WorldWideScience

Sample records for multiphase lithiation technique

  1. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    Science.gov (United States)

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  2. Coexistence of multiphase superconductivity and ferromagnetism in lithiated iron selenide hydroxide [(L i1 -xF ex) OH ]FeSe

    Science.gov (United States)

    Urban, Christian; Valmianski, Ilya; Pachmayr, Ursula; Basaran, Ali C.; Johrendt, Dirk; Schuller, Ivan K.

    2018-01-01

    We present experimental evidence for (a) multiphase superconductivity and (b) coexistence of magnetism and superconductivity in a single structural phase of lithiated iron selenide hydroxide [(L i1 -xF ex )OH]FeSe. Magnetic field modulated microwave spectroscopy data confirms superconductivity with at least two distinct transition temperatures attributed to well-defined superconducting phases at TSC 1=40 ±2 K and TSC 2=35 ±2 K. Magnetometry data for the upper critical fields reveal a change in the magnetic order (TM=12 K) below TSC 1 and TSC 2 that is consistent with ferromagnetism. This occurs because the superconducting coherence length is much smaller than the structural coherence length, allowing for several different electronic and magnetic states on a single crystallite. The results give insight into the physics of complex multinary materials, where several phenomena governed by different characteristic length scales coexist.

  3. Stress-enhanced lithiation in MAX compounds for battery applications

    KAUST Repository

    Zhu, Jiajie

    2017-07-31

    Li-ion batteries are well-established energy storage systems. Upon lithiation conventional group IVA compound anodes undergo large volume expansion and thus suffer from stress-induced performance degradation. Instead of the emerging MXene anodes fabricated by an expensive and difficult-to-control etching technique, we study the feasibility of utilizing the parent MAX compounds. We reveal that M2AC (M=Ti, V and A=Si, S) compounds repel lithiation at ambient conditions, while structural stress turns out to support lithiation, in contrast to group IVA compounds. For V2SC the Li diffusion barrier is found to be lower than reported for group IVA compound anodes, reflecting potential to achieve fast charge/discharge.

  4. Stress-enhanced lithiation in MAX compounds for battery applications

    KAUST Repository

    Zhu, Jiajie; Chroneos, Alexander; Wang, Lei; Rao, Feng; Schwingenschlö gl, Udo

    2017-01-01

    Li-ion batteries are well-established energy storage systems. Upon lithiation conventional group IVA compound anodes undergo large volume expansion and thus suffer from stress-induced performance degradation. Instead of the emerging MXene anodes fabricated by an expensive and difficult-to-control etching technique, we study the feasibility of utilizing the parent MAX compounds. We reveal that M2AC (M=Ti, V and A=Si, S) compounds repel lithiation at ambient conditions, while structural stress turns out to support lithiation, in contrast to group IVA compounds. For V2SC the Li diffusion barrier is found to be lower than reported for group IVA compound anodes, reflecting potential to achieve fast charge/discharge.

  5. Structural originations of irreversible capacity loss from highly lithiated copper oxides

    International Nuclear Information System (INIS)

    Love, Corey T.; Dmowski, Wojtek; Johannes, Michelle D.; Swider-Lyons, Karen E.

    2011-01-01

    We use electrochemistry, high-energy X-ray diffraction (XRD) with pair-distribution function analysis (PDF), and density functional theory (DFT) to study the instabilities of Li 2 CuO 2 at varying state of charge. Rietveld refinement of XRD patterns revealed phase evolution from pure Li 2 CuO 2 body-centered orthorhombic (Immm) space group to multiphase compositions after cycling. The PDF showed CuO 4 square chains with varying packing during electrochemical cycling. Peaks in the G(r) at the Cu-O distance for delithiated, LiCuO 2 , showed CuO 4 square chains with reduced ionic radius for Cu in the 3+ state. At full depth of discharge to 1.5 V, CuO was observed in fractions greater than the initial impurity level which strongly affects the reversibility of the lithiation reactions contributing to capacity loss. DFT calculations showed electron removal from Cu and O during delithiation of Li 2 CuO 2 . - Graphical abstract: Structural transformation from Li 2 CuO 2 to delithiated LiCuO 2 . Highlights: → We use experimental techniques and theoretical calculation to study the instabilities of Li 2 CuO 2 . → After initial charge multiphase material persists through charge-discharge cycle. → Precipitation of CuO strongly affects electrode reversibility contributing to capacity loss. → Structural disorganization in Li 2 CuO 2 after cycling is the result of CuO 4 square chain packing. → DFT calculations show electron removal from both Cu and O during delithiation of Li 2 CuO 2 .

  6. Using simulation-optimization techniques to improve multiphase aquifer remediation

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, S.; Pruess, K. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    The T2VOC computer model for simulating the transport of organic chemical contaminants in non-isothermal multiphase systems has been coupled to the ITOUGH2 code which solves parameter optimization problems. This allows one to use linear programming and simulated annealing techniques to solve groundwater management problems, i.e. the optimization of operations for multiphase aquifer remediation. A cost function has to be defined, containing the actual and hypothetical expenses of a cleanup operation which depend - directly or indirectly - on the state variables calculated by T2VOC. Subsequently, the code iteratively determines a remediation strategy (e.g. pumping schedule) which minimizes, for instance, pumping and energy costs, the time for cleanup, and residual contamination. We discuss an illustrative sample problem to discuss potential applications of the code. The study shows that the techniques developed for estimating model parameters can be successfully applied to the solution of remediation management problems. The resulting optimum pumping scheme depends, however, on the formulation of the remediation goals and the relative weighting between individual terms of the cost function.

  7. Pattern recognition techniques for horizontal and vertically upward multiphase flow measurement

    Science.gov (United States)

    Arubi, Tesi I. M.; Yeung, Hoi

    2012-03-01

    The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves that has led oil companies to develop smaller and marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective solutions of on-line continuous multiphase flow measurement for well testing, production monitoring, production optimisation, process control and automation. The pattern recognition approach for clamp-on multiphase measurement employed in this study provides one means for meeting this need. High speed caesium-137 radioisotope-based densitometers were installed vertically at the top of a 50.8mm and 101.6mm riser as well as horizontally at the riser base in the Cranfield University multiphase flow test facility. A comprehensive experimental campaign comprising flow conditions typical of operating conditions found in the Petroleum Industry was conducted. The application of a single gamma densitometer unit, in conjunction with pattern recognition techniques to determine both the phase volume fractions and velocities to yield the individual phase flow rates of horizontal and vertically upward multiphase flows was investigated. The pattern recognition systems were trained to map the temporal fluctuations in the multiphase mixture density with the individual phase flow rates using statistical features extracted from the gamma counts signals as their inputs. Initial results yielded individual phase flow rate predictions to within ±5% relative error for the two phase airwater flows and ±10% for three phase air-oil-water flows data.

  8. Probing Stress States in Silicon Nanowires During Electrochemical Lithiation Using In Situ Synchrotron X-Ray Microdiffraction

    Directory of Open Access Journals (Sweden)

    Imran Ali

    2018-04-01

    Full Text Available Silicon is considered as a promising anode material for the next-generation lithium-ion battery (LIB due to its high capacity at nanoscale. However, silicon expands up to 300% during lithiation, which induces high stresses and leads to fractures. To design silicon nanostructures that could minimize fracture, it is important to understand and characterize stress states in the silicon nanostructures during lithiation. Synchrotron X-ray microdiffraction has proven to be effective in revealing insights of mechanical stress and other mechanics considerations in small-scale crystalline structures used in many important technological applications, such as microelectronics, nanotechnology, and energy systems. In the present study, an in situ synchrotron X-ray microdiffraction experiment was conducted to elucidate the mechanical stress states during the first electrochemical cycle of lithiation in single-crystalline silicon nanowires (SiNWs in an LIB test cell. Morphological changes in the SiNWs at different levels of lithiation were also studied using scanning electron microscope (SEM. It was found from SEM observation that lithiation commenced predominantly at the top surface of SiNWs followed by further progression toward the bottom of the SiNWs gradually. The hydrostatic stress of the crystalline core of the SiNWs at different levels of electrochemical lithiation was determined using the in situ synchrotron X-ray microdiffraction technique. We found that the crystalline core of the SiNWs became highly compressive (up to -325.5 MPa once lithiation started. This finding helps unravel insights about mechanical stress states in the SiNWs during the electrochemical lithiation, which could potentially pave the path toward the fracture-free design of silicon nanostructure anode materials in the next-generation LIB.

  9. Nanomechanical properties of lithiated Si nanowires probed with atomic force microscopy

    International Nuclear Information System (INIS)

    Lee, Hyunsoo; Shin, Weonho; Choi, Jang Wook; Park, Jeong Young

    2012-01-01

    The nanomechanical properties of fully lithiated and pristine Si nanowires (NWs) deposited on a Si substrate were studied with atomic force microscopy (AFM). Si NWs were synthesized using the vapour-liquid-solid process on stainless-steel substrates using an Au catalyst. Fully lithiated Si NWs were obtained using the electrochemical method, followed by drop-casting on a Si substrate. The roughness of the Si NWs, which was derived from AFM images, is greater for the lithiated Si NWs than for the pristine Si NWs. Force spectroscopy was used to study the influence of lithiation on the tip-surface adhesion force. The lithiated Si NWs revealed a smaller tip-surface adhesion force than the Si substrate by a factor of two, while the adhesion force of the Si NWs is similar to that of the Si substrate. Young's modulus, obtained from the force-distance curve, also shows that the pristine Si NWs have a relatively higher value than the lithiated Si NWs due to the elastically soft and amorphous structures of the lithiated region. These results suggest that force spectroscopy can be used to probe the degree of lithiation at nanometer scale during the charging and discharging processes. (paper)

  10. On the origin of anisotropic lithiation in crystalline silicon over germanium: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Yun [Materials Science and Engineering Program, University of Texas at Austin, Austin, TX 78712 (United States); Hwang, Gyeong S., E-mail: gshwang@che.utexas.edu [Materials Science and Engineering Program, University of Texas at Austin, Austin, TX 78712 (United States); Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States)

    2014-12-30

    Graphical abstract: - Highlights: • We examine the underlying reasons for the anisotropic lithiation of Si over Ge in the crystalline phase. • Crystalline Si is lithiated in a layer-by-layer fashion, yielding a sharp amorphous–crystalline interface. • Lithiated c-Ge exhibits a graded lithiation front, which proceeds much faster than that in c-Si. • Lithiation behavior tends to be subject to the stiffness and dynamics of the host matrix. • We reveal the origin and extended impacts of the anisotropic Si vs. isotropic Ge lithiation. - Abstract: Silicon (Si) and germanium (Ge) are both recognized as a promising anode material for high-energy lithium-ion batteries. Si is abundant and best known for its superior gravimetric energy storage capacity, while Ge exhibits faster charge/discharge rates and better capacity retention. Recently, it was discovered that Si lithiation exhibits strong orientation dependence while Ge lithiation proceeds isotropically, although they have the same crystalline structure. To better understand the underlying reasons behind these distinctive differences, we examine and compare the lithiation behaviors at the Li{sub 4}Si/c-Si(1 1 0) and Li{sub 4}Ge/c-Ge(1 1 0) model systems using ab initio molecular dynamics simulations. In comparison to lithiated c-Si, where a sharp amorphous–crystalline interface remains and advances rather slowly, lithiated c-Ge tends to loose its crystallinity rapidly, resulting in a graded lithiation front of fast propagation speed. Analysis of the elastic responses and dynamics of the host Si and Ge lattices clearly demonstrate that from the beginning of the lithiation process, Ge lattice responds with more significant weakening as compared to the rigid Si lattice. Moreover, the more flexible Ge lattice is found to undergo facile atomic rearrangements during lithiation, overshadowing the original crystallographic characteristic. These unique properties of Ge thereby contribute synergistically to the rapid

  11. High damage tolerance of electrochemically lithiated silicon

    Science.gov (United States)

    Wang, Xueju; Fan, Feifei; Wang, Jiangwei; Wang, Haoran; Tao, Siyu; Yang, Avery; Liu, Yang; Beng Chew, Huck; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-01-01

    Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro–chemo–mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. Here we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratio is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. Our results reveal the high damage tolerance in amorphous lithium-rich silicon alloys and have important implications for the development of durable rechargeable batteries. PMID:26400671

  12. New insights into pre-lithiation kinetics of graphite anodes via nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Holtstiege, Florian; Schmuch, Richard; Winter, Martin; Brunklaus, Gunther; Placke, Tobias

    2018-02-01

    Pre-lithiation of anode materials can be an effective method to compensate active lithium loss which mainly occurs in the first few cycles of a lithium ion battery (LIB), due to electrolyte decomposition and solid electrolyte interphase (SEI) formation at the surface of the anode. There are many different pre-lithiation methods, whereas pre-lithiation using metallic lithium constitutes the most convenient and widely utilized lab procedure in literature. In this work, for the first time, solid state nuclear magnetic resonance spectroscopy (NMR) is applied to monitor the reaction kinetics of the pre-lithiation process of graphite with lithium. Based on static 7Li NMR, we can directly observe both the dissolution of lithium metal and parallel formation of LiCx species in the obtained NMR spectra with time. It is also shown that the degree of pre-lithiation as well as distribution of lithium metal on the electrode surface have a strong impact on the reaction kinetics of the pre-lithiation process and on the remaining amount of lithium metal. Overall, our findings are highly important for further optimization of pre-lithiation methods for LIB anode materials, both in terms of optimized pre-lithiation time and appropriate amounts of lithium metal.

  13. Electrochemical lithiation of silicon electrodes. Neutron reflectometry and secondary ion mass spectrometry investigations

    Energy Technology Data Exchange (ETDEWEB)

    Jerliu, Bujar; Doerrer, Lars; Hueger, Erwin [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). AG Mikrokinetik; Seidlhofer, Beatrix-Kamelia; Steitz, Roland [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Borchardt, Guenter; Schmidt, Harald [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). AG Mikrokinetik; Clausthaler Zentrum fuer Materialtechnik (CZM), Clausthal-Zellerfeld (Germany)

    2017-11-15

    In-situ neutron reflectometry and ex-situ secondary ion mass spectrometry in combination with electrochemical methods were used to study the lithiation of amorphous silicon electrodes. For that purpose specially designed closed three-electrode electrochemical cells with thin silicon films as the working electrode and lithium as counter and reference electrodes were used. The neutron reflectometry results obtained in-situ during galvanostatic cycling show that the incorporation, redistribution and removal of Li in amorphous silicon during a lithiation cycle can be monitored. It was possible to measure the volume modification during lithiation, which is found to be rather independent of cycle number, current density and film thickness and in good agreement with first-principles calculations as given in literature. Indications for an inhomogeneous lithiation mechanism were found by secondary ion mass spectrometry measurements. Lithium tracer diffusion experiments indicate that the diffusivities inside the lithiated region (D > 10{sup -15} m{sup 2} s{sup -1}) are considerably higher than in pure amorphous silicon as known from literature. This suggests a kinetics based explanation for the occurrence of an inhomogeneous lithiation mechanism.

  14. Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation

    KAUST Repository

    Lee, Seok Woo

    2011-07-13

    Silicon is one of the most attractive anode materials for use in Li-ion batteries due to its ∼10 times higher specific capacity than existing graphite anodes. However, up to 400% volume expansion during reaction with Li causes particle pulverization and fracture, which results in rapid capacity fading. Although Si nanomaterials have shown improvements in electrochemical performance, there is limited understanding of how volume expansion takes place. Here, we study the shape and volume changes of crystalline Si nanopillars with different orientations upon first lithiation and discover anomalous behavior. Upon lithiation, the initially circular cross sections of nanopillars with 〈100〉, 〈110〉, and 〈111〉 axial orientations expand into cross, ellipse, and hexagonal shapes, respectively. We explain this by identifying a high-speed lithium ion diffusion channel along the 〈110〉 direction, which causes preferential volume expansion along this direction. Surprisingly, the 〈111〉 and 〈100〉 nanopillars shrink in height after partial lithiation, while 〈110〉 nanopillars increase in height. The length contraction is suggested to be due to a collapse of the {111} planes early in the lithiation process. These results give new insight into the Si volume change process and could help in designing better battery anodes. © 2011 American Chemical Society.

  15. 4. Workshop - Measurement techniques of stationary and transient multiphase flow

    International Nuclear Information System (INIS)

    Prasser, H.M.

    2001-05-01

    In November 2000, the 4th Workshop on Measurement Techniques for Stationary and Transient Multiphase Flows took place in Rossendorf. Three previous workshops of this series were national meetings; this time participants from different countries took part. The programme comprised 14 oral presentations, 9 of which are included in these proceedings in full length. A special highlight of the meeting was the main lecture ''Ultrasonic doppler method for bubbly flow measurement'' of Professor Masanori Aritomi, Dr. Hiroshige Kikura and Dr. Yumiko Suzuki. The workshop again dealt with high-resolution phase distribution and phase velocity measurement techniques based on electrical conductivity, ultrasound, laser light and high-speed cinematography. A number of presentations were dedicated to the application of wire-mesh sensors developed by FZR for different applications used by the Technical Universities of Delft and Munich and the Tokyo Institute of Technology. (orig.)

  16. In Situ Radiographic Investigation of (De)Lithiation Mechanisms in a Tin-Electrode Lithium-Ion Battery.

    Science.gov (United States)

    Sun, Fu; Markötter, Henning; Zhou, Dong; Alrwashdeh, Saad Sabe Sulaiman; Hilger, Andre; Kardjilov, Nikolay; Manke, Ingo; Banhart, John

    2016-05-10

    The lithiation and delithiation mechanisms of multiple-Sn particles in a customized flat radiography cell were investigated by in situ synchrotron radiography. For the first time, four (de)lithiation phenomena in a Sn-electrode battery system are highlighted: 1) the (de)lithiation behavior varies between different Sn particles, 2) the time required to lithiate individual Sn particles is markedly different from the time needed to discharge the complete battery, 3) electrochemical deactivation of originally electrochemically active particles is reported, and 4) a change of electrochemical behavior of individual particles during cycling is found and explained by dynamic changes of (de)lithiation pathways amongst particles within the electrode. These unexpected findings fundamentaly expand the understanding of the underlying (de)lithiation mechanisms inside commercial lithium-ion batteries (LIBs) and would open new design principles for high-performance next-generation LIBs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seok Woo; /Stanford U., Geballe Lab.; Lee, Hyun-Wook; /Stanford U., Materials Sci. Dept.; Ryu, Ill; /Brown U.; Nix, William D.; /Stanford U., Materials Sci. Dept.; Gao, Huajian; /Brown U.; Cui, Yi; /Stanford U., Materials Sci. Dept. /SLAC

    2015-06-01

    Following an explosion of studies of silicon as a negative electrode for Li-ion batteries, the anomalous volumetric changes and fracture of lithiated single Si particles have attracted significant attention in various fields, including mechanics. However, in real batteries, lithiation occurs simultaneously in clusters of Si in a confined medium. Hence, understanding how the individual Si structures interact during lithiation in a closed space is necessary. Herein, we demonstrate physical/mechanical interactions of swelling Si structures during lithiation using well-defined Si nanopillar pairs. Ex situ SEM and in situ TEM studies reveal that compressive stresses change the reaction kinetics so that preferential lithiation occurs at free surfaces when the pillars are mechanically clamped. Such mechanical interactions enhance the fracture resistance of This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515. SLAC-PUB-16300 2 lithiated Si by lessening the tensile stress concentrations in Si structures. This study will contribute to improved design of Si structures at the electrode level for high performance Li-ion batteries.

  18. 4. Workshop - Measurement techniques of stationary and transient multiphase flow

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M. (ed.)

    2001-05-01

    In November 2000, the 4th Workshop on Measurement Techniques for Stationary and Transient Multiphase Flows took place in Rossendorf. Three previous workshops of this series were national meetings; this time participants from different countries took part. The programme comprised 14 oral presentations, 9 of which are included in these proceedings in full length. A special highlight of the meeting was the main lecture ''Ultrasonic doppler method for bubbly flow measurement'' of Professor Masanori Aritomi, Dr. Hiroshige Kikura and Dr. Yumiko Suzuki. The workshop again dealt with high-resolution phase distribution and phase velocity measurement techniques based on electrical conductivity, ultrasound, laser light and high-speed cinematography. A number of presentations were dedicated to the application of wire-mesh sensors developed by FZR for different applications used by the Technical Universities of Delft and Munich and the Tokyo Institute of Technology. (orig.)

  19. Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitors

    International Nuclear Information System (INIS)

    Zhang, Jin; Shi, Zhiqiang; Wang, Chengyang

    2014-01-01

    Highlights: • MCMB with different pre-lithiation capacity as negative electrode in LIC. • Pre-lithiation improves the electrochemical performance of LIC. • The optimal pre-lithiation capacity has been proposed. - Abstract: Lithium ion capacitors are assembled with pre-lithiated mesocarbon microbeads (LMCMB) anode and activated carbon (AC) cathode. The effect of pre-lithiation degrees on the crystal structure of MCMB electrode and the electrochemical capacitance behavior of LIC are investigated by X-ray diffraction (XRD) and the charge-discharge test of three-electrode cell. The structure of graphite still maintained when the pre-lithiation capacity is less than 200 mAh g −1 , phase transition takes place with the increase of pre-lithiation capacity from 250 mAh g −1 to 350 mAh g −1 . Pre-lithiation degrees of MCMB anode greatly affect the charge-discharge process and behavior, which impact on the electrochemical performance of LIC. The LIC with pre-lithiation capacity of 300 mAh g −1 has the optimal electrochemical performance. The energy density of LIC300 is up to 92.3 Wh kg −1 , the power density as high as 5.5 kW kg −1 and the capacity retention is 97.0% after 1000 cycles. The excellent electrochemical performance benefits from the appropriate pre-lithiation capacity of negative electrode. The appropriate pre-lithiation ensures the working voltage of negative electrode in low and relative stable charge-discharge platform corresponding to the mutual phase transition from the second stage graphite intercalation compound (LiC 12 ) to the first stage graphite intercalation compound (LiC 6 ). The stable charge-discharge platform of negative electrode is conductive to the sufficient utilization of AC positive electrode

  20. CHARACTERISATION OF MULTIPHASE FLUID-STRUCTURE INTERACTION USING NON-INTRUSIVE OPTICAL TECHNIQUES

    Directory of Open Access Journals (Sweden)

    M. AL-ATABI

    2011-04-01

    Full Text Available The purpose of this study is to determine experimentally the effectiveness of passive drag reduction techniques (which involve adjusting surface geometry within a chaotic multiphase flow system. To quantify the intrusion and disturbance caused, a liquid-air blast atomiser continuously discharges within a test section of air at atmospheric pressure, with a circular cylinder placed 25 cylinder diameters (250 mm downstream of the nozzle. This cylinder is then replaced with other cylinders which have modified surface geometry. The data was obtained using Particle Image Velocimetry (PIV and determines the fluid motion resulting from spray structure interaction of a liquid spray with a circular cylinder. Subtraction of non intruded spray images from intruded spray images at the same locations, using the time averaged analysis allows the direct comparison of the amount of disturbance each geometric variant has on the spray. Using this data alongside velocity profiles time averaged trends were compared. Drag reduction from V-shaped grooves provides the greatest disturbance reduction. This is due to the reduced shear stress around its cross section and the addition of small liquid eddies within each V-groove creates a gliding surface. These features proved to be most effective when monitoring drag reduction in multiphase flow-structure interaction.

  1. Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials

    KAUST Repository

    Nie, Anmin

    2013-07-23

    In the present work, taking advantage of aberration-corrected scanning transmission electron microscopy, we show that the dynamic lithiation process of anode materials can be revealed in an unprecedented resolution. Atomically resolved imaging of the lithiation process in SnO2 nanowires illustrated that the movement, reaction, and generation of b = [1Ì...1Ì...1] mixed dislocations leading the lithiated stripes effectively facilitated lithium-ion insertion into the crystalline interior. The geometric phase analysis and density functional theory simulations indicated that lithium ions initial preference to diffuse along the [001] direction in the {200} planes of SnO2 nanowires introduced the lattice expansion and such dislocation behaviors. At the later stages of lithiation, the Li-induced amorphization of rutile SnO2 and the formation of crystalline Sn and LixSn particles in the Li2O matrix were observed. © 2013 American Chemical Society.

  2. Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials

    KAUST Repository

    Nie, Anmin; Gan, Liyong; Cheng, Yingchun; Asayesh-Ardakani, Hasti; Li, Qianqian; Dong, Cezhou; Tao, Runzhe; Mashayek, Farzad; Wang, Hongtao; Schwingenschlö gl, Udo; Klie, Robert F.; Yassar, Reza Shahbazian

    2013-01-01

    In the present work, taking advantage of aberration-corrected scanning transmission electron microscopy, we show that the dynamic lithiation process of anode materials can be revealed in an unprecedented resolution. Atomically resolved imaging of the lithiation process in SnO2 nanowires illustrated that the movement, reaction, and generation of b = [1Ì...1Ì...1] mixed dislocations leading the lithiated stripes effectively facilitated lithium-ion insertion into the crystalline interior. The geometric phase analysis and density functional theory simulations indicated that lithium ions initial preference to diffuse along the [001] direction in the {200} planes of SnO2 nanowires introduced the lattice expansion and such dislocation behaviors. At the later stages of lithiation, the Li-induced amorphization of rutile SnO2 and the formation of crystalline Sn and LixSn particles in the Li2O matrix were observed. © 2013 American Chemical Society.

  3. Single Nanostructure Electrochemical Devices for Studying Electronic Properties and Structural Changes in Lithiated Si Nanowires

    KAUST Repository

    McDowell, Matthew T.

    2011-07-19

    Nanostructured Si is a promising anode material for the next generation of Li-ion batteries, but few studies have focused on the electrical properties of the Li-Si alloy phase, which are important for determining power capabilities and ensuring sufficient electrical conduction in the electrode structure. Here, we demonstrate an electrochemical device framework suitable for testing the electrical properties of single Si nanowires (NWs) at different lithiation states and correlating these properties with structural changes via transmission electron microscopy (TEM). We fi nd that single Si NWs usually exhibit Ohmic I - V response in the lithiated state, with conductivities two to three orders of magnitude higher than in the delithiated state. After a number of sequential lithiation/delithiation cycles, the single NWs show similar conductivity after each lithiation step but show large variations in conductivity in the delithiated state. Finally, devices with groups of NWs in physical contact were fabricated, and structural changes in the NWs were observed after lithiation to investigate how the electrical resistance of NW junctions and the NWs themselves affect the lithiation behavior. The results suggest that electrical resistance of NW junctions can limit lithiation. Overall, this study shows the importance of investigating the electronic properties of individual components of a battery electrode (single nanostructures in this case) along with studying the nature of interactions within a collection of these component structures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Single Nanostructure Electrochemical Devices for Studying Electronic Properties and Structural Changes in Lithiated Si Nanowires

    KAUST Repository

    McDowell, Matthew T.; Cui, Yi

    2011-01-01

    Nanostructured Si is a promising anode material for the next generation of Li-ion batteries, but few studies have focused on the electrical properties of the Li-Si alloy phase, which are important for determining power capabilities and ensuring sufficient electrical conduction in the electrode structure. Here, we demonstrate an electrochemical device framework suitable for testing the electrical properties of single Si nanowires (NWs) at different lithiation states and correlating these properties with structural changes via transmission electron microscopy (TEM). We fi nd that single Si NWs usually exhibit Ohmic I - V response in the lithiated state, with conductivities two to three orders of magnitude higher than in the delithiated state. After a number of sequential lithiation/delithiation cycles, the single NWs show similar conductivity after each lithiation step but show large variations in conductivity in the delithiated state. Finally, devices with groups of NWs in physical contact were fabricated, and structural changes in the NWs were observed after lithiation to investigate how the electrical resistance of NW junctions and the NWs themselves affect the lithiation behavior. The results suggest that electrical resistance of NW junctions can limit lithiation. Overall, this study shows the importance of investigating the electronic properties of individual components of a battery electrode (single nanostructures in this case) along with studying the nature of interactions within a collection of these component structures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Application of PNA-technique for the measurement of multi-phase flow

    International Nuclear Information System (INIS)

    Loevhoeiden, G.; Andersen, E.; Garder, K.; Rambaek, J.P.

    1986-09-01

    The pulsed neutron activation (PNA) technique is proposed for multi-phase flow monitoring of hydrocarbons. The reactions 12 C(n,p) 12 B and 12 C(n,n') 12 C both yeld 4.4 MeV in the form of gamma radiation as a measure of carbon content. Intensity measurement of the 4.4 MeV gamma line gives a measure of the carbon content in the irradiation zone. By use of a pulsed neutron source, an estimation of the carbon content time variation is possible. In the presence of sulphur in petroleum, the reaction 34 S(n,p) 34 P offers a better possibility for flow rate determination

  6. Surface-Coating Regulated Lithiation Kinetics and Degradation in Silicon Nanowires for Lithium Ion Battery

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Langli; Yang, Hui; Yan, Pengfei; Travis, Jonathan J.; Lee, Younghee; Liu, Nian; Piper, Daniela M.; Lee, Se-Hee; Zhao, Peng; George, Steven M.; Zhang, Jiguang; Cui, Yi; Zhang, Sulin; Ban, Chunmei; Wang, Chong M.

    2015-05-26

    Silicon (Si)-based materials hold promise as the next-generation anodes for high-energy lithium (Li)-ion batteries. Enormous research efforts have been undertaken to mitigate the chemo-mechanical failure due to the large volume changes of Si during lithiation and delithiation cycles. It has been found nanostructured Si coated with carbon or other functional materials can lead to significantly improved cyclability. However, the underlying mechanism and comparative performance of different coatings remain poorly understood. Herein, using in situ transmission electron microscopy (TEM) through a nanoscale half-cell battery, in combination with chemo-mechanical simulation, we explored the effect of thin (~5 nm) alucone and Al2O3 coatings on the lithiation kinetics of Si nanowires (SiNWs). We observed that the alucone coating leads to a “V-shaped” lithiation front of the SiNWs , while the Al2O3 coating yields an “H-shaped” lithiation front. These observations indicate that the difference between the Li surface diffusivity and bulk diffusivity of the coatings dictates lithiation induced morphological evolution in the nanowires. Our experiments also indicate that the reaction rate in the coating layer can be the limiting step for lithiation and therefore critically influences the rate performance of the battery. Further, the failure mechanism of the Al2O3 coated SiNWs was also explored. Our studies shed light on the design of high capacity, high rate and long cycle life Li-ion batteries.

  7. Fragmentation Pathways of Lithiated Hexose Monosaccharides

    Science.gov (United States)

    Abutokaikah, Maha T.; Frye, Joseph W.; Tschampel, John; Rabus, Jordan M.; Bythell, Benjamin J.

    2018-05-01

    We characterize the primary fragmentation reactions of three isomeric lithiated D-hexose sugars (glucose, galactose, and mannose) utilizing tandem mass spectrometry, regiospecific labeling, and theory. We provide evidence that these three isomers populate similar fragmentation pathways to produce the abundant cross-ring cleavage peaks (0,2A1 and 0,3A1). These pathways are highly consistent with the prior literature (Hofmeister et al. J. Am. Chem. Soc. 113, 5964-5970, 1991, Bythell et al. J. Am. Soc. Mass Spectrom. 28, 688-703, 2017, Rabus et al. Phys. Chem. Chem. Phys. 19, 25643-25652, 2017) and the present labeling data. However, the structure-specific energetics and rate-determining steps of these reactions differ as a function of precursor sugar and anomeric configuration. The lowest energy water loss pathways involve loss of the anomeric oxygen to furnish B1 ions. For glucose and galactose, the lithiated α-anomers generate ketone structures at C2 in a concerted reaction involving a 1,2-migration of the C2-H to the anomeric carbon (C1). In contrast, the β-anomers are predicted to form 1,3-anhydroglucose/galactose B1 ion structures. Initiation of the water loss reactions from each anomeric configuration requires distinct reactive conformers, resulting in different product ion structures. Inversion of the stereochemistry at C2 has marked consequences. Both lithiated mannose forms expel water to form 1,2-anhydromannose B1 ions with the newly formed epoxide group above the ring. Additionally, provided water loss is not instantaneous, the α-anomer can also isomerize to generate a ketone structure at C2 in a concerted reaction involving a 1,2-migration of the C2-H to C1. This product is indistinguishable to that from α-glucose. The energetics and interplay of these pathways are discussed. [Figure not available: see fulltext.

  8. Ion-exchange synthesis and improved Li insertion property of lithiated H2Ti12O25 as a negative electrode material for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Kunimitsu Kataoka

    2016-03-01

    Full Text Available We successfully prepared the lithiated H2Ti12O25 sample by the H+/Li+ ion exchange synthetic technique in the molten LiNO3 at 270 °C using H2Ti12O25 as a starting compound. Chemical composition of the obtained lithiated H2Ti12O25 sample was determined to be H1.05Li0.35Ti12O25-δ having δ = 0.3 by ICP-AES and DTA-TG analyses. The H+/Li+ ion exchange was also confirmed by powder XRD, 1H-MAS NMR, and 7Li-MAS NMR measurements. Electrochemical Li insertion and extraction measurements revealed that the initial coulombic efficiency was improved from 88% in H2Ti12O25 to 93% in the lithiated H2Ti12O25 sample. In addition, superior capacity retention properties for the charge and discharge cycling performance and good charge rate capability of the present lithiated H2Ti12O25 were confirmed in the electrochemical measurements. Accordingly, the lithiated H2Ti12O25 is suggested to be one of the promising high-voltage and high-capacity oxide negative electrodes in advanced lithium-ion batteries.

  9. In situ X-ray micro-CT characterization of chemo-mechanical relaxations during Sn lithiation

    Science.gov (United States)

    Gonzalez, Joseph F.; Antartis, Dimitrios A.; Chasiotis, Ioannis; Dillon, Shen J.; Lambros, John

    2018-03-01

    Sn has been proposed for use as a high capacity anode material. Because of its ductile metallic nature, Sn may exhibit unique stress evolution during lithiation. Here, 2D radiography and 3D tomography are employed to visualize the evolution of geometry, internal structure, alloying, and damage during lithiation, delithiation, and rest of Sn wires with micron scale diameters. Lithiation proceeds isotropically, resulting in geometric and dimensional changes after 25% of total lithiation when the tensile stresses are sufficiently high to exceed the flow stress of the unlithiated Sn core and cause elongation and diameter increase. Damage occurs at later stages in the form of cracks terminating at the wire surface and voids forming in the unlithiated core. Notably, significant fragmentation occurs during delithiation which, due to void formation that accommodates the resulting stresses, does not measurably alter the wire cross-section and length. The distinguishing feature of the chemo-mechanics of Sn compared to Si or Ge is the pronounced creep rate at applied strain rates as high as 10-6 s-1, which promotes large strains in the core, eventually leading to void nucleation in the unlithiated core during lithiation, and more importantly, continues driving the deformation of the anode while at rest.

  10. International Symposium of Cavitation and Multiphase Flow (ISCM 2014)

    International Nuclear Information System (INIS)

    Wu, Yulin

    2015-01-01

    The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and

  11. Pseudocapacitive properties of nano-structured anhydrous ruthenium oxide thin film prepared by electrostatic spray deposition and electrochemical lithiation/delithiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Kim, J.Y.; Kim, K.B. [Division of Materials Science and Engineering, Yonsei University, Seoul (Korea, Republic of)

    2010-10-15

    Nano-structured anhydrous ruthenium oxide (RuO{sub 2}) thin films were prepared using an electrostatic spray deposition (ESD) technique followed by electrochemical lithiation and delithiation. During the electrochemical lithiation process, RuO{sub 2} decomposed to nano-structured metallic ruthenium Ru with the concomitant formation of Li{sub 2}O. Nano-structured RuO{sub 2} was formed upon subsequent electrochemical extraction of Li from the Ru/Li{sub 2}O nanocomposite. Electrochemical lithiation/deliathiation at different charge/discharge rates (C-rate) was used to control the nano-structure of the anhydrous RuO{sub 2}. Electrochemical lithiation/delithiation of the RuO{sub 2} thin film electrode at different C-rates was closely related to the specific capacitance and high rate capability of the nano-structured anhydrous RuO{sub 2} thin film. Nano-structured RuO{sub 2} thin films prepared by electrochemical lithiation and delithiation at 2C rate showed the highest specific capacitance of 653 F g{sup -1} at 20 mV s{sup -1}, which is more than two times higher than the specific capacitance of 269 F g{sup -1} for the as-prepared RuO{sub 2}. In addition, it showed 14% loss in specific capacitance from 653 F g{sup -1} at 20 mV s{sup -1} to 559 F g{sup -1} at 200 mV s{sup -1}, indicating significant improvement in the high rate capability compared to the 26% loss of specific capacitance of the as-prepared RuO{sub 2} electrode from 269 F g{sup -1} at 20 mV s{sup -1} to 198 F g{sup -1} at 200 mV s{sup -1} for the same change in scan rate. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Synthesis of substituted tetrahydroisoquinolines by lithiation then electrophilic quench.

    Science.gov (United States)

    Talk, Ruaa A; Duperray, Alexia; Li, Xiabing; Coldham, Iain

    2016-06-07

    Substituted N-tert-butoxycarbonyl (Boc)-1,2,3,4-tetrahydroisoquinolines were prepared and treated with n-butyllithium in THF at -50 °C to test the scope of the metallation and electrophilic quench. The lithiation was optimised by using in situ ReactIR spectroscopy and the rate of rotation of the carbamate was determined. The 1-lithiated intermediates could be trapped with a variety of electrophiles to give good yields of 1-substituted tetrahydroisoquinoline products. Treatment with acid or reduction with LiAlH4 allows conversion to the N-H or N-Me compound. The chemistry was applied to the efficient total syntheses of the alkaloids (±)-crispine A and (±)-dysoxyline.

  13. FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)

    Science.gov (United States)

    Wu, Yulin

    2015-01-01

    The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and

  14. Electrochemical lithiation of thin silicon based layers potentiostatically deposited from ionic liquid

    International Nuclear Information System (INIS)

    Vlaic, Codruta Aurelia; Ivanov, Svetlozar; Peipmann, Ralf; Eisenhardt, Anja; Himmerlich, Marcel; Krischok, Stefan; Bund, Andreas

    2015-01-01

    Thin silicon layers containing about 20% carbon and 20% oxygen were deposited on copper substrates by potentiostatic electroreduction from a 1 M SiCl 4 1-butyl-1-methyl-pyrrolidinium bis (trifluoromethyl) sulfonylimide [BMP][TFSI] electrolyte. The electrodeposition process was investigated by means of voltammetric techniques, coupled with in-situ microgravimetry (quartz crystal microbalance, QCM). The electrochemical and QCM data suggest a possible contribution of a partial Si 4+ to Si 2+ reduction and/or a restructuring of the metallic substrate. Considerable impact of side reactions parallel to the deposition process was indicated by QCM measurements performed under potentiostatic and potentiodynamic conditions. The deposition of silicon-based films was confirmed by energy dispersive X-ray analysis (EDX). Analysis of the chemical composition of the deposit and its elemental distribution were achieved by depth profiling X-ray photoelectron spectroscopy (XPS). The electrodeposited silicon containing layers showed stable lithiation and delithiation with capacity values of about 1200 mAhg −1 and 80% capacity retention after 300 cycles in standard EC/DMC electrolytes. In ionic liquid (IL) the material displayed lower capacity of ca. 500 mAhg −1 , which can be attributed to the higher viscosity of this electrolyte and deposition of IL decomposition products during lithiation

  15. The role of oxygen in the uptake of deuterium in lithiated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C. N.; Luitjohan, K. E. [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Dadras, J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37998 (United States); Allain, J. P. [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, West Lafayette, Indiana 47907 (United States); Krstic, P. S. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37998 (United States); Joint Institute of Computational Sciences, University of Tennessee, Knoxville, Tennessee 37998 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Skinner, C. H. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2013-12-14

    We investigate the mechanism of deuterium retention by lithiated graphite and its relationship to the oxygen concentration through surface sensitive experiments and atomistic simulations. Deposition of lithium on graphite yielded 5%–8% oxygen surface concentration and when subsequently irradiated with D ions at energies between 500 and 1000 eV/amu and fluences over 10{sup 16} cm{sup −2} the oxygen concentration rose to between 25% and 40%. These enhanced oxygen levels were reached in a few seconds compared to about 300 h when the lithiated graphite was allowed to adsorb oxygen from the ambient environment under equilibrium conditions. Irradiating graphite without lithium deposition, however, resulted in complete removal of oxygen to levels below the detection limit of XPS (e.g., <1%). These findings confirm the predictions of atomistic simulations, which had concluded that oxygen was the primary component for the enhanced hydrogen retention chemistry on the lithiated graphite surface.

  16. Multiphase flow measurement in the slug regime using ultrasonic measurement techniques and slug closure model

    OpenAIRE

    Al-lababidi , Salem

    2006-01-01

    Multiphase flow in the oil and gas industry covers a wide range of flows. Thus, over the last decade, the investigation, development and use of multiphase flow metering system have been a major focus for the industry worldwide. However, these meters do not perform well in slug flow conditions. The present work involves experimental investigations of multiphase flow measurement under slug flow conditions. A two-phase gas/liquid facility was designed and constructed at Cranfie...

  17. Reaction Front Evolution during Electrochemical Lithiation of Crystalline Silicon Nanopillars

    KAUST Repository

    Lee, Seok Woo

    2012-12-01

    The high theoretical specific capacity of Si as an anode material is attractive in lithium-ion batteries, although the issues caused by large volume changes during cycling have been a major challenge. Efforts have been devoted to understanding how diffusion-induced stresses cause fracture, but recent observations of anisotropic volume expansion in single-crystalline Si nanostructures require new theoretical considerations of expansion behavior during lithiation. Further experimental investigation is also necessary to better understand the anisotropy of the lithiation process. Here, we present a method to reveal the crystalline core of partially lithiated Si nanopillars with three different crystallographic orientations by using methanol to dissolve the Li atoms from the amorphous Li-Si alloy. The exposed crystalline cores have flat {110} surfaces at the pillar sidewalls; these surfaces represent the position of the reaction front between the crystalline core and the amorphous Li-Si alloy. It was also found that an amorphous Si structure remained on the flat surfaces of the crystalline core after dissolution of the Li, which was presumed to be caused by the accumulation of Si atoms left over from the removal of Li from the Li-Si alloy. © 2012 Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim.

  18. Reaction Front Evolution during Electrochemical Lithiation of Crystalline Silicon Nanopillars

    KAUST Repository

    Lee, Seok Woo; Berla, Lucas A.; McDowell, Matthew T.; Nix, William D.; Cui, Yi

    2012-01-01

    The high theoretical specific capacity of Si as an anode material is attractive in lithium-ion batteries, although the issues caused by large volume changes during cycling have been a major challenge. Efforts have been devoted to understanding how diffusion-induced stresses cause fracture, but recent observations of anisotropic volume expansion in single-crystalline Si nanostructures require new theoretical considerations of expansion behavior during lithiation. Further experimental investigation is also necessary to better understand the anisotropy of the lithiation process. Here, we present a method to reveal the crystalline core of partially lithiated Si nanopillars with three different crystallographic orientations by using methanol to dissolve the Li atoms from the amorphous Li-Si alloy. The exposed crystalline cores have flat {110} surfaces at the pillar sidewalls; these surfaces represent the position of the reaction front between the crystalline core and the amorphous Li-Si alloy. It was also found that an amorphous Si structure remained on the flat surfaces of the crystalline core after dissolution of the Li, which was presumed to be caused by the accumulation of Si atoms left over from the removal of Li from the Li-Si alloy. © 2012 Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim.

  19. In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiao Hua; Liu, Yang; Huang, Jian Yu [Center for Integrated Nanotechnologies (CINT), Sandia National Laboratories, Albuquerque, New Mexico (United States); Kushima, Akihiro; Li, Ju [Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Zhang, Sulin [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania (United States); Zhu, Ting [Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States)

    2012-07-15

    Understanding the microscopic mechanisms of electrochemical reaction and material degradation is crucial for the rational design of high-performance lithium ion batteries (LIBs). A novel nanobattery assembly and testing platform inside a transmission electron microscope (TEM) has been designed, which allows a direct study of the structural evolution of individual nanowire or nanoparticle electrodes with near-atomic resolution in real time. In this review, recent progresses in the study of several important anode materials are summarized. The consistency between in situ and ex situ results is shown, thereby validating the new in situ testing paradigm. Comparisons between a variety of nanostructures lead to the conclusion that electrochemical reaction and mechanical degradation are material specific, size dependent, and geometrically and compositionally sensitive. For example, a highly anisotropic lithiation in Si is observed, in contrast to the nearly isotropic response in Ge. The Ge nanowires can develop a spongy network, a unique mechanism for mitigating the large volume changes during cycling. The Si nanoparticles show a critical size of {proportional_to}150 nm below which fracture is averted during lithiation, and above which surface cracking, rather than central cracking, is observed. In carbonaceous nanomaterials, the lithiated multi-walled carbon nanotubes (MWCNTs) are drastically embrittled, while few-layer graphene nanoribbons remain mechanically robust after lithiation. This distinct contrast manifests a strong 'geometrical embrittlement' effect as compared to a relatively weak 'chemical embrittlement' effect. In oxide nanowires, discrete cracks in ZnO nanowires are generated near the lithiation reaction front, leading to leapfrog cracking, while a mobile dislocation cloud at the reaction front is observed in SnO{sub 2} nanowires. This contrast is corroborated by ab initio calculations that indicate a strong chemical embrittlement of Zn

  20. In Situ X-ray Diffraction Studies of (De)lithiation Mechanism in Silicon Nanowire Anodes

    KAUST Repository

    Misra, Sumohan

    2012-06-26

    Figure Persented: Silicon is a promising anode material for Li-ion batteries due to its high theoretical specific capacity. From previous work, silicon nanowires (SiNWs) are known to undergo amorphorization during lithiation, and no crystalline Li-Si product has been observed. In this work, we use an X-ray transparent battery cell to perform in situ synchrotron X-ray diffraction on SiNWs in real time during electrochemical cycling. At deep lithiation voltages the known metastable Li 15Si 4 phase forms, and we show that avoiding the formation of this phase, by modifying the SiNW growth temperature, improves the cycling performance of SiNW anodes. Our results provide insight on the (de)lithiation mechanism and a correlation between phase evolution and electrochemical performance for SiNW anodes. © 2012 American Chemical Society.

  1. Advanced CFD and radiotracer techniques - A complementary technology - for industrial multiphase applications

    International Nuclear Information System (INIS)

    Tu, J.Y.

    2004-01-01

    A CFD and RTD Education Package was developed, in which lecture notes, tutorials and computer softwares for both CFD and RTD are included. A user-friendly web-based interface has been prepared to allow lecturers more effectively conducting their training courses or workshops, and to provide students or users more easily learning the CFD and RTD knowledge and practising computer softwares. This report gives an overview of the advances in development and use of CFD models and codes for industrial, particularly multiphase processing applications. Experimental needs for validation and improvement of CFD models and softwares are highlighted. Integration of advanced CFD modelling with radiotracer techniques as a complementary technology for future research and industrial applications is discussed. The features and examples of the developed CFD and RTD Education package are presented. (author)

  2. Noninvasive tomographic and velocimetric monitoring of multiphase flows

    International Nuclear Information System (INIS)

    Chaouki, J.; Dudukovic, M.P.

    1997-01-01

    A condensed review of recent advances accomplished in the development and the applications of noninvasive tomographic and velocimetric measurement techniques to multiphase flows and systems is presented. In recent years utilization of such noninvasive techniques has become widespread in many engineering disciplines that deal with systems involving two immiscible phases or more. Tomography provides concentration, holdup, or 2D or 3D density distribution of at least one component of the multiphase system, whereas velocimetry provides the dynamic features of the phase of interest such as the flow pattern, the velocity field, the 2D or 3D instantaneous movements, etc. The following review is divided into two parts. The first part summarizes progress and developments in flow imaging techniques using γ-ray and X-ray transmission tomography; X-ray radiography; neutron transmission tomography and radiography; positron emission tomography; X-ray diffraction tomography; nuclear magnetic resonance imaging; electrical capacitance tomography; optical tomography; microwave tomography; and ultrasonic tomography. The second part of the review summarizes progress and developments in the following velocimetry techniques: positron emission particle tracking; radioactive particle tracking; cinematography; laser-Doppler anemometry; particle image velocimetry; and fluorescence particle image velocimetry. The basic principles of tomography and velocimetry techniques are outlined, along with advantages and limitations inherent to each technique. The hydrodynamic and structural information yielded by these techniques is illustrated through a literature survey on their successful applications to the study of multiphase systems in such fields as particulate solids processes, fluidization engineering, porous media, pipe flows, transport within packed beds and sparged reactors, etc

  3. Design of a mesoscale continuous flow route towards lithiated methoxyallene.

    Science.gov (United States)

    Seghers, Sofie; Heugebaert, Thomas S A; Moens, Matthias; Sonck, Jolien; Thybaut, Joris; Stevens, Chris Victor

    2018-05-11

    The unique nucleophilic properties of lithiated methoxyallene allow for C-C bond formation with a wide variety of electrophiles, thus introducing an allenic group for further functionalization. This approach has yielded a tremendously broad range of (hetero)cyclic scaffolds, including API precursors. To date, however, its valorization at scale is hampered by the batch synthesis protocol which suffers from serious safety issues. Hence, the attractive heat and mass transfer properties of flow technology were exploited to establish a mesoscale continuous flow route towards lithiated methoxyallene. An excellent conversion of 94% was obtained, corresponding to a methoxyallene throughput of 8.2 g/h. The process is characterized by short reaction times, mild reaction conditions and a stoichiometric use of reagents. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Visualization of multiphase flow by neutron radiography

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Takenaka, Nobuyuki.

    1991-01-01

    Neutron radiography (NRG) is a technique which produces images of the internal structure of a body, making use of the attenuation characteristics of neutrons in the materials being observed. Recently, attempts have been made to expand the application of this technique not only to non-destructive testing but also to a variety of industrial and basic research fields. The attenuation of neutrons is large in a light material like water and small in ordinary metals, which difference may make it possible to visualize a multiphase flow in a metallic container. Particularly, the neutron television, which is one of the applied techniques of NRG, is expected to be a useful tool for observing the behavior of two-phase flow, since it produces images in real time. In this paper the basic idea and the method of NRG are presented along with examples of visualization of multiphase flow by NRG. (author)

  5. Ortho lithiation-in situ borylation of substituted morpholine benzamides

    DEFF Research Database (Denmark)

    Cederbalk, Anna; Lysén, Morten; Kehler, Jan

    2017-01-01

    Morpholine amides are cheap and safe alternative to Weinreb amides as acylating agents of organometallic species. Herein, the in-situ lithiation/borylation of 18 ortho- meta- and para-substituted morpholine benzamides has been investigated. 10 of the 18 substrates provided the desired boronic est...

  6. Development and application of a fully implicit fluid dynamics code for multiphase flow

    International Nuclear Information System (INIS)

    Morii, Tadashi; Ogawa, Yumi

    1996-01-01

    Multiphase flow frequently occurs in a progression of accidents of nuclear reactor severe core damage. The CHAMPAGNE code has been developed to analyze thermohydraulic behavior of multiphase and multicomponent fluid, which requires for its characterization more than one set of velocities, temperatures, masses per unit volume, and so forth at each location in the calculation domain. Calculations of multiphase flow often show physical and numerical instability. The effect of numerical stabilization obtained by the upwind differencing and the fully implicit techniques gives one a convergent solution more easily than other techniques. Several results calculated by the CHAMPAGNE code are explained

  7. Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy

    KAUST Repository

    McDowell, Matthew T.; Ryu, Ill; Lee, Seok Woo; Wang, Chongmin; Nix, William D.; Cui, Yi

    2012-01-01

    In situ transmission electron microscopy (TEM) is used to study the electrochemical lithiation of high-capacity crystalline Si nanoparticles for use in Li-ion battery anodes. The lithiation reaction slows down as it progresses into the particle interior, and analysis suggests that this behavior is due not to diffusion limitation but instead to the influence of mechanical stress on the driving force for reaction. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy

    KAUST Repository

    McDowell, Matthew T.

    2012-09-04

    In situ transmission electron microscopy (TEM) is used to study the electrochemical lithiation of high-capacity crystalline Si nanoparticles for use in Li-ion battery anodes. The lithiation reaction slows down as it progresses into the particle interior, and analysis suggests that this behavior is due not to diffusion limitation but instead to the influence of mechanical stress on the driving force for reaction. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Self-Assembled Cu-Sn-S Nanotubes with High (De)Lithiation Performance.

    Science.gov (United States)

    Lin, Jie; Lim, Jin-Myoung; Youn, Duck Hyun; Kawashima, Kenta; Kim, Jun-Hyuk; Liu, Yang; Guo, Hang; Henkelman, Graeme; Heller, Adam; Mullins, Charles Buddie

    2017-10-24

    Through a gelation-solvothermal method without heteroadditives, Cu-Sn-S composites self-assemble to form nanotubes, sub-nanotubes, and nanoparticles. The nanotubes with a Cu 3-4 SnS 4 core and Cu 2 SnS 3 shell can tolerate long cycles of expansion/contraction upon lithiation/delithiation, retaining a charge capacity of 774 mAh g -1 after 200 cycles with a high initial Coulombic efficiency of 82.5%. The importance of the Cu component for mitigation of the volume expansion and structural evolution upon lithiation is informed by density functional theory calculations. The self-generated template and calculated results can inspire the design of analogous Cu-M-S (M = metal) nanotubes for lithium batteries or other energy storage systems.

  10. Spectra of fast neutrons using a lithiated glass film on silicon

    International Nuclear Information System (INIS)

    Wallace, Steven; Stephan, Andrew C.; Womble, Phillip C.; Begtrup, Gavi; Dai Sheng

    2003-01-01

    Experimental results of a neutron detector manufactured by coating a silicon charged particle detector with a film of lithiated glass are presented. The silicon surface barrier detector (SBD) responds to the 6 Li(n, alpha)triton reaction products generated in the thin film of lithiated glass entering the SBD. Neutron spectral information is present in the pulse height spectrum. An energy response is seen that clearly shows that neutrons from a Pu-Be source and from a deuterium-tritium (D-T) pulsed neutron generator can be differentiated and counted above a gamma background. The significant result is that the fissile content within a container can be measured using a pulsed D-T neutron generator using the neutrons that are counted in the interval between the pulses

  11. Analysis of multiphase flows using dual-energy gamma densitometry and neural networks

    International Nuclear Information System (INIS)

    Bishop, C.M.; James, G.D.

    1993-01-01

    Dual-energy gamma densitometry offers a powerful technique for the non-intrusive analysis of multiphase flows. By employing multiple beam lines, information on the phase configuration can be obtained. Once the configuration is known, it then becomes possible in principle to determine the phase fractions. In practice, however, the extraction of the phase fractions from the densitometer data is complicated by the wide variety of phase configurations which can arise, and by the considerable difficulties of modelling multiphase flows. In this paper we show that neural network techniques provide a powerful approach to the analysis of data from dual-energy gamma densitometers, allowing both the phase configuration and the phase fractions to be determined with high accuracy, whilst avoiding the uncertainties associated with modelling. The technique is well suited to the determination of oil, water and gas fractions in multiphase oil pipelines. Results from linear and non-linear network models are compared, and a new technique for validating the network output is described. (orig.)

  12. Synthesis of pyrimidinic nucleotides and nucleosides labelled with carbon 14, through tri-methylsilylated and lithiated derivatives

    International Nuclear Information System (INIS)

    Godbillon, Jacques

    1972-01-01

    After a presentation of the trimethysilylation, lithiation, and methylation processes, this research thesis reports the synthesis of methyl carbon 14 - 5 - uridine, of ethyl carbon 14 - 5 - desoxy - 2' - uridine, and of thymidine monophosphate - 5' (methyl carbon 14) by using silylated and lithiated derivatives. The author also reports preliminary studies of biological studies of the trimethylsilyl-5-uridine and of the iodine-6-thymine

  13. Numerical simulation of complex multi-phase fluid of casting process and its applications

    Directory of Open Access Journals (Sweden)

    CHEN Li-liang

    2006-05-01

    Full Text Available The fluid of casting process is a typical kind of multi-phase flow. Actually, many casting phenomena have close relationship with the multi-phase flow, such as molten metal filling process, air entrapment, slag movement, venting process of die casting, gas escaping of lost foam casting and so on. Obviously, in order to analyze these phenomena accurately, numerical simulation of the multi-phase fluid is necessary. Unfortunately, so far, most of the commercial casting simulation systems do not have the ability of multi-phase flow modeling due to the difficulty in the multi-phase flow calculation. In the paper, Finite Different Method (FDM technique was adopt to solve the multi-phase fluid model. And a simple object of the muiti-phase fluid was analyzed to obtain the fluid rates of the liquid phase and the entrapped air phase.

  14. Extrinsic pseudocapacitve Li-ion storage of SnS anode via lithiation-induced structural optimization on cycling

    Science.gov (United States)

    Lian, Qingwang; Zhou, Gang; Liu, Jiatu; Wu, Chen; Wei, Weifeng; Chen, Libao; Li, Chengchao

    2017-10-01

    Here, we report a new enhanced extrinsic pseudocapacitve Li-ion storage mechanism via lithiation-induced structural optimization strategy. The flower-like C@SnS and bulk SnS exhibit initial capacity decay and subsequent increase of capacity on cycling. After a long-term lithiation/delithiation process, flower-like C@SnS and bulk SnS exhibit improved rate performance and reversible capacity in comparison with those of initial state. Moreover, a high capacity of 530 mAh g-1 is still remained even after 1550 cycles at a high current density of 5.0 A g-1 for flower-like C@SnS after pre-lithiation of 350 cycles. According to the comprehensive analysis of structural evolution and electrochemical performance, it demonstrates that SnS electrodes experience crystal size reduction and further amorphization on cycling, which enhances the reversibility of conversion reaction for SnS, leading to increasing capacity. On the other hand, surface-dominated extrinsic pseudocapacitive contribution results in enhanced rate performance because electrodes expose a large fraction of Li+ sites on surface or near-surface region with structural optimization on cycling. This study reveals that extrinsic pseudocapacitance of SnS can be stimulated via lithiation-induced structural optimization, which gives rise to high-rate and long-lived performances.

  15. Hydrogen retention studies on lithiated tungsten exposed to glow discharge plasmas under varying lithiation environments using Thermal Desorption Spectroscopy and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A. de, E-mail: alfonso.decastro@ciemat.es [Fusion National Laboratory-CIEMAT, Av Complutense 40, 28040 Madrid (Spain); Valson, P. [Max-Planck-Institut für Plasmaphysik, Wendelsteinstraße 1, 17491 Greifswald (Germany); Tabarés, F.L. [Fusion National Laboratory-CIEMAT, Av Complutense 40, 28040 Madrid (Spain)

    2017-04-15

    For the design of a Fusion Reactor based on a liquid lithium divertor target and a tungsten first wall at high temperature, the interaction of the wall material with plasmas of significant lithium content must be assessed, as issues like fuel retention, tungsten embrittlement and enhanced sputtering may represent a showstopper for the selection of the first wall material compatible with the presence of liquid metal divertor. In this work we address this topic for the first time at the laboratory level, hot W samples (100 °C) have been exposed to Glow Discharges of H{sub 2} or Li-seeded H{sub 2} followed by in situ thermal desorption studies (TDS) of the uptake of H{sub 2} on the samples. Pure and pre-lithiated tungsten was investigated in order to evaluate the differential effect of Li ion implantation on H retention. Global particle balance was also used for the determination of trapped H into the full W wall of the plasma chamber. A factor of 3-4 lower retention was deduced for samples and main W wall exposed to H/Li plasma than that measured on pre-lithiated W.

  16. The lithiation and acyl transfer reactions of phosphine oxides, sulfides and boranes in the synthesis of cyclopropanes

    DEFF Research Database (Denmark)

    Clarke, Celia; Fox, David J; Pedersen, Daniel Sejer

    2009-01-01

    Phosphine oxides are lithiated much faster than phosphine sulfides and phosphine boranes. Phosphine sulfides are in turn lithiated much more readily than phosphine boranes. It was possible to trap a phosphine sulfide THF in one case which upon treatment with t-BuOK gave cyclopropane, showing...... that phosphine sulfides readily undergo both phosphinoyl transfer and cyclopropane ring closure just like their phosphine oxide counterparts. The obtained data show that phosphine oxides are easily lithiated and undergo phosphoryl transfer much more readily and faster than phosphine sulfides and phosphine...... boranes. The observations suggest that it would be possible to perform reactions involving phosphine oxides in the presence of phosphine boranes or phosphine sulfides, potentially allowing regioselective alkylation of phosphine oxides in the presence of phosphine boranes or phosphine sulfides....

  17. NMR studies of multiphase flows II

    Energy Technology Data Exchange (ETDEWEB)

    Altobelli, S.A.; Caprihan, A.; Fukushima, E. [Lovelace Institutes, Albuquerque, NM (United States)] [and others

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  18. Investigation of the Reversible Lithiation of an Oxide Free Aluminum Anode by a LiBH4 Solid State Electrolyte

    Directory of Open Access Journals (Sweden)

    Jason A. Weeks

    2017-11-01

    Full Text Available In this study, we analyze and compare the physical and electrochemical properties of an all solid-state cell utilizing LiBH4 as the electrolyte and aluminum as the active anode material. The system was characterized by galvanostatic lithiation/delithiation, cyclic voltammetry (CV, X-ray diffraction (XRD, energy dispersive X-ray spectroscopy (EDS, Raman spectroscopy, electrochemical impedance spectroscopy (EIS, and scanning electron microscopy (SEM. Constant current cycling demonstrated that the aluminum anode can be reversibly lithiated over multiple cycles utilizing a solid-state electrolyte. An initial capacity of 895 mAh/g was observed and is close to the theoretical capacity of aluminum. Cyclic voltammetry of the cell was consistent with the constant current cycling data and showed that the reversible lithiation/delithiation of aluminum occurs at 0.32 V and 0.38 V (vs. Li+/Li respectively. XRD of the aluminum anode in the initial and lithiated state clearly showed the formation of a LiAl (1:1 alloy. SEM-EDS was utilized to examine the morphological changes that occur within the electrode during cycling. This work is the first example of reversible lithiation of aluminum in a solid-state cell and further emphasizes the robust nature of the LiBH4 electrolyte. This demonstrates the possibility of utilizing other high capacity anode materials with a LiBH4 based solid electrolyte in all-solid-state batteries.

  19. Multidomain multiphase fluid mechanics

    International Nuclear Information System (INIS)

    Sha, W.T.; Soo, S.L.

    1976-10-01

    A set of multiphase field equations--conversion of mass, momentum and energy--based on multiphase mechanics is developed. Multiphase mechanics applies to mixtures of phases which are separated by interfaces and are mutually exclusive. Based on the multiphase mechanics formulation, additional terms appear in the field equations when the physical size of the dispersed phase (bubble or droplet) is many times larger than the inter-molecular spacing. These terms are the inertial coupling due to virtual mass and the additional viscous coupling due to unsteadiness of the flow field. The multiphase formulation given here takes into account the discreteness of particles of dispersed phases and, at the same time, the necessity of the distributive representation of field variables via space-time averaging when handling a large number of particles. The provision for multidomain transition further permits us to treat dispersed phases which are large compared to the characteristic dimension of the flow system via interdomain relations. The multidomain multiphase approach provides a framework for us to model the various flow regimes. Because some of the transport parameters associated with the system equations are not well known at the present time, an idealized two-domain two-phase solution approach is proposed as a first step. Finally, comparisons are made between the field equations formulated based on the multidomain-multiphase fluid mechanics and the pertinent existing models, and their relative significances are discussed. The desirability of consistent approximation and simplifications possible for dilute suspensions are discussed

  20. Techniques de débitmétrie polyphasique non intrusive. Revue bibliographique Non Intrusive Multiphase Flow Measurement Techniques. Bibliographic Review

    Directory of Open Access Journals (Sweden)

    Lynch J.

    2006-11-01

    Full Text Available Cet article présente les différentes techniques de débitmétrie polyphasique non intrusive décrites dans la littérature du domaine public. Ces techniques sont considérées du point de vue de leur application dans le cadre de la production pétrolière sous-marine (mélange eau/huile/gaz. A partir d'une analyse des différentes méthodes physiques qui peuvent être utilisées, des perspectives d'avenir sont proposées. Several operations in the oil reservoir exploitation industry call for flowmeters capable of delivering information on the quantity and rate of flow of the different phases (gas, oil, water, solids . . . present in a pipeline. Amongst these are the estimation of remaining reserves and of well performance, control of production units such as multiphase pumping systems and fiscal monitoring in the case of pipeline networking. Existing methods, based on phase separation, require separate test lines and thus tend to be cumbersome, give only intermittent values of flow parameters and need to be calibrated due to the intrusive nature of the measurements. These drawbacks are seen to be all the more critical in subsea production where the ideal flowmeter would be compact, require little maintenance and supply precise real time data for network and multiphase pump control. In recent years flow measurement in two or more phase systems has received increasing attention both in laboratory studies and for applications in a variety of industries (for example : nuclear power production and food processing as well as of course oil production. We review here the many methods considered for non-intrusive flow metering with two or more components from the point of view of an industrial (in particular subsea oil production application. The situation is rendered delicate, in particular for density measurement, by the uncontrolled nature of the flow which may occur in any of several regimes with differing spatial distributions of the components

  1. Dynamic studies of cardiac valvular disease using a new fast multiphase MR imaging technique

    International Nuclear Information System (INIS)

    Pettigrew, R.; Churchwell, A.; Parks, W.J.; Dannels, W.; Smith, H. III; Baron, M.G.

    1986-01-01

    To determine the potential utility of fast multiphase (FM) imaging for the assessment of cardiac valvular disease, ten healthy volunteers and 18 patients were studied. The FM technique employed gradient echoes with TE -- 15 msec and small exitation angles with TR -- 50 msec. Cine display of the electrocardiographically gated FM images allowed clear visualization of regurgitant blood flow in each of 15 patients with tricuspid or mitral insufficiency. Magnetic field distortions in two patients with Bjork-Shiley aortic prostheses and regurgitation prevented definitive visualization of the flow patterns. An equivocal flow pattern was seen in one case of mitral stenosis. Thus, FM imaging may have significant utility as an adjunctive procedure for the assessment of atrioventricular valve insufficiently, without requiring a contrast agent. Difficulties may exist with some prosthetic valves

  2. Multiphase Interface Tracking with Fast Semi-Lagrangian Contouring.

    Science.gov (United States)

    Li, Xiaosheng; He, Xiaowei; Liu, Xuehui; Zhang, Jian J; Liu, Baoquan; Wu, Enhua

    2016-08-01

    We propose a semi-Lagrangian method for multiphase interface tracking. In contrast to previous methods, our method maintains an explicit polygonal mesh, which is reconstructed from an unsigned distance function and an indicator function, to track the interface of arbitrary number of phases. The surface mesh is reconstructed at each step using an efficient multiphase polygonization procedure with precomputed stencils while the distance and indicator function are updated with an accurate semi-Lagrangian path tracing from the meshes of the last step. Furthermore, we provide an adaptive data structure, multiphase distance tree, to accelerate the updating of both the distance function and the indicator function. In addition, the adaptive structure also enables us to contour the distance tree accurately with simple bisection techniques. The major advantage of our method is that it can easily handle topological changes without ambiguities and preserve both the sharp features and the volume well. We will evaluate its efficiency, accuracy and robustness in the results part with several examples.

  3. Multiphase Flow Dynamics 2 Mechanical Interactions

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present second volume the methods for describing the mechanical interactions in multiphase dynamics are provided. This fourth edition includes various updates, extensions, improvements and corrections.   "The literature in the field of multiphase flows is numerous. Therefore, it i...

  4. Multiphase flow dynamics 1 fundamentals

    CERN Document Server

    Kolev, Nikolay Ivanov

    2004-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this monograph contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the fundamentals of multiphase dynamics are provided. This third edition includes various updates, extensions and improvements in all book chapters.

  5. Performance analysis of variable speed multiphase induction motor with pole phase modulation

    Directory of Open Access Journals (Sweden)

    Liu Huijuan

    2016-09-01

    Full Text Available The pole phase modulation (PPM technique is an effective method to extend speed range and torque capabilities for an integrated starter and hybrid electric vehicles applications. In this paper, the five pole-phase combination types of a multiphase induction motor (IM with 36 stator slots and 36 stator conductors are presented and compared quantitatively by using the time-stepping finite element method (TS-FEM. The 36 stator conductors of the proposed multiphase IM are fed by a 36 leg inverter and the current phase angle and amplitude of each stator conductor can be controlled independently. This paper focuses on the winding connection, the PPM technique and the performance comparative analysis of each pole-phase combination types of the proposed multiphase IM. The flux distribution, air-gap flux density, output torque, core losses and efficiency of five pole-phase combination types have been investigated.

  6. A Transformerless Medium Voltage Multiphase Motor Drive System

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2016-04-01

    Full Text Available A multiphase motor has several major advantages, such as high reliability, fault tolerance, and high power density. It is a critical issue to develop a reliable and efficient multiphase motor drive system. In this paper, a transformerless voltage source converter-based drive system for a medium-voltage (MV multiphase motor is proposed. This drive converter employs cascaded H-bridge rectifiers loaded by H-bridge inverters as the interface between the grid and multiphase motor. The cascaded H-bridge rectifier technique makes the drive system able to be directly connected to the MV grid without the phase-shifting transformer because it can offset the voltage level gap between the MV grid and the semiconductor devices, provide near-sinusoidal AC terminal voltages without filters, and draw sinusoidal line current from the grid. Based on a digital signal processor (DSP, a complete improved Phase Disposition Pulse Width Modulation (PD-PWM method is developed to ensure the individual DC-link capacitor voltage balancing for enhancing the controllability and limiting the voltage and power stress on the H-bridge cells. A downscaled prototype is designed and developed based on a nine-phase motor. The experimental results verify the excellent performances of the proposed drive system and control strategy in steady-state and variant-frequency startup operations.

  7. Modeling multiphase materials processes

    CERN Document Server

    Iguchi, Manabu

    2010-01-01

    ""Modeling Multiphase Materials Processes: Gas-Liquid Systems"" describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing. The book focuses on systems involving gas-liquid interaction, the most prevalent in current metallurgical processes. The performance characteristics of these processes are largely dependent on transport phenomena. This volume covers the inherent characteristics that complicate the modeling of transport phenomena in such systems, including complex multiphase structure, intense turbulence, opacity of

  8. Multiphase porous media modelling: A novel approach to predicting food processing performance.

    Science.gov (United States)

    Khan, Md Imran H; Joardder, M U H; Kumar, Chandan; Karim, M A

    2018-03-04

    The development of a physics-based model of food processing is essential to improve the quality of processed food and optimize energy consumption. Food materials, particularly plant-based food materials, are complex in nature as they are porous and have hygroscopic properties. A multiphase porous media model for simultaneous heat and mass transfer can provide a realistic understanding of transport processes and thus can help to optimize energy consumption and improve food quality. Although the development of a multiphase porous media model for food processing is a challenging task because of its complexity, many researchers have attempted it. The primary aim of this paper is to present a comprehensive review of the multiphase models available in the literature for different methods of food processing, such as drying, frying, cooking, baking, heating, and roasting. A critical review of the parameters that should be considered for multiphase modelling is presented which includes input parameters, material properties, simulation techniques and the hypotheses. A discussion on the general trends in outcomes, such as moisture saturation, temperature profile, pressure variation, and evaporation patterns, is also presented. The paper concludes by considering key issues in the existing multiphase models and future directions for development of multiphase models.

  9. Nanoporous MnO{sub x} thin-film electrodes synthesized by electrochemical lithiation/delithiation for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui; Lai, Man On; Lu, Li [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)

    2011-02-15

    Nanoporous MnO{sub x} thin-film electrodes are synthesized using a combination of pulsed laser deposition (PLD) and electrochemical lithiation/delithiation methods. A dense Mn{sub 3}O{sub 4} thin-film deposited by PLD can transform into a nanoporous MnO{sub x} thin-film after electrochemical lithiation/delithiation. A nanoporous MnO{sub x} thin-film electrode exhibits significantly improved supercapacitive performance compared with an as-deposited Mn{sub 3}O{sub 4} thin-film electrode. A MnO{sub x} thin-film finally transforms into a MnO{sub 2} thin-film through an electrochemical oxidation process during continuous cyclic voltammetry scanning. (author)

  10. Multiphase Flow Dynamics 1 Fundamentals

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its fourth extended edition the successful monograph package “Multiphase Flow Dynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the...

  11. Lithiation Kinetics in High-Performance Porous Vanadium Nitride Nanosheet Anode

    International Nuclear Information System (INIS)

    Peng, Xiang; Li, Wan; Wang, Lei; Hu, Liangsheng; Jin, Weihong; Gao, Ang; Zhang, Xuming; Huo, Kaifu; Chu, Paul K.

    2016-01-01

    Vanadium nitride (VN) is promising in lithium ion battery (LIB) anode due to its high energy density, chemical stability, and corrosion resistivity. Herein, porous VN nanosheets are synthesized hydrothermally followed by an ammonia treatment. The porous nanosheets offer a large interfacial area between the electrode and electrolyte as well as short Li + diffusion path and consequently, the VN nanosheets electrode has high capacity and rate capability as an anode in LIB. The VN anode delivers a high reversible capacity of 455 mAh g −1 at a current density of 100 mA g −1 and it remains at 341 mAh g −1 when the current density is increased to 1 A g −1 . The charge transfer and Li + diffusion kinetics during the lithiation process is studied systematically. A highly stable SEI film is formed during the initial discharging-charging cycles to achieve a long cycle life and sustained capacity at a high level for 250 discharging-charging cycles without deterioration. This work demonstrates the preparation of high-performance LIB anode materials by a simple method and elucidates the lithiation kinetics.

  12. Viscous and gravitational fingering in multiphase compositional and compressible flow

    Science.gov (United States)

    Moortgat, Joachim

    2016-03-01

    Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.

  13. Multiphase Flow Dynamics 3 Thermal Interactions

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present third volume methods for describing of the thermal interactions in multiphase dynamics are provided. In addition a large number of valuable experiments is collected and predicted using the methods introduced in this monograph. In this way the accuracy of the methods is reve...

  14. Challenges in Downhole Multiphase Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Aspelund, A.; Midttveit, Oe.; Richards, A.

    1996-12-31

    Permanent downhole multi-phase monitoring (DMM) can have several advantages in field development, such as increased flexibility in the development of multi-lateral and horizontal wells, optimisation of artificial lift systems and monitoring of multi-layered wells. This paper gives an overview of existing permanent downhole measurement systems and a status of topside and subsea multi-phase flow meters (MFM). The main focus is on the challenges in downhole multi-phase measurements. Topics to be taken into consideration for realization of a downhole multi-phase meter are discussed, such as actual flow conditions occurring at the point of measurement, which quantities that need to be measured, sensor principles, data processing needs and signal transmission capability. 9 refs., 9 figs.

  15. α- and α'-Lithiation-Electrophile Trapping of N-Thiopivaloyl and N-tert-Butoxythiocarbonyl α-Substituted Azetidines: Rationalization of the Regiodivergence Using NMR and Computation.

    Science.gov (United States)

    Jackson, Kelvin E; Mortimer, Claire L; Odell, Barbara; McKenna, Jeffrey M; Claridge, Timothy D W; Paton, Robert S; Hodgson, David M

    2015-10-16

    (1)H NMR and computational analyses provide insight into the regiodivergent (α- and α'-) lithiation-electrophile trapping of N-thiopivaloyl- and N-(tert-butoxythiocarbonyl)-α-alkylazetidines. The magnitudes of the rotation barriers in these azetidines indicate that rotamer interconversions do not occur at the temperature and on the time scale of the lithiations. The NMR and computational studies support the origin of regioselectivity as being thiocarbonyl-directed lithiation from the lowest energy amide-like rotameric forms (cis for N-thiopivaloyl and trans for N-tert-butoxythiocarbonyl).

  16. Chelation-Assisted Substrate-Controlled Asymmetric Lithiation-Allylboration of Chiral Carbamate 1,2,4-Butanetriol Acetonide

    Directory of Open Access Journals (Sweden)

    Adeem Mahmood

    2015-05-01

    Full Text Available The lithiation of 2-(2,2-dimethyl-1,3-dioxolan-4-ylethyl diisopropylcarbamate (1 is achieved freely by sec-butyllithium in diethylether with high lk-diastereoselectivity: the bicyclic chelate complexes 3a and 3b are reacted with electrophiles to form optically active precursors 4a and 4b with >95% diastereoselectivity. In addition, tertiary diamines can undergo an external complexation in contest with the internal oxygen ligand, leading to improved stereoselectivities. The further reactions of lithiated carbamates with trans alkenyl-9-BBN derivatives after 1,2 metallate rearrangements, gave the key intermediate α-substituted allylic boranes 7. Subsequent allylboration of aldehydes gave (Z-anti-homoallylic alcohols 8 in good yield and excellent d.r.

  17. The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation

    KAUST Repository

    McDowell, Matthew T.

    2012-05-01

    Applying surface coatings to alloying anodes for Li-ion batteries can improve rate capability and cycle life, but it is unclear how this second phase affects mechanical deformation during electrochemical reaction. Here, in-situ transmission electron microscopy is employed to investigate the electrochemical lithiation and delithiation of silicon nanowires (NWs) with copper coatings. When copper is coated on only one sidewall, the NW bilayer structure bends during delithiation due to length changes in the silicon. Tensile hoop stress causes conformal copper coatings to fracture during lithiation without undergoing bending deformation. In addition, in-situ and ex-situ observations indicate that a copper coating plays a role in suppressing volume expansion during lithiation. Finally, the deformation characteristics and dimensional changes of amorphous, polycrystalline, and single-crystalline silicon are compared and related to observed electrochemical behavior. This study reveals important aspects of the deformation process of silicon anodes, and the results suggest that metallic coatings can be used to improve rate behavior and to manage or direct volume expansion in optimized silicon anode frameworks. © 2012 Elsevier Ltd.

  18. Flow Rate Measurement in Multiphase Flow Rig: Radiotracer and Conventional

    International Nuclear Information System (INIS)

    Nazrul Hizam Yusoff; Noraishah Othman; Nurliyana Abdullah; Amirul Syafiq Mohd Yunos; Rasif Mohd Zain; Roslan Yahya

    2015-01-01

    Applications of radiotracer technology are prevalent throughout oil refineries worldwide, and this industry is one of the main users and beneficiaries of the technology. Radioactive tracers have been used to a great extent in many applications i.e. flow rate measurement, RTD, plant integrity evaluation and enhancing oil production in oil fields. Chemical and petrochemical plants are generally continuously operating and technically complex where the radiotracer techniques are very competitive and largely applied for troubleshooting inspection and process analysis. Flow rate measurement is a typical application of radiotracers. For flow measurements, tracer data are important, rather than the RTD models. Research is going on in refining the existing methods for single phase flow measurement, and in developing new methods for multiphase flow without sampling. The tracer techniques for single phase flow measurements are recognized as ISO standards. This paper presents technical aspect of laboratory experiments, which have been carried out using Molybdenum-99 - Mo99 (radiotracer) to study and determine the flow rate of liquid in multiphase flow rig. The multiphase flow rig consists of 58.7 m long and 20 cm diameter pipeline that can accommodate about 0.296 m 3 of liquid. Tap water was used as liquid flow in pipeline and conventional flow meters were also installed at the flow rig. The flow rate results; radiotracer and conventional flow meter were compared. The total count method was applied for radiotracer technique and showed the comparable results with conventional flow meter. (author)

  19. In-situ transmission electron microscopy imaging of formation and evolution of LixWO3 during lithiation of WO3 nanowires

    International Nuclear Information System (INIS)

    Qi, Kuo; Li, Xiaomin; Sun, Muhua; Huang, Qianming; Wei, Jiake; Xu, Zhi; Wang, Wenlong; Bai, Xuedong; Wang, Enge

    2016-01-01

    The phase transition from monoclinic WO 3 to cubic Li x WO 3 during lithiation of WO 3 is one of the key features for tungsten oxide as the most used electrochromic material. Conventionally, the lithium intercalation of WO 3 has been studied by building generic layered electrochromic device combining with structural characterization and electrochemistry measurement at macro scale. In-situ transmission electron microscopy (in-situ TEM) has been proposed as a method for revealing the detailed mechanism of structural, physical, and chemical properties. Here, we use in-situ TEM method to investigate the formation and evolution of Li x WO 3 in real-time during the electrochemical lithiation of WO 3 nanowires. The dynamic lithiation process is recorded by TEM imaging, diffraction, and electron energy loss spectroscopy. The WO 3 -Li x WO 3 phase boundary of reaction front has been observed at high resolution. The timeliness of crystallinity of Li x WO 3 and the intercalation channels for Li ions are also identified. Moreover, the co-existence of both polycrystalline Li-poor area and amorphous Li-rich phases of Li x WO 3 was found. Our results provide an insight into the basic lithiation process of WO 3 , which is significantly important for understanding the electrochromic mechanism of tungsten oxide.

  20. A mass-conserving multiphase lattice Boltzmann model for simulation of multiphase flows

    Science.gov (United States)

    Niu, Xiao-Dong; Li, You; Ma, Yi-Ren; Chen, Mu-Feng; Li, Xiang; Li, Qiao-Zhong

    2018-01-01

    In this study, a mass-conserving multiphase lattice Boltzmann (LB) model is proposed for simulating the multiphase flows. The proposed model developed in the present study is to improve the model of Shao et al. ["Free-energy-based lattice Boltzmann model for simulation of multiphase flows with density contrast," Phys. Rev. E 89, 033309 (2014)] by introducing a mass correction term in the lattice Boltzmann model for the interface. The model of Shao et al. [(the improved Zheng-Shu-Chew (Z-S-C model)] correctly considers the effect of the local density variation in momentum equation and has an obvious improvement over the Zheng-Shu-Chew (Z-S-C) model ["A lattice Boltzmann model for multiphase flows with large density ratio," J. Comput. Phys. 218(1), 353-371 (2006)] in terms of solution accuracy. However, due to the physical diffusion and numerical dissipation, the total mass of each fluid phase cannot be conserved correctly. To solve this problem, a mass correction term, which is similar to the one proposed by Wang et al. ["A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio," J. Comput. Phys. 290, 336-351 (2015)], is introduced into the lattice Boltzmann equation for the interface to compensate the mass losses or offset the mass increase. Meanwhile, to implement the wetting boundary condition and the contact angle, a geometric formulation and a local force are incorporated into the present mass-conserving LB model. The proposed model is validated by verifying the Laplace law, simulating both one and two aligned droplets splashing onto a liquid film, droplets standing on an ideal wall, droplets with different wettability splashing onto smooth wax, and bubbles rising under buoyancy. Numerical results show that the proposed model can correctly simulate multiphase flows. It was found that the mass is well-conserved in all cases considered by the model developed in the present study. The developed

  1. Reduction mechanisms of ethylene carbonate on si anodes of lithium-ion batteries: effects of degree of lithiation and nature of exposed surface.

    Science.gov (United States)

    Martinez de la Hoz, Julibeth M; Leung, Kevin; Balbuena, Perla B

    2013-12-26

    Ab initio molecular dynamics simulations are used to identify mechanisms of reduction of ethylene carbonate on Si surfaces at various degrees of lithiation, where the low-coordinated surface Si atoms are saturated with O, OH, or H functional groups. The lowest Si content surfaces are represented by quasi-amorphous LiSi4 and LiSi2; intermediate lithiation is given by LiSi crystalline facets, and the highest Li content is studied through Li13Si4 surfaces. It is found that ethylene carbonate (EC) reduction mechanisms depend significantly on the degree of lithiation of the surface. On LiSi surfaces EC is reduced according to two different two-electron mechanisms (one simultaneous and one sequential), which are independent of specific surface functionalization or nature of exposed facets. On the less lithiated surfaces, the simultaneous two-electron reduction is found more frequently. In that mechanism, the EC reduction is initiated by the formation of a C-Si bond that allows adsorption of the intact molecule to the surface and is followed by electron transfer and ring-opening. Strongly lithiated Li13Si4 surfaces are found to be highly reactive. Reduction of adsorbed EC molecules occurs via a four-electron mechanism yielding as reduction products CO(2-) and O(C2H4)O(2-). Direct transfer of two electrons to EC molecules in liquid phase is also possible, resulting in the presence of O(C2H4)OCO(2-) anions in the liquid phase.

  2. Complementary X-ray and neutron radiography study of the initial lithiation process in lithium-ion batteries containing silicon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fu, E-mail: fu.sun@helmholtz-berlin.de [Institute of Material Science and Technologies, Technical University Berlin, 10623 Berlin (Germany); Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Markötter, Henning [Institute of Material Science and Technologies, Technical University Berlin, 10623 Berlin (Germany); Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Manke, Ingo; Hilger, André [Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Alrwashdeh, Saad S. [Institute of Material Science and Technologies, Technical University Berlin, 10623 Berlin (Germany); Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Mechanical Engineering Department, Faculty of Engineering, Mu' tah University, P.O. Box 7, Al-Karak 61710 Jordan (Jordan); Kardjilov, Nikolay [Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Banhart, John [Institute of Material Science and Technologies, Technical University Berlin, 10623 Berlin (Germany); Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2017-03-31

    Highlights: • A radiography cell for in operando X-ray radiography was designed and built. • A self-assembled CR2032 coin cell was built for in operando neutron radiography. • In operando X-ray and neuron radiography were conducted by using Si electrode half cells. - Abstract: Complementary in operando X-ray radiography and neutron radiography measurements were conducted to investigate and visualize the initial lithiation in silicon-electrode lithium-ion batteries. By means of X-ray radiography, a significant volume expansion of Si particles and the Si electrode during the first discharge was observed. In addition, many Si particles were found that never undergo electrochemical reactions. These findings were confirmed by neutron radiography, which, for the first time, showed the process of Li alloying with the Si electrode during initial lithiation. These results demonstrate that complementary X-ray and neutron radiography is a powerful tool to investigate the lithiation mechanisms inside Si-electrode based lithium-ion batteries.

  3. A multiphase electrokinetic flow model for electrolytes with liquid/liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.D., E-mail: joe.d.berry@gmail.com; Davidson, M.R., E-mail: m.davidson@unimelb.edu.au; Harvie, D.J.E., E-mail: daltonh@unimelb.edu.au

    2013-10-15

    A numerical model for electrokinetic flow of multiphase systems with deformable interfaces is presented, based on a combined level set-volume of fluid technique. A new feature is a multiphase formulation of the Nernst–Planck transport equation for advection, diffusion and conduction of individual charge carrier species that ensures their conservation in each fluid phase. The numerical model is validated against the analytical results of Zholkovskij et al. (2002) [1], and results for the problem of two drops coalescing in the presence of mobile charge carriers are presented. The time taken for two drops containing ions to coalesce decreases with increasing ion concentration.

  4. A Lithium-ion Battery Using Partially Lithiated Graphite Anode and Amphi-redox LiMn2O4 Cathode.

    Science.gov (United States)

    Jeon, Yuju; Noh, Hyun Kuk; Song, Hyun-Kon

    2017-11-01

    Delithiation followed by lithiation of Li + -occupied (n-type) tetrahedral sites of cubic LiMn 2 O 4 spinel (LMO) at ~4 [Formula: see text] (delivering ~100 mAh g LMO -1 ) has been used for energy storage by lithium ion batteries (LIBs). In this work, we utilized unoccupied (p-type) octahedral sites of LMO available for lithiation at ~3 [Formula: see text] (delivering additional ~100 mAh g LMO -1 ) that have never been used for LIBs in full-cell configuration. The whole capacity of amphi-redox LMO, including both oxidizable n-type and reducible p-type redox sites, at ~200 mAh g LMO -1 was realized by using the reactions both at 4 [Formula: see text] and 3 [Formula: see text]. Durable reversibility of the 3 V reaction was achieved by graphene-wrapping LMO nanoparticles (LMO@Gn). Prelithiated graphite (Li n C 6 , n < 1) was used as anodes to lithiate the unoccupied octahedral sites of LMO for the 3 V reaction.

  5. Multiphase flow dynamics 1 fundamentals

    CERN Document Server

    Kolev, Nikolay Ivanov

    2015-01-01

    In its fifth extended edition the successful monograph package “Multiphase Flow Dynamics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the obtained system of partial differential equations. Finally the analysis is repeated for boundary fitted curvilinear coordinate systems designing methods applicable for interconnected multi-blocks. This fifth edition includes various updates, extensions, improvements and corrections, as well as  a completely new chapter containing the basic physics describing the multi-phase flow in tu...

  6. Shock tube Multiphase Experiments

    Science.gov (United States)

    Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob

    2017-11-01

    Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.

  7. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    Energy Technology Data Exchange (ETDEWEB)

    Cem Sarica; Holden Zhang

    2006-05-31

    The developments of oil and gas fields in deep waters (5000 ft and more) will become more common in the future. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas, oil and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of hydrocarbon recovery from design to operation. Recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications, including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is crucial for any multiphase separation technique, either at topside, seabed or bottom-hole, to know inlet conditions such as flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. Therefore, the development of a new generation of multiphase flow predictive tools is needed. The overall objective of the proposed study is to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). In the current multiphase modeling approach, flow pattern and flow behavior (pressure gradient and phase fractions) prediction modeling are separated. Thus, different models based on different physics are employed, causing inaccuracies and discontinuities. Moreover, oil and water are treated as a pseudo single phase, ignoring the distinct characteristics of both oil and water, and often resulting in inaccurate design that leads to operational problems. In this study, a new model is being developed through a theoretical and experimental study employing a revolutionary approach. The

  8. Invasion percolation of single component, multiphase fluids with lattice Boltzmann models

    International Nuclear Information System (INIS)

    Sukop, M.C.; Or, Dani

    2003-01-01

    Application of the lattice Boltzmann method (LBM) to invasion percolation of single component multiphase fluids in porous media offers an opportunity for more realistic modeling of the configurations and dynamics of liquid/vapor and liquid/solid interfaces. The complex geometry of connected paths in standard invasion percolation models arises solely from the spatial arrangement of simple elements on a lattice. In reality, fluid interfaces and connectivity in porous media are naturally controlled by the details of the pore geometry, its dynamic interaction with the fluid, and the ambient fluid potential. The multiphase LBM approach admits realistic pore geometry derived from imaging techniques and incorporation of realistic hydrodynamics into invasion percolation models

  9. In Situ X-ray Diffraction Studies of (De)lithiation Mechanism in Silicon Nanowire Anodes

    KAUST Repository

    Misra, Sumohan; Liu, Nian; Nelson, Johanna; Hong, Seung Sae; Cui, Yi; Toney, Michael F.

    2012-01-01

    -Si product has been observed. In this work, we use an X-ray transparent battery cell to perform in situ synchrotron X-ray diffraction on SiNWs in real time during electrochemical cycling. At deep lithiation voltages the known metastable Li 15Si 4 phase forms

  10. Multiphase flow parameter estimation based on laser scattering

    Science.gov (United States)

    Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cicero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.

    2015-07-01

    The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time.

  11. Multiphase flow parameter estimation based on laser scattering

    International Nuclear Information System (INIS)

    Vendruscolo, Tiago P; Fischer, Robert; Martelli, Cicero; Da Silva, Marco J; Rodrigues, Rômulo L P; Morales, Rigoberto E M

    2015-01-01

    The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time. (paper)

  12. Multiphase flow dynamics 2 thermal and mechanical interactions

    CERN Document Server

    Kolev, Nikolay I

    2007-01-01

    The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. This book contains theory, methods and practical experience for describing complex transient multi-phase processes. It provides a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics.

  13. Multi-phase flow monitoring with electrical impedance tomography using level set based method

    International Nuclear Information System (INIS)

    Liu, Dong; Khambampati, Anil Kumar; Kim, Sin; Kim, Kyung Youn

    2015-01-01

    Highlights: • LSM has been used for shape reconstruction to monitor multi-phase flow using EIT. • Multi-phase level set model for conductivity is represented by two level set functions. • LSM handles topological merging and breaking naturally during evolution process. • To reduce the computational time, a narrowband technique was applied. • Use of narrowband and optimization approach results in efficient and fast method. - Abstract: In this paper, a level set-based reconstruction scheme is applied to multi-phase flow monitoring using electrical impedance tomography (EIT). The proposed scheme involves applying a narrowband level set method to solve the inverse problem of finding the interface between the regions having different conductivity values. The multi-phase level set model for the conductivity distribution inside the domain is represented by two level set functions. The key principle of the level set-based method is to implicitly represent the shape of interface as the zero level set of higher dimensional function and then solve a set of partial differential equations. The level set-based scheme handles topological merging and breaking naturally during the evolution process. It also offers several advantages compared to traditional pixel-based approach. Level set-based method for multi-phase flow is tested with numerical and experimental data. It is found that level set-based method has better reconstruction performance when compared to pixel-based method

  14. Multiphase flows in complex geometries: a UQ perspective

    KAUST Repository

    Icardi, Matteo

    2015-01-01

    Nowadays computer simulations are widely used in many multiphase flow applications involving interphases, dispersed particles, and complex geometries. Most of these problems are solved with mixed models composed of fundamental physical laws, rigorous mathematical upscaling, and empirical correlations/closures. This means that classical inference techniques or forward parametric studies, for example, becomes computationally prohibitive and must take into account the physical meaning and constraints of the equations. However mathematical techniques commonly used in Uncertainty Quantification can come to the aid for the (i) modeling, (ii) simulation, and (iii) validation steps. Two relevant applications for environmental, petroleum, and chemical engineering will be presented to highlight these aspects and the importance of bridging the gaps between engineering applications, computational physics and mathematical methods. The first example is related to the mathematical modeling of sub-grid/sub-scale information with Probability Density Function (PDF) models in problems involving flow, mixing, and reaction in random environment. After a short overview of the research field, some connections and similarities with Polynomial Chaos techniques, will be investigated. In the second example, averaged correlations laws and effective parameters for multiphase flow and their statistical fluctuations, will be considered and efficient computational techniques, borrowed from high-dimensional stochastic PDE problems, will be applied. In presence of interfacial flow, where small spatial scales and fast time scales are neglected, the assessment of robustness and predictive capabilities are studied. These illustrative examples are inspired by common problems arising, for example, from the modeling and simulation of turbulent and porous media flows.

  15. Multiphase flows in complex geometries: a UQ perspective

    KAUST Repository

    Icardi, Matteo

    2015-01-07

    Nowadays computer simulations are widely used in many multiphase flow applications involving interphases, dispersed particles, and complex geometries. Most of these problems are solved with mixed models composed of fundamental physical laws, rigorous mathematical upscaling, and empirical correlations/closures. This means that classical inference techniques or forward parametric studies, for example, becomes computationally prohibitive and must take into account the physical meaning and constraints of the equations. However mathematical techniques commonly used in Uncertainty Quantification can come to the aid for the (i) modeling, (ii) simulation, and (iii) validation steps. Two relevant applications for environmental, petroleum, and chemical engineering will be presented to highlight these aspects and the importance of bridging the gaps between engineering applications, computational physics and mathematical methods. The first example is related to the mathematical modeling of sub-grid/sub-scale information with Probability Density Function (PDF) models in problems involving flow, mixing, and reaction in random environment. After a short overview of the research field, some connections and similarities with Polynomial Chaos techniques, will be investigated. In the second example, averaged correlations laws and effective parameters for multiphase flow and their statistical fluctuations, will be considered and efficient computational techniques, borrowed from high-dimensional stochastic PDE problems, will be applied. In presence of interfacial flow, where small spatial scales and fast time scales are neglected, the assessment of robustness and predictive capabilities are studied. These illustrative examples are inspired by common problems arising, for example, from the modeling and simulation of turbulent and porous media flows.

  16. Atomic resolution observation of conversion-type anode RuO 2 during the first electrochemical lithiation

    KAUST Repository

    Mao, Minmin; Nie, Anmin; Liu, Jiabin; Wang, Hongtao; Mao, Scott X; Wang, Qingxiao; Li, Kun; Zhang, Xixiang

    2015-01-01

    . In situ transmission electron microscopy reveals a two-step process during the initial lithiation of the RuO2 nanowire anode at atomic resolution. The first step is characterized by the formation of the intermediate phase LixRuO2 due to the Li

  17. Frontiers and progress in multiphase flow

    CERN Document Server

    2014-01-01

    This volume presents state-of-the-art of reviews in the field of multiphase flow. In focusses on nonlinear aspects of multiphase flow networks as well as visualization experiments. The first chapter presents nonlinear aspects or deterministic chaos issues in the systems of multi-phase reactors.  The second chapter reviews two-phase flow dynamics in combination with complex network theory. The third chapter discusses evaporation mechanism in the wick of copper heat pipes. The last chapter investigates numerically the flow dynamics and heat and mass transfer in the laminar and turbulent boundary layer on the flat vertical plate.

  18. Regioselective desymmetrization of diaryltetrahydrofurans via directed ortho-lithiation: an unexpected help from green chemistry.

    Science.gov (United States)

    Mallardo, Valentina; Rizzi, Ruggiero; Sassone, Francesca C; Mansueto, Rosmara; Perna, Filippo M; Salomone, Antonio; Capriati, Vito

    2014-08-14

    An efficient functionalization of diaryltetrahydrofurans via a regioselective THF-directed ortho-lithiation is first described. This reaction can be successfully carried out in cyclopentyl methyl ether as a "greener" alternative to Et2O, with better results in terms of yield and selectivity and, surprisingly, also in protic eutectic mixtures competitively with protonolysis.

  19. Measurement Of Multiphase Flow Water Fraction And Water-cut

    Science.gov (United States)

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  20. Multiphasic helical CT of hepatocellular carcinoma. Evaluation after chemo embolization

    International Nuclear Information System (INIS)

    Catalano, O.; Esposito, M.; Sandomenico, F.; Siani, A.; Nunziata, A.

    2000-01-01

    The main purpose of this work is to report the personal experience with addition of contrast-enhanced multiphase helical CT to unenhanced CT (Lipiodol CT) in the evaluation of patients with hepatocellular carcinoma treated with chemoembolization and to analyze the present role of oily agent CT. It has been retrospectively reviewed the examinations of 42 consecutive patients submitted to globla chemoembolization over a 2-year period. CT was performed 18-30 days after the treatment. The Lipiodol CT study was carried out with volume acquisitions. It has been considered as nodules all well-defined areas with dense oily agent uptake; uptake itself was classified as: 0=absent, I=lower tha 10% of the tumor volume; II=lower than 50%, III=50%, IV=homogeneous. Contrast-enhanced helical CT was performed with the 2-phase technique in 28 patients and with the 3-phase technique in 14; it has been considered as nodules all well-defined and relatively homogeneous areas with hyperattenuation in the arterial phase and hypo-isoattenuation in the portal and/or delayed phase, or with hypo-isoattenuation in the arterial phase and in the portal and/or delayed phase. Lipiodol CT permitted to recognize 65 nodules (1-5/patient, mean 1.5), namely 15 grade I, 21 grade II, 20 grade III and 9 grade IV. Multiphase CT identified 6 additional nodules in 5 patients, 5 hypervascular and 1 hypovascular, and better assessed the correct morphology and volume of grade I nodules. Only 4 of 6 nodules missed on Lipiodol CT showed oily agent uptake after a new chemoembolization session. Moreover after retreatment, carried out in 6 of 9 patients with grade I uptake (11 nodules in all), it has been found persistence of the grade I pattern in 5 nodules, grade II in 5, and grade III in 1. Lipiodol CT may miss liver nodules and underestimate the volume of nodules with poor uptake. Though Lipiodol CT should still be considered slightly more sensitive than multiphase CT, in the general opinion this technique has

  1. A hybrid interface tracking - level set technique for multiphase flow with soluble surfactant

    Science.gov (United States)

    Shin, Seungwon; Chergui, Jalel; Juric, Damir; Kahouadji, Lyes; Matar, Omar K.; Craster, Richard V.

    2018-04-01

    A formulation for soluble surfactant transport in multiphase flows recently presented by Muradoglu and Tryggvason (JCP 274 (2014) 737-757) [17] is adapted to the context of the Level Contour Reconstruction Method, LCRM, (Shin et al. IJNMF 60 (2009) 753-778, [8]) which is a hybrid method that combines the advantages of the Front-tracking and Level Set methods. Particularly close attention is paid to the formulation and numerical implementation of the surface gradients of surfactant concentration and surface tension. Various benchmark tests are performed to demonstrate the accuracy of different elements of the algorithm. To verify surfactant mass conservation, values for surfactant diffusion along the interface are compared with the exact solution for the problem of uniform expansion of a sphere. The numerical implementation of the discontinuous boundary condition for the source term in the bulk concentration is compared with the approximate solution. Surface tension forces are tested for Marangoni drop translation. Our numerical results for drop deformation in simple shear are compared with experiments and results from previous simulations. All benchmarking tests compare well with existing data thus providing confidence that the adapted LCRM formulation for surfactant advection and diffusion is accurate and effective in three-dimensional multiphase flows with a structured mesh. We also demonstrate that this approach applies easily to massively parallel simulations.

  2. Multiphase forces on bend structures – critical gas fraction for transition single phase gas to multiphase flow behaviour

    NARCIS (Netherlands)

    Belfroid, S.P.C.; Nennie, E.D.; Lewis, M.

    2016-01-01

    Piping structures are generally subjected to high dynamic loading due to multiphase forces. In particular subsea structures are very vulnerable as large flexibility is required to cope for instance with thermal stresses. The forces due to multiphase flow are characterized by a broadband spectrum

  3. On multiphase negative flash for ideal solutions

    DEFF Research Database (Denmark)

    Yan, Wei; Stenby, Erling Halfdan

    2012-01-01

    simpler than the corresponding normal flash algorithm. Unlike normal flash, multiphase negative flash for ideal solutions can diverge if the feasible domain for phase amounts is not closed. This can be judged readily during the iteration process. The algorithm can also be extended to the partial negative......There is a recent interest to solve multiphase negative flash problems where the phase amounts can be negative for normal positive feed composition. Solving such a negative flash problem using successive substitution needs an inner loop for phase distribution calculation at constant fugacity...... coefficients. It is shown that this inner loop, named here as multiphase negative flash for ideal solutions, can be solved either by Michelsen's algorithm for multiphase normal flash, or by its variation which uses F−1 phase amounts as independent variables. In either case, the resulting algorithm is actually...

  4. The simulation of multidimensional multiphase flows

    International Nuclear Information System (INIS)

    Lahey, Richard T.

    2005-01-01

    This paper presents an assessment of various models which can be used for the multidimensional simulation of multiphase flows, such as may occur in nuclear reactors. In particular, a model appropriate for the direct numerical simulation (DNS) of multiphase flows and a mechanistically based, three-dimensional, four-field, turbulent, two-fluid computational multiphase fluid dynamics (CMFD) model are discussed. A two-fluid bubbly flow model, which was derived using potential flow theory, can be extended to other flow regimes, but this will normally involve ensemble-averaging the results from direct numerical simulations (DNS) of various flow regimes to provide the detailed numerical data necessary for the development of flow-regime-specific interfacial and wall closure laws

  5. The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation

    KAUST Repository

    McDowell, Matthew T.; Woo Lee, Seok; Wang, Chongmin; Cui, Yi

    2012-01-01

    in the silicon. Tensile hoop stress causes conformal copper coatings to fracture during lithiation without undergoing bending deformation. In addition, in-situ and ex-situ observations indicate that a copper coating plays a role in suppressing volume expansion

  6. Lithiation-induced shuffling of atomic stacks

    KAUST Repository

    Nie, Anmin

    2014-09-10

    In rechargeable lithium-ion batteries, understanding the atomic-scale mechanism of Li-induced structural evolution occurring at the host electrode materials provides essential knowledge for design of new high performance electrodes. Here, we report a new crystalline-crystalline phase transition mechanism in single-crystal Zn-Sb intermetallic nanowires upon lithiation. Using in situ transmission electron microscopy, we observed that stacks of atomic planes in an intermediate hexagonal (h-)LiZnSb phase are "shuffled" to accommodate the geometrical confinement stress arising from lamellar nanodomains intercalated by lithium ions. Such atomic rearrangement arises from the anisotropic lithium diffusion and is accompanied by appearance of partial dislocations. This transient structure mediates further phase transition from h-LiZnSb to cubic (c-)Li2ZnSb, which is associated with a nearly "zero-strain" coherent interface viewed along the [001]h/[111]c directions. This study provides new mechanistic insights into complex electrochemically driven crystalline-crystalline phase transitions in lithium-ion battery electrodes and represents a noble example of atomic-level structural and interfacial rearrangements.

  7. Origin of the phase transition in lithiated molybdenum disulfide

    KAUST Repository

    Cheng, Yingchun

    2014-11-25

    Phase transitions and phase engineering in two-dimensional MoS2 are important for applications in electronics and energy storage. By in situ transmission electron microscopy, we find that H-MoS2 transforms to T-LiMoS2 at the early stages of lithiation followed by the formation of Mo and Li2S phases. The transition from H-MoS2 to T-LiMoS2 is explained in terms of electron doping and electron - phonon coupling at the conduction band minima. Both are essential for the development of two-dimensional semiconductor-metal contacts based on MoS2 and the usage of MoS2 as anode material in Li ion batteries. (Figure Presented).

  8. Advances in multiphase flow and related problems

    International Nuclear Information System (INIS)

    Papanicolaou, G.

    1986-01-01

    Proceedings of a workshop in multiphase flow held at Leesburg, Va. in June 1986 representing a cross-disciplinary approach to theoretical as well as computational problems in multiphase flow. Topics include composites, phase transitions, fluid-particle systems, and bubbly liquids

  9. Methods for compressible multiphase flows and their applications

    Science.gov (United States)

    Kim, H.; Choe, Y.; Kim, H.; Min, D.; Kim, C.

    2018-06-01

    This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.

  10. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Chris [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Garg, Rahul [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

  11. Designing of Multiphase Fly Ash/MWCNT/PU Composite Sheet Against Electromagnetic Environmental Pollution

    Science.gov (United States)

    Gujral, Parth; Varshney, Swati; Dhawan, S. K.

    2016-06-01

    Fly ash and multiwalled carbon nanotubes (MWCNT) reinforced multiphase polyurethane (PU) composite sheets have been fabricated by using a solution casting technique. Utilization of fly ash was the prime objective in order to reduce environmental pollution and to enhance the shielding properties of PU polymer. Our study proves that fly ash particles with MWCNTs in a PU matrix leads to novel hybrid high performance electromagnetic shielding interference material. Scanning electron microscopy confirms the existence of fly ash particles along with MWCNTs in a PU matrix. This multiphase composite shows total shielding effectiveness of 35.8 dB (>99.99% attenuation) in the Ku-band (12.4-18 GHz) frequency range. This is attributed to high dielectric losses of reinforcement present in the polymers matrix. The Nicolson-Ross-Weir algorithm has been applied to calculate the electromagnetic attributes and dielectric parameters of the PU samples by using scattering parameters ( S 11, S 22, S 12, S 21). The synthesized multiphase composites were further characterized by using x-ray diffraction, Fourier transform infrared spectroscopy, and thermo gravimetric analysis.

  12. Contrast optimization in multiphase arterial spin labeling

    International Nuclear Information System (INIS)

    Paiva, Fernando F.; Paschoal, Andre M.; Tovar-Moll, Fernanda; Moll, Jorge

    2013-01-01

    Multiphase ASL is an effective way to overcome the regional variation of the transit time that difficult the estimation of perfusion values. However, with conventional multiple phases ASL techniques, the ASL contrast at later phases is impaired due to repeated application of excitation pulses and longitudinal relaxation making it difficult to evaluate the tissue perfusion in regions where the transit time is longer. In the present study, we show an improvement of the acquisition scheme by exploring a modulation on the flip angle of the MR acquisition to keep the ASL contrast constant over multiple phases. (author)

  13. Eliminating cubic terms in the pseudopotential lattice Boltzmann model for multiphase flow

    Science.gov (United States)

    Huang, Rongzong; Wu, Huiying; Adams, Nikolaus A.

    2018-05-01

    It is well recognized that there exist additional cubic terms of velocity in the lattice Boltzmann (LB) model based on the standard lattice. In this work, elimination of these cubic terms in the pseudopotential LB model for multiphase flow is investigated, where the force term and density gradient are considered. By retaining high-order (≥3 ) Hermite terms in the equilibrium distribution function and the discrete force term, as well as introducing correction terms in the LB equation, the additional cubic terms of velocity are entirely eliminated. With this technique, the computational simplicity of the pseudopotential LB model is well maintained. Numerical tests, including stationary and moving flat and circular interface problems, are carried out to show the effects of such cubic terms on the simulation of multiphase flow. It is found that the elimination of additional cubic terms is beneficial to reduce the numerical error, especially when the velocity is relatively large. Numerical results also suggest that these cubic terms mainly take effect in the interfacial region and that the density-gradient-related cubic terms are more important than the other cubic terms for multiphase flow.

  14. Noteworthy ekectroanalytical features of the stage 4 to stage 3 phase transition in lithiated graphite

    Czech Academy of Sciences Publication Activity Database

    Levi, M. D.; Wang, C.; Markevich, E.; Aurbach, D.; Chvoj, Zdeněk

    2003-01-01

    Roč. 8, - (2003), s. 40-43 ISSN 1432-8488. [International Meeting on Advanced Batteries and Accumulators. Brno, 16.06.2002-20.06.2002] R&D Projects: GA AV ČR IAA1010207 Institutional research plan: CEZ:AV0Z1010914 Keywords : electrochemical lithiation * graphite electrode * potentiostatic intermittent titration Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.195, year: 2003

  15. Multiphase reacting flows modelling and simulation

    CERN Document Server

    Marchisio, Daniele L

    2007-01-01

    The papers in this book describe the most widely applicable modeling approaches and are organized in six groups covering from fundamentals to relevant applications. In the first part, some fundamentals of multiphase turbulent reacting flows are covered. In particular the introduction focuses on basic notions of turbulence theory in single-phase and multi-phase systems as well as on the interaction between turbulence and chemistry. In the second part, models for the physical and chemical processes involved are discussed. Among other things, particular emphasis is given to turbulence modeling strategies for multiphase flows based on the kinetic theory for granular flows. Next, the different numerical methods based on Lagrangian and/or Eulerian schemes are presented. In particular the most popular numerical approaches of computational fluid dynamics codes are described (i.e., Direct Numerical Simulation, Large Eddy Simulation, and Reynolds-Averaged Navier-Stokes approach). The book will cover particle-based meth...

  16. In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles.

    Science.gov (United States)

    Liu, Yang; Hudak, Nicholas S; Huber, Dale L; Limmer, Steven J; Sullivan, John P; Huang, Jian Yu

    2011-10-12

    Lithiation-delithiation cycles of individual aluminum nanowires (NWs) with naturally oxidized Al(2)O(3) surface layers (thickness 4-5 nm) were conducted in situ in a transmission electron microscope. Surprisingly, the lithiation was always initiated from the surface Al(2)O(3) layer, forming a stable Li-Al-O glass tube with a thickness of about 6-10 nm wrapping around the NW core. After lithiation of the surface Al(2)O(3) layer, lithiation of the inner Al core took place, which converted the single crystal Al to a polycrystalline LiAl alloy, with a volume expansion of about 100%. The Li-Al-O glass tube survived the 100% volume expansion, by enlarging through elastic and plastic deformation, acting as a solid electrolyte with exceptional mechanical robustness and ion conduction. Voids were formed in the Al NWs during the initial delithiation step and grew continuously with each subsequent delithiation, leading to pulverization of the Al NWs to isolated nanoparticles confined inside the Li-Al-O tube. There was a corresponding loss of capacity with each delithiation step when arrays of NWs were galvonostatically cycled. The results provide important insight into the degradation mechanism of lithium-alloy electrodes and into recent reports about the performance improvement of lithium ion batteries by atomic layer deposition of Al(2)O(3) onto the active materials or electrodes.

  17. Droplet and multiphase effects in a shock-driven hydrodynamic instability with reshock

    Science.gov (United States)

    Middlebrooks, John B.; Avgoustopoulos, Constantine G.; Black, Wolfgang J.; Allen, Roy C.; McFarland, Jacob A.

    2018-06-01

    Shock-driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching applications in engineering and science such as high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase field is impulsively accelerated by a shock wave and evolves as a result of gradients in particle-gas momentum transfer. A new shock tube facility has been constructed to study the SDMI. Experiments were conducted to investigate liquid particle and multiphase effects in the SDMI. A multiphase cylindrical interface was created with water droplet laden air in our horizontal shock tube facility. The interface was accelerated by a Mach 1.66 shock wave, and its reflection from the end wall. The interface development was captured using laser illumination and a high-resolution CCD camera. Laser interferometry was used to determine the droplet size distribution. A particle filtration technique was used to determine mass loading within an interface and verify particle size distribution. The effects of particle number density, particle size, and a secondary acceleration (reshock) of the interface were noted. Particle number density effects were found comparable to Atwood number effects in the Richtmyer-Meshkov instability for small (˜ 1.7 {μ }m) droplets. Evaporation was observed to alter droplet sizes and number density, markedly after reshock. For large diameter droplets (˜ 10.7 {μ }m), diminished development was observed with larger droplets lagging far behind the interface. These lagging droplets were also observed to breakup after reshock into structured clusters of smaller droplets. Mixing width values were reported to quantify mixing effects seen in images.

  18. Industrial applications of multi-functional, multi-phase reactors

    NARCIS (Netherlands)

    Harmsen, G.J.; Chewter, L.A.

    1999-01-01

    To reveal trends in the design and operation of multi-functional, multi-phase reactors, this paper describes, in historical sequence, three industrial applications of multi-functional, multi-phase reactors developed and operated by Shell Chemicals during the last five decades. For each case, we

  19. Multiphase flow in wells and pipelines

    International Nuclear Information System (INIS)

    Sharma, M.P.; Rohatgi, U.S.

    1992-01-01

    This conference focuses primarily on multi-phase flow modeling and calculation methods for oil and gas although two papers focus more on the fluid mechanics of fluidized beds. Papers include theoretical, numerical modeling, experimental investigation, and state-of-the-art review aspects of multiphase flow. The theme of the symposium being general, the papers reflect generality of gas-liquid, liquid-solid, and gas solid flows. One paper deals with nuclear reactor safety as it relates to fluid flow through the reactor

  20. Multiphase flow and transport in porous media

    Science.gov (United States)

    Parker, J. C.

    1989-08-01

    Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. In petroleum reservoir engineering, efficient recovery of energy reserves is the principal goal. Unfortunately, some of these hydrocarbons and other organic chemicals often find their way unwanted into the soils and groundwater supplies. Removal in the latter case is predicated on ensuring the public health and safety. In this paper, principles of modeling fluid flow in systems containing up to three fluid phases (namely, water, air, and organic liquid) are described. Solution of the governing equations for multiphase flow requires knowledge of functional relationships between fluid pressures, saturations, and permeabilities which may be formulated on the basis of conceptual models of fluid-porous media interactions. Mechanisms of transport in multicomponent multiphase systems in which species may partition between phases are also described, and the governing equations are presented for the case in which local phase equilibrium may be assumed. A number of hypothetical numerical problems are presented to illustrate the physical behavior of systems in which multiphase flow and transport arise.

  1. Multiphase Flow and Fluidization Continuum and Kinetic Theory Descriptions

    CERN Document Server

    Gidaspow, Dimitri

    1994-01-01

    Useful as a reference for engineers in industry and as an advanced level text for graduate engineering students, Multiphase Flow and Fluidization takes the reader beyond the theoretical to demonstrate how multiphase flow equations can be used to provide applied, practical, predictive solutions to industrial fluidization problems. Written to help advance progress in the emerging science of multiphase flow, this book begins with the development of the conservation laws and moves on through kinetic theory, clarifying many physical concepts (such as particulate viscosity and solids pressure) and i

  2. Acylation of lithiated trimethylsilyl malonates and esters applied to the synthesis of molecules of biological interest, labelled with carbon 14

    International Nuclear Information System (INIS)

    Gorichon, Liliane

    1978-01-01

    This research thesis first reports an attempt to generalise the method of acylation of lithiated trimethylsilyl (TMS) malonates by introduction of new organic functions into the radical. This leads to the synthesis of some alkaloids such as nicotine and contine. The author also shows that fat acids can be labelled with carbon 14 in any position of the carbon chain. Thus, acylation of these malonates have been performed by using different acid chlorides. Then, the author reports attempts to simplify this method by using α-lithiated trimethylsilyl esters instead of malonates. He reports attempts of acylation of TMS isobutyrate, TMS proprionate and TMS acetate, by using different radioactive acid chlorides (benzoyl chloride, nicotinoyl chloride, lauryl chloride, and oleyl chloride). The author finally shows that both methods are equivalent by synthesising muscalure from TMS butylmalonate as well as from TMS hexanoate

  3. A Multiphase Model for the Intracluster Medium

    Science.gov (United States)

    Nagai, Daisuke; Sulkanen, Martin E.; Evrard, August E.

    1999-01-01

    Constraints on the clustered mass density of the universe derived from the observed population mean intracluster gas fraction of x-ray clusters may be biased by reliance on a single-phase assumption for the thermodynamic structure of the intracluster medium (ICM). We propose a descriptive model for multiphase structure in which a spherically symmetric ICM contains isobaric density perturbations with a radially dependent variance. Fixing the x-ray emission and emission weighted temperature, we explore two independently observable signatures of the model in the parameter space. For bremsstrahlung dominated emission, the central Sunyaev-Zel'dovich (SZ) decrement in the multiphase case is increased over the single-phase case and multiphase x-ray spectra in the range 0.1-20 keV are flatter in the continuum and exhibit stronger low energy emission lines than their single-phase counterpart. We quantify these effects for a fiducial 10e8 K cluster and demonstrate how the combination of SZ and x-ray spectroscopy can be used to identify a preferred location in the plane of the model parameter space. From these parameters the correct value of mean intracluster gas fraction in the multiphase model results, allowing an unbiased estimate of clustered mass density to he recovered.

  4. Unveiling the Structural Evolution of Ag1.2Mn8O16 under Coulombically Controlled (De)Lithiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianping [Department; Hu, Xiaobing [Energy; Brady, Alexander B. [Department; Wu, Lijun [Energy; Zhu, Yimei [Energy; Takeuchi, Esther S. [Department; Energy; Department; Marschilok, Amy C. [Department; Department; Takeuchi, Kenneth J. [Department; Department

    2018-01-02

    MnO2 materials are considered promising cathode materials for rechargeable lithium, sodium, and magnesium batteries due to their earth abundance and environmental friendliness. One polymorph of MnO2, α-MnO2, has 2 × 2 tunnels (4.6 Å × 4.6 Å) in its structural framework, which provide facile diffusion pathways for guest ions. In this work, a silver-ion-containing α-MnO2 (Ag1.2Mn8O16) is examined as a candidate cathode material for Li based batteries. Electrochemical stability of Ag1.2Mn8O16 is investigated through Coulombically controlled reduction under 2 or 4 molar electron equivalents (e.e.). Terminal discharge voltage remains almost constant under 2 e.e. of cycling, whereas it continuously decreases under repetitive reduction by 4 e.e. Thus, detailed structural analyses were utilized to investigate the structural evolution upon lithiation. Significant increases in lattice a (17.7%) and atomic distances (~4.8%) are observed when x in LixAg1.2Mn8O16 is >4. Ag metal forms at this level of lithiation concomitant with a large structural distortion to the Mn–O framework. In contrast, lattice a only expands by 2.2% and Mn–O/Mn-Mn distances show minor changes (~1.4%) at x < 2. The structural deformation (tunnel breakage) at x > 4 inhibits the recovery of the original structure, leading to poor cycle stability at high lithiation levels. This report establishes the correlation among local structure changes, amorphization processes, formation of Ag0, and long-term cycle stability for this silver-containing α-MnO2 type material at both low and high lithiation levels.

  5. Dynamics of electrochemical lithiation/delithiation of graphene-encapsulated silicon nanoparticles studied by in-situ TEM.

    Science.gov (United States)

    Luo, Langli; Wu, Jinsong; Luo, Jiayan; Huang, Jiaxing; Dravid, Vinayak P

    2014-01-24

    The incorporation of nanostructured carbon has been recently reported as an effective approach to improve the cycling stability when Si is used as high-capacity anodes for the next generation Li-ion battery. However, the mechanism of such notable improvement remains unclear. Herein, we report in-situ transmission electron microscopy (TEM) studies to directly observe the dynamic electrochemical lithiation/delithiation processes of crumpled graphene-encapsulated Si nanoparticles to understand their physical and chemical transformations. Unexpectedly, in the first lithiation process, crystalline Si nanoparticles undergo an isotropic to anisotropic transition, which is not observed in pure crystalline and amorphous Si nanoparticles. Such a surprising phenomenon arises from the uniformly distributed localized voltage around the Si nanoparticles due to the highly conductive graphene sheets. It is observed that the intimate contact between graphene and Si is maintained during volume expansion/contraction. Electrochemical sintering process where small Si nanoparticles react and merge together to form large agglomerates following spikes in localized electric current is another problem for batteries. In-situ TEM shows that graphene sheets help maintain the capacity even in the course of electrochemical sintering. Such in-situ TEM observations provide valuable phenomenological insights into electrochemical phenomena, which may help optimize the configuration for further improved performance.

  6. Abnormal intraluminal signal within the pulmonary arteries on MR imaging: Differentiation between slow blood flow and thrombus using an ECG-gated; multiphasic: Spin-echo technique

    International Nuclear Information System (INIS)

    White, R.D.; Higgins, C.B.

    1986-01-01

    The authors evaluated abnormal MR imaging signal patterns in the pulmonary arteries of 22 patients with pulmonary hypertension (n = 13), pulmonary embolus (n = 4), or both (n = 5). Using multiphasic (five or six phases; 19 patients) or standard (three patients with pulmonary embolus) ECG-gated, double spin-echo techniques, they were able to differentiate between causes of such abnormal signal patterns. The pattern of slow blood flow (abnormal signal in systole with fluctuating distribution during cardiac cycle, and intensity increasing visually from first to second echo) was noted in 89% of patients with pulmonary hypertension alone or in combination with pulmonary embolism, and was characteristic of high systolic pulmonary pressures (12 of 12 patients with pressure > 80 mm Hg, vs. 3 of 5 patients with pressure 55 mm Hg vs. 5 of 7 patients with pressures <55 mm Hg). This pattern was differentiated from that of thrombus (persistent signal with fixed distribution during cardiac cycle, and little to no visible intensity change from first to second echo), which was noted in six of seven proved embolus cases. Thus, gated multiphase MR imaging shows potential for the noninvasive visualization of pulmonary embolus and the differentiation of this entity from the slow blood flow of pulmonary hypertension

  7. The use of magnetic resonance imaging to quantify multi-phase flow patterns and transitions

    International Nuclear Information System (INIS)

    Reyes, J.N. Jr.; Lafi, A.Y.; Saloner, D.

    1998-01-01

    Conventional measurement techniques have given limited insights into the complex structure of multi-phase flows. This has led to highly subjective flow pattern classifications which have been cast in terms of flow regime maps. Rather than using static flow regime maps, some of the next generation of multi-phase flow analysis codes will implement interfacial area transport equations that would calculate the flow patterns that evolve spatially and temporally. To assess these new codes, a large data base needs to be established to quantify the essential characteristics of multi-phase flow structure. One such characteristic is the interfacial area concentration. In this paper, we discuss the current benefits and limitations of using Magnetic Resonance Imaging (MRI) to examine multi- phase flow patterns and transitions. Of particular interest, are the MRI measurements of interfacial area concentration for slug flow in an air-water system. These tests were performed at the University of California, San Francisco (UCSF) School of Medicine MRI Center as a collaborative research effort with Oregon State University (OSU). The special scanning sequences designed by UCSF were capable of imaging at repetition intervals as fast as 7 milliseconds. (author)

  8. The use of magnetic resonance imaging to quantify multi-phase flow patterns and transitions

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Jr, J N; Lafi, A Y [Department of Nuclear Engineering, Oregon State University, Corvallis, OR (United States); Saloner, D [University of California, San Francisco School of Medicine, Veterans Administration Medical Center, San Francisco, CA (United States)

    1998-09-01

    Conventional measurement techniques have given limited insights into the complex structure of multi-phase flows. This has led to highly subjective flow pattern classifications which have been cast in terms of flow regime maps. Rather than using static flow regime maps, some of the next generation of multi-phase flow analysis codes will implement interfacial area transport equations that would calculate the flow patterns that evolve spatially and temporally. To assess these new codes, a large data base needs to be established to quantify the essential characteristics of multi-phase flow structure. One such characteristic is the interfacial area concentration. In this paper, we discuss the current benefits and limitations of using Magnetic Resonance Imaging (MRI) to examine multi- phase flow patterns and transitions. Of particular interest, are the MRI measurements of interfacial area concentration for slug flow in an air-water system. These tests were performed at the University of California, San Francisco (UCSF) School of Medicine MRI Center as a collaborative research effort with Oregon State University (OSU). The special scanning sequences designed by UCSF were capable of imaging at repetition intervals as fast as 7 milliseconds. (author)

  9. 2nd International Conference on Multiphase Flow - ICMF '95

    CERN Document Server

    Fukano, T; Bataille, Jean

    1995-01-01

    There is increasing world-wide interest in obtaining an understanding of various multiphase flow phenomena and problems in terms of a common language of multiphase flow. This volume contains state-of-the-art papers which have been contributed from all over the world by experts working on all aspects of multiphase flows. The volume also highlights international technology-sharing in the fields of energy, environment and public health, in order to create a brighter and sustainable future for man and for all life in the next century. It is intended that this volume will serve as a major source of

  10. High-temperature multiphase flowmeters in heavy-oil thermal production

    Energy Technology Data Exchange (ETDEWEB)

    Mehdizadeh, P. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Production Technology Inc. (United States)

    2005-11-01

    A review of field tests assessing the capability and advantages of multi-phase metering technology in high temperature thermal recovery processes such as cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD) was presented. A number of different tank gauging procedures were conducted to obtain a reference flow rate. Subsequent performance tests of metered data and tank data verified the accuracy of the meter, and that water cut sampling can be attained under practical field conditions. A 12 well field test was then conducted, and an allocation factor was obtained from conventional test separators and production measurements. An improvement in the allocation factor was noted. However, a full evaluation of the multiphase meter data obtained in the field was limited by the quality of the reference field data. A 30 day well testing campaign showed a comparison of well rate data from the multi-phase meter with data from an emulsion meter. It was concluded that the multiphase meter provided consistent measurements, matching the level of accuracy attained from rigorous tank measurements. In addition, the multiphase meter eliminated the need for the equipment modifications and extra personnel interventions needed to perform tank testing and manual and automatic water cut sampling. 15 refs., 2 tabs., 6 figs.

  11. A Senior Project-Based Multiphase Motor Drive System Development

    Science.gov (United States)

    Abdel-Khalik, Ayman S.; Massoud, Ahmed M.; Ahmed, Shehab

    2016-01-01

    Adjustable-speed drives based on multiphase motors are of significant interest for safety-critical applications that necessitate wide fault-tolerant capabilities and high system reliability. Although multiphase machines are based on the same conceptual theory as three-phase machines, most undergraduate electrical machines and electric drives…

  12. Evaluation of tumor response to intra-arterial chemoembolization of hepatocellular carcinoma: Comparison of contrast-enhanced ultrasound with multiphase computed tomography.

    Science.gov (United States)

    Paul, S B; Dhamija, E; Gamanagatti, S R; Sreenivas, V; Yadav, D P; Jain, S; Shalimar; Acharya, S K

    2017-03-01

    To compare the diagnostic accuracy of contrast-enhanced ultrasound (CEUS) with that of multiphase computed tomography (CT) in the evaluation of tumor response to transarterial chemoembolization (TACE) of hepatocellular carcinoma (HCC). Fifty patients (41 men, 9 women; mean age, 53 years±12.5 [SD]) with a total of 70 HCCs (mean size, 5cm±3 [SD]) were evaluated. Post-TACE therapeutic assessment of HCC was done at 4 weeks. Patients with TACE done earlier and reporting with suspicion for recurrence were also included. Patients with hepatic masses seen on ultrasound were enrolled and subjected to CEUS, multiphase CT and magnetic resonance imaging (MRI). Hyperenhancing area at the tumor site on arterial phase of CEUS/multiphase CT/MRI was termed as residual disease (RD), the patterns of which were described on CEUS. Diagnostic accuracies of CEUS and MPCT were compared to that of MRI that was used as the reference standard. CEUS detected RD in 43/70 HCCs (61%). RD had a heterogeneous pattern in 22/43 HCCs (51%). Sensitivities of CEUS and multiphase CT were 94% (34/36; 95% CI: 81-99%) and 50% (18/36; 95% CI: 33-67%) respectively. Significant difference in sensitivity was found between CEUS and multiphase CT (P=0.0001). CEUS and multiphase CT had 100% specificity (95% CI: 83-100%). CEUS is a useful technique for detecting RD in HCC after TACE. For long term surveillance, CEUS should be complemented with multiphase CT/MRI for a comprehensive evaluation. Copyright © 2016 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  13. Fundamentals of Turbulent and Multi-Phase Combustion

    CERN Document Server

    Kuo, Kenneth Kuan-yun

    2012-01-01

    Detailed coverage of advanced combustion topics from the author of Principles of Combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form-until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence

  14. Multiphase anodic layers and prospects of their application

    International Nuclear Information System (INIS)

    Rudnev, V.S.

    2008-01-01

    Data on the phase composition of multiphase layers prepared on valve metals (aluminium, titanium, and their alloys) by the plasma-electrochemical oxidation and deposition (PEOD) from aqueous electrolytes containing iso- and heteropolyoxoanions, polyphosphate and fluoride metal complexes (M=Eu, Y, Hf, Nb, Zr, W), as well as electrolytes evolving solid precipitates, is summarized. Possible application fields of the metal/multiphase PEOD surface structure compositions are considered [ru

  15. Diode-rectified multiphase AC arc for the improvement of electrode erosion characteristics

    Science.gov (United States)

    Tanaka, Manabu; Hashizume, Taro; Saga, Koki; Matsuura, Tsugio; Watanabe, Takayuki

    2017-11-01

    An innovative multiphase AC arc (MPA) system was developed on the basis of a diode-rectification technique to improve electrode erosion characteristics. Conventionally, electrode erosion in AC arc is severer than that in DC arc. This originated from the fact that the required properties for the cathode and anode are different, although an AC electrode works as the cathode and the anode periodically. To solve this problem, a separation of AC electrodes into pairs of thoriated tungsten cathode and copper anode by diode-rectification was attempted. A diode-rectified multiphase AC arc (DRMPA) system was then successfully established, resulting in a drastic improvement of the erosion characteristics. The electrode erosion rate in the DRMPA was less than one-third of that in the conventional MPA without the diode rectification. In order to clarify its erosion mechanism, electrode phenomena during discharge were visualized by a high-speed camera system with appropriate band-pass filters. Fluctuation characteristics of the electrode temperature in the DRMPA were revealed.

  16. Partial and Complete Wetting in Ultralow Interfacial Tension Multiphase Blends with Polylactide.

    Science.gov (United States)

    Zolali, Ali M; Favis, Basil D

    2016-12-15

    The control of phase structuring in multiphase blends of polylactide (PLA) with other polymers is a viable approach to promote its broader implementation. In this article, ternary and quaternary blends of PLA with poly(butylene succinate) (PBS), poly(butylene adipate-co-terephthalate) (PBAT), and poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) are prepared by melt blending. The interfacial tensions between components are measured using three different techniques, and a Fourier transform infrared imaging technique is developed for the purpose of unambiguous phase identification. A tricontinuous complete wetting behavior is observed for the ternary 33PLA/33PBS/33PBAT blend before and after quiescent annealing, which correlates closely with spreading theory analysis. In the quaternary PLA/PBS/PBAT/PHBV blend, a concentration-dependent wetting behavior is found. At 10 vol % PBAT, self-assembled partially wet droplets of PBAT are observed at the interface of PBS and PHBV, and they remain stable after quiescent annealing as predicted by spreading theory. In contrast, at 25 vol % PBAT, a quadruple continuous system is observed after mixing, which only transforms to partially wet PBAT droplets after subsequent annealing. These results clearly indicate the potential of composition control during the mixing of multiphase systems to result in a complete change of spreading behavior.

  17. Hysteresis in multiphase microfluidics at a T-junction.

    Science.gov (United States)

    Zagnoni, Michele; Anderson, Jamie; Cooper, Jonathan M

    2010-06-15

    Multiphase microfluidics offer a wide range of functionalities in the fields of fluid dynamics, biology, particle synthesis, and, more recently, also in logical computation. In this article, we describe the hysteresis of immiscible, multiphase flow obtained in hydrophilic, microfluidic systems at a T-junction. Stable and unstable state behaviors, in the form of segmented and parallel flow patterns of oil and water, were reliably produced, depending upon the history of the flow rates applied to the phases. The transition mechanisms between the two states were analyzed both experimentally and using numerical simulations, describing how the physical and fluid dynamic parameters influenced the hysteretic behavior of the flow. The characteristics of these multiphase systems render them suitable to be used as pressure comparators and also for the implementation of microfluidic logic operations.

  18. On modeling of structured multiphase mixtures

    International Nuclear Information System (INIS)

    Dobran, F.

    1987-01-01

    The usual modeling of multiphase mixtures involves a set of conservation and balance equations of mass, momentum, energy and entropy (the basic set) constructed by an averaging procedure or postulated. The averaged models are constructed by averaging, over space or time segments, the local macroscopic field equations of each phase, whereas the postulated models are usually motivated by the single phase multicomponent mixture models. In both situations, the resulting equations yield superimposed continua models and are closed by the constitutive equations which place restrictions on the possible material response during the motion and phase change. In modeling the structured multiphase mixtures, the modeling of intrinsic motion of grains or particles is accomplished by adjoining to the basic set of field equations the additional balance equations, thereby placing restrictions on the motion of phases only within the imposed extrinsic and intrinsic sources. The use of the additional balance equations has been primarily advocated in the postulatory theories of multiphase mixtures and are usually derived through very special assumptions of the material deformation. Nevertheless, the resulting mixture models can predict a wide variety of complex phenomena such as the Mohr-Coulomb yield criterion in granular media, Rayleigh bubble equation, wave dispersion and dilatancy. Fundamental to the construction of structured models of multiphase mixtures are the problems pertaining to the existence and number of additional balance equations to model the structural characteristics of a mixture. Utilizing a volume averaging procedure it is possible not only to derive the basic set of field equation discussed above, but also a very general set of additional balance equations for modeling of structural properties of the mixture

  19. Electrochemical lithiation performance and characterization of silicon-graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders.

    Science.gov (United States)

    Han, Zhen-Ji; Yamagiwa, Kiyofumi; Yabuuchi, Naoaki; Son, Jin-Young; Cui, Yi-Tao; Oji, Hiroshi; Kogure, Akinori; Harada, Takahiro; Ishikawa, Sumihisa; Aoki, Yasuhito; Komaba, Shinichi

    2015-02-07

    Poly(acrylic acid) (PAH), which is a water soluble polycarboxylic acid, is neutralized by adding different amounts of LiOH, NaOH, KOH, and ammonia (NH4OH) aqueous solutions to fix neutralization degrees. The differently neutralized polyacid, alkali and ammonium polyacrylates are examined as polymeric binders for the preparation of Si-graphite composite electrodes as negative electrodes for Li-ion batteries. The electrode performance of the Si-graphite composite depends on the alkali chemicals and neutralization degree. It is found that 80% NaOH-neutralized polyacrylate binder (a pH value of the resultant aqueous solution is ca. 6.7) is the most efficient binder to enhance the electrochemical lithiation and de-lithiation performance of the Si-graphite composite electrode compared to that of conventional PVdF and the other binders used in this study. The optimum polyacrylate binder highly improves the dispersion of active material in the composite electrode. The binder also provides the strong adhesion, suitable porosity, and hardness for the composite electrode with 10% (m/m) binder content, resulting in better electrochemical reversibility. From these results, the factors of alkali-neutralized polyacrylate binders affecting the electrode performance of Si-graphite composite electrodes are discussed.

  20. Quantitative multiphase analysis of archaeological bronzes by neutron diffraction

    CERN Document Server

    Siano, S; Celli, M; Pini, R; Salimbeni, R; Zoppi, M; Kockelmann, W A; Iozzo, M; Miccio, M; Moze, O

    2002-01-01

    In this paper, we report the first investigation on the potentials of neutron diffraction to characterize archaeological bronze artifacts. The preliminary feasibility of phase and structural analysis was demonstrated on standardised specimens with a typical bronze alloy composition. These were realised through different hardening and annealing cycles, simulating possible ancient working techniques. The Bragg peak widths that resulted were strictly dependent on the working treatment, thus providing an important analytical element to investigate ancient making techniques. The diagnostic criteria developed on the standardised specimens were then applied to study two Etruscan museum pieces. Quantitative multiphase analysis by Rietveld refinement of the diffraction patterns was successfully demonstrated. Furthermore, the analysis of patterns associated with different artifact elements also yielded evidence for some peculiar perspective of the neutron diffraction diagnostics in archeometric applications. (orig.)

  1. Transient Phenomena in Multiphase and Multicomponent Systems: Research Report

    Science.gov (United States)

    Zur Beurteilung von Stoffen in der Landwirtschaft, Senatskommission

    2000-09-01

    Due to the reinforced risk and safety-analysis of industrial plants in chemical and energy-engineering there has been increased demand in industry for more information on thermo- and fluiddynamic effects of non-equilibria during strong transients. Therefore, the 'Deutsche Forschungsgemeinschaft' initiated a special research program focusing on the study of transient phenomena in multiphase systems with one or several components. This book describes macroscopic as well as microscopic transient situations. A large part of the book deals with numerical methods for describing transients in two-phase mixtures. New developments in measuring techniques are also presented.

  2. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    Science.gov (United States)

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  3. Choice ofoptimal phase for liver angiography and multi-phase scanning with multi-slice spiral CT

    International Nuclear Information System (INIS)

    Fang Hong; Song Yunlong; Bi Yongmin; Wang Dong; Shi Huiping; Zhang Wanshi; Zhu Hongxian; Yang Hua; Ji Xudong; Fan Hongxia

    2008-01-01

    Objective: To evaluate the efficacy of test bolus technique with multi-slice spiral CT (MSCT) for determining the optimal scan delay time in CT Hepatic artery (HA)-portal vein (PV) angiography and multi-phase scanning. Methods: MSCT liver angiography and multi-phase scanning were performed in 187 patients divided randomly into two groups. In group A (n=59), the scan delay time was set according to the subjective experiences of operators; in group B (n=128), the scan delay time was determined by test bolus technique. Abdominal aorta and superior mesenteric, vein were selected as target blood vessels, and 50 HU was set as enhancement threshold value. 20 ml contrast agent was injected intravenously and time-density curve of target blood vessels were obtained, then HA-PV scanning delay time were calculated respectively. The quality of CTA images obtained by using these 2 methods were compared and statistically analysed using Chi-square criterion. Results: For hepatic artery phase, the images of group A are: excellent in 34 (58%), good in 17 (29%), and poor in 8 (13%), while those of group B are excellent in 128(100%), good in 0(0%), and poor in 0(0%). For portal vein phase, the images of group A are: excellent in 23 (39%), good in 27 (46%), and poor in 9 (15%), while those of group B are excellent in 96 (75%), good in 28 (22%), and poor in 4 (3%) respectively. There was statistically significant difference between the ratios of image quality in group A and group B (χ 2 =14.97, 9.18, P< 0.05). Conclusion: Accurate scan delay time was best determined by using test bolus technique, which can improve the image quality of liver angiography and multi-phase scanning. (authors)

  4. Downhole multiphase metering in wells by means of soft-sensing

    NARCIS (Netherlands)

    Leskens, M.; Kruif, B. de; Belfroid, S.P.C.; Smeulers, J.P.M.; Gryzlov, A.

    2008-01-01

    Multiphase flow meters are indispensable tools for achieving optimal operation and control of wells as these meters deliver real-time information about their performance. For example, multiphase flow meters located downhole can improve the production of multilateral and multizone wells by timely

  5. Development of axisymmetric lattice Boltzmann flux solver for complex multiphase flows

    Science.gov (United States)

    Wang, Yan; Shu, Chang; Yang, Li-Ming; Yuan, Hai-Zhuan

    2018-05-01

    This paper presents an axisymmetric lattice Boltzmann flux solver (LBFS) for simulating axisymmetric multiphase flows. In the solver, the two-dimensional (2D) multiphase LBFS is applied to reconstruct macroscopic fluxes excluding axisymmetric effects. Source terms accounting for axisymmetric effects are introduced directly into the governing equations. As compared to conventional axisymmetric multiphase lattice Boltzmann (LB) method, the present solver has the kinetic feature for flux evaluation and avoids complex derivations of external forcing terms. In addition, the present solver also saves considerable computational efforts in comparison with three-dimensional (3D) computations. The capability of the proposed solver in simulating complex multiphase flows is demonstrated by studying single bubble rising in a circular tube. The obtained results compare well with the published data.

  6. Axisymmetric multiphase lattice Boltzmann method for generic equations of state

    NARCIS (Netherlands)

    Reijers, S.A.; Gelderblom, H.; Toschi, F.

    2016-01-01

    We present an axisymmetric lattice Boltzmann model based on the Kupershtokh et al. multiphase model that is capable of solving liquid–gas density ratios up to 103. Appropriate source terms are added to the lattice Boltzmann evolution equation to fully recover the axisymmetric multiphase conservation

  7. Transit time corrected arterial spin labeling technique aids to overcome delayed transit time effect

    International Nuclear Information System (INIS)

    Yun, Tae Jin; Sohn, Chul-Ho; Yoo, Roh-Eul; Kang, Kyung Mi; Choi, Seung Hong; Kim, Ji-hoon; Park, Sun-Won; Hwang, Moonjung; Lebel, R.M.

    2018-01-01

    This study aimed to evaluate the usefulness of transit time corrected cerebral blood flow (CBF) maps based on multi-phase arterial spin labeling MR perfusion imaging (ASL-MRP). The Institutional Review Board of our hospital approved this retrospective study. Written informed consent was waived. Conventional and multi-phase ASL-MRPs and dynamic susceptibility contrast MR perfusion imaging (DSC-MRP) were acquired for 108 consecutive patients. Vascular territory-based volumes of interest were applied to CBF and time to peak (TTP) maps obtained from DSC-MRP and CBF maps obtained from conventional and multi-phase ASL-MRPs. The concordances between normalized CBF (nCBF) from DSC-MRP and nCBF from conventional and transition time corrected CBF maps from multi-phase ASL-MRP were evaluated using Bland-Altman analysis. In addition, the dependence of difference between nCBF (ΔnCBF) values obtained from DSC-MRP and conventional ASL-MRP (or multi-phase ASL-MRP) on TTP obtained from DSC-MRP was also analyzed using regression analysis. The values of nCBFs from conventional and multi-phase ASL-MRPs had lower values than nCBF based on DSC-MRP (mean differences, 0.08 and 0.07, respectively). The values of ΔnCBF were dependent on TTP values from conventional ASL-MRP technique (F = 5.5679, P = 0.0384). No dependency of ΔnCBF on TTP values from multi-phase ASL-MRP technique was revealed (F = 0.1433, P > 0.05). The use of transit time corrected CBF maps based on multi-phase ASL-MRP technique can overcome the effect of delayed transit time on perfusion maps based on conventional ASL-MRP. (orig.)

  8. Transit time corrected arterial spin labeling technique aids to overcome delayed transit time effect

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Tae Jin; Sohn, Chul-Ho; Yoo, Roh-Eul; Kang, Kyung Mi; Choi, Seung Hong; Kim, Ji-hoon [Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Park, Sun-Won [Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Hwang, Moonjung [GE Healthcare Korea, Seoul (Korea, Republic of); Lebel, R.M. [GE Healthcare Canada, Calgary (Canada)

    2018-03-15

    This study aimed to evaluate the usefulness of transit time corrected cerebral blood flow (CBF) maps based on multi-phase arterial spin labeling MR perfusion imaging (ASL-MRP). The Institutional Review Board of our hospital approved this retrospective study. Written informed consent was waived. Conventional and multi-phase ASL-MRPs and dynamic susceptibility contrast MR perfusion imaging (DSC-MRP) were acquired for 108 consecutive patients. Vascular territory-based volumes of interest were applied to CBF and time to peak (TTP) maps obtained from DSC-MRP and CBF maps obtained from conventional and multi-phase ASL-MRPs. The concordances between normalized CBF (nCBF) from DSC-MRP and nCBF from conventional and transition time corrected CBF maps from multi-phase ASL-MRP were evaluated using Bland-Altman analysis. In addition, the dependence of difference between nCBF (ΔnCBF) values obtained from DSC-MRP and conventional ASL-MRP (or multi-phase ASL-MRP) on TTP obtained from DSC-MRP was also analyzed using regression analysis. The values of nCBFs from conventional and multi-phase ASL-MRPs had lower values than nCBF based on DSC-MRP (mean differences, 0.08 and 0.07, respectively). The values of ΔnCBF were dependent on TTP values from conventional ASL-MRP technique (F = 5.5679, P = 0.0384). No dependency of ΔnCBF on TTP values from multi-phase ASL-MRP technique was revealed (F = 0.1433, P > 0.05). The use of transit time corrected CBF maps based on multi-phase ASL-MRP technique can overcome the effect of delayed transit time on perfusion maps based on conventional ASL-MRP. (orig.)

  9. Modeling reproducibility of porescale multiphase flow experiments

    Science.gov (United States)

    Ling, B.; Tartakovsky, A. M.; Bao, J.; Oostrom, M.; Battiato, I.

    2017-12-01

    Multi-phase flow in porous media is widely encountered in geological systems. Understanding immiscible fluid displacement is crucial for processes including, but not limited to, CO2 sequestration, non-aqueous phase liquid contamination and oil recovery. Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.

  10. Multi-phase AC/AC step-down converter for distribution systems

    Science.gov (United States)

    Aeloiza, Eddy C.; Burgos, Rolando P.

    2017-10-25

    A step-down AC/AC converter for use in an electric distribution system includes at least one chopper circuit for each one of a plurality of phases of the AC power, each chopper circuit including a four-quadrant switch coupled in series between primary and secondary sides of the chopper circuit and a current-bidirectional two-quadrant switch coupled between the secondary side of the chopper circuit and a common node. Each current-bidirectional two-quadrant switch is oriented in the same direction, with respect to the secondary side of the corresponding chopper circuit and the common node. The converter further includes a control circuit configured to pulse-width-modulate control inputs of the switches, to convert a first multiphase AC voltage at the primary sides of the chopper circuits to a second multiphase AC voltage at the secondary sides of the chopper circuits, the second multiphase AC voltage being lower in voltage than the first multiphase AC voltage.

  11. Electrification of particulates in industrial and natural multiphase flows

    CERN Document Server

    Gu, Zhaolin

    2017-01-01

    This book introduces comprehensive fundamentals, numerical simulations and experimental methods of electrification of particulates entrained multiphase flows. The electrifications of two particulate forms, liquid droplets and solid particles, are firstly described together. Liquid droplets can be charged under preset or associated electric fields, while solid particles can be charged through contact. Different charging ways in gas (liquid)-liquid or gas-solid multiphase flows are summarized, including ones that are beneficial to industrial processes, such as electrostatic precipitation, electrostatic spraying, and electrostatic separation, etc., ones harmful for shipping and powder industry, and ones occurring in natural phenomenon, such as wind-blown sand and thunderstorm. This book offers theoretical references to the control and utilization of the charging or charged particulates in multiphase flows as well.

  12. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    International Nuclear Information System (INIS)

    Meng, Yiqing; Lucas, Gary P

    2017-01-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas–water and oil–gas–water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the

  13. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    Science.gov (United States)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  14. Modeling studies of multiphase fluid and heat flow processes in nuclear waste isolation

    International Nuclear Information System (INIS)

    Pruess, K.

    1989-01-01

    Multiphase fluid and heat flow plays an important role in many problems relating to the disposal of nuclear wastes in geologic media. Examples include boiling and condensation processes near heat-generating wastes, flow of water and formation gas in partially saturated formations, evolution of a free gas phase from waste package corrosion in initially water-saturated environments, and redistribution (dissolution, transport and precipitation) of rock minerals in non-isothermal flow fields. Such processes may strongly impact upon waste package and repository design considerations and performance. This paper summarizes important physical phenomena occurring in multiphase and nonisothermal flows, as well as techniques for their mathematical modeling and numerical simulation. Illustrative applications are given for a number of specific fluid and heat flow problems, including: thermohydrologic conditions near heat-generating waste packages in the unsaturated zone; repositorywide convection effects in the unsaturated zone; effects of quartz dissolution and precipitation for disposal in the saturated zone; and gas pressurization and flow effects from corrosion of low-level waste packages

  15. Multiphase flow analysis using population balance modeling bubbles, drops and particles

    CERN Document Server

    Yeoh, Guan Heng; Tu, Jiyuan

    2013-01-01

    Written by leading multiphase flow and CFD experts, this book enables engineers and researchers to understand the use of PBM and CFD frameworks. Population balance approaches can now be used in conjunction with CFD, effectively driving more efficient and effective multiphase flow processes. Engineers familiar with standard CFD software, including ANSYS-CFX and ANSYS-Fluent, will be able to use the tools and approaches presented in this book in the effective research, modeling and control of multiphase flow problems. Builds a complete understanding of the theory behind the

  16. Development of high-frame rate neutron radiography and quantitative measurement method for multiphase flow research

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.

    1998-01-01

    Neutron radiography (NR) is one of the radiographic techniques which makes use of the difference in attenuation characteristics of neutrons in materials. Fluid measurement using the NR technique is a non-intrusive method which enables visualization of dynamic images of multiphase flow of opaque fluids and/or in a metallic duct. To apply the NR technique to multiphase flow research, high frame-rate NR was developed by combining up-to-date technologies for neutron sources, scintillator, high-speed video and image intensifier. This imaging system has several advantages such as a long recording time (up to 21 minutes), high-frame-rate (up to 1000 frames/s) imaging and there is no need for a triggering signal. Visualization studies of air-water two-phase flow in a metallic duct and molten metal-water interaction were performed at recording speeds of 250, 500 and 1000 frames/s. The qualities of the consequent images were sufficient to observe the flow pattern and behavior. It was also demonstrated that some characteristics of two-phase flow could be measured from these images in collaboration with image processing techniques. By utilizing geometrical information extracted from NR images, data on flow regime, bubble rise velocity, and wave height and interfacial area in annular flow were obtained. By utilizing attenuation characteristics of neutrons in materials, measurements of void profile and average void fraction were performed. It was confirmed that this new technique may have significant advantages both in visualizing and measuring high-speed fluid phenomena when other methods, such as an optical method and X-ray radiography, cannot be applied. (author)

  17. Carbon-steel corrosion in multiphase slug flow and CO2

    International Nuclear Information System (INIS)

    Villarreal, J.; Laverde, D.; Fuentes, C.

    2006-01-01

    Hydrocarbon multiphase flow may exhibit various geometric configurations or flow patterns. One of these flow patterns is known as multiphase slug flow. If CO 2 is present in hydrocarbons, the steel pipelines can be corroded as this process is probably enhanced by slug flow turbulence. A hydrodynamic circuit was built to study the CO 2 corrosion rates under different slug flow conditions. The experimental results show how the corrosion rate of a carbon-steel electrode varies according to the flow turbulence. The higher slug frequency used in this study was 80 slugs/min. Experimental results for pressure drop and slug length are in agreement with the Dukler and Hubbard [A model for gas-liquid slug flow in horizontal and near horizontal tubes, Ind. Eng. Chem. Fundam. 14 (1975) 337-347] multiphase flow model. Furthermore, the experimental slug frequencies are well correlated by the Shell and Gregory [Correlation of the liquid volume fraction in the slug for horizontal gas-liquid slug flow. Int. J. Multiphase Flow 4 (1978) 33-39] equations in horizontal pipes

  18. Clinical significance of multiphase skeletal scintiscanning

    International Nuclear Information System (INIS)

    Zimmermann, P.

    1984-01-01

    A total of 61 patients were included in this study, which was performed to find out, if multiphase skeletal scintiscanning using 99mTc-DPD is a more accurate investigational method in terms of diagnostic differentiation than conventional scintiscanning. All patients were subjected to additional diagnostic procedures using X-rays, CT, etc. and the findings revealed were compared. In order to ensure an objective assessment of the density patterns obtained in the individual study phase (initial phase (1); vascular phase (2); soft tissue phase (3); standard phase (4)), special care was taken that only regions of similar vascularity were compared. In acute osteomyelitis, osteitis deformans according to Paget and osteoid osteoma multiphase scintiscanning yielded valuable additional information which, from the diagnostic point of view, proved to be much more meaningful than that provided by conventional scintiscanning, as very characteristic activity patterns were discernible in the initial study phases. In patients showing artificial limb infection or fractures this supplementary information was also found to be of some value, although the behaviour of activity in the initial study phases gave less conclusive evidence here than in the diseases mentioned before. In inflammatory disorders involving only minor histological changes or those of a chronic nature as well as in special forms of inflammation and artificial limb dislocation multiphase scintiscanning was not found to offer any advantages over conventional scintiscanning. (TRV) [de

  19. Twenty-five years of modeling multiphase flow and heat transfer

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.

    1999-01-01

    This presentation will cover some of the highlights of multiphase modeling in collaboration with Professor Dimitri Gidaspow (DG) over the last roughly twenty-five years. It all started in 1972 in Idaho Falls with Charles Solbrig, who planned and initiated a project for the former USAEC to develop a computer code to replace RELAP4 to analyze the loss of coolant accident (LOCA). DG spent his sabbatical on the project in 1973. One highlight was the discovery of complex characteristics, the implications of which are still pondered by some. Fluidization research began in 1978 when the author collaboratively developed a step-by-step building-block approach to understanding the hydrodynamics of fluidized beds, an approach closely coupled to validation experiments. A grant from the USDOE to study solids circulation around a jet in a fluidized bed was awarded to DG in 1978. Following that, grants from GRI, NSF, and a contract from Westinghouse Electric Corp. allowed the early work to continue. Progress was slow since computer costs were high. Subsequent continuing support from the USDOE, NSF, EPRI, and industry has allowed research to continue, as has his collaboration. A highlight of this collaboration was the development of the monolayer energy dissipation (MED) erosion model. Multiphase flow and fluidization theory took quantum leaps with the publication of DG's Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions (MFF), Academic Press, San Diego (1994), for which there is essentially no competition. Only the late Professor S.L. Soo's Particulates and Continuum: Multiphase Fluid Dynamics, Hemisphere Publishing Corp., New York (1989), a textbook version of the classic monograph Multiphase Fluid Dynamics, Science Press, Beijing, China (1990), comes close. In MFF, the kinetic theory of granular flow has evolved as a potentially viable adjunct to the continuum multiphase theory, of which fluidization is one important manifestation. It must be

  20. A Cell-Centered Multiphase ALE Scheme With Structural Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Timothy Alan [Univ. of California, Davis, CA (United States)

    2012-04-16

    A novel computational scheme has been developed for simulating compressible multiphase flows interacting with solid structures. The multiphase fluid is computed using a Godunov-type finite-volume method. This has been extended to allow computations on moving meshes using a direct arbitrary-Eulerian- Lagrangian (ALE) scheme. The method has been implemented within a Lagrangian hydrocode, which allows modeling the interaction with Lagrangian structural regions. Although the above scheme is general enough for use on many applications, the ultimate goal of the research is the simulation of heterogeneous energetic material, such as explosives or propellants. The method is powerful enough for application to all stages of the problem, including the initial burning of the material, the propagation of blast waves, and interaction with surrounding structures. The method has been tested on a number of canonical multiphase tests as well as fluid-structure interaction problems.

  1. Multiphase Microfluidics The Diffuse Interface Model

    CERN Document Server

    2012-01-01

    Multiphase flows are typically described assuming that the different phases are separated by a sharp interface, with appropriate boundary conditions. This approach breaks down whenever the lengthscale of the phenomenon that is being studied is comparable with the real interface thickness, as it happens, for example, in the coalescence and breakup of bubbles and drops, the wetting and dewetting of solid surfaces and, in general, im micro-devices. The diffuse interface model resolves these probems by assuming that all quantities can vary continuously, so that interfaces have a non-zero thickness, i.e. they are "diffuse". The contributions in this book review the theory and describe some relevant applications of the diffuse interface model for one-component, two-phase fluids and for liquid binary mixtures, to model multiphase flows in confined geometries.

  2. Multiphase composite coatings: structure and properties

    International Nuclear Information System (INIS)

    Yurov, V M; Guchenko, S A; Platonova, E S; Syzdykova, A Sh; Lysenko, E N

    2015-01-01

    The paper discusses the results of the research into the formation of ion-plasma multiphase coatings. The types of the formed structures are found to be not so diverse, as those formed, for example, in alloy crystallization. The structures observed are basically of globular type and, more rarely, of unclosed dissipative and cellular structures. It is shown that the properties of the coating formed in deposition are largely determined by its surface energy or surface tension. Since the magnitude of the surface tension (surface energy) in most cases is an additive quantity, each of the elements of the coating composition contributes to the total surface energy. In case of simultaneous sputtering of multiphase cathodes, high entropy coatings with an ordered cellular structure and improved mechanical properties are formed. (paper)

  3. Direct numerical simulations of gas-liquid multiphase flows

    CERN Document Server

    Tryggvason, Grétar; Zaleski, Stéphane

    2011-01-01

    Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and

  4. Multiphase Return Trajectory Optimization Based on Hybrid Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2016-01-01

    Full Text Available A hybrid trajectory optimization method consisting of Gauss pseudospectral method (GPM and natural computation algorithm has been developed and utilized to solve multiphase return trajectory optimization problem, where a phase is defined as a subinterval in which the right-hand side of the differential equation is continuous. GPM converts the optimal control problem to a nonlinear programming problem (NLP, which helps to improve calculation accuracy and speed of natural computation algorithm. Through numerical simulations, it is found that the multiphase optimal control problem could be solved perfectly.

  5. Absorption of dissolved hydrogen from lithiated water during accelerated corrosion of zirconium-2.5 wt% niobium alloy

    International Nuclear Information System (INIS)

    Manolescu, A.V.; Mayer, P.; Rasile, E.M.; Mummenhoff, J.W.

    1982-01-01

    A series of laboratory experiments was carried out to determine the extent of dissolved hydrogen absorption from lithiated water by zirconium-2.5 wt% niobium alloy during corrosion. The material was exposed at 340 0 C to 1 M LiOH aqueous solution containing 0 to approximately 70 cm 3 /L of dissolved hydrogen. Results indicate that dissolved hydrogen has no effect on the corrosion rate or on the amount of hydrogen absorbed by the material

  6. Multiphase-Multifunctional Ceramic Coatings

    Science.gov (United States)

    2013-06-30

    systems for high temperatura applications” “ Estudios de Ferroelasticidad en Sistemas Cerámicos Multifásicos para Aplicaciones en Alta Temperatura ...Ceramic Coatings Performing Organization names: Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional – Unidad Queretaro...materials, Cinvestav. Thesis: “Ferroelasticity studies in multiphase ceramic systems for high temperatura applications”. Her work mainly focused in the

  7. Tomographic multiphase flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Saetre, C., E-mail: camilla@ift.uib.no [Department of Physics and Technology, University of Bergen (Norway); Michelsen Centre for Industrial Measurement Science and Technology (Norway); Johansen, G.A. [Department of Physics and Technology, University of Bergen (Norway); Michelsen Centre for Industrial Measurement Science and Technology (Norway); Tjugum, S.A. [Michelsen Centre for Industrial Measurement Science and Technology (Norway); Roxar Flow Measurement, Bergen (Norway)

    2012-07-15

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. - Highlights: Black-Right-Pointing-Pointer Multiphase flow gas-fraction and flow regime measurements by multi gamma ray beams. Black-Right-Pointing-Pointer High-speed gamma ray tomograph as reference for the flow

  8. Tomographic multiphase flow measurement

    International Nuclear Information System (INIS)

    Sætre, C.; Johansen, G.A.; Tjugum, S.A.

    2012-01-01

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. - Highlights: ► Multiphase flow gas-fraction and flow regime measurements by multi gamma ray beams. ► High-speed gamma ray tomograph as reference for the flow pattern and gas fraction. ► Dual modality

  9. Gamma ray densitometry techniques for measuring of volume fractions

    International Nuclear Information System (INIS)

    Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da; Salgado, Cesar Marques

    2015-01-01

    Knowledge of the volume fraction in a multiphase flow is of key importance in predicting the performance of many systems and processes. It is therefore an important parameter to characterize such flows. In the context of nuclear techniques, the gamma ray densitometry is promising and this is due to its non-invasive characteristics and very reliable results. It is used in several applications for multiphase flows (water-oil-air), which are employed tools such as: computational fluid dynamics, artificial neural networks and statistical methods of radiation transport, such as the Monte Carlo method. Based on the gamma radiation techniques for measurements of volume fractions, the aim of this paper is to present several techniques developed for this purpose. (author)

  10. Gamma ray densitometry techniques for measuring of volume fractions

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da; Salgado, Cesar Marques, E-mail: raoniwa@yahoo.com.br, E-mail: ademir@nuclear.ufrj.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Knowledge of the volume fraction in a multiphase flow is of key importance in predicting the performance of many systems and processes. It is therefore an important parameter to characterize such flows. In the context of nuclear techniques, the gamma ray densitometry is promising and this is due to its non-invasive characteristics and very reliable results. It is used in several applications for multiphase flows (water-oil-air), which are employed tools such as: computational fluid dynamics, artificial neural networks and statistical methods of radiation transport, such as the Monte Carlo method. Based on the gamma radiation techniques for measurements of volume fractions, the aim of this paper is to present several techniques developed for this purpose. (author)

  11. Application and Perspectives of Multiphase Induction Motors

    Directory of Open Access Journals (Sweden)

    Benas Kundrotas

    2012-04-01

    Full Text Available The article considers the areas of applying multiphase induction motors. Their advantages against three phase motors have become the main reason for employing them in multiphase drives. The paper deals with the six-phase induction motor having two similar three phase windings in the stator shifted by 30 degrees in space and three phase windings in the rotor. Differential equations for this motor are presented and transformed to dq synchronous reference frame. The transformed equations are expressed in a matrix form and solved by MATLAB software using the Dormand-Prince (ode45 method. The transient characteristics of the torque, speed and current of the six-phase induction motor are calculated and discussed.Article in Lithuanian

  12. How winning changes motivation in multiphase competitions.

    Science.gov (United States)

    Huang, Szu-Chi; Etkin, Jordan; Jin, Liyin

    2017-06-01

    What drives motivation in multiphase competitions? Adopting a dynamic approach, this research examines how temporary standing-being ahead of (vs. behind) one's opponent-in a multiphase competition shapes subsequent motivation. Six competitions conducted in the lab and in the field demonstrate that the impact of being ahead on contestants' motivation depends on when (i.e., in which phase of the competition) contestants learn they are in the lead. In the early phase, contestants are concerned about whether they can win; being ahead increases motivation by making winning seem more attainable. In the later phase, however, contestants are instead driven by how much additional effort they believe they need to invest; being ahead decreases motivation by reducing contestants' estimate of the remaining effort needed to win. Temporary standing thus has divergent effects on motivation in multiphase competitions, driven by a shift in contestants' main concern from the early to the later phase and thus the meaning they derive from being ahead of their opponent. By leveraging insights gained from approaching individuals' self-regulation as a dynamic process, this research advances understanding of how motivation evolves in a unique interdependent self-regulatory context. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Modeling studies for multiphase fluid and heat flow processes in nuclear waste isolation

    International Nuclear Information System (INIS)

    Pruess, K.

    1988-07-01

    Multiphase fluid and heat flow plays an important role in many problems relating to the disposal of nuclear wastes in geologic media. Examples include boiling and condensation processes near heat-generating wastes, flow of water and formation gas in partially saturated formations, evolution of a free gas phase from waste package corrosion in initially water-saturated environments, and redistribution (dissolution, transport, and precipitation) of rock minerals in non-isothermal flow fields. Such processes may strongly impact upon waste package and repository design considerations and performance. This paper summarizes important physical phenomena occurring in multiphase and nonisothermal flows, as well as techniques for their mathematical modeling and numerical simulation. Illustrative applications are given for a number of specific fluid and heat flow problems, including: thermohydrologic conditions near heat-generating waste packages in the unsaturated zone; repository-wide convection effects in the unsaturated zone; effects of quartz dissolution and precipitation for disposal in the saturated zone; and gas pressurization and flow corrosion of low-level waste packages. 34 refs; 7 figs; 2 tabs

  14. Continuum-Kinetic Models and Numerical Methods for Multiphase Applications

    Science.gov (United States)

    Nault, Isaac Michael

    This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.

  15. Generating a Multiphase Equation of State with Swarm Intelligence

    Science.gov (United States)

    Cox, Geoffrey

    2017-06-01

    Hydrocode calculations require knowledge of the variation of pressure of a material with density and temperature, which is given by the equation of state. An accurate model needs to account for discontinuities in energy, density and properties of a material across a phase boundary. When generating a multiphase equation of state the modeller attempts to balance the agreement between the available data for compression, expansion and phase boundary location. However, this can prove difficult because minor adjustments in the equation of state for a single phase can have a large impact on the overall phase diagram. Recently, Cox and Christie described a method for combining statistical-mechanics-based condensed matter physics models with a stochastic analysis technique called particle swarm optimisation. The models produced show good agreement with experiment over a wide range of pressure-temperature space. This talk details the general implementation of this technique, shows example results, and describes the types of analysis that can be performed with this method.

  16. CFD Modeling of a Multiphase Gravity Separator Vessel

    KAUST Repository

    Narayan, Gautham

    2017-05-23

    The poster highlights a CFD study that incorporates a combined Eulerian multi-fluid multiphase and a Population Balance Model (PBM) to study the flow inside a typical multiphase gravity separator vessel (GSV) found in oil and gas industry. The simulations were performed using Ansys Fluent CFD package running on KAUST supercomputer, Shaheen. Also, a highlight of a scalability study is presented. The effect of I/O bottlenecks and using Hierarchical Data Format (HDF5) for collective and independent parallel reading of case file is presented. This work is an outcome of a research collaboration on an Aramco project on Shaheen.

  17. CFD Modeling of a Multiphase Gravity Separator Vessel

    KAUST Repository

    Narayan, Gautham; Khurram, Rooh Ul Amin; Elsaadawy, Ehab

    2017-01-01

    The poster highlights a CFD study that incorporates a combined Eulerian multi-fluid multiphase and a Population Balance Model (PBM) to study the flow inside a typical multiphase gravity separator vessel (GSV) found in oil and gas industry. The simulations were performed using Ansys Fluent CFD package running on KAUST supercomputer, Shaheen. Also, a highlight of a scalability study is presented. The effect of I/O bottlenecks and using Hierarchical Data Format (HDF5) for collective and independent parallel reading of case file is presented. This work is an outcome of a research collaboration on an Aramco project on Shaheen.

  18. Multiphase flows with phase change

    Indian Academy of Sciences (India)

    Multiphase flows with phase change are ubiquitous in many industrial sectors ranging from energy and infra-structure to specialty chemicals and pharmaceuticals. My own interest in mul- tiphase flows with phase change started more than 15 years ago when I had initiated work on riser reactor for fluid catalytic cracking and ...

  19. Is it possible to design universal multi-phase flow analyzer?

    International Nuclear Information System (INIS)

    Ivanov Kolev, N.

    2005-01-01

    Transient 3D-multiphase flows consisting of many chemical constituents in nature and technology (Figs. 1 and 2) are the common case of flows. In many technical applications we have to do with particular realization of the multi-phase flows like steady state flows, or single component flows or single phase flows etc. Engineers and scientists created hundreds of computer codes for description of more or less specific realizations of multi-phase flows. If one compares the structure of these codes one is astonished by the waste of the human resources for programming repeating model elements like equations of state, friction lows in variety of geometry, heat transfer coefficients, mathematical equation solvers, data handling procedures, graphical environment etc. It is hardly to expect, that the best solution for the specific sub-phenomenon is available in all codes. Looking in other branches of the technology like computer chips production we realize that the revolutionary idea of having common ''chips'' within complex applications is very far from its practical realization in the computational multi-phase flow dynamics. Following this line of arguments I expressed several times in my publications explicitly or implicitly the idea, that it is possible to create a universal multi-phase flow analyzer in the sense of computer architecture, that is capable to absorb the adequate multi-phase knowledge data base specified in Appendix 1. The subject of this paper is to summarize some of the main ideas, some of them already realized by this author, on the way of creating such computer code architecture, to illustrate haw they work, and to make an outlook regarding what are the challenges in the future developments. We confine deliberately our attention to the solution of the so called local volume and time averaged system of PDE's for a simple reason: Direct numerical resolution of interacting fluids is possible as demonstrated for small scales by many researchers, but for

  20. Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.

    Science.gov (United States)

    Huang, Qizhao; Li, Hong; Grätzel, Michael; Wang, Qing

    2013-02-14

    Reversible chemical delithiation/lithiation of LiFePO(4) was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system--the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility of a redox flow battery and high energy density of a lithium-ion battery. Distinct from the recent semi-solid lithium rechargeable flow battery, the energy storage materials of RFLB stored in separate energy tanks remain stationary upon operation, giving us a fresh perspective on building large-scale energy storage systems with higher energy density and improved safety.

  1. The multiphase instrumentation: a tool for the development of refining and petrochemical processes; L'instrumentation multiphasique: un outil pour le developpement des procedes de raffinage et petrochimie

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, C.; Bayle, J.; Harter, I.; Schweitzer, J.M. [Institut Francais du Petrole. Centre d' Etude et de Developpement Industriel de Solaize, 69 (France)

    2001-07-01

    In the framework of the development of processes involving several phases, a study of contactors hydrodynamics is performed on units of significant size, before extrapolating the pilot results to industrial reactors. In these multiphase processes, the phases most often in contact are: liquid/gas, liquid/gas/solid and gas/solid. The study of their hydrodynamics requires the development of specific multiphase measurement techniques. Taking into consideration the complexity of the flows involved and the size of reactors, a global input-output characterization of the hydrodynamics is not sufficient and it is necessary to have access to the local flow parameters (velocity, flux, fraction of each phase). Moreover, the environment of the measurement (hydrocarbon-type fluid, real catalyst support, pressure) imposes the development of specific instruments of measurement with additional constraints (safety, robustness..). These measurements aim at analyzing the structure of the flows involved, validating the new technologies (distributors, separators, exchangers) and finally supplying a database for the validation of multiphase hydrodynamic models. This article proposes a review of the instrumentation techniques developed in the framework of 3 classes of multiphase reactors: fluidized bed reactors (gas/solid flow), slurry bubble column reactors (liquid/gas/solid flow), and fixed bed reactors (gas/liquid flow through a granular bed). (J.S.)

  2. Formation of mixed aryl-, alkyl-lithium aggregates in the heteroatom assisted lithiation of a,a'-dialkyl substituted 1,3-bis[(dimethylamino)methyl]benzene

    NARCIS (Netherlands)

    Koten, G. van; Donkervoort, J.G.; Vicario, J.L.; Rijnberg, E.; Jastrzebski, J.T.B.H.; Kooijman, H.; Spek, A.L.

    1998-01-01

    The heteroatom assisted lithiation of 1, 3-bis[1-(dimethylamino)ethyl]benzene with n-BuLi afforded 2,6-bis[1-(dimethylamino)ethyl]phenyllithium. An X-ray crystal structure determination revealed a dimeric aggregate in which the four benzylic chiral centers are identical, pointing to stereoselective

  3. Phase Transformation and Lithiation Effect on Electronic Structure of LixFePO4 : An In-Depth Study by Soft X-ray and Simulations

    NARCIS (Netherlands)

    Liu, Xiaosong; Liu, Jun; Qiao, Ruimin; Yu, Yan; Li, Hong; Suo, Liumin; Hu, Yong-sheng; Chuang, Yi-De; Shu, Guojiun; Chou, Fangcheng; Weng, Tsu-Chien; Nordlund, Dennis; Sokaras, Dimosthenis; Wang, Yung Jui; Lin, Hsin; Barbiellini, Bernardo; Bansil, Arun; Song, Xiangyun; Liu, Zhi; Yan, Shishen; Liu, Gao; Qjao, Shan; Richardson, Thomas J.; Prendergast, David; Hussain, Zahid; de Groot, Frank M. F.|info:eu-repo/dai/nl/08747610X; Yang, Wanli

    2012-01-01

    Through soft X-ray absorption spectroscopy, hard X-ray Raman scattering, and theoretical simulations, we provide the most in-depth and systematic study of the phase transformation and (de)lithiation effect on electronic structure in LixFePO4 nanoparticles and single crystals. Soft X-ray reveals

  4. Multiphase turbulence mechanisms identification from consistent analysis of direct numerical simulation data

    Directory of Open Access Journals (Sweden)

    Ben Magolan

    2017-09-01

    Full Text Available Direct Numerical Simulation (DNS serves as an irreplaceable tool to probe the complexities of multiphase flow and identify turbulent mechanisms that elude conventional experimental measurement techniques. The insights unlocked via its careful analysis can be used to guide the formulation and development of turbulence models used in multiphase computational fluid dynamics simulations of nuclear reactor applications. Here, we perform statistical analyses of DNS bubbly flow data generated by Bolotnov (Reτ = 400 and Lu–Tryggvason (Reτ = 150, examining single-point statistics of mean and turbulent liquid properties, turbulent kinetic energy budgets, and two-point correlations in space and time. Deformability of the bubble interface is shown to have a dramatic impact on the liquid turbulent stresses and energy budgets. A reduction in temporal and spatial correlations for the streamwise turbulent stress (uu is also observed at wall-normal distances of y+ = 15, y/δ = 0.5, and y/δ = 1.0. These observations motivate the need for adaptation of length and time scales for bubble-induced turbulence models and serve as guidelines for future analyses of DNS bubbly flow data.

  5. Proceedings of submicron multiphase materials

    International Nuclear Information System (INIS)

    Baney, R.; Gilliom, L.; Hirano, S.I.; Schmidt, H.

    1992-01-01

    This book contains the papers presented at Symposium R of the spring 1992 Materials Research Society meeting held in San Francisco, California. The title of the symposium, Submicron Multiphase Materials, was selected by the organizers to encompass the realm of composite materials from those smaller than conventional fiber matrix composites to those with phase separation dimensions approaching molecular dimensions. The development of composite materials is as old as the development of materials. Humans quickly learned that, by combining materials, the best properties of each can be realized and that, in fact, synergistic effects often arise. For example, chopped straw was used by the Israelites to limit cracking in bricks. The famed Japanese samurai swords were multilayers of hard oxide and tough ductile materials. One also finds in nature examples of composite materials. These range form bone to wood, consisting of a hard phase which provides strength and stiffness and a softer phase for toughness. Advanced composites are generally thought of as those which are based on a high modulus, discontinuous, chopped or woven fiber phase and a continuous polymer phase. In multiphase composites, dimensions can range from meters in materials such as steel rod-reinforced concrete structures to angstroms. In macrophase separated composite materials, properties frequently follow the rule of mixtures with the properties approximating the arithmetic mean of the properties of each individual phase, if there is good coupling between the phases. As the phases become smaller, the surface to volume ratio grows in importance with respect to properties. Interfacial and interphase phenomena being to dominate. Surface free energies play an ever increasing role in controlling properties. In recent years, much research in materials science has been directed at multiphase systems where phase separations are submicron in at least some dimension

  6. Parameters governing tritium extraction rates from lithiated ceramics. The case of lithium aluminate

    International Nuclear Information System (INIS)

    Roth, E.; Botter, F.; Briec, M.; Rasneur, B.; Roux, N.

    1986-10-01

    Significant discrepancies between results of authors comparing tritium extraction rates from different lithiated ceramics are found in the literature. Recent results obtained at C.E.A., principally on lithium aluminates, show that, for a given ceramic, parameters other than textural (grain size, porosity, etc...) may play a predominant role. Enhancements of extraction rates have been induced by adding MgO to the solid or H 2 and CO to the sweep gas, but other factors, probably related to the surface condition of samples, may produce even greater effects. Results of investigations of the influence of exposure to air at given partial pressures of water vapor or of CO 2 show that strict preirradiation procedures must be adopted for preparation, storage and handling of ceramic tritium breeders

  7. Multiphase Flow Dynamics 5 Nuclear Thermal Hydraulics

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step...

  8. Multiphase flow dynamics 5 nuclear thermal hydraulics

    CERN Document Server

    Kolev, Nikolay Ivanov

    2015-01-01

    This Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demons...

  9. Application of neutron radiography to visualization of multiphase flows

    International Nuclear Information System (INIS)

    Takenaka, N.; Fujii, T.; Nishizaki, K.; Asano, H.; Ono, A.; Sonoda, K.; Akagawa, K.

    1990-01-01

    Visualizations by real-time neutron radiography are demonstrated of various flow patterns of nitrogen gas-water two-phase flow in a stainless-steel tube, water inverted annular flow in a stainless-steel tube, flashing flow in an aluminium nozzle and fluidized bed in aluminium tube and vessels. Photographs every 1/60 s are presented by an image processing method to show the dynamic behaviours of the various flow patterns. It is shown that this visualization method can be applied efficiently to multiphase flow researches and will be applicable to multiphase flows in industrial machines. (author)

  10. Application of lithiated perfluorosulfonate ionomer binders to enhance high rate capability in LiMn2O4 cathodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Chiu, Kuo-Feng; Su, Shih Hsuan; Leu, Hoang-Juh; Chen, Yi Shiang

    2014-01-01

    Lithiated perfluorosulfonate ionomer has been used as the binder for LiMn 2 O 4 cathodes. Casted membranes of the lithiated ionomer exhibit ionic conductivity of 1.4 × 10 −4 S/cm. Composite cathodes composed of LiMn 2 O 4 , carbon black and the ionomer binder have been fabricated. All components of the cathodes are well bound and dispersed as characterized by scanning electron microscope and energy dispersive spectroscope. The cathodes using the conventional poly-vinylidene fluoride binder have also been prepared for comparison. Under high rate (5 C-20 C) and high temperature (60 °C) operation, the LiMn 2 O 4 cathodes with the ionomer binder exhibit higher capacity and improved cycling stability. As indicated by the electrochemical impedance spectra, the ionomer binder forms ion-conducting interface layers on the LiMn 2 O 4 particles and results in lower interface resistance. It enables the cells utilizing the ionomer binder to achieve higher capacity and enhanced cycling stability even under harsh conditions

  11. Accurate solution algorithms for incompressible multiphase flows

    International Nuclear Information System (INIS)

    Rider, W.J.; Kothe, D.B.; Mosso, S.J.; Cerutti, J.H.; Hochstein, J.I.

    1994-01-01

    A number of advances in modeling multiphase incompressible flow are described. These advances include high-order Godunov projection methods, piecewise linear interface reconstruction and tracking and the continuum surface force model. Examples are given

  12. Modeling variability in porescale multiphase flow experiments

    Science.gov (United States)

    Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.

    2017-07-01

    Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e., fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rates. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.

  13. Lithiation Confined in One Dimensional Nanospace of TiO2 (Anatase) Nanotube to Enhance the Lithium Storage Property of CuO Nanowires.

    Science.gov (United States)

    Li, Ang; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng; Ma, Zhaokun

    2015-10-14

    We have fabricated CuO@TiO2 nanocable arrays by a facile method involving in situ thermal oxidation of Cu foil and coating of tetrabutyl titanate solution. The structure of the nanocables has been investigated by various techniques to comfirm that the cores are mainly crystalline monoclinic CuO, and the shells are crystalline tetragonal anatase TiO2. When used as an anode material for lithium-ion batteries, the nanoconfinement effect plays an important role in improving the lithium-ion storage preformance: the lithiation will be confined in one-dimensional space of TiO2 nanotubes to limit the pulverization of CuO, and the phase interface will cause an interfacial adsorption to enrich more lithium ions at some level. Benefiting from the nanoconfinement effect and interfacial adsorption, the reversible capacity does not fade, but rather increases gradually to 725 mAh g(-1) after 400 cycles at a current density of 60 mA g(-1), superior to the theoretical capacity of CuO.

  14. Pore-scale Simulation and Imaging of Multi-phase Flow and Transport in Porous Media (Invited)

    Science.gov (United States)

    Crawshaw, J.; Welch, N.; Daher, I.; Yang, J.; Shah, S.; Grey, F.; Boek, E.

    2013-12-01

    We combine multi-scale imaging and computer simulation of multi-phase flow and reactive transport in rock samples to enhance our fundamental understanding of long term CO2 storage in rock formations. The imaging techniques include Confocal Laser Scanning Microscopy (CLSM), micro-CT and medical CT scanning, with spatial resolutions ranging from sub-micron to mm respectively. First, we report a new sample preparation technique to study micro-porosity in carbonates using CLSM in 3 dimensions. Second, we use micro-CT scanning to generate high resolution 3D pore space images of carbonate and cap rock samples. In addition, we employ micro-CT to image the processes of evaporation in fractures and cap rock degradation due to exposure to CO2 flow. Third, we use medical CT scanning to image spontaneous imbibition in carbonate rock samples. Our imaging studies are complemented by computer simulations of multi-phase flow and transport, using the 3D pore space images obtained from the scanning experiments. We have developed a massively parallel lattice-Boltzmann (LB) code to calculate the single phase flow field in these pore space images. The resulting flow fields are then used to calculate hydrodynamic dispersion using a novel scheme to predict probability distributions for molecular displacements using the LB method and a streamline algorithm, modified for optimal solid boundary conditions. We calculate solute transport on pore-space images of rock cores with increasing degree of heterogeneity: a bead pack, Bentheimer sandstone and Portland carbonate. We observe that for homogeneous rock samples, such as bead packs, the displacement distribution remains Gaussian with time increasing. In the more heterogeneous rocks, on the other hand, the displacement distribution develops a stagnant part. We observe that the fraction of trapped solute increases from the beadpack (0 %) to Bentheimer sandstone (1.5 %) to Portland carbonate (8.1 %), in excellent agreement with PFG

  15. Lithiation of prochiral 2,2'-dichloro-5,5'-dibromo-4,4'-bipyridine as a tool for the synthesis of chiral polyhalogenated 4,4'-bipyridines.

    Science.gov (United States)

    Mamane, Victor; Aubert, Emmanuel; Peluso, Paola; Cossu, Sergio

    2013-08-02

    Lithiation of the achiral tetrahalogenated 4,4'-bipyridine 1 with alkyllithiums was investigated. n-BuLi was found to induce either the chlorine-directed deprotolithiation reaction alone or with a concomitant halogen-lithium exchange furnishing after iodine trapping chiral 4,4'-bipyridines 2 and 6, respectively. The role of n-BuLi in the deprotolithiation process of 1 was elucidated on the basis of isolated secondary derivatives. After deprotolithiation, the lithiated species could be trapped by different electrophiles such as MeI, TMSCl, MeSSMe, R3SnCl (R = Me or n-Bu), and PPh2Cl. Moreover, 4,4'-bipyridine 2 was submitted to cross-coupling reactions (Suzuki and Sonogashira) which occurred selectively at the carbon-iodine bond. All compounds of this new family of atropisomeric 4,4'-bipyridines were separated by chiral HPLC (high-performance liquid chromatography), and the absolute configurations of obtained enantiomers were mainly assigned by XRD (X-ray diffraction) using anomalous dispersion.

  16. Non-Equilibrium Thermodynamics in Multiphase Flows

    CERN Document Server

    Mauri, Roberto

    2013-01-01

    Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...

  17. Constitutive relationships and models in continuum theories of multiphase flows

    International Nuclear Information System (INIS)

    Decker, R.

    1989-09-01

    In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included

  18. Design and fabrication of biomimetic multiphased scaffolds for ligament-to-bone fixation.

    Science.gov (United States)

    He, Jiankang; Zhang, Wenyou; Liu, Yaxiong; Li, Xiang; Li, Dichen; Jin, Zhongmin

    2015-05-01

    Conventional ligament grafts with single material composition cannot effectively integrate with the host bones due to mismatched properties and eventually affect their long-term function in vivo. Here we presented a multi-material strategy to design and fabricate composite scaffolds including ligament, interface and bone multiphased regions. The interface region consists of triphasic layers with varying material composition and porous structure to mimic native ligament-to-bone interface while the bone region contains polycaprolactone (PCL) anchor and microchanneled ceramic scaffolds to potentially provide combined mechanical and biological implant-bone fixation. Finite element analysis (FEA) demonstrated that the multiphased scaffolds with interference value smaller than 0.5 mm could avoid the fracture of ceramic scaffold during the implantation process, which was validated by in-vitro implanting the multiphased scaffolds into porcine joint bones. Pull-out experiment showed that the initial fixation between the multiphased scaffolds with 0.47 mm interference and the host bones could withstand the maximum force of 360.31±97.51 N, which can be improved by reinforcing the ceramic scaffolds with biopolymers. It is envisioned that the multiphased scaffold could potentially induce the regeneration of a new bone as well as interfacial tissue with the gradual degradation of the scaffold and subsequently realize long-term biological fixation of the implant with the host bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Artificial neural network and neutron application in a volume fraction calculation in annular and stratified multiphase system

    International Nuclear Information System (INIS)

    Ramos, Robson; Brandao, Luis E.B.; Pereira, Claudio M.N.A.; Schirru, Roberto; Silva, Ademir Xavier da

    2009-01-01

    Multiphase flows, type oil-water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a 241 Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X -computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air = 3.85; water = 4.31; oil=1.08); stratified (air = 3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique. (author)

  20. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    Energy Technology Data Exchange (ETDEWEB)

    Tulsa Fluid Flow

    2008-08-31

    The developments of fields in deep waters (5000 ft and more) is a common occurrence. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas-oil-and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of the hydrocarbon recovery from design to operation. The recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is very crucial to any multiphase separation technique that is employed either at topside, seabed or bottom-hole to know inlet conditions such as the flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. The overall objective was to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict the flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). The project was conducted in two periods. In Period 1 (four years), gas-oil-water flow in pipes were investigated to understand the fundamental physical mechanisms describing the interaction between the gas-oil-water phases under flowing conditions, and a unified model was developed utilizing a novel modeling approach. A gas-oil-water pipe flow database including field and laboratory data was formed in Period 2 (one year). The database was utilized in model performance demonstration. Period 1 primarily consisted of the development of a unified model and software to predict the gas-oil-water flow, and experimental studies of the gas-oil-water project, including flow behavior description and

  1. Calculation model of non-linear dynamic deformation of composite multiphase rods

    Directory of Open Access Journals (Sweden)

    Mishchenko Andrey Viktorovich

    2014-05-01

    Full Text Available The method of formulating non-linear physical equations for multiphase rods is suggested in the article. Composite multiphase rods possess various structures, include shear, polar, radial and axial inhomogeneity. The Timoshenko’s hypothesis with the large rotation angles is used. The method is based on the approximation of longitudinal normal stress low by basic functions expansions regarding the linear viscosity low. The shear stresses are calculated with the equilibrium equation using the subsidiary function of the longitudinal shift force. The system of differential equations connecting the internal forces and temperature with abstract deformations are offered by the basic functions. The application of power functions with arbitrary index allows presenting the compact form equations. The functional coefficients in this system are the highest order rigidity characteristics. The whole multiphase cross-section rigidity characteristics are offered the sums of the rigidity characteristics of the same phases individually. The obtained system allows formulating the well-known particular cases. Among them: hard plasticity and linear elastic deformation, different module deformation and quadratic Gerstner’s low elastic deformation. The reform of differential equations system to the quasilinear is suggested. This system contains the secant variable rigidity characteristics depending on abstract deformations. This system includes the sum of the same uniform blocks of different order. The rods phases defined the various set of uniform blocks phase materials. The integration of dynamic, kinematic and physical equations taking into account initial and edge condition defines the full dynamical multiphase rods problem. The quasilinear physical equations allow getting the variable flexibility matrix of multiphase rod and rods system.

  2. A Multi-Phase Equation of State and Strength Model for Tin

    International Nuclear Information System (INIS)

    Cox, G. A.

    2006-01-01

    This paper considers a multi-phase equation of state and a multi-phase strength model for tin in the β, γ and liquid phases. At a phase transition there are changes in volume, energy, and properties of a material that should be included in an accurate model. The strength model will also be affected by a solid-solid phase transition. For many materials there is a lack of experimental data for strength at high pressures making the derivation of strength parameters for some phases difficult. In the case of tin there are longitudinal sound speed data on the Hugoniot available that have been used here in conjunction with a multi-phase equation of state to derive strength parameters for the γ phase, a phase which does not exist at room temperature and pressure

  3. Instantaneous equations for multiphase flow in porous media without length-scale restrictions using a non-local averaging volume

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto

    2010-01-01

    The aim of this paper is to propose a framework to obtain a new formulation for multiphase flow conservation equations without length-scale restrictions, based on the non-local form of the averaged volume conservation equations. The simplification of the local averaging volume of the conservation equations to obtain practical equations is subject to the following length-scale restrictions: d << l << L, where d is the characteristic length of the dispersed phases, l is the characteristic length of the averaging volume, and L is the characteristic length of the physical system. If the foregoing inequality does not hold, or if the scale of the problem of interest is of the order of l, the averaging technique and therefore, the macroscopic theories of multiphase flow should be modified in order to include appropriate considerations and terms in the corresponding equations. In these cases the local form of the averaged volume conservation equations are not appropriate to describe the multiphase system. As an example of the conservation equations without length-scale restrictions, the natural circulation boiling water reactor was consider to study the non-local effects on the thermal-hydraulic core performance during steady-state and transient behaviors, and the results were compared with the classic local averaging volume conservation equations.

  4. Multiphase Microstructure in a Metastability-Assisted Medium Carbon Alloy Steel

    Science.gov (United States)

    Liu, Cheng; Cui, Xixi; Yang, Chen

    2018-05-01

    A medium carbon alloy steel is processed by austenizing at 900 °C for 30 min, then rapid quenching into a patented quenching liquid and holding at 170 °C for 5 min, finally isothermally holding at 250 °C for different times. The morphology and mechanical properties are performed by using optical microscopy and scanning electron microscopy. A multiphase microstructure characterized by a mixture of lenticular prior martensite (PM), fine needle bainitic ferrite and filmy retained austenite (RA) is obtained. It is found that the PM formed firstly upon quenching can accelerate the subsequent bainitic transformation and promote refinement of multiphase colonies. The results show that an optimum mechanical property of a 4000.9 MPa bending strength and a 2030 MPa tensile strength is achieved at 250 °C for 120 min, which is attributed to the multiphase microstructural characteristics and a high product of the volume fraction of RA and the carbon content of austenite.

  5. Variational continuum multiphase poroelasticity theory and applications

    CERN Document Server

    Serpieri, Roberto

    2017-01-01

    This book collects the theoretical derivation of a recently presented general variational macroscopic continuum theory of multiphase poroelasticity (VMTPM), together with its applications to consolidation and stress partitioning problems of interest in several applicative engineering contexts, such as in geomechanics and biomechanics. The theory is derived based on a purely-variational deduction, rooted in the least-Action principle, by considering a minimal set of kinematic descriptors. The treatment herein considered keeps a specific focus on the derivation of most general medium-independent governing equations. It is shown that VMTPM recovers paradigms of consolidated use in multiphase poroelasticity such as Terzaghi's stress partitioning principle and Biot's equations for wave propagation. In particular, the variational treatment permits the derivation of a general medium-independent stress partitioning law, and the proposed variational theory predicts that the external stress, the fluid pressure, and the...

  6. Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conductive binder in lithium-ion batteries

    Science.gov (United States)

    Wei, Zengbin; Xue, Lixin; Nie, Feng; Sheng, Jianfang; Shi, Qianru; Zhao, Xiulan

    2014-06-01

    In an attempt to reduce the Li+ concentration polarization and electrolyte depletion from the electrode porous space, sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups (SPEEK-FSA-Li) is prepared and attempted as ionic conductivity binder. Sulfonated aromatic poly(ether ether ketone) exhibits strong adhesion and chemical stability, and lithiated fluorinated sulfonic side chains help to enhance the ionic conductivity and Li+ ion diffusion due to the charge delocalization over the sulfonic chain. The performances are evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge cycle testing, 180° peel testing, and compared with the cathode prepared with polyvinylidene fluoride binder. The electrode prepared with SPEEK-FSA-Li binder forms the relatively smaller resistances of both the SEI and the charge transfer of lithium ion transport. This is beneficial to lithium ion intercalation and de-intercalation of the cathode during discharging-charging, therefore the cell prepared with SPEEK-FSA-Li shows lower charge plateau potential and higher discharge plateau potential. Compared with PVDF, the electrode with ionic binder shows smaller decrease in capacity with the increasing of cycle rate. Meanwhile, adhesion strength of electrode prepared with SPEEK-FSA-Li is more than five times greater than that with PVDF.

  7. Characterisation of chemically lithiated heat-treated electrolytic manganese dioxide

    International Nuclear Information System (INIS)

    Dose, Wesley M.; Lehr, Joshua; Donne, Scott W.

    2012-01-01

    Highlights: ► Manganese oxides are a promising cathode material for lithium ion batteries. Here we examine the structural and morphological changes that occur upon reduction, and assess its impact on material performance. ► Upon reduction, MnO 2 transforms into LiMn 2 O 4 , which is subsequently reduced to Li 2 Mn 2 O 4 . ► Significant morphological changes occur, particularly to the material porosity. ► This transformation for MnO 2 has not been reported previously. -- Abstract: Heat treated manganese dioxide is partially lithiated using butyl-lithium to determine the changes in crystal structure, chemical composition and morphology upon reduction, as a means of simulating its discharge behaviour in a non-aqueous battery cathode. As reduction proceeds, and lithium ions are inserted into the heat treated electrolytic manganese dioxide (EMD) structure, the material undergoes a phase transition to LiMn 2 O 4 . This new phase is further reduced to Li 2 Mn 2 O 4 . Reduction initially results in a 56% decrease in the surface area of the material; however, at higher degrees of reduction a slight increase in this value is observed, as a consequence of the strain placed on the lattice through continued lithium insertion.

  8. Directed ortho-Lithiation: Observation of an Unexpected 1-Lithio to 3-Lithio Conversion of 1-Lithio-naphthyllithium Compounds with an ortho-Directing 2-(Dimethylamino)methyl Group

    NARCIS (Netherlands)

    Jastrzebski, J.T.B.H.; Arink, A.M.; Kleijn, H.; Braam, T.W.; Lutz, M.; Spek, A.L.; van Koten, G.

    2013-01-01

    Regioselectivity is an important aspect in the design of organic protocols involving Directed ortho-Lithiation (DoL) of arenes, in particular with those arenes containing heteroatom substituents as directing groups. The DoL of 2-[(dimethylamino)methyl]naphthalene (dman) that proceeds with low

  9. The multiphase physics of sea ice: a review for model developers

    Directory of Open Access Journals (Sweden)

    E. C. Hunke

    2011-11-01

    Full Text Available Rather than being solid throughout, sea ice contains liquid brine inclusions, solid salts, microalgae, trace elements, gases, and other impurities which all exist in the interstices of a porous, solid ice matrix. This multiphase structure of sea ice arises from the fact that the salt that exists in seawater cannot be incorporated into lattice sites in the pure ice component of sea ice, but remains in liquid solution. Depending on the ice permeability (determined by temperature, salinity and gas content, this brine can drain from the ice, taking other sea ice constituents with it. Thus, sea ice salinity and microstructure are tightly interconnected and play a significant role in polar ecosystems and climate. As large-scale climate modeling efforts move toward "earth system" simulations that include biological and chemical cycles, renewed interest in the multiphase physics of sea ice has strengthened research initiatives to observe, understand and model this complex system. This review article provides an overview of these efforts, highlighting known difficulties and requisite observations for further progress in the field. We focus on mushy layer theory, which describes general multiphase materials, and on numerical approaches now being explored to model the multiphase evolution of sea ice and its interaction with chemical, biological and climate systems.

  10. High-Voltage, Multiphasic, Nanosecond Pulses to Modulate Cellular Responses.

    Science.gov (United States)

    Ryan, Hollie A; Hirakawa, Shinji; Yang, Enbo; Zhou, Chunrong; Xiao, Shu

    2018-04-01

    Nanosecond electric pulses are an effective power source in plasma medicine and biological stimulation, in which biophysical responses are governed by peak power and not energy. While uniphasic nanosecond pulse generators are widely available, the recent discovery that biological effects can be uniquely modulated by reversing the polarity of nanosecond duration pulses calls for the development of a multimodal pulse generator. This paper describes a method to generate nanosecond multiphasic pulses for biomedical use, and specifically demonstrates its ability to cancel or enhance cell swelling and blebbing. The generator consists of a series of the fundamental module, which includes a capacitor and a MOSFET switch. A positive or a negative phase pulse module can be produced based on how the switch is connected. Stacking the modules in series can increase the voltage up to 5 kV. Multiple stacks in parallel can create multiphase outputs. As each stack is independently controlled and charged, multiphasic pulses can be created to produce flexible and versatile pulse waveforms. The circuit topology can be used for high-frequency uniphasic or biphasic nanosecond burst pulse production, creating numerous opportunities for the generator in electroporation applications, tissue ablation, wound healing, and nonthermal plasma generation.

  11. Investigation of free vibration characteristics for skew multiphase magneto-electro-elastic plate

    Science.gov (United States)

    Kiran, M. C.; Kattimani, S.

    2018-04-01

    This article presents the investigation of skew multiphase magneto-electro-elastic (MMEE) plate to assess its free vibration characteristics. A finite element (FE) model is formulated considering the different couplings involved via coupled constitutive equations. The transformation matrices are derived to transform local degrees of freedom into the global degrees of freedom for the nodes lying on the skew edges. Effect of different volume fraction (Vf) on the free vibration behavior is explicitly studied. In addition, influence of width to thickness ratio, the aspect ratio, and the stacking arrangement on natural frequencies of skew multiphase MEE plate investigated. Particular attention has been paid to investigate the effect of skew angle on the non-dimensional Eigen frequencies of multiphase MEE plate with simply supported edges.

  12. Applied multiphase flow in pipes and flow assurance oil and gas production

    CERN Document Server

    Al-Safran, Eissa M

    2017-01-01

    Applied Multiphase Flow in Pipes and Flow Assurance - Oil and Gas Production delivers the most recent advancements in multiphase flow technology while remaining easy to read and appropriate for undergraduate and graduate petroleum engineering students. Responding to the need for a more up-to-the-minute resource, this highly anticipated new book represents applications on the fundamentals with new material on heat transfer in production systems, flow assurance, transient multiphase flow in pipes and the TUFFP unified model. The complex computation procedure of mechanistic models is simplified through solution flowcharts and several example problems. Containing over 50 solved example problems and 140 homework problems, this new book will equip engineers with the skills necessary to use the latest steady-state simulators available.

  13. Artificial neural network and neutron application in a volume fraction calculation in annular and stratified multiphase system

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Robson; Brandao, Luis E.B.; Pereira, Claudio M.N.A., E-mail: robson@ien.gov.b, E-mail: brandao@ien.gov.b, E-mail: cmnap@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos; Schirru, Roberto; Silva, Ademir Xavier da, E-mail: schirru@lmp.ufrj.b, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Nuclear Engineering Dept.

    2009-07-01

    Multiphase flows, type oil-water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a {sup 241}Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X -computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air = 3.85; water = 4.31; oil=1.08); stratified (air = 3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique. (author)

  14. SALP (Sensitivity Analysis by List Processing), a computer assisted technique for binary systems reliability analysis

    International Nuclear Information System (INIS)

    Astolfi, M.; Mancini, G.; Volta, G.; Van Den Muyzenberg, C.L.; Contini, S.; Garribba, S.

    1978-01-01

    A computerized technique which allows the modelling by AND, OR, NOT binary trees, of various complex situations encountered in safety and reliability assessment, is described. By the use of list-processing, numerical and non-numerical types of information are used together. By proper marking of gates and primary events, stand-by systems, common cause failure and multiphase systems can be analyzed. The basic algorithms used in this technique are shown in detail. Application to a stand-by and multiphase system is then illustrated

  15. Recent developments in biocatalysis in multiphasic ionic liquid reaction systems.

    Science.gov (United States)

    Meyer, Lars-Erik; von Langermann, Jan; Kragl, Udo

    2018-06-01

    Ionic liquids are well known and frequently used 'designer solvents' for biocatalytic reactions. This review highlights recent achievements in the field of multiphasic ionic liquid-based reaction concepts. It covers classical biphasic systems including supported ionic liquid phases, thermo-regulated multi-component solvent systems (TMS) and polymerized ionic liquids. These powerful concepts combine unique reaction conditions with a high potential for future applications on a laboratory and industrial scale. The presence of a multiphasic system simplifies downstream processing due to the distribution of the catalyst and reactants in different phases.

  16. Field-scale multi-phase LNAPL remediation: Validating a new computational framework against sequential field pilot trials.

    Science.gov (United States)

    Sookhak Lari, Kaveh; Johnston, Colin D; Rayner, John L; Davis, Greg B

    2018-03-05

    Remediation of subsurface systems, including groundwater, soil and soil gas, contaminated with light non-aqueous phase liquids (LNAPLs) is challenging. Field-scale pilot trials of multi-phase remediation were undertaken at a site to determine the effectiveness of recovery options. Sequential LNAPL skimming and vacuum-enhanced skimming, with and without water table drawdown were trialled over 78days; in total extracting over 5m 3 of LNAPL. For the first time, a multi-component simulation framework (including the multi-phase multi-component code TMVOC-MP and processing codes) was developed and applied to simulate the broad range of multi-phase remediation and recovery methods used in the field trials. This framework was validated against the sequential pilot trials by comparing predicted and measured LNAPL mass removal rates and compositional changes. The framework was tested on both a Cray supercomputer and a cluster. Simulations mimicked trends in LNAPL recovery rates (from 0.14 to 3mL/s) across all remediation techniques each operating over periods of 4-14days over the 78day trial. The code also approximated order of magnitude compositional changes of hazardous chemical concentrations in extracted gas during vacuum-enhanced recovery. The verified framework enables longer term prediction of the effectiveness of remediation approaches allowing better determination of remediation endpoints and long-term risks. Copyright © 2017 Commonwealth Scientific and Industrial Research Organisation. Published by Elsevier B.V. All rights reserved.

  17. Electrochemical lithiation/delithiation of SnP₂O₇ observed by in situ XRD and ex situ⁷Li/³¹P NMR, and ¹¹⁹Sn Mössbauer spectroscopy.

    Science.gov (United States)

    Bezza, Ilham; Kaus, Maximilian; Riekehr, Lars; Pfaffmann, Lukas; Doyle, Stephen; Indris, Sylvio; Ehrenberg, Helmut; Solhy, Abderrahim; Saadoune, Ismael

    2016-04-21

    SnP2O7 was prepared by a sol-gel route. The structural changes of tin pyrophosphate during the electrochemical lithiation were followed by using in situ XRD measurements that reveal the existence of a crystalline phase at the beginning of the discharge process. Nevertheless, it becomes amorphous after the full discharge as a result of a conversion reaction leading to the formation of LixSny alloys. The electrochemical tests show a high capacity with high retention upon cycling. To better understand the reaction mechanism of SnP2O7 with Li, several techniques were applied, such as ex situ(119)Sn Mössbauer and ex situ(7)Li and (31)P NMR spectroscopies with which we can follow the changes in the local environment of each element during cycling.

  18. Parametric Study on the Characteristics of Multiphase Laminar Flow with Density Difference in Various Microchannels

    International Nuclear Information System (INIS)

    Paek, Seung Ho; Kim, Dong Sung; Choi, Young Ki

    2009-01-01

    In this paper, we have performed a parametric study on the characteristics of multiphase laminar flow with density difference in various microchannels. The interface between multiphase fluids is rotated by the gravitational forces induced by density difference. The numerical simulations were carried out via commercial CFD package to study the characteristics of multiphase laminar flow. The results of the numerical simulations in this study were verified by comparing with the previously reported experimental results in the literature. We have also proposed a new dimensionless relationship between dimensionless rotation angle of interface and dimensionless parameters are proposed for square microchannels with various aspect ratios. The dimensionless relationship could be widely applied to the reliable design of various microfluidic devices dealing with multiphase laminar flow

  19. Multiphase pumping: indoor performance test and oilfield application

    Science.gov (United States)

    Kong, Xiangling; Zhu, Hongwu; Zhang, Shousen; Li, Jifeng

    2010-03-01

    Multiphase pumping is essentially a means of adding energy to the unprocessed effluent which enables the liquid and gas mixture to be transported over a long distances without prior separation. A reduction, consolidation, or elimination of the production infrastructure, such as separation equipments and offshore platforms can be developed more economically. Also it successfully lowed the backpressure of wells, revived dead wells and improved the production and efficiency of oilfield. This paper reviews the issues related to indoor performance test and an oilfield application of the helico-axial multiphase pump designed by China University of Petroleum (Beijing). Pump specification and its hydraulic design are given. Results of performance testing under different condition, such as operational speed and gas volume fraction (GVF) etc are presented. Experimental studies on combination of theoretical analysis showed the multiphase pump satisfies the similitude rule, which can be used in the development of new MPP design and performance prediction. Test results showed that rising the rotation speed and suction pressure could better its performance, pressure boost improved, high efficiency zone expanding and the flow rate related to the optimum working condition increased. The pump worked unstable as GVF increased to a certain extent and slip occurred between two phases in the pump, creating surging and gas lock at a high GVF. A case of application in Nanyang oilfield is also studied.

  20. RAND-Based Formulations for Isothermal Multiphase Flash

    DEFF Research Database (Denmark)

    Paterson, Duncan; Michelsen, Michael L.; Stenby, Erling H.

    2018-01-01

    Two algorithms are proposed for isothermal multiphase flash. These are referred to as modified RAND and vol-RAND. The former uses the chemical potentials and molar-phase amounts as the iteration variables, while the latter uses chemical potentials and phase volumes to cosolve a pressure...

  1. A Novel Multi-Phase Stochastic Model for Lithium-Ion Batteries’ Degradation with Regeneration Phenomena

    Directory of Open Access Journals (Sweden)

    Jianxun Zhang

    2017-10-01

    Full Text Available A lithium-Ion battery is a typical degradation product, and its performance will deteriorate over time. In its degradation process, regeneration phenomena have been frequently encountered, which affect both the degradation state and rate. In this paper, we focus on how to build the degradation model and estimate the lifetime. Toward this end, we first propose a multi-phase stochastic degradation model with random jumps based on the Wiener process, where the multi-phase model and random jumps at the changing point are used to describe the variation of degradation rate and state caused by regeneration phenomena accordingly. Owing to the complex structure and random variables, the traditional Maximum Likelihood Estimation (MLE is not suitable for the proposed model. In this case, we treat these random variables as latent parameters, and then develop an approach for model identification based on expectation conditional maximum (ECM algorithm. Moreover, depending on the proposed model, how to estimate the lifetime with fixed changing point is presented via the time-space transformation technique, and the approximate analytical solution is derived. Finally, a numerical simulation and a practical case are provided for illustration.

  2. Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows

    Science.gov (United States)

    2013-08-13

    October 2008 - December 2013 4. TITLE AND SUBTITLE Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows...influence cavity hysteresis behavior. These observations are used to guide improved supercavitating -vehicle analyses including numerical predictions...experiments, and modeling 15. SUBJECT TERMS supercavitation , computational fluid dynamics, multiphase flow 16. SECURITY CLASSIFICATION OF: a

  3. Scalable Methods for Eulerian-Lagrangian Simulation Applied to Compressible Multiphase Flows

    Science.gov (United States)

    Zwick, David; Hackl, Jason; Balachandar, S.

    2017-11-01

    Multiphase flows can be found in countless areas of physics and engineering. Many of these flows can be classified as dispersed two-phase flows, meaning that there are solid particles dispersed in a continuous fluid phase. A common technique for simulating such flow is the Eulerian-Lagrangian method. While useful, this method can suffer from scaling issues on larger problem sizes that are typical of many realistic geometries. Here we present scalable techniques for Eulerian-Lagrangian simulations and apply it to the simulation of a particle bed subjected to expansion waves in a shock tube. The results show that the methods presented here are viable for simulation of larger problems on modern supercomputers. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138. This work was supported in part by the U.S. Department of Energy under Contract No. DE-NA0002378.

  4. Multiphase flow in porous media using CFD

    DEFF Research Database (Denmark)

    Hemmingsen, Casper Schytte; Walther, Jens Honore

    . This approach is widely used for single phase flow, but not for multiphase flow in porous media. This might be due to the complexity of introducing relative permeability and capillary pressure in the CFD solver.The introduction of relative permeability and capillary pressure may cause numerical instabilities...

  5. Unstructured Finite Elements and Dynamic Meshing for Explicit Phase Tracking in Multiphase Problems

    Science.gov (United States)

    Chandra, Anirban; Yang, Fan; Zhang, Yu; Shams, Ehsan; Sahni, Onkar; Oberai, Assad; Shephard, Mark

    2017-11-01

    Multi-phase processes involving phase change at interfaces, such as evaporation of a liquid or combustion of a solid, represent an interesting class of problems with varied applications. Large density ratio across phases, discontinuous fields at the interface and rapidly evolving geometries are some of the inherent challenges which influence the numerical modeling of multi-phase phase change problems. In this work, a mathematically consistent and robust computational approach to address these issues is presented. We use stabilized finite element methods on mixed topology unstructured grids for solving the compressible Navier-Stokes equations. Appropriate jump conditions derived from conservations laws across the interface are handled by using discontinuous interpolations, while the continuity of temperature and tangential velocity is enforced using a penalty parameter. The arbitrary Lagrangian-Eulerian (ALE) technique is utilized to explicitly track the interface motion. Mesh at the interface is constrained to move with the interface while elsewhere it is moved using the linear elasticity analogy. Repositioning is applied to the layered mesh that maintains its structure and normal resolution. In addition, mesh modification is used to preserve the quality of the volumetric mesh. This work is supported by the U.S. Army Grants W911NF1410301 and W911NF16C0117.

  6. Uncertainty Quantification of Multi-Phase Closures

    Energy Technology Data Exchange (ETDEWEB)

    Nadiga, Balasubramanya T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baglietto, Emilio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-10-27

    In the ensemble-averaged dispersed phase formulation used for CFD of multiphase ows in nuclear reactor thermohydraulics, closures of interphase transfer of mass, momentum, and energy constitute, by far, the biggest source of error and uncertainty. Reliable estimators of this source of error and uncertainty are currently non-existent. Here, we report on how modern Validation and Uncertainty Quanti cation (VUQ) techniques can be leveraged to not only quantify such errors and uncertainties, but also to uncover (unintended) interactions between closures of di erent phenomena. As such this approach serves as a valuable aide in the research and development of multiphase closures. The joint modeling of lift, drag, wall lubrication, and turbulent dispersion|forces that lead to tranfer of momentum between the liquid and gas phases|is examined in the frame- work of validation of the adiabatic but turbulent experiments of Liu and Banko , 1993. An extensive calibration study is undertaken with a popular combination of closure relations and the popular k-ϵ turbulence model in a Bayesian framework. When a wide range of super cial liquid and gas velocities and void fractions is considered, it is found that this set of closures can be validated against the experimental data only by allowing large variations in the coe cients associated with the closures. We argue that such an extent of variation is a measure of uncertainty induced by the chosen set of closures. We also nd that while mean uid velocity and void fraction pro les are properly t, uctuating uid velocity may or may not be properly t. This aspect needs to be investigated further. The popular set of closures considered contains ad-hoc components and are undesirable from a predictive modeling point of view. Consequently, we next consider improvements that are being developed by the MIT group under CASL and which remove the ad-hoc elements. We use non-intrusive methodologies for sensitivity analysis and calibration (using

  7. A Radiative Transfer Modeling Methodology in Gas-Liquid Multiphase Flow Simulations

    Directory of Open Access Journals (Sweden)

    Gautham Krishnamoorthy

    2014-01-01

    Full Text Available A methodology for performing radiative transfer calculations in computational fluid dynamic simulations of gas-liquid multiphase flows is presented. By considering an externally irradiated bubble column photoreactor as our model system, the bubble scattering coefficients were determined through add-on functions by employing as inputs the bubble volume fractions, number densities, and the fractional contribution of each bubble size to the bubble volume from four different multiphase modeling options. The scattering coefficient profiles resulting from the models were significantly different from one another and aligned closely with their predicted gas-phase volume fraction distributions. The impacts of the multiphase modeling option, initial bubble diameter, and gas flow rates on the radiation distribution patterns within the reactor were also examined. An increase in air inlet velocities resulted in an increase in the fraction of larger sized bubbles and their contribution to the scattering coefficient. However, the initial bubble sizes were found to have the strongest impact on the radiation field.

  8. Enhancement pattern of small hepatic hemangioma: findings on multiphase spiral CT and dynamic MRI

    International Nuclear Information System (INIS)

    Choi, Byung In; Lee, Seung Koo; Kim, Myeong Jin; Chung, Jae Joon; Yoo, Hyung Sik; Lee, Jong Tae

    1999-01-01

    To compare the enhancement characteristics of small hemangiomas seen on multiphase spiral CT and dynamic MR imaging. Thirteen patients with 20 hepatic hemangiomas less than 25mm in diameter underwent both multiphase spiral CT and dynamic MR imaging. All lesions were assigned to one of three classified into 3 categories according to the enhancement pattern seen on multiphase spiral CT : typical delayed pooling, atypical early enhancement, or continuous low attenuation. The enhancement patterns seen on spiral CT and on dynamic MRI were correlated. On CT scans, ten lesions (50%) showed delayed pooling. Six (30%) showed early arterial enhancement and four (20%) showed continuous low attenuation. On delayed-phase MRI, all lesions showed delayed high signal intensity compared to adjacent liver parenchyma. Four of six lesions with early enhancement on CT showed peripheral globular enhancement on early arterial-phase MRI. On multiphase spiral CT scans, small hemangiomas can show variable atypical enhancement features. In this situation, contrast-enhanced dynamic MRI is helpful for the diagnosis of hemangiomas

  9. Synthesis and electrochemical characteristics of Sn-Sb-Ni alloy composite anode for Li-ion rechargeable batteries

    International Nuclear Information System (INIS)

    Guo Hong; Zhao Hailei; Jia Xidi; Qiu Weihua; Cui Fenge

    2007-01-01

    Micro-scaled Sn-Sb-Ni alloy composite was synthesized from oxides of Sn, Sb and Ni via carbothermal reduction. The phase composition and electrochemical properties of the Sn-Sb-Ni alloy composite anode material were studied. The prepared alloy composite electrode exhibits a high specific capacity and a good cycling stability. The lithiation capacity was 530 mAh g -1 in the first cycle and maintained at 370-380 mAh g -1 in the following cycles. The good electrochemical performance may be attributed to its relatively large particle size and multi-phase characteristics. The former reason leads to the lower surface impurity and thus the lower initial capacity loss, while the latter results in a stepwise lithiation/delithiation behavior and a smooth volume change of electrode in cycles. The Sn-Sb-Ni alloy composite material shows a good candidate anode material for the rechargeable lithium ion batteries

  10. Determining conductivity and mobility values of individual components in multiphase composite Cu1.97Ag0.03Se

    International Nuclear Information System (INIS)

    Day, Tristan W.; Brown, David R.; Snyder, G. Jeffrey; Zeier, Wolfgang G.; Melot, Brent C.

    2014-01-01

    The intense interest in phase segregation in thermoelectrics as a means to reduce the lattice thermal conductivity and to modify the electronic properties from nanoscale size effects has not been met with a method for separately measuring the properties of each phase assuming a classical mixture. Here, we apply effective medium theory for measurements of the in-line and Hall resistivity of a multiphase composite, in this case Cu 1.97 Ag 0.03 Se. The behavior of these properties with magnetic field as analyzed by effective medium theory allows us to separate the conductivity and charge carrier mobility of each phase. This powerful technique can be used to determine the matrix properties in the presence of an unwanted impurity phase, to control each phase in an engineered composite, and to determine the maximum carrier concentration change by a given dopant, making it the first step toward a full optimization of a multiphase thermoelectric material and distinguishing nanoscale effects from those of a classical mixture.

  11. Analysis of Voltage Forming Methods for Multiphase Inverters

    Directory of Open Access Journals (Sweden)

    Tadas Lipinskis

    2013-05-01

    Full Text Available The article discusses advantages of the multiphase AC induction motor over three or less phase motors. It presents possible stator winding configurations for a multiphase induction motor. Various fault control strategies were reviewed for phases feeding the motor. The authors propose a method for quality evaluation of voltage forming algorithm in the inverter. Simulation of a six-phase voltage source inverter, voltage in which is formed using a simple SPWM control algorithm, was performed in Matlab Simulink. Simulation results were evaluated using the proposed method. Inverter’s power stage was powered by 400 V DC source. The spectrum of output currents was analysed and the magnitude of the main frequency component was at least 12 times greater than the next biggest-magnitude component. The value of rectified inverter voltage was 373 V.Article in Lithuanian

  12. Multiphase averaging of periodic soliton equations

    International Nuclear Information System (INIS)

    Forest, M.G.

    1979-01-01

    The multiphase averaging of periodic soliton equations is considered. Particular attention is given to the periodic sine-Gordon and Korteweg-deVries (KdV) equations. The periodic sine-Gordon equation and its associated inverse spectral theory are analyzed, including a discussion of the spectral representations of exact, N-phase sine-Gordon solutions. The emphasis is on physical characteristics of the periodic waves, with a motivation from the well-known whole-line solitons. A canonical Hamiltonian approach for the modulational theory of N-phase waves is prescribed. A concrete illustration of this averaging method is provided with the periodic sine-Gordon equation; explicit averaging results are given only for the N = 1 case, laying a foundation for a more thorough treatment of the general N-phase problem. For the KdV equation, very general results are given for multiphase averaging of the N-phase waves. The single-phase results of Whitham are extended to general N phases, and more importantly, an invariant representation in terms of Abelian differentials on a Riemann surface is provided. Several consequences of this invariant representation are deduced, including strong evidence for the Hamiltonian structure of N-phase modulational equations

  13. Scanning electron-acoustic imaging of residual stress distributions in aluminum metal and ZrSiO4 multiphase ceramics

    International Nuclear Information System (INIS)

    Zhang, B.Y.; Jiang, F.M.; Shi, Y.; Yin, Q.R.; Qian, M.L.

    1997-01-01

    The scanning electron-acoustic imaging technique has been used in the characterization of the residual stress field distributions existing in the subsurface in aluminum disks and 20 vol% SiC ( w)/ZrSiO 4 multiphase ceramics left by Vicker close-quote s indentation. The experimental results reveal that the distribution areas are the plastic-elastic interchange zones. The electron-acoustic signal generation mechanism in the samples are discussed. copyright 1997 American Institute of Physics

  14. Contrast optimization in multiphase arterial spin labeling; Otimizacao do contraste em ASL multi-fase

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Fernando F.; Paschoal, Andre M., E-mail: paiva@ifsc.usp.br [Universidade de Sao Paulo (CIERMag/USP), Sao Carlos, SP (Brazil). Instituto de Fisica; Foerster, Bernd U. [Philips Medical Systems LatAm, Sao Paulo, SP (Brazil); Tovar-Moll, Fernanda; Moll, Jorge [Instituto D' Or de Pesquisa e Ensino, Rio de Janeiro, RJ (Brazil)

    2013-08-15

    Multiphase ASL is an effective way to overcome the regional variation of the transit time that difficult the estimation of perfusion values. However, with conventional multiple phases ASL techniques, the ASL contrast at later phases is impaired due to repeated application of excitation pulses and longitudinal relaxation making it difficult to evaluate the tissue perfusion in regions where the transit time is longer. In the present study, we show an improvement of the acquisition scheme by exploring a modulation on the flip angle of the MR acquisition to keep the ASL contrast constant over multiple phases. (author)

  15. A new technique for noise reduction at coronary CT angiography with multi-phase data-averaging and non-rigid image registration

    Energy Technology Data Exchange (ETDEWEB)

    Tatsugami, Fuminari; Higaki, Toru; Nakamura, Yuko; Yamagami, Takuji; Date, Shuji; Awai, Kazuo [Hiroshima University, Department of Diagnostic Radiology, Minami-ku, Hiroshima (Japan); Fujioka, Chikako; Kiguchi, Masao [Hiroshima University, Department of Radiology, Minami-ku, Hiroshima (Japan); Kihara, Yasuki [Hiroshima University, Department of Cardiovascular Medicine, Minami-ku, Hiroshima (Japan)

    2015-01-15

    To investigate the feasibility of a newly developed noise reduction technique at coronary CT angiography (CTA) that uses multi-phase data-averaging and non-rigid image registration. Sixty-five patients underwent coronary CTA with prospective ECG-triggering. The range of the phase window was set at 70-80 % of the R-R interval. First, three sets of consecutive volume data at 70 %, 75 % and 80 % of the R-R interval were prepared. Second, we applied non-rigid registration to align the 70 % and 80 % images to the 75 % image. Finally, we performed weighted averaging of the three images and generated a de-noised image. The image noise and contrast-to-noise ratio (CNR) in the proximal coronary arteries between the conventional 75 % and the de-noised images were compared. Two radiologists evaluated the image quality using a 5-point scale (1, poor; 5, excellent). On de-noised images, mean image noise was significantly lower than on conventional 75 % images (18.3 HU ± 2.6 vs. 23.0 HU ± 3.3, P < 0.01) and the CNR was significantly higher (P < 0.01). The mean image quality score for conventional 75 % and de-noised images was 3.9 and 4.4, respectively (P < 0.01). Our method reduces image noise and improves image quality at coronary CTA. (orig.)

  16. Microstructural modelling of nuclear graphite using multi-phase models

    International Nuclear Information System (INIS)

    Berre, C.; Fok, S.L.; Marsden, B.J.; Mummery, P.M.; Marrow, T.J.; Neighbour, G.B.

    2008-01-01

    This paper presents a new modelling technique using three-dimensional multi-phase finite element models in which meshes representing the microstructure of thermally oxidised nuclear graphite were generated from X-ray micro-tomography images. The density of the material was related to the image greyscale using Beer-Lambert's law, and multiple phases could thus be defined. The local elastic and non-linear properties of each phase were defined as a function of density and changes in Young's modulus, tensile and compressive strength with thermal oxidation were calculated. Numerical predictions compared well with experimental data and with other numerical results obtained using two-phase models. These models were found to be more representative of the actual microstructure of the scanned material than two-phase models and, possibly because of pore closure occurring during compression, compressive tests were also predicted to be less sensitive to the microstructure geometry than tensile tests

  17. Online recognition of the multiphase flow regime and study of slug flow in pipeline

    International Nuclear Information System (INIS)

    Guo Liejin; Bai Bofeng; Zhao Liang; Wang Xin; Gu Hanyang

    2009-01-01

    Multiphase flow is the phenomenon existing widely in nature, daily life, as well as petroleum and chemical engineering industrial fields. The interface structure among multiphase and their movement are complicated, which distribute random and heterogeneously in the spatial and temporal scales and have multivalue of the flow structure and state. Flow regime is defined as the macro feature about the multiphase interface structure and its distribution, which is an important feature to describe multiphase flow. The energy and mass transport mechanism differ much for each flow regimes. It is necessary to solve the flow regime recognition to get a clear understanding of the physical phenomena and their mechanism of multiphase flow. And the flow regime is one of the main factors affecting the online measurement accuracy of phase fraction, flow rate and other phase parameters. Therefore, it is of great scientific and technological importance to develop new principles and methods of multiphase flow regime online recognition, and of great industrial background. In this paper, the key reasons that the present method cannot be used to solve the industrial multiphase flow pattern recognition are clarified firstly. Then the prerequisite to realize the online recognition of multiphase flow regime is analyzed, and the recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of single

  18. The Effect of a Reconstruction Technique and Heart Rate in the Evaluation of Optimal Trigger Delay Using Multiphase Reconstruction

    International Nuclear Information System (INIS)

    Cho, Young Jun

    2008-01-01

    To evaluate the mean optimal trigger delays and the difference between the absolute delay and the relative delay as a function of heart rate, using multiphase reconstruction. A total of 30 patients consecutively underwent a 64-slice MDCT examination. Optimal trigger delays at four planes (the bifurcation of the left main coronary artery, aortic valve, mitral valve and cardiac apex) were measured using multiphase reconstruction based on the absolute and relative delay. For this reason, patients were divided into three groups according to heart rate (group I, < 65 bpm; group II, 65-74 bpm; group III, ≥ 75 bpm), and the mean optimal trigger delays and the difference between the absolute delay and the relative delay were evaluated at the four planes for each group. The mean optimal trigger delay for the relative delay and absolute delay ranged from 46% to 66% and from 327 to 700 msec, respectively. The differences in the mean optimal trigger delay using the relative and the absolute delay at the four planes were 1% and 4 msec (group I), 3% and 27 msec (group II), and 14% and 46 msec (group III). In group III, the difference of the mean optimal trigger delay based on the relative delay, increased significantly compared to the absolute delay (p = 0.040). For the patients analyzed, the results suggest that as the heart rate increased, the mean optimal trigger delays shifted from the mid-diastolic phase to the end-systolic phase and the differences in the mean optimal trigger delay at the four planes were significantly greater for the relative delay

  19. Computational Flow Modeling of Hydrodynamics in Multiphase Trickle-Bed Reactors

    Science.gov (United States)

    Lopes, Rodrigo J. G.; Quinta-Ferreira, Rosa M.

    2008-05-01

    This study aims to incorporate most recent multiphase models in order to investigate the hydrodynamic behavior of a TBR in terms of pressure drop and liquid holdup. Taking into account transport phenomena such as mass and heat transfer, an Eulerian k-fluid model was developed resulting from the volume averaging of the continuity and momentum equations and solved for a 3D representation of the catalytic bed. Computational fluid dynamics (CFD) model predicts hydrodynamic parameters quite well if good closures for fluid/fluid and fluid/particle interactions are incorporated in the multiphase model. Moreover, catalytic performance is investigated with the catalytic wet oxidation of a phenolic pollutant.

  20. Efficiency Improvement of a High Dynamic BLDC Linear Motor by Multiphase Control

    OpenAIRE

    Lemmens, Joris; Vanvlasselaer, Kris; Mulier, Kristof; Goossens, Stijn; Symens, Wim; Driesen, Johan

    2013-01-01

    This paper proposes a multiphase control strategy for a high dynamic brushless DC linear motor as an alternative for conventional three-phase field-oriented control. Analysis of the magnetic field waveforms shows that three-phase control is not optimal for the 6-slot 7-pole motor topology. Therefore, a multiphase control strategy is elaborated which injects currents proportional to the electromotive force into each of the nine stator coil groups. This results in a maximal alignment force ...

  1. Modelling and simulation of multi-phase effects on X-ray elasticity constants

    CERN Document Server

    Freour, S; Guillen, R; François, M X

    2003-01-01

    This paper deals with the calculation of X-ray Elasticity Constants (XEC) of phases embedded in multi-phase polycrystals. A three scales (macroscopic, pseudo-macroscopic, mesoscopic) model based on the classical self-consistent formalism is developed in order to analyse multi-phase effects on XEC values. Simulations are performed for cubic or hexagonal crystallographic structure phases embedded in several two-phases materials. In fact, it is demonstrated that XEC vary with the macroscopic stiffness of the whole polycrystal. In consequence, the constants of one particular phase depend on the elastic behaviour and the volume fraction of all the phases constituting the material. Now, XEC play a leading role in pseudo-macroscopic stresses determination by X-Ray Diffraction (XRD) methods. In this work, a quantitative analysis of the multi-phase effects on stresses determination by XRD methods was performed. Numerical results will be compared and discussed. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  2. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mecartnery, Martha [Univ. of California, Irvine, CA (United States); Graeve, Olivia [Univ. of California, San Diego, CA (United States); Patel, Maulik [Univ. of Liverpool (United Kingdom)

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  3. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    International Nuclear Information System (INIS)

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-01-01

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  4. Novel synthetic approach for 1, 4-dihydroxyanthraquinone and the development of its Lithiated salts as anode material for aqueous rechargeable Lithium-ion batteries

    KAUST Repository

    Gurukar, Suresh Shivappa

    2015-08-17

    The influence of organic electrode materials in the field of lithium ion battery is becoming a keen interest for the present generation scientists. Here we are reporting a novel method of synthesis of electrode material by the combination of sono-chemical and thermal methods. The advantages of organic active material towards lithium ion battery are of core interest of this study. The structural confirmations are by FT-IR, 1H NMR, MALDI-TOF Mass Spectroscopy and powder XRD data. The electrochemical properties of Lithiated-1,4-dihydroxyanthraquinone were studied using electrochemical-techniques such as Cyclic Voltammetry, Galvanostatic Cyclic Potential Limitation and Potentiostatic Electrochemical Impedance Spectroscopy. The satisfactory results towards stability of active species in the aqueous media, reasonable discharge capacity with 0.9 V average voltages and agreeable cycling performance during charge-discharge process with reproducibility are achieved. For the construction of the full cell, the anode material was coupled with the LiNi1/3Co1/3Mn1/3O2 as a cathode material.

  5. A multiphase series-resonant converter with a new topology and a reduced number of thyristors

    NARCIS (Netherlands)

    Huisman, H.

    1995-01-01

    Multiphase series resonant (SR) power converters provide a flexible way to transform power between a utility grid and a multiphase load or source. The current implementations all suffer from a high component count, which makes the use of these power converters unattractive from an economical point

  6. Problems of multiphase fluid filtration

    CERN Document Server

    Konovalov, AN

    1994-01-01

    This book deals with a spectrum of problems related to the mathematical modeling of multiphase filtration. Emphasis is placed on an inseparable triad: model - algorithm - computer code. An analysis of new and traditional filtration problems from the point of view of both their numerical implementation and the reproduction of one or another technological characteristics of the processes under consideration is given. The basic principles which underlie the construction of efficient numerical methods taking into account the filtration problems are discussed: non-evolutionary nature, degeneration,

  7. Multiphase Flow Dynamics 4 Turbulence, Gas Adsorption and Release, Diesel Fuel Properties

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    The present Volume 4 of the successful monograh package “Multiphase Flow Dynamics”is devoted to selected Chapters of the multiphase fluid dynamics that are important for practical applications but did not find place in the previous volumes. The state of the art of the turbulence modeling in multiphase flows is presented. As introduction, some basics of the single phase boundary layer theory including some important scales and flow oscillation characteristics in pipes and rod bundles are presented. Then the scales characterizing the dispersed flow systems are presented. The description of the turbulence is provided at different level of complexity: simple algebraic models for eddy viscosity, simple algebraic models based on the Boussinesq hypothesis, modification of the boundary layer share due to modification of the bulk turbulence, modification of the boundary layer share due to nucleate boiling. The role of the following forces on the mathematical description of turbulent flows is discussed: the lift fo...

  8. Estimating multi-phase pore-scale characteristics from X-ray tomographic data using cluster analysis-based segmentation

    DEFF Research Database (Denmark)

    Wildenschild, D.; Culligan, K.A.; Christensen, Britt Stenhøj Baun

    2006-01-01

    present in grey-scale X-ray tomographic images. The approach is based on a cluster analysis technique, used in combination with various other filtering and skeletonization schemes. We apply this segmentation algorithm to analyze multiphase pore-scale flow subjects such as hysteresis and interfacial...... characterization. The results clearly illustrate the advantage of using X-ray tomography together with cluster analysis-based image processing techniques. We were able to obtain detailed information on pore scale distribution of air and water phases, as well as quantitative measures of air bubble size and air...... of individual pores and interfaces. However, separation of the various phases (fluids and solids) in the grey-scale tomographic images has posed a major problem to quantitative analysis of the data. We present an image processing technique that facilitates identification and separation of the various phases...

  9. Methods of characterization of multiphase Nd-Fe-B melt-spun alloys

    Directory of Open Access Journals (Sweden)

    Grujić A.

    2007-01-01

    Full Text Available Nanocomposite permanent magnetic materials based on Nd-Fe-B alloys with a low Nd content are a new type of permanent magnetic material. The microstructure of these nanocomposite permanent magnets is composed of a mixture of magnetically soft and hard phases providing the so called exchange coupling effect. Beside the optimization process parameters, methods of characterization have a very important role in the design of an optimal magnetic matrix of multiphase melt-spun Nd-Fe-B alloys. Different methods and techniques of characterization were used for observation and study of the microstructure evolution during crystallization. A summary results of measurements using different methods of characterization are presented to enable a better insight into relations between the microstructure and magnetic properties of the investigated melt-spun Nd-Fe-B alloys. .

  10. Multi-phase alternative current machine winding design | Khan ...

    African Journals Online (AJOL)

    ... single-phase to 18-phase excitation. Experimental results of a five-phase induction machine supplied from a static five-phase supply are provided to support the proposed design. Keywords: AC machine, Multi-phase machine, Stator winding, Five-phase. International Journal of Engineering, Science and Technology, Vol.

  11. In Situ High-Resolution Transmission Electron Microscopy (TEM) Observation of Sn Nanoparticles on SnO2 Nanotubes Under Lithiation.

    Science.gov (United States)

    Cheong, Jun Young; Chang, Joon Ha; Kim, Sung Joo; Kim, Chanhoon; Seo, Hyeon Kook; Shin, Jae Won; Yuk, Jong Min; Lee, Jeong Yong; Kim, Il-Doo

    2017-12-01

    We trace Sn nanoparticles (NPs) produced from SnO2 nanotubes (NTs) during lithiation initialized by high energy e-beam irradiation. The growth dynamics of Sn NPs is visualized in liquid electrolytes by graphene liquid cell transmission electron microscopy. The observation reveals that Sn NPs grow on the surface of SnO2 NTs via coalescence and the final shape of agglomerated NPs is governed by surface energy of the Sn NPs and the interfacial energy between Sn NPs and SnO2 NTs. Our result will likely benefit more rational material design of the ideal interface for facile ion insertion.

  12. Seeking simplicity for the understanding of multiphase flows

    Science.gov (United States)

    Stone, Howard A.

    2017-10-01

    Fluid mechanics is a discipline with rich phenomena, with motions occurring over an enormous range of length scales, and spanning a wide range of laminar and turbulent flows, instabilities, and applications in industry, nature, biology, and medicine. The subfield of complex fluids typically refers to those flows where the complexity is introduced, for example, by the presence of suspended particles, multiple phases, soft boundaries, and electrokinetic effects; several distinct multiphase flows of Newtonian fluids make up the examples in this article. Interfaces play a significant role and modify the flow with feedback that further changes the shapes of the interfaces. I will provide examples of our work highlighting (i) new features of classical instabilities triggered by changes in geometry, (ii) multiphase flows relevant to the design of liquid-infused substrates exhibiting effective slip while retaining the trapped liquid, and (iii) unexpected dynamics in flow at a T-junction. The interplay of experiments and mathematical models and/or simulations is critical to the new understanding developed.

  13. Multiphase region of helimagnetic superlattices at low temperature in an extended six-state clock model

    Science.gov (United States)

    Lovelady, D. C.; Harper, H. M.; Brodsky, I. E.; Rabson, D. A.

    2006-05-01

    The variety of magnetic phases observed in rare-earth heterostructures at low temperatures (Jehan et al 1993 Phys. Rev. B 48 5594-606), such as Ho/Y, may be elucidated by an ANNNI-like model Hamiltonian. In previous work modelling bulk Ho (Seno, Rabson and Yeomans 1993 J. Phys. A: Math. Gen. 26 4887-905), such a Hamiltonian with a one-dimensional parameter space produced a single multiphase point. In contrast, the parameter space of the heterostructure model is three dimensional, and instead of an isolated multiphase point, we find two-dimensional multiphase regions. In an example of Villain's 'order from disorder' (Villain, Bidaux, Carton and Conte 1980 J. Physique 41 1263-72 Pimpinelli, Uimin and Villain 1991 J. Phys.: Condens. Matter 3 4693-719), an infinitesimal temperature breaks the ground-state degeneracy. In first order of a low-temperature expansion, we find that the degeneracy is broken everywhere in a multiphase region except on a line. A segment of the line appears to remain multiphase to all orders in a low-temperature expansion when the number L of magnetic layers between non-magnetic spacers is 4 but not for other values of L. For L = 4, the hierarchy of phases more closely resembles that in the ANNNI model than in the bulk six-state clock model on which the present model is based.

  14. Multiphase region of helimagnetic superlattices at low temperature in an extended six-state clock model

    International Nuclear Information System (INIS)

    Lovelady, D C; Harper, H M; Brodsky, I E; Rabson, D A

    2006-01-01

    The variety of magnetic phases observed in rare-earth heterostructures at low temperatures (Jehan et al 1993 Phys. Rev. B 48 5594-606), such as Ho/Y, may be elucidated by an ANNNI-like model Hamiltonian. In previous work modelling bulk Ho (Seno, Rabson and Yeomans 1993 J. Phys. A: Math. Gen. 26 4887-905), such a Hamiltonian with a one-dimensional parameter space produced a single multiphase point. In contrast, the parameter space of the heterostructure model is three dimensional, and instead of an isolated multiphase point, we find two-dimensional multiphase regions. In an example of Villain's 'order from disorder' (Villain, Bidaux, Carton and Conte 1980 J. Physique 41 1263-72; Pimpinelli, Uimin and Villain 1991 J. Phys.: Condens. Matter 3 4693-719), an infinitesimal temperature breaks the ground-state degeneracy. In first order of a low-temperature expansion, we find that the degeneracy is broken everywhere in a multiphase region except on a line. A segment of the line appears to remain multiphase to all orders in a low-temperature expansion when the number L of magnetic layers between non-magnetic spacers is 4 but not for other values of L. For L = 4, the hierarchy of phases more closely resembles that in the ANNNI model than in the bulk six-state clock model on which the present model is based

  15. Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Hao-Ting Shen

    2016-06-01

    Full Text Available The grain boundaries of three Laves phase-related body-center-cubic (bcc solid-solution, metal hydride (MH alloys with different phase abundances were closely examined by scanning electron microscopy (SEM, transmission electron microscopy (TEM, and more importantly, electron backscatter diffraction (EBSD techniques. By using EBSD, we were able to identify the alignment of the crystallographic orientations of the three major phases in the alloys (C14, bcc, and B2 structures. This finding confirms the presence of crystallographically sharp interfaces between neighboring phases, which is a basic assumption for synergetic effects in a multi-phase MH system.

  16. Complementary Constrains on Component based Multiphase Flow Problems, Should It Be Implemented Locally or Globally?

    Science.gov (United States)

    Shao, H.; Huang, Y.; Kolditz, O.

    2015-12-01

    Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in

  17. Evaluation of the atmospheric significance of multiphase reactions in atmospheric secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    Gelencsér

    2005-01-01

    Full Text Available In a simple conceptual cloud-aerosol model the mass of secondary organic aerosol (SOA that may be formed in multiphase reaction in an idealized scenario involving two cloud cycles separated with a cloud-free period is evaluated. The conditions are set to those typical of continental clouds, and each parameter used in the model calculations is selected as a mean of available observational data of individual species for which the multiphase SOA formation route has been established. In the idealized setting gas and aqueous-phase reactions are both considered, but only the latter is expected to yield products of sufficiently low volatility to be retained by aerosol particles after the cloud dissipates. The key variable of the model is the Henry-constant which primarily determines how important multiphase reactions are relative to gas-phase photooxidation processes. The precursor considered in the model is assumed to already have some affinity to water, i.e. it is a compound having oxygen-containing functional group(s. As a principal model output an aerosol yield parameter is calculated for the multiphase SOA formation route as a function of the Henry-constant, and has been found to be significant already above H~103 M atm-1. Among the potential precursors that may be eligible for this mechanism based on their Henry constants, there are a suite of oxygenated compounds such as primary oxidation products of biogenic and anthropogenic hydrocarbons, including, for example, pinonaldehyde. Finally, the analogy of multiphase SOA formation to in-cloud sulfate production is exploited.

  18. A multiphase compressible model for the simulation of multiphase flows

    International Nuclear Information System (INIS)

    Caltagirone, J.P.; Vincent, St.; Caruyer, C.

    2011-01-01

    A compressible model able to manage incompressible two-phase flows as well as compressible motions is proposed. After a presentation of the multiphase compressible concept, the new model and related numerical methods are detailed on fixed structured grids. The presented model is a 1-fluid model with a reformulated mass conservation equation which takes into account the effects of compressibility. The coupling between pressure and flow velocity is ensured by introducing mass conservation terms in the momentum and energy equations. The numerical model is then validated with four test cases involving the compression of an air bubble by water, the liquid injection in a closed cavity filled with air, a bubble subjected to an ultrasound field and finally the oscillations of a deformed air bubble in melted steel. The numerical results are compared with analytical results and convergence orders in space are provided. (authors)

  19. Eulerian Multiphase Population Balance Model of Atomizing, Swirling Flows

    Directory of Open Access Journals (Sweden)

    Narayana P. Rayapati

    2011-06-01

    Full Text Available An Eulerian/Eulerian multiphase flow model coupled with a population balance model is used as the basis for numerical simulation of atomization in swirling flows. The objective of this exercise is to develop a methodology capable of predicting the local point-wise drop size distribution in a spray, such as would be measured by the Phase Doppler Particle Analyzer (PDA. Model predictions are compared to experimental measurements of particle size distributions in an air-blast atomizer spray to demonstrate good qualitative and quantitative agreement. It is observed that the dependence of velocity on drop size inherent in a multiphase description of the drop cloud appears necessary to capture some features of the experimental data. Using this model, we demonstrate the relative contributions of secondary atomization and transport to the variation observed in the downstream spray drop size distribution.

  20. Determining conductivity and mobility values of individual components in multiphase composite Cu{sub 1.97}Ag{sub 0.03}Se

    Energy Technology Data Exchange (ETDEWEB)

    Day, Tristan W.; Brown, David R.; Snyder, G. Jeffrey, E-mail: jsnyder@caltech.edu [Department of Materials Science, California Institute of Technology, MC 309-81, Pasadena, California 91106 (United States); Zeier, Wolfgang G. [Department of Materials Science, California Institute of Technology, MC 309-81, Pasadena, California 91106 (United States); Department of Chemistry, University of Southern California, Seeley G. Mudd Bldg., 3620 McClintock Ave., Los Angeles, California 90089-1062 (United States); Melot, Brent C. [Department of Chemistry, University of Southern California, Seeley G. Mudd Bldg., 3620 McClintock Ave., Los Angeles, California 90089-1062 (United States)

    2014-10-27

    The intense interest in phase segregation in thermoelectrics as a means to reduce the lattice thermal conductivity and to modify the electronic properties from nanoscale size effects has not been met with a method for separately measuring the properties of each phase assuming a classical mixture. Here, we apply effective medium theory for measurements of the in-line and Hall resistivity of a multiphase composite, in this case Cu{sub 1.97}Ag{sub 0.03}Se. The behavior of these properties with magnetic field as analyzed by effective medium theory allows us to separate the conductivity and charge carrier mobility of each phase. This powerful technique can be used to determine the matrix properties in the presence of an unwanted impurity phase, to control each phase in an engineered composite, and to determine the maximum carrier concentration change by a given dopant, making it the first step toward a full optimization of a multiphase thermoelectric material and distinguishing nanoscale effects from those of a classical mixture.

  1. Directional Acoustic Wave Manipulation by a Porpoise via Multiphase Forehead Structure

    Science.gov (United States)

    Zhang, Yu; Song, Zhongchang; Wang, Xianyan; Cao, Wenwu; Au, Whitlow W. L.

    2017-12-01

    Porpoises are small-toothed whales, and they can produce directional acoustic waves to detect and track prey with high resolution and a wide field of view. Their sound-source sizes are rather small in comparison with the wavelength so that beam control should be difficult according to textbook sonar theories. Here, we demonstrate that the multiphase material structure in a porpoise's forehead is the key to manipulating the directional acoustic field. Computed tomography (CT) derives the multiphase (bone-air-tissue) complex, tissue experiments obtain the density and sound-velocity multiphase gradient distributions, and acoustic fields and beam formation are numerically simulated. The results suggest the control of wave propagations and sound-beam formations is realized by cooperation of the whole forehead's tissues and structures. The melon size significantly impacts the side lobes of the beam and slightly influences the main beams, while the orientation of the vestibular sac mainly adjusts the main beams. By compressing the forehead complex, the sound beam can be expanded for near view. The porpoise's biosonar allows effective wave manipulations for its omnidirectional sound source, which can help the future development of miniaturized biomimetic projectors in underwater sonar, medical ultrasonography, and other ultrasonic imaging applications.

  2. Analysis of a bubble coalescence in the multiphase lattice Boltzmann method

    International Nuclear Information System (INIS)

    Ryu, Seung Yeob; Park, Cheon Tae; Lee, Chung Chan; Kim, Keung Koo

    2008-01-01

    Recently, the lattice Boltzmann method (LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over a conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for a pressure, and (3) an ease with multiphase flows, complex geometries and interfacial dynamics may be treated. To study the effect of the mobility coefficient Γ and the width of the interface layer, two stationary bubbles without a collision are considered. The gap of the two bubbles is taken as 4, while the width of the interface (w) and the mobility coefficient Γ are varied. In the present work, the lattice Boltzmann model for multiphase flows proposed by Zheng et al. is used for simulating two stationary bubbles without a collision. By adopting a finite difference gradient operator of a sufficient isotropy, the spurious currents can be made smaller. The main objective of the present work is to establish the lattice Boltzmann method as a viable tool for the simulation of multiphase or multi-component flows

  3. A QCQP Approach for OPF in Multiphase Radial Networks with Wye and Delta Connections: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zamzam, Ahmed, S.; Zhaoy, Changhong; Dall' Anesey, Emiliano; Sidiropoulos, Nicholas D.

    2017-06-27

    This paper examines the AC Optimal Power Flow (OPF) problem for multiphase distribution networks featuring renewable energy resources (RESs). We start by outlining a power flow model for radial multiphase systems that accommodates wye-connected and delta-connected RESs and non-controllable energy assets. We then formalize an AC OPF problem that accounts for both types of connections. Similar to various AC OPF renditions, the resultant problem is a non convex quadratically-constrained quadratic program. However, the so-called Feasible Point Pursuit-Successive Convex Approximation algorithm is leveraged to obtain a feasible and yet locally-optimal solution. The merits of the proposed solution approach are demonstrated using two unbalanced multiphase distribution feeders with both wye and delta connections.

  4. Application of the level set method for multi-phase flow computation in fusion engineering

    International Nuclear Information System (INIS)

    Luo, X-Y.; Ni, M-J.; Ying, A.; Abdou, M.

    2006-01-01

    Numerical simulation of multi-phase flow is essential to evaluate the feasibility of a liquid protection scheme for the power plant chamber. The level set method is one of the best methods for computing and analyzing the motion of interface among the multi-phase flow. This paper presents a general formula for the second-order projection method combined with the level set method to simulate unsteady incompressible multi-phase flow with/out phase change flow encountered in fusion science and engineering. The third-order ENO scheme and second-order semi-implicit Crank-Nicholson scheme is used to update the convective and diffusion term. The numerical results show this method can handle the complex deformation of the interface and the effect of liquid-vapor phase change will be included in the future work

  5. Multiphase nanodomains in a strained BaTiO3 film on a GdScO3 substrate

    Science.gov (United States)

    Kobayashi, Shunsuke; Inoue, Kazutoshi; Kato, Takeharu; Ikuhara, Yuichi; Yamamoto, Takahisa

    2018-02-01

    Controlling the crystal structure of ferroelectric materials via epitaxial strain, which is a well-known technique in strain engineering, can lead to the formation of unique domain structures generating non-intrinsic phenomena such as electronic conductivity, photovoltages, and enhanced piezoelectric characteristics. Strained BaTiO3 films are promising ferroelectric materials as theoretical modeling predicts that different domain morphologies can introduce additional properties not observed in conventional BaTiO3 ceramics. To rationally design materials for practical application, a thorough understanding of the formation mechanisms and stabilities of different domain structures in strained BaTiO3 films is required. However, there have been very few experimental reports on this topic, and details about the domain structures in strained BaTiO3 films are currently lacking. In this paper, we report multiphase nanodomains in a strained BaTiO3 film deposited on an orthorhombic GdScO3 substrate. The phase-transition behavior of the strained BaTiO3 film reveals that it contains multiple phases at room temperature; the film first undergoes a phase-transition upon heating at around 550 K, and then a paraelectric phase forms at temperatures above 690 K. A picometer-scale analysis of the Ti ion displacements, using an advanced scanning transmission electron microscopy technique, is used to characterize the complex multiphase nanodomains, providing useful insights into the control of domain structures in BaTiO3 films by applying epitaxial strain.

  6. Prediction of Separation Length of Turbulent Multiphase Flow Using Radiotracer and Computational Fluid Dynamics Simulation

    International Nuclear Information System (INIS)

    Sugiharto, S.; Kurniadi, R.; Abidin, Z.; Stegowski, Z.; Furman, L.

    2013-01-01

    Multiphase flow modeling presents great challenges due to its extreme importance in various industrial and environmental applications. In the present study, prediction of separation length of multiphase flow is examined experimentally by injection of two kinds of iodine-based radiotracer solutions into a hydrocarbon transport pipeline (HCT) having an inner diameter of 24 in (60,96 m). The main components of fluids in the pipeline are water 95%, crude oil 3% and gas 2%. A radiotracing experiment was carried out at the segment of pipe which is located far from branch points with assumptions that stratified flows in such segment were achieved. Two radiation detectors located at 80 and 100 m from injection point were used to generate residence time distribution (RTD) curve resulting from injection of radiotracer solutions. Multiphase computational fluid dynamics (CFD) simulations using Eulerian-Eulerian control volume and commercial CFD package Fluent 6.2 were employed to simulate separation length of multiphase flow. The results of study shows that the flow velocity of water is higher than the flow rate of crude oil in water-dominated system despite the higher density of water than the density of the crude oil. The separation length in multiphase flow predicted by Fluent mixture model is approximately 20 m, measured from injection point. This result confirms that the placement of the first radiation detector at the distance 80 m from the injection point was correct. (author)

  7. Prediction of Separation Length of Turbulent Multiphase Flow Using Radiotracer and Computational Fluid Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    S. Sugiharto1

    2013-04-01

    Full Text Available Multiphase flow modeling presents great challenges due to its extreme importance in various industrial and environmental applications. In the present study, prediction of separation length of multiphase flow is examined experimentally by injection of two kinds of iodine-based radiotracer solutions into a hydrocarbon transport pipeline (HCT having an inner diameter of 24 in (60,96 m. The main components of fluids in the pipeline are water 95%, crude oil 3% and gas 2%. A radiotracing experiment was carried out at the segment of pipe which is located far from branch points with assumptions that stratified flows in such segment were achieved. Two radiation detectors located at 80 and 100 m from injection point were used to generate residence time distribution (RTD curve resulting from injection of radiotracer solutions. Multiphase computational fluid dynamics (CFD simulations using Eulerian-Eulerian control volume and commercial CFD package Fluent 6.2 were employed to simulate separation length of multiphase flow. The results of study shows that the flow velocity of water is higher than the flow rate of crude oil in water-dominated system despite the higher density of water than the density of the crude oil. The separation length in multiphase flow predicted by Fluent mixture model is approximately 20 m, measured from injection point. This result confirms that the placement of the first radiation detector at the distance 80 m from the injection point was correct

  8. Multi-Phase Modeling of Rainbird Water Injection

    Science.gov (United States)

    Vu, Bruce T.; Moss, Nicholas; Sampson, Zoe

    2014-01-01

    This paper describes the use of a Volume of Fluid (VOF) multiphase model to simulate the water injected from a rainbird nozzle used in the sound suppression system during launch. The simulations help determine the projectile motion for different water flow rates employed at the pad, as it is critical to know if water will splash on the first-stage rocket engine during liftoff.

  9. Multiphase lattice Boltzmann on the Cell Broadband Engine

    International Nuclear Information System (INIS)

    Belletti, F.; Mantovani, F.; Tripiccione, R.; Biferale, L.; Schifano, S.F.; Toschi, F.

    2009-01-01

    Computational experiments are one of the most used and flexible investigation tools in fluid dynamics. The Lattice Boltzmann Equation is a well established computational method particularly promising for multi-phase flows at micro and macro scales. Here we present preliminary results on performances of the Lbe method on the Cell Broadband Engine platform.

  10. Slush Fund: Modeling the Multiphase Physics of Oceanic Ices

    Science.gov (United States)

    Buffo, J.; Schmidt, B. E.

    2016-12-01

    The prevalence of ice interacting with an ocean, both on Earth and throughout the solar system, and its crucial role as the mediator of exchange between the hydrosphere below and atmosphere above, have made quantifying the thermodynamic, chemical, and physical properties of the ice highly desirable. While direct observations of these quantities exist, their scarcity increases with the difficulty of obtainment; the basal surfaces of terrestrial ice shelves remain largely unexplored and the icy interiors of moons like Europa and Enceladus have never been directly observed. Our understanding of these entities thus relies on numerical simulation, and the efficacy of their incorporation into larger systems models is dependent on the accuracy of these initial simulations. One characteristic of seawater, likely shared by the oceans of icy moons, is that it is a solution. As such, when it is frozen a majority of the solute is rejected from the forming ice, concentrating in interstitial pockets and channels, producing a two-component reactive porous media known as a mushy layer. The multiphase nature of this layer affects the evolution and dynamics of the overlying ice mass. Additionally ice can form in the water column and accrete onto the basal surface of these ice masses via buoyancy driven sedimentation as frazil or platelet ice. Numerical models hoping to accurately represent ice-ocean interactions should include the multiphase behavior of these two phenomena. While models of sea ice have begun to incorporate multiphase physics into their capabilities, no models of ice shelves/shells explicitly account for the two-phase behavior of the ice-ocean interface. Here we present a 1D multiphase model of floating oceanic ice that includes parameterizations of both density driven advection within the `mushy layer' and buoyancy driven sedimentation. The model is validated against contemporary sea ice models and observational data. Environmental stresses such as supercooling and

  11. Multiphase flow of immiscible fluids on unstructured moving meshes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam

    2012-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...

  12. Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam

    2013-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...

  13. A review of spurious currents in the lattice Boltzmann method for multiphase flows

    Energy Technology Data Exchange (ETDEWEB)

    Conning Ton, Kevin; Lee, Tae Hun [The City College of the City Univ. of New York, New York (United States)

    2012-12-15

    A spurious current is a small amplitude artificial velocity field which arises from an imbalance between discretized forces in multiphase/multi component flows. If it occurs, the velocity field may persist indefinitely, preventing the achievement of a true equilibrium state. Spurious velocities can sometimes be as large as the characteristic velocities of the problem, causing severe instability and ambiguity between physical and spurious velocities. They are typically exacerbated by large values of numerical surface tension or when the two fluids being simulated have large density ratios. The resulting instability can restrict what parameters may be simulated. To varying degrees, spurious currents are found in all multiphase flow models of the lattice Boltzmann method (LBM). There have been many studies of the occurrence of the phenomenon, and many suggestions on how to eliminate it. This paper reviews the three main models of simulating multiphase/multi component flow in the lattice Boltzmann method, as well as the subsequent modifications made in order to reduce or eliminate spurious currents.

  14. The validity of multiphase DNS initialized on the basis of single--point statistics

    Science.gov (United States)

    Subramaniam, Shankar

    1999-11-01

    A study of the point--process statistical representation of a spray reveals that single--point statistical information contained in the droplet distribution function (ddf) is related to a sequence of single surrogate--droplet pdf's, which are in general different from the physical single--droplet pdf's. The results of this study have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single--point statistics such as the average number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets.

  15. Micro-positron emission tomography for measuring sub-core scale single and multiphase transport parameters in porous media

    Science.gov (United States)

    Zahasky, Christopher; Benson, Sally M.

    2018-05-01

    Accurate descriptions of heterogeneity in porous media are important for understanding and modeling single phase (e.g. contaminant transport, saltwater intrusion) and multiphase (e.g. geologic carbon storage, enhanced oil recovery) transport problems. Application of medical imaging to experimentally quantify these processes has led to significant progress in material characterization and understanding fluid transport behavior at laboratory scales. While widely utilized in cancer diagnosis and management, cardiology, and neurology, positron emission tomography (PET) has had relatively limited applications in earth science. This study utilizes a small-bore micro-PET scanner to image and quantify the transport behavior of pulses of a conservative aqueous radiotracer injected during single and multiphase flow experiments in two heterogeneous Berea sandstone cores. The cores are discretized into axial-parallel streamtubes, and using the reconstructed micro-PET data, expressions are derived from spatial moment analysis for calculating sub-core tracer flux and pore water velocity. Using the flux and velocity measurements, it is possible to calculate porosity and saturation from volumetric flux balance, and calculate permeability and water relative permeability from Darcy's law. Second spatial moment analysis enables measurement of sub-core solute dispersion during both single phase and multiphase experiments. A numerical simulation model is developed to verify the assumptions of the streamtube dimension reduction technique. A variation of the reactor ratio is presented as a diagnostic metric to efficiently determine the validity of the streamtube approximation in core and column-scale experiments. This study introduces a new method to quantify sub-core permeability, relative permeability, and dispersion. These experimental and analytical methods provide a foundation for future work on experimental measurements of differences in transport behavior across scales.

  16. Calculation of Multiphase Chemical Equilibrium by the Modified RAND Method

    DEFF Research Database (Denmark)

    Tsanas, Christos; Stenby, Erling Halfdan; Yan, Wei

    2017-01-01

    method. The modified RAND extends the classical RAND method from single-phase chemical reaction equilibrium of ideal systems to multiphase chemical equilibrium of nonideal systems. All components in all phases are treated in the same manner and the system Gibbs energy can be used to monitor convergence....... This is the first time that modified RAND was applied to multiphase chemical equilibrium systems. The combined algorithm was tested using nine examples covering vapor–liquid (VLE) and vapor–liquid–liquid equilibria (VLLE) of ideal and nonideal reaction systems. Successive substitution provided good initial......A robust and efficient algorithm for simultaneous chemical and phase equilibrium calculations is proposed. It combines two individual nonstoichiometric solving procedures: a nested-loop method with successive substitution for the first steps and final convergence with the second-order modified RAND...

  17. Annihilation Radiation Gauge for Relative Density and Multiphase Fluid Monitoring

    Directory of Open Access Journals (Sweden)

    Vidal A.

    2014-03-01

    Full Text Available The knowledge of the multi-phase flow parameters are important for the petroleum industry, specifically during the transport in pipelines and network related to exploitation’s wells. Crude oil flow is studied by Monte Carlo simulation and experimentally to determine transient liquid phase in a laboratory system. Relative density and fluid phase time variation is monitored employing a fast nuclear data acquisition setup that includes two large volume BaF2 scintillator detectors coupled to an electronic chain and data display in a LabView® environment. Fluid parameters are determined by the difference in count rate of coincidence pulses. The operational characteristics of the equipment indicate that 2 % deviation in the CCR corresponds to a variation, on average, of 20 % in the fraction of liquid of the multiphase fluid.

  18. multiUQ: An intrusive uncertainty quantification tool for gas-liquid multiphase flows

    Science.gov (United States)

    Turnquist, Brian; Owkes, Mark

    2017-11-01

    Uncertainty quantification (UQ) can improve our understanding of the sensitivity of gas-liquid multiphase flows to variability about inflow conditions and fluid properties, creating a valuable tool for engineers. While non-intrusive UQ methods (e.g., Monte Carlo) are simple and robust, the cost associated with these techniques can render them unrealistic. In contrast, intrusive UQ techniques modify the governing equations by replacing deterministic variables with stochastic variables, adding complexity, but making UQ cost effective. Our numerical framework, called multiUQ, introduces an intrusive UQ approach for gas-liquid flows, leveraging a polynomial chaos expansion of the stochastic variables: density, momentum, pressure, viscosity, and surface tension. The gas-liquid interface is captured using a conservative level set approach, including a modified reinitialization equation which is robust and quadrature free. A least-squares method is leveraged to compute the stochastic interface normal and curvature needed in the continuum surface force method for surface tension. The solver is tested by applying uncertainty to one or two variables and verifying results against the Monte Carlo approach. NSF Grant #1511325.

  19. Convection in multiphase fluid flows using lattice Boltzmann methods

    NARCIS (Netherlands)

    Biferale, L.; Perlekar, P.; Sbragaglia, M.; Toschi, F.

    2012-01-01

    We present high-resolution numerical simulations of convection in multiphase flows (boiling) using a novel algorithm based on a lattice Boltzmann method. We first study the thermodynamical and kinematic properties of the algorithm. Then, we perform a series of 3D numerical simulations changing the

  20. Adaptive mesh refinement and multilevel iteration for multiphase, multicomponent flow in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Hornung, R.D. [Duke Univ., Durham, NC (United States)

    1996-12-31

    An adaptive local mesh refinement (AMR) algorithm originally developed for unsteady gas dynamics is extended to multi-phase flow in porous media. Within the AMR framework, we combine specialized numerical methods to treat the different aspects of the partial differential equations. Multi-level iteration and domain decomposition techniques are incorporated to accommodate elliptic/parabolic behavior. High-resolution shock capturing schemes are used in the time integration of the hyperbolic mass conservation equations. When combined with AMR, these numerical schemes provide high resolution locally in a more efficient manner than if they were applied on a uniformly fine computational mesh. We will discuss the interplay of physical, mathematical, and numerical concerns in the application of adaptive mesh refinement to flow in porous media problems of practical interest.

  1. Multiphasic modeling of charged solute transport across articular cartilage: Application of multi-zone finite-bath model.

    Science.gov (United States)

    Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A

    2016-06-14

    Charged and uncharged solutes penetrate through cartilage to maintain the metabolic function of chondrocytes and to possibly restore or further breakdown the cartilage tissue in different stages of osteoarthritis. In this study the transport of charged solutes across the various zones of cartilage was quantified, taken into account the physicochemical interactions between the solute and the cartilage constituents. A multiphasic finite-bath finite element (FE) model was developed to simulate equine cartilage diffusion experiments that used a negatively charged contrast agent (ioxaglate) in combination with serial micro-computed tomography (micro-CT) to measure the diffusion. By comparing the FE model with the experimental data both the diffusion coefficient of ioxaglate and the fixed charge density (FCD) were obtained. In the multiphasic model, cartilage was divided into multiple (three) zones to help understand how diffusion coefficient and FCD vary across cartilage thickness. The direct effects of charged solute-FCD interaction on diffusion were investigated by comparing the diffusion coefficients derived from the multiphasic and biphasic-solute models. We found a relationship between the FCD obtained by the multiphasic model and ioxaglate partitioning obtained from micro-CT experiments. Using our multi-zone multiphasic model, diffusion coefficient of the superficial zone was up to ten-fold higher than that of the middle zone, while the FCD of the middle zone was up to almost two-fold higher than that of the superficial zone. In conclusion, the developed finite-bath multiphasic model provides us with a non-destructive method by which we could obtain both diffusion coefficient and FCD of different cartilage zones. The outcomes of the current work will also help understand how charge of the bath affects the diffusion of a charged molecule and also predict the diffusion behavior of a charged solute across articular cartilage. Copyright © 2016 Elsevier Ltd. All

  2. Analysis of hygral induced crack growth in multiphase materials

    NARCIS (Netherlands)

    Sadouki, H.; Van Mier, J.G.M.

    1996-01-01

    In this paper a numerical model for simulating crack growth processes caused by moisture movement in a porous multiphase material like concrete is proposed. In the model, the material is schematized as a regular triangular network of beam elements. The meso-material structure of the material is

  3. Novel image reconstruction algorithm for multi-phase flow tomography system using γ ray method

    International Nuclear Information System (INIS)

    Hao Kuihong; Wang Huaxiang; Gao Mei

    2007-01-01

    After analyzing the reason of image reconstructed algorithm by using the conventional back projection (IBP) is prone to produce spurious line, and considering the characteristic of multi-phase flow tomography, a novel image reconstruction algorithm is proposed, which carries out the intersection calculation using back projection data. This algorithm can obtain a perfect system point spread function, and can eliminate spurious line better. Simulating results show that the algorithm is effective for identifying multi-phase flow pattern. (authors)

  4. Multi-phase chemistry in process simulation - MASIT04 (VISTA)

    Energy Technology Data Exchange (ETDEWEB)

    Brink, A.; Li Bingzhi; Hupa, M. (Aabo Akademi University, Combustion and Materials Chemistry, Turku (Finland)) (and others)

    2008-07-01

    A new generation of process models has been developed by using advanced multi-phase thermochemistry. The generality of the thermodynamic free energy concept enables use of common software tools for high and low temperature processes. Reactive multi-phase phenomena are integrated to advanced simulation procedures by using local equilibrium or constrained state free energy computation. The high-temperature applications include a process model for the heat recovery of copper flash smelting and coupled models for converter and bloom casting operations in steel-making. Wet suspension models are developed for boiler and desalination water chemistry, flash evaporation of black liquor and for selected fibre-line and paper-making processes. The simulation combines quantitative physical and chemical data from reactive flows to form their visual images, thus providing efficient tools for engineering design and industrial decision-making. Economic impacts are seen as both better process operations and improved end products. The software tools developed are internationally commercialised and being used to support Finnish process technology exports. (orig.)

  5. Surface Tension of Multi-phase Flow with Multiple Junctions Governed by the Variational Principle

    International Nuclear Information System (INIS)

    Matsutani, Shigeki; Nakano, Kota; Shinjo, Katsuhiko

    2011-01-01

    We explore a computational model of an incompressible fluid with a multi-phase field in three-dimensional Euclidean space. By investigating an incompressible fluid with a two-phase field geometrically, we reformulate the expression of the surface tension for the two-phase field found by Lafaurie et al. (J Comput Phys 113:134–147, 1994) as a variational problem related to an infinite dimensional Lie group, the volume-preserving diffeomorphism. The variational principle to the action integral with the surface energy reproduces their Euler equation of the two-phase field with the surface tension. Since the surface energy of multiple interfaces even with singularities is not difficult to be evaluated in general and the variational formulation works for every action integral, the new formulation enables us to extend their expression to that of a multi-phase (N-phase, N ≥ 2) flow and to obtain a novel Euler equation with the surface tension of the multi-phase field. The obtained Euler equation governs the equation for motion of the multi-phase field with different surface tension coefficients without any difficulties for the singularities at multiple junctions. In other words, we unify the theory of multi-phase fields which express low dimensional interface geometry and the theory of the incompressible fluid dynamics on the infinite dimensional geometry as a variational problem. We apply the equation to the contact angle problems at triple junctions. We computed the fluid dynamics for a two-phase field with a wall numerically and show the numerical computational results that for given surface tension coefficients, the contact angles are generated by the surface tension as results of balances of the kinematic energy and the surface energy.

  6. Differentiating the role of lithium and oxygen in retaining deuterium on lithiated graphite plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C. N. [Fusion Safety Program, Idaho National Laboratory, P.O. Box 1625-7113, Idaho Falls, Idaho 83415 (United States); School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States); Allain, J. P. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States); Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Illinois 61801 (United States); Luitjohan, K. E. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States); Krstic, P. S. [Institute for Advanced Computational Science, Stony Brook University, New York 11794 (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); TheoretiK, Knoxville, Tennessee 379XX (United States); Dadras, J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095 (United States); Skinner, C. H. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-05-15

    Laboratory experiments have been used to investigate the fundamental interactions responsible for deuterium retention in lithiated graphite. Oxygen was found to be present and play a key role in experiments that simulated NSTX lithium conditioning, where the atomic surface concentration can increase to >40% when deuterium retention chemistry is observed. Quantum-classical molecular dynamic simulations elucidated this oxygen-deuterium effect and showed that oxygen retains significantly more deuterium than lithium in a simulated matrix with 20% lithium, 20% oxygen, and 60% carbon. Simulations further show that deuterium retention is even higher when lithium is removed from the matrix. Experiments artificially increased the oxygen content in graphite to ∼16% and then bombarded with deuterium. X-ray photoelectron spectroscopy showed depletion of the oxygen and no enhanced deuterium retention, thus demonstrating that lithium is essential in retaining the oxygen that thereby retains deuterium.

  7. Multi-Phase Modular Drive System: A Case Study in Electrical Aircraft Applications

    Directory of Open Access Journals (Sweden)

    Charles Onambele

    2017-12-01

    Full Text Available In this article, an advanced multiphase modular power drive prototype is developed for More Electric Aircraft (MEA. The proposed drive is designed to supply a multi-phase permanent magnet (PM motor rating 120 kW with 24 slots and 11 pole pairs. The power converter of the drive system is based on Silicon Carbide Metal Oxide Semiconductor Field-Effect Transistor (SiC MOSFET technology to operate at high voltage, high frequency and low reverse recovery current. Firstly, an experimental characterization test is performed for the selected SiC power module in harsh conditions to evaluate the switching energy losses. Secondly, a finite element thermal analysis based on Ansys-Icepak is accomplished to validate the selected cooling system for the power converter. Thirdly, a co-simulation model is developed using Matlab-Simulink and LTspice® to evaluate the SiC power module impact on the performance of a multiphase drive system at different operating conditions. The results obtained show that the dynamic performance and efficiency of the power drive are significantly improved, which makes the proposed system an excellent candidate for future aircraft applications.

  8. Experimental and computational analysis of pressure response in a multiphase flow loop

    Science.gov (United States)

    Morshed, Munzarin; Amin, Al; Rahman, Mohammad Azizur; Imtiaz, Syed

    2016-07-01

    The characteristics of multiphase fluid flow in pipes are useful to understand fluid mechanics encountered in the oil and gas industries. In the present day oil and gas exploration is successively inducing subsea operation in the deep sea and arctic condition. During the transport of petroleum products, understanding the fluid dynamics inside the pipe network is important for flow assurance. In this case the information regarding static and dynamic pressure response, pressure loss, optimum flow rate, pipe diameter etc. are the important parameter for flow assurance. The principal aim of this research is to represents computational analysis and experimental analysis of multi-phase (L/G) in a pipe network. This computational study considers a two-phase fluid flow through a horizontal flow loop with at different Reynolds number in order to determine the pressure distribution, frictional pressure loss profiles by volume of fluid (VOF) method. However, numerical simulations are validated with the experimental data. The experiment is conducted in 76.20 mm ID transparent circular pipe using water and air in the flow loop. Static pressure transducers are used to measure local pressure response in multiphase pipeline.

  9. New Multiphase Hybrid Boost Converter with Wide Conversion Ratio for PV System

    Directory of Open Access Journals (Sweden)

    Ioana-Monica Pop-Calimanu

    2014-01-01

    Full Text Available A new multiphase hybrid boost converter, with wide conversion ratio as a solution for photovoltaic energy system, is presented in this paper. To ensure that all the phases of the converter operate at the same switching frequency we use interleaving topology. The proposed converter can be used as an interface between the PV system and the DC load/inverter. This multiphase converter has the advantage of reduced value and physical size of the input and output capacitor as well as the effort for the inductors. To validate the operation of the converter we provide the analyses and the simulation results of the converter.

  10. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows

    Science.gov (United States)

    Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.

    2017-09-01

    Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.

  11. A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis

    NARCIS (Netherlands)

    Du, P.; Carneiro, J.T.; Moulijn, J.A.; Mul, Guido

    2008-01-01

    A novel reactor for multi-phase photocatalysis is presented, the so-called internally illuminated monolith reactor (IIMR). In the concept of the IIMR, side light emitting fibers are placed inside the channels of a ceramic monolith, equipped with a TiO2 photocatalyst coated on the wall of each

  12. Multiphase fluid structure interaction in bends and T-joints

    NARCIS (Netherlands)

    Cargnelutti, M.F.; Belfroid, S.P.C.; Schiferli, W.; Osch, M.M.E. van

    2010-01-01

    Air-water experiments were carried out in a horizontal 1" pipe system to measure the magnitude of the forces induced by the multiphase flow. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating conditions. Five different configurations

  13. Development and Research of Peristaltic Multiphase Piezoelectric Micro-Pump

    Science.gov (United States)

    Vinogradov, Alexander N.; Ivanikin, Igor A.; Lubchenco, Roman V.; Matveev, Yegor V.; Titov, Pavel A.

    2016-01-01

    The paper presents the results of a study of existing models and mathematical representations of a range of truly peristaltic multiphase micro-pumps with a piezoelectric actuator (piezo drive). Piezo drives with different types of substrates use vertical movements at deformation of individual piezoelectric elements, which define device…

  14. Modified Invasion Percolation Models for Multiphase Processes

    Energy Technology Data Exchange (ETDEWEB)

    Karpyn, Zuleima [Pennsylvania State Univ., State College, PA (United States)

    2015-01-31

    This project extends current understanding and modeling capabilities of pore-scale multiphase flow physics in porous media. High-resolution X-ray computed tomography imaging experiments are used to investigate structural and surface properties of the medium that influence immiscible displacement. Using experimental and computational tools, we investigate the impact of wetting characteristics, as well as radial and axial loading conditions, on the development of percolation pathways, residual phase trapping and fluid-fluid interfacial areas.

  15. Isothermal Multiphase Flash Calculations with the PC-SAFT Equation of State

    International Nuclear Information System (INIS)

    Justo-Garcia, Daimler N.; Garcia-Sanchez, Fernando; Romero-Martinez, Ascencion

    2008-01-01

    A computational approach for isothermal multiphase flash calculations with the PC-SAFT (Perturbed-Chain Statistical Associating Fluid Theory) equation of state is presented. In the framework of the study of fluid phase equilibria of multicomponent systems, the general multiphase problem is the single most important calculation which consists of finding the correct number and types of phases and their corresponding equilibrium compositions such that the Gibbs energy of the system is a minimum. For solving this problem, the system Gibbs energy was minimized using a rigorous method for thermodynamic stability analysis to find the most stable state of the system. The efficiency and reliability of the approach to predict and calculate complex phase equilibria are illustrated by solving three typical problems encountered in the petroleum industry

  16. Ultrasonic techniques for fluids characterization

    CERN Document Server

    Povey, Malcolm J W

    1997-01-01

    This book is a comprehensive and practical guide to the use of ultrasonic techniques for the characterization of fluids. Focusing on ultrasonic velocimetry, the author covers the basic topics and techniques necessaryfor successful ultrasound measurements on emulsions, dispersions, multiphase media, and viscoelastic/viscoplastic materials. Advanced techniques such as scattering, particle sizing, and automation are also presented. As a handbook for industrial and scientific use, Ultrasonic Techniques for Fluids Characterization is an indispensable guide to chemists and chemical engineers using ultrasound for research or process monitoring in the chemical, food processing, pharmaceutical, cosmetic, biotechnology,and fuels industries. Key Features * Appeals to anyone using ultrasound to study fluids * Provides the first detailed description of the ultrasound profiling technique for dispersions * Describes new techniques for measuring phase transitions and nucleation, such as water/ice and oil/fat * Presents the l...

  17. Persistent Homology to describe Solid and Fluid Structures during Multiphase Flow

    Science.gov (United States)

    Herring, A. L.; Robins, V.; Liu, Z.; Armstrong, R. T.; Sheppard, A.

    2017-12-01

    The question of how to accurately and effectively characterize essential fluid and solid distributions and structures is a long-standing topic within the field of porous media and fluid transport. For multiphase flow applications, considerable research effort has been made to describe fluid distributions under a range of conditions; including quantification of saturation levels, fluid-fluid pressure differences and interfacial areas, and fluid connectivity. Recent research has effectively used topological metrics to describe pore space and fluid connectivity, with researchers demonstrating links between pore-scale nonwetting phase topology to fluid mobilization and displacement mechanisms, relative permeability, fluid flow regimes, and thermodynamic models of multiphase flow. While topology is clearly a powerful tool to describe fluid distribution, topological metrics by definition provide information only on the connectivity of a phase, not its geometry (shape or size). Physical flow characteristics, e.g. the permeability of a fluid phase within a porous medium, are dependent on the connectivity of the pore space or fluid phase as well as the size of connections. Persistent homology is a technique which provides a direct link between topology and geometry via measurement of topological features and their persistence from the signed Euclidean distance transform of a segmented digital image (Figure 1). We apply persistent homology analysis to measure the occurrence and size of pore-scale topological features in a variety of sandstones, for both the dry state and the nonwetting phase fluid during two-phase fluid flow (drainage and imbibition) experiments, visualized with 3D X-ray microtomography. The results provide key insights into the dominant topological features and length scales of a media which control relevant field-scale engineering properties such as fluid trapping, absolute permeability, and relative permeability.

  18. Application of GPU to computational multiphase fluid dynamics

    International Nuclear Information System (INIS)

    Nagatake, T; Kunugi, T

    2010-01-01

    The MARS (Multi-interfaces Advection and Reconstruction Solver) [1] is one of the surface volume tracking methods for multi-phase flows. Nowadays, the performance of GPU (Graphics Processing Unit) is much higher than the CPU (Central Processing Unit). In this study, the GPU was applied to the MARS in order to accelerate the computation of multi-phase flows (GPU-MARS), and the performance of the GPU-MARS was discussed. From the performance of the interface tracking method for the analyses of one-directional advection problem, it is found that the computing time of GPU(single GTX280) was around 4 times faster than that of the CPU (Xeon 5040, 4 threads parallelized). From the performance of Poisson Solver by using the algorithm developed in this study, it is found that the performance of the GPU showed around 30 times faster than that of the CPU. Finally, it is confirmed that the GPU showed the large acceleration of the fluid flow computation (GPU-MARS) compared to the CPU. However, it is also found that the double-precision computation of the GPU must perform with very high precision.

  19. Case study in Venezuela : performance of multiphase meter in extra heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Marin, A. [Petroleos de Venezuela SA, Caracas (Venezuela); Bornia, O.; Pinguet, B. [Schlumberger Canada Ltd., Edmonton, AB (Canada)

    2008-10-15

    The performance of a multiphase meter that combines Venturi and multi energy gamma rays was investigated during operation in an extra heavy oil field in Venezuela. The Orocual field in Monagas is one of the most diverse oilfields in Venezuela. It produces gas condensate, light and medium oil and has recently started to produce from a heavy and extra-heavy oil reservoir, with a gravity between 8.6 and 11 API and a viscosity range from 6 Pa.s to more than 20 Pa.s at line conditions. Petroleos de Venezuela SA (PDVSA) is currently using cold production systems in this field. PDVSA attempted to estimate the liquid flow rate using conventional storage tanks but was unable to evaluate the gas production in such an environment of low GOR with emulsion, large amounts of foam and high viscosity. Since the density of heavy oil is close to the density of water, gravity separation cannot be applied. Also, since heavy oil is very viscous, proper separation requires a long retention time, which is not feasible in terms of space or economy. In addition, gas bubbles could not flow freely and remained as a gas phase trapped inside the liquid, resulting in an overestimation of some of the liquid flow rate. In order to measure the field's oil, water and gas flow rates, PDVSA tried several multiphase meters but found that a Venturi and multi energy gamma ray combination was the only solution able to accurately measure multiphase flow in its extra heavy oil. A test demonstrated that, compared to a tank system, the overall uncertainty of the Venturi combination was better than 2 per cent. This extended the operating envelope for PDVSA for using this multiphase metering technology, providing the capability to monitor and optimize in real-time the production in this extra heavy oil field. 15 refs., 10 figs.

  20. A novel anti-frictional multiphase layer produced by plasma nitriding of PVD titanium coated ZL205A aluminum alloy

    Science.gov (United States)

    Lu, C.; Yao, J. W.; Wang, Y. X.; Zhu, Y. D.; Guo, J. H.; Wang, Y.; Fu, H. Y.; Chen, Z. B.; Yan, M. F.

    2018-02-01

    The heat treatment (consisting of solid solution and aging), is integrated with the nitriding process of titanium coated ZL205A aluminum alloy to improve the surface and matrix mechanical properties simultaneously. Two-step duplex treatment is adopted to prepare the gradient multiphase layer on a magnesium-free ZL205A aluminum-copper based alloy. Firstly, pure titanium film is deposited on the aluminum alloy substrate using magnetron sputtering. Secondly, the Ti-coated specimen is nitrided at the solid solution temperature of the substrate alloying elements in a gas mixture of N2 and H2 and aged at 175 °C. The microstructure evolution, microhardness as well as the wear resistance of obtained multiphase layers are investigated by means of scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), microhardness tester and pin-on-disc tribometer. The multiphase layer, dominated by TiN0.3 or Al3Ti, is prepared with significantly increased layer depth after duplex treatment. The surface hardness of multiphase layer is remarkably improved from 23.7HV to 457HV. The core matrix hardness is also increased to 65HV after aging. The wear rate of the multiphase layer decreases about 55.22% and 49.28% in comparison with the aged and Ti coated specimens, respectively. The predominant wear mechanism for the multiphase layer is abrasive and oxidation, but severe adhesive wear for the aged and Ti coated specimens.

  1. The use of tomographic techniques in the mineral processing Industry. A review

    International Nuclear Information System (INIS)

    Witika, L.K.; Jere, E.H.

    2002-01-01

    Process tomographic techniques may be used to analyse the internal state of most of the multiphase process engineering systems such as material segregation in a reactor multiphase flow in pipes and the spatial resolution of mineral grains in multiphase particles. These techniques include radiation computed tomography (X-ray or ray), electrical methods(capacitance, impedance and inductive tomography) positron emission tomography,optical tomography, microwave tomography, acoustic tomographical methods and many more. Many potential applications exist for process tomographic instrumentation for quantitative analysis and fault-detection purposes. Amongst these, electrical methods are widely used for those mineral processes deserving particular attention such as dense-medium separation, hydro cyclones, flotation cells and columns, gas-liquid absorbers, solvent extraction and other liquid-liquid processes, filtration and other solid-liquid processes, grinding mills (both dry and wet, conveyors and hoppers). Development in on-line measurement instrumentation now allow direct observation of the behaviour of fluids inside mineral separation equipment. This offers the possibility to acquire process data to enable models to be devised, to verify theoretical computational fluid dynamics predictions and control of various unit processes. In this review, the most important tomographic sensing methods are reviewed. Examples of the implementation of some electrical methods are illustrated. (authors)

  2. Application of multiphase flow methods to horizontal underbalanced drilling

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S. P.; Gregory, G. A.; Munro, N.; Muqeem, M.

    1998-12-31

    Ways in which multiphase flow pressure loss calculations can be used in the design and optimization of underbalanced drilling operations are demonstrated. Existing pressure loss calculation methods are evaluated using detailed field measurements for three oil wells and one gas well drilled underbalanced with coiled tubing. 10 refs., 3 tabs., 17 figs.

  3. A multiphase series-resonant converter with a reduced number of thyristors and common grounds for inputs and outputs

    NARCIS (Netherlands)

    Huisman, H.

    1993-01-01

    Multiphase series-resonant (SR) power converters provide a flexible way to transform power between a utility grid and a multiphase load or source. The current implementations all suffer from a high component count, which makes the use of these converters unattractive from an economical point of

  4. Comparative FEM-based Analysis of Multiphase Induction Motor

    Directory of Open Access Journals (Sweden)

    Leonard Livadaru

    2014-09-01

    Full Text Available This paper presents a comparative study of multiphase induction motor, which has alternately three-, five- and six-phase stator winding. The machine has been designed particularly for this purpose and has individual ring coils placed in each stator slot. The study consists in FEM analyses and mainly looks for the particularities of magnetic quantities such as air-gap flux density and electromagnetic torque.

  5. Multiphase flow and phase change in microgravity: Fundamental research and strategic research for exploration of space

    Science.gov (United States)

    Singh, Bhim S.

    2003-01-01

    NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel

  6. Multiphase simulation of mine waters and aqueous leaching processes

    Directory of Open Access Journals (Sweden)

    Pajarre Risto

    2016-01-01

    Full Text Available Managing of large amounts of water in mining and mineral processing sites remains a concern in both actively operated and closed mining areas. When the mining site with its metal or concentrate producing units is operational, the challenge is to find either ways for economical processing with maximum yields, while minimizing the environmental impact of the water usage and waste salt treatments. For safe closure of the site, the environmental control of possible drainage will be needed. For both challenges, the present-day multiphase process simulations tools can be used to provide improved accuracy and better economy in controlling the smooth and environmentally sound operation of the plant. One of the pioneering studies in using the multiphase thermodynamic software in simulation of hydrometallurgical processes was that of Koukkari et al. [1]. The study covered the use of Solgasmix equilibrium software for a number of practical acid digesters. The models were made for sulfuric acid treatments in titania pigment production and in NPK fertilizer manufacturing. During the past two decades the extensive data assessment has taken place particularly in geochemistry and a new versions of geochemical multiphase equilibrium software has been developed. On the other hand, there has been some progress in development of the process simulation software in all the aforementioned fields. Thus, the thermodynamic simulation has become a tool of great importance in development of hydrometallurgical processes. The presentation will cover three example cases of either true pilot or industrial systems including a South African acid mine water drainage treatment, hydrometallurgical extraction of rare earths from uranium leachate in Russia and a multistage process simulation of a Finnish heap leaching mine with its subsequent water treatment system.

  7. Non-isothermal effects on multi-phase flow in porous medium

    DEFF Research Database (Denmark)

    Singh, Ashok; Wang, W; Park, C. H.

    2010-01-01

    In this paper a ppT -formulation for non-isothermal multi-phase flow is given including diffusion and latent heat effects. Temperature and pressure dependencies of governing parameters are considered, in particular surface tension variation on phase interfaces along with temperature changes. A we...

  8. Euler-Lagrange modeling of the hydrodynamics of dense multiphase flows

    NARCIS (Netherlands)

    Padding, J.T.; Deen, N.G.; Peters, E. A. J. F.; Kuipers, J. A. M.

    2015-01-01

    The large-scale hydrodynamic behavior of relatively dense dispersed multiphase flows, such as encountered in fluidized beds, bubbly flows, and liquid sprays, can be predicted efficiently by use of Euler-Lagrange models. In these models, grid-averaged equations for the continuous-phase flow field are

  9. Multi-phase flow modeling of soil contamination and soil remediation

    NARCIS (Netherlands)

    Dijke, van M.I.J.

    1997-01-01


    In this thesis multi-phase flow models are used to study the flow behavior of liquid contaminants in aquifers and of gases that are injected below the groundwater table for remediation purposes. Considered problems are redistribution of a lens of light nonaqueous phase

  10. Modeling of Liquid Steel/Slag/Argon Gas Multiphase Flow During Tundish Open Eye Formation in a Two-Strand Tundish

    Science.gov (United States)

    Chatterjee, Saikat; Li, Donghui; Chattopadhyay, Kinnor

    2018-04-01

    Multiphase flows are frequently encountered in metallurgical operations. One of the most effective ways to understand these processes is by flow modeling. The process of tundish open eye (TOE) formation involves three-phase interaction between liquid steel, slag, and argon gas. The two-phase interaction involving argon gas bubbles and liquid steel can be modeled relatively easily using the discrete phase modeling technique. However, the effect of an upper slag layer cannot be captured using this approach. The presence of an upper buoyant phase can have a major effect on the behavior of TOEs. Hence, a multiphase model, including three phases, viz. liquid steel, slag, and argon gas, in a two-strand slab caster tundish, was developed to study the formation and evolution of TOEs. The volume of fluid model was used to track the interphase between liquid steel and slag phases, while the discrete phase model was used to trace the movement of the argon gas bubbles in liquid steel. The variation in the TOE areas with different amounts of aspirated argon gas was examined in the presence of an overlying slag phase. The mathematical model predictions were compared against steel plant measurements.

  11. Application of multiphase modelling for vortex occurrence in vertical pump intake - a review

    International Nuclear Information System (INIS)

    Samsudin, M L; Munisamy, K M; Thangaraju, S K

    2015-01-01

    Vortex formation within pump intake is one of common problems faced for power plant cooling water system. This phenomenon, categorised as surface and sub-surface vortices, can lead to several operational problems and increased maintenance costs. Physical model study was recommended from published guidelines but proved to be time and resource consuming. Hence, the use of Computational Fluid Dynamics (CFD) is an attractive alternative in managing the problem. At the early stage, flow analysis was conducted using single phase simulation and found to find good agreement with the observation from physical model study. With the development of computers, multiphase simulation found further enhancement in obtaining accurate results for representing air entrainment and sub-surface vortices which were earlier not well predicted from the single phase simulation.The purpose of this paper is to describe the application of multiphase modelling with CFD analysis for investigating vortex formation for a vertically inverted pump intake. In applying multiphase modelling, there ought to be a balance between the acceptable usage for computational time and resources and the degree of accuracy and realism in the results as expected from the analysis. (paper)

  12. Application of multiphase modelling for vortex occurrence in vertical pump intake - a review

    Science.gov (United States)

    Samsudin, M. L.; Munisamy, K. M.; Thangaraju, S. K.

    2015-09-01

    Vortex formation within pump intake is one of common problems faced for power plant cooling water system. This phenomenon, categorised as surface and sub-surface vortices, can lead to several operational problems and increased maintenance costs. Physical model study was recommended from published guidelines but proved to be time and resource consuming. Hence, the use of Computational Fluid Dynamics (CFD) is an attractive alternative in managing the problem. At the early stage, flow analysis was conducted using single phase simulation and found to find good agreement with the observation from physical model study. With the development of computers, multiphase simulation found further enhancement in obtaining accurate results for representing air entrainment and sub-surface vortices which were earlier not well predicted from the single phase simulation. The purpose of this paper is to describe the application of multiphase modelling with CFD analysis for investigating vortex formation for a vertically inverted pump intake. In applying multiphase modelling, there ought to be a balance between the acceptable usage for computational time and resources and the degree of accuracy and realism in the results as expected from the analysis.

  13. Multiphase evolution of population and its application to optics and colliding-beam experiments

    International Nuclear Information System (INIS)

    Srinivasan, S.K.; Sridharan, V.

    1990-01-01

    In this paper we have analysed a multiphase evolution of population growth. Individual birth and immigration are assumed to be the consequence of the evolution of an individual through a sequence of phases whose duration form a family of independent non-negative random variables. The population model is then adapted to describe the evolution of photons in a cavity and, in particular, it is shown that a multiphase immigration model corresponds to the photons resulting from a stream obtained by amplitude mixing of coherent and chaotic beams. The model is also shown to bring out the characteristics of the multiplicity distribution of particles produced in high-energy collisions. (author)

  14. An open-source toolbox for multiphase flow in porous media

    Science.gov (United States)

    Horgue, P.; Soulaine, C.; Franc, J.; Guibert, R.; Debenest, G.

    2015-02-01

    Multiphase flow in porous media provides a wide range of applications: from the environmental understanding (aquifer, site-pollution) to industrial process improvements (oil production, waste management). Modeling of such flows involves specific volume-averaged equations and therefore specific computational fluid dynamics (CFD) tools. In this work, we develop a toolbox for modeling multiphase flow in porous media with OpenFOAM®, an open-source platform for CFD. The underlying idea of this approach is to provide an easily adaptable tool that can be used in further studies to test new mathematical models or numerical methods. The package provides the most common effective properties models of the literature (relative permeability, capillary pressure) and specific boundary conditions related to porous media flows. To validate this package, solvers based on the IMplicit Pressure Explicit Saturation (IMPES) method are developed in the toolbox. The numerical validation is performed by comparison with analytical solutions on academic cases. Then, a satisfactory parallel efficiency of the solver is shown on a more complex configuration.

  15. Multiphasic on/off pheromone signalling in moths as neural correlates of a search strategy.

    Directory of Open Access Journals (Sweden)

    Dominique Martinez

    Full Text Available Insects and robots searching for odour sources in turbulent plumes face the same problem: the random nature of mixing causes fluctuations and intermittency in perception. Pheromone-tracking male moths appear to deal with discontinuous flows of information by surging upwind, upon sensing a pheromone patch, and casting crosswind, upon losing the plume. Using a combination of neurophysiological recordings, computational modelling and experiments with a cyborg, we propose a neuronal mechanism that promotes a behavioural switch between surge and casting. We show how multiphasic On/Off pheromone-sensitive neurons may guide action selection based on signalling presence or loss of the pheromone. A Hodgkin-Huxley-type neuron model with a small-conductance calcium-activated potassium (SK channel reproduces physiological On/Off responses. Using this model as a command neuron and the antennae of tethered moths as pheromone sensors, we demonstrate the efficiency of multiphasic patterning in driving a robotic searcher toward the source. Taken together, our results suggest that multiphasic On/Off responses may mediate olfactory navigation and that SK channels may account for these responses.

  16. Multiphasic on/off pheromone signalling in moths as neural correlates of a search strategy.

    Science.gov (United States)

    Martinez, Dominique; Chaffiol, Antoine; Voges, Nicole; Gu, Yuqiao; Anton, Sylvia; Rospars, Jean-Pierre; Lucas, Philippe

    2013-01-01

    Insects and robots searching for odour sources in turbulent plumes face the same problem: the random nature of mixing causes fluctuations and intermittency in perception. Pheromone-tracking male moths appear to deal with discontinuous flows of information by surging upwind, upon sensing a pheromone patch, and casting crosswind, upon losing the plume. Using a combination of neurophysiological recordings, computational modelling and experiments with a cyborg, we propose a neuronal mechanism that promotes a behavioural switch between surge and casting. We show how multiphasic On/Off pheromone-sensitive neurons may guide action selection based on signalling presence or loss of the pheromone. A Hodgkin-Huxley-type neuron model with a small-conductance calcium-activated potassium (SK) channel reproduces physiological On/Off responses. Using this model as a command neuron and the antennae of tethered moths as pheromone sensors, we demonstrate the efficiency of multiphasic patterning in driving a robotic searcher toward the source. Taken together, our results suggest that multiphasic On/Off responses may mediate olfactory navigation and that SK channels may account for these responses.

  17. Antiferromagnetic-ferromagnetic crossover in UO2-TiOx multi-phase systems

    International Nuclear Information System (INIS)

    Nakamura, Akio; Tsutsui, Satoshi; Yoshii, Kenji

    2001-01-01

    An antiferromagnetic (AF)-weakly ferromagnetic (WF) crossover has been found for UO 2 -TiO x multi-phase systems, (1-y)UO 2 +yTiO x (y=0.05-0.72, x=0, 1.0, 1.5 and 2.0), when these mixtures are heat treated at high temperature in vacuum. From the powder X-ray diffraction and electron-microprobe analyses, their phase assemblies were as follows: for x=0, 1.0 and 1.5, a heterogeneous two-phase mixture of UO 2 +TiO x ; for x=2.0, that of UO 2 +UTi 2 O 6 for y 0.67 that of UTi 2 O 6 +TiO 2 (plus residual minor UO 2 ). Magnetic susceptibility (χ) of the present UO 2 powder was confirmed to exhibit an antiferromagnetic sharp drop at T N (=30.5 K). In contrast, χ of these multi-phase systems was found to exhibit a sharp upturn at the respective T N , while their T N values remained almost constant with varying y. This χ upturn at T N is most pronounced for UO 2 +Ti-oxide (titania) systems (x=1.0, 1.5 and 2.0) over the wide mixture ratio above y∼0.10. These observations indicate that an AF-WF crossover is induced for these multi-phase systems, plausibly due to the interfacial magnetic modification of UO 2 in contact with the oxide partners

  18. Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance.

    Science.gov (United States)

    Zhang, Kunyu; Nagarajan, Vidhya; Misra, Manjusri; Mohanty, Amar K

    2014-08-13

    Multiphase blends of poly(lactic acid) (PLA), ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) terpolymer, and a series of renewable poly(ether-b-amide) elastomeric copolymer (PEBA) were fabricated through reactive melt blending in an effort to improve the toughness of the PLA. Supertoughened PLA blend showing impact strength of ∼500 J/m with partial break impact behavior was achieved at an optimized blending ratio of 70 wt % PLA, 20 wt % EMA-GMA, and 10 wt % PEBA. Miscibility and thermal behavior of the binary blends PLA/PEBA and PLA/EMA-GMA, and the multiphase blends were also investigated through differential scanning calorimetric (DSC) and dynamic mechanical analysis (DMA). Phase morphology and fracture surface morphology of the blends were studied through scanning electron microscopy (SEM) and atomic force microscopy (AFM) to understand the strong corelation between the morphology and its significant effect on imparting tremendous improvement in toughness. A unique "multiple stacked structure" with partial encapsulation of EMA-GMA and PEBA minor phases was observed for the PLA/EMA-GMA/PEBA (70/20/10) revealing the importance of particular blend composition in enhancing the toughness. Toughening mechanism behind the supertoughened PLA blends have been established by studying the impact fractured surface morphology at different zones of fracture. Synergistic effect of good interfacial adhesion and interfacial cavitations followed by massive shear yielding of the matrix was believed to contribute to the enormous toughening effect observed in these multiphase blends.

  19. Using a multiphase flow code to model the coupled effects of repository consolidation and multiphase brine and gas flow at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Freeze, G.A.; Larson, K.W.; Davies, P.B.; Webb, S.W.

    1995-01-01

    Long-term repository assessment must consider the processes of (1) gas generation, (2) room closure and expansions due to salt creep, and (3) multiphase (brine and gas) fluid flow, as well as the complex coupling between these three processes. The mechanical creep closure code SANCHO was used to simulate the closure of a single, perfectly sealed disposal room filled with water and backfill. SANCHO uses constitutive models to describe salt creep, waste consolidation, and backfill consolidation, Five different gas-generation rate histories were simulated, differentiated by a rate multiplier, f, which ranged from 0.0 (no gas generation) to 1.0 (expected gas generation under brine-dominated conditions). The results of the SANCHO f-series simulations provide a relationship between gas generation, room closure, and room pressure for a perfectly sealed room. Several methods for coupling this relationship with multiphase fluid flow into and out of a room were examined. Two of the methods are described

  20. TOURGHREACT: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media

    OpenAIRE

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-01-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between ...

  1. Forces on bends and T-joints due to multiphase flow

    NARCIS (Netherlands)

    Belfroid, S.P.C.; Cargnelutti, M.F.; Schiferli, W.; Osch, M.M.E. van

    2010-01-01

    To be able to assess the mechanical integrity of piping structures for loading to multiphase flow conditions, air-water experiments were carried out in a horizontal 1" pipe system. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating

  2. Black hole feedback in a multiphase interstellar medium

    Science.gov (United States)

    Bourne, Martin A.; Nayakshin, Sergei; Hobbs, Alexander

    2014-07-01

    Ultrafast outflows (UFOs) from supermassive black holes (SMBHs) are thought to regulate the growth of SMBHs and host galaxies, resulting in a number of observational correlations. We present high-resolution numerical simulations of the impact of a thermalized UFO on the ambient gas in the inner part of the host galaxy. Our results depend strongly on whether the gas is homogeneous or clumpy. In the former case all of the ambient gas is driven outward rapidly as expected based on commonly used energy budget arguments, while in the latter the flows of mass and energy de-couple. Carrying most of the energy, the shocked UFO escapes from the bulge via paths of least resistance, taking with it only the low-density phase of the host. Most of the mass is however in the high-density phase, and is affected by the UFO much less strongly, and may even continue to flow inwards. We suggest that the UFO energy leakage through the pores in the multiphase interstellar medium (ISM) may explain why observed SMBHs are so massive despite their overwhelmingly large energy production rates. The multiphase ISM effects reported here are probably under-resolved in cosmological simulations but may be included in prescriptions for active galactic nuclei feedback in future simulations and in semi-analytical models.

  3. Circulating fluidized bed hydrodynamics experiments for the multiphase fluid dynamics research consortium (MFDRC).

    Energy Technology Data Exchange (ETDEWEB)

    Oelfke, John Barry; Torczynski, John Robert; O' Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish (; ); Trujillo, Steven Mathew

    2006-08-01

    An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.

  4. Ring-Like Enhancement of Hepatocellular Carcinoma in Gadoxetic Acid-Enhanced Multiphasic Hepatic Arterial Phase Imaging With Differential Subsampling With Cartesian Ordering.

    Science.gov (United States)

    Ichikawa, Shintaro; Motosugi, Utaroh; Oishi, Naoki; Shimizu, Tatsuya; Wakayama, Tetsuya; Enomoto, Nobuyuki; Matsuda, Masanori; Onishi, Hiroshi

    2018-04-01

    The aim of this study was to evaluate the efficacy of multiphasic hepatic arterial phase (HAP) imaging using DISCO (differential subsampling with Cartesian ordering) in increasing the confidence of diagnosis of hepatocellular carcinoma (HCC). This retrospective study was approved by the institutional review board, and the requirement for informed patient consent was waived. Consecutive patients (from 2 study periods) with malignant liver nodules were examined by gadoxetic acid-enhanced magnetic resonance imaging using either multiphasic (6 phases; n = 135) or single (n = 230) HAP imaging, which revealed 519 liver nodules other than benign ones (HCC, 497; cholangiocarcinoma, 11; metastases, 10; and malignant lymphoma, 1). All nodules were scored in accordance with the Liver Imaging Reporting and Data System (LI-RADS v2014), with or without consideration of ring-like enhancement in multiphasic HAP images as a major feature. In the multiphasic HAP group, 178 of 191 HCCs were scored as LR-3 to LR-5 (3 [1.69%], 85 [47.8%], and 90 [50.6%], respectively). Upon considering ring-like enhancement in multiphasic HAP images as a major feature, 5 more HCCs were scored as LR-5 (95 [53.4%]), which was a significantly more confident diagnosis than that with single HAP images (295 of 306 HCCs scored as LR-3 to LR-5: 13 [4.41%], 147 [49.8%], and 135 [45.8%], respectively; P = 0.0296). There was no significant difference in false-positive or false-negative diagnoses between the multiphasic and single HAP groups (P = 0.8400 and 0.1043, respectively). Multiphasic HAP imaging can improve the confidence of diagnosis of HCCs in gadoxetic acid-enhanced magnetic resonance imaging.

  5. Extreme biomimetic approach for synthesis of nanocrystalline chitin-(Ti,Zr)O2 multiphase composites

    International Nuclear Information System (INIS)

    Wysokowski, Marcin; Motylenko, Mykhaylo; Rafaja, David; Koltsov, Iwona; Stöcker, Hartmut; Szalaty, Tadeusz J.; Bazhenov, Vasilii V.; Stelling, Allison L.; Beyer, Jan; Heitmann, Johannes; Jesionowski, Teofil; Petovic, Slavica; Đurović, Mirko; Ehrlich, Hermann

    2017-01-01

    This work presents an extreme biomimetics route for the modification of the surface of fibre-based scaffolds of poriferan origin by the creation of novel nanostructured multiphase biocomposites. The exceptional thermal stability of the nanostructured sponge chitin allowed for the formation of a novel nanocrystalline chitin-(Ti,Zr)O 2 composite with a well-defined nanoscale structure under hydrothermal conditions (160 °C). Using a combination of experimental techniques, including X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, EDX mapping and near-edge electron loss spectroscopy (ELNES) in TEM and thermogravimetry/differential scanning calorimetry coupled with mass spectrometry; we showed that this bioorganic scaffold facilitates selective crystallization of TiO 2 , predominantly in form of anatase, over the monoclinic zirconium dioxide (baddeleyite). The control of the crystal morphology through the chitin templates is also demonstrated. Obtained samples were characterized in terms of their photoluminescent properties and photocatalytic performance. These data confirm the high potential of the extreme biomimetics approach for developing a new generation of multiphase biopolymer-based nanostructured materials. - Highlights: • Extreme biomimetically prepared chitin-(Ti,Zr)O 2 and (Ti,Zr)O 2 composites. • Chitin-(Ti,Zr)O 2 composite contains anatase as the most inorganic component. • The mean crystallite size is (31.7 ± 0.3) nm for chitin-(Ti,Zr)O 2 composite. • The mean crystallite size is (2.4 ± 0.5) nm for (Ti,Zr)O 2 composite. • (Ti,Zr)O 2 composite is 2 times more effective photocatalyst than chitin-(Ti,Zr)O 2 .

  6. A New Multiphase Equation of State for Composition B

    Energy Technology Data Exchange (ETDEWEB)

    Coe, Joshua Damon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Margevicius, Madeline Alma [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division

    2016-07-25

    We describe the construction of a complete equation of state for the high explosive Composition B in its unreacted (inert) form, as well as chemical equilibrium calculations of its detonation products. The multiphase reactant EOS is of SESAME type, and was calibrated to ambient thermal and mechanical data, the shock initiation experiments of Dattelbaum, et al., and the melt line of trinitrotoluene (TNT).

  7. Multiphasic MDCT in small bowel volvulus

    International Nuclear Information System (INIS)

    Feng Shiting; Chan Tao; Sun Canhui; Li Ziping; Guo Huanyi; Yang Guangqi; Peng Zhenpeng; Meng Quanfei

    2010-01-01

    Objective: Evaluate the use of MDCT with 3D CT angiography (CTA) and CT portal venography (CTPV) reconstruction for the diagnosis of small bowel volvulus (SBV). Methods: Multiphasic MDCT findings in nine patients (seven males and two females, age range 2-70) with surgically proven SBV were retrospectively reviewed. Non-contrast and double phase contrast enhanced MDCT including 3D CTA and CTPV reconstruction were performed in all the patients. Two experienced abdominal radiologists evaluated the images and defined the location, direction and degree of SBV. Results: On axial MDCT images, all cases show segmental or global dilatation of small intestine. Other findings include circumferential bowel wall thickening in eight cases, halo appearance and hyperemia in seven cases, whirl sign in six cases, beak-like appearance in six cases, closed loops in six cases and ascites in one case. CTA/CTPV showed abnormal courses involving main trunks of superior mesenteric artery (SMA) and superior mesenteric vein (SMV) in seven cases, with or without distortion of their tributaries. Normal course of SMA but abnormal course of SMV was seen in the other two cases. Of all the nine cases, whirl sign was seen in six cases and barber's pole sign in five cases. Dilated SMV was observed in eight cases and abrupt termination of SMA was found in one case. Compared with surgical findings, the location, direction and degree of SBV were correctly estimated in all cases based on CTA/CTPV. Conclusion: Multiphasic MDCT with CTA/CTPV reconstruction can play an important role in the diagnosis of SBV. The location, direction and degree of SBV can all be defined preoperatively using this method.

  8. Multiphasic MDCT in small bowel volvulus

    Energy Technology Data Exchange (ETDEWEB)

    Feng Shiting, E-mail: fst1977@163.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Chan Tao, E-mail: taochan@hku.hk [Department of Diagnostic Radiology, University of Hong Kong, Room 406, Block K, Queen Mary Hospital (Hong Kong); Sun Canhui, E-mail: canhuisun@sina.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Li Ziping, E-mail: liziping163@tom.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Guo Huanyi, E-mail: guohuanyi@163.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Yang Guangqi, E-mail: shwy03@126.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Peng Zhenpeng, E-mail: ppzhen@21cn.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Meng Quanfei, E-mail: mzycoco@gmail.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China)

    2010-11-15

    Objective: Evaluate the use of MDCT with 3D CT angiography (CTA) and CT portal venography (CTPV) reconstruction for the diagnosis of small bowel volvulus (SBV). Methods: Multiphasic MDCT findings in nine patients (seven males and two females, age range 2-70) with surgically proven SBV were retrospectively reviewed. Non-contrast and double phase contrast enhanced MDCT including 3D CTA and CTPV reconstruction were performed in all the patients. Two experienced abdominal radiologists evaluated the images and defined the location, direction and degree of SBV. Results: On axial MDCT images, all cases show segmental or global dilatation of small intestine. Other findings include circumferential bowel wall thickening in eight cases, halo appearance and hyperemia in seven cases, whirl sign in six cases, beak-like appearance in six cases, closed loops in six cases and ascites in one case. CTA/CTPV showed abnormal courses involving main trunks of superior mesenteric artery (SMA) and superior mesenteric vein (SMV) in seven cases, with or without distortion of their tributaries. Normal course of SMA but abnormal course of SMV was seen in the other two cases. Of all the nine cases, whirl sign was seen in six cases and barber's pole sign in five cases. Dilated SMV was observed in eight cases and abrupt termination of SMA was found in one case. Compared with surgical findings, the location, direction and degree of SBV were correctly estimated in all cases based on CTA/CTPV. Conclusion: Multiphasic MDCT with CTA/CTPV reconstruction can play an important role in the diagnosis of SBV. The location, direction and degree of SBV can all be defined preoperatively using this method.

  9. Final Project Report CFA-14-6357: A New Paradigm for Understanding Multiphase Ceramic Waste Form Performance

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle [Clemson Univ., SC (United States); Bordia, Rajendra [Clemson Univ., SC (United States); Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States); Chiu, Wilson [Univ. of Connecticut, Storrs, CT (United States); Amoroso, Jake [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-28

    This project fabricated model multiphase ceramic waste forms with processing-controlled microstructures followed by advanced characterization with synchrotron and electron microscopy-based 3D tomography to provide elemental and chemical state-specific information resulting in compositional phase maps of ceramic composites. Details of 3D microstructural features were incorporated into computer-based simulations using durability data for individual constituent phases as inputs in order to predict the performance of multiphase waste forms with varying microstructure and phase connectivity.

  10. Nondestructive techniques to control the quality and quantity of oil flows

    Directory of Open Access Journals (Sweden)

    Р. М. Проскуряков

    2016-08-01

    Results are presented of testing the technique on an operating oil field; the relative error margin of measuring free gas content was 0.2 %. The range is reviewed of possible applications for the measurement system of multi-phase multi-component flows, developed in the Saint Petersburg Mining University.

  11. Grain size effects in multiphase steels assisted by transformation-induced plasticity

    NARCIS (Netherlands)

    Turteltaub, S.R.; Suiker, A.S.J.

    2006-01-01

    The influence of the austenitic grain size on the overall stress-strain behavior in a multiphase carbon steel is analyzed through three-dimensional finite element simulations. A recently developed multiscale martensitic transformation model is combined with a plasticity model to simulate the

  12. Crystallographically based model for transformation-induced plasticity in multiphase carbon steels

    NARCIS (Netherlands)

    Tjahjanto, D.D.; Turteltaub, S.; Suiker, A.S.J.

    2007-01-01

    The microstructure of multiphase steels assisted by transformation-induced plasticity consists of grains of retained austenite embedded in a ferrite-based matrix. Upon mechanical loading, retained austenite may transform into martensite, as a result of which plastic deformations are induced in the

  13. Crystallographically based model for transformation-induced plasticity in multiphase carbon steels

    NARCIS (Netherlands)

    Tjahjanto, D.D.; Turteltaub, S.R.; Suiker, A.S.J.

    2008-01-01

    The microstructure of multiphase steels assisted by transformation-induced plasticity consists of grains of retained austenite embedded in a ferrite-based matrix. Upon mechanical loading, retained austenite may transform into martensite, as a result of which plastic deformations are induced in the

  14. Adverse Condition and Critical Event Prediction in Cranfield Multiphase Flow Facility

    DEFF Research Database (Denmark)

    Egedorf, Søren; Shaker, Hamid Reza

    2017-01-01

    , or even to the environment. To cope with these, adverse condition and critical event prediction plays an important role. Adverse Condition and Critical Event Prediction Toolbox (ACCEPT) is a tool which has been recently developed by NASA to allow for a timely prediction of an adverse event, with low false...... alarm and missed detection rates. While ACCEPT has shown to be an effective tool in some applications, its performance has not yet been evaluated on practical well-known benchmark examples. In this paper, ACCEPT is used for adverse condition and critical event prediction in a multiphase flow facility....... Cranfield multiphase flow facility is known to be an interesting benchmark which has been used to evaluate different methods from statistical process monitoring. In order to allow for the data from the flow facility to be used in ACCEPT, methods such as Kernel Density Estimation (KDE), PCA-and CVA...

  15. Multiphase flow modeling of molten material-vapor-liquid mixtures in thermal nonequilibrium

    International Nuclear Information System (INIS)

    Park, Ik Kyu; Park, Goon Cherl; Bang, Kwang Hyun

    2000-01-01

    This paper presents a numerical model of multiphase flow of the mixtures of molten material-liquid-vapor, particularly in thermal nonequilibrium. It is a two-dimensional, transient, three-fluid model in Eulerian coordinates. The equations are solved numerically using the finite difference method that implicitly couples the rates of phase changes, momentum, and energy exchange to determine the pressure, density, and velocity fields. To examine the model's ability to predict an experimental data, calculations have been performed for tests of pouring hot particles and molten material into a water pool. The predictions show good agreement with the experimental data. It appears, however, that the interfacial heat transfer and breakup of molten material need improved models that can be applied to such high temperature, high pressure, multiphase flow conditions

  16. Nonequilibrium Physics and Phase-Field Modeling of Multiphase Flow in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Juanes, Ruben [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-09-01

    The overarching goal of this project was to develop a new continuum theory of multiphase flow in porous media. The theory follows a phase-field modeling approach, and therefore has a sound thermodynamical basis. It is a phenomenological theory in the sense that its formulation is driven by macroscopic phenomena, such as viscous instabilities during multifluid displacement. The research agenda was organized around a set of hypothesis on hitherto unexplained behavior of multiphase flow. All these hypothesis are nontrivial, and testable. Indeed, a central aspect of the project was testing each hypothesis by means of carefully-designed laboratory experiments, therefore probing the validity of the proposed theory. The proposed research places an emphasis on the fundamentals of flow physics, but is motivated by important energy-driven applications in earth sciences, as well as microfluidic technology.

  17. Pore scale study of multiphase multicomponent reactive transport during CO2 dissolution trapping

    Science.gov (United States)

    Chen, Li; Wang, Mengyi; Kang, Qinjun; Tao, Wenquan

    2018-06-01

    Solubility trapping is crucial for permanent CO2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO2-water two-phase flow, multicomponent (CO2(aq), H+, HCO3-, CO32- and OH-) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO2(aq) concentration, scCO2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is required by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Finally, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.

  18. Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taehun [City Univ. (CUNY), NY (United States)

    2015-10-20

    The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations, better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.

  19. Stability Analysis of Reactive Multiphase Slug Flows in Microchannels

    Directory of Open Access Journals (Sweden)

    Alejandro A. Munera Parra

    2014-05-01

    Full Text Available Conducting multiphase reactions in micro-reactors is a promising strategy for intensifying chemical and biochemical processes. A major unresolved challenge is to exploit the considerable benefits offered by micro-scale operation for industrial scale throughputs by numbering-up whilst retaining the underlying advantageous flow characteristics of the single channel system in multiple parallel channels. Fabrication and installation tolerances in the individual micro-channels result in different pressure losses and, thus, a fluid maldistribution. In this work, an additional source of maldistribution, namely the flow multiplicities, which can arise in a multiphase reactive or extractive flow in otherwise identical micro-channels, was investigated. A detailed experimental and theoretical analysis of the flow stability with and without reaction for both gas-liquid and liquid-liquid slug flow has been developed. The model has been validated using the extraction of acetic acid from n-heptane with the ionic liquid 1-Ethyl-3-methylimidazolium ethyl sulfate. The results clearly demonstrate that the coupling between flow structure, the extent of reaction/extraction and pressure drop can result in multiple operating states, thus, necessitating an active measurement and control concept to ensure uniform behavior and optimal performance.

  20. On the extension of multi-phase models to sub-residual saturations

    International Nuclear Information System (INIS)

    Lingineni, S.; Chen, Y.T.; Boehm, R.F.

    1995-01-01

    This paper focuses on the limitations of applying multi-phase flow and transport models to simulate the hydrothermal processes occurring when the liquid saturation falls below residual levels. A typical scenario of a heat-generating high-level waste package emplaced in a backfilled drift of a waste repository is presented. The hydrothermal conditions in the vicinity of the waste package as well as in the far-field are determined using multi-phase, non-isothermal codes such as TOUGH2 and FEHM. As the waste package temperature increases, heat-pipe effects are created and water is driven away from the package into colder regions where it condenses. The variations in the liquid saturations close to the waste package are determined using these models with extended capillary pressure-saturations relationships to sub-residual regime. The predictions indicate even at elevated temperatures, waste package surroundings are not completely dry. However, if transport based modeling is used to represent liquid saturation variations in the sub-residual regime, then complete dry conditions are predicted within the backfill for extended periods of time. The relative humidity conditions near the waste package are also found to be sensitive to the representation of capillary pressure-saturation relationship used for sub-residual regime. An experimental investigation is carried out to study the variations in liquid saturations and relative humidity conditions in sub-residual regimes. Experimental results indicated that extended multi-phase models without interphase transport can not predict dry-out conditions and the simulations underpredict the humidity conditions near the waste package

  1. TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such `compositional` systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application of MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate `equation-of-state` (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for `transport of unsaturated groundwater and heat` and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.

  2. International symposium on cavitation and multiphase flow noise - 1986

    International Nuclear Information System (INIS)

    Arndt, R.E.A.; Billet, M.L.; Blake, W.K.

    1986-01-01

    This book presents the papers given at a symposium on multiphase flow and cavitation. Topics considered at the conference included the development of a cavitation-free sodium pump for a breeder reactor, the stochastic behavior (randomness) of acoustic pressure pulses in the near-subcavitating range, cavitation monitoring of two axial-flow hydroturbines, and noise generated by cavitation in orifice plates with some gaseous effects

  3. Beyond the Black Box: Coupling x-ray tomographic imaging of multi-phase flow processes to numerical models and traditional laboratory measurements

    DEFF Research Database (Denmark)

    Wildenschild, Dorthe; Porter, M.L.; Schaap, M.G.

    Quantitative non-invasive imaging has evolved rapidly in the last decade, and is now being used to assess a variety of problems in vadose zone research, including unsaturated flow and transport of water and contaminants, macropore-dominated processes, soil-water-root interactions, more recent work...... on colloidal processes, and significant work on NAPL-water interactions . We are now able to use non-invasive imaging to probe processes that could not previously be quantified because of lack of opacity, resolution, or accurate techniques for quantitative measurement. This work presents an overview of recent...... advances in x-ray microtomography techniques that can generate high-resolution image-based data for (1) validation of pore-scale multi-phase flow models such as the lattice-Boltzmann technique and pore network models (with respect to fluid saturations, fluid distribution, and relationships among capillary...

  4. The comparison of MSCT multi-phase scan features between benign prostatic hyperplasia and prostate cancer

    International Nuclear Information System (INIS)

    Liu Jingang; Wang Xizhen; Niu Qingliang; Lu Hongkai; Wang Bin

    2009-01-01

    Objective: To investigate the multi-phase contrast-enhanced features of multi-slice computed tomography (MSCT) of benign prostatic hyperplasia (BPH) and prostate cancer (PCa). Methods: Thirty-five BPH and twenty- seven PCa were examined with multi-phase contrast-enhanced MSCT scan. The peak time, maximum attenuation value (MAV) and time density curve (TDC) were recorded, and the slope of the contrast media uptake curve was calculated. Result: Significant differences between BPH and PCa in the type of the curves and the peak time were observed (P<0.01). The slopes of BPH and PCa were 0.45+0.25 and 0.7 6+0.34 respectively, the slope of PCa was higher than that of BPH (P<0.05). MAVs of BPH and PCa were (44.057±10.261) HU and (46.778±11.140) HU respectively, and there was no significant difference between them (P>0.05). Conclusion: The multi-phase MSCT scan can reflect the blood supply and enhancement characters of BPH and PCa, which are important in detection and differential diagnosis of the prostate diseases. (authors)

  5. Development of optical techniques for chemical engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Lamadie, F.; Charton, S.; Langlard, M. de; Ouattara, M.; Sentis, M. [CEA, Centre de Marcoule, DEN,DTEC,SGCS, F-30207 Marcoule (France)

    2016-07-01

    The design of separation processes for nuclear spend fuel treatment, dedicated to either research studies or industrial applications, is currently based on a phenomenological approach, relying on Computational Fluid Dynamics, and complemented by validation tests performed at small-scale. Indeed, most of the steps of the Purex process involve multiphasic flows (dissolution, leaching, liquid-liquid extraction, precipitation, filtration, etc.). Therefore an accurate knowledge of the dispersed phase properties is required in order to assess their coupling with the flow features, to predict the process performance and efficiency and to achieve size reduction or extrapolation. Hence, the measurements of particulate flows properties, and especially the particles (or drops or bubbles) size distribution, concentration (i.e. hold-up) and velocity has become a growing issue. Relevant techniques for measuring these flow properties are multiple, from the high-speed video acquisition coupled to image processing to the laser-induced fluorescence, including the particle imaging velocimetry or interferometric techniques (digital in-line holography, rainbow refractometry, etc.). In this communication, different techniques developed at CEA Marcoule for the characterization of multiphase flows, will be introduced. The strong interaction with computational fluid dynamics, in the scope of a multi-scale approach, will be discussed through typical results of gas-liquid, liquid-liquid and solid-liquid flows possibly encountered in nuclear fuel reprocessing process. (authors)

  6. Direct numerical simulation of incompressible multiphase flow with phase change

    Science.gov (United States)

    Lee, Moon Soo; Riaz, Amir; Aute, Vikrant

    2017-09-01

    Simulation of multiphase flow with phase change is challenging because of the potential for unphysical pressure oscillations, spurious velocity fields and mass flux errors across the interface. The resulting numerical errors may become critical when large density contrasts are present. To address these issues, we present a new approach for multiphase flow with phase change that features, (i) a smooth distribution of sharp velocity jumps and mass flux within a narrow region surrounding the interface, (ii) improved mass flux projection from the implicit interface onto the uniform Cartesian grid and (iii) post-advection velocity correction step to ensure accurate velocity divergence in interfacial cells. These new features are implemented in combination with a sharp treatment of the jumps in pressure and temperature gradient. A series of 1-D, 2-D, axisymmetric and 3-D problems are solved to verify the improvements afforded by the new approach. Axisymmetric film boiling results are also presented, which show good qualitative agreement with heat transfer correlations as well as experimental observations of bubble shapes.

  7. Multi-scale full-field measurements and near-wall modeling of turbulent subcooled boiling flow using innovative experimental techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin A., E-mail: y-hassan@tamu.edu

    2016-04-01

    Highlights: • Near wall full-field velocity components under subcooled boiling were measured. • Simultaneous shadowgraphy, infrared thermometry wall temperature and particle-tracking velocimetry techniques were combined. • Near wall velocity modifications under subcooling boiling were observed. - Abstract: Multi-phase flows are one of the challenges on which the CFD simulation community has been working extensively with a relatively low success. The phenomena associated behind the momentum and heat transfer mechanisms associated to multi-phase flows are highly complex requiring resolving simultaneously for multiple scales on time and space. Part of the reasons behind the low predictive capability of CFD when studying multi-phase flows, is the scarcity of CFD-grade experimental data for validation. The complexity of the phenomena and its sensitivity to small sources of perturbations makes its measurements a difficult task. Non-intrusive and innovative measuring techniques are required to accurately measure multi-phase flow parameters while at the same time satisfying the high resolution required to validate CFD simulations. In this context, this work explores the feasible implementation of innovative measuring techniques that can provide whole-field and multi-scale measurements of two-phase flow turbulence, heat transfer, and boiling parameters. To this end, three visualization techniques are simultaneously implemented to study subcooled boiling flow through a vertical rectangular channel with a single heated wall. These techniques are listed next and are used as follow: (1) High-speed infrared thermometry (IR-T) is used to study the impact of the boiling level on the heat transfer coefficients at the heated wall, (2) Particle Tracking Velocimetry (PTV) is used to analyze the influence that boiling parameters have on the liquid phase turbulence statistics, (3) High-speed shadowgraphy with LED illumination is used to obtain the gas phase dynamics. To account

  8. The experimental study on bowel ischemia in closed loop obstruction by using multi-phase spiral CT

    International Nuclear Information System (INIS)

    Zhang Xiaoming; Yang Hanfeng; Huang Xiaohua; Tang Xianying; Jian Pu; Yang Zhengwei; Zhou Jiyong; Zhao Zongwen

    2005-01-01

    Objective: To evaluate the bowel ischemia in experimental closed loop obstruction by using multi-phase spiral CT. Methods: Twenty-four New Zealand rabbits of both sexes (mean age, 4 months, and mean body weight, 2.5-3.0 kg) were divided randomly into three groups with each group containing 8 rabbits. After clamping 10-15 cm segments of small bowel and their veins for 0.5 hours (Group A), 1-2 hours (Group B), and 3-5 hours (Group C), respectively, multi-phase spiral CT was performed at baseline, and at arterial, venous, and delayed phases after intravenous contrast administration. Then the rabbits were sacrificed to observe their surgical and histological changes. Two radiologists, blinded to the animal model classification and their histological results, individually reviewed the CT images to observe the CT appearances of the closed loop. Statistical significance criteria was determined by P 0.05) at baseline, however, they were significantly different (P<0.05) at all phases after enhancement. Among rabbits without necrotic closed loop, 11 of 13 had continuous enhancement at all phases, while only 1 of 11 rabbits with necrotic closed loop showed continuous enhancement (P<0.05). Conclusion: The ischemia of bowel wall in different phases after clamping small bowel and their veins can be evaluated by using enhanced multi-phase spiral CT. Continuous enhancement of bowel wall in multi-phase spiral CT can be seen prominently in the early bowel ischemia, but necrotic bowel shows no enhancement. (authors)

  9. Multiphase volume-preserving interface motions via localized signed distance vector scheme

    Czech Academy of Sciences Publication Activity Database

    Muhammad, R. Z.; Švadlenka, Karel

    2015-01-01

    Roč. 8, č. 5 (2015), s. 969-988 ISSN 1937-1632 Institutional support: RVO:67985840 Keywords : multiphase mean curvature flow * vector-valued signed distance * volume preservation Subject RIV: BA - General Mathematics Impact factor: 0.737, year: 2015 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11386

  10. Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors

    Science.gov (United States)

    Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.

    2014-12-01

    Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.

  11. Diagnosis of myocardial ischemia combining multiphase postmortem CT-angiography, histology, and postmortem biochemistry.

    Science.gov (United States)

    Vanhaebost, Jessica; Ducrot, Kewin; de Froidmont, Sébastien; Scarpelli, Maria Pia; Egger, Coraline; Baumann, Pia; Schmit, Gregory; Grabherr, Silke; Palmiere, Cristian

    2017-02-01

    The aim of this study was to assess whether the identification of pathological myocardial enhancement at multiphase postmortem computed tomography angiography was correlated with increased levels of troponin T and I in postmortem serum from femoral blood as well as morphological findings of myocardial ischemia. We further aimed to investigate whether autopsy cases characterized by increased troponin T and I concentrations as well as morphological findings of myocardial ischemia were also characterized by pathological myocardial enhancement at multiphase postmortem computed tomography angiography. Two different approaches were used. In one, 40 forensic autopsy cases that had pathological enhancement of the myocardium (mean Hounsfield units ≥95) observed at postmortem angiography were retrospectively selected. In the second approach, 40 forensic autopsy cases that had a cause of death attributed to acute myocardial ischemia were retrospectively selected. The preliminary results seem to indicate that the identification of a pathological enhancement of the myocardium at postmortem angiography is associated with the presence of increased levels of cardiac troponins in postmortem serum and morphological findings of ischemia. Analogously, a pathological enhancement of the myocardium at postmortem angiography can be retrospectively found in the great majority of autopsy cases characterized by increased cardiac troponin levels in postmortem serum and morphological findings of myocardial ischemia. Multiphase postmortem computed tomography angiography is a useful tool in the postmortem setting for investigating ischemically damaged myocardium.

  12. Is it a must to add upstream devices for high GVF multiphase

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Jianwen; Guo, Jason; Gokulnath, R.

    2005-07-01

    High accuracies in measurement of the gross liquid and net oil flow rates at high GVF levels in the multiphase flow is identified as one of the most demanding needs of the industry, especially in high water cut environments. The underlying factor that decides the accuracy of the net oil flow rate measurement is the accuracy at which the gross liquid and water cut are measured and the prevailing water cut in the flow. It is an established fact that accuracies falter with increasing GVF in the multiphase flow. The purpose of this paper is to present the performance results of a newly developed Compact High GVF Haimo multiphase meter that addresses the above needs, without having to use an Upstream Separation Device for high GVF application while retaining the accuracies within +2% absolute for water cut and 10% relative for liquid and gas flow rates at 90% confidence level. while also optimising the footprint, the cost, the weight of the solution Further developmental work and trials are in progress to achieve the targeted accuracy levels under very high GVF conditions as well. Contents of the Paper:1) Definitions. 2) MFM 2000 + Upstream Separation Device. 3) Haimo's experience with upstream devices. 4) Motivation to develop the new Compact meter solution. 5) Description of the Compact solution. 6) Performance testing of the Compact solution in a third party test facility. 7) Conclusion and Benefit which are: The objective of working out a new solution for high GVF without having to use a Upstream Separation Device seem to have been achieved with excellent test results; The new configuration of Compact High GVF meter successfully met and exceeded its Acceptance criteria. The main objective was to asses its performance, confirm the quality of the measurements and check its compliance with the Accuracy specifications. The consistency of the absolute error on water cut much lower than 2% for the full range of the GVF and liquid flow rates re-establishes the

  13. Prediction of critical transport velocity for preventing sand deposition in gas-oil multiphase production and well systems

    Energy Technology Data Exchange (ETDEWEB)

    Bello, O.O.; Reinicke, K.M. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. of Petroleum Engineering; Teodoriu, C. [Texas A and M Univ., College Station, TX (United States). Dept. of Petroleum Engineering

    2008-10-23

    The critical transport velocity is one of the key parameters for gas-oil-sand multiphase production and well system design and safe operation. Existing American Petroleum Institute Recommended Practice 14E (API RP 14E) for the sizing of multiphase flow systems suggests an equation to calculate threshold transport velocity. This equation only considers mixture density and does not account for factors such as fluid properties, gas-liquid flow patterns, sand loading, sand particle size, size distributions, shape factor and density. This work presents an improved computational methodology, which can be applied to estimate the critical transport velocity required to ensure efficient performance of gas-oil-sand multiphase production and well systems. The improved method is based on the modelling of three-phase gas-oil-sand pipe flow physics from first principle. Computations of the critical transport velocities show reasonable agreement with values calculated from mechanistic model (Danielson, 2007) for a relatively wide range of design and operating conditions. Compared with the mechanistic model (Danielson, 2007), the present method has no imposed limitations to the range of applicability. It is also takes into adequate account the effects of operating pressure, flow geometry, sand particle size, size distribution and shape factor, which have considerable influence on the critical transport velocity in gas-oil-sand multiphase production and well systems. (orig.)

  14. Experimental analysis of influence of different lubricants types on the multi-phase ironing process

    Directory of Open Access Journals (Sweden)

    Milan Djordjević

    2013-05-01

    Full Text Available This paper is aimed at presenting results of an experimental analysis of the different types of lubricants influence on the multi-phase ironing process. Based on sliding of the metal strip between the two contact elements a special tribological model was adopted. The subject of experimental investigations was variations of the drawing force, contact pressure and the friction coefficient for each type of the applied lubricants. The ironing process was conducted in three-phases at the constant sliding velocity. The objective of this analysis was to compare all the applied lubricants in order to estimate their quality from the point of view of their applicability in the multi-phase ironing process.

  15. EXPERIMENTAL ANALYSIS OF INFLUENCE OF DIFFERENT LUBRICANTS TYPES ON THE MULTI-PHASE IRONING PROCESS

    Directory of Open Access Journals (Sweden)

    Milan Djordjević

    2013-09-01

    Full Text Available This paper is aimed at presenting results of an experimental analysis of the different types of lubricants influence on the multi-phase ironing process. Based on sliding of the metal strip between the two contact elements a special tribological model was adopted. The subject of experimental investigations was variations of the drawing force, contact pressure and the friction coefficient for each type of the applied lubricants. The ironing process was conducted in three-phases at the constant sliding velocity. The objective of this analysis was to compare all the applied lubricants in order to estimate their quality from the point of view of their applicability in the multi-phase ironing process.

  16. Effects of zinc injection on electrochemical corrosion and cracking behavior of stainless steels in borated and lithiated high temperature water

    International Nuclear Information System (INIS)

    Wu Xinqiang; Liu Xiahe; Han Enhou; Ke Wei

    2014-01-01

    Zinc (Zn) injection water chemistry (ZWC) adopted in primary coolant system in pressurized water reactors (PWRs) is to reduce the radiation buildup as well as retard the corrosion degradation in high temperature pressurized water through improving the characteristics of oxide scales formed on components materials. However, Zn injection involved corrosion and cracking behavior and related mechanisms are still under discussion. The understanding of Zn-bearing oxide scale characteristics and their protective property is of significance to clarify the environmentally assisted material failure problems in PWRs power plants. In the present work, in-situ potentiodynamic polarization curves and electrochemical impedance spectra measurements in high temperature borated and lithiated water as well as ex-situ X-ray photoelectron spectroscopy analyses have been done to investigate the effects of temperature (R.T.-603 K), pH T value at 573 K (6.9-7.4) and Zn-injection concentration (0-150 ppb) on electrochemical corrosion behavior and oxide scale characteristics of nuclear-grade stainless steels. The protective property of oxide scales under Zn-free and Zn-injected conditions degraded with increasing temperature, with Cr-rich oxide layer playing a key role on retarding further corrosion. The composition of oxide scales appeared slightly pH T dependent: rich in chromites and ferrites at pH T =6.9 and pH T =7.4, respectively. The corrosion rate decreased significantly in the high pH T value solution with Zn injection due to the formation of thin and compact oxide scales. The ≤50 ppb Zn injection could significantly affect the formation of Zn-bearing oxides on the surfaces, while >50 ppb Zn injection showed no obvious influence on the oxide scales. A modified point defect model was proposed to discuss the effects of injected Zn concentrations on the oxide scales in high temperature water. A 10 ppb Zn injection obviously decreased the intergranular cracking susceptibility of

  17. Hypervascular hepatocellular carcinomas: detection with gadoxetate disodium-enhanced MR imaging and multiphasic multidetector CT

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Hiromitsu; Kim, Tonsok; Hori, Masatoshi; Nakaya, Yasuhiro; Tsuboyama, Takahiro; Nakamoto, Atsushi; Tatsumi, Mitsuaki; Tomiyama, Noriyuki [Osaka University Graduate School of Medicine, Department of Radiology, Suita, Osaka (Japan); Imai, Yasuharu [Ikeda Municipal Hospital, Department of Gastroenterology, Ikeda, Osaka (Japan); Nagano, Hiroaki [Osaka University Graduate School of Medicine, Department of Surgery, Suita, Osaka (Japan); Kumano, Seishi; Okada, Masahiro; Murakami, Takamichi [Kinki University School of Medicine, Department of Radiology, Osakasayama, Osaka (Japan); Takamura, Manabu [Ikeda Municipal Hospital, Department of Radiology, Ikeda, Osaka (Japan); Wakasa, Kenichi [Osaka City University Graduate School of Medicine, Department of Diagnostic Pathology, Osaka, Osaka (Japan)

    2012-04-15

    To retrospectively compare the accuracy of detection of hypervascular hepatocellular carcinoma (HCC) by multiphasic multidetector CT and by gadoxetate disodium-enhanced MR imaging. After ethical approval, we analysed a total of 73 hypervascular HCC lesions from 31 patients suspected of having HCC, who underwent both gadoxetate disodium-enhanced MR imaging and multiphasic multidetector CT. Five blinded observers independently reviewed CT images, as well as dynamic MR images alone and combined with hepatobiliary phase MR images. Diagnostic accuracy (Az values), sensitivities and positive predictive values were compared by using the Scheffe post hoc test. The mean Az value for dynamic and hepatobiliary phase MR combined (0.81) or dynamic MR images alone (0.78) was significantly higher than that for CT images (0.67, P < 0.001, 0.005, respectively). The mean sensitivity of the combined MR images (0.67) was significantly higher than that of dynamic MR alone (0.52, P < 0.05) or CT images (0.44, P < 0.05). The mean positive predictive values were 0.96, 0.95 and 0.94, for CT, dynamic MR alone and combined MR images, respectively. Compared with multiphasic multidetector CT, gadoxetate disodium-enhanced MR imaging combining dynamic and hepatobiliary phase images results in significantly improved sensitivity and diagnostic accuracy for detection of hypervascular HCC. (orig.)

  18. Determination of Multiphase Flow Meter Reliability and Development of Correction Charts for the Prediction of Oilfield Fluid Flow Rates

    Directory of Open Access Journals (Sweden)

    Samuel S. MOFUNLEWI

    2008-06-01

    Full Text Available The aim of field testing of Multiphase Flow Meter (MPFM is to show whether its accuracy compares favourably with that of the Test Separator in accurately measuring the three production phases (oil, gas and water as well as determining meter reliability in field environment. This study evaluates field test results of the MPFM as compared to reference conventional test separators. Generally, results show that MPFM compares favourably with Test Separator within the specified range of accuracy.At the moment, there is no legislation for meter proving technique for MPFM. However, this study has developed calibration charts that can be used to correct and improve meter accuracy.

  19. Study of volume fractions for stratified and annular regime in multiphase flows using gamma-rays and artificial neural network

    International Nuclear Information System (INIS)

    Salgado, Cesar M.; Brandao, Luis Eduardo; Pereira, Claudio M.N.A.; Ramos, Robson; Schirru, Roberto; Silva, Ademir X.

    2007-01-01

    This work presents methodology based on the use of nuclear technique and artificial intelligence for attainment of volume fractions in stratified and annular multiphase flow regime, oil-water-gas, very frequent in the offshore industry petroliferous. Using the principles of absorption and scattering of gamma-rays and an adequate geometry scheme of detection with two detectors and two energies measurement are gotten and they vary as changes in the volume fractions of flow regime occur. The MCNP-X code was used in order to provide the data training for artificial neural network that matched such information with the respective actual volume fractions of each material. (author)

  20. Study of volume fractions for stratified and annular regime in multiphase flows using gamma-rays and artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Cesar M.; Brandao, Luis Eduardo; Pereira, Claudio M.N.A.; Ramos, Robson [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mail: otero@ien.gov.br; brandao@ien.gov.br; cmnap@ien.gov.br; robson@ien.gov.br; Schirru, Roberto; Silva, Ademir X. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE). Programa de Energia Nuclear (PEN)]. E-mails: ademir@con.ufrj.br; schirru@lmp.ufrj.br

    2007-07-01

    This work presents methodology based on the use of nuclear technique and artificial intelligence for attainment of volume fractions in stratified and annular multiphase flow regime, oil-water-gas, very frequent in the offshore industry petroliferous. Using the principles of absorption and scattering of gamma-rays and an adequate geometry scheme of detection with two detectors and two energies measurement are gotten and they vary as changes in the volume fractions of flow regime occur. The MCNP-X code was used in order to provide the data training for artificial neural network that matched such information with the respective actual volume fractions of each material. (author)

  1. Workshop on Scientific Issues in Multiphase Flow

    Energy Technology Data Exchange (ETDEWEB)

    Hanratty, Thomas J. [Univ. of Illinois, Urbana, IL (United States)

    2003-01-02

    This report outlines scientific issues whose resolution will help advance and define the field of multiphase flow. It presents the findings of four study groups and of a workshop sponsored by the Program on Engineering Physics of the Department of Energy. The reason why multiphase flows are much more difficult to analyze than single phase flows is that the phases assume a large number of complicated configurations. Therefore, it should not be surprising that the understanding of why the phases configure in a certain way is the principal scientific issue. Research is needed which identifies the microphysics controlling the organization of the phases, which develops physical models for the resultant multi-scale interactions and which tests their validity in integrative experiments/theories that look at the behavior of a system. New experimental techniques and recently developed direct numerical simulations will play important roles in this endeavor. In gas-liquid flows a top priority is to develop an understanding of why the liquid phase in quasi fully-developed pipe flow changes from one configuration to another. Mixing flows offer a more complicated situation in which several patterns can exist at the same time. They introduce new physical challenges. A second priority is to provide a quantitative description of the phase distribution for selected fully-developed flows and for simple mixing flows (that could include heat transfer and phase change). Microphysical problems of interest are identified – including the coupling of molecular and macroscopic behavior that can be observed in many situations and the formation/destruction of interfaces in the coalescence/breakup of drops and bubbles. Solid-fluid flows offer a simpler system in that interfaces are not changing. However, a variety of patterns exist, that depend on the properties of the particles, their concentration and the Reynolds number characterizing the relative velocity. A top priority is the

  2. Small (≤ 2 cm) hepatocellular carcinoma in patients with chronic liver disease: comparison of gadoxetic acid-enhanced 3.0 T MRI and multiphasic 64-multirow detector CT.

    Science.gov (United States)

    Hwang, J; Kim, S H; Lee, M W; Lee, J Y

    2012-07-01

    To compare the diagnostic performance of gadoxetic acid-enhanced MRI using 3.0 T with that of multiphasic 64-multirow detector CT (MDCT) for the detection of small (≤2 cm) hepatocellular carcinoma (HCC) in patients with chronic liver disease. A total of 54 patients (44 men, 10 women; age range, 33-81 years) with 59 HCCs (≤2 cm in diameter) who underwent both multiphasic (arterial, portal venous, equilibrium) 64-MDCT and gadoxetic acid-enhanced 3.0 T MRI were enrolled in this study. Two observers independently and randomly reviewed the MR and CT images on a lesion-by-lesion basis. The diagnostic performance of these techniques for the detection of HCC was assessed by alternative free-response receiver operating characteristic (ROC) analysis, in addition to evaluating the sensitivity and positive predictive value. For each observer, the areas under the ROC curve were 0.874 and 0.863 for MRI, respectively, as opposed to 0.660 and 0.687 for CT, respectively. The differences between the two techniques were statistically significant for each observer (p0.05). Gadoxetic acid-enhanced 3.0 T MRI shows a better diagnostic performance than that of 64-MDCT for the detection of small (≤2 cm) HCCs in patients with chronic liver disease.

  3. Compositional multiphase flow and transport in heterogeneous porous media

    Energy Technology Data Exchange (ETDEWEB)

    Huber, R U

    2000-07-01

    This work first treats the conceptual models for the description of multiphase flow processes in porous media. The thermodynamic laws are explained and the description and quantification of multi-fluid equilibria are discussed in order to account for fluid composition. The fully and weakly coupled approaches for the mathematical description of such flow processes with respect to systems consisting of two and three fluid phases as well as with respect to compositional single and multiphase systems are assessed. For the discretization of the two-phase flow equations node- and cell-centered finite volume methods and mixed and mixed-hybrid finite element approaches are applied. Based upon these methods five solution algorithms are developed. Four of these algorithms are based on the simultaneous solution of the discretized equations in combination with the Newton-Raphson technique. Methods 1 and 2 treat two- three-phase flow processes, Method 3 applies to the solution of partially miscible three-component systems while Method 4 is created for three-phase three-component systems. The latter method uses a variable substitution dependent on the local presence of the fluid phases. Method 5 is based on the IMPES/IMPESC concept. The time-implicit pressure equation is discretized with the mixed-hybrid finite element method. The saturation and concentration equations, respectively, are solved with a cell-centered finite volume scheme. The developed algorithms are applied to the two- and three-phase Buckley-Leverett problems. A partitioning interwell tracer test is simulated. The propagation behavior of nonaqueous phase liquids (NAPLs) in the saturated and unsaturated ground zone under the influence of heterogeneities are examined. In addition, a larger-scale experiment is simulated, which involves an injection of trichloroethylene into the subsurface and the subsequent distribution. Here, the development of a dissolved contaminant plume as well as the behavior of organic

  4. Biphilicity and Superbiphilicity for Wettability Control of Multiphase Heat Transfer

    Science.gov (United States)

    Attinger, Daniel; Betz, Amy Rachel; Schutzius, T. M.; Jenkins, J.; Kim, C.-J.; Megaridis, C. M.

    2012-11-01

    Multiphase energy transport, such as in boiling, suggests contradictory requirements on the wettability of the solid surfaces coming into contact with the working fluid. On the one hand, a hydrophobic wall promotes nucleation. On the other hand, a hydrophilic wall promotes water contact and enhances the critical heat flux. An analogous situation appears in the opposite thermodynamic process, i.e. condensation. These apparently contradictory requirements can be accommodated with biphilic surfaces, which juxtapose hydrophilic and hydrophobic regions. Biphilic surfaces were first manufactured in 1964 by Young and Hummel, who sprayed Teflon drops onto a smooth steel surface: they showed enhanced heat transfer coefficient during boiling of water. Our recent work has revisited the manufacturing of biphilic surfaces using micro- and nanofabrication processes (Betz et al. 2010, Schutzius et al. 2012); for instance, we fabricated the first superbiphilic surfaces, which juxtapose superhydrophobic and superhydrophilic areas. Using these surfaces, we measured significant enhancement during pool boiling of both the heat transfer coefficient and the critical heat flux. This enhanced performance can be explained by the inherent ability of the surfaces to control multiphase flow, decreasing nucleation energies and shaping drops, bubbles and jets, to maximize transport and prevent instabilities.

  5. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    Energy Technology Data Exchange (ETDEWEB)

    Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  6. Viscosity and surface tension effects during multiphase flow in propped fractures

    Science.gov (United States)

    Dzikowski, Michał; Dąbrowski, Marcin

    2017-04-01

    Geological sequestration of CO2 was proposed as an important mechanism to reduce its emission into atmosphere. CO2 exhibits a higher affinity to organic matter than methane molecules and, potentially, it could be pumped and stored in shale reservoirs while enhancing late stage shale gas production. A successful analysis of CO2 sequestration in low matrix permeability rocks such as shales requires a thorough understanding of multiphase flow in stimulated rock fractures, which provide most significant pathways for fluids in such systems. Multiphase fracture flows are also of great relevance to brine, oil and gas migration in petroleum systems, water and stream circulation in geothermal reservoirs, and chemical transport of non-aqueous phase liquids in shallow hydrogeological systems, particularly in partially saturated zones. There are various physical models that describe phenomena taking place during multiphase flow through porous media. One of key aspects that need to be considered are pore-scale effects related to capillarity. Unfortunately, detailed models that describe motion and evolution of phase or component boundary require direct numerical simulations and spatial resolutions that are hard to reach when considering industrial relevant systems. Main aim of the presented work was the development of reduced 2.5D models based on Brinkman approximation of thin domain flow that would be able to capture local scale phenomena without expensive 3D simulations. Presented approach was designed specifically to tackle incompressible and immiscible systems and is based on Continuous Surface Force approach presented by Brackbill et al., implemented using Lattice Boltzmann Method. Presented approach where firstly validated against standard test cases with known classical solution and known experimental data. In the second part, we present and discuss two component, immiscible permeability data for rough and propped fracture obtained with our code for a rage of proppants

  7. Numerical simulation of single-phase and multiphase non-Darcy flowin porous and fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu

    2000-06-02

    A numerical method as well as a theoretical study of non-Darcy fluid flow of through porous and fractured reservoirs is described. The non-Darcy flow is handled in a three-dimensional, multiphase flow reservoir simulator, while the model formulation incorporates the Forchheimer equation for describing single-phase or multiphase non-Darcy flow and displacement. The numerical scheme has been verified by comparing its results against those of analytical methods. Numerical solutions are used to obtain some insight into the physics of non-Darcy flow and displacement in reservoirs. In addition, several type curves are provided for well-test analyses of non-Darcy flow to demonstrate a methodology for modeling this type of flow in porous and fractured rocks, including flow in geothermal reservoirs.

  8. Optimal Power Flow in Multiphase Radial Networks with Delta Connections: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Low, Steven H. [California Institute of Technology

    2017-11-27

    This paper focuses on multiphase radial distribution networks with mixed wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power-flow models are developed to facilitate the integration of delta-connected generation units/loads in the OPF problem. The first model extends traditional branch flow models - and it is referred to as extended branch flow model (EBFM). The second model leverages a linear relationship between per-phase power injections and delta connections, which holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinite programs (SDPs). Numerical studies on IEEE test feeders show that SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidences indicate that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is also shown that the SDP solution under BVA has a small optimality gap, while the BVA model is accurate in the sense that it reflects actual system voltages.

  9. On the Grand Challenges in Physical Petrology: the Multiphase Crossroads

    Science.gov (United States)

    Bergantz, G. W.

    2014-12-01

    Rapid progress in experimental, micro-analytical and textural analysis at the crystal scale has produced an unprecedented record of magmatic processes. However an obstacle to further progress is the lack of understanding of how mass, energy and momentum flux associated with crystal-rich, open-system events produces identifiable outcomes. Hence developing a physically-based understanding of magmatic systems linking micro-scale petrological observations with a physical template operating at the macro-scale presents a so-called "Grand Challenge." The essence of this challenge is that magmatic systems have characteristic length and feedback scales between those accessible by classical continuum and discrete methods. It has become increasingly obvious that the old-school continuum methods have limited resolution and power of explanation for multiphase (real) magma dynamics. This is, in part, because in crystal-rich systems the deformation is non-affine, and so the concept of constitutive behavior is less applicable and likely not even relevant, especially if one is interested in the emergent character of micro-scale processes. One expression of this is the cottage industry of proposing viscosity laws for magmas, which serves as "blunt force" de facto corrections for what is intrinsically multiphase behavior. Even in more fluid-rich systems many of these laws are not suitable for use in the very transport theories they aim to support. The alternative approach is the discrete method, where multiphase interactions are explicitly resolved. This is a daunting prospect given the numbers of crystals in magmas. But perhaps all crystals don't need to be modeled. I will demonstrate how discrete methods can recover critical state behavior, resolve crystal migration, the onset of visco-elastic behavior such as melt-present shear bands which sets the large-scale mixing volumes, some of the general morpho-dynamics that underlies purported rheological models, and transient controls on

  10. Well-posedness and stability characteristics of multi-phase models

    International Nuclear Information System (INIS)

    Ransom, V.H.; Trapp, J.A.

    1984-01-01

    The ill-posed characteristic associated with the basic two-fluid model for multi-phase flow is a natural consequence of the idealized physical model and the mean flow modeling approach. Two approaches are discussed whereby including added physics of the flow results in a well-posed system of partial differential equations. These models offer the possibility of improved accuracy and numerical efficiency compared to the numerical models used in the existing light water reactor safety analysis codes

  11. Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing

    International Nuclear Information System (INIS)

    Jacques, P.J.; Furnemont, Q.; Lani, F.; Pardoen, T.; Delannay, F.

    2007-01-01

    The mechanical behaviour of transformation-induced plasticity (TRIP)-assisted multiphase steels is addressed based on three different microstructures generated from the same steel grade. The mechanisms responsible for the work-hardening capacity and the resulting balance between strength and resistance to plastic localization are investigated at different length scales. The macroscopic mechanical response is determined by simple shear, uniaxial tension, Marciniak and equibiaxial tension supplemented by earlier tensile tests on notched and cracked specimens. It is shown that the transformation rate reaches a maximum for stress states intermediate between uniaxial tension and equibiaxial tension. At an intermediate length scale, the true in situ flow properties of the individual ferrite-bainite and retained austenite phases are determined by combining neutron diffraction and digital image correlation. This combined analysis elucidates the partitioning of stress and strain between the different constitutive phases. Based on these results, supplemented by transmission electron microscopy and electron backscattered diffraction observations, a general overview of the hardening behaviour of TRIP-assisted multiphase steels is depicted

  12. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    Science.gov (United States)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  13. Extreme biomimetic approach for synthesis of nanocrystalline chitin-(Ti,Zr)O{sub 2} multiphase composites

    Energy Technology Data Exchange (ETDEWEB)

    Wysokowski, Marcin, E-mail: Marcin.Wysokowski@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Motylenko, Mykhaylo; Rafaja, David [TU Bergakademie Freiberg, Institute of Materials Science, Gustav-Zeuner-Str. 5, 09596, Freiberg (Germany); Koltsov, Iwona [Laboratory of Nanostructures, Institute of High Pressure Physics of The Polish Academy of Sciences, Sokołowska 29/37, 01-142, Warsaw (Poland); Stöcker, Hartmut [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany); Szalaty, Tadeusz J. [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Bazhenov, Vasilii V., E-mail: vasily.bazhenov@gmail.com [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany); Stelling, Allison L. [Duke University, Department of Biochemistry, Durham, NC, 27708 (United States); Beyer, Jan; Heitmann, Johannes [TU Bergakademie Freiberg, Institute of Applied Physics, Leipziger str. 23, 09596, Freiberg (Germany); Jesionowski, Teofil [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Petovic, Slavica; Đurović, Mirko [Institute of Marine Biology, Dobrota, 85330, Kotor (Montenegro); Ehrlich, Hermann [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany)

    2017-02-15

    This work presents an extreme biomimetics route for the modification of the surface of fibre-based scaffolds of poriferan origin by the creation of novel nanostructured multiphase biocomposites. The exceptional thermal stability of the nanostructured sponge chitin allowed for the formation of a novel nanocrystalline chitin-(Ti,Zr)O{sub 2} composite with a well-defined nanoscale structure under hydrothermal conditions (160 °C). Using a combination of experimental techniques, including X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, EDX mapping and near-edge electron loss spectroscopy (ELNES) in TEM and thermogravimetry/differential scanning calorimetry coupled with mass spectrometry; we showed that this bioorganic scaffold facilitates selective crystallization of TiO{sub 2}, predominantly in form of anatase, over the monoclinic zirconium dioxide (baddeleyite). The control of the crystal morphology through the chitin templates is also demonstrated. Obtained samples were characterized in terms of their photoluminescent properties and photocatalytic performance. These data confirm the high potential of the extreme biomimetics approach for developing a new generation of multiphase biopolymer-based nanostructured materials. - Highlights: • Extreme biomimetically prepared chitin-(Ti,Zr)O{sub 2} and (Ti,Zr)O{sub 2} composites. • Chitin-(Ti,Zr)O{sub 2} composite contains anatase as the most inorganic component. • The mean crystallite size is (31.7 ± 0.3) nm for chitin-(Ti,Zr)O{sub 2} composite. • The mean crystallite size is (2.4 ± 0.5) nm for (Ti,Zr)O{sub 2} composite. • (Ti,Zr)O{sub 2} composite is 2 times more effective photocatalyst than chitin-(Ti,Zr)O{sub 2}.

  14. Multiphase Transport in Porous Media: Gas-Liquid Separation Using Capillary Pressure Gradients International Space Station (ISS) Flight Experiment Development

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Holtsnider, John T.; Dahl, Roger W.; Deeks, Dalton; Javanovic, Goran N.; Parker, James M.; Ehlert, Jim

    2013-01-01

    Advances in the understanding of multiphase flow characteristics under variable gravity conditions will ultimately lead to improved and as of yet unknown process designs for advanced space missions. Such novel processes will be of paramount importance to the success of future manned space exploration as we venture into our solar system and beyond. In addition, because of the ubiquitous nature and vital importance of biological and environmental processes involving airwater mixtures, knowledge gained about fundamental interactions and the governing properties of these mixtures will clearly benefit the quality of life here on our home planet. The techniques addressed in the current research involving multiphase transport in porous media and gas-liquid phase separation using capillary pressure gradients are also a logical candidate for a future International Space Station (ISS) flight experiment. Importantly, the novel and potentially very accurate Lattice-Boltzmann (LB) modeling of multiphase transport in porous media developed in this work offers significantly improved predictions of real world fluid physics phenomena, thereby promoting advanced process designs for both space and terrestrial applications.This 3-year research effort has culminated in the design and testing of a zero-g demonstration prototype. Both the hydrophilic (glass) and hydrophobic (Teflon) media Capillary Pressure Gradient (CPG) cartridges prepared during the second years work were evaluated. Results obtained from ground testing at 1-g were compared to those obtained at reduced gravities spanning Martian (13-g), Lunar (16-g) and zero-g. These comparisons clearly demonstrate the relative strength of the CPG phenomena and the efficacy of its application to meet NASAs unique gas-liquid separation (GLS) requirements in non-terrestrial environments.LB modeling software, developed concurrently with the zero-g test effort, was shown to accurately reproduce observed CPG driven gas-liquid separation

  15. Green Strategy to Single Crystalline Anatase TiO 2 Nanosheets with Dominant (001) Facets and Its Lithiation Study toward Sustainable Cobalt-Free Lithium Ion Full Battery

    KAUST Repository

    Ming, Hai

    2015-11-03

    A green hydrothermal strategy starting from the Ti powders was developed to synthesis a new kind of well dispersed anatase TiO nanosheets (TNSTs) with dominant (001) facets, successfully avoiding using the HF by choosing the safe substitutes of LiF powder. In contrast to traditional approaches targeting TiO with dominant crystal facets, the strategy presented herein is more convenient, environment friendly and available for industrial production. As a unique structured anode applied in lithium ion battery, the TNSTs could exhibit an extremely high capacity around 215 mAh g at the current density of 100 mA g and preserved capacity over 140 mAh g enduring 200 cycles at 400 mA g. As a further step toward commercialization, a model of lithiating TiO was built for the first time and analyzed by the electrochemical characterizations, and full batteries employing lithiated TNSTs as carbon-free anode versus spinel LiNiMnO (x = 0, 0.5) cathode were configured. The full batteries of TNSTs/LiMnO and TNSTs/LiNiMnO have the sustainable advantage of cost-effective and cobalt-free characteristics, and particularly they demonstrated high energy densities of 497 and 580 Wh kg (i.e., 276 and 341 Wh kg ) with stable capacity retentions of 95% and 99% respectively over 100 cycles. Besides the intriguing performance in batteries, the versatile synthetic strategy and unique characteristics of TNSTs may promise other attracting applications in the fields of photoreaction, electro-catalyst, electrochemistry, interfacial adsorption photovoltaic devices etc.

  16. Synthesis of nanostructured multiphase Ti(C,N)/a-C films by a plasma focus device

    International Nuclear Information System (INIS)

    Ghareshabani, E.; Rawat, R.S.; Sobhanian, S.; Verma, R.; Karamat, S.; Pan, Z.Y.

    2010-01-01

    Nanostructured multiphase Ti(C,N)/a-C films were deposited using a 3.3 kJ pulsed plasma focus device onto silicon (1 0 0) substrates at room temperature. The plasma focus device, fitted with solid titanium anode instead of usual hollow copper anode, was operated with nitrogen and Ar/CH 4 as the filling gas. Films were deposited with different number of shots, at 80 mm from top of the anode and at zero angular position with respect to anode axis. X-ray diffraction results show the diffraction peaks related to different compounds such as TiC 2 , TiN, Ti 2 CN, Ti and TiC 0.62 confirming the deposition of multiphase titanium carbo-nitride composite films on silicon. X-ray photoelectron spectroscopy confirms the formation of Ti-C, C-N, Ti-N, Ti-O and C-C bonds in the films. Scanning electron microscopy reveals that the nanostructure grains are agglomerates of smaller nanoparticles about 10-20 nm in size. Raman studies verify the formation of multiphase Ti(C,N) and also of amorphous graphite in the films. The maximum microhardness value of the composite film is 14.8 ± 1.3 GPa for 30 shots.

  17. NO2-initiated multiphase oxidation of SO2 by O2 on CaCO3 particles

    Science.gov (United States)

    Yu, Ting; Zhao, Defeng; Song, Xiaojuan; Zhu, Tong

    2018-05-01

    The reaction of SO2 with NO2 on the surface of aerosol particles has been suggested to be important in sulfate formation during severe air pollution episodes in China. However, we found that the direct oxidation of SO2 by NO2 was slow and might not be the main reason for sulfate formation in ambient air. In this study, we investigated the multiphase reaction of SO2 with an O2 / NO2 mixture on single CaCO3 particles using Micro-Raman spectroscopy. The reaction converted the CaCO3 particle to a Ca(NO3)2 droplet, with CaSO4 ⚫ 2H2O solid particles embedded in it, which constituted a significant fraction of the droplet volume at the end of the reaction. The reactive uptake coefficient of SO2 for sulfate formation was on the order of 10-5, which was higher than that for the multiphase reaction of SO2 directly with NO2 by 2-3 orders of magnitude. According to our observations and the literature, we found that in the multiphase reaction of SO2 with the O2 / NO2 mixture, O2 was the main oxidant of SO2 and was necessary for radical chain propagation. NO2 acted as the initiator of radical formation, but not as the main oxidant. The synergy of NO2 and O2 resulted in much faster sulfate formation than the sum of the reaction rates with NO2 and with O2 alone. We estimated that the multiphase oxidation of SO2 by O2 initiated by NO2 could be an important source of sulfate and a sink of SO2, based on the calculated lifetime of SO2 regarding the loss through the multiphase reaction versus the loss through the gas-phase reaction with OH radicals. Parameterization of the reactive uptake coefficient of the reaction observed in our laboratory for further model simulation is needed, as well as an integrated assessment based on field observations, laboratory study results, and model simulations to evaluate the importance of the reaction in ambient air during severe air pollution episodes, especially in China.

  18. Multi-phase physicochemical modeling of soil-cementitious material interaction

    International Nuclear Information System (INIS)

    Nakarai, Kenichiro; Ishida, Tetsuya; Maekawa, Koichi

    2005-01-01

    Multi-phase physicochemical modeling based on thermodynamic approach is studied on gel and capillary pores of nano-micrometers and large voids of micro-millimeters among soil foundation. A computational method about transportation of moisture and ions in pore structure for simulating concrete performance was extended for predicting time-dependent material properties of cemented soil. The proposed model was verified with experimental results of cement hydration, change of relative humidity and leaching of calcium ion from cement hydrate to underground water. (author)

  19. Solidification in Multicomponent Multiphase Systems (SIMMS)

    Science.gov (United States)

    Rex, S.; Hecht, U.

    2005-06-01

    The multiphase microstructures that evolve during the solidification of multicomponent alloys are attracting widespread interest for industrial applications and fundamental research.Thermodynamic databases are now well-established for many alloy systems. Thermodynamic calculations provide all the required information about phase equilibria, forming an integral part of both dedicated and comprehensive microstructure models. Among the latter, phase-field modelling has emerged as the method of choice. Solidification experiments are intended to trigger model development or to serve as benchmarks for model validation. For benchmarking, microgravity conditions offer a unique opportunity for avoiding buoyancy-induced convection and buoyancy forces in bulk samples. However, diffusion and the free-energy of interfaces and its anisotropy need to be determined.The measurement of chemical diffusivities in the liquid state can equally benefit from microgravity experiments.

  20. Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples

    Science.gov (United States)

    Khan, Faisal; Enzmann, Frieder; Kersten, Michael

    2016-03-01

    Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squares support vector machine (LS-SVM, an algorithm for pixel-based multi-phase classification) approach. A receiver operating characteristic (ROC) analysis was performed on BH-corrected and uncorrected samples to show that BH correction is in fact an important prerequisite for accurate multi-phase classification. The combination of the two approaches was thus used to classify successfully three different more or less complex multi-phase rock core samples.

  1. Speed-sensorless control strategy for multi-phase induction generator in wind energy conversion systems

    Directory of Open Access Journals (Sweden)

    Dumnić Boris P.

    2016-01-01

    Full Text Available Renewable energy sources, especially wind energy conversion systems (WECS, exhibit constant growth. Increase in power and installed capacity led to advances in WECS topologies. Multi-phase approach presents a new development direction, with several key advantages over three-phase systems. Paired with a sensorless control strategy, multi-phase machines are expected to take primacy over standard solutions. This paper presents speed sensorless vector control of an asymmetrical six-phase induction generator based on a model reference adaptive system (MRAS. Suggested topology and developed control algorithm show that sensorless control can yield appropriate dynamic characteristics for the use in WECS with increase in reliability and robustness. [Projekat Ministarstva nauke Republike Srbije, br. III 042004: Smart Electricity Distribution Grids Based on Distribution Management System and Distributed Generation

  2. PhaseWatcher Vx subsea for HPHT - a new deepwater multiphase and wet gas flowmeter for HPHT

    Energy Technology Data Exchange (ETDEWEB)

    Rustad, Rolf

    2010-07-01

    A new deepwater multiphase and wet gas flowmeter for HPHT applications has been developed. The flowmeter covers all multiphase and wet gas applications from heavy oil to lean and dry gas. Key features include a pressure rating of 15,000psi, a maximum process temperature of 205 C (400F) and a maximum water depth of 3500m (11500feet). This paper will discuss the design, the qualification program and the application of industry standards and codes in the qualification program. The qualification philosophy and the selected standards and codes may be applied in qualification of most types of equipment for the deepwater HPHT oil and gas industry. (Author)

  3. Failure Mode and Effect Analysis of Subsea Multiphase Pump Equipment

    Directory of Open Access Journals (Sweden)

    Oluwatoyin Shobowale Kafayat

    2014-07-01

    Full Text Available Finding oil and gas reserves in deep/harsh environment with challenging reservoir and field conditions, subsea multiphase pumping benefits has found its way to provide solutions to these issues. Challenges such as failure issues that are still surging the industry and with the current practice of information hiding, this issues becomes even more difficult to tackle. Although, there are some joint industry projects which are only accessible to its members, still there is a need to have a clear understanding of these equipment groups so as to know which issues to focus attention on. A failure mode and effect analysis (FMEA is a potential first aid in understanding this equipment groups. A survey questionnaire/interview was conducted with the oil and gas operating company and equipment manufacturer based on the literature review. The results indicates that these equipment’s group are similar with its onshore counterpart, but the difference is the robustness built into the equipment internal subsystems for subsea applications. The results from the manufacturer perspectives indicates that Helico-axial multiphase pump have a mean time to failure of more than 10 years, twin-screw and electrical submersible pumps are still struggling with a mean time to failure of less than 5 years.

  4. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    Science.gov (United States)

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  5. Characterizing the stretch-flangeability of hot rolled multiphase steels

    International Nuclear Information System (INIS)

    Pathak, N.; Butcher, C.; Worswick, M.; Gao, J.

    2013-01-01

    Hole expansion tests are commonly used to characterize the edge stretching limit of a material. Traditionally, a conical punch is used to expand a punched hole until a through-thickness crack appears. However, many automotive stretch flanging operations involve in-plane edge stretching that is best captured with a flat punch. In this paper, hole expansion tests were carried out on two different hot-rolled multiphase steels using both flat and conical punches. The fracture mechanisms for both punch types were investigated using scanning electron microscopy (SEM)

  6. Implementation of leak detection techniques in ducts with critical regimen multiphase flow; Implementacao de tecnicas de deteccao de vazamentos em dutos em regime de escoamento multifasico critico

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Rodrigo S.; Maitelli, Andr L.; Doria Neto, Adriao D.; Salazar, Andres O. [Rio Grande do Norte Univ., Natal, RN (Brazil)

    2005-07-01

    This paper presents signals processing techniques and artificial neural networks to identify leaks in multiphase flow pipeline. The greatest difficulty on traditional methods of leak detection (volume balance, pressure point analysis, etc) is that they are insufficient to design an adequate profile for the real conditions of oil pipeline transport. These difficult conditions goes since unevenly soil, that cause columns or vacuum throughout pipelines, until the presence of multi phases like water, gas and oil; plus other components as sand, which use to produce discontinuous flow off and diverse variations. To attenuate these difficulties, the transform wavelet was used to map the signal pressure in different resolution plan allowing the extraction of descriptors that identify leaks patterns and with then to provide training for the neural network multilayer perceptron (MLP) to learning of how to classify this pattern and report whenever this characterize leaks. During the tests were used transient and regime signals and pipelines with punctures with size variations from 1/2'' to 1'' of diameter to simulate leaks and, this way, it was possible to detect leaks with a time window of two minutes. The result show that the proposed descriptors considered, based in statistical methods applied in domain transform, are sufficient to identify leaks patterns and make it possible to train the neural classifier to indicate the occurrence of pipeline leaks. (author)

  7. Shaken Snow Globes: Kinematic Tracers of the Multiphase Condensation Cascade in Massive Galaxies, Groups, and Clusters

    Science.gov (United States)

    Gaspari, M.; McDonald, M.; Hamer, S. L.; Brighenti, F.; Temi, P.; Gendron-Marsolais, M.; Hlavacek-Larrondo, J.; Edge, A. C.; Werner, N.; Tozzi, P.; Sun, M.; Stone, J. M.; Tremblay, G. R.; Hogan, M. T.; Eckert, D.; Ettori, S.; Yu, H.; Biffi, V.; Planelles, S.

    2018-02-01

    We propose a novel method to constrain turbulence and bulk motions in massive galaxies, galaxy groups, and clusters, exploring both simulations and observations. As emerged in the recent picture of top-down multiphase condensation, hot gaseous halos are tightly linked to all other phases in terms of cospatiality and thermodynamics. While hot halos (∼107 K) are perturbed by subsonic turbulence, warm (∼104 K) ionized and neutral filaments condense out of the turbulent eddies. The peaks condense into cold molecular clouds (runs, and is corroborated by the combined Hitomi and new Integral Field Unit measurements in the Perseus cluster. The ensemble multiphase gas distributions (from the UV to the radio band) are characterized by substantial spectral line broadening (σ v,los ≈ 100–200 {km} {{{s}}}-1) with a mild line shift. On the other hand, pencil-beam detections (as H I absorption against the AGN backlight) sample the small-scale clouds displaying smaller broadening and significant line shifts of up to several 100 {km} {{{s}}}-1 (for those falling toward the AGN), with increased scatter due to the turbulence intermittency. We present new ensemble σ v,los of the warm Hα+[N II] gas in 72 observed cluster/group cores: the constraints are consistent with the simulations and can be used as robust proxies for the turbulent velocities, in particular for the challenging hot plasma (otherwise requiring extremely long X-ray exposures). Finally, we show that the physically motivated criterion C ≡ t cool/t eddy ≈ 1 best traces the condensation extent region and the presence of multiphase gas in observed clusters and groups. The ensemble method can be applied to many available spectroscopic data sets and can substantially advance our understanding of multiphase halos in light of the next-generation multiwavelength missions.

  8. Mechanical measurements on lithium phosphorous oxynitride coated silicon thin film electrodes for lithium-ion batteries during lithiation and delithiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Obeidi, Ahmed, E-mail: alobeidi@mit.edu; Thompson, Carl V., E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Kramer, Dominik, E-mail: dominik.kramer@kit.edu; Mönig, Reiner, E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstraße 11, 89081 Ulm (Germany); Boles, Steven T., E-mail: steven.t.boles@polyu.edu.hk [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom (Hong Kong)

    2016-08-15

    The development of large stresses during lithiation and delithiation drives mechanical and chemical degradation processes (cracking and electrolyte decomposition) in thin film silicon anodes that complicate the study of normal electrochemical and mechanical processes. To reduce these effects, lithium phosphorous oxynitride (LiPON) coatings were applied to silicon thin film electrodes. Applying a LiPON coating has two purposes. First, the coating acts as a stable artificial solid electrolyte interphase. Second, it limits mechanical degradation by retaining the electrode's planar morphology during cycling. The development of stress in LiPON-coated electrodes was monitored using substrate curvature measurements. LiPON-coated electrodes displayed highly reproducible cycle-to-cycle behavior, unlike uncoated electrodes which had poorer coulombic efficiency and exhibited a continual loss in stress magnitude with continued cycling due to film fracture. The improved mechanical stability of the coated silicon electrodes allowed for a better investigation of rate effects and variations of mechanical properties during electrochemical cycling.

  9. Electrical capacitance tomography (ECT) and gamma radiation meter for comparison with and validation and tuning of computational fluid dynamics (CFD) modeling of multiphase flow

    Science.gov (United States)

    Pradeep, Chaminda; Yan, Ru; Vestøl, Sondre; Melaaen, Morten C.; Mylvaganam, Saba

    2014-07-01

    The electrical capacitance tomographic (ECT) approach is increasingly seen as attractive for measurement and control applications in the process industries. Recently, there is increased interest in using the tomographic details from ECT for comparing with and validating and tuning CFD models of multiphase flow. Collaboration with researchers working in the field of computational fluid dynamics (CFD) modeling of multiphase flows gives valuable information for both groups of researchers in the field of ECT and CFD. By studying the ECT tomograms of multiphase flows under carefully monitored inflow conditions of the different media and by obtaining the capacitance values, C(i, j, t) with i = 1…N, j = 1, 2,…N and i ≠ j obtained from ECT modules with N electrodes, it is shown how the interface heights in a pipe with stratified flow of oil and air can be fruitfully compared to the values of those obtained from ECT and gamma radiation meter (GRM) for improving CFD modeling. Monitored inflow conditions in this study are flow rates of air, water and oil into a pipe which can be positioned at varying inclinations to the horizontal, thus emulating the pipelines laid in subsea installations. It is found that ECT-based tomograms show most of the features seen in the GRM-based visualizations with nearly one-to-one correspondence to interface heights obtained from these two methods, albeit some anomalies at the pipe wall. However, there are some interesting features the ECT manages to capture: features which the GRM or the CFD modeling apparently do not show, possibly due to parameters not defined in the inputs to the CFD model or much slower response of the GRM. Results presented in this paper indicate that a combination of ECT and GRM and preferably with other modalities with enhanced data fusion and analysis combined with CFD modeling can help to improve the modeling, measurement and control of multiphase flow in the oil and gas industries and in the process industries

  10. Microstructure and Tribological Properties of Mo–40Ni–13Si Multiphase Intermetallic Alloy

    Science.gov (United States)

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-01-01

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo–40Ni–13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo–Ni–Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy—including wear resistance, friction coefficient, and metallic tribological compatibility—were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear. PMID:28774106

  11. Excitation of multiphase waves of the nonlinear Schroedinger equation by capture into resonances

    International Nuclear Information System (INIS)

    Friedland, L.; Shagalov, A.G.

    2005-01-01

    A method for adiabatic excitation and control of multiphase (N-band) waves of the periodic nonlinear Schroedinger (NLS) equation is developed. The approach is based on capturing the system into successive resonances with external, small amplitude plane waves having slowly varying frequencies. The excitation proceeds from zero and develops in stages, as an (N+1)-band (N=0,1,2,...), growing amplitude wave is formed in the (N+1)th stage from an N-band solution excited in the preceding stage. The method is illustrated in simulations, where the excited multiphase waves are analyzed via the spectral approach of the inverse scattering transform method. The theory of excitation of 0- and 1-band NLS solutions by capture into resonances is developed on the basis of a weakly nonlinear version of Whitham's averaged variational principle. The phenomenon of thresholds on the driving amplitudes for capture into successive resonances and the stability of driven, phase-locked solutions in these cases are discussed

  12. A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids

    Science.gov (United States)

    Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar

    2014-11-01

    We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.

  13. Microstructure and Tribological Properties of Mo-40Ni-13Si Multiphase Intermetallic Alloy.

    Science.gov (United States)

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-12-06

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo-40Ni-13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo-Ni-Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy-including wear resistance, friction coefficient, and metallic tribological compatibility-were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  14. Microstructure and Tribological Properties of Mo–40Ni–13Si Multiphase Intermetallic Alloy

    Directory of Open Access Journals (Sweden)

    Chunyan Song

    2016-12-01

    Full Text Available Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo–40Ni–13Si (at %. Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo–Ni–Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy—including wear resistance, friction coefficient, and metallic tribological compatibility—were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  15. Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction

    Directory of Open Access Journals (Sweden)

    Kent E. Wardle

    2013-01-01

    Full Text Available The flows in stage-wise liquid-liquid extraction devices include both phase segregated and dispersed flow regimes. As a additional layer of complexity, for extraction equipment such as the annular centrifugal contactor, free-surface flows also play a critical role in both the mixing and separation regions of the device and cannot be neglected. Traditionally, computional fluid dynamics (CFD of multiphase systems is regime dependent—different methods are used for segregated and dispersed flows. A hybrid multiphase method based on the combination of an Eulerian multifluid solution framework (per-phase momentum equations and sharp interface capturing using Volume of Fluid (VOF on selected phase pairs has been developed using the open-source CFD toolkit OpenFOAM. Demonstration of the solver capability is presented through various examples relevant to liquid-liquid extraction device flows including three-phase, liquid-liquid-air simulations in which a sharp interface is maintained between each liquid and air, but dispersed phase modeling is used for the liquid-liquid interactions.

  16. Multiphase flow dynamics and control; Dynamique et controle des ecoulements polyphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Duret, E.

    2005-02-01

    Production in the petroleum industry requires a better knowledge of multiphase flow, as the design of pipelines may cause the flow to become strongly unstable. For instance, for low flow rates and when a sea line ends at a riser, the riser base may accumulate liquid and stop the flow of gas. Then, the upstream gas is compressed until its pressure is large enough to push the liquid slug downstream. Under such conditions, a cyclic process occurs which is called severe slugging, generating large and fast fluctuations in pressure and flow rates. This thesis is devoted to two methods to stabilize this undesirable phenomenon. Using the pipeline's ability to separate phases to pick-up the gas upstream the riser base, they are mainly based on the perturbation theory (fast proportional effect, slow integral effect). The first one uses a secondary riser to transport the gas to the surface facilities. A stability study worked out with the phase diagrams technique shows that it is a good method to control this phenomenon. However, it imposes a high pressure in all the system. Thus, the second controller re-injects the gas at a determined height in the riser to decrease the hydrostatic pressure. A first stability study in open loop give a criterion on the minimal reinjection height. Then, the controller is developed by using the two-time scale control techniques. Finally, let us denote that these two controllers have been validated with a small size experimental set up. (author)

  17. Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation

    KAUST Repository

    Akbulut, Ozge; Mace, Charles R.; Martinez, Ramses V.; Kumar, Ashok A.; Nie, Zhihong; Patton, Matthew R.; Whitesides, George M.

    2012-01-01

    This paper demonstrates the use of aqueous multiphase systems (MuPSs) as media for rate-zonal centrifugation to separate nanoparticles of different shapes and sizes. The properties of MuPSs do not change with time or during centrifugation; this stability facilitates sample collection after separation. A three-phase system demonstrates the separation of the reaction products (nanorods, nanospheres, and large particles) of a synthesis of gold nanorods, and enriches the nanorods from 48 to 99% in less than ten minutes using a benchtop centrifuge. © 2012 American Chemical Society.

  18. Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation

    KAUST Repository

    Akbulut, Ozge

    2012-08-08

    This paper demonstrates the use of aqueous multiphase systems (MuPSs) as media for rate-zonal centrifugation to separate nanoparticles of different shapes and sizes. The properties of MuPSs do not change with time or during centrifugation; this stability facilitates sample collection after separation. A three-phase system demonstrates the separation of the reaction products (nanorods, nanospheres, and large particles) of a synthesis of gold nanorods, and enriches the nanorods from 48 to 99% in less than ten minutes using a benchtop centrifuge. © 2012 American Chemical Society.

  19. On the inclusion of the interfacial area between phases in the physical and mathematical description of subsurface multiphase flow. 1998 annual progress report

    International Nuclear Information System (INIS)

    Gray, W.G.; Soll, W.E.; Tompson, A.

    1998-01-01

    'Improved capabilities for modeling multiphase flow in the subsurface requires that several aspects of the system which impact the flow and transport processes be more properly accounted for. A distinguishing feature of multiphase flow in comparison to single phase flow is the existence of interfaces between fluids. At the microscopic (pore) scale, these interfaces are known to influence system behavior by supporting non-zero stresses such that the pressures in adjacent phases are not equal. In problems of interphase transport at the macroscopic (core) scale, knowledge of the total amount of interfacial area in the system provides a clue to the effectiveness of the communication between phases. Although interfacial processes are central to multiphase flow physics, their treatment in traditional porous-media theories has been implicit rather than explicit; and no attempts have been made to systematically account for the evolution of the interfacial area in dynamic systems or to include the dependence of constitutive functions, such as capillary pressure, on the interfacial area. This project implements a three-pronged approach to assessing the importance of various features of multiphase flow to its description. The research contributes to the improved understanding and precise physical description of multiphase subsurface flow by combining: (1) theoretical derivation of equations, (2) lattice Boltzmann modeling of hydrodynamics to identify characteristics and parameters, and (3) solution of the field-scale equations using a discrete numerical method to assess the advantages and disadvantages of the complete theory. This approach includes both fundamental scientific inquiry and a path for inclusion of the scientific results obtained in a technical tool that will improve assessment capabilities for multiphase flow situations that have arisen due to the introduction of organic materials in the natural environment. This report summarizes work after 1.5 years of a 3

  20. Multiphase CFD simulation of a solid bowl centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Romani Fernandez, X.; Nirschl, H. [Universitaet Karlsruhe, Institut fuer MVM, Karlsruhe (Germany)

    2009-05-15

    This study presents some results from the numerical simulation of the flow in an industrial solid bowl centrifuge used for particle separation in industrial fluid processing. The computational fluid dynamics (CFD) software Fluent was used to simulate this multiphase flow. Simplified two-dimensional and three-dimensional geometries were built and meshed from the real centrifuge geometry. The CFD results show a boundary layer of axially fast moving fluid at the gas-liquid interface. Below this layer there is a thin recirculation. The obtained tangential velocity values are lower than the ones for the rigid-body motion. Also, the trajectories of the solid particles are evaluated. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  1. Multiphase boudinage: a case study of amphibolites in marble in the Naxos migmatite core

    Science.gov (United States)

    Virgo, Simon; von Hagke, Christoph; Urai, Janos L.

    2018-02-01

    In multiply deformed terrains multiphase boudinage is common, but identification and analysis of these is difficult. Here we present an analysis of multiphase boudinage and fold structures in deformed amphibolite layers in marble from the migmatitic centre of the Naxos metamorphic core complex. Overprinting between multiple boudinage generations is shown in exceptional 3-D outcrop. We identify five generations of boudinage, reflecting the transition from high-strain high-temperature ductile deformation to medium- to low-strain brittle boudins formed during cooling and exhumation. All boudin generations indicate E-W horizontal shortening and variable direction of bedding parallel extension, evolving from subvertical extension in the earliest boudins to subhorizontal N-S extension during exhumation. Two phases of E-W shortening can be inferred, the first associated with lower crustal synmigmatic convergent flow and the second associated with exhumation and N-S extension, possibly related to movement of the North Anatolian Fault.

  2. Multiphase Venturi Dual Energy Gamma Ray combination performance in NUEX flow loop; Desempenho no flowloop do NUEX da medicao multifasica Venturi Dual Energy Gamma Ray

    Energy Technology Data Exchange (ETDEWEB)

    Barreiros, Claudio; Taranto, Cleber; Costa, Alcemir [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Pinguet, Bruno; Heluey, Vitor; Bessa, Fabiano; Loicq, Olivier [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The Multiphase Venturi Dual Energy Gamma Ray Combination, Vx* technology, arrived in Brazil in 2000. PETROBRAS, Brazilian Oil Company, has been putting big efforts in its production business and also has demonstrated a large interest in having a multiphase meter approved by ANP for back allocation purposes. The oil industry was looking for ways to improve the back allocation process using an approved on line multiphase flow measurement device, thus replacing punctual test done today by a permanent monitoring device. Considering this scenario, a partnership project between PETROBRAS and Schlumberger was created in Brazil. The main objective of this project, which was held in NUEX flow loop, was to demonstrate to INMETRO (Brazilian Metrology Institute) that the Multiphase Venturi Dual Energy Gamma Ray Combination meter is able to be used for back allocation purpose. PETROBRAS and Schlumberger elaborated a complete methodology in the NUEX flow loop to demonstrate the results and benefits of the Multiphase Venturi Dual Energy Gamma Ray Combination meter. The test was witnessed by INMETRO and had a very good performance at the end. The results were within what was expected by Schlumberger, PETROBRAS and INMETRO. These results has been very useful to PETROBRAS in order to start using the Venturi Dual Energy Gamma Ray technology for well allocation purposes. (author)

  3. The phase field technique for modeling multiphase materials

    Science.gov (United States)

    Singer-Loginova, I.; Singer, H. M.

    2008-10-01

    This paper reviews methods and applications of the phase field technique, one of the fastest growing areas in computational materials science. The phase field method is used as a theory and computational tool for predictions of the evolution of arbitrarily shaped morphologies and complex microstructures in materials. In this method, the interface between two phases (e.g. solid and liquid) is treated as a region of finite width having a gradual variation of different physical quantities, i.e. it is a diffuse interface model. An auxiliary variable, the phase field or order parameter \\phi(\\vec{x}) , is introduced, which distinguishes one phase from the other. Interfaces are identified by the variation of the phase field. We begin with presenting the physical background of the phase field method and give a detailed thermodynamical derivation of the phase field equations. We demonstrate how equilibrium and non-equilibrium physical phenomena at the phase interface are incorporated into the phase field methods. Then we address in detail dendritic and directional solidification of pure and multicomponent alloys, effects of natural convection and forced flow, grain growth, nucleation, solid-solid phase transformation and highlight other applications of the phase field methods. In particular, we review the novel phase field crystal model, which combines atomistic length scales with diffusive time scales. We also discuss aspects of quantitative phase field modeling such as thin interface asymptotic analysis and coupling to thermodynamic databases. The phase field methods result in a set of partial differential equations, whose solutions require time-consuming large-scale computations and often limit the applicability of the method. Subsequently, we review numerical approaches to solve the phase field equations and present a finite difference discretization of the anisotropic Laplacian operator.

  4. A development of multiphase flow facility

    International Nuclear Information System (INIS)

    Ismail Mustapha; Jaafar Abdullah

    2004-01-01

    Multiphase liquid flow facility shall be enabling to transport of oil/gas/water in pipelines. In horizontal pipelines, the different flow patterns that could be observed. The flow pattern will depend mainly on the gas and liquid velocities, and gas liquid ratio. For very high liquid velocities and low gas liquid ratios, the dispersed bubble flow is observed. For low flow rates of liquid and gas, a smooth or wavy stratified flow is expected. For intermediate liquid velocities, rolling waves of liquids are formed. The rolling waves increase to the point of forming a plug flow and a slug flow. For very high gas velocities, the annular flow is observed Also include a tillable test section allowing for testing at any angle between 0 0 degree from horizontal, lowering the measurement uncertainties and increased capabilities with respect to flow rates and gas fractions. (Author)

  5. Energy Performance and Pressure Fluctuation of a Multiphase Pump with Different Gas Volume Fractions

    Directory of Open Access Journals (Sweden)

    Jinsong Zhang

    2018-05-01

    Full Text Available Large petroleum resources in deep sea, and huge market demands for petroleum need advanced petroleum extraction technology. The multiphase pump, which can simultaneously transport oil and gas with considerable efficiency, has been a crucial technology in petroleum extraction. A numerical approach with mesh generation and a Navier-Stokes equation solution is employed to evaluate the effects of gas volume fraction on energy performance and pressure fluctuations of a multiphase pump. Good agreement of experimental and calculation results indicates that the numerical approach can accurately simulate the multiphase flow in pumps. The pressure rise of a pump decreases with the increasing of flow rate, and the pump efficiency decreases with the increasing of GVF (the ratio of the gas volume to the whole volume. Results show that the dominant frequencies of pressure fluctuation in the impeller and diffuser are eleven and three times those of the impeller rotational frequency, respectively. Due to the larger density of water and centrifugal forces, the water aggregates to the shroud and the gas gathers to the hub, which renders the distribution of GVF in the pump uneven. A vortex develops at the blade suction side, near the leading edge, induced by the leakage flow, and further affects the pressure fluctuation in the impeller. The obvious vortex in the diffuser indicates that the design of the divergence angle of the diffuser is not optimal, which induces flow separation due to large diffusion ratio. A uniform flow pattern in the impeller indicates good hydraulic performance of the pump.

  6. Dynamic Data-Driven Reduced-Order Models of Macroscale Quantities for the Prediction of Equilibrium System State for Multiphase Porous Medium Systems

    Science.gov (United States)

    Talbot, C.; McClure, J. E.; Armstrong, R. T.; Mostaghimi, P.; Hu, Y.; Miller, C. T.

    2017-12-01

    Microscale simulation of multiphase flow in realistic, highly-resolved porous medium systems of a sufficient size to support macroscale evaluation is computationally demanding. Such approaches can, however, reveal the dynamic, steady, and equilibrium states of a system. We evaluate methods to utilize dynamic data to reduce the cost associated with modeling a steady or equilibrium state. We construct data-driven models using extensions to dynamic mode decomposition (DMD) and its connections to Koopman Operator Theory. DMD and its variants comprise a class of equation-free methods for dimensionality reduction of time-dependent nonlinear dynamical systems. DMD furnishes an explicit reduced representation of system states in terms of spatiotemporally varying modes with time-dependent oscillation frequencies and amplitudes. We use DMD to predict the steady and equilibrium macroscale state of a realistic two-fluid porous medium system imaged using micro-computed tomography (µCT) and simulated using the lattice Boltzmann method (LBM). We apply Koopman DMD to direct numerical simulation data resulting from simulations of multiphase fluid flow through a 1440x1440x4320 section of a full 1600x1600x5280 realization of imaged sandstone. We determine a representative set of system observables via dimensionality reduction techniques including linear and kernel principal component analysis. We demonstrate how this subset of macroscale quantities furnishes a representation of the time-evolution of the system in terms of dynamic modes, and discuss the selection of a subset of DMD modes yielding the optimal reduced model, as well as the time-dependence of the error in the predicted equilibrium value of each macroscale quantity. Finally, we describe how the above procedure, modified to incorporate methods from compressed sensing and random projection techniques, may be used in an online fashion to facilitate adaptive time-stepping and parsimonious storage of system states over time.

  7. Experimental determination of the speciation, partitioning, and release of perrhenate as a chemical surrogate for pertechnetate from a sodalite-bearing multiphase ceramic waste form

    International Nuclear Information System (INIS)

    Pierce, E.M.; Lukens, W.W.; Fitts, J.P.; Jantzen, C.M.; Tang, G.

    2014-01-01

    Highlights: • Multiphase ceramic waste form is composed of primarily of nepheline, nosean, and sodalite. • Rhenium is in the 7+ oxidation state and has partitioned to a mixed Re-bearing sodalite phase. • Mechanism of corrosion for the multiphase matrix is similar to other silicate minerals. • A mixed-anion sodalite phases controls Re release in the multiphase waste forms. - Abstract: A key component to closing the nuclear fuel cycle is the storage and disposition of nuclear waste in geologic systems. Multiphase ceramic waste forms have been studied extensively as a potential host matrix for nuclear waste. Understanding the speciation, partitioning, and release behavior of radionuclides immobilized in multiphase ceramic waste forms is a critical aspect of developing the scientific and technical basis for nuclear waste management. In this study, we evaluated a sodalite-bearing multiphase ceramic waste form (i.e., fluidized-bed steam reform sodium aluminosilicate [FBSR NAS] product) as a potential host matrix for long-lived radionuclides, such as technetium ( 99 Tc). The FBSR NAS material consists primarily of nepheline (ideally NaAlSiO 4 ), anion-bearing sodalites (ideally M 8 [Al 6 Si 6 O 24 ]X 2 , where M refers to alkali and alkaline earth cations and X refers to monovalent anions), and nosean (ideally Na 8 [AlSiO 4 ] 6 SO 4 ). Bulk X-ray absorption fine structure analysis of the multiphase ceramic waste form, suggest rhenium (Re) is in the Re(VII) oxidation state and has partitioned to a Re-bearing sodalite phase (most likely a perrhenate sodalite Na 8 [Al 6 Si 6 O 24 ](ReO 4 ) 2 ). Rhenium was added as a chemical surrogate for 99 Tc during the FBSR NAS synthesis process. The weathering behavior of the FBSR NAS material was evaluated under hydraulically unsaturated conditions with deionized water at 90 °C. The steady-state Al, Na, and Si concentrations suggests the weathering mechanisms are consistent with what has been observed for other aluminosilicate

  8. Design and Analysis of Multi-Phase BLDC Motors for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    G. Boztas

    2018-04-01

    Full Text Available This paper presents a design and analysis of multi-phase brushless direct current (BLDC motor for electric vehicles (EV. In this work, hub-wheels having 110Nm, 900rpm rated values have been designed for the proposed EV. This EV can produce 440 Nm without using transmission, differential and other mechanical components which have very high losses due to the mechanical fraction. The motors to be used in the EV have been designed as 3-, 5- and 7-phase by Infolytica/Motor Solve Software to compare their performances at the same load conditions. The same rotor geometry has been utilized for the motors. However, slot numbers and dimensions of the stator have been determined by considering the motor phase number. Performance curves of phase-currents, output powers, torques, efficiencies and power factors have been presented for these motors at the same operating conditions. It can be possible to use lower power switches in motor drive system thanks to the phase current reduction since the phase currents decrease proportionally to motor phase number. This work shows that the multi-phase BLDC motors are a good alternative in order to obtain lower torque and lower power inverter structure than the 3-phase BLDC motors which are used as standard.

  9. Recurrent pyogenic cholangitis: clinico-pathologic correlation of focal attenuation differences on multi-phasic spiral CT

    International Nuclear Information System (INIS)

    Jeong, Jun Yong; Han, Joon Koo; Kim, Tae Kyoung; Kim, Seog Joon; Kim, Hyun Bum; Choi, Byung Ihn

    2002-01-01

    To determine the clinical and the pathologic significance of the focal attenuation differences (FAD) and bile duct wall enhancement occurring in recurrent pyogenic cholangitis (RPC) and seen at multiphasic spiral CT. Among the multiphasic (non-contrast, arterial and portal or delayed phase) spiral CT findings of 60 consecutive patients, two types of FAD were noted during the non-contrast phase. These were Type A (iso) and Type B (low attenuation), and their distribution pattern (lobar versus patchy, multifocal) and the and the presence or absence of bile duct wall enhancement were recorded. The radiologic findings were correlated with the clinical and pathologic findings. Two types of FAD were noted in 40 of the 60 patients. Active in flammation was present in 19 of the 27 with Type-A and in ten of the 15 in whom the presence of RPC was pathologically proven. Ten of the 13 with Type-B FAD were in a subclinical state, and nine of the ten in whom RPC was pathologically proven had chronic inflammation. Among 20 patients who did not have FAD, RPC was subclinical in 18 and dormant in nine of the eleven in whom its presence was pathologically proven (p<0.001). Clinico-pathologic correlation with bile duct wall enhancement and the distribution pattern of FAD showed no statistical significance. The inflammatory activity of RPC can be predicted by analysis of the FAD seen at multiphasic spiral CT

  10. Fourier Collocation Approach With Mesh Refinement Method for Simulating Transit-Time Ultrasonic Flowmeters Under Multiphase Flow Conditions.

    Science.gov (United States)

    Simurda, Matej; Duggen, Lars; Basse, Nils T; Lassen, Benny

    2018-02-01

    A numerical model for transit-time ultrasonic flowmeters operating under multiphase flow conditions previously presented by us is extended by mesh refinement and grid point redistribution. The method solves modified first-order stress-velocity equations of elastodynamics with additional terms to account for the effect of the background flow. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the fast Fourier transform, while the time integration is realized by the explicit third-order Runge-Kutta finite-difference scheme. The method is compared against analytical solutions and experimental measurements to verify the benefit of using mapped grids. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating under multiphase flow conditions is carried out.

  11. Realization of Electronically Tunable Current- Mode Multiphase Sinusoidal Oscillators Using CFTAs

    OpenAIRE

    Prungsak Uttaphut

    2012-01-01

    An implementation of current-mode multiphase sinusoidal oscillators is presented. Using CFTA-based lossy integrators, odd and odd/even phase systems can be realized with following advantages. The condition of oscillation and frequency of oscillation can be orthogonally tuned. The high output impedances facilitate easy driving an external load without additional current buffers. The proposed MSOs provide odd or even phase signals that are equally spaced in phase and equal amplitude. The circui...

  12. Atomic resolution observation of conversion-type anode RuO 2 during the first electrochemical lithiation

    KAUST Repository

    Mao, Minmin

    2015-03-05

    Transition metal oxides have attracted great interest as alternative anode materials for rechargeable lithium-ion batteries. Among them, ruthenium dioxide is considered to be a prototype material that reacts with the Li ions in the conversion type. In situ transmission electron microscopy reveals a two-step process during the initial lithiation of the RuO2 nanowire anode at atomic resolution. The first step is characterized by the formation of the intermediate phase LixRuO2 due to the Li-ion intercalation. The following step is manifested by the solid-state amorphization reaction driven by advancing the reaction front. The crystalline/amorphous interface is consisted of {011} atomic terraces, revealing the orientation-dependent mobility. In the crystalline matrix, lattice disturbance and dislocation are identified to be two major stress-induced distortions. The latter can be effective diffusion channels, facilitating transportation of the Li ions inside the bulk RuO2 crystal and further resulting in non-uniform Li-ion distribution. It is expected that the local enrichment of the Li ions may account for the homogeneous nucleation of dislocations in the bulk RuO2 crystal and the special island-like structures. These results elucidate the structural evolution and the phase transformation during electrochemical cycling, which sheds light on engineering RuO2 anode materials.

  13. Subsurface Transport Over Reactive Multiphases (STORM): A general, coupled, nonisothermal multiphase flow, reactive transport, and porous medium alteration simulator, Version 2 user's guide

    International Nuclear Information System (INIS)

    Bacon, D.H.; White, M.D.; McGrail, B.P.

    2000-01-01

    The Hanford Site, in southeastern Washington State, has been used extensively to produce nuclear materials for the US strategic defense arsenal by the Department of Energy (DOE) and its predecessors, the US Atomic Energy Commission and the US Energy Research and Development Administration. A large inventory of radioactive and mixed waste has accumulated in 177 buried single- and double shell tanks. Liquid waste recovered from the tanks will be pretreated to separate the low-activity fraction from the high-level and transuranic wastes. Vitrification is the leading option for immobilization of these wastes, expected to produce approximately 550,000 metric tons of Low Activity Waste (LAW) glass. This total tonnage, based on nominal Na 2 O oxide loading of 20% by weight, is destined for disposal in a near-surface facility. Before disposal of the immobilized waste can proceed, the DOE must approve a performance assessment, a document that described the impacts, if any, of the disposal facility on public health and environmental resources. Studies have shown that release rates of radionuclides from the glass waste form by reaction with water determine the impacts of the disposal action more than any other independent parameter. This report describes the latest accomplishments in the development of a computational tool, Subsurface Transport Over Reactive Multiphases (STORM), Version 2, a general, coupled non-isothermal multiphase flow and reactive transport simulator. The underlying mathematics in STORM describe the rate of change of the solute concentrations of pore water in a variably saturated, non-isothermal porous medium, and the alteration of waste forms, packaging materials, backfill, and host rocks

  14. Optimization of multi-phase compressible lattice Boltzmann codes on massively parallel multi-core systems

    NARCIS (Netherlands)

    Biferale, L.; Mantovani, F.; Pivanti, M.; Pozzati, F.; Sbragaglia, M.; Schifano, S.F.; Toschi, F.; Tripiccione, R.

    2011-01-01

    We develop a Lattice Boltzmann code for computational fluid-dynamics and optimize it for massively parallel systems based on multi-core processors. Our code describes 2D multi-phase compressible flows. We analyze the performance bottlenecks that we find as we gradually expose a larger fraction of

  15. Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2013-02-01

    Full Text Available Silicon microwire arrays embedded in Cu present exceptional performance as anode material in Li ion batteries. The processes occurring during the first charging cycles of batteries with this anode are essential for good performance. This paper sheds light on the electrochemical and structural properties of the anodes during the first charging cycles. Scanning Electron Microscopy, X-ray diffractommetry, and fast Fourier transformation impedance spectroscopy are used for the characterization. It was found that crystalline phases with high Li content are obtained after the first lithiation cycle, while for the second lithiation just crystalline phases with less Li are observable, indicating that the lithiated wires become amorphous upon cycling. The formation of a solid electrolyte interface of around 250 nm during the first lithiation cycle is evidenced, and is considered a necessary component for the good cycling performance of the wires. Analog to voltammetric techniques, impedance spectroscopy is confirmed as a powerful tool to identify the formation of the different Si-Li phases.

  16. Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes

    KAUST Repository

    McDowell, Matthew T.

    2011-09-14

    With its high specific capacity, silicon is a promising anode material for high-energy lithium-ion batteries, but volume expansion and fracture during lithium reaction have prevented implementation. Si nanostructures have shown resistance to fracture during cycling, but the critical effects of nanostructure size and native surface oxide on volume expansion and cycling performance are not understood. Here, we use an ex situ transmission electron microscopy technique to observe the same Si nanowires before and after lithiation and have discovered the impacts of size and surface oxide on volume expansion. For nanowires with native SiO2, the surface oxide can suppress the volume expansion during lithiation for nanowires with diameters <∼50 nm. Finite element modeling shows that the oxide layer can induce compressive hydrostatic stress that could act to limit the extent of lithiation. The understanding developed herein of how volume expansion and extent of lithiation can depend on nanomaterial structure is important for the improvement of Si-based anodes. © 2011 American Chemical Society.

  17. Approaching multiphase flows from the perspective of computational fluid dynamics

    International Nuclear Information System (INIS)

    Banas, A.O.

    1992-01-01

    Thermalhydraulic simulation methodologies based on subchannel and porous-medium concepts are briefly reviewed and contrasted with the general approach of Computational Fluid Dynamics (CFD). An outline of the advanced CFD methods for single-phase turbulent flows is followed by a short discussion of the unified formulation of averaged equations for turbulent and multiphase flows. Some of the recent applications of CFD at Chalk River Laboratories are discussed, and the complementary role of CFD with regard to the established thermalhydraulic methods of analysis is indicated. (author). 8 refs

  18. Laboratory setup and results of experiments on two-dimensional multiphase flow in porous media

    International Nuclear Information System (INIS)

    McBride, J.F.; Graham, D.N.

    1990-10-01

    In the event of an accidental release into earth's subsurface of an immiscible organic liquid, such as a petroleum hydrocarbon or chlorinated organic solvent, the spatial and temporal distribution of the organic liquid is of great interest when considering efforts to prevent groundwater contamination or restore contaminated groundwater. An accurate prediction of immiscible organic liquid migration requires the incorporation of relevant physical principles in models of multiphase flow in porous media; these physical principles must be determined from physical experiments. This report presents a series of such experiments performed during the 1970s at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. The experiments were designed to study the transient, two-dimensional displacement of three immiscible fluids in a porous medium. This experimental study appears to be the most detailed published to date. The data obtained from these experiments are suitable for the validation and test calibration of multiphase flow codes. 73 refs., 140 figs

  19. Insitu multiphase fluid experiments in hydrothermal carbon nanotubes

    International Nuclear Information System (INIS)

    Gogotsi, Yury; Libera, Joseph A.; Guevenc -Yazicioglu, Almila; Megaridis, Constantine M.

    2001-01-01

    Hydrothermal multiwall closed carbon nanotubes are shown to contain an encapsulated multiphase aqueous fluid, thus offering an attractive test platform for unique in situ nanofluidic experiments in the vacuum of a transmission electron microscope. The excellent wettability of the graphitic inner tube walls by the aqueous liquid and the mobility of this liquid in the nanotube channels are observed. Complex interface dynamic behavior is induced by means of electron irradiation. Strong atomic-scale interactions between the entrapped liquid phase and the wetted terminated graphite layers are revealed by means of high-resolution electron microscopy. The documented phenomena in this study demonstrate the potential of implementing such tubes in future nanofluidic devices. Copyright 2001 American Institute of Physics

  20. Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes

    Science.gov (United States)

    McGrath, T.; St. Clair, J.; Balachandar, S.

    2018-05-01

    Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.

  1. Convex Relaxation of OPF in Multiphase Radial Networks with Wye and Delta Connections

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Low, Steven [California Institute of Technology

    2017-08-01

    This panel presentation focuses on multiphase radial distribution networks with wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power flow models are developed to facilitate the integration of delta-connected loads or generation resources in the OPF problem. The first model is referred to as the extended branch flow model (EBFM). The second model leverages a linear relationship between phase-to-ground power injections and delta connections that holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinite programs (SDPs). Numerical studies on IEEE test feeders show that the proposed SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidence also indicates that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is further shown that the SDP solution under BVA has a small optimality gap, and the BVA model is accurate in the sense that it reproduces actual system voltages.

  2. A multi-phase ferrofluid flow model with equation of state for thermomagnetic pumping and heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Aursand, Eskil, E-mail: eskil.aursand@sintef.no; Gjennestad, Magnus Aa.; Yngve Lervåg, Karl; Lund, Halvor

    2016-03-15

    A one-dimensional multi-phase flow model for thermomagnetically pumped ferrofluid with heat transfer is proposed. The thermodynamic model is a combination of a simplified particle model and thermodynamic equations of state for the base fluid. The magnetization model is based on statistical mechanics, taking into account non-uniform particle size distributions. An implementation of the proposed model is validated against experiments from the literature, and found to give good predictions for the thermomagnetic pumping performance. However, the results reveal a very large sensitivity to uncertainties in heat transfer coefficient predictions. - Highlights: • A multi-phase flow model for thermomagnetically pumped ferrofluid is proposed. • An implementation is validated against experiments from the literature. • Predicted thermomagnetic pumping effect agrees with experiments. • However, a very large sensitivity to heat transfer coefficient is revealed.

  3. Numerical modelling of diesel spray using the Eulerian multiphase approach

    International Nuclear Information System (INIS)

    Vujanović, Milan; Petranović, Zvonimir; Edelbauer, Wilfried; Baleta, Jakov; Duić, Neven

    2015-01-01

    Highlights: • Numerical model for fuel disintegration was presented. • Fuel liquid and vapour were calculated. • Good agreement with experimental data was shown for various combinations of injection and chamber pressure. - Abstract: This research investigates high pressure diesel fuel injection into the combustion chamber by performing computational simulations using the Euler–Eulerian multiphase approach. Six diesel-like conditions were simulated for which the liquid fuel jet was injected into a pressurised inert environment (100% N 2 ) through a 205 μm nozzle hole. The analysis was focused on the liquid jet and vapour penetration, describing spatial and temporal spray evolution. For this purpose, an Eulerian multiphase model was implemented, variations of the sub-model coefficients were performed, and their impact on the spray formation was investigated. The final set of sub-model coefficients was applied to all operating points. Several simulations of high pressure diesel injections (50, 80, and 120 MPa) combined with different chamber pressures (5.4 and 7.2 MPa) were carried out and results were compared to the experimental data. The predicted results share a similar spray cloud shape for all conditions with the different vapour and liquid penetration length. The liquid penetration is shortened with the increase in chamber pressure, whilst the vapour penetration is more pronounced by elevating the injection pressure. Finally, the results showed good agreement when compared to the measured data, and yielded the correct trends for both the liquid and vapour penetrations under different operating conditions

  4. Geophysical Multiphase Flow With Interphase Exchanges - Hydrodynamic and Thermodynamic Models, and Numerical Techniques, Version GMFIX-1.61, Design Document Attachment 1

    International Nuclear Information System (INIS)

    Dartevelle, S.

    2006-01-01

    Since the multiphase system is made up of a large number of particles, it is impractical to solve the motion of each individual particle; hence GMFIX v1.61 is based upon the Implicit Multi-Field formalism (IMF) which treats all phases in the system as interpenetrating continua. Each instantaneous local point variable (mass, velocity, temperature, pressure, so forth) must be treated to acknowledge the fact that any given arbitrary volume can be shared by different phases at the same time. This treatment may involve, for instance, an averaging or a smoothing process. GMFIX is the geophysical version of MFIX codes developed by NETL and ORNL. MFIX comes after 30 years of continuous developments and improvements from K-FIX codes from LANL. At the time this manuscript was ready for publication (March 2005), some differences exist between the current versions of GMFIX (v. 1.61) and MFIX (v: 1.60) regarding the exact formulation of the energy and momentum equations, the interfacial closures, and the turbulence formulation. Yet both GMFIX and MFIX are being improved, and developed tightly sides by sides

  5. AM363 martensitic stainless steel: A multiphase equation of state

    Science.gov (United States)

    De Lorenzi-Venneri, Giulia; Crockett, Scott D.

    2017-01-01

    A multiphase equation of state for stainless steel AM363 has been developed within the Opensesame approach and has been entered as material 4295 in the LANL-SESAME Library. Three phases were constructed separately: the low pressure martensitic phase, the austenitic phase and the liquid. Room temperature data and the explicit introduction of a magnetic contribution to the free energy determined the martensitic phase, while shock Hugoniot data was used to determine the austenitic phase and the phase boundaries. More experimental data or First Principles calculations would be useful to better characterize the liquid.

  6. Stability of retained austenite in multi-phase microstructure during austempering and its effect on the ductility of a low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.J.; Ren, Y.Q.; Zhou, W.H. [School of Materials Science and Engineering, University of Science and Technology, Beijing (China); Yang, J.R. [Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Shang, C.J., E-mail: cjshang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology, Beijing (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, Institute for Material Research and Innovation, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States)

    2014-05-01

    The contribution of multi-phase microstructure and retained austenite on mechanical properties of austempered and intercritical annealed Fe–0.23C–1.8Mn–1.35Si (wt%) steel was studied. The multi-phase microstructure comprised of intercritical ferrite (IF), bainite/martensite, and retained austenite. During austempering, the retained austenite was stabilized, which was studied using a combination of experimental (XRD, TEM) and thermodynamic analysis. The termination of bainitic transformation combined with carbon rejection into residual austenite during the second step austempering treatment is believed to be the underlying basis for stabilization of retained austenite. This led to significant increase in uniform and total elongation (25% and 36%, respectively) and the product of tensile strength and % elongation was 33 GPa%. The work hardening behavior of retained austenite exhibited a three-stage process such that necking was delayed. The increased work hardening rate is attributed to the multi-phase microstructure and TRIP effect.

  7. Chemical vs. electrochemical extraction of lithium from the Li-excess Li(1.10)Mn(1.90)O4 spinel followed by NMR and DRX techniques.

    Science.gov (United States)

    Martinez, S; Sobrados, I; Tonti, D; Amarilla, J M; Sanz, J

    2014-02-21

    Lithium extraction from the Li-excess Li1.10Mn1.90O4 spinel has been performed by chemical and electrochemical methods in aqueous and in organic media, respectively. De-lithiated samples have been investigated by XRD, SEM, TG, (7)Li and (1)H MAS-NMR techniques. The comparative study has allowed demonstrating that the intermediate de-intercalated samples prepared during the chemical extraction by acid titration are similar to those prepared by the electrochemical way in a non-aqueous electrolyte. LiMn2O4 based spinel with a tailored de-lithiation degree can be prepared as a single phase by controlling the pH used in chemical extraction. (7)Li MAS-NMR spectroscopy has been used to follow the influence of the manganese oxidation state on tetra and octahedral Li-signals detected in Li-extracted samples. The oxidation of Mn(III) ions goes parallel to the partial dissolution of the spinel, following Hunter's mechanism. Based on this mechanism, a generalized chemical reaction has been proposed to explain the formation of intermediate Li(+) de-intercalated samples during acid treatment in aqueous media. By the (1)H MAS NMR study, no evidence of Li-H topotactic exchange in the bulk of the acid treated material was found.

  8. An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry

    Science.gov (United States)

    Hoffmann, Erik Hans; Tilgner, Andreas; Schrödner, Roland; Bräuer, Peter; Wolke, Ralf; Herrmann, Hartmut

    2016-01-01

    Oceans dominate emissions of dimethyl sulfide (DMS), the major natural sulfur source. DMS is important for the formation of non-sea salt sulfate (nss-SO42−) aerosols and secondary particulate matter over oceans and thus, significantly influence global climate. The mechanism of DMS oxidation has accordingly been investigated in several different model studies in the past. However, these studies had restricted oxidation mechanisms that mostly underrepresented important aqueous-phase chemical processes. These neglected but highly effective processes strongly impact direct product yields of DMS oxidation, thereby affecting the climatic influence of aerosols. To address these shortfalls, an extensive multiphase DMS chemistry mechanism, the Chemical Aqueous Phase Radical Mechanism DMS Module 1.0, was developed and used in detailed model investigations of multiphase DMS chemistry in the marine boundary layer. The performed model studies confirmed the importance of aqueous-phase chemistry for the fate of DMS and its oxidation products. Aqueous-phase processes significantly reduce the yield of sulfur dioxide and increase that of methyl sulfonic acid (MSA), which is needed to close the gap between modeled and measured MSA concentrations. Finally, the simulations imply that multiphase DMS oxidation produces equal amounts of MSA and sulfate, a result that has significant implications for nss-SO42− aerosol formation, cloud condensation nuclei concentration, and cloud albedo over oceans. Our findings show the deficiencies of parameterizations currently used in higher-scale models, which only treat gas-phase chemistry. Overall, this study shows that treatment of DMS chemistry in both gas and aqueous phases is essential to improve the accuracy of model predictions. PMID:27688763

  9. Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids

    Science.gov (United States)

    Svendsen, Bob; Shanthraj, Pratheek; Raabe, Dierk

    2018-03-01

    The purpose of this work is the development of a framework for the formulation of geometrically non-linear inelastic chemomechanical models for a mixture of multiple chemical components diffusing among multiple transforming solid phases. The focus here is on general model formulation. No specific model or application is pursued in this work. To this end, basic balance and constitutive relations from non-equilibrium thermodynamics and continuum mixture theory are combined with a phase-field-based description of multicomponent solid phases and their interfaces. Solid phase modeling is based in particular on a chemomechanical free energy and stress relaxation via the evolution of phase-specific concentration fields, order-parameter fields (e.g., related to chemical ordering, structural ordering, or defects), and local internal variables. At the mixture level, differences or contrasts in phase composition and phase local deformation in phase interface regions are treated as mixture internal variables. In this context, various phase interface models are considered. In the equilibrium limit, phase contrasts in composition and local deformation in the phase interface region are determined via bulk energy minimization. On the chemical side, the equilibrium limit of the current model formulation reduces to a multicomponent, multiphase, generalization of existing two-phase binary alloy interface equilibrium conditions (e.g., KKS). On the mechanical side, the equilibrium limit of one interface model considered represents a multiphase generalization of Reuss-Sachs conditions from mechanical homogenization theory. Analogously, other interface models considered represent generalizations of interface equilibrium conditions consistent with laminate and sharp-interface theory. In the last part of the work, selected existing models are formulated within the current framework as special cases and discussed in detail.

  10. Design of multi-phase dynamic chemical networks

    Science.gov (United States)

    Chen, Chenrui; Tan, Junjun; Hsieh, Ming-Chien; Pan, Ting; Goodwin, Jay T.; Mehta, Anil K.; Grover, Martha A.; Lynn, David G.

    2017-08-01

    Template-directed polymerization reactions enable the accurate storage and processing of nature's biopolymer information. This mutualistic relationship of nucleic acids and proteins, a network known as life's central dogma, is now marvellously complex, and the progressive steps necessary for creating the initial sequence and chain-length-specific polymer templates are lost to time. Here we design and construct dynamic polymerization networks that exploit metastable prion cross-β phases. Mixed-phase environments have been used for constructing synthetic polymers, but these dynamic phases emerge naturally from the growing peptide oligomers and create environments suitable both to nucleate assembly and select for ordered templates. The resulting templates direct the amplification of a phase containing only chain-length-specific peptide-like oligomers. Such multi-phase biopolymer dynamics reveal pathways for the emergence, self-selection and amplification of chain-length- and possibly sequence-specific biopolymers.

  11. Virtual autopsy with multiphase postmortem computed tomographic angiography versus traditional medical autopsy to investigate unexpected deaths of hospitalized patients: a cohort study.

    Science.gov (United States)

    Wichmann, Dominic; Heinemann, Axel; Weinberg, Clemens; Vogel, Hermann; Hoepker, Wilhelm Wolfgang; Grabherr, Silke; Pueschel, Klaus; Kluge, Stefan

    2014-04-15

    "Virtual" autopsy by postmortem computed tomography (PMCT) can replace medical autopsy to a certain extent but has limitations for cardiovascular diseases. These limitations might be overcome by adding multiphase PMCT angiography. To compare virtual autopsy by multiphase PMCT angiography with medical autopsy. Prospective cohort study. (ClinicalTrials.gov: NCT01541995) SETTING: Single-center study at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany, between 1 April 2012 and 31 March 2013. Hospitalized patients who died unexpectedly or within 48 hours of an event necessitating cardiopulmonary resuscitation. Diagnoses from clinical records were compared with findings from both types of autopsy. New diagnoses identified by autopsy were classified as major or minor, depending on whether they would have altered clinical management. Of 143 eligible patients, 50 (35%) had virtual and medical autopsy. Virtual autopsy confirmed 93% of all 336 diagnoses identified from antemortem medical records, and medical autopsy confirmed 80%. In addition, virtual and medical autopsy identified 16 new major and 238 new minor diagnoses. Seventy-three of the virtual autopsy diagnoses, including 32 cases of coronary artery stenosis, were identified solely by multiphase PMCT angiography. Of the 114 clinical diagnoses classified as cardiovascular, 110 were confirmed by virtual autopsy and 107 by medical autopsy. In 11 cases, multiphase PMCT angiography showed "unspecific filling defects," which were not reported by medical autopsy. These results come from a single center with concerted interest and expertise in postmortem imaging; further studies are thus needed for generalization. In cases of unexpected death, the addition of multiphase PMCT angiography increases the value of virtual autopsy, making it a feasible alternative for quality control and identification of diagnoses traditionally made by medical autopsy. University Medical Center Hamburg-Eppendorf.

  12. Can lymphovascular invasion be predicted by preoperative multiphasic dynamic CT in patients with advanced gastric cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zelan; Liang, Cuishan; Huang, Xiaomei; Liu, Zaiyi [Southern Medical University, Guangzhou, Guangdong (China); Guangdong General Hospital, Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); Liang, Changhong; Huang, Yanqi [Guangdong General Hospital, Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); He, Lan [Guangdong General Hospital, Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); South China University of Technology, School of Medicine, Guangzhou, Guangdong (China); Chen, Xin [The Affiliated Guangzhou First People' Hospital, Guangzhou Medical University, Department of Radiology, Guangzhou, Guangdong (China); Xiong, Yabing [Southern Medical University, Guangzhou, Guangdong (China)

    2017-08-15

    To determine whether multiphasic dynamic CT can preoperatively predict lymphovascular invasion (LVI) in advanced gastric cancer (AGC). 278 patients with AGC who underwent preoperative multiphasic dynamic CT were retrospectively recruited. Tumour CT attenuation difference between non-contrast and arterial (Δ{sub AP}), portal (Δ{sub PP}) and delayed phase (Δ{sub DP}), tumour-spleen attenuation difference in the portal phase (Δ{sub T-S}), tumour contrast enhancement ratios (CERs), tumour-to-spleen ratio (TSR) and tumour volumes were obtained. All CT-derived parameters and clinicopathological variables associated with LVI were analysed by univariate analysis, followed by multivariate and receiver operator characteristics (ROC) analysis. Associations between CT predictors for LVI and histopathological characteristics were evaluated by the chi-square test. Δ{sub PP} (OR, 1.056; 95% CI: 1.032-1.080) and Δ{sub T-S} (OR, 1.043; 95% CI: 1.020-1.066) are independent predictors for LVI in AGC. Δ{sub PP}, Δ{sub T-S} and their combination correctly predicted LVI in 74.8% (AUC, 0.775; sensitivity, 88.6%; specificity, 54.1%), 68.7% (AUC, 0.747; sensitivity, 68.3%; specificity, 69.4%) and 71.7% (AUC, 0.800; sensitivity, 67.6%; specificity, 77.8%), respectively. There were significant associations between CT predictors for LVI with tumour histological differentiation and Lauren classification. Multiphasic dynamic CT provides a non-invasive method to predict LVI in AGC through quantitative enhancement measurement. (orig.)

  13. Pore-Scale Investigation on Stress-Dependent Characteristics of Granular Packs and Their Impact on Multiphase Fluid Distribution

    Science.gov (United States)

    Torrealba, V.; Karpyn, Z.; Yoon, H.; Hart, D. B.; Klise, K. A.

    2013-12-01

    The pore-scale dynamics that govern multiphase flow under variable stress conditions are not well understood. This lack of fundamental understanding limits our ability to quantitatively predict multiphase flow and fluid distributions in natural geologic systems. In this research, we focus on pore-scale, single and multiphase flow properties that impact displacement mechanisms and residual trapping of non-wetting phase under varying stress conditions. X-ray micro-tomography is used to image pore structures and distribution of wetting and non-wetting fluids in water-wet synthetic granular packs, under dynamic load. Micro-tomography images are also used to determine structural features such as medial axis, surface area, and pore body and throat distribution; while the corresponding transport properties are determined from Lattice-Boltzmann simulations performed on lattice replicas of the imaged specimens. Results are used to investigate how inter-granular deformation mechanisms affect fluid displacement and residual trapping at the pore-scale. This will improve our understanding of the dynamic interaction of mechanical deformation and fluid flow during enhanced oil recovery and geologic CO2 sequestration. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Proposed Novel Multiphase-Multilevel Inverter Configuration for Open-End Winding Loads

    DEFF Research Database (Denmark)

    Padamanaban, Sanjeevi Kumar; Wheeler, Patrick; Blaabjerg, Frede

    2016-01-01

    This paper presents a new multiphase-multilevel inverter configuration for open-winding loads and suitable for medium power (low-voltage/high-current) applications such as `More Electric Aircraft'. Modular structure comprised of standard dual three-phase voltage source inverter (VSI) along with one...... is developed in this work and overcomes the complexity of standard space vector modulations, easy for real implementation purposes in digital processors. Proposed six-phase multilevel inverter configuration generates multilevel outputs with benefit in comprises with standard multilevel inverter topologies...

  15. Design and Calibration of a Full-Scale Active Magnetic Bearing-Based Test Facility for Investigating Rotordynamic Properties of Turbomachinery Seals in Multiphase Flow

    DEFF Research Database (Denmark)

    Voigt, Andreas Jauernik; Mandrup-Poulsen, Christian; Nielsen, Kenny

    2017-01-01

    The recent move towards subsea oil and gas production brings about a requirement to locate process equipment in deepwater installations. Furthermore, there is a drive towards omitting well stream separation functionality, as this adds complexity and cost to the subsea installation. This in turn...... leads to technical challenges for the subsea installed pumps and compressors that are now required to handle multiphase flow of varying gas to liquid ratios. This highlights the necessity for a strong research focus on multiphase flow impact on rotordynamic properties and thereby operational stability...... University of Denmark and Lloyd's Register Consulting are currently establishing a purpose built state of the art multiphase seal test facility. This paper provides details on the design of the novel test facility and the calibration of the Hall sensor system employed to measure AMB forces. Calibration...

  16. Grain scale simulation of multiphase flow through porous media; Simulacao em escala granular do escoamento multifasico em meio poroso

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Ricardo Golghetto; Cheng, Liang-Yee [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica

    2012-07-01

    Since the grain scale modeling of multi-phase flow in porous media is of great interest for the oil industry, the aim of the present research is to show an implementation of Moving Particle Semi-Implicit (MPS) method for the grain scale simulation of multi-phase flow in porous media. Geometry data obtained by a high-resolution CT scan of a sandstone sample has been used as input for the simulations. The results of the simulations performed considering different resolutions are given, the head loss and permeability obtained numerically, as well as the influence of the wettability of the fluids inside the sample of the reservoir's sandstone. (author)

  17. Self-assembly of silica microparticles in magnetic multiphase flows: Experiment and simulation

    Science.gov (United States)

    Li, Xiang; Niu, Xiao-Dong; Li, You; Chen, Mu-Feng

    2018-04-01

    Dynamic self-assembly, especially self-assembly under magnetic field, is vital not only for its marvelous phenomenon but also for its mechanisms. Revealing the underlying mechanisms is crucial for a deeper understanding of self-assembly. In this paper, several magnetic induced self-assembly experiments by using the mixed magnetic multiphase fluids comprised of silica microspheres were carried out. The relations of the strength of external magnetic field, the inverse magnetorheological effect, and the structures of self-assembled particles were investigated. In addition, a momentum-exchanged immersed boundary-based lattice Boltzmann method (MEIB-LBM) for modeling multi-physical coupling multiphase flows was employed to numerically study the magnetic induced self-assembly process in detail. The present work showed that the external magnetic field can be used to control the form of self-assembly of nonmagnetic microparticles in a chain-like structure, and the self-assembly process can be classified into four stages with magnetic hysteresis, magnetization of nonmagnetic microparticles, self-assembly in chain-like structures, and the stable chain state. The combination of experimental and numerical results could offer a method to control the self-assembled nonmagnetic microparticles, which can provide the technical and theoretical support for the design and fabrication of micro/nanomaterials.

  18. Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.

    1997-07-01

    The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.

  19. Performance Evaluation of Eleven-Phase Induction Machine with Different PWM Techniques

    Directory of Open Access Journals (Sweden)

    M.I. Masoud

    2015-06-01

    Full Text Available Multiphase induction machines are used extensively in low and medium voltage (MV drives. In MV drives, power switches have a limitation associated with switching frequency. This paper is a comparative study of the eleven-phase induction machine’s performance when used as a prototype and fed sinusoidal pulse-width-modulation (SPWM with a low switching frequency, selective harmonic elimination (SHE, and single pulse modulation (SPM techniques. The comparison depends on voltage/frequency controls for the same phase of voltage applied on the machine terminals for all previous techniques. The comparative study covers torque ripple, stator and harmonic currents, and motor efficiency.

  20. Multi-Phase Sub-Sampling Fractional-N PLL with soft loop switching for fast robust locking

    NARCIS (Netherlands)

    Liao, Dongyi; Dai, FA Foster; Nauta, Bram; Klumperink, Eric A.M.

    2017-01-01

    This paper presents a low phase noise sub-sampling PLL (SSPLL) with multi-phase outputs. Automatic soft switching between the sub-sampling phase loop and frequency loop is proposed to improve robustness against perturbations and interferences that may cause a traditional SSPLL to lose lock. A

  1. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries.

    Science.gov (United States)

    McDowell, Matthew T; Lee, Seok Woo; Nix, William D; Cui, Yi

    2013-09-25

    Alloying anodes such as silicon are promising electrode materials for next-generation high energy density lithium-ion batteries because of their ability to reversibly incorporate a high concentration of Li atoms. However, alloying anodes usually exhibit a short cycle life due to the extreme volumetric and structural changes that occur during lithium insertion/extraction; these transformations cause mechanical fracture and exacerbate side reactions. To solve these problems, there has recently been significant attention devoted to creating silicon nanostructures that can accommodate the lithiation-induced strain and thus exhibit high Coulombic efficiency and long cycle life. In parallel, many experiments and simulations have been conducted in an effort to understand the details of volumetric expansion, fracture, mechanical stress evolution, and structural changes in silicon nanostructures. The fundamental materials knowledge gained from these studies has provided guidance for designing optimized Si electrode structures and has also shed light on the factors that control large-volume change solid-state reactions. In this paper, we review various fundamental studies that have been conducted to understand structural and volumetric changes, stress evolution, mechanical properties, and fracture behavior of nanostructured Si anodes for lithium-ion batteries and compare the reaction process of Si to other novel anode materials. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High-Speed Visualization of Evaporation Phenomena from Tungsten Based Electrode in Multi-Phase AC Arc

    Science.gov (United States)

    Tanaka, Manabu; Hashizume, Taro; Imatsuji, Tomoyuki; Nawata, Yushi; Watanabe, Takayuki

    2015-09-01

    A multi-phase AC arc has been developed for applications in various fields of engineering because it possesses unique advantages such as high energy efficiency. However, understanding of fundamental phenomena in the multi-phase AC arc is still insufficient for practical use. Purpose of this study is to investigate electrode erosion mechanism by high-speed visualization of the electrode metal vapor in the arc. Results indicated that the electrode mainly evaporated at anodic period, leading to the arc constriction. Moreover, evaporation of W electrode with 2wt% La2O3 at the anodic period was much higher than that with 2wt% ThO2. This can be explained by different properties of these oxide additives. Evaporation of the oxide additive resulted in the arc constriction, which accelerated the evaporation of W electrode. Therefore, addition of La2O3 with lower melting and boiling point than ThO2 lead to stronger arc constriction, resulting in severer evaporation of W electrode.

  3. Multiphase flow experiments, mathematical modeling and numerical simulation of the water - gas - solute movement

    Science.gov (United States)

    Li, Y.; Ma, X.; Su, N.

    2013-12-01

    The movement of water and solute into and through the vadose zone is, in essence, an issue of immiscible displacement in pore-space network of a soil. Therefore, multiphase flow and transport in porous media, referring to three medium: air, water, and the solute, pose one of the largest unresolved challenges for porous medium fluid seepage. However, this phenomenon has always been largely neglected. It is expected that a reliable analysis model of the multi-phase flow in soil can truly reflect the process of natural movement about the infiltration, which is impossible to be observed directly. In such cases, geophysical applications of the nuclear magnetic resonance (NMR) provides the opportunity to measure the water movements into soils directly over a large scale from tiny pore to regional scale, accordingly enable it available both on the laboratory and on the field. In addition, the NMR provides useful information about the pore space properties. In this study, we proposed both laboratory and field experiments to measure the multi-phase flow parameters, together with optimize the model in computer programming based on the fractional partial differential equations (fPDE). In addition, we establish, for the first time, an infiltration model including solute flowing with water, which has huge influence on agriculture and soil environment pollution. Afterwards, with data collected from experiments, we simulate the model and analyze the spatial variability of parameters. Simulations are also conducted according to the model to evaluate the effects of airflow on water infiltration and other effects such as solute and absorption. It has significant meaning to oxygen irrigation aiming to higher crop yield, and shed more light into the dam slope stability. In summary, our framework is a first-time model added in solute to have a mathematic analysis with the fPDE and more instructive to agriculture activities.

  4. Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets

    Science.gov (United States)

    Gaspari, M.; Ruszkowski, M.; Sharma, P.

    2012-02-01

    Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI/t ff) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments "rain" down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI/t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI/t ff fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

  5. CAUSE AND EFFECT OF FEEDBACK: MULTIPHASE GAS IN CLUSTER CORES HEATED BY AGN JETS

    International Nuclear Information System (INIS)

    Gaspari, M.; Ruszkowski, M.; Sharma, P.

    2012-01-01

    Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI /t ff ) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments 'rain' down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI /t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI /t ff ∼< 10. This occurs despite the fact that the energy from AGN jets is supplied to the core in a highly anisotropic fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

  6. Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions

    Science.gov (United States)

    Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta

    2018-03-01

    Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.

  7. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, Mark Jay [University of Michigan

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  8. New approach to multiphase equilibria: application to high-pressure physics problems

    International Nuclear Information System (INIS)

    Ree, F.H.

    1985-06-01

    A multiphase, multicomponent equation-of-state (EOS) model based on first principles of statistical mechanics is described. The model has been used to study fluid-fluid phase separations in binary (H 2 -He, Ar-Ne, Xe-He, and N 2 -H 2 O) and ternary or more complex systems involving species with C, H, N, and O atoms. Results of these calculations and a brief description of a new theory which can simultaneously describe both solid and fluid EOS properties are given. 26 refs., 4 figs

  9. Design and Analysis of Multi-Phase BLDC Motors for Electric Vehicles

    OpenAIRE

    Boztas, Gullu; Yildirim, Merve; Aydogmus, Omur

    2018-01-01

    This paper presents a design and analysis of multiphase brushless direct current (BLDC) motor for electric vehicles (EV). In this work, hub-wheels having 110Nm, 900rpm rated values have been designed for the proposed EV. This EV can produce 440 Nm without using transmission, differential and other mechanical components which have very high losses due to the mechanical fraction. The motors to be used in the EV have been designed as 3-, 5- and 7-phase by Infolytica/Motor Solve Software to compa...

  10. Use of the Minnesota Multiphasic Personality Inventory-2 with Persons Diagnosed with Multiple Sclerosis

    Science.gov (United States)

    Hayes, Danielle; Granello, Darcy Haag

    2009-01-01

    Counselors who assess persons with multiple sclerosis (MS) using the Minnesota Multiphasic Personality Inventory-2 (MMPI-2; T. N. Butcher, W. G. Dahlstrom, J. R. Graham, A. Tellegen, & B. Kaemmer, 1989) may find scale elevations on Scales 1, 2, 3, and 8. These elevations may be due, at least in part, to specific questions on the MMPI-2 that…

  11. Multiphase numerical analysis of heat pipe with different working fluids for solar applications

    Science.gov (United States)

    Aswath, S.; Netaji Naidu, V. H.; Padmanathan, P.; Raja Sekhar, Y.

    2017-11-01

    Energy crisis is a prognosis predicted in many cases with the indiscriminate encroachment of conventional energy sources for applications on a massive scale. This prediction, further emboldened by the marked surge in global average temperatures, attributed to climate change and global warming, the necessity to conserve the environment and explore alternate sources of energy is at an all-time high. Despite being among the lead candidates for such sources, solar energy is utilized far from its vast potential possibilities due to predominant economic constraints. Even while there is a growing need for solar panels at more affordable rates, the other options to harness better out of sun’s energy is to optimize and improvise existing technology. One such technology is the heat pipe used in Evacuated Tube Collectors (ETC). The applications of heat pipe have been gaining momentum in various fields since its inception and substantial volumes of research have explored optimizing and improving the technology which is proving effective in heat recovery and heat transfer better than conventional systems. This paper carries out a computational analysis on a comparative simulation between two working fluids within heat pipe of same geometry. It further endeavors to study the multiphase transitions within the heat pipe. The work is carried out using ANSYS Fluent with inputs taken from solar data for the location of Vellore, Tamil Nadu. A wickless, gravity-assisted heat pipe (GAHP) is taken for the simulation. Water and ammonia are used as the working fluids for comparative multiphase analysis to arrive at the difference in heat transfer at the condenser section. It is demonstrated that a heat pipe ETC with ammonia as working fluid showed higher heat exchange (temperature difference) as against that of water as working fluid. The multiphase model taken aided in study of phase transitions within both cases and supported the result of ammonia as fluid being a better candidate.

  12. Extension of modified RAND to multiphase flash specifications based on state functions other than (T,P)

    DEFF Research Database (Denmark)

    Paterson, Duncan; Michelsen, Michael Locht; Yan, Wei

    2017-01-01

    The recently proposed modified RAND formulation is extended from isothermal multiphase flash to several other state function based flash specifications. The obtained general formulation is applicable to chemical equilibrium although this study is focused on flash with only phase equilibrium. It i...

  13. Damage mechanisms and metallic materials development in multiphase flow

    International Nuclear Information System (INIS)

    Zheng, Yugui; Liu, Wei; Yao, Zhiming; Ke, Wei

    2002-01-01

    The investigation on the synergistic effects among corrosion, slurry erosion and cavitation erosion has special significance for hydraulic turbines operated in Yangtze River and Yellow River where the high concentration solid particles exist in water. Two typical metallic materials i.e. Cr-Mn-N stainless steel and Ni-Ti shapememory-alloy, and two typical materials used for hydraulic turbines 20SiMn and 0Cr13Ni5Mo as compared materials were selected in order to investigate the roles of work-hardening ability and martensitic transformation as well as pseudoelastics in damage mechanism in multiphase flow. Both modified rotating disk rig and ultrasonic vibration facility were used to simulate the possible damage mechanism of materials in multiphase flow. The effects of corrosion on cavitation erosion were investigated through adding 3wt% NaCl. The degradation mechanism was analyzed by electrochemical test, SEM observation, hardness and roughness measurement. The results showed that there was a strong synergistic interaction among electrochemical corrosion, slurry erosion and cavitation erosion for 20SiMn in liquid-solid two-phase medium. In contrast, corrosion played little role for 0Cr13Ni5Mo. Cr-Mn-N stainless steel with high Mn content showed better resistance to cavitation erosion and slurry erosion than 0Cr13Ni5Mo, which was mainly due to its good work-hardening ability as well as strain-induced martensite transformation. The cavitation micro-cracks for Cr-Mn-N stainless steel were parallel to the specimen surface in contrast with 0Cr13Ni5Mo whose micro-cracks were perpendicular to the surface. Ni-Ti alloy with pseudoelasticity showed excellent resistance to combined interaction of cavitation erosion and slurry erosion

  14. Dynamics of multiphase systems with complex microstructure. I. Development of the governing equations through nonequilibrium thermodynamics

    NARCIS (Netherlands)

    Sagis, L.M.C.; Öttinger, H.C.

    2013-01-01

    In this paper we present a general model for the dynamic behavior of multiphase systems in which the bulk phases and interfaces have a complex microstructure (for example, immiscible polymer blends with added compatibilizers, or polymer stabilized emulsions with thickening agents dispersed in the

  15. Simultaneous measurement of hysteresis in capillary pressure and electric permittivity for multiphase flow through porous media

    NARCIS (Netherlands)

    Plug, W.J.; Slob, E.C.; Bruining, J.; Moreno Tirado, L.M.

    2007-01-01

    We present a tool that simultaneously measures the complex permittivity and the capillary pressure characteristics for multiphase flow. The sample holder is a parallel plate capacitor. A precision component analyzer is used to measure the impedance amplitude and phase angle as a function of

  16. Multiphase contrast-enhanced magnetic resonance imaging features of Bacillus Calmette-Guerin-induced granulomatous prostatitis in five patients

    Energy Technology Data Exchange (ETDEWEB)

    Kawada, Hiroshi; Kanematsu, Masayuki; Goshima, Satoshi; Kondo, Hiroshi; Watanabe, Haruo; Noda, Yoshifumi; Tanahashi, Yukichi; Kawai, Nobuyuki; Hoshi, Hiroaki [Gifu University Hospital, Gifu (Japan)

    2015-04-15

    To evaluate the multiphase contrast-enhanced magnetic resonance (MR) imaging features of Bacillus Calmette-Guerin (BCG)-induced granulomatous prostatitis (GP). Magnetic resonance images obtained from five patients with histopathologically proven BCG-induced GP were retrospectively analyzed for tumor location, size, signal intensity on T2-weighted images (T2WI) and diffusion-weighted images (DWI), apparent diffusion coefficient (ADC) value, and appearance on gadolinium-enhanced multiphase images. MR imaging findings were compared with histopathological findings. Bacillus Calmette-Guerin-induced GP (size range, 9-40 mm; mean, 21.2 mm) were identified in the peripheral zone in all patients. The T2WI showed lower signal intensity compared with the normal peripheral zone. The DWIs demonstrated high signal intensity and low ADC values (range, 0.44-0.68 x 10(-3) mm2/sec; mean, 0.56 x 10(-3) mm2/sec), which corresponded to GP. Gadolinium-enhanced multiphase MR imaging performed in five patients showed early and prolonged ring enhancement in all cases of GP. Granulomatous tissues with central caseation necrosis were identified histologically, which corresponded to ring enhancement and a central low intensity area on gadolinium-enhanced MR imaging. The findings on T2WI, DWI, and gadolinium-enhanced images became gradually obscured with time. Bacillus Calmette-Guerin-induced GP demonstrates early and prolonged ring enhancement on gadolinium-enhanced MR imaging which might be a key finding to differentiate it from prostate cancer.

  17. Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramics

    DEFF Research Database (Denmark)

    Zhang, Wei; Kuhn, Luise Theil; Jørgensen, Peter Stanley

    2013-01-01

    An optimum method is proposed to prepare thin foil transmission electron microscopy (TEM) lamellae of multiphase porous functional ceramics: prefilling the pore space of these materials with an epoxy resin prior to focused ion beam milling. Several advantages of epoxy impregnation are demonstrated...... by successful preparation of TEM specimens that maintain the structural integrity of the entire lamella. Feasibility of the TEM alignment procedure is demonstrated, and ideal TEM analyses are illustrated on solid oxide fuel cell and solid oxide electrolysis cell materials. Some potential drawbacks of the TEM...

  18. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T.; Spycher, N.; Sonnenthal, E.; Zhang, G.; Zheng, L.; Pruess, K.

    2010-08-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO{sub 2} geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO{sub 2} in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.

  19. Open-Phase Fault Tolerance Techniques of Five-Phase Dual-Rotor Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2015-11-01

    Full Text Available Multi-phase motors are gaining more attention due to the advantages of good fault tolerance capability and high power density, etc. By applying dual-rotor technology to multi-phase machines, a five-phase dual-rotor permanent magnet synchronous motor (DRPMSM is researched in this paper to further promote their torque density and fault tolerance capability. It has two rotors and two sets of stator windings, and it can adopt a series drive mode or parallel drive mode. The fault-tolerance capability of the five-phase DRPMSM is researched. All open circuit fault types and corresponding fault tolerance techniques in different drive modes are analyzed. A fault-tolerance control strategy of injecting currents containing a certain third harmonic component is proposed for five-phase DRPMSM to ensure performance after faults in the motor or drive circuit. For adjacent double-phase faults in the motor, based on where the additional degrees of freedom are used, two different fault-tolerance current calculation schemes are adopted and the torque results are compared. Decoupling of the inner motor and outer motor is investigated under fault-tolerant conditions in parallel drive mode. The finite element analysis (FMA results and co-simulation results based on Simulink-Simplorer-Maxwell verify the effectiveness of the techniques.

  20. A combined single-multiphase flow formulation of the premixing phase using the level set method

    International Nuclear Information System (INIS)

    Leskovar, M.; Marn, J.

    1999-01-01

    The premixing phase of a steam explosion covers the interaction of the melt jet or droplets with the water prior to any steam explosion occurring. To get a better insight of the hydrodynamic processes during the premixing phase beside hot premixing experiments, where the water evaporation is significant, also cold isothermal premixing experiments are performed. The specialty of isothermal premixing experiments is that three phases are involved: the water, the air and the spheres phase, but only the spheres phase mixes with the other two phases whereas the water and air phases do not mix and remain separated by a free surface. Our idea therefore was to treat the isothermal premixing process with a combined single-multiphase flow model. In this combined model the water and air phase are treated as a single phase with discontinuous phase properties at the water air interface, whereas the spheres are treated as usually with a multiphase flow model, where the spheres represent the dispersed phase and the common water-air phase represents the continuous phase. The common water-air phase was described with the front capturing method based on the level set formulation. In the level set formulation, the boundary of two-fluid interfaces is modeled as the zero set of a smooth signed normal distance function defined on the entire physical domain. The boundary is then updated by solving a nonlinear equation of the Hamilton-Jacobi type on the whole domain. With this single-multiphase flow model the Queos isothermal premixing Q08 has been simulated. A numerical analysis using different treatments of the water-air interface (level set, high-resolution and upwind) has been performed for the incompressible and compressible case and the results were compared to experimental measurements.(author)

  1. Volume fraction calculation in multiphase system such as oil-water-gas using neutron

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Robson; Brandao, Luis E.B.; Salgado, Cesar Marques; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mails: robson@ien.gov.br; brandao@ien.gov.br; otero@ien.gov.br; cmnap@ien.gov.br; Schirru, Roberto; Silva, Ademir Xavier da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mails: schirru@lmp.ufrj.br; ademir@con.ufrj.br

    2007-07-01

    Multi-phase flows are common in diverse industrial sectors and the attainment of the volume fraction of each element that composes the flow system presents difficulties for the engineering process, therefore, to determine them is very important. In this work is presented methodology for determination of volume fractions in annular three-phase flow systems, such as oil-water-gas, based on the use of nuclear techniques and artificial intelligence. Using the principle of the fast-neutron transmission/scattering, come from an isotopic {sup 241}Am-Be source, and two point detectors, is gotten measured that they are influenced by the variations of the volume fractions of each phase present in the flow. An artificial neural network is trained to correlate such measures with the respective volume fractions. In order to get the data for training of the artificial neural network without necessity to carry through experiments, MCNP-X code is used, that simulates computational of the neutrons transport. The methodology is sufficiently advantageous, therefore, allows to develop a measurement system capable to determine the fractions of the phases (oil-water-gas), with proper requirements of each petroliferous installation and with national technology contributing, possibly, with reduction of costs and increase of productivity. (author)

  2. Volume fraction calculation in multiphase system such as oil-water-gas using neutron

    International Nuclear Information System (INIS)

    Ramos, Robson; Brandao, Luis E.B.; Salgado, Cesar Marques; Pereira, Claudio M.N.A.; Schirru, Roberto; Silva, Ademir Xavier da

    2007-01-01

    Multi-phase flows are common in diverse industrial sectors and the attainment of the volume fraction of each element that composes the flow system presents difficulties for the engineering process, therefore, to determine them is very important. In this work is presented methodology for determination of volume fractions in annular three-phase flow systems, such as oil-water-gas, based on the use of nuclear techniques and artificial intelligence. Using the principle of the fast-neutron transmission/scattering, come from an isotopic 241 Am-Be source, and two point detectors, is gotten measured that they are influenced by the variations of the volume fractions of each phase present in the flow. An artificial neural network is trained to correlate such measures with the respective volume fractions. In order to get the data for training of the artificial neural network without necessity to carry through experiments, MCNP-X code is used, that simulates computational of the neutrons transport. The methodology is sufficiently advantageous, therefore, allows to develop a measurement system capable to determine the fractions of the phases (oil-water-gas), with proper requirements of each petroliferous installation and with national technology contributing, possibly, with reduction of costs and increase of productivity. (author)

  3. Subsurface Transport Over Reactive Multiphases (STORM): A Parallel, Coupled, Nonisothermal Multiphase Flow, Reactive Transport, and Porous Medium Alteration Simulator, Version 3.0

    International Nuclear Information System (INIS)

    Bacon, Diana H.; White, Mark D.; McGrail, B PETER

    2004-01-01

    The U.S. Department of Energy must approve a performance assessment (PA) to support the design, construction, approval, and closure of disposal facilities for immobilized low-activity waste (ILAW) currently stored in underground tanks at Hanford, Washington. A critical component of the PA is to provide quantitative estimates of radionuclide release rates from the engineered portion of the disposal facilities. Computer simulations are essential for this purpose because impacts on groundwater resources must be projected to periods of 10,000 years and longer. The computer code selected for simulating the radionuclide release rates is the Subsurface Transport Over Reactive Multiphases (STORM) simulator. The STORM simulator solves coupled conservation equations for component mass and energy that describe subsurface flow over aqueous and gas phases through variably saturated geologic media. The resulting flow fields are used to sequentially solve conservation equations for reactive aqueous phase transport through variably saturated geologic media. These conservation equations for component mass, energy, and solute mass are partial differential equations that mathematically describe flow and transport through porous media. The STORM simulator solves the governing-conservation equations and constitutive functions using numerical techniques for nonlinear systems. The partial differential equations governing thermal and fluid flow processes are solved by the integral volume finite difference method. These governing equations are solved simultaneously using Newton-Raphson iteration. The partial differential equations governing reactive solute transport are solved using either an operator split technique where geochemical reactions and solute transport are solved separately, or a fully coupled technique where these equations are solved simultaneously. The STORM simulator is written in the FORTRAN 77 language, following American National Standards Institute (ANSI) standards

  4. Microstructure and mechanical properties of multiphase NiAl-based alloys

    Science.gov (United States)

    Pank, D. R.; Koss, D. A.; Nathal, M. V.

    1990-01-01

    The effect of the gamma-prime phase on the deformation behavior and fracture resistance of melt-spun ribbons and consolidated bulk specimens of a series of Nial-based alloys with Co and Hf additions has been examined. The morphology, location, and volume fraction of the gamma-prime phase are significant factors in enhancing the fracture resistance of the normally brittle NiAl-based alloys. In particular, the results indicate that a continuous-grain-boundary film of gamma-prime can impart limited room-temperature ductility regardless of whether B2 or L10 NiAl is present. Guidelines for microstructure control in multiphase NiAl-based alloys are also presented.

  5. Two-Fluid Models for Simulating Dispersed Multiphase Flows-A Review

    Directory of Open Access Journals (Sweden)

    L.X. Zhou

    2009-01-01

    Full Text Available The development of two-fluid models for simulating dispersed multiphase flows (gas-particle, gas-droplet, bubble-liquid, liquid-particle flows by the present author within the last 20 years is systematically reviewed. The two-fluid models based on Reynolds expansion, time averaging and mass-weighed averaging, and also PDF transport equations are described. Different versions of two-phase turbulence models, including the unified second-order moment (USM and k-ε-kp models, the DSM-PDF model, the SOM-MC model, the nonlinear k-e-kp model, and the USM-Θ model for dense gas-particle flows and their application and experimental validation are discussed.

  6. Modulation Schemes of Multi-phase Three-Level Z-Source Inverters

    DEFF Research Database (Denmark)

    Gao, F.; Loh, P.C.; Blaabjerg, Frede

    2007-01-01

    different modulation requirement and output performance. For clearly illustrating the detailed modulation process, time domain analysis instead of the traditional multi-dimensional space vector demonstration is assumed which reveals the right way to insert shoot-through durations in the switching sequence...... with minimal commutation count. Lastly, the theoretical findings are verified in Matlab/PLECS simulation and experimentally using constructed laboratory prototypes.......This paper investigates the modulation schemes of three-level multiphase Z-source inverters with either two Z-source networks or single Z-source network connected between the dc sources and inverter circuitry. With the proper offset added for achieving both desired four-leg operation and optimized...

  7. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B., E-mail: otero@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: brandao@ien.gov.b [Instituto de Engenharia Nuclear (DIRA/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos

    2011-07-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  8. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    International Nuclear Information System (INIS)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B.

    2011-01-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  9. Universality Results for Multi-phase Hele-Shaw Flows

    Science.gov (United States)

    Daripa, Prabir

    2013-03-01

    Saffman-Taylor instability is a well known viscosity driven instability of an interface separating two immiscible fluids. We study linear stability of displacement processes in a Hele-Shaw cell involving an arbitrary number of immiscible fluid phases. This is a problem involving many interfaces. Universal stability results have been obtained for this multi-phase immiscible flow in the sense that the results hold for arbitrary number of interfaces. These stability results have been applied to design displacement processes that are considerably less unstable than the pure Saffman-Taylor case. In particular, we derive universal formula which gives specific values of the viscosities of the fluid layers corresponding to smallest unstable band. Other similar universal results will also be presented. The talk is based on the following paper. This work was supported by the Qatar National Research Fund (a member of The Qatar Foundation).

  10. Modeling and observational constraints on the sulfur cycle in the marine troposphere: a focus on reactive halogens and multiphase chemistry

    Science.gov (United States)

    Chen, Q.; Breider, T.; Schmidt, J.; Sherwen, T.; Evans, M. J.; Xie, Z.; Quinn, P.; Bates, T. S.; Alexander, B.

    2017-12-01

    The radiative forcing from marine boundary layer clouds is still highly uncertain, which partly stems from our poor understanding of cloud condensation nuclei (CCN) formation. The oxidation of dimethyl sulfide (DMS) and subsequent chemical evolution of its products (e.g. DMSO) are key processes in CCN formation, but are generally very simplified in large-scale models. Recent research has pointed out the importance of reactive halogens (e.g. BrO and Cl) and multiphase chemistry in the tropospheric sulfur cycle. In this study, we implement a series of sulfur oxidation mechanisms into the GEOS-Chem global chemical transport model, involving both gas-phase and multiphase oxidation of DMS, DMSO, MSIA and MSA, to improve our understanding of the sulfur cycle in the marine troposphere. DMS observations from six locations around the globe and MSA/nssSO42- ratio observations from two ship cruises covering a wide range of latitudes and longitudes are used to assess the model. Preliminary results reveal the important role of BrO for DMS oxidation at high latitudes (up to 50% over Southern Ocean). Oxidation of DMS by Cl radicals is small in the model (within 10% in the marine troposphere), probably due to an underrepresentation of Cl sources. Multiphase chemistry (e.g. oxidation by OH and O3 in cloud droplets) is not important for DMS oxidation but is critical for DMSO oxidation and MSA production and removal. In our model, about half of the DMSO is oxidized in clouds, leading to the formation of MSIA, which is further oxidized to form MSA. Overall, with the addition of reactive halogens and multiphase chemistry, the model is able to better reproduce observations of seasonal variations of DMS and MSA/nssSO42- ratios.

  11. Advanced subgrid modeling for Multiphase CFD in CASL VERA tools

    International Nuclear Information System (INIS)

    Baglietto, Emilio; Gilman, Lindsey; Sugrue, Rosie

    2014-01-01

    This work introduces advanced modeling capabilities that are being developed to improve the accuracy and extend the applicability of Multiphase CFD. Specifics of the advanced and hardened boiling closure model are described in this work. The development has been driven by new physical understanding, derived from the innovative experimental techniques available at MIT. A new experimental-based mechanistic approach to heat partitioning is proposed. The model introduces a new description of the bubble evaporation, sliding and interaction on the heated surface to accurately capture the evaporation occurring at the heated surface, while also tracking the local surface conditions. The model is being assembled to cover an extended application area, up to Critical Heat Flux (CHF). The accurate description of the bubble interaction, effective microlayer and dry surface area are considered to be the enabling quantities towards innovated CHF capturing methodologies. Further, improved mechanistic force-balance models for bubble departure predictions and lift-off diameter predictions are implemented in the model. Studies demonstrate the influence of the newly implemented partitioning components. Finally, the development work towards a more consistent and integrated hydrodynamic closure is presented. The main objective here is to develop a set of robust momentum closure relations which focuses on the specific application to PWR conditions, but will facilitate the application to other geometries, void fractions, and flow regimes. The innovative approach considers local flow conditions on a cell-by-cell basis to ensure robustness. Closure relations of interest initially include drag, lift, and turbulence dispersion, with near wall corrections applied for both drag and lift. (author)

  12. Cesium incorporation in hollandite-rich multiphasic ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Tumurugoti, P.; Clark, B.M. [Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred University, Alfred, NY 14802 (United States); Edwards, D.J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Amoroso, Jake [Savannah River National Laboratory, Aiken, SC 29808 (United States); Sundaram, S.K. [Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred University, Alfred, NY 14802 (United States)

    2017-02-15

    Hollandite-rich multiphase waste form compositions processed by melt-solidification and spark plasma sintering (SPS) were characterized, compared, and validated for nuclear waste incorporation. Phase identification by x-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) confirmed hollandite as the major phase present in these samples along with perovskite, pyrochlore and zirconolite. Distribution of selected elements observed by wavelength dispersive spectroscopy (WDS) maps indicated that Cs formed a secondary phase during SPS processing, which was considered undesirable. On the other hand, Cs partitioned into the hollandite phase in melt-processed samples. Further analysis of hollandite structure in melt-processed composition by selected area electron diffraction (SAED) revealed ordered arrangement of tunnel ions (Ba/Cs) and vacancies, suggesting efficient Cs incorporation into the lattice.

  13. A programmable CCD driver circuit for multiphase CCD operation

    International Nuclear Information System (INIS)

    Ewin, A.J.; Reed, K.V.

    1989-01-01

    A programmable CCD driver circuit was designed to drive CCD's in multiphased modes. The purpose of the drive electronics was to operate developmental CCD imaging arrays for NASA's Moderate Resolution Imaging Spectrometer - Tiltable (MODIS-T). Five prototype arrays were designed. Valid's Graphics Editor (GED) was used to design the driver. With this driver design, any of the five arrays can be readout. Designing the driver with GED allowed functional simulation, timing verification, and certain packaging analyses to be done on the design before fabrication. The driver verified its function with the master clock running up to 10 MHz. This suggests a maximum rate of 400 Kpixels/sec. Timing and packaging parameters were verified. the design uses 54 TTL component chips

  14. Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode

    Science.gov (United States)

    Gao, Jing; Sun, Chunshui; Xu, Lei; Chen, Jian; Wang, Chong; Guo, Decai; Chen, Hao

    2018-04-01

    Due to flexible property and light weight, the lithiated Nafion membrane swollen with PC (PC-Li-Nafion) has been employed as both solid-state electrolyte and separator to fabricate solid-state Li-S cells. The electrochemical measurements of PC-Li-Nafion membrane show that its Li-ion transference number is 0.928, ionic conductivity of 2.1 × 10-4 S cm-1 can be achieved at 70 °C and its electrochemical window is 0 ∼ +4.1 V vs. Li+/Li. It is observed that the Li dendrites are suppressed by using PC-Li-Nafion membrane due to its single-ion conducting property. The amounts of Li-Nafion resin binder and conductive carbon in the cathode are optimized as 40% and 10% respectively to make a balance of ionic and electronic conductivities. A thin-layer Li-Nafion resin with a thickness of around 2 μm is fabricated between the cathode and PC-Li-Nafion membrane to improve the interfacial contact and further enhance the specific capacity of the cell. When measured at 70 °C, the Li-S cell delivers a reversible specific capacity of 1072.8 mAh g-1 (S) at 0.05 C and 895 mAh g-1 (S) at 1 C. The capacity retention at 1 C is 89% after 100 cycles. These results suggest that high-performance solid-state Li-S cells can be fabricated with the Li-Nafion polymer electrolyte.

  15. Predicting criminals' personality characteristics by using the Minnesota Multiphasic Personality Inventory (MMPI in committing type of crime

    Directory of Open Access Journals (Sweden)

    Mustafa Mohebbi

    2016-07-01

    Full Text Available Understanding criminals' personality characteristics could engender appropriate solutions for preventing crimes and treating criminals and the aim of the current work is to predict criminals' (robbers, swindlers and smugglers personality characteristics by using the Minnesota Multiphasic Personality Inventory (MMPI in committing type of crime. The research falls under the applied category in terms of goal while in terms of nature it is among surveydescriptive researches. The sample under investigation includes 480 people who were selected by way of classified random sampling method in a systematic form from among the population of criminals in the Central Prison, province of Kermanshah. The tool used in this paper is the Minnesota Multiphasic Personality Inventory (MMPI (short form of 71 questions. The results obtained from the Minnesota Multiphasic Personality Inventory (MMPI indicated that prevalence of anti-social personalitycharacteristics and mental weakness among robbers; depression, anti-social personality and schizophrenia among swindlers as well as anti-social traits, mental weakness and schizophrenia among smugglers are seen significantly. Also, the results of the variance analysis demonstrated that there is a significant difference between the (MMPI clinical scales among three groups of criminals (robbers, swindlers and smugglers on D scales (depression, Pd (Psychopathy deviation, Pt (Anxiety and psychosis, Sc (Schizophrenia and Ma (Hypomania (p<%5. Research findings revealed that criminals enjoy lower level of normal and positive personality dimensions. To sum up, we can infer that all personality characteristics exist in the population of criminals and therapy experts need to pay attention to all sorts of personalities for treating criminals affected with personality disorder.

  16. Multiphasic contrast-enhanced CT and MRI findings of adult mesoblastic nephroma: A report of two cases

    Directory of Open Access Journals (Sweden)

    Yuqin Ding

    2013-01-01

    Full Text Available Mesoblastic nephroma (MN presenting in an adult is extremely rare. The computed tomography (CT and magnetic resonance imaging (MRI features of this tumor in adulthood have not been widely reported. We present two additional cases of adult MN and describe the multiphasic contrast-enhanced CT and MRI findings.

  17. Microstructure characterization of multi-phase composites and utilization of phase change materials and recycled rubbers in cementitious materials

    Science.gov (United States)

    Meshgin, Pania

    2011-12-01

    This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.

  18. Comparison of dynamic dual spin-echo and fast-gradient-echo techniques in the evaluation of cardiac diseases

    International Nuclear Information System (INIS)

    Pettigrew, R.I.; Eisner, R.L.; Groen, J.P.; Baron, M.G.

    1987-01-01

    To determine the relative roles of a dynamic spin-echo method and a fast acquisition with multiphase excitations (FAME) technique, ten patients with myocardial infarction (MI), five with myocardial masses, and five healthy patients were studied with both methods. The dynamic dual-spin-echo (DSE) technique allows acquisition of each of seven sections at 14 cardiac phases in 20 minutes. Wall motion abnormalities were seen equally well with both techniques, but FAME usually required a shorter study time (10 minutes). DSE, however, was superior for evaluating cardiac masses and provided superior wall blood contrast. Thus, these techniques are complementary, and both are now a routine part of the authors' study of cardiac patients

  19. A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks

    International Nuclear Information System (INIS)

    Petitpas, Fabien; Franquet, Erwin; Saurel, Richard; Le Metayer, Olivier

    2007-01-01

    The relaxation-projection method developed in Saurel et al. [R. Saurel, E. Franquet, E. Daniel, O. Le Metayer, A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, J. Comput. Phys. (2007) 822-845] is extended to the non-conservative hyperbolic multiphase flow model of Kapila et al. [A.K. Kapila, Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration to detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024]. This model has the ability to treat multi-temperatures mixtures evolving with a single pressure and velocity and is particularly interesting for the computation of interface problems with compressible materials as well as wave propagation in heterogeneous mixtures. The non-conservative character of this model poses however computational challenges in the presence of shocks. The first issue is related to the Riemann problem resolution that necessitates shock jump conditions. Thanks to the Rankine-Hugoniot relations proposed and validated in Saurel et al. [R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump conditions for multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (3) (2007) 209-232] exact and approximate 2-shocks Riemann solvers are derived. However, the Riemann solver is only a part of a numerical scheme and non-conservative variables pose extra difficulties for the projection or cell average of the solution. It is shown that conventional Godunov schemes are unable to converge to the exact solution for strong multiphase shocks. This is due to the incorrect partition of the energies or entropies in the cell averaged mixture. To circumvent this difficulty a specific Lagrangian scheme is developed. The correct partition of the energies is achieved by using an artificial heat exchange in the shock layer. With the help of an asymptotic analysis this heat exchange takes a similar form as

  20. A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks

    Science.gov (United States)

    Petitpas, Fabien; Franquet, Erwin; Saurel, Richard; Le Metayer, Olivier

    2007-08-01

    The relaxation-projection method developed in Saurel et al. [R. Saurel, E. Franquet, E. Daniel, O. Le Metayer, A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, J. Comput. Phys. (2007) 822-845] is extended to the non-conservative hyperbolic multiphase flow model of Kapila et al. [A.K. Kapila, Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration to detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024]. This model has the ability to treat multi-temperatures mixtures evolving with a single pressure and velocity and is particularly interesting for the computation of interface problems with compressible materials as well as wave propagation in heterogeneous mixtures. The non-conservative character of this model poses however computational challenges in the presence of shocks. The first issue is related to the Riemann problem resolution that necessitates shock jump conditions. Thanks to the Rankine-Hugoniot relations proposed and validated in Saurel et al. [R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump conditions for multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (3) (2007) 209-232] exact and approximate 2-shocks Riemann solvers are derived. However, the Riemann solver is only a part of a numerical scheme and non-conservative variables pose extra difficulties for the projection or cell average of the solution. It is shown that conventional Godunov schemes are unable to converge to the exact solution for strong multiphase shocks. This is due to the incorrect partition of the energies or entropies in the cell averaged mixture. To circumvent this difficulty a specific Lagrangian scheme is developed. The correct partition of the energies is achieved by using an artificial heat exchange in the shock layer. With the help of an asymptotic analysis this heat exchange takes a similar form as

  1. Integration of Gas Enhanced Oil Recovery in Multiphase Fermentations for the Microbial Production of Fuels and Chemicals

    NARCIS (Netherlands)

    Pedraza de la Cuesta, S.; van der Wielen, L.A.M.; Cuellar Soares, M.C.

    2018-01-01

    In multiphase fermentations where the product forms a second liquid phase or where solvents are added for product extraction, turbulent conditions disperse the oil phase as droplets. Surface-active components (SACs) present in the fermentation broth can stabilize the product droplets thus forming

  2. Spherical nanostructured Si/C composite prepared by spray drying technique for lithium ion batteries anode

    Energy Technology Data Exchange (ETDEWEB)

    Chen Libao [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Xie Xiaohua [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Wang Baofeng [Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang Ke [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xie Jingying [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China) and Graduate School of Chinese Academy of Sciences, Beijing 100049 (China)]. E-mail: jyxie@mail.sim.ac.cn

    2006-07-15

    Spherical nanostructured Si/C composite was prepared by spray drying technique, followed by heat treatment, in which nanosized silicon and fine graphite particles were homogeneously embedded in carbon matrix pyrolyzed by phenol formaldehyde resin. Cyclic voltammetry tests showed two pairs of redox peaks corresponding to lithiation and delithiation of Si/C composite. The Si/C composite exhibited a reversible capacity of 635 mAh g{sup -1} and good cycle performance used in lithium ion batteries. To improve cycle performance of this Si/C composite further, the carbon-coated Si/C composite was synthesized by the second spray drying and heat treatment processing. The cycle performance of carbon-coated Si/C composite was improved significantly, which was attributed to the formation of stable SEI passivation layers on the outer surface of carbon shell which protected the bared silicon from exposing to electrolyte directly.

  3. Spherical nanostructured Si/C composite prepared by spray drying technique for lithium ion batteries anode

    International Nuclear Information System (INIS)

    Chen Libao; Xie Xiaohua; Wang Baofeng; Wang Ke; Xie Jingying

    2006-01-01

    Spherical nanostructured Si/C composite was prepared by spray drying technique, followed by heat treatment, in which nanosized silicon and fine graphite particles were homogeneously embedded in carbon matrix pyrolyzed by phenol formaldehyde resin. Cyclic voltammetry tests showed two pairs of redox peaks corresponding to lithiation and delithiation of Si/C composite. The Si/C composite exhibited a reversible capacity of 635 mAh g -1 and good cycle performance used in lithium ion batteries. To improve cycle performance of this Si/C composite further, the carbon-coated Si/C composite was synthesized by the second spray drying and heat treatment processing. The cycle performance of carbon-coated Si/C composite was improved significantly, which was attributed to the formation of stable SEI passivation layers on the outer surface of carbon shell which protected the bared silicon from exposing to electrolyte directly

  4. An efficient numerical approach for transient simulation of multiphase flow behavior in centrifuges

    OpenAIRE

    Hammerich, Simon; Nirschl, Hermann

    2016-01-01

    The separation process of particles and liquids in centrifuge is a widely used operation in industry. In spite of the long term usage of centrifuges, the knowledge for a detailed characterization of the interaction of the macroscopic processes due the separation is lacking. Reason for this is the complex multiphase flow and the sediment built-up within the machines. The sediment shape influences the flow behavior. The shape is dependent of the rheological behavior of the sediment. Computation...

  5. Entropic lattice Boltzmann model for charged leaky dielectric multiphase fluids in electrified jets.

    Science.gov (United States)

    Lauricella, Marco; Melchionna, Simone; Montessori, Andrea; Pisignano, Dario; Pontrelli, Giuseppe; Succi, Sauro

    2018-03-01

    We present a lattice Boltzmann model for charged leaky dielectric multiphase fluids in the context of electrified jet simulations, which are of interest for a number of production technologies including electrospinning. The role of nonlinear rheology on the dynamics of electrified jets is considered by exploiting the Carreau model for pseudoplastic fluids. We report exploratory simulations of charged droplets at rest and under a constant electric field, and we provide results for charged jet formation under electrospinning conditions.

  6. From damage to fracture, from micro to macro : a systematic study of ductile fracture in multi-phase microstructures

    NARCIS (Netherlands)

    de Geus, T.W.J.

    2016-01-01

    Multi-phase materials are of great importance for engineering applications, because of their favorable combination of strength and ductility. This unique combination of properties enables lightweight yet safe design for instance in the automotive industry. The in-depth understanding of the

  7. Segmented motor drive - with multi-phase induction motor

    DEFF Research Database (Denmark)

    Bendixen, Flemming Buus

    of the induction motor is set up. The model is able to calculate dynamical electric, magnetic and mechanic state variables, but initially it is used to calculate static characteristics in motors with different number of phases and different voltage supply shapes. This analysis show i.e. that the efficiency....... The multi-phase motor is selected for further analysis. The project is limited to examine if increasing the number of phases can improve the characteristics for induction motor drives. In the literature it is demonstrated that torque production in a six-phase motor can be increased, if a 3rd harmonic......This PhD project commences in modulation of motor drives, i.e. having the advantage of reducing the number of variants and improves the system reliability at error situations. Four different motor drive topologies with modular construction as common denominator are compared on a general level...

  8. Experimental determination of the speciation, partitioning, and release of perrhenate as a chemical surrogate for pertechnetate from a sodalite-bearing multiphase ceramic waste form

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Lukens, Wayne W.; Fitts, Jeff. P.; Jantzen, Carol. M.; Tang, G.

    2013-12-01

    A key component to closing the nuclear fuel cycle is the storage and disposition of nuclear waste in geologic systems. Multiphase ceramic waste forms have been studied extensively as a potential host matrix for nuclear waste. Understanding the speciation, partitioning, and release behavior of radionuclides immobilized in multiphase ceramic waste forms is a critical aspect of developing the scientific and technical basis for nuclear waste management. In this study, we evaluated a sodalite-bearing multiphase ceramic waste form (i.e., fluidized-bed steam reform sodium aluminosilicate [FBSR NAS] product) as a potential host matrix for long-lived radionuclides, such as technetium (99Tc). The FBSR NAS material consists primarily of nepheline (ideally NaAlSiO4), anion-bearing sodalites (ideally M8[Al6Si6O24]X2, where M refers to alkali and alkaline earth cations and X refers to monovalent anions), and nosean (ideally Na8[AlSiO4]6SO4). Bulk X-ray absorption fine structure analysis of the multiphase ceramic waste form, suggest rhenium (Re) is in the Re(VII) oxidation state and has partitioned to a Re-bearing sodalite phase (most likely a perrhenate sodalite Na8[Al6Si6O24](ReO4)2). Rhenium was added as a chemical surrogate for 99Tc during the FBSR NAS synthesis process. The weathering behavior of the FBSR NAS material was evaluated under hydraulically unsaturated conditions with deionized water at 90 ?C. The steady-state Al, Na, and Si concentrations suggests the weathering mechanisms are consistent with what has been observed for other aluminosilicate minerals and include a combination of ion exchange, network hydrolysis, and the formation of an enriched-silica surface layer or phase. The steady-state S and Re concentrations are within an order of magnitude of the nosean and perrhenate sodalite solubility, respectively. The order of magnitude difference between the observed and predicted concentration for Re and S may be associated with the fact that the anion

  9. Definition of a matrix of the generalized parameters asymmetrical multiphase transmission lines

    Directory of Open Access Journals (Sweden)

    Suslov V.M.

    2005-12-01

    Full Text Available Idle time, without introduction of wave characteristics, algorithm of definition of a matrix of the generalized parameters asymmetrical multiphase transmission lines is offered. Definition of a matrix of parameters is based on a matrix primary specific of parameters of line and simple iterative procedure. The amount of iterations of iterative procedure is determined by a set error of performance of the resulted matrix ratio between separate blocks of a determined matrix. The given error is connected by close image of with a margin error determined matrix.

  10. Multi-phase outflows as probes of AGN accretion history

    Science.gov (United States)

    Nardini, Emanuele; Zubovas, Kastytis

    2018-05-01

    Powerful outflows with a broad range of properties (such as velocity, ionization, radial scale and mass loss rate) represent a key feature of active galactic nuclei (AGN), even more so since they have been simultaneously revealed also in individual objects. Here we revisit in a simple analytical framework the recent remarkable cases of two ultraluminous infrared quasars, IRAS F11119+3257 and Mrk 231, which allow us to investigate the physical connection between multi-phase AGN outflows across the ladder of distance from the central supermassive black hole (SMBH). We argue that any major deviations from the standard outflow propagation models might encode unique information on the past SMBH accretion history, and briefly discuss how this could help address some controversial aspects of the current picture of AGN feedback.

  11. Current and Voltage Mode Multiphase Sinusoidal Oscillators Using CBTAs

    Directory of Open Access Journals (Sweden)

    M. Sagbas

    2013-04-01

    Full Text Available Current-mode (CM and voltage-mode (VM multiphase sinusoidal oscillator (MSO structures using current backward transconductance amplifier (CBTA are proposed. The proposed oscillators can generate n current or voltage signals (n being even or odd equally spaced in phase. n+1 CBTAs, n grounded capacitors and a grounded resistor are used for nth-state oscillator. The oscillation frequency can be independently controlled through transconductance (gm of the CBTAs which are adjustable via their bias currents. The effects caused by the non-ideality of the CBTA on the oscillation frequency and condition have been analyzed. The performance of the proposed circuits is demonstrated on third-stage and fifth-stage MSOs by using PSPICE simulations based on the 0.25 µm TSMC level-7 CMOS technology parameters.

  12. Linear Power-Flow Models in Multiphase Distribution Networks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Andrey; Dall' Anese, Emiliano

    2017-05-26

    This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- from advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.

  13. Multiphase Flow in Porous Media with Emphasis on Co2 Sequestration

    International Nuclear Information System (INIS)

    Be, Alif

    2011-01-01

    Numerical simulation has been used to predict multiphase flow in porous media. It is of great importance to incorporate accurate flow properties to obtain a proper simulation result thus reducing the risk of making wrong decision. Relative permeability and capillary pressure are important key parameters in multiphase flow as they describe how different fluid will interact in porous media. It is even more important in the case of three-phase flow as there are more fluid phases interact in the system. In most of the three-phase flow studies, capillary pressure has been neglected due to the lack of measured data and assumption that its effect is negligible. In other cases, two-phase capillary pressure has been used instead to describe the process in the system. This study will try to show how significant the impact of three-phase capillary pressure using different rock wettability. The three-phase capillary pressure surfaces are generated using a network model. Prior research shows that rock wettability is altered during Co2 sequestration due to the formation of carbonic acid (H2CO3) which leads to lower ph. In this study the effect of wettability alteration is incorporated to assess the safety of Johansen formation which is a good candidate for Co2 sequestration project. In addition, the wettability alteration effect to different flow parameters such as heterogeneity, solubility and diffusion is investigated. This thesis consists of two parts; the first part presents a theoretical background for the work, and the second part is a collection of papers. The papers are grouped into two main topics. The first three papers are discussing about three-phase flow simulation in porous media. The rest are discussing about wettability alteration during Co2 sequestration. Chapter 2 and 3 of the theoretical background include definitions and descriptions of interfacial tension, wettability, capillary pressure, relative permeability and hysteresis. Network model and technique for

  14. Toward a General Theory for Multiphase Turbulence Part I: Development and Gauging of the Model Equations

    Energy Technology Data Exchange (ETDEWEB)

    B. A. Kashiwa; W. B. VanderHeyden

    2000-12-01

    A formalism for developing multiphase turbulence models is introduced by analogy to the phenomenological method used for single-phase turbulence. A sample model developed using the formalism is given in detail. The procedure begins with ensemble averaging of the exact conservation equations, with closure accomplished by using a combination of analytical and experimental results from the literature. The resulting model is applicable to a wide range of common multiphase flows including gas-solid, liquid-solid and gas-liquid (bubbly) flows. The model is positioned for ready extension to three-phase turbulence, or for use in two-phase turbulence in which one phase is accounted for in multiple size classes, representing polydispersivity. The formalism is expected to suggest directions toward a more fundamentally based theory, similar to the way that early work in single-phase turbulence has led to the spectral theory. The approach is unique in that a portion of the total energy decay rate is ascribed to each phase, as is dictated by the exact averaged equations, and results in a transport equation for energy decay rate associated with each phase. What follows is a straightforward definition of a turbulent viscosity for each phase, and accounts for the effect of exchange of fluctuational energy among phases on the turbulent shear viscosity. The model also accounts for the effect of slip momentum transfer among the phases on the production of turbulence kinetic energy and on the tensor character of the Reynolds stress. Collisional effects, when appropriate, are included by superposition. The model reduces to a standard form in limit of a single, pure material, and is expected to do a credible job of describing multiphase turbulent flows in a wide variety of regimes using a single set of coefficients.

  15. Segmentation of hepatic artery in multi-phase liver CT using directional dilation and connectivity analysis

    Science.gov (United States)

    Wang, Lei; Schnurr, Alena-Kathrin; Zidowitz, Stephan; Georgii, Joachim; Zhao, Yue; Razavi, Mohammad; Schwier, Michael; Hahn, Horst K.; Hansen, Christian

    2016-03-01

    Segmentation of hepatic arteries in multi-phase computed tomography (CT) images is indispensable in liver surgery planning. During image acquisition, the hepatic artery is enhanced by the injection of contrast agent. The enhanced signals are often not stably acquired due to non-optimal contrast timing. Other vascular structure, such as hepatic vein or portal vein, can be enhanced as well in the arterial phase, which can adversely affect the segmentation results. Furthermore, the arteries might suffer from partial volume effects due to their small diameter. To overcome these difficulties, we propose a framework for robust hepatic artery segmentation requiring a minimal amount of user interaction. First, an efficient multi-scale Hessian-based vesselness filter is applied on the artery phase CT image, aiming to enhance vessel structures with specified diameter range. Second, the vesselness response is processed using a Bayesian classifier to identify the most probable vessel structures. Considering the vesselness filter normally performs not ideally on the vessel bifurcations or the segments corrupted by noise, two vessel-reconnection techniques are proposed. The first technique uses a directional morphological operator to dilate vessel segments along their centerline directions, attempting to fill the gap between broken vascular segments. The second technique analyzes the connectivity of vessel segments and reconnects disconnected segments and branches. Finally, a 3D vessel tree is reconstructed. The algorithm has been evaluated using 18 CT images of the liver. To quantitatively measure the similarities between segmented and reference vessel trees, the skeleton coverage and mean symmetric distance are calculated to quantify the agreement between reference and segmented vessel skeletons, resulting in an average of 0:55+/-0:27 and 12:7+/-7:9 mm (mean standard deviation), respectively.

  16. A New Concept for an Effective Leak Detection and Loclisation in Multiphase Fluid Pipelines

    Directory of Open Access Journals (Sweden)

    Mahmoud Meribout

    2011-02-01

    Full Text Available The aim of this paper is to present a secure wireless sensor network-based infrastructure for fast and accurate detection of eventual leaks that might occur in multiphase pipelines (i.e., pipelines which carry simultaneously more than one fluid. The system is scalable to monitor long distances of pipelines. It consists of a newly designed low cost pipeline set which is composed of an inner pipe that carries the multiphase fluid, surrounded by a second outer pipe that holds the leak detection unit. This latest comprises an air-ultrasonic sensor which continuously senses the presence of the leak. The location of the leak is determined by a bidirectional microphone. Both these sensors are interfaced to a wireless sensor module which performs control, signal processing, and transmission tasks. Hence, the second contribution of the paper is to provide a new secure and reliable communication protocol that takes into consideration the nature of the network in terms of packets patterns and hardware constraints of the communicating nodes. Online tests in a laboratory scale flow loop indicate that the system is capable to accurately determine the location of the leak and its rate (in l/min in fast response time for different scenarios of leaks.

  17. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors

    International Nuclear Information System (INIS)

    Zhang, Jin; Liu, Xifeng; Wang, Jing; Shi, Jingli; Shi, Zhiqiang

    2016-01-01

    Highlights: • Two types of HC materials with different properties as negative electrode. • Lithium ion intercalation plateau of HC affects electrochemical performance of LIC. • The electrochemical performance of LIC is operated at different potential ranges. • The selection of HC and appropriate potential range of LIC have been proposed. - ABSTRACT: Lithium-ion capacitors (LICs) are assembled with activated carbon (AC) cathode and pre-lithiated hard carbon (HC) anode. Two kinds of HC materials with different physical and electrochemical behaviors have been investigated as the negative electrodes for LIC. Compared with spherical HC, the irregular HC shows a distinct lithium ion intercalation plateau in the charge–discharge process. The existence of lithium ion intercalation plateau for irregular HC greatly affects the electrochemical behavior of HC negative electrode and AC positive electrode. The effect of working potential range on the electrochemical performance of LIC-SH and LIC-IH is investigated by the galvanostatic charging–discharging, electrochemical impedance tests and cycle performance testing. The charge–discharge potential range of the irregular HC negative electrode is lower than the spherical HC electrode due to the existence of lithium ion intercalation plateau, which is conducive to the sufficient utilization of the AC positive electrode. The working potential range of LIC should be controlled to realize the optimization of electrochemical performance of LIC. LIC-IH at the working potential range of 2.0-4.0 V exhibits the optimal electrochemical performance, high energy density up to 85.7 Wh kg −1 and power density as high as 7.6 kW kg −1 (based on active material mass of two electrodes), excellent capacity retention about 96.0% after 5000 cycles.

  18. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media

    Science.gov (United States)

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu

    2015-07-01

    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  19. Magnetite solubility studies under simulated PWR primary-side conditions, using lithiated, hydrogenated water

    International Nuclear Information System (INIS)

    Hewett, John; Morrison, Jonathan; Cooper, Christopher; Ponton, Clive; Connolly, Brian; Dickinson, Shirley; Henshaw, Jim

    2014-01-01

    As software for modelling dissolution, precipitation, and transport of metallic species and subsequent CRUD deposition within nuclear plant becomes more advanced, there is an increasing need for accurate and reliable thermodynamic data. The solubility behaviour of magnetite is an example of such data, and is central to any treatment of CRUD solubility due to the prevalence of magnetite and nickel ferrites in CRUD. Several workers have shown the most consistent solubility data comes from once-through flowing systems. However, despite a strong consensus between the results in acidic to mildly alkaline solutions, there is disagreement between the results at approximately pH 25C 9 and higher. A programme of experimental work is on-going at the University of Birmingham, focusing on solubility of metal oxides (e.g., magnetite) in conditions relevant to PWR primary coolant. One objective of this programme is to calculate thermodynamic constants from the data obtained. Magnetite solubility from 200 to 300°C, in lithiated, hydrogenated water of pH 25C 9–11 is being studied using a once-through rig constructed of 316L stainless steel. The feedwater is pumped at 100 bar pressure through a heated bed of magnetite granules, and the output solution is collected and analysed for iron and several other metals by ICP-MS. This paper presents results from preliminary tests without magnetite granules, in which the corroding surface of the rig itself was used as the sole source of soluble iron and of dissolved hydrogen. Levels of iron were generally within an order of magnitude of literature solubility values. Comparison of results at different flow rates and temperatures, in conjunction with conclusions drawn from the published literature, suggests that this is likely due to the presence of particulate matter in a greatly under-saturated solution, compensating for the low surface area of oxide in contact with the solution. (author)

  20. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour.

    Science.gov (United States)

    Hou, Xu; Hu, Yuhang; Grinthal, Alison; Khan, Mughees; Aizenberg, Joanna

    2015-03-05

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. The ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems. But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable. Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state. Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold-the pressure needed to open the pores-can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping. These capabilities allow us to dynamically modulate gas-liquid sorting in a microfluidic flow and to separate a three-phase air-water-oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.