived from momentum balance, leads to a robust algorithm which does not use any form of artificial stabilisation. The use of a matrix-free Newton iteration with a finite element scheme for the nutrient reaction-diffusion equations allows full nonlinearity in the source terms of the mathematical model.Numerical simulations reveal that this four-phase model reproduces the characteristic pattern of tumour growth in which a necrotic core forms behind an expanding rim of well-vascularised proliferating tumour cells. The simulations consistently predict linear tumour growth rates. The dependence of both the speed with which the tumour grows and the irregularity of the invading tumour front on the model parameters is investigated. © 2012 Elsevier Ltd.

  12. Added value of multiphase CTA imaging for thrombus perviousness assessment

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E.M.M. [Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Erasmus Medical Center, Department of Medical Informatics, Rotterdam (Netherlands); D' Esterre, C.D.; Najm, M.; Goyal, M.; Demchuk, A.M.; Menon, B.K. [University of Calgary, Departments of Neurosciences, Radiology and Community Health Sciences, Calgary (Canada); Treurniet, K.M.; Majoie, C.B. [Academic Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Niessen, W.J. [Erasmus Medical Center, Department of Medical Informatics, Rotterdam (Netherlands); Delft University of Technology, Faculty of Applied Sciences, Delft (Netherlands); Marquering, H.A. [Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Academic Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Mandzia, Jennifer; Fainardi, Enrico; Rubiera, Marta; Khaw, Alexander V.; Zini, Andrea; Shankar, JJ.; Collaboration: PRove-IT investigators

    2018-01-15

    Thrombus perviousness has been associated with favorable functional outcome in acute ischemic stroke (AIS) patients. Measuring thrombus perviousness on CTA may be suboptimal due to potential delay in contrast agent arrival in occluded arteries at the moment of imaging. Dynamic sequences acquired over time can potentially overcome this issue. We investigate if dynamic CTA has added value in assessing thrombus perviousness. Prospectively collected image data of AIS patients with proven occlusion of the anterior or posterior circulation with thin-slice multi-phase CTA (MCTA) and non-contrast CT were co-registered (n = 221). Thrombus attenuation increase (TAI; a perviousness measure) was measured for the arterial, venous, and delayed phase of the MCTA and time-invariant CTAs (TiCTA). Associations with favorable clinical outcome (90-day mRS ≤ 2) were assessed using univariate and multivariable regressions and calculating areas under receiver operating curves (AUC). TAI determined from the arterial phase CTA was superior in the association with favorable outcome with OR = 1.21 per 10 HU increase (95%CI 1.04-1.41, AUC 0.62, p = 0.014) compared to any other phase (venous 1.14(95%CI 1.01-1.30, AUC 0.58, p = 0.033), delayed 1.046(95%CI 0.919-1.19, AUC 0.53, p = 0.50)), and TiCTA 1.15(95%CI 1.02-1.30, AUC 0.60, p = 0.022). In the multivariable model, only TAI on arterial phase was significantly associated with favorable outcome (aOR 1.59, 95%CI 1.04-2.43, p = 0.032). Association between TAI with functional outcome was optimal on arterial-phase CTA such that dynamic CTA imaging has no additional benefits in current thrombus perviousness assessment, thereby suggesting that the delay of contrast arrival at the clot is a key variable for patient functional outcome. (orig.)

  13. Advanced subgrid modeling for Multiphase CFD in CASL VERA tools

    International Nuclear Information System (INIS)

    Baglietto, Emilio; Gilman, Lindsey; Sugrue, Rosie

    2014-01-01

    This work introduces advanced modeling capabilities that are being developed to improve the accuracy and extend the applicability of Multiphase CFD. Specifics of the advanced and hardened boiling closure model are described in this work. The development has been driven by new physical understanding, derived from the innovative experimental techniques available at MIT. A new experimental-based mechanistic approach to heat partitioning is proposed. The model introduces a new description of the bubble evaporation, sliding and interaction on the heated surface to accurately capture the evaporation occurring at the heated surface, while also tracking the local surface conditions. The model is being assembled to cover an extended application area, up to Critical Heat Flux (CHF). The accurate description of the bubble interaction, effective microlayer and dry surface area are considered to be the enabling quantities towards innovated CHF capturing methodologies. Further, improved mechanistic force-balance models for bubble departure predictions and lift-off diameter predictions are implemented in the model. Studies demonstrate the influence of the newly implemented partitioning components. Finally, the development work towards a more consistent and integrated hydrodynamic closure is presented. The main objective here is to develop a set of robust momentum closure relations which focuses on the specific application to PWR conditions, but will facilitate the application to other geometries, void fractions, and flow regimes. The innovative approach considers local flow conditions on a cell-by-cell basis to ensure robustness. Closure relations of interest initially include drag, lift, and turbulence dispersion, with near wall corrections applied for both drag and lift. (author)

  14. Method of controlling reactivity

    International Nuclear Information System (INIS)

    Tochihara, Hiroshi.

    1982-01-01

    Purpose: To improve the reactivity controlling characteristics by artificially controlling the leakage of neutron from a reactor and providing a controller for controlling the reactivity. Method: A reactor core is divided into several water gaps to increase the leakage of neutron, its reactivity is reduced, a gas-filled control rod or a fuel assembly is inserted into the gap as required, the entire core is coupled in a system to reduce the leakage of the neutron, and the reactivity is increased. The reactor shutdown is conducted by the conventional control rod, and to maintain critical state, boron density varying system is used together. Futher, a control rod drive is used with that similar to the conventional one, thereby enabling fast reactivity variation, and the positive reactivity can be obtained by the insertion, thereby improving the reactivity controlling characteristics. (Yoshihara, H.)

  15. Use of partial dissolution techniques in geochemical exploration

    Science.gov (United States)

    Chao, T.T.

    1984-01-01

    Application of partial dissolution techniques to geochemical exploration has advanced from an early empirical approach to an approach based on sound geochemical principles. This advance assures a prominent future position for the use of these techniques in geochemical exploration for concealed mineral deposits. Partial dissolution techniques are classified as single dissolution or sequential multiple dissolution depending on the number of steps taken in the procedure, or as "nonselective" extraction and as "selective" extraction in terms of the relative specificity of the extraction. The choice of dissolution techniques for use in geochemical exploration is dictated by the geology of the area, the type and degree of weathering, and the expected chemical forms of the ore and of the pathfinding elements. Case histories have illustrated many instances where partial dissolution techniques exhibit advantages over conventional methods of chemical analysis used in geochemical exploration. ?? 1984.

  16. Methodological approaches in estimating anomalous geochemical field structure

    International Nuclear Information System (INIS)

    Gavrilov, R; Rudmin, M

    2015-01-01

    Mathematical statistic methods were applied to analyze the core samples from vertical expendable wells in Chertovo Koryto gold ore field. The following methods were used to analyse gold in samples: assay tests and atomic absorption method (AAS), while emission spectrum semiquantative method was applied to identify traces. The analysis of geochemical association distribution in one central profile demonstrated that bulk metasomatic aureoles are characteristic of concentric zonal structure. The distribution of geochemical associations is correlated to the hydrothermal stages of mineral formation identified in this deposit. It was proved that the processed geochemical data by factor and cluster analyses provided additional information on the anomalous geochemical field structure in gold- bearing black-shale strata. Such methods are effective tools in interpretating specific features of geochemical field structures in analogous potential ore-bearing areas

  17. Multiphase region of helimagnetic superlattices at low temperature in an extended six-state clock model

    Science.gov (United States)

    Lovelady, D. C.; Harper, H. M.; Brodsky, I. E.; Rabson, D. A.

    2006-05-01

    The variety of magnetic phases observed in rare-earth heterostructures at low temperatures (Jehan et al 1993 Phys. Rev. B 48 5594-606), such as Ho/Y, may be elucidated by an ANNNI-like model Hamiltonian. In previous work modelling bulk Ho (Seno, Rabson and Yeomans 1993 J. Phys. A: Math. Gen. 26 4887-905), such a Hamiltonian with a one-dimensional parameter space produced a single multiphase point. In contrast, the parameter space of the heterostructure model is three dimensional, and instead of an isolated multiphase point, we find two-dimensional multiphase regions. In an example of Villain's 'order from disorder' (Villain, Bidaux, Carton and Conte 1980 J. Physique 41 1263-72 Pimpinelli, Uimin and Villain 1991 J. Phys.: Condens. Matter 3 4693-719), an infinitesimal temperature breaks the ground-state degeneracy. In first order of a low-temperature expansion, we find that the degeneracy is broken everywhere in a multiphase region except on a line. A segment of the line appears to remain multiphase to all orders in a low-temperature expansion when the number L of magnetic layers between non-magnetic spacers is 4 but not for other values of L. For L = 4, the hierarchy of phases more closely resembles that in the ANNNI model than in the bulk six-state clock model on which the present model is based.

  18. Multiphase region of helimagnetic superlattices at low temperature in an extended six-state clock model

    International Nuclear Information System (INIS)

    Lovelady, D C; Harper, H M; Brodsky, I E; Rabson, D A

    2006-01-01

    The variety of magnetic phases observed in rare-earth heterostructures at low temperatures (Jehan et al 1993 Phys. Rev. B 48 5594-606), such as Ho/Y, may be elucidated by an ANNNI-like model Hamiltonian. In previous work modelling bulk Ho (Seno, Rabson and Yeomans 1993 J. Phys. A: Math. Gen. 26 4887-905), such a Hamiltonian with a one-dimensional parameter space produced a single multiphase point. In contrast, the parameter space of the heterostructure model is three dimensional, and instead of an isolated multiphase point, we find two-dimensional multiphase regions. In an example of Villain's 'order from disorder' (Villain, Bidaux, Carton and Conte 1980 J. Physique 41 1263-72; Pimpinelli, Uimin and Villain 1991 J. Phys.: Condens. Matter 3 4693-719), an infinitesimal temperature breaks the ground-state degeneracy. In first order of a low-temperature expansion, we find that the degeneracy is broken everywhere in a multiphase region except on a line. A segment of the line appears to remain multiphase to all orders in a low-temperature expansion when the number L of magnetic layers between non-magnetic spacers is 4 but not for other values of L. For L = 4, the hierarchy of phases more closely resembles that in the ANNNI model than in the bulk six-state clock model on which the present model is based

  19. Design and fabrication of biomimetic multiphased scaffolds for ligament-to-bone fixation.

    Science.gov (United States)

    He, Jiankang; Zhang, Wenyou; Liu, Yaxiong; Li, Xiang; Li, Dichen; Jin, Zhongmin

    2015-05-01

    Conventional ligament grafts with single material composition cannot effectively integrate with the host bones due to mismatched properties and eventually affect their long-term function in vivo. Here we presented a multi-material strategy to design and fabricate composite scaffolds including ligament, interface and bone multiphased regions. The interface region consists of triphasic layers with varying material composition and porous structure to mimic native ligament-to-bone interface while the bone region contains polycaprolactone (PCL) anchor and microchanneled ceramic scaffolds to potentially provide combined mechanical and biological implant-bone fixation. Finite element analysis (FEA) demonstrated that the multiphased scaffolds with interference value smaller than 0.5 mm could avoid the fracture of ceramic scaffold during the implantation process, which was validated by in-vitro implanting the multiphased scaffolds into porcine joint bones. Pull-out experiment showed that the initial fixation between the multiphased scaffolds with 0.47 mm interference and the host bones could withstand the maximum force of 360.31±97.51 N, which can be improved by reinforcing the ceramic scaffolds with biopolymers. It is envisioned that the multiphased scaffold could potentially induce the regeneration of a new bone as well as interfacial tissue with the gradual degradation of the scaffold and subsequently realize long-term biological fixation of the implant with the host bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. High-temperature multiphase flowmeters in heavy-oil thermal production

    Energy Technology Data Exchange (ETDEWEB)

    Mehdizadeh, P. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Production Technology Inc. (United States)

    2005-11-01

    A review of field tests assessing the capability and advantages of multi-phase metering technology in high temperature thermal recovery processes such as cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD) was presented. A number of different tank gauging procedures were conducted to obtain a reference flow rate. Subsequent performance tests of metered data and tank data verified the accuracy of the meter, and that water cut sampling can be attained under practical field conditions. A 12 well field test was then conducted, and an allocation factor was obtained from conventional test separators and production measurements. An improvement in the allocation factor was noted. However, a full evaluation of the multiphase meter data obtained in the field was limited by the quality of the reference field data. A 30 day well testing campaign showed a comparison of well rate data from the multi-phase meter with data from an emulsion meter. It was concluded that the multiphase meter provided consistent measurements, matching the level of accuracy attained from rigorous tank measurements. In addition, the multiphase meter eliminated the need for the equipment modifications and extra personnel interventions needed to perform tank testing and manual and automatic water cut sampling. 15 refs., 2 tabs., 6 figs.

  1. Prediction of Separation Length of Turbulent Multiphase Flow Using Radiotracer and Computational Fluid Dynamics Simulation

    International Nuclear Information System (INIS)

    Sugiharto, S.; Kurniadi, R.; Abidin, Z.; Stegowski, Z.; Furman, L.

    2013-01-01

    Multiphase flow modeling presents great challenges due to its extreme importance in various industrial and environmental applications. In the present study, prediction of separation length of multiphase flow is examined experimentally by injection of two kinds of iodine-based radiotracer solutions into a hydrocarbon transport pipeline (HCT) having an inner diameter of 24 in (60,96 m). The main components of fluids in the pipeline are water 95%, crude oil 3% and gas 2%. A radiotracing experiment was carried out at the segment of pipe which is located far from branch points with assumptions that stratified flows in such segment were achieved. Two radiation detectors located at 80 and 100 m from injection point were used to generate residence time distribution (RTD) curve resulting from injection of radiotracer solutions. Multiphase computational fluid dynamics (CFD) simulations using Eulerian-Eulerian control volume and commercial CFD package Fluent 6.2 were employed to simulate separation length of multiphase flow. The results of study shows that the flow velocity of water is higher than the flow rate of crude oil in water-dominated system despite the higher density of water than the density of the crude oil. The separation length in multiphase flow predicted by Fluent mixture model is approximately 20 m, measured from injection point. This result confirms that the placement of the first radiation detector at the distance 80 m from the injection point was correct. (author)

  2. Prediction of Separation Length of Turbulent Multiphase Flow Using Radiotracer and Computational Fluid Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    S. Sugiharto1

    2013-04-01

    Full Text Available Multiphase flow modeling presents great challenges due to its extreme importance in various industrial and environmental applications. In the present study, prediction of separation length of multiphase flow is examined experimentally by injection of two kinds of iodine-based radiotracer solutions into a hydrocarbon transport pipeline (HCT having an inner diameter of 24 in (60,96 m. The main components of fluids in the pipeline are water 95%, crude oil 3% and gas 2%. A radiotracing experiment was carried out at the segment of pipe which is located far from branch points with assumptions that stratified flows in such segment were achieved. Two radiation detectors located at 80 and 100 m from injection point were used to generate residence time distribution (RTD curve resulting from injection of radiotracer solutions. Multiphase computational fluid dynamics (CFD simulations using Eulerian-Eulerian control volume and commercial CFD package Fluent 6.2 were employed to simulate separation length of multiphase flow. The results of study shows that the flow velocity of water is higher than the flow rate of crude oil in water-dominated system despite the higher density of water than the density of the crude oil. The separation length in multiphase flow predicted by Fluent mixture model is approximately 20 m, measured from injection point. This result confirms that the placement of the first radiation detector at the distance 80 m from the injection point was correct

  3. Multi-phase flow monitoring with electrical impedance tomography using level set based method

    International Nuclear Information System (INIS)

    Liu, Dong; Khambampati, Anil Kumar; Kim, Sin; Kim, Kyung Youn

    2015-01-01

    Highlights: • LSM has been used for shape reconstruction to monitor multi-phase flow using EIT. • Multi-phase level set model for conductivity is represented by two level set functions. • LSM handles topological merging and breaking naturally during evolution process. • To reduce the computational time, a narrowband technique was applied. • Use of narrowband and optimization approach results in efficient and fast method. - Abstract: In this paper, a level set-based reconstruction scheme is applied to multi-phase flow monitoring using electrical impedance tomography (EIT). The proposed scheme involves applying a narrowband level set method to solve the inverse problem of finding the interface between the regions having different conductivity values. The multi-phase level set model for the conductivity distribution inside the domain is represented by two level set functions. The key principle of the level set-based method is to implicitly represent the shape of interface as the zero level set of higher dimensional function and then solve a set of partial differential equations. The level set-based scheme handles topological merging and breaking naturally during the evolution process. It also offers several advantages compared to traditional pixel-based approach. Level set-based method for multi-phase flow is tested with numerical and experimental data. It is found that level set-based method has better reconstruction performance when compared to pixel-based method

  4. An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Molins, Sergi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Steefel, Carl I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Shen, Chaopeng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division

    2012-03-30

    The scale-dependence of geochemical reaction rates hinders their use in continuum scale models intended for the interpretation and prediction of chemical fate and transport in subsurface environments such as those considered for geologic sequestration of CO2. Processes that take place at the pore scale, especially those involving mass transport limitations to reactive surfaces, may contribute to the discrepancy commonly observed between laboratory-determined and continuum-scale or field rates. In this study we investigate the dependence of mineral dissolution rates on the pore structure of the porous media by means of pore scale modeling of flow and multicomponent reactive transport. The pore scale model is composed of high-performance simulation tools and algorithms for incompressible flow and conservative transport combined with a general-purpose multicomponent geochemical reaction code. The model performs direct numerical simulation of reactive transport based on an operator-splitting approach to coupling transport and reactions. The approach is validated with a Poiseuille flow single-pore experiment and verified with an equivalent 1-D continuum-scale model of a capillary tube packed with calcite spheres. Using the case of calcite dissolution as an example, the high-resolution model is used to demonstrate that nonuniformity in the flow field at the pore scale has the effect of decreasing the overall reactivity of the system, even when systems with identical reactive surface area are considered. In conclusion, the effect becomes more pronounced as the heterogeneity of the reactive grain packing increases, particularly where the flow slows sufficiently such that the solution approaches equilibrium locally and the average rate becomes transport-limited.

  5. Geochemical evidences of magma dynamics at Campi Flegrei (Italy)

    Science.gov (United States)

    Caliro, S.; Chiodini, G.; Paonita, A.

    2014-05-01

    Campi Flegrei caldera, within the Neapolitan area of Italy, is potentially one of the most dangerous volcanoes in the world, and during the last decade it has shown clear signs of reactivation, marked by the onset of uplift and changes in the geochemistry of gas emissions. We describe a 30-year-long data set of the CO2-He-Ar-N2 compositions of fumarolic emissions from La Solfatara crater, which is located in the center of the caldera. The data display continuous decreases in both the N2/He and N2/CO2 ratios since 1985, paralleled by an increase in He/CO2. These variations cannot be explained by either processes of boiling/condensation in the local hydrothermal system or with changes in the mixing proportions between a magmatic vapor and hydrothermal fluids. We applied the magma degassing model of Nuccio and Paonita (2001, Earth Planet. Sci. Lett. 193, 467-481) using the most recent inert-gas solubilities in order to interpret these peculiar features in accordance with petrologic constraints derived from the ranges of the melt compositions and reservoir pressures at Campi Flegrei. The model simulations for mafic melts (trachybasalt and shoshonite) show a remarkably good agreement with the measured data. Both decompressive degassing of an ascending magma and mixing between magmatic fluids exsolved at various levels along the ascent path can explain the long-term geochemical changes. Recalling that (i) a sill-like reservoir of gases at a depth of 3-4 km seems to be the main source of ground inflation and (ii) there is petrologic and geophysical evidence for a reservoir of magma at about 8 km below Campi Flegrei, we suggest that the most-intense episodes of inflation occur when the gas supply to the sill-like reservoir comes from the 8 km-deep magma, although fluids exsolved by magma bodies at shallower depths also contribute to the gas budget. Our work highlights that, in caldera systems where the presence of hydrothermal aquifers commonly masks the magmatic signature

  6. Mineral Precipitation in Fractures: Multiscale Imaging and Geochemical Modeling

    Science.gov (United States)

    Hajirezaie, S.; Peters, C. A.; Swift, A.; Sheets, J. M.; Cole, D. R.; Crandall, D.; Cheshire, M.; Stack, A. G.; Anovitz, L. M.

    2017-12-01

    For subsurface energy technologies such as geologic carbon sequestration, fractures are potential pathways for fluid migration from target formations. Highly permeable fractures may become sealed by mineral precipitation. In this study, we examined shale specimens with existing cemented fractures as natural analogues, using an array of imaging methods to characterize mineralogy and porosity at several spatial scales. In addition, we used reactive transport modeling to investigate geochemical conditions that can lead to extensive mineral precipitation and to simulate the impacts on fracture hydraulic properties. The naturally-cemented fractured rock specimens were from the Upper Wolfcamp formation in Texas, at 10,000 ft depth. The specimens were scanned using x-ray computed tomography (xCT) at resolution of 13 microns. The xCT images revealed an original fracture aperture of 1.9 mm filled with several distinct mineral phases and vuggy void regions, and the mineral phase volumes and surface areas were quantified and mapped in 3D. Specimens were thin-sectioned and examined at micron- and submicron-scales using petrographic microscopy (PM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and small angle X-ray scattering (SAXS). Collectively these methods revealed crystals of dolomite as large as 900 microns in length overlain with a heterogeneous mixture of carbonate minerals including calcite, dolomite, and Fe-rich dolomite, interspersed at spatial scales as small as 5 microns. In addition, secondary precipitation of SiO2 was found to fill some of the void space. This multiscale imaging was used to inform the reactive transport modeling employed to examine the conditions that can cause the observed mineral precipitation in fractures at a larger scale. Two brines containing solutions that when mixed would lead to precipitation of various carbonate minerals were simulated as injectants into a fracture domain. In particular, the competing

  7. Geochemical studies on island arc volcanoes

    International Nuclear Information System (INIS)

    Notsu, Kenji

    1998-01-01

    This paper summarizes advances in three topics of geochemical studies on island arc volcanoes, which I and my colleagues have been investigating. First one is strontium isotope studies of arc volcanic rocks mainly from Japanese island arcs. We have shown that the precise spatial distribution of the 87 Sr/ 86 Sr ratio reflects natures of the subduction structure and slab-mantle interaction. Based on the 87 Sr/ 86 Sr ratio of volcanic rocks in the northern Kanto district, where two plates subduct concurrently with different directions, the existence of an aseismic portion of the Philippine Sea plate ahead of the seismic one was suggested. Second one is geochemical monitoring of active arc volcanoes. 3 He/ 4 He ratio of volcanic volatiles was shown to be a good indicator to monitor the behavior of magma: ascent and drain-back of magma result in increase and decrease in the ratio, respectively. In the case of 1986 eruptions of Izu-Oshima volcano, the ratio began to increase two months after big eruptions, reaching the maximum and decreased. Such delayed response is explained in terms of travelling time of magmatic helium from the vent area to the observation site along the underground steam flow. Third one is remote observation of volcanic gas chemistry of arc volcanoes, using an infrared absorption spectroscopy. During Unzen eruptions starting in 1990, absorption features of SO 2 and HCl of volcanic gas were detected from the observation station at 1.3 km distance. This was the first ground-based remote detection of HCl in volcanic gas. In the recent work at Aso volcano, we could identify 5 species (CO, COS, CO 2 , SO 2 and HCl) simultaneously in the volcanic plume spectra. (author)

  8. Reactive solute transport in acidic streams

    Science.gov (United States)

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  9. Cement reactivity in CO{sub 2} saturated brines: use of a reactive transport code to highlight key degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Huet, B.M.; Prevost, J.H.; Scherer, G.W. [Princeton Univ., NJ (United States)

    2007-07-01

    A modular reactive transport code is proposed to analyze the reactivity of cement in CO{sub 2} saturated brine. The coupling of the transport module and the geochemical module within Dynaflow{sup TM} is derived. Both modules are coupled in a sequential iterative approach to accurately model: (1) mineral dissolution/precipitation and (2) porosity dependent transport properties. Results of the model reproduce qualitatively the dissolution of cement hydrates (C-H, C-S-H, AFm, AFt) and intermediate products (CaCO{sub 3}) into the brine. Slight discrepancies between modeling and experimental results were found concerning the dynamics of the mineral zoning. Results suggest that the power law relationship to model effective transport properties from porosity values is not accurate for very reactive case. (authors)

  10. Cement reactivity in CO2 saturated brines: use of a reactive transport code to highlight key degradation mechanisms

    International Nuclear Information System (INIS)

    Huet, B.M.; Prevost, J.H.; Scherer, G.W.

    2007-01-01

    A modular reactive transport code is proposed to analyze the reactivity of cement in CO 2 saturated brine. The coupling of the transport module and the geochemical module within Dynaflow TM is derived. Both modules are coupled in a sequential iterative approach to accurately model: (1) mineral dissolution/precipitation and (2) porosity dependent transport properties. Results of the model reproduce qualitatively the dissolution of cement hydrates (C-H, C-S-H, AFm, AFt) and intermediate products (CaCO 3 ) into the brine. Slight discrepancies between modeling and experimental results were found concerning the dynamics of the mineral zoning. Results suggest that the power law relationship to model effective transport properties from porosity values is not accurate for very reactive case. (authors)

  11. Applied multiphase flow in pipes and flow assurance oil and gas production

    CERN Document Server

    Al-Safran, Eissa M

    2017-01-01

    Applied Multiphase Flow in Pipes and Flow Assurance - Oil and Gas Production delivers the most recent advancements in multiphase flow technology while remaining easy to read and appropriate for undergraduate and graduate petroleum engineering students. Responding to the need for a more up-to-the-minute resource, this highly anticipated new book represents applications on the fundamentals with new material on heat transfer in production systems, flow assurance, transient multiphase flow in pipes and the TUFFP unified model. The complex computation procedure of mechanistic models is simplified through solution flowcharts and several example problems. Containing over 50 solved example problems and 140 homework problems, this new book will equip engineers with the skills necessary to use the latest steady-state simulators available.

  12. Investigation of free vibration characteristics for skew multiphase magneto-electro-elastic plate

    Science.gov (United States)

    Kiran, M. C.; Kattimani, S.

    2018-04-01

    This article presents the investigation of skew multiphase magneto-electro-elastic (MMEE) plate to assess its free vibration characteristics. A finite element (FE) model is formulated considering the different couplings involved via coupled constitutive equations. The transformation matrices are derived to transform local degrees of freedom into the global degrees of freedom for the nodes lying on the skew edges. Effect of different volume fraction (Vf) on the free vibration behavior is explicitly studied. In addition, influence of width to thickness ratio, the aspect ratio, and the stacking arrangement on natural frequencies of skew multiphase MEE plate investigated. Particular attention has been paid to investigate the effect of skew angle on the non-dimensional Eigen frequencies of multiphase MEE plate with simply supported edges.

  13. Multiphase Microstructure in a Metastability-Assisted Medium Carbon Alloy Steel

    Science.gov (United States)

    Liu, Cheng; Cui, Xixi; Yang, Chen

    2018-05-01

    A medium carbon alloy steel is processed by austenizing at 900 °C for 30 min, then rapid quenching into a patented quenching liquid and holding at 170 °C for 5 min, finally isothermally holding at 250 °C for different times. The morphology and mechanical properties are performed by using optical microscopy and scanning electron microscopy. A multiphase microstructure characterized by a mixture of lenticular prior martensite (PM), fine needle bainitic ferrite and filmy retained austenite (RA) is obtained. It is found that the PM formed firstly upon quenching can accelerate the subsequent bainitic transformation and promote refinement of multiphase colonies. The results show that an optimum mechanical property of a 4000.9 MPa bending strength and a 2030 MPa tensile strength is achieved at 250 °C for 120 min, which is attributed to the multiphase microstructural characteristics and a high product of the volume fraction of RA and the carbon content of austenite.

  14. Performance analysis of variable speed multiphase induction motor with pole phase modulation

    Directory of Open Access Journals (Sweden)

    Liu Huijuan

    2016-09-01

    Full Text Available The pole phase modulation (PPM technique is an effective method to extend speed range and torque capabilities for an integrated starter and hybrid electric vehicles applications. In this paper, the five pole-phase combination types of a multiphase induction motor (IM with 36 stator slots and 36 stator conductors are presented and compared quantitatively by using the time-stepping finite element method (TS-FEM. The 36 stator conductors of the proposed multiphase IM are fed by a 36 leg inverter and the current phase angle and amplitude of each stator conductor can be controlled independently. This paper focuses on the winding connection, the PPM technique and the performance comparative analysis of each pole-phase combination types of the proposed multiphase IM. The flux distribution, air-gap flux density, output torque, core losses and efficiency of five pole-phase combination types have been investigated.

  15. Modelling and simulation of multi-phase effects on X-ray elasticity constants

    CERN Document Server

    Freour, S; Guillen, R; François, M X

    2003-01-01

    This paper deals with the calculation of X-ray Elasticity Constants (XEC) of phases embedded in multi-phase polycrystals. A three scales (macroscopic, pseudo-macroscopic, mesoscopic) model based on the classical self-consistent formalism is developed in order to analyse multi-phase effects on XEC values. Simulations are performed for cubic or hexagonal crystallographic structure phases embedded in several two-phases materials. In fact, it is demonstrated that XEC vary with the macroscopic stiffness of the whole polycrystal. In consequence, the constants of one particular phase depend on the elastic behaviour and the volume fraction of all the phases constituting the material. Now, XEC play a leading role in pseudo-macroscopic stresses determination by X-Ray Diffraction (XRD) methods. In this work, a quantitative analysis of the multi-phase effects on stresses determination by XRD methods was performed. Numerical results will be compared and discussed. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  16. A Multi-Phase Equation of State and Strength Model for Tin

    International Nuclear Information System (INIS)

    Cox, G. A.

    2006-01-01

    This paper considers a multi-phase equation of state and a multi-phase strength model for tin in the β, γ and liquid phases. At a phase transition there are changes in volume, energy, and properties of a material that should be included in an accurate model. The strength model will also be affected by a solid-solid phase transition. For many materials there is a lack of experimental data for strength at high pressures making the derivation of strength parameters for some phases difficult. In the case of tin there are longitudinal sound speed data on the Hugoniot available that have been used here in conjunction with a multi-phase equation of state to derive strength parameters for the γ phase, a phase which does not exist at room temperature and pressure

  17. A QCQP Approach for OPF in Multiphase Radial Networks with Wye and Delta Connections: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zamzam, Ahmed, S.; Zhaoy, Changhong; Dall' Anesey, Emiliano; Sidiropoulos, Nicholas D.

    2017-06-27

    This paper examines the AC Optimal Power Flow (OPF) problem for multiphase distribution networks featuring renewable energy resources (RESs). We start by outlining a power flow model for radial multiphase systems that accommodates wye-connected and delta-connected RESs and non-controllable energy assets. We then formalize an AC OPF problem that accounts for both types of connections. Similar to various AC OPF renditions, the resultant problem is a non convex quadratically-constrained quadratic program. However, the so-called Feasible Point Pursuit-Successive Convex Approximation algorithm is leveraged to obtain a feasible and yet locally-optimal solution. The merits of the proposed solution approach are demonstrated using two unbalanced multiphase distribution feeders with both wye and delta connections.

  18. Multiphase Flow Dynamics 4 Turbulence, Gas Adsorption and Release, Diesel Fuel Properties

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    The present Volume 4 of the successful monograh package “Multiphase Flow Dynamics”is devoted to selected Chapters of the multiphase fluid dynamics that are important for practical applications but did not find place in the previous volumes. The state of the art of the turbulence modeling in multiphase flows is presented. As introduction, some basics of the single phase boundary layer theory including some important scales and flow oscillation characteristics in pipes and rod bundles are presented. Then the scales characterizing the dispersed flow systems are presented. The description of the turbulence is provided at different level of complexity: simple algebraic models for eddy viscosity, simple algebraic models based on the Boussinesq hypothesis, modification of the boundary layer share due to modification of the bulk turbulence, modification of the boundary layer share due to nucleate boiling. The role of the following forces on the mathematical description of turbulent flows is discussed: the lift fo...

  19. Application of the level set method for multi-phase flow computation in fusion engineering

    International Nuclear Information System (INIS)

    Luo, X-Y.; Ni, M-J.; Ying, A.; Abdou, M.

    2006-01-01

    Numerical simulation of multi-phase flow is essential to evaluate the feasibility of a liquid protection scheme for the power plant chamber. The level set method is one of the best methods for computing and analyzing the motion of interface among the multi-phase flow. This paper presents a general formula for the second-order projection method combined with the level set method to simulate unsteady incompressible multi-phase flow with/out phase change flow encountered in fusion science and engineering. The third-order ENO scheme and second-order semi-implicit Crank-Nicholson scheme is used to update the convective and diffusion term. The numerical results show this method can handle the complex deformation of the interface and the effect of liquid-vapor phase change will be included in the future work

  20. Dissolved gas geochemical signatures of the ground waters related to the 2011 El Hierro magmatic reactivation

    Science.gov (United States)

    Rodríguez, F.; Hernández, P. A.; Padrón, E.; Pérez, N. M.; Sumino, H.; Melián, G. V.; Padilla, G. D.; Barrancos, J.; Dionis, S.; Nolasco, D.; Calvo, D.; Hernández, I.; Peraza, M. D.

    2012-04-01

    El Hierro Island is the south westernmost and the youngest island of the Canary archipelago (Restinga village (at the southernmost part of El Hierro island), suggesting the existence of a submarine eruption. Since October 12, frequent episodes of, turbulent gas emission and foaming, and the appearance of steamy lava fragments has been observed on the sea surface. Instituto Volcanologico de Canarias (INVOLCAN) started a hydrogeochemical program on August 2011 in order to evaluate the temporal evolution of dissolved gases on four different observation points (vertical and horizontal wells) of El Hierro. Three wells are located on the north of the island (where the seismic activity occurred at the beginning of the volcano-seismic unrest) and one horizontal well (gallery) in the south. At each observation point the concentration of dissolved helium, CO2, N2, O2 and Ar and the isotopic composition of He, C-CO2 and Ar have been measured three times per week. Significant increases on the dissolved gases content, mainly on CO2 and He/CO2 ratio, have been measured at all the observation points prior to the increasing of released seismic energy. Isotopic composition of dissolved helium, measured as 3He/4He ratio, showed an significant increase (from 1-3 RA up to 7.2 RA, being RA the isotopic 3He/4He ratio on air) at all the observation points 20 days before the occurrence of the submarine eruption and these relatively high 3He/4He values have been maintained along the volcanic unrest period. The isotopic composition of CO2 has showed also significant changes in relation to the release of seismic energy. The results observed on this dissolved gases study have been tremendously beneficial on the volcanic surveillance tools to study and forecast the evolution of the seismic-volcanic crisis.

  1. Pattern recognition techniques for horizontal and vertically upward multiphase flow measurement

    Science.gov (United States)

    Arubi, Tesi I. M.; Yeung, Hoi

    2012-03-01

    The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves that has led oil companies to develop smaller and marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective solutions of on-line continuous multiphase flow measurement for well testing, production monitoring, production optimisation, process control and automation. The pattern recognition approach for clamp-on multiphase measurement employed in this study provides one means for meeting this need. High speed caesium-137 radioisotope-based densitometers were installed vertically at the top of a 50.8mm and 101.6mm riser as well as horizontally at the riser base in the Cranfield University multiphase flow test facility. A comprehensive experimental campaign comprising flow conditions typical of operating conditions found in the Petroleum Industry was conducted. The application of a single gamma densitometer unit, in conjunction with pattern recognition techniques to determine both the phase volume fractions and velocities to yield the individual phase flow rates of horizontal and vertically upward multiphase flows was investigated. The pattern recognition systems were trained to map the temporal fluctuations in the multiphase mixture density with the individual phase flow rates using statistical features extracted from the gamma counts signals as their inputs. Initial results yielded individual phase flow rate predictions to within ±5% relative error for the two phase airwater flows and ±10% for three phase air-oil-water flows data.

  2. Synroc - a multiphase ceramic for high level nuclear waste immobilisation

    International Nuclear Information System (INIS)

    Reeve, K.D.; Vance, E.R.; Hart, K.P.; Smith, K.L.; Lumpkin, G.R.; Mercer, D.J.

    1992-01-01

    Many natural minerals - particularly titanates - are very durable geochemically, having survived for millions of years with very little alteration. Moreover, some of these minerals have quantitatively retained radioactive elements and their daughter products over this time. The Synroc concept mimics nature by providing an all-titanate synthetic mineral phase assemblage to immobilise high level waste (HLW) from nuclear fuel reprocessing operations for safe geological disposal. In principle, many chemically hazardous inorganic wastes arising from industry could also be immobilised in highly durable ceramics and disposed of geologically, but in practice the cost structure of most industries is such that lower cost waste management solutions - for example, the development of reusable by-products or the use of cements rather than ceramics - have to be devised. In many thousands of aqueous leach tests at ANSTO, mostly at 70-90 deg C, Synroc has been shown to be exceptionally durable. The emphases of the recent ANSTO program have been on tailoring of the Synroc composition to varying HLW compositions, leach testing of Synroc containing radioactive transuranic actinides, study of leaching mechanisms by SEM and TEM, and the development and costing of a conceptual fully active Synroc fabrication plant design. A summary of recent results on these topics will be presented. 29 refs., 4 figs

  3. The IUGS/IAGC Task Group on Global Geochemical Baselines

    Science.gov (United States)

    Smith, David B.; Wang, Xueqiu; Reeder, Shaun; Demetriades, Alecos

    2012-01-01

    The Task Group on Global Geochemical Baselines, operating under the auspices of both the International Union of Geological Sciences (IUGS) and the International Association of Geochemistry (IAGC), has the long-term goal of establishing a global geochemical database to document the concentration and distribution of chemical elements in the Earth’s surface or near-surface environment. The database and accompanying element distribution maps represent a geochemical baseline against which future human-induced or natural changes to the chemistry of the land surface may be recognized and quantified. In order to accomplish this long-term goal, the activities of the Task Group include: (1) developing partnerships with countries conducting broad-scale geochemical mapping studies; (2) providing consultation and training in the form of workshops and short courses; (3) organizing periodic international symposia to foster communication among the geochemical mapping community; (4) developing criteria for certifying those projects whose data are acceptable in a global geochemical database; (5) acting as a repository for data collected by those projects meeting the criteria for standardization; (6) preparing complete metadata for the certified projects; and (7) preparing, ultimately, a global geochemical database. This paper summarizes the history and accomplishments of the Task Group since its first predecessor project was established in 1988.

  4. Reactive Programming in Java

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Reactive Programming in gaining a lot of excitement. Many libraries, tools, and frameworks are beginning to make use of reactive libraries. Besides, applications dealing with big data or high frequency data can benefit from this programming paradigm. Come to this presentation to learn about what reactive programming is, what kind of problems it solves, how it solves them. We will take an example oriented approach to learning the programming model and the abstraction.

  5. A multiphase series-resonant converter with a reduced number of thyristors and common grounds for inputs and outputs

    NARCIS (Netherlands)

    Huisman, H.

    1993-01-01

    Multiphase series-resonant (SR) power converters provide a flexible way to transform power between a utility grid and a multiphase load or source. The current implementations all suffer from a high component count, which makes the use of these converters unattractive from an economical point of

  6. Computation of multiphase systems with phase field models

    International Nuclear Information System (INIS)

    Badalassi, V.E.; Ceniceros, H.D.; Banerjee, S.

    2003-01-01

    Phase field models offer a systematic physical approach for investigating complex multiphase systems behaviors such as near-critical interfacial phenomena, phase separation under shear, and microstructure evolution during solidification. However, because interfaces are replaced by thin transition regions (diffuse interfaces), phase field simulations require resolution of very thin layers to capture the physics of the problems studied. This demands robust numerical methods that can efficiently achieve high resolution and accuracy, especially in three dimensions. We present here an accurate and efficient numerical method to solve the coupled Cahn-Hilliard/Navier-Stokes system, known as Model H, that constitutes a phase field model for density-matched binary fluids with variable mobility and viscosity. The numerical method is a time-split scheme that combines a novel semi-implicit discretization for the convective Cahn-Hilliard equation with an innovative application of high-resolution schemes employed for direct numerical simulations of turbulence. This new semi-implicit discretization is simple but effective since it removes the stability constraint due to the nonlinearity of the Cahn-Hilliard equation at the same cost as that of an explicit scheme. It is derived from a discretization used for diffusive problems that we further enhance to efficiently solve flow problems with variable mobility and viscosity. Moreover, we solve the Navier-Stokes equations with a robust time-discretization of the projection method that guarantees better stability properties than those for Crank-Nicolson-based projection methods. For channel geometries, the method uses a spectral discretization in the streamwise and spanwise directions and a combination of spectral and high order compact finite difference discretizations in the wall normal direction. The capabilities of the method are demonstrated with several examples including phase separation with, and without, shear in two and three

  7. BN600 reactivity definition

    International Nuclear Information System (INIS)

    Zheltyshev, V.; Ivanov, A.

    2000-01-01

    Since 1980, the fast BN600 reactor with sodium coolant has been operated at Beloyarsk Nuclear Power Plant. The periodic monitoring of the reactivity modifications should be implemented in compliance with the standards and regulations applied in nuclear power engineering. The reactivity measurements are carried out in order to confirm the basic neutronic features of a BN600 reactor. The reactivity measurements are aimed to justify that nuclear safety is provided in course of the in-reactor installation of the experimental core components. Two reactivity meters are to be used on BN600 operation: 1. Digital on-line reactivity calculated under stationary reactor operation on power (approximation of the point-wise kinetics is applied). 2. Second reactivity meter used to define the reactor control rod operating components efficiency under reactor startup and take account of the changing efficiency of the sensor, however, this is more time-consumptive than the on-line reactivity meter. The application of two reactivity meters allows for the monitoring of the reactor reactivity under every operating mode. (authors)

  8. A multiphase electrokinetic flow model for electrolytes with liquid/liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.D., E-mail: joe.d.berry@gmail.com; Davidson, M.R., E-mail: m.davidson@unimelb.edu.au; Harvie, D.J.E., E-mail: daltonh@unimelb.edu.au

    2013-10-15

    A numerical model for electrokinetic flow of multiphase systems with deformable interfaces is presented, based on a combined level set-volume of fluid technique. A new feature is a multiphase formulation of the Nernst–Planck transport equation for advection, diffusion and conduction of individual charge carrier species that ensures their conservation in each fluid phase. The numerical model is validated against the analytical results of Zholkovskij et al. (2002) [1], and results for the problem of two drops coalescing in the presence of mobile charge carriers are presented. The time taken for two drops containing ions to coalesce decreases with increasing ion concentration.

  9. Invasion percolation of single component, multiphase fluids with lattice Boltzmann models

    International Nuclear Information System (INIS)

    Sukop, M.C.; Or, Dani

    2003-01-01

    Application of the lattice Boltzmann method (LBM) to invasion percolation of single component multiphase fluids in porous media offers an opportunity for more realistic modeling of the configurations and dynamics of liquid/vapor and liquid/solid interfaces. The complex geometry of connected paths in standard invasion percolation models arises solely from the spatial arrangement of simple elements on a lattice. In reality, fluid interfaces and connectivity in porous media are naturally controlled by the details of the pore geometry, its dynamic interaction with the fluid, and the ambient fluid potential. The multiphase LBM approach admits realistic pore geometry derived from imaging techniques and incorporation of realistic hydrodynamics into invasion percolation models

  10. New Multiphase Hybrid Boost Converter with Wide Conversion Ratio for PV System

    Directory of Open Access Journals (Sweden)

    Ioana-Monica Pop-Calimanu

    2014-01-01

    Full Text Available A new multiphase hybrid boost converter, with wide conversion ratio as a solution for photovoltaic energy system, is presented in this paper. To ensure that all the phases of the converter operate at the same switching frequency we use interleaving topology. The proposed converter can be used as an interface between the PV system and the DC load/inverter. This multiphase converter has the advantage of reduced value and physical size of the input and output capacitor as well as the effort for the inductors. To validate the operation of the converter we provide the analyses and the simulation results of the converter.

  11. Computational Flow Modeling of Hydrodynamics in Multiphase Trickle-Bed Reactors

    Science.gov (United States)

    Lopes, Rodrigo J. G.; Quinta-Ferreira, Rosa M.

    2008-05-01

    This study aims to incorporate most recent multiphase models in order to investigate the hydrodynamic behavior of a TBR in terms of pressure drop and liquid holdup. Taking into account transport phenomena such as mass and heat transfer, an Eulerian k-fluid model was developed resulting from the volume averaging of the continuity and momentum equations and solved for a 3D representation of the catalytic bed. Computational fluid dynamics (CFD) model predicts hydrodynamic parameters quite well if good closures for fluid/fluid and fluid/particle interactions are incorporated in the multiphase model. Moreover, catalytic performance is investigated with the catalytic wet oxidation of a phenolic pollutant.

  12. Multiphase evolution of population and its application to optics and colliding-beam experiments

    International Nuclear Information System (INIS)

    Srinivasan, S.K.; Sridharan, V.

    1990-01-01

    In this paper we have analysed a multiphase evolution of population growth. Individual birth and immigration are assumed to be the consequence of the evolution of an individual through a sequence of phases whose duration form a family of independent non-negative random variables. The population model is then adapted to describe the evolution of photons in a cavity and, in particular, it is shown that a multiphase immigration model corresponds to the photons resulting from a stream obtained by amplitude mixing of coherent and chaotic beams. The model is also shown to bring out the characteristics of the multiplicity distribution of particles produced in high-energy collisions. (author)

  13. Using a multiphase flow code to model the coupled effects of repository consolidation and multiphase brine and gas flow at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Freeze, G.A.; Larson, K.W.; Davies, P.B.; Webb, S.W.

    1995-01-01

    Long-term repository assessment must consider the processes of (1) gas generation, (2) room closure and expansions due to salt creep, and (3) multiphase (brine and gas) fluid flow, as well as the complex coupling between these three processes. The mechanical creep closure code SANCHO was used to simulate the closure of a single, perfectly sealed disposal room filled with water and backfill. SANCHO uses constitutive models to describe salt creep, waste consolidation, and backfill consolidation, Five different gas-generation rate histories were simulated, differentiated by a rate multiplier, f, which ranged from 0.0 (no gas generation) to 1.0 (expected gas generation under brine-dominated conditions). The results of the SANCHO f-series simulations provide a relationship between gas generation, room closure, and room pressure for a perfectly sealed room. Several methods for coupling this relationship with multiphase fluid flow into and out of a room were examined. Two of the methods are described

  14. MINTEQ, Geochemical Equilibria in Ground Water

    International Nuclear Information System (INIS)

    Krupka, K.M.

    1990-01-01

    1 - Description of program or function: MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. MINTEQ can accept a finite mass for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and structurally distinct solid forms a separate phase. 2 - Method of solution: MINTEQ applies the fundamental principles of thermodynamics to solve geochemical equilibria from a set of mass balance equations, one for each component. Because the

  15. Geochemical surveys in the Lusi mud eruption

    Science.gov (United States)

    Sciarra, Alessandra; Mazzini, Adriano; Etiope, Giuseppe; Inguaggiato, Salvatore; Hussein, Alwi; Hadi J., Soffian

    2016-04-01

    The Lusi mud eruption started in May 2006 following to a 6.3 M earthquake striking the Java Island. In the framework of the Lusi Lab project (ERC grant n° 308126) we carried out geochemical surveys in the Sidoarjo district (Eastern Java Island, Indonesia) to investigate the gas bearing properties of the Watukosek fault system that crosses the Lusi mud eruption area. Soil gas (222Rn, CO2, CH4) concentration and flux measurements were performed 1) along two detailed profiles (~ 1km long), trending almost W-E direction, and 2) inside the Lusi embankment (about 7 km2) built to contain the erupted mud. Higher gas concentrations and fluxes were detected at the intersection with the Watukosek fault and the antithetic fault system. These zones characterized by the association of higher soil gas values constitute preferential migration pathways for fluids towards surface. The fractures release mainly CO2 (with peaks up to 400 g/m2day) and display higher temperatures (up to 41°C). The main shear zones are populated by numerous seeps that expel mostly CH4. Flux measurements in the seeping pools reveal that φCO2 is an order of magnitude higher than that measured in the fractures, and two orders of magnitude higher for φCH4. An additional geochemical profile was completed perpendicularly to the Watukosek fault escarpement (W-E direction) at the foots of the Penanngungang volcano. Results reveal CO2 and CH4 flux values significantly lower than those measured in the embankment, however an increase of radon and flux measurements is observed approaching the foots of the escarpment. These measurements are complemented with a database of ~350 CH4 and CO2 flux measurements and some soil gas concentrations (He, H2, CO2, CH4 and C2H6) and their isotopic analyses (δ13C-CH4, δD-CH4 and δ13C-CO2). Results show that the whole area is characterized by diffused gas release through seeps, fractures, microfractures and soil degassing. The collected results shed light on the origin of the

  16. Modules based on the geochemical model PHREEQC for use in scripting and programming languages

    Science.gov (United States)

    Charlton, Scott R.; Parkhurst, David L.

    2011-01-01

    The geochemical model PHREEQC is capable of simulating a wide range of equilibrium reactions between water and minerals, ion exchangers, surface complexes, solid solutions, and gases. It also has a general kinetic formulation that allows modeling of nonequilibrium mineral dissolution and precipitation, microbial reactions, decomposition of organic compounds, and other kinetic reactions. To facilitate use of these reaction capabilities in scripting languages and other models, PHREEQC has been implemented in modules that easily interface with other software. A Microsoft COM (component object model) has been implemented, which allows PHREEQC to be used by any software that can interface with a COM server—for example, Excel®, Visual Basic®, Python, or MATLAB". PHREEQC has been converted to a C++ class, which can be included in programs written in C++. The class also has been compiled in libraries for Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A limited set of methods implements the full reaction capabilities of PHREEQC for each module. Input methods use strings or files to define reaction calculations in exactly the same formats used by PHREEQC. Output methods provide a table of user-selected model results, such as concentrations, activities, saturation indices, and densities. The PHREEQC module can add geochemical reaction capabilities to surface-water, groundwater, and watershed transport models. It is possible to store and manipulate solution compositions and reaction information for many cells within the module. In addition, the object-oriented nature of the PHREEQC modules simplifies implementation of parallel processing for reactive-transport models. The PHREEQC COM module may be used in scripting languages to fit parameters; to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop new models that include simple or complex geochemical calculations.

  17. Electrospinning of reactive mesogens

    NARCIS (Netherlands)

    Yao, J.; Picot, O.T.; Hughes-Brittain, N.F.; Bastiaansen, C.W.M.; Peijs, T.

    2016-01-01

    The reinforcement potential of reactive liquid crystals or reactive mesogens (RMs) in electrospun fibers was investigated through the blending of two types of RMs (RM257 and RM82) with two types of thermoplastics; polyamide 6 (PA6) and poly(methyl methacrylate) (PMMA). Polymer/RM blends were

  18. Snowmelt induced hydrologic perturbations drive dynamic microbiological and geochemical behaviors across a shallow riparian aquifer

    Directory of Open Access Journals (Sweden)

    Robert eDanczak

    2016-05-01

    Full Text Available Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a six-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species in reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11 and Parcubacteria (OD1 that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by geochemical perturbations, while communities in shallower locations exhibited the greatest change. Reactive transport modeling of the geochemical and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments.

  19. Snowmelt induced hydrologic perturbations drive dynamic microbiological and geochemical behaviors across a shallow riparian aquifer

    Science.gov (United States)

    Danczak, Robert; Yabusaki, Steven; Williams, Kenneth; Fang, Yilin; Hobson, Chad; Wilkins, Michael

    2016-05-01

    Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a six-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO) concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species in reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11) and Parcubacteria (OD1) that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by geochemical perturbations, while communities in shallower locations exhibited the greatest change. Reactive transport modeling of the geochemical and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments.

  20. Geochemical behavior of disposed radioactive waste

    International Nuclear Information System (INIS)

    Barney, G.S.; Navratil, J.D.; Schulz, W.W.

    1984-01-01

    The papers in this book are organized to cover the chemical aspects that are important to understanding the behavior of disposed radioactive wastes. These aspects include radionuclide sorption and desorption, solubility of radionuclide compounds, chemical species of radionuclides in natural waters, hydrothermal geochemical reactions, measurements of radionuclide migration, solid state chemistry of wastes, and waste-form leaching behavior. The information in each of the papers is necessary to predict the transport of radionuclides from wastes via natural waters and thus to predict the safety of the disposed waste. Radionuclide transport in natural waters is strongly dependent on sorption, desorption, dissolution, and precipitation processes. The first two papers discuss laboratory investigations of these processes. Descriptions of sorption and desorption behavior of important radionuclides under a wide range of environmental conditions are presented in the first section. Among the sorbents studied are basalt interbed solids, granites, clays, sediments, hydrous oxides, and pure minerals. Effects of redox conditions, groundwater composition and pH on sorption reactions are described

  1. LASL approach to uranium geochemical reconnaissance

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R.R. Jr.

    1977-01-01

    The US ERDA, as part of the NURE program, has initiated a nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). The aims of the NURE program are to provide data on which to base more accurate estimates of US uranium reserves for long-range planning and to aid in meeting the nation's projected uranium demands into the next century. The HSSR objective is to complete, by 1980, a reconnaissance of the nation's surface waters, ground waters, and stream and lake sediments, to aid in assessment of uranium reserves and identification of areas of interest for exploration. Patterned after extensive uranium reconnaissance done in many other countries, the LASL project is comprised of the following five components: (1) organization and planning, which includes management, design, and execution; (2) field sampling, which includes orientation studies, generation of specifications, and contracting and inspection of field work; (3) sample receiving and analysis, which includes development of methods and hardware, quality assurance, and archival storage; (4) data handling and presentation, including verification, storage, output, and plotting; and (5) data evaluation and publication, which incorporates geochemical, geological, statistical, and empirical evaluation and report writing. The LASL approach to each component and the current status in each state are described.

  2. LASL approach to uranium geochemical reconnaissance

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.

    1977-01-01

    The US ERDA, as part of the NURE program, has initiated a nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). The aims of the NURE program are to provide data on which to base more accurate estimates of US uranium reserves for long-range planning and to aid in meeting the nation's projected uranium demands into the next century. The HSSR objective is to complete, by 1980, a reconnaissance of the nation's surface waters, ground waters, and stream and lake sediments, to aid in assessment of uranium reserves and identification of areas of interest for exploration. Patterned after extensive uranium reconnaissance done in many other countries, the LASL project is comprised of the following five components: (1) organization and planning, which includes management, design, and execution; (2) field sampling, which includes orientation studies, generation of specifications, and contracting and inspection of field work; (3) sample receiving and analysis, which includes development of methods and hardware, quality assurance, and archival storage; (4) data handling and presentation, including verification, storage, output, and plotting; and (5) data evaluation and publication, which incorporates geochemical, geological, statistical, and empirical evaluation and report writing. The LASL approach to each component and the current status in each state are described

  3. Regional geochemical baselines for Portuguese shelf sediments

    International Nuclear Information System (INIS)

    Mil-Homens, M.; Stevens, R.L.; Cato, I.; Abrantes, F.

    2007-01-01

    Metal concentrations (Al, Cr, Cu, Ni, Pb and Zn) from the DGM-INETI archive data set have been examined for sediments collected during the 1970s from 267 sites on the Portuguese shelf. Due to the differences in the oceanographic and sedimentological settings between western and Algarve coasts, the archive data set is split in two segments. For both shelf segments, regional geochemical baselines (RGB) are defined using aluminium as a reference element. Seabed samples recovered in 2002 from four distinct areas of the Portuguese shelf are superimposed on these models to identify and compare possible metal enrichments relative to the natural distribution. Metal enrichments associated with anthropogenic influences are identified in three samples collected nearby the Tejo River and are characterised by the highest enrichment factors (EF; EF Pb Zn < 4). EF values close to 1 suggest a largely natural origin for metal distributions in sediments from the other areas included in the study. - Background metal concentrations and their natural variability must be established before assessing anthropogenic impacts

  4. Geochemical modeling of magmatic gas scrubbing

    Directory of Open Access Journals (Sweden)

    B. Gambardella

    2005-06-01

    Full Text Available The EQ3/6 software package, version 7.2 was successfully used to model scrubbing of magmatic gas by pure water at 0.1 MPa, in the liquid and liquid-plus-gas regions. Some post-calculations were necessary to account for gas separation effects. In these post-calculations, redox potential was considered to be fixed by precipitation of crystalline a-sulfur, a ubiquitous and precocious process. As geochemical modeling is constrained by conservation of enthalpy upon water-gas mixing, the enthalpies of the gas species of interest were reviewed, adopting as reference state the liquid phase at the triple point. Our results confirm that significant emissions of highly acidic gas species (SO2(g, HCl(g, and HF(g are prevented by scrubbing, until dry conditions are established, at least locally. Nevertheless important outgassing of HCl(g can take place from acid, HCl-rich brines. Moreover, these findings support the rule of thumb which is generally used to distinguish SO2-, HCl-, and HF-bearing magmatic gases from SO2-, HCl-, and HF-free hydrothermal gases.

  5. Podoconiosis: non-infectious geochemical elephantiasis.

    Science.gov (United States)

    Davey, Gail; Tekola, Fasil; Newport, Melanie J

    2007-12-01

    This article reviews peer-reviewed publications and book chapters on the history, epidemiology, genetics, ecology, pathogenesis, pathology and management of podoconiosis (endemic non-filarial elephantiasis). Podoconiosis is a non-infectious geochemical elephantiasis caused by exposure of bare feet to irritant alkalic clay soils. It is found in at least 10 countries in tropical Africa, Central America and northwest India, where such soils coexist with high altitude, high seasonal rainfall and low income. Podoconiosis develops in men and women working barefoot on irritant soils, with signs becoming apparent in most patients by the third decade of life. Colloid-sized silicate particles appear to enter through the skin, are taken up into macrophages in the lower limb lymphatics and cause endolymphangitis and obliteration of the lymphatic lumen. Genetic studies provide evidence for high heritability of susceptibility to podoconiosis. The economic burden is significant in affected areas dependent on subsistence farming. Podoconiosis is unique in being an entirely preventable non-communicable disease. Primary prevention entails promoting use of footwear in areas of irritant soil; early stages are reversible given good foot hygiene, but late stages result in considerable economic and social difficulties, and require extended periods of elevation and occasionally nodulectomy.

  6. Petroleum geochemical responses to reservoir rock properties

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, B.; Larter, S.R. [Calgary Univ., AB (Canada)

    2008-07-01

    Reservoir geochemistry is used to study petroleum basin development, petroleum mixing, and alterations. In this study, polar non-hydrocarbons were used as proxies for describing reservoir properties sensitive to fluid-rock interactions. A core flood experiment was conducted on a Carboniferous siltstone core obtained from a site in the United Kingdom. Core samples were then obtained from a typical upper shoreface in a North Sea oilfield. The samples were extracted with a dichloromethane and methanol mixture. Alkylcarbazoles and alkylfluorenones were then isolated from the samples. Compositional changes along the core were also investigated. Polar non hydrocarbons were studied using a wireline gamma ray log. The strongest deflections were observed in the basal coarsening upwards unit. The study demonstrated the correlations between molecular markers, and indicated that molecular parameters can be used to differentiate between clean sand units and adjacent coarsening upward muddy sand sequences. It was concluded that reservoir geochemical parameters can provide an independent response to properties defined by petrophysical methods. 6 refs., 2 figs.

  7. Geochemical prospect ion results of Mariscala aerial photo

    International Nuclear Information System (INIS)

    Filippini, J.

    1989-01-01

    This report shows the geochemical prospect ion results carried out within the framework of the metalical mining prospect ion in Mariscala aerial photo. Lavalleja district belong to the Mining inventory programme of Uruguay.

  8. Geochemical methodology for gold prospect ion in Uruguay

    International Nuclear Information System (INIS)

    Spangenber, J.

    1987-01-01

    This work is about the history of gold prospection in Uruguay. In this study there are considered the geochemical aspects, the gold performance, the applicability to mining prospection and the gold prospection aluvionar

  9. Drift pumice in the central Indian Ocean Basin: Geochemical evidence

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Mudholkar, A.V.; JaiSankar, S.; Ilangovan, D.

    Abundant white to light grey-coloured pumice without ferromanganese oxide coating occurs within the Quaternary sediments of the Central Indian Ocean Basin (CIOB). Two distinct groups of pumice are identified from their geochemical composition, which...

  10. National Geochemical Survey Locations and Results for Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The United States Geological Survey (USGS), in collaboration with other state and federal agencies, industry, and academia, is conducting a National Geochemical...

  11. Uruguay mining Inventory: Geochemical prospecting results of Valentines mapping

    International Nuclear Information System (INIS)

    Spangenberg, J.; Filippini, J.

    1985-01-01

    This work is about geochemical prospecting carried out into the Uruguay mining inventory framework. In this case the survey was in Valentines mapping. Florida, Durazno and Treinta y Tres provinces of Uruguay .

  12. Chlorine isotopes potential as geo-chemical tracers

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Pradhan, U.K.; Banerjee, R.

    The potential of chlorine isotopes as tracers of geo-chemical processes of earth and the oceans is highlighted based on systematic studies carried out in understanding the chlorine isotope fractionation mechanism, its constancy in seawater and its...

  13. The geochemical chararateristics of the marble deposits east of ...

    African Journals Online (AJOL)

    ), marbles were investigated with the view to establishing marble occurrences and their geochemical characteristics. Crystalline rocks of the Nigerian Basement Complex (migmatite – gneiss complex) underlie the area. Ten marble bodies were ...

  14. Geochemical features and U-Pb dating of trachyandesites of the Ktuts river basin

    International Nuclear Information System (INIS)

    Sahakyan, L.H.

    2015-01-01

    The article deals with the results on geochemical (including isotopes) and U-Pb dating on zircon minerals of trachyandesites from the r. Ktuts basin. Shoshonite series trachyandesites normalised by chondrites have mobile elements enrichment (Rb, Ba, and Th) together with negative HFSE (Nb, Ta) anomalies. The (La/Sm)CN ratio is 6.84 value but the (La/Yb)CN ratio is 38.17, suggesting the presence of residual material at the magmatic source from the deep parts. Neodymium and strontium isotopes have low εNd_(14.5Ma) and high 87"Sr/86"Sr(14.5Ma) ratios, respectively –0.4 and 0.7054. The trachyandesites age determined on the zircon minerals by the U-Pb method is 14,50,2 Ma, which coincides with the magmatism reactivation in the middle-upper Miocene after the collision of Arabic and European plates in the upper Eocene-Oligocene

  15. Geochemical, hydrological, and biological cycling of energy residual. Research plan

    International Nuclear Information System (INIS)

    Wobber, F.J.

    1983-03-01

    Proposed research goals and specific research areas designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biophysical mechanisms that contribute to the transport and long term fate of energy residuals in natural systems can be understood are described. Energy development and production have resulted in a need for advanced scientific information on the geochemical transformations, transport rates, and potential for bioaccumulation of contaminants in subsurface environments

  16. Integrated geophysical-geochemical methods for archaeological prospecting

    OpenAIRE

    Persson, Kjell

    2005-01-01

    A great number of field measurements with different methods and instruments were conducted in attempts to develop a method for an optimal combination of various geochemical and geophysical methods in archaeological prospecting. The research presented in this thesis focuses on a study of how different anthropogenic changes in the ground can be detected by geochemical and geophysical mapping and how the results can be presented. A six-year pilot project, Svealand in Vendel and Viking periods (S...

  17. Geochemical modelling of groundwater evolution using chemical equilibrium codes

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Pirhonen, V.

    1991-01-01

    Geochemical equilibrium codes are a modern tool in studying interaction between groundwater and solid phases. The most common used programs and application subjects are shortly presented in this article. The main emphasis is laid on the approach method of using calculated results in evaluating groundwater evolution in hydrogeological system. At present in geochemical equilibrium modelling also kinetic as well as hydrologic constrains along a flow path are taken into consideration

  18. Multi-phase AC/AC step-down converter for distribution systems

    Science.gov (United States)

    Aeloiza, Eddy C.; Burgos, Rolando P.

    2017-10-25

    A step-down AC/AC converter for use in an electric distribution system includes at least one chopper circuit for each one of a plurality of phases of the AC power, each chopper circuit including a four-quadrant switch coupled in series between primary and secondary sides of the chopper circuit and a current-bidirectional two-quadrant switch coupled between the secondary side of the chopper circuit and a common node. Each current-bidirectional two-quadrant switch is oriented in the same direction, with respect to the secondary side of the corresponding chopper circuit and the common node. The converter further includes a control circuit configured to pulse-width-modulate control inputs of the switches, to convert a first multiphase AC voltage at the primary sides of the chopper circuits to a second multiphase AC voltage at the secondary sides of the chopper circuits, the second multiphase AC voltage being lower in voltage than the first multiphase AC voltage.

  19. Simultaneous measurement of hysteresis in capillary pressure and electric permittivity for multiphase flow through porous media

    NARCIS (Netherlands)

    Plug, W.J.; Slob, E.C.; Bruining, J.; Moreno Tirado, L.M.

    2007-01-01

    We present a tool that simultaneously measures the complex permittivity and the capillary pressure characteristics for multiphase flow. The sample holder is a parallel plate capacitor. A precision component analyzer is used to measure the impedance amplitude and phase angle as a function of

  20. Forces on bends and T-joints due to multiphase flow

    NARCIS (Netherlands)

    Belfroid, S.P.C.; Cargnelutti, M.F.; Schiferli, W.; Osch, M.M.E. van

    2010-01-01

    To be able to assess the mechanical integrity of piping structures for loading to multiphase flow conditions, air-water experiments were carried out in a horizontal 1" pipe system. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating

  1. Non-isothermal effects on multi-phase flow in porous medium

    DEFF Research Database (Denmark)

    Singh, Ashok; Wang, W; Park, C. H.

    2010-01-01

    In this paper a ppT -formulation for non-isothermal multi-phase flow is given including diffusion and latent heat effects. Temperature and pressure dependencies of governing parameters are considered, in particular surface tension variation on phase interfaces along with temperature changes. A we...

  2. Multiphase volume-preserving interface motions via localized signed distance vector scheme

    Czech Academy of Sciences Publication Activity Database

    Muhammad, R. Z.; Švadlenka, Karel

    2015-01-01

    Roč. 8, č. 5 (2015), s. 969-988 ISSN 1937-1632 Institutional support: RVO:67985840 Keywords : multiphase mean curvature flow * vector-valued signed distance * volume preservation Subject RIV: BA - General Mathematics Impact factor: 0.737, year: 2015 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11386

  3. Euler-Lagrange modeling of the hydrodynamics of dense multiphase flows

    NARCIS (Netherlands)

    Padding, J.T.; Deen, N.G.; Peters, E. A. J. F.; Kuipers, J. A. M.

    2015-01-01

    The large-scale hydrodynamic behavior of relatively dense dispersed multiphase flows, such as encountered in fluidized beds, bubbly flows, and liquid sprays, can be predicted efficiently by use of Euler-Lagrange models. In these models, grid-averaged equations for the continuous-phase flow field are

  4. Optimization of multi-phase compressible lattice Boltzmann codes on massively parallel multi-core systems

    NARCIS (Netherlands)

    Biferale, L.; Mantovani, F.; Pivanti, M.; Pozzati, F.; Sbragaglia, M.; Schifano, S.F.; Toschi, F.; Tripiccione, R.

    2011-01-01

    We develop a Lattice Boltzmann code for computational fluid-dynamics and optimize it for massively parallel systems based on multi-core processors. Our code describes 2D multi-phase compressible flows. We analyze the performance bottlenecks that we find as we gradually expose a larger fraction of

  5. Crystallographically based model for transformation-induced plasticity in multiphase carbon steels

    NARCIS (Netherlands)

    Tjahjanto, D.D.; Turteltaub, S.; Suiker, A.S.J.

    2007-01-01

    The microstructure of multiphase steels assisted by transformation-induced plasticity consists of grains of retained austenite embedded in a ferrite-based matrix. Upon mechanical loading, retained austenite may transform into martensite, as a result of which plastic deformations are induced in the

  6. Crystallographically based model for transformation-induced plasticity in multiphase carbon steels

    NARCIS (Netherlands)

    Tjahjanto, D.D.; Turteltaub, S.R.; Suiker, A.S.J.

    2008-01-01

    The microstructure of multiphase steels assisted by transformation-induced plasticity consists of grains of retained austenite embedded in a ferrite-based matrix. Upon mechanical loading, retained austenite may transform into martensite, as a result of which plastic deformations are induced in the

  7. Carbon-steel corrosion in multiphase slug flow and CO2

    International Nuclear Information System (INIS)

    Villarreal, J.; Laverde, D.; Fuentes, C.

    2006-01-01

    Hydrocarbon multiphase flow may exhibit various geometric configurations or flow patterns. One of these flow patterns is known as multiphase slug flow. If CO 2 is present in hydrocarbons, the steel pipelines can be corroded as this process is probably enhanced by slug flow turbulence. A hydrodynamic circuit was built to study the CO 2 corrosion rates under different slug flow conditions. The experimental results show how the corrosion rate of a carbon-steel electrode varies according to the flow turbulence. The higher slug frequency used in this study was 80 slugs/min. Experimental results for pressure drop and slug length are in agreement with the Dukler and Hubbard [A model for gas-liquid slug flow in horizontal and near horizontal tubes, Ind. Eng. Chem. Fundam. 14 (1975) 337-347] multiphase flow model. Furthermore, the experimental slug frequencies are well correlated by the Shell and Gregory [Correlation of the liquid volume fraction in the slug for horizontal gas-liquid slug flow. Int. J. Multiphase Flow 4 (1978) 33-39] equations in horizontal pipes

  8. Multi-phase flow modeling of soil contamination and soil remediation

    NARCIS (Netherlands)

    Dijke, van M.I.J.

    1997-01-01


    In this thesis multi-phase flow models are used to study the flow behavior of liquid contaminants in aquifers and of gases that are injected below the groundwater table for remediation purposes. Considered problems are redistribution of a lens of light nonaqueous phase

  9. Use of the Minnesota Multiphasic Personality Inventory-2 with Persons Diagnosed with Multiple Sclerosis

    Science.gov (United States)

    Hayes, Danielle; Granello, Darcy Haag

    2009-01-01

    Counselors who assess persons with multiple sclerosis (MS) using the Minnesota Multiphasic Personality Inventory-2 (MMPI-2; T. N. Butcher, W. G. Dahlstrom, J. R. Graham, A. Tellegen, & B. Kaemmer, 1989) may find scale elevations on Scales 1, 2, 3, and 8. These elevations may be due, at least in part, to specific questions on the MMPI-2 that…

  10. Grain size effects in multiphase steels assisted by transformation-induced plasticity

    NARCIS (Netherlands)

    Turteltaub, S.R.; Suiker, A.S.J.

    2006-01-01

    The influence of the austenitic grain size on the overall stress-strain behavior in a multiphase carbon steel is analyzed through three-dimensional finite element simulations. A recently developed multiscale martensitic transformation model is combined with a plasticity model to simulate the

  11. The multiphase physics of sea ice: a review for model developers

    Directory of Open Access Journals (Sweden)

    E. C. Hunke

    2011-11-01

    Full Text Available Rather than being solid throughout, sea ice contains liquid brine inclusions, solid salts, microalgae, trace elements, gases, and other impurities which all exist in the interstices of a porous, solid ice matrix. This multiphase structure of sea ice arises from the fact that the salt that exists in seawater cannot be incorporated into lattice sites in the pure ice component of sea ice, but remains in liquid solution. Depending on the ice permeability (determined by temperature, salinity and gas content, this brine can drain from the ice, taking other sea ice constituents with it. Thus, sea ice salinity and microstructure are tightly interconnected and play a significant role in polar ecosystems and climate. As large-scale climate modeling efforts move toward "earth system" simulations that include biological and chemical cycles, renewed interest in the multiphase physics of sea ice has strengthened research initiatives to observe, understand and model this complex system. This review article provides an overview of these efforts, highlighting known difficulties and requisite observations for further progress in the field. We focus on mushy layer theory, which describes general multiphase materials, and on numerical approaches now being explored to model the multiphase evolution of sea ice and its interaction with chemical, biological and climate systems.

  12. Dynamics of multiphase systems with complex microstructure. I. Development of the governing equations through nonequilibrium thermodynamics

    NARCIS (Netherlands)

    Sagis, L.M.C.; Öttinger, H.C.

    2013-01-01

    In this paper we present a general model for the dynamic behavior of multiphase systems in which the bulk phases and interfaces have a complex microstructure (for example, immiscible polymer blends with added compatibilizers, or polymer stabilized emulsions with thickening agents dispersed in the

  13. Enhancement pattern of small hepatic hemangioma: findings on multiphase spiral CT and dynamic MRI

    International Nuclear Information System (INIS)

    Choi, Byung In; Lee, Seung Koo; Kim, Myeong Jin; Chung, Jae Joon; Yoo, Hyung Sik; Lee, Jong Tae

    1999-01-01

    To compare the enhancement characteristics of small hemangiomas seen on multiphase spiral CT and dynamic MR imaging. Thirteen patients with 20 hepatic hemangiomas less than 25mm in diameter underwent both multiphase spiral CT and dynamic MR imaging. All lesions were assigned to one of three classified into 3 categories according to the enhancement pattern seen on multiphase spiral CT : typical delayed pooling, atypical early enhancement, or continuous low attenuation. The enhancement patterns seen on spiral CT and on dynamic MRI were correlated. On CT scans, ten lesions (50%) showed delayed pooling. Six (30%) showed early arterial enhancement and four (20%) showed continuous low attenuation. On delayed-phase MRI, all lesions showed delayed high signal intensity compared to adjacent liver parenchyma. Four of six lesions with early enhancement on CT showed peripheral globular enhancement on early arterial-phase MRI. On multiphase spiral CT scans, small hemangiomas can show variable atypical enhancement features. In this situation, contrast-enhanced dynamic MRI is helpful for the diagnosis of hemangiomas

  14. Twenty-five years of modeling multiphase flow and heat transfer

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.

    1999-01-01

    This presentation will cover some of the highlights of multiphase modeling in collaboration with Professor Dimitri Gidaspow (DG) over the last roughly twenty-five years. It all started in 1972 in Idaho Falls with Charles Solbrig, who planned and initiated a project for the former USAEC to develop a computer code to replace RELAP4 to analyze the loss of coolant accident (LOCA). DG spent his sabbatical on the project in 1973. One highlight was the discovery of complex characteristics, the implications of which are still pondered by some. Fluidization research began in 1978 when the author collaboratively developed a step-by-step building-block approach to understanding the hydrodynamics of fluidized beds, an approach closely coupled to validation experiments. A grant from the USDOE to study solids circulation around a jet in a fluidized bed was awarded to DG in 1978. Following that, grants from GRI, NSF, and a contract from Westinghouse Electric Corp. allowed the early work to continue. Progress was slow since computer costs were high. Subsequent continuing support from the USDOE, NSF, EPRI, and industry has allowed research to continue, as has his collaboration. A highlight of this collaboration was the development of the monolayer energy dissipation (MED) erosion model. Multiphase flow and fluidization theory took quantum leaps with the publication of DG's Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions (MFF), Academic Press, San Diego (1994), for which there is essentially no competition. Only the late Professor S.L. Soo's Particulates and Continuum: Multiphase Fluid Dynamics, Hemisphere Publishing Corp., New York (1989), a textbook version of the classic monograph Multiphase Fluid Dynamics, Science Press, Beijing, China (1990), comes close. In MFF, the kinetic theory of granular flow has evolved as a potentially viable adjunct to the continuum multiphase theory, of which fluidization is one important manifestation. It must be

  15. Multiphase flow and phase change in microgravity: Fundamental research and strategic research for exploration of space

    Science.gov (United States)

    Singh, Bhim S.

    2003-01-01

    NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel

  16. Concerning evaluation of eco-geochemical background in remediation strategy

    Science.gov (United States)

    Korobova, Elena; Romanov, Sergey

    2015-04-01

    The geochemical concept of biosphere developed by V.I. Vernadsky states the geological role of the living organisms in the course of their active chemical interaction with the inert matter (Vernadsky, 1926, 1960). Basing on this theory it is reasonable to suggest that coevolution of living organisms and their environment led to development of the dynamically stable biogeocenoses precisely adequate to their geochemical environment. Soil cover was treated by V.I. Vernadsky as a balanced bio-inert matter resulting from this interaction. Appearance of human mind and then a civilization led to global expansion of human beings, first able to survive in unfavorable geochemical conditions and then starting chemical transformation of the environment to satisfy the growing demands of mankind in food and energy. The residence in unfavorable environment and local contamination was followed by appearance of endemic diseases of plants, animals and man. Therefore zonal, regional and local chemical composition of the soil cover formed in natural conditions may be used for estimation of the optimum geochemical background, most adequate for the corresponding zonal biogeocenoses and species. Moreover, the natural geochemical background and technogenic fields have unequal spatial structure and this facilitates their identification that may be relatively easy realized in remediation strategy. On the assumption of the foregoing, the adequate methodical approach to remediation of technogenically affected areas should account of the interaction of the existing natural and the newly formed technogenic geochemical fields and include the following steps: 1) the study and mapping of geochemical structure of the natural geochemical background basing on soil maps; 2) the study of contaminants and mapping spatial distribution of technogenic releases; 3) construction of risk maps for the target risk groups with due regard to natural ecological threshold concentration in context of risk degree for

  17. Surface Tension of Multi-phase Flow with Multiple Junctions Governed by the Variational Principle

    International Nuclear Information System (INIS)

    Matsutani, Shigeki; Nakano, Kota; Shinjo, Katsuhiko

    2011-01-01

    We explore a computational model of an incompressible fluid with a multi-phase field in three-dimensional Euclidean space. By investigating an incompressible fluid with a two-phase field geometrically, we reformulate the expression of the surface tension for the two-phase field found by Lafaurie et al. (J Comput Phys 113:134–147, 1994) as a variational problem related to an infinite dimensional Lie group, the volume-preserving diffeomorphism. The variational principle to the action integral with the surface energy reproduces their Euler equation of the two-phase field with the surface tension. Since the surface energy of multiple interfaces even with singularities is not difficult to be evaluated in general and the variational formulation works for every action integral, the new formulation enables us to extend their expression to that of a multi-phase (N-phase, N ≥ 2) flow and to obtain a novel Euler equation with the surface tension of the multi-phase field. The obtained Euler equation governs the equation for motion of the multi-phase field with different surface tension coefficients without any difficulties for the singularities at multiple junctions. In other words, we unify the theory of multi-phase fields which express low dimensional interface geometry and the theory of the incompressible fluid dynamics on the infinite dimensional geometry as a variational problem. We apply the equation to the contact angle problems at triple junctions. We computed the fluid dynamics for a two-phase field with a wall numerically and show the numerical computational results that for given surface tension coefficients, the contact angles are generated by the surface tension as results of balances of the kinematic energy and the surface energy.

  18. Evaluation of the atmospheric significance of multiphase reactions in atmospheric secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    Gelencsér

    2005-01-01

    Full Text Available In a simple conceptual cloud-aerosol model the mass of secondary organic aerosol (SOA that may be formed in multiphase reaction in an idealized scenario involving two cloud cycles separated with a cloud-free period is evaluated. The conditions are set to those typical of continental clouds, and each parameter used in the model calculations is selected as a mean of available observational data of individual species for which the multiphase SOA formation route has been established. In the idealized setting gas and aqueous-phase reactions are both considered, but only the latter is expected to yield products of sufficiently low volatility to be retained by aerosol particles after the cloud dissipates. The key variable of the model is the Henry-constant which primarily determines how important multiphase reactions are relative to gas-phase photooxidation processes. The precursor considered in the model is assumed to already have some affinity to water, i.e. it is a compound having oxygen-containing functional group(s. As a principal model output an aerosol yield parameter is calculated for the multiphase SOA formation route as a function of the Henry-constant, and has been found to be significant already above H~103 M atm-1. Among the potential precursors that may be eligible for this mechanism based on their Henry constants, there are a suite of oxygenated compounds such as primary oxidation products of biogenic and anthropogenic hydrocarbons, including, for example, pinonaldehyde. Finally, the analogy of multiphase SOA formation to in-cloud sulfate production is exploited.

  19. Calculation model of non-linear dynamic deformation of composite multiphase rods

    Directory of Open Access Journals (Sweden)

    Mishchenko Andrey Viktorovich

    2014-05-01

    Full Text Available The method of formulating non-linear physical equations for multiphase rods is suggested in the article. Composite multiphase rods possess various structures, include shear, polar, radial and axial inhomogeneity. The Timoshenko’s hypothesis with the large rotation angles is used. The method is based on the approximation of longitudinal normal stress low by basic functions expansions regarding the linear viscosity low. The shear stresses are calculated with the equilibrium equation using the subsidiary function of the longitudinal shift force. The system of differential equations connecting the internal forces and temperature with abstract deformations are offered by the basic functions. The application of power functions with arbitrary index allows presenting the compact form equations. The functional coefficients in this system are the highest order rigidity characteristics. The whole multiphase cross-section rigidity characteristics are offered the sums of the rigidity characteristics of the same phases individually. The obtained system allows formulating the well-known particular cases. Among them: hard plasticity and linear elastic deformation, different module deformation and quadratic Gerstner’s low elastic deformation. The reform of differential equations system to the quasilinear is suggested. This system contains the secant variable rigidity characteristics depending on abstract deformations. This system includes the sum of the same uniform blocks of different order. The rods phases defined the various set of uniform blocks phase materials. The integration of dynamic, kinematic and physical equations taking into account initial and edge condition defines the full dynamical multiphase rods problem. The quasilinear physical equations allow getting the variable flexibility matrix of multiphase rod and rods system.

  20. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Catherine A

    2013-02-28

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of

  1. Inverse modeling of geochemical and mechanical compaction in sedimentary basins

    Science.gov (United States)

    Colombo, Ivo; Porta, Giovanni Michele; Guadagnini, Alberto

    2015-04-01

    We study key phenomena driving the feedback between sediment compaction processes and fluid flow in stratified sedimentary basins formed through lithification of sand and clay sediments after deposition. Processes we consider are mechanic compaction of the host rock and the geochemical compaction due to quartz cementation in sandstones. Key objectives of our study include (i) the quantification of the influence of the uncertainty of the model input parameters on the model output and (ii) the application of an inverse modeling technique to field scale data. Proper accounting of the feedback between sediment compaction processes and fluid flow in the subsurface is key to quantify a wide set of environmentally and industrially relevant phenomena. These include, e.g., compaction-driven brine and/or saltwater flow at deep locations and its influence on (a) tracer concentrations observed in shallow sediments, (b) build up of fluid overpressure, (c) hydrocarbon generation and migration, (d) subsidence due to groundwater and/or hydrocarbons withdrawal, and (e) formation of ore deposits. Main processes driving the diagenesis of sediments after deposition are mechanical compaction due to overburden and precipitation/dissolution associated with reactive transport. The natural evolution of sedimentary basins is characterized by geological time scales, thus preventing direct and exhaustive measurement of the system dynamical changes. The outputs of compaction models are plagued by uncertainty because of the incomplete knowledge of the models and parameters governing diagenesis. Development of robust methodologies for inverse modeling and parameter estimation under uncertainty is therefore crucial to the quantification of natural compaction phenomena. We employ a numerical methodology based on three building blocks: (i) space-time discretization of the compaction process; (ii) representation of target output variables through a Polynomial Chaos Expansion (PCE); and (iii) model

  2. Geochemical and geomechanical solid-solutions interactions in unsaturated media. Prospects for the storage of nuclear waste

    International Nuclear Information System (INIS)

    Bouzid, M.

    2010-01-01

    Porous materials, especially the unsaturated ones, are complex systems in which several physicochemical parameters interact (eg relative humidity, T C, pore solution composition, geometry of the pore network). The precipitation of secondary phases inside and the associated changes (e.g. topology of the porous spaces) are important to understand for several applied topics: civil engineering, soil science or geology of deep wastes disposal. This experimental work was undertaken to better understand the mechanisms linking geochemical phase transitions and physicochemical properties of multiphasic porous media. The precipitation of salts in porous synthetic materials allowed us to identify two types of geochemistry-geomechanics coupling: the crystallization pressure (compression phenomenon, already known in the literature), and the capillary traction. These secondary precipitates are also responsible for a porous networks heterogenization which modifies the transfer functions. But we also show that the portions of liquid may be isolated by salts 'corks' and thus develop new thermochemical properties. In particular, we have observed cavitation events in some of these occluded solutions which indicate that they underwent a metastable superheated state. Finally, differential extraction experiments showed that the solubility changes with the pore size, and an interpretation based on pore geometry (solid curvature) has been proposed. Some evidence that these phenomena may actually be active in natural processes were collected, and this extension to the natural environment must now be treated extensively. (authors)

  3. Development of thermodynamic databases for geochemical calculations

    International Nuclear Information System (INIS)

    Arthur, R.C.; Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu; Neyama, Atsushi

    1999-09-01

    Two thermodynamic databases for geochemical calculations supporting research and development on geological disposal concepts for high level radioactive waste are described in this report. One, SPRONS.JNC, is compatible with thermodynamic relations comprising the SUPCRT model and software, which permits calculation of the standard molal and partial molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0 to 1000degC. This database includes standard molal Gibbs free energies and enthalpies of formation, standard molal entropies and volumes, and Maier-Kelly heat capacity coefficients at the reference pressure (1 bar) and temperature (25degC) for 195 minerals and 16 gases. It also includes standard partial molal Gibbs free energies and enthalpies of formation, standard partial molal entropies, and Helgeson, Kirkham and Flowers (HKF) equation-of-state coefficients at the reference pressure and temperature for 1147 inorganic and organic aqueous ions and complexes. SPRONS.JNC extends similar databases described elsewhere by incorporating new and revised data published in the peer-reviewed literature since 1991. The other database, PHREEQE.JNC, is compatible with the PHREEQE series of geochemical modeling codes. It includes equilibrium constants at 25degC and l bar for mineral-dissolution, gas-solubility, aqueous-association and oxidation-reduction reactions. Reaction enthalpies, or coefficients in an empirical log K(T) function, are also included in this database, which permits calculation of equilibrium constants between 0 and 100degC at 1 bar. All equilibrium constants, reaction enthalpies, and log K(T) coefficients in PHREEQE.JNC are calculated using SUPCRT and SPRONS.JNC, which ensures that these two databases are mutually consistent. They are also internally consistent insofar as all the data are compatible with basic thermodynamic definitions and functional relations in the SUPCRT model, and because primary

  4. Development of thermodynamic databases for geochemical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, R.C. [Monitor Scientific, L.L.C., Denver, Colorado (United States); Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Neyama, Atsushi [Computer Software Development Corp., Tokyo (Japan)

    1999-09-01

    Two thermodynamic databases for geochemical calculations supporting research and development on geological disposal concepts for high level radioactive waste are described in this report. One, SPRONS.JNC, is compatible with thermodynamic relations comprising the SUPCRT model and software, which permits calculation of the standard molal and partial molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0 to 1000degC. This database includes standard molal Gibbs free energies and enthalpies of formation, standard molal entropies and volumes, and Maier-Kelly heat capacity coefficients at the reference pressure (1 bar) and temperature (25degC) for 195 minerals and 16 gases. It also includes standard partial molal Gibbs free energies and enthalpies of formation, standard partial molal entropies, and Helgeson, Kirkham and Flowers (HKF) equation-of-state coefficients at the reference pressure and temperature for 1147 inorganic and organic aqueous ions and complexes. SPRONS.JNC extends similar databases described elsewhere by incorporating new and revised data published in the peer-reviewed literature since 1991. The other database, PHREEQE.JNC, is compatible with the PHREEQE series of geochemical modeling codes. It includes equilibrium constants at 25degC and l bar for mineral-dissolution, gas-solubility, aqueous-association and oxidation-reduction reactions. Reaction enthalpies, or coefficients in an empirical log K(T) function, are also included in this database, which permits calculation of equilibrium constants between 0 and 100degC at 1 bar. All equilibrium constants, reaction enthalpies, and log K(T) coefficients in PHREEQE.JNC are calculated using SUPCRT and SPRONS.JNC, which ensures that these two databases are mutually consistent. They are also internally consistent insofar as all the data are compatible with basic thermodynamic definitions and functional relations in the SUPCRT model, and because primary

  5. Geochemical evaluation of the near-field for future HLW repository at Olkiluoto

    International Nuclear Information System (INIS)

    Idiart, A.; Maia, F.; Arcos, D.

    2013-10-01

    The concept for the final disposal of spent nuclear fuel in Finland considers an engineered and natural (crystalline rock) multi-barrier system surrounding the spent fuel. This work aims at predicting and making a quantitative assessment of the geochemical evolution of the near-field (canister, buffer, backfill and adjacent fractured bedrock) during the unsaturated thermal period and in the long-term, after saturation has been completed. The groundwater/bentonite buffer interaction during the unsaturated thermal period is tackled through a two-dimensional (2D) axisymmetric scheme using the thermo-hydro-geochemical code TOUGHREACT. In turn, the long-term interaction of the fully water-saturated buffer and backfill with groundwater is assessed through 3D numerical models using the reactive transport code PHAST under isothermal conditions. A set of base cases have been set up based on the most plausible set of input data. In addition, a limited number of sensitivity cases have been conducted to analyse the influence of key parameters controlling the system and reduce uncertainty. Predicted mineralogical changes of accessory minerals in the bentonite for the thermal period are controlled by the dependence of mineral solubilities on temperature and on the solute transport by advection during the saturation process, and diffusion during the whole period. The results of the thermal period indicate that a small amount of the primary amorphous silica is redistributed in the buffer: dissolution close to the canister and precipitation close to the buffer - rock interface. Primary calcite dissolution/precipitation is minimal, remaining stable throughout the simulation time in all cases. Anhydrite precipitates near the canister due to the elevated temperature, while it dissolves from the outside of the buffer. The results indicate that there is no significant evaporation of water near the copper canister and thus no chloride salt reaches saturation. The geochemical changes of

  6. Geochemical factors influencing vault design and layout

    International Nuclear Information System (INIS)

    Gascoyne, M.; Stroes-Gascoyne, S.; Sargent, F.P.

    1995-01-01

    The design and construction of a vault for used nuclear fuel in crystalline rock may be influenced by a number of geochemical factors. During the siting stage, information is needed regarding the rock type, heterogeneities in its composition and the mineralogy of permeable zones because these will cause variations in thermal conductivity, strength and radionuclide sorptive properties of the rock. These factors may affect decisions regarding depth of vault construction, tunnel dimensions and spacing of panels and waste containers. The decision on whether groundwaters are allowed to flow freely into a planned excavation may depend on measurements of their chemical compositions, microbiological contents and presence of hazardous or corrosive constituents. During site characterization, borehole drilling from the surface and subsequent hydraulic testing will introduce both chemical and microbiological contaminants that may further influence this decision. During vault construction, the geochemistry of the rock may cause changes to the characterization, design and construction of the vault. For example, high salinity fluids in micropores in the rock could prevent the use of radar surveys to detect fractures in the surrounding rock. High rock salinity may also cause unacceptably high total dissolved solids loadings in water discharged from the facility. Again, the presence of toxic, corrosive or radioactive constituents in inflowing groundwater may require grouting or, if inflow is needed for service operations, development of treatment facilities both above and below ground. In addition, the use of explosives will cause high organic and nitrate loadings in service water as well as the possible impregnation of these chemicals in the damaged wall-rock surrounding an excavation. These chemicals may remain despite cleaning efforts and act as nutrients to promote microbial activity in the post-closure phase. In the operational phase, further design and construction, changes

  7. Digital reactivity meter

    International Nuclear Information System (INIS)

    Jiang Zongbing

    1996-02-01

    The importance and the usual methods of reactivity measurement in a nuclear reactor are presented. Emphasis is put upon the calculation principle, software and hardware components, main specifications, application, as well as the features of the digital reactivity meter. The test results of operation in various reactors shown that the meter possess the following features: high accuracy, short response time, low output noise, high resolution, wide measuring range, simple and flexible to operate, high stability and reliability. In addition, the reactivity meter can save the measuring data automatically and have a perfect capability of self-verifying. It not only meet the requirement of the reactivity measurement in nuclear power plant, but also can be applied to various types of reactors. (1 tab.)

  8. Stress Reactivity in Insomnia.

    Science.gov (United States)

    Gehrman, Philip R; Hall, Martica; Barilla, Holly; Buysse, Daniel; Perlis, Michael; Gooneratne, Nalaka; Ross, Richard J

    2016-01-01

    This study examined whether individuals with primary insomnia (PI) are more reactive to stress than good sleepers (GS). PI and GS (n = 20 per group), matched on gender and age, completed three nights of polysomnography. On the stress night, participants received a mild electric shock and were told they could receive additional shocks during the night. Saliva samples were obtained for analysis of cortisol and alpha amylase along with self-report and visual analog scales (VAS). There was very little evidence of increased stress on the stress night, compared to the baseline night. There was also no evidence of greater stress reactivity in the PI group for any sleep or for salivary measures. In the GS group, stress reactivity measured by VAS scales was positively associated with an increase in sleep latency in the experimental night on exploratory analyses. Individuals with PI did not show greater stress reactivity compared to GS.

  9. Structure, Reactivity and Dynamics

    Indian Academy of Sciences (India)

    Understanding structure, reactivity and dynamics is the core issue in chemical ... functional theory (DFT) calculations, molecular dynamics (MD) simulations, light- ... between water and protein oxygen atoms, the superionic conductors which ...

  10. Taskable Reactive Agent Communities

    National Research Council Canada - National Science Library

    Myers, Karen

    2002-01-01

    The focus of Taskable Reactive Agent Communities (TRAC) project was to develop mixed-initiative technology to enable humans to supervise and manage teams of agents as they perform tasks in dynamic environments...

  11. Reactive sputter deposition

    CERN Document Server

    Mahieu, Stijn

    2008-01-01

    In this valuable work, all aspects of the reactive magnetron sputtering process, from the discharge up to the resulting thin film growth, are described in detail, allowing the reader to understand the complete process. Hence, this book gives necessary information for those who want to start with reactive magnetron sputtering, understand and investigate the technique, control their sputtering process and tune their existing process, obtaining the desired thin films.

  12. Online recognition of the multiphase flow regime and study of slug flow in pipeline

    International Nuclear Information System (INIS)

    Guo Liejin; Bai Bofeng; Zhao Liang; Wang Xin; Gu Hanyang

    2009-01-01

    Multiphase flow is the phenomenon existing widely in nature, daily life, as well as petroleum and chemical engineering industrial fields. The interface structure among multiphase and their movement are complicated, which distribute random and heterogeneously in the spatial and temporal scales and have multivalue of the flow structure and state. Flow regime is defined as the macro feature about the multiphase interface structure and its distribution, which is an important feature to describe multiphase flow. The energy and mass transport mechanism differ much for each flow regimes. It is necessary to solve the flow regime recognition to get a clear understanding of the physical phenomena and their mechanism of multiphase flow. And the flow regime is one of the main factors affecting the online measurement accuracy of phase fraction, flow rate and other phase parameters. Therefore, it is of great scientific and technological importance to develop new principles and methods of multiphase flow regime online recognition, and of great industrial background. In this paper, the key reasons that the present method cannot be used to solve the industrial multiphase flow pattern recognition are clarified firstly. Then the prerequisite to realize the online recognition of multiphase flow regime is analyzed, and the recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of single

  13. Geochemical Evolution of the Louisville Seamount Chain

    Science.gov (United States)

    Vanderkluysen, L.; Mahoney, J. J.; Koppers, A. A.; Lonsdale, P. F.

    2007-12-01

    The Louisville seamount chain is a 4300 km long chain of submarine volcanoes in the southwestern Pacific that is commonly thought to represent a hotspot track. It spans an ~80 Myr age range, comparable to that of the Hawaiian-Emperor chain (Koppers et al., G-cubed, 5 (6), 2004). The few previously dredged igneous samples are dominantly basaltic and alkalic, and have been inferred to represent post-shield volcanism (Hawkins et al., AGU Monograph, 43, 235, 1987). Their isotope and trace element signatures suggest an unusually homogenous mantle source (Cheng et al., AGU Monograph, 43, 283, 1987). Dredging in 2006, during the AMAT02RR cruise of the R.V. Revelle, was carried out in the hope of recovering both shield and post-shield samples and of exploring the geochemical evolution of the chain. Igneous rocks were recovered from 33 stations on 23 seamounts covering some 47 Myr of the chain's history. Our study, focusing on the major and trace element and Sr, Nd and Pb isotopic characteristics of these samples, shows that all are alkalic basalts, basanites and tephrites containing normative nepheline. Variations in major and trace elements appear to be controlled predominantly by variable extents of melting and fractional crystallization, with little influence from mantle source heterogeneity. Indeed, age-corrected isotopic values define only a narrow range, in agreement with long-term source homogeneity relative to the scale of melting; e.g., ɛNd varies from +4.1 to +5.7, 206Pb/204Pb from 19.048 to 19.281, and 87Sr/86Sr from 0.70362 to 0.70398. These values broadly fall within the fields of the proposed "C" or "FOZO" mantle end-members. However, small variations are present, with less radiogenic Nd and Pb isotope ratios at the older, western end of the chain, defining a trend toward a broadly EM2-like composition. Although some workers have postulated that the Louisville hotspot was the source of the ~120 Myr Ontong Java Plateau, our samples are isotopically distinct

  14. Geochemical Exploration Techniques Applicable in the Search for Copper Deposits

    Science.gov (United States)

    Chaffee, Maurice A.

    1975-01-01

    Geochemical exploration is an important part of copper-resource evaluation. A large number of geochemical exploration techniques, both proved and untried, are available to the geochemist to use in the search for new copper deposits. Analyses of whole-rock samples have been used in both regional and local geochemical exploration surveys in the search for copper. Analyses of mineral separates, such as biotite, magnetite, and sulfides, have also been used. Analyses of soil samples are widely used in geochemical exploration, especially for localized surveys. It is important to distinguish between residual and transported soil types. Orientation studies should always be conducted prior to a geochemical investigation in a given area in order to determine the best soil horizon and the best size of soil material for sampling in that area. Silty frost boils, caliche, and desert varnish are specialized types of soil samples that might be useful sampling media. Soil gas is a new and potentially valuable geochemical sampling medium, especially in exploring for buried mineral deposits in arid regions. Gaseous products in samples of soil may be related to base-metal deposits and include mercury vapor, sulfur dioxide, hydrogen sulfide, carbon oxysulfide, carbon dioxide, hydrogen, oxygen, nitrogen, the noble gases, the halogens, and many hydrocarbon compounds. Transported materials that have been used in geochemical sampling programs include glacial float boulders, glacial till, esker gravels, stream sediments, stream-sediment concentrates, and lake sediments. Stream-sediment sampling is probably the most widely used and most successful geochemical exploration technique. Hydrogeochemical exploration programs have utilized hot- and cold-spring waters and their precipitates as well as waters from lakes, streams, and wells. Organic gel found in lakes and at stream mouths is an unproved sampling medium. Suspended material and dissolved gases in any type of water may also be useful

  15. Is it possible to design universal multi-phase flow analyzer?

    International Nuclear Information System (INIS)

    Ivanov Kolev, N.

    2005-01-01

    Transient 3D-multiphase flows consisting of many chemical constituents in nature and technology (Figs. 1 and 2) are the common case of flows. In many technical applications we have to do with particular realization of the multi-phase flows like steady state flows, or single component flows or single phase flows etc. Engineers and scientists created hundreds of computer codes for description of more or less specific realizations of multi-phase flows. If one compares the structure of these codes one is astonished by the waste of the human resources for programming repeating model elements like equations of state, friction lows in variety of geometry, heat transfer coefficients, mathematical equation solvers, data handling procedures, graphical environment etc. It is hardly to expect, that the best solution for the specific sub-phenomenon is available in all codes. Looking in other branches of the technology like computer chips production we realize that the revolutionary idea of having common ''chips'' within complex applications is very far from its practical realization in the computational multi-phase flow dynamics. Following this line of arguments I expressed several times in my publications explicitly or implicitly the idea, that it is possible to create a universal multi-phase flow analyzer in the sense of computer architecture, that is capable to absorb the adequate multi-phase knowledge data base specified in Appendix 1. The subject of this paper is to summarize some of the main ideas, some of them already realized by this author, on the way of creating such computer code architecture, to illustrate haw they work, and to make an outlook regarding what are the challenges in the future developments. We confine deliberately our attention to the solution of the so called local volume and time averaged system of PDE's for a simple reason: Direct numerical resolution of interacting fluids is possible as demonstrated for small scales by many researchers, but for

  16. Adjustment of geochemical background by robust multivariate statistics

    Science.gov (United States)

    Zhou, D.

    1985-01-01

    Conventional analyses of exploration geochemical data assume that the background is a constant or slowly changing value, equivalent to a plane or a smoothly curved surface. However, it is better to regard the geochemical background as a rugged surface, varying with changes in geology and environment. This rugged surface can be estimated from observed geological, geochemical and environmental properties by using multivariate statistics. A method of background adjustment was developed and applied to groundwater and stream sediment reconnaissance data collected from the Hot Springs Quadrangle, South Dakota, as part of the National Uranium Resource Evaluation (NURE) program. Source-rock lithology appears to be a dominant factor controlling the chemical composition of groundwater or stream sediments. The most efficacious adjustment procedure is to regress uranium concentration on selected geochemical and environmental variables for each lithologic unit, and then to delineate anomalies by a common threshold set as a multiple of the standard deviation of the combined residuals. Robust versions of regression and RQ-mode principal components analysis techniques were used rather than ordinary techniques to guard against distortion caused by outliers Anomalies delineated by this background adjustment procedure correspond with uranium prospects much better than do anomalies delineated by conventional procedures. The procedure should be applicable to geochemical exploration at different scales for other metals. ?? 1985.

  17. Orientation geochemical survey for uranium exploration using 230Th

    International Nuclear Information System (INIS)

    Xia Dingliang.

    1985-01-01

    The distribution of 230 Th in soils, rocks and ores and its relationship with respect to uranium ore formation are discussed for its possible use in geochemical exploration for U. 230 Th, U and Ra, being members of the same decay series, are different in their geochemical behavior upon which the study is orientated. Twenty uranium deposits and occurrences located in western and southern Hunan province are tested. Geochemical data obtained are comprehensively correlated. It is suggested that 230 Th is useful not only in U-Ra disequilibrium study but also in understanding the geochemical evolution of U ores. The data aid to interpret the genesis of uranium deposits and to assess the radioactive anomalies and uranium-bearing zones. Therefore, it can be adopted as a tool for searching in deep-buried uranium ores. The field procedure is rather simple and flexible to meet any geological environment. It is easy to read out and is less influnced by any kind of interference. In case of disequilibrium caused by oxidation and reduction during the period of ore formation it still gives good indication compared with that of radiometry, radonmetry and geochemical sampling for U

  18. Reactive power compensator

    Science.gov (United States)

    El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  19. Reactive power compensator

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  20. Selective Internal Oxidation and Severe Plastic Deformation of Multiphase Fe-Y Alloys

    Science.gov (United States)

    Kachur, Stephen J.

    Oxide dispersion strengthened (ODS) alloys are known for their desirable mechanical properties and unique microstructures. These alloys are characterized by an even dispersion of oxide phase throughout a metallic matrix, and exhibit high strength and enhanced creep properties at elevated temperatures. This makes them ideal candidate materials for use in many structural applications, such as coal-fired power plants or in next generation nuclear reactors. Currently most often produced by mechanical alloying, a powder metallurgy based process that utilizes high energy ball milling, these alloys are difficult and costly to produce. One proposed method for forming ODS alloys without high-energy ball milling is to internally oxidize a bulk alloy before subjecting it to severe plastic deformation to induce an even oxide distribution. This work examines such a processing scheme with a focus on the internal oxidation behavior. Internal oxidation has been shown to occur orders of magnitude faster than expected in multi-phase alloys where a highly reactive oxidizable solute has negligible solubility and diffusivity in other, more-noble, phases. Commonly referred to as in situ oxidation, this accelerated oxidation process has potential for use in a processing scheme for ODS alloys. While in situ oxidation has been observed in many different alloy systems, a comprehensive study of alloy composition and microstructure has not been performed to describe the unusual oxidation rates. This work used Fe-Y binary alloys as model system to study effects of composition and microstructure. These alloys have been shown to exhibit in situ oxidation, and additionally, Y is typically introduced during mechanical alloying to form Y-rich oxides in Fe-based ODS alloys. Alloys with Y content between 1.5 and 15 wt% were prepared using a laboratory scale arc-melting furnace. These alloys were two phase mixtures of Fe and Fe17Y2. First, samples were oxidized between 600 and 800 °C for 2 to 72

  1. THE WORK SIMULATION OF FLOW RATE FOR CARRIAGES' REPAIR AS A MULTIPHASE, MULTIPLEX AND MULTIDISCIPLINARY SYSTEM OF MASS SERVICE

    Directory of Open Access Journals (Sweden)

    V. V. Myamlin

    2011-04-01

    Full Text Available The algorithm of computer simulation of the flexible flow for repair of cars as a multiphase polychannel manyobject queuing system is presented. The basic operators of the model are given and their work is described.

  2. Surrogate model approach for improving the performance of reactive transport simulations

    Science.gov (United States)

    Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris

    2016-04-01

    Reactive transport models can serve a large number of important geoscientific applications involving underground resources in industry and scientific research. It is common for simulation of reactive transport to consist of at least two coupled simulation models. First is a hydrodynamics simulator that is responsible for simulating the flow of groundwaters and transport of solutes. Hydrodynamics simulators are well established technology and can be very efficient. When hydrodynamics simulations are performed without coupled geochemistry, their spatial geometries can span millions of elements even when running on desktop workstations. Second is a geochemical simulation model that is coupled to the hydrodynamics simulator. Geochemical simulation models are much more computationally costly. This is a problem that makes reactive transport simulations spanning millions of spatial elements very difficult to achieve. To address this problem we propose to replace the coupled geochemical simulation model with a surrogate model. A surrogate is a statistical model created to include only the necessary subset of simulator complexity for a particular scenario. To demonstrate the viability of such an approach we tested it on a popular reactive transport benchmark problem that involves 1D Calcite transport. This is a published benchmark problem (Kolditz, 2012) for simulation models and for this reason we use it to test the surrogate model approach. To do this we tried a number of statistical models available through the caret and DiceEval packages for R, to be used as surrogate models. These were trained on randomly sampled subset of the input-output data from the geochemical simulation model used in the original reactive transport simulation. For validation we use the surrogate model to predict the simulator output using the part of sampled input data that was not used for training the statistical model. For this scenario we find that the multivariate adaptive regression splines

  3. Geoelectrical signatures of reactive mixing

    Science.gov (United States)

    Ghosh, U.; Bandopadhyay, A.; Jougnot, D.; Le Borgne, T.; Meheust, Y.

    2017-12-01

    Characterizing the effects of fluid mixing on geochemical reactions in the subsurface is of paramount importance owing to their pivotal role in processes such as contaminant migration or aquifer remediation, to name a few [1]. Large velocity gradients in the porous media are expected to lead to enhanced diffusive mixing accompanied by augmented reaction rates [2]. Despite its importance, accurate monitoring of such processes still remains an open challenge, mainly due to the opacity of the medium and to the lack of access to it. However, in recent years, geophysical methods based on electrical conductivity and polarization have come up as a promising tool for mapping and monitoring such reactions in the subsurface. In this regard, one of the main challenges is to properly characterize the multiple sources of electrical signals and in particular isolate the influence of reactive mixing on the electrical conductivity from those of other sources [3]. In this work, we explore the coupling between fluid mixing, reaction and charge migration in porous media to evaluate the potential of obtaining a spatially-resolved measurement of local reaction rates in the subsurface from electrical measurements. To this end, we employ a lamellar description of the mixing interface [4] with novel semi-analytical upscaling techniques to quantify changes in electrical conductivity induced by chemical reactions across mixing fronts. The changes in electrical conductivity are strongly dependent on the concentration of ionic species as well as on the polarization of the pore (water) solution around the grains, which in turn are controlled by local reaction rates and, consequently, by the local velocity gradients. Hence, our results essentially suggest that local variations in the electrical conductivity may be quantitatively related to the mixing and reaction dynamics, and thus be used as a measurement tool to characterize these dynamics. References 1. M. Dentz, T. Le Borgne, A. Englert

  4. Mineral paragenesis on Mars: The roles of reactive surface area and diffusion.

    Science.gov (United States)

    Fairén, Alberto G; Gil-Lozano, Carolina; Uceda, Esther R; Losa-Adams, Elisabeth; Davila, Alfonso F; Gago-Duport, Luis

    2017-09-01

    Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.

  5. Final Project Report CFA-14-6357: A New Paradigm for Understanding Multiphase Ceramic Waste Form Performance

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle [Clemson Univ., SC (United States); Bordia, Rajendra [Clemson Univ., SC (United States); Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States); Chiu, Wilson [Univ. of Connecticut, Storrs, CT (United States); Amoroso, Jake [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-28

    This project fabricated model multiphase ceramic waste forms with processing-controlled microstructures followed by advanced characterization with synchrotron and electron microscopy-based 3D tomography to provide elemental and chemical state-specific information resulting in compositional phase maps of ceramic composites. Details of 3D microstructural features were incorporated into computer-based simulations using durability data for individual constituent phases as inputs in order to predict the performance of multiphase waste forms with varying microstructure and phase connectivity.

  6. Digital reactivity meter

    International Nuclear Information System (INIS)

    Copie, M.; Valantic, B.

    1978-01-01

    Digital reactivity meters (DRM) are mostly used as measuring instruments, e.g. for calibration of control rods, and there are only a few cases of their incorporation into the control systems of the reactors. To move in this direction there is more development work needed. First of all, fast algorithms are needed for inverse kinetics equations to relieve the computer for more important tasks of reactor model solving in real time. The next problem, currently under investigation, is the incorporation of the reactor thermal-hydraulic model into the DRM so that it can be used in the power range. Such an extension of DHM allows presentation not only of the instantaneous reactivity of the system, but also the inserted reactivity can be estimated from the temperature reactivity feed-backs. One of the applications of this concept is the anomalous digital reactivity monitor (ADRN) as part of the reactor protection system. As a solution of the first problem, a fast algorithm for solving the inverse kinetics equations has been implemented in the off-line program RODCAL on CDC 1700 computer and tested for its accuracy by performing different control rod calibrations on the reactor TRIGA

  7. Geophysical and geochemical techniques for exploration of hydrocarbons and minerals

    International Nuclear Information System (INIS)

    Sittig, M.

    1980-01-01

    The detailed descriptive information in this book is based on 389 US patents that deal with geophysical and geochemical techniques useful for the exploration of hydrocarbons and minerals. Where it was necessary to round out the complete technological picture, a few paragraphs from cited government reports have been included. These techniques are used in prospecting for oil, coal, oil shale, tar sand and minerals. The patents are grouped under the following chapters: geochemical prospecting; geobiological prospecting; geophysical exploration; magnetic geophysical prospecting; gravitational geophysical prospecting; electrical geophysical prospecting; nuclear geophysical prospecting; seismic geophysical prospecting; and exploratory well drilling. This book serves a double purpose in that it supplies detailed technical information and can be used as a guide to the US patent literature in this field. By indicating all the information that is significant, and eliminating legal jargon and juristic phraseology, this book presents an advanced, industrially oriented review of modern methods of geophysical and geochemical exploration techniques

  8. Geochemical methods for identification of formations being prospective for uranium

    International Nuclear Information System (INIS)

    Zhukova, A.M.; Komarova, N.I.; Spiridonov, A.A.; Shor, G.M.

    1985-01-01

    Geochemical methods of uranium content evaluation in metamorphic, ultrametamorphic and sedimentary formations are considered. At that, the following four factors are of the highest importance: 1) average uranium content-geochemical background; 2) character of uranium distribution; 3) forms of uranium presence; 4) the value of thorium-uranium ratio. A complex of radiogeochemical criteria, favourable for uranium presence is formulated: high average background content of total and '' mobile''uranium and high value of variation coefficient (80-100% and above); low (approximately one or lower) thorium-uranium ratio; sharp increase in uranium concentration in accessory minerals. Radiogeochemical peculiarities of metamorphic and ultrametamorphic formations prospective for uranium are enumerated. The peculiarities condition specificity of geochemical prospecting methods. Prospecting methods first of all must be directed at the evaluation of radioelement distribution parameters and specification of the forms of their presence

  9. Multiphase boudinage: a case study of amphibolites in marble in the Naxos migmatite core

    Science.gov (United States)

    Virgo, Simon; von Hagke, Christoph; Urai, Janos L.

    2018-02-01

    In multiply deformed terrains multiphase boudinage is common, but identification and analysis of these is difficult. Here we present an analysis of multiphase boudinage and fold structures in deformed amphibolite layers in marble from the migmatitic centre of the Naxos metamorphic core complex. Overprinting between multiple boudinage generations is shown in exceptional 3-D outcrop. We identify five generations of boudinage, reflecting the transition from high-strain high-temperature ductile deformation to medium- to low-strain brittle boudins formed during cooling and exhumation. All boudin generations indicate E-W horizontal shortening and variable direction of bedding parallel extension, evolving from subvertical extension in the earliest boudins to subhorizontal N-S extension during exhumation. Two phases of E-W shortening can be inferred, the first associated with lower crustal synmigmatic convergent flow and the second associated with exhumation and N-S extension, possibly related to movement of the North Anatolian Fault.

  10. Laboratory setup and results of experiments on two-dimensional multiphase flow in porous media

    International Nuclear Information System (INIS)

    McBride, J.F.; Graham, D.N.

    1990-10-01

    In the event of an accidental release into earth's subsurface of an immiscible organic liquid, such as a petroleum hydrocarbon or chlorinated organic solvent, the spatial and temporal distribution of the organic liquid is of great interest when considering efforts to prevent groundwater contamination or restore contaminated groundwater. An accurate prediction of immiscible organic liquid migration requires the incorporation of relevant physical principles in models of multiphase flow in porous media; these physical principles must be determined from physical experiments. This report presents a series of such experiments performed during the 1970s at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. The experiments were designed to study the transient, two-dimensional displacement of three immiscible fluids in a porous medium. This experimental study appears to be the most detailed published to date. The data obtained from these experiments are suitable for the validation and test calibration of multiphase flow codes. 73 refs., 140 figs

  11. Adverse Condition and Critical Event Prediction in Cranfield Multiphase Flow Facility

    DEFF Research Database (Denmark)

    Egedorf, Søren; Shaker, Hamid Reza

    2017-01-01

    , or even to the environment. To cope with these, adverse condition and critical event prediction plays an important role. Adverse Condition and Critical Event Prediction Toolbox (ACCEPT) is a tool which has been recently developed by NASA to allow for a timely prediction of an adverse event, with low false...... alarm and missed detection rates. While ACCEPT has shown to be an effective tool in some applications, its performance has not yet been evaluated on practical well-known benchmark examples. In this paper, ACCEPT is used for adverse condition and critical event prediction in a multiphase flow facility....... Cranfield multiphase flow facility is known to be an interesting benchmark which has been used to evaluate different methods from statistical process monitoring. In order to allow for the data from the flow facility to be used in ACCEPT, methods such as Kernel Density Estimation (KDE), PCA-and CVA...

  12. Speed-sensorless control strategy for multi-phase induction generator in wind energy conversion systems

    Directory of Open Access Journals (Sweden)

    Dumnić Boris P.

    2016-01-01

    Full Text Available Renewable energy sources, especially wind energy conversion systems (WECS, exhibit constant growth. Increase in power and installed capacity led to advances in WECS topologies. Multi-phase approach presents a new development direction, with several key advantages over three-phase systems. Paired with a sensorless control strategy, multi-phase machines are expected to take primacy over standard solutions. This paper presents speed sensorless vector control of an asymmetrical six-phase induction generator based on a model reference adaptive system (MRAS. Suggested topology and developed control algorithm show that sensorless control can yield appropriate dynamic characteristics for the use in WECS with increase in reliability and robustness. [Projekat Ministarstva nauke Republike Srbije, br. III 042004: Smart Electricity Distribution Grids Based on Distribution Management System and Distributed Generation

  13. Isothermal Multiphase Flash Calculations with the PC-SAFT Equation of State

    International Nuclear Information System (INIS)

    Justo-Garcia, Daimler N.; Garcia-Sanchez, Fernando; Romero-Martinez, Ascencion

    2008-01-01

    A computational approach for isothermal multiphase flash calculations with the PC-SAFT (Perturbed-Chain Statistical Associating Fluid Theory) equation of state is presented. In the framework of the study of fluid phase equilibria of multicomponent systems, the general multiphase problem is the single most important calculation which consists of finding the correct number and types of phases and their corresponding equilibrium compositions such that the Gibbs energy of the system is a minimum. For solving this problem, the system Gibbs energy was minimized using a rigorous method for thermodynamic stability analysis to find the most stable state of the system. The efficiency and reliability of the approach to predict and calculate complex phase equilibria are illustrated by solving three typical problems encountered in the petroleum industry

  14. Microstructure and Tribological Properties of Mo-40Ni-13Si Multiphase Intermetallic Alloy.

    Science.gov (United States)

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-12-06

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo-40Ni-13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo-Ni-Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy-including wear resistance, friction coefficient, and metallic tribological compatibility-were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  15. Multiphase flow modeling of molten material-vapor-liquid mixtures in thermal nonequilibrium

    International Nuclear Information System (INIS)

    Park, Ik Kyu; Park, Goon Cherl; Bang, Kwang Hyun

    2000-01-01

    This paper presents a numerical model of multiphase flow of the mixtures of molten material-liquid-vapor, particularly in thermal nonequilibrium. It is a two-dimensional, transient, three-fluid model in Eulerian coordinates. The equations are solved numerically using the finite difference method that implicitly couples the rates of phase changes, momentum, and energy exchange to determine the pressure, density, and velocity fields. To examine the model's ability to predict an experimental data, calculations have been performed for tests of pouring hot particles and molten material into a water pool. The predictions show good agreement with the experimental data. It appears, however, that the interfacial heat transfer and breakup of molten material need improved models that can be applied to such high temperature, high pressure, multiphase flow conditions

  16. Experimental analysis of influence of different lubricants types on the multi-phase ironing process

    Directory of Open Access Journals (Sweden)

    Milan Djordjević

    2013-05-01

    Full Text Available This paper is aimed at presenting results of an experimental analysis of the different types of lubricants influence on the multi-phase ironing process. Based on sliding of the metal strip between the two contact elements a special tribological model was adopted. The subject of experimental investigations was variations of the drawing force, contact pressure and the friction coefficient for each type of the applied lubricants. The ironing process was conducted in three-phases at the constant sliding velocity. The objective of this analysis was to compare all the applied lubricants in order to estimate their quality from the point of view of their applicability in the multi-phase ironing process.

  17. EXPERIMENTAL ANALYSIS OF INFLUENCE OF DIFFERENT LUBRICANTS TYPES ON THE MULTI-PHASE IRONING PROCESS

    Directory of Open Access Journals (Sweden)

    Milan Djordjević

    2013-09-01

    Full Text Available This paper is aimed at presenting results of an experimental analysis of the different types of lubricants influence on the multi-phase ironing process. Based on sliding of the metal strip between the two contact elements a special tribological model was adopted. The subject of experimental investigations was variations of the drawing force, contact pressure and the friction coefficient for each type of the applied lubricants. The ironing process was conducted in three-phases at the constant sliding velocity. The objective of this analysis was to compare all the applied lubricants in order to estimate their quality from the point of view of their applicability in the multi-phase ironing process.

  18. Numerical simulation of single-phase and multiphase non-Darcy flowin porous and fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu

    2000-06-02

    A numerical method as well as a theoretical study of non-Darcy fluid flow of through porous and fractured reservoirs is described. The non-Darcy flow is handled in a three-dimensional, multiphase flow reservoir simulator, while the model formulation incorporates the Forchheimer equation for describing single-phase or multiphase non-Darcy flow and displacement. The numerical scheme has been verified by comparing its results against those of analytical methods. Numerical solutions are used to obtain some insight into the physics of non-Darcy flow and displacement in reservoirs. In addition, several type curves are provided for well-test analyses of non-Darcy flow to demonstrate a methodology for modeling this type of flow in porous and fractured rocks, including flow in geothermal reservoirs.

  19. Nonequilibrium Physics and Phase-Field Modeling of Multiphase Flow in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Juanes, Ruben [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-09-01

    The overarching goal of this project was to develop a new continuum theory of multiphase flow in porous media. The theory follows a phase-field modeling approach, and therefore has a sound thermodynamical basis. It is a phenomenological theory in the sense that its formulation is driven by macroscopic phenomena, such as viscous instabilities during multifluid displacement. The research agenda was organized around a set of hypothesis on hitherto unexplained behavior of multiphase flow. All these hypothesis are nontrivial, and testable. Indeed, a central aspect of the project was testing each hypothesis by means of carefully-designed laboratory experiments, therefore probing the validity of the proposed theory. The proposed research places an emphasis on the fundamentals of flow physics, but is motivated by important energy-driven applications in earth sciences, as well as microfluidic technology.

  20. An innovative computationally efficient hydromechanical coupling approach for fault reactivation in geological subsurface utilization

    Science.gov (United States)

    Adams, M.; Kempka, T.; Chabab, E.; Ziegler, M.

    2018-02-01

    Estimating the efficiency and sustainability of geological subsurface utilization, i.e., Carbon Capture and Storage (CCS) requires an integrated risk assessment approach, considering the occurring coupled processes, beside others, the potential reactivation of existing faults. In this context, hydraulic and mechanical parameter uncertainties as well as different injection rates have to be considered and quantified to elaborate reliable environmental impact assessments. Consequently, the required sensitivity analyses consume significant computational time due to the high number of realizations that have to be carried out. Due to the high computational costs of two-way coupled simulations in large-scale 3D multiphase fluid flow systems, these are not applicable for the purpose of uncertainty and risk assessments. Hence, an innovative semi-analytical hydromechanical coupling approach for hydraulic fault reactivation will be introduced. This approach determines the void ratio evolution in representative fault elements using one preliminary base simulation, considering one model geometry and one set of hydromechanical parameters. The void ratio development is then approximated and related to one reference pressure at the base of the fault. The parametrization of the resulting functions is then directly implemented into a multiphase fluid flow simulator to carry out the semi-analytical coupling for the simulation of hydromechanical processes. Hereby, the iterative parameter exchange between the multiphase and mechanical simulators is omitted, since the update of porosity and permeability is controlled by one reference pore pressure at the fault base. The suggested procedure is capable to reduce the computational time required by coupled hydromechanical simulations of a multitude of injection rates by a factor of up to 15.