#### Sample records for multiphase flow phenomena

1. Transport phenomena in multiphase flows

CERN Document Server

Mauri, Roberto

2015-01-01

This textbook provides a thorough presentation of the phenomena related to the transport of mass, momentum and energy.  It lays all the basic physical principles, then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings. The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level. The book is a modular teaching tool and can be used either for an introductory...

2. Flow and Diffusion Equations for Fluid Flow in Porous Rocks for the Multiphase Flow Phenomena

Directory of Open Access Journals (Sweden)

2015-07-01

Full Text Available The multiphase flow in porous media is a subject of great complexities with a long rich history in the field of fluid mechanics. This is a subject with important technical applications, most notably in oil recovery from petroleum reservoirs and so on. The single-phase fluid flow through a porous medium is well characterized by Darcy’s law. In the petroleum industry and in other technical applications, transport is modeled by postulating a multiphase generalization of the Darcy’s law. In this connection, distinct pressures are defined for each constituent phase with the difference known as capillary pressure, determined by the interfacial tension, micro pore geometry and surface chemistry of the solid medium. For flow rates, relative permeability is defined that relates the volume flow rate of each fluid to its pressure gradient. In the present paper, there is a derivation and analysis about the diffusion equation for the fluid flow in porous rocks and some important results have been founded. The permeability is a function of rock type that varies with stress, temperature etc., and does not depend on the fluid. The effect of the fluid on the flow rate is accounted for by the term of viscosity. The numerical value of permeability for a given rock depends on the size of the pores in the rock as well as on the degree of interconnectivity of the void space. The pressure pulses obey the diffusion equation not the wave equation. Then they travel at a speed which continually decreases with time rather than travelling at a constant speed. The results shown in this paper are much useful in earth sciences and petroleum industry.

3. Modeling multiphase, multicomponent flows at the pore scale: Wetting phenomena and non-equilibrium phase behavior

Science.gov (United States)

Cueto-Felgueroso, L.; Fu, X.; Juanes, R.

2016-12-01

The description of multicomponent flows with complex phase behavior remains an open challenge in pore-scale modeling. Darcy-scale general purpose simulators assume local thermodynamic equilibrium, and perform equation-of-state-based calculations to make phase equilibrium predictions; that is, to determine the phase volume fractions and their compositions from overall component mole fractions. What remains unclear is whether the thermodynamic equilibrium assumption is valid given the flow conditions, complex structure of the pore space and characteristic time scales for flow. Diffuse-interface theories of multiphase flow have recently emerged as promising tools to understand and simulate complex processes involving the simultaneous flow of two or more immiscible fluid phases. The common goal in these approaches is to formulate thermodynamically consistent stress tensors and mesoscale balance laws, including the impact of surface tension on the momentum balance, as well as properly tracking interfacial dynamics and mass transfer. We propose a phase-field model of multiphase, multicomponent flow, which we use to address the following research questions: What is the impact of the wetting conditions at the pore scale on upscaled descriptions of multiphase flow? What is the impact of the displacement dynamics, pore space structure and wetting conditions on the phase behavior of multicomponent mixtures? We finally investigate upscaling procedures to incorporate non-equilibrium phase behavior at the continuum scale.

4. Dynamic relaxation processes in compressible multiphase flows. Application to evaporation phenomena

Directory of Open Access Journals (Sweden)

Le Métayer O.

2013-07-01

Full Text Available Phase changes and heat exchanges are examples of physical processes appearing in many industrial applications involving multiphase compressible flows. Their knowledge is of fundamental importance to reproduce correctly the resulting effects in simulation tools. A fine description of the flow topology is thus required to obtain the interfacial area between phases. This one is responsible for the dynamics and the kinetics of heat and mass transfer when evaporation or condensation occurs. Unfortunately this exchange area cannot be obtained easily and accurately especially when complex mixtures (drops, bubbles, pockets of very different sizes appear inside the transient medium. The natural way to solve this specific trouble consists in using a thin grid to capture interfaces at all spatial scales. But this possibility needs huge computing resources and can be hardly used when considering physical systems of large dimensions. A realistic method is to consider instantaneous exchanges between phases by the way of additional source terms in a full non-equilibrium multiphase flow model [2,15,17]. In this one each phase obeys its own equation of state and has its own set of equations and variables (pressure, temperature, velocity, energy, entropy,.... When enabling the relaxation source terms the multiphase mixture instantaneously tends towards a mechanical or thermodynamic equilibrium state at each point of the flow. This strategy allows to mark the boundaries of the real flow behavior and to magnify the dominant physical effects (heat exchanges, evaporation, drag,... inside the medium. A description of the various relaxation processes is given in the paper. Les changements de phase et les transferts de chaleur sont des exemples de phénomènes physiques présents dans de nombreuses applications industrielles faisant intervenir des écoulements compressibles multiphasiques. La connaissance des mécanismes associés est primordiale afin de reproduire

5. Modeling of Multiscale and Multiphase Phenomena in Materials Processing

Science.gov (United States)

Ludwig, Andreas; Kharicha, Abdellah; Wu, Menghuai

2013-03-01

In order to demonstrate how CFD can help scientists and engineers to better understand the fundamentals of engineering processes, a number of examples are shown and discussed. The paper covers (i) special aspects of continuous casting of steel including turbulence, motion and entrapment of non-metallic inclusions, and impact of soft reduction; (ii) multiple flow phenomena and multiscale aspects during casting of large ingots including flow-induced columnar-to-equiaxed transition and 3D formation of channel segregation; (iii) multiphase magneto-hydrodynamics during electro-slag remelting; and (iv) melt flow and solidification of thin but large centrifugal castings.

6. Impact of sorption phenomena on multiphase conveying processes

Science.gov (United States)

Hatesuer, Florian; Groth, Tillmann; Reichwage, Mark; Mewes, Dieter; Luke, Andrea

2011-08-01

Twin-screw multiphase pumps are employed increasingly to convey multiphase mixtures of crude oil, accompanying fluids, associated gas and solid particles. They are positive displacement pumps and suitable for handling products containing liquid accompanied by large amounts of gas. Experimental investigations on the conveying characteristic, namely measuring the delivered volume flow as a function of the pressure difference, provide results for selected mixtures. By means of the on hand work, the influence of sorption phenomena occurring due to pressure variations alongside the conveying process on the conveying characteristics of twin-screw pumps delivering mixtures of oil and gases is measured. The employed gases are air and carbon dioxide, which differ strongly in solubility in oil. All experiments are conducted in a closed loop test facility, where oil and gas volume flows are mixed before the inlet and separated after the outlet of the multiphase pump. In order to simulate the influence of the suction side pressure drop in the reservoir on the conveying characteristic, packed beds are employed as oil-filed model. Sorption processes inside of the oil-field model and within the multiphase pump affect the conveying behaviour significantly. The two-phase flow in the inlet and outlet pipe is visualised by means of a capacitance tomography system. Results show that the oil fraction of the total delivered volume flow is decreased due to desorption at the pump inlet. The gas fraction at the pump outlet is further decreased due to absorption. Experimental results are compared to calculated solubilities of the on-hand gases in oil and to the theoretically derived gas volume flow fraction expected at the multiphase pump.

7. Multiphase Flow Dynamics 1 Fundamentals

CERN Document Server

Kolev, Nikolay Ivanov

2012-01-01

Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its fourth extended edition the successful monograph package “Multiphase Flow Dynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the...

8. Multiphase flow dynamics 1 fundamentals

CERN Document Server

Kolev, Nikolay Ivanov

2004-01-01

Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this monograph contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the fundamentals of multiphase dynamics are provided. This third edition includes various updates, extensions and improvements in all book chapters.

9. Multiphase flow dynamics 1 fundamentals

CERN Document Server

Kolev, Nikolay Ivanov

2007-01-01

Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this monograph contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the fundamentals of multiphase dynamics are provided. This third edition includes various updates, extensions and improvements in all book chapters.

10. Multiphase flow dynamics 1 fundamentals

CERN Document Server

Kolev, Nikolay Ivanov

2015-01-01

In its fifth extended edition the successful monograph package “Multiphase Flow Dynamics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the obtained system of partial differential equations. Finally the analysis is repeated for boundary fitted curvilinear coordinate systems designing methods applicable for interconnected multi-blocks. This fifth edition includes various updates, extensions, improvements and corrections, as well as  a completely new chapter containing the basic physics describing the multi-phase flow in tu...

11. Non-Equilibrium Thermodynamics in Multiphase Flows

CERN Document Server

Mauri, Roberto

2013-01-01

Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...

12. Numerical Solver for Multiphase Flows

OpenAIRE

Sousa, Victor C B; Scalo, Carlo

2015-01-01

The technological development of micro-scale electronic devices is bounded by the challenge of dissipating their heat output. Latent heat absorbed by a fluid during phase transition offers exceptional cooling capabilities while allowing for the design of compact heat exchangers. The understanding of heat transport dynamics in the context of multiphase flow physics is hampered by the limited access to detailed flow features offered by experimental measurements. Computational Fluid Dynamics (CF...

13. 2nd International Conference on Multiphase Flow - ICMF '95

CERN Document Server

Fukano, T; Bataille, Jean

1995-01-01

There is increasing world-wide interest in obtaining an understanding of various multiphase flow phenomena and problems in terms of a common language of multiphase flow. This volume contains state-of-the-art papers which have been contributed from all over the world by experts working on all aspects of multiphase flows. The volume also highlights international technology-sharing in the fields of energy, environment and public health, in order to create a brighter and sustainable future for man and for all life in the next century. It is intended that this volume will serve as a major source of

14. Multiphase Flow Dynamics 2 Mechanical Interactions

CERN Document Server

Kolev, Nikolay Ivanov

2012-01-01

Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present second volume the methods for describing the mechanical interactions in multiphase dynamics are provided. This fourth edition includes various updates, extensions, improvements and corrections.   "The literature in the field of multiphase flows is numerous. Therefore, it i...

15. Using pore-scale imaging and modeling to provide new insights in multi-phase flow, transport and reaction phenomena in porous media (Invited)

Science.gov (United States)

Bijeljic, B.; Andrew, M. G.; Menke, H. P.; Blunt, M. J.

2013-12-01

Advances in X ray imaging techniques made it possible not only to accurately describe solid and fluid(s) distributions in the pore space but also to study dynamics of multi-phase flow and reactive transport in-situ. This has opened up a range of new opportunities to better understand fundamental physics at the pore scale by experiment, and test and validate theoretical models in order to develop predictive tools at the pore scale and use it for upscaling. Firstly, we illustrate this concept by describing a new methodology for predicting non-Fickian transport in millimeter-sized three-dimensional micro-CT images of a beadpack, a sandstone, and a carbonate, representing porous media with an increasing degree of pore-scale complexity. The key strategy is to retain the full information on flow and transport signature of a porous medium by using probability distribution functions (PDFs) of voxel velocities for flow, and both PDFs of particle displacements and PDFs of particle transit times between voxels for transport. For this purpose, direct-simulation flow and transport model is used to analyse the relationship between pore structure, velocity, and the dynamics of the evolving plume. The model predictions for PDFs of particle displacements obtained by the model are in excellent agreement with those measured on similar cores in nuclear magnetic resonance experiments. A key determinant for non-Fickian transport is the spread in velocity distribution in the pore space. Further, we present micro-CT imaging of capillary trapping of scCO2 at reservoir conditions in a range of carbonates and sandstones having different pore structure and demonstrate that substantial quantities of scCO2 can be trapped in the pore space. Higher residual scCO2 saturations are found in sandstones compared to carbonates. The trapped ganglia exhibit different distribution of size, related to the inherent structure of pore space. Pore structures with large, open pores that are well connected lead

16. Multiphase Flow Dynamics 3 Thermal Interactions

CERN Document Server

Kolev, Nikolay Ivanov

2012-01-01

Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present third volume methods for describing of the thermal interactions in multiphase dynamics are provided. In addition a large number of valuable experiments is collected and predicted using the methods introduced in this monograph. In this way the accuracy of the methods is reve...

17. Frontiers and progress in multiphase flow

CERN Document Server

2014-01-01

This volume presents state-of-the-art of reviews in the field of multiphase flow. In focusses on nonlinear aspects of multiphase flow networks as well as visualization experiments. The first chapter presents nonlinear aspects or deterministic chaos issues in the systems of multi-phase reactors.  The second chapter reviews two-phase flow dynamics in combination with complex network theory. The third chapter discusses evaporation mechanism in the wick of copper heat pipes. The last chapter investigates numerically the flow dynamics and heat and mass transfer in the laminar and turbulent boundary layer on the flat vertical plate.

18. Multiphase flows in confinement with complex geometries

Science.gov (United States)

2016-11-01

Understanding the dynamics of immiscible fluids in confinement is crucial in numerous applications such as oil recovery, fuel cells and the rapidly growing field of microfluidics. Complexities such as microstructures, chemical-topographical heterogeneities or porous membranes, can often induce non-trivial effects such as critical phenomena and phase transitions . The dynamics of confined multiphase flows may be efficiently described using diffuse-interface theory, leading to the Cahn-Hilliard-Navier-Stokes(CHNS) equations with Cahn wetting boundary conditions. Here we outline an efficient numerical method to solve the CHNS equations using advanced geometry-capturing mesh techniques both in two and three dimensional scenarios. The methodology is applied to two different systems: a droplet on a spatially chemical-topographical heterogeneous substrateand a microfluidic separator.

19. Reactive multiphase flow simulation workshop summary

Energy Technology Data Exchange (ETDEWEB)

VanderHeyden, W.B.

1995-09-01

A workshop on computer simulation of reactive multiphase flow was held on May 18 and 19, 1995 in the Computational Testbed for Industry at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Approximately 35 to 40 people attended the workshop. This included 21 participants from 12 companies representing the petroleum, chemical, environmental and consumer products industries, two representatives from the DOE Office of Industrial Technologies and several from Los Alamos. The dialog at the meeting suggested that reactive multiphase flow simulation represents an excellent candidate for government/industry/academia collaborative research. A white paper on a potential consortium for reactive multiphase flow with input from workshop participants will be issued separately.

20. Design of Multiphase Flow Experiments

Energy Technology Data Exchange (ETDEWEB)

Urkedal, Hege

1998-12-31

This thesis proposes an experimental design procedure for multiphase experiments. The two-phase functions can be determined using data from a single experiment, while the three-phase relative permeabilities must be determined using data from multiple experiments. Various three-phase experimental designs have been investigated and the accuracy with which the flow functions may be determined using the corresponding data have been computed. Analytical sensitivity coefficients were developed from two-phase to three-phase flow. Sensitivity coefficients are the derivative of the model output with respect to the model parameters. They are obtained by a direct method that takes advantage of the fact that the model equations are solved using the Newton-Raphson method, and some of the results from this solution can be used directly when solving the sensitivity equation. Numerical derivatives are avoided, which improves accuracy. The thesis uses an inverse methodology for determination of two- and three-phase relative permeability and capillary pressure functions. The main work has been the development of analytical sensitivity coefficients for two-and three-phase flow. This technical contribution has improved the accuracy both in parameter estimation and accuracy assessment of the estimates and reduced the computer time requirements. The proposed experimental design is also dependent on accurate sensitivity coefficients to give the right guidelines for how two- and three-phase experiments should be conducted. Following the proposed experimental design, three-phase relative permeability and capillary pressure functions have been estimated when multiple sets of experimental data have been reconciled by simulations. 74 refs., 69 figs., 18 tabs.

1. Simulation of multiphase flow in hydrocyclone

Directory of Open Access Journals (Sweden)

Rudolf P.

2013-04-01

Full Text Available Multiphase gas-liquid-solid swirling flow within hydrocyclone is simulated. Geometry and boundary conditions are based on Hsieh's 75 mm hydrocyclone. Extensive simulations point that standard mixture model with careful selection of interphase drag law is suitable for correct prediction of particle classification in case of dilute suspensions. However this approach fails for higher mass loading. It is also confirmed that Reynolds stress model is the best choice for multiphase modeling of the swirling flow on relatively coarse grids.

2. Simulation of multiphase flow in hydrocyclone

Science.gov (United States)

Rudolf, P.

2013-04-01

Multiphase gas-liquid-solid swirling flow within hydrocyclone is simulated. Geometry and boundary conditions are based on Hsieh's 75 mm hydrocyclone. Extensive simulations point that standard mixture model with careful selection of interphase drag law is suitable for correct prediction of particle classification in case of dilute suspensions. However this approach fails for higher mass loading. It is also confirmed that Reynolds stress model is the best choice for multiphase modeling of the swirling flow on relatively coarse grids.

3. Simulation of multiphase flow in hydrocyclone

OpenAIRE

Rudolf P.

2013-01-01

Multiphase gas-liquid-solid swirling flow within hydrocyclone is simulated. Geometry and boundary conditions are based on Hsieh's 75 mm hydrocyclone. Extensive simulations point that standard mixture model with careful selection of interphase drag law is suitable for correct prediction of particle classification in case of dilute suspensions. However this approach fails for higher mass loading. It is also confirmed that Reynolds stress model is the best choice for multiphase modeling of the s...

4. Multiphase reacting flows modelling and simulation

CERN Document Server

Marchisio, Daniele L

2007-01-01

The papers in this book describe the most widely applicable modeling approaches and are organized in six groups covering from fundamentals to relevant applications. In the first part, some fundamentals of multiphase turbulent reacting flows are covered. In particular the introduction focuses on basic notions of turbulence theory in single-phase and multi-phase systems as well as on the interaction between turbulence and chemistry. In the second part, models for the physical and chemical processes involved are discussed. Among other things, particular emphasis is given to turbulence modeling strategies for multiphase flows based on the kinetic theory for granular flows. Next, the different numerical methods based on Lagrangian and/or Eulerian schemes are presented. In particular the most popular numerical approaches of computational fluid dynamics codes are described (i.e., Direct Numerical Simulation, Large Eddy Simulation, and Reynolds-Averaged Navier-Stokes approach). The book will cover particle-based meth...

5. "Student Lab"-on-a-Chip: Integrating Low-Cost Microfluidics into Undergraduate Teaching Labs to Study Multiphase Flow Phenomena in Small Vessels

Science.gov (United States)

Young, Edmond W. K.; Simmons, Craig A.

2009-01-01

We describe a simple, low-cost laboratory session to demonstrate the Fahraeus-Lindqvist effect, a microphase flow phenomenon that occurs in small blood vessels and alters the effective rheological properties of blood. The experiments are performed by flowing cells through microchannels fabricated by soft lithography and characterization of cell…

6. "Student Lab"-on-a-Chip: Integrating Low-Cost Microfluidics into Undergraduate Teaching Labs to Study Multiphase Flow Phenomena in Small Vessels

Science.gov (United States)

Young, Edmond W. K.; Simmons, Craig A.

2009-01-01

We describe a simple, low-cost laboratory session to demonstrate the Fahraeus-Lindqvist effect, a microphase flow phenomenon that occurs in small blood vessels and alters the effective rheological properties of blood. The experiments are performed by flowing cells through microchannels fabricated by soft lithography and characterization of cell…

7. Multiphase flow in porous media using CFD

DEFF Research Database (Denmark)

Hemmingsen, Casper Schytte; Walther, Jens Honore

We present results from a new Navier-Stokes model for multiphase flow in porous media implemented in Ansys Fluent 16.2 [1]. The model includes the Darcy-Forchheimer source terms in the momentum equations and proper account for relative permeability and capillary pressure in the porous media...... to model both the non-porous and porous media using the same formulation....

8. Online recognition of the multiphase flow regime

Institute of Scientific and Technical Information of China (English)

BAI BoFeng; ZHANG ShaoJun; ZHAO Liang; ZHANG XiMin; GUO LieJin

2008-01-01

The key reasons that the present method cannot be used to solve the industrial multi-phase flow pattern recognition are clarified firstly. The prerequisite to realize the online recognition is proposed and recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of single sensor performance.

9. A Course in Transport Phenomena in Multicomponent, Multiphase, Reacting Systems.

Science.gov (United States)

Carbonell, R. G.; Whitaker, S.

1978-01-01

This course concentrates on a rigorous development of the multicomponent transport equations, boundary conditions at phase interfaces, and volume-averaged transport equations for multiphase reacting systems. (BB)

10. CFD Simulation of Liquid-solid Multiphase Flow in Mud Mixer

Directory of Open Access Journals (Sweden)

T.Y. Kim

2016-08-01

Full Text Available In the present study, a computational fluid dynamics (CFD simulation was performed to analyze the mixing phenomena associated with multi-phase flow in a mud mixing system. For the validation of CFD simulation, firstly a liquid-solid multiphase flow inside horizontal pipe was simulated and compared with the experiments and other numerical simulations. And then, the multiphase flow simulation was carried out for the mud mixer in the drilling handling system in order to understand mixing phenomena and predict the mixing efficiency. For the modeling and simulation, a commercial software, STAR-CCM+, based on a finite-volume method (FVM was adopted. The simulation results for liquid-solid flow inside the pipe shows a good agreement with the experimental data. With the same multiphase model, the simulation for mud mixer is performed under the generalized boundary condition and then pressure drop through the mud mixer will be discussed.

11. Direct Numerical Simulation of Multiphase Flows with Unstable Interfaces

Science.gov (United States)

Schillaci, Eugenio; Lehmkuhl, Oriol; Antepara, Oscar; Oliva, Assensi

2016-09-01

This paper presents a numerical model that intends to simulate efficiently the surface instability that arise in multiphase flows, typically liquid-gas, both for laminar or turbulent regimes. The model is developed on the in-house computing platform TermoFluids, and operates the finite-volume, direct numerical simulation (DNS) of multiphase flows by means of a conservative level-set method for the interface-capturing. The mesh size is optimized by means of an adaptive mesh refinement (AMR) strategy, that allows the dynamic re-concentration of the mesh in the vicinity of the interfaces between fluids, in order to correctly represent the diverse structures (as ligaments and droplets) that may rise from unstable phenomena. In addition, special attention is given to the discretization of the various terms of the momentum equations, to ensure stability of the flow and correct representation of turbulent vortices. As shown, the method is capable of truthfully simulate the interface phenomena as the Kelvin-Helmholtz instability and the Plateau-Rayleigh instability, both in the case of 2-D and 3-D configurations. Therefore it is suitable for the simulation of complex phenomena such as simulation of air-blast atomization, with several important application in the field of automotive and aerospace engines. A prove is given by our preliminary study of the 3-D coaxial liquid-gas jet.

12. Multiphase flow in porous media

Science.gov (United States)

A development history and current status evaluation are presented for the theory of permeability and percolation. The microscale phenomena treated in this field have proven difficult to analyze due both to their tortuous geometry and the influence of capilarity. Capilary effects may be not only important but predominant, and are differentiated into those at the fluid-fluid interface, and those involving the existence of a contact line between the solid substrate and this interface. Percolation theory has been borrowed from physics and adapted to the two-phase engineering context.

13. Modeling variability in porescale multiphase flow experiments

Energy Technology Data Exchange (ETDEWEB)

Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.

2017-07-01

Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.

14. Modeling variability in porescale multiphase flow experiments

Science.gov (United States)

Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.

2017-07-01

Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e., fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rates. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.

15. Multiphase Flow in Porous Media

OpenAIRE

2014-01-01

In the hydrocarbon reservoirs that are normally saturated with two or more fluids, in order for better description of the flowing fluids behaviors and rockfluid interaction, the concept of relative permeability and capillary pressure should be exploited. Brilliant by Petrell AS is an object-oriented (C++) multi-physics Computational Fluid Dynamics (CFD) package developed for simulation of flow. In the continuous process of improving the system, the aim of this work is to model the multi...

16. NMR studies of multiphase flows II

Energy Technology Data Exchange (ETDEWEB)

Altobelli, S.A.; Caprihan, A.; Fukushima, E. [Lovelace Institutes, Albuquerque, NM (United States)] [and others

1995-12-31

NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

17. Online recognition of the multiphase flow regime

Institute of Scientific and Technical Information of China (English)

2008-01-01

The key reasons that the present method cannot be used to solve the industrial multi- phase flow pattern recognition are clarified firstly. The prerequisite to realize the online recognition is proposed and recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of single sensor performance.

18. Soft-sensing, non-intrusive multiphase flow meter

NARCIS (Netherlands)

Wrobel, K.; Schiferli, W.

2009-01-01

For single phase flow meters more and better non-intrusive or even clamp-on meters become available. This allows for a wider use of meters and for easier flow control. As the demand for multiphase meters is increasing, the current aim is to develop a non-intrusive multiphase flow meter. The non-intr

19. On the mixture model for multiphase flow

Energy Technology Data Exchange (ETDEWEB)

Manninen, M.; Taivassalo, V. [VTT Energy, Espoo (Finland). Nuclear Energy; Kallio, S. [Aabo Akademi, Turku (Finland)

1996-12-31

Numerical flow simulation utilising a full multiphase model is impractical for a suspension possessing wide distributions in the particle size or density. Various approximations are usually made to simplify the computational task. In the simplest approach, the suspension is represented by a homogeneous single-phase system and the influence of the particles is taken into account in the values of the physical properties. This study concentrates on the derivation and closing of the model equations. The validity of the mixture model is also carefully analysed. Starting from the continuity and momentum equations written for each phase in a multiphase system, the field equations for the mixture are derived. The mixture equations largely resemble those for a single-phase flow but are represented in terms of the mixture density and velocity. The volume fraction for each dispersed phase is solved from a phase continuity equation. Various approaches applied in closing the mixture model equations are reviewed. An algebraic equation is derived for the velocity of a dispersed phase relative to the continuous phase. Simplifications made in calculating the relative velocity restrict the applicability of the mixture model to cases in which the particles reach the terminal velocity in a short time period compared to the characteristic time scale of the flow of the mixture. (75 refs.)

20. Online recognition of the multiphase flow regime and study of slug flow in pipeline

Science.gov (United States)

Liejin, Guo; Bofeng, Bai; Liang, Zhao; Xin, Wang; Hanyang, Gu

2009-02-01

Multiphase flow is the phenomenon existing widely in nature, daily life, as well as petroleum and chemical engineering industrial fields. The interface structure among multiphase and their movement are complicated, which distribute random and heterogeneously in the spatial and temporal scales and have multivalue of the flow structure and state[1]. Flow regime is defined as the macro feature about the multiphase interface structure and its distribution, which is an important feature to describe multiphase flow. The energy and mass transport mechanism differ much for each flow regimes. It is necessary to solve the flow regime recognition to get a clear understanding of the physical phenomena and their mechanism of multiphase flow. And the flow regime is one of the main factors affecting the online measurement accuracy of phase fraction, flow rate and other phase parameters. Therefore, it is of great scientific and technological importance to develop new principles and methods of multiphase flow regime online recognition, and of great industrial background. In this paper, the key reasons that the present method cannot be used to solve the industrial multiphase flow pattern recognition are clarified firstly. Then the prerequisite to realize the online recognition of multiphase flow regime is analyzed, and the recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of

1. Multiphase Flow Dynamics 5 Nuclear Thermal Hydraulics

CERN Document Server

Kolev, Nikolay Ivanov

2012-01-01

The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step...

2. Multiphase flow dynamics 5 nuclear thermal hydraulics

CERN Document Server

Kolev, Nikolay Ivanov

2015-01-01

This Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demons...

3. Modeling multiphase materials processes

CERN Document Server

Iguchi, Manabu

2010-01-01

""Modeling Multiphase Materials Processes: Gas-Liquid Systems"" describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing. The book focuses on systems involving gas-liquid interaction, the most prevalent in current metallurgical processes. The performance characteristics of these processes are largely dependent on transport phenomena. This volume covers the inherent characteristics that complicate the modeling of transport phenomena in such systems, including complex multiphase structure, intense turbulence, opacity of

4. Quantitative tomographic measurements of opaque multiphase flows

Energy Technology Data Exchange (ETDEWEB)

GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O' HERN,TIMOTHY J.; CECCIO,STEVEN L.

2000-03-01

An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

5. Multiphase groundwater flow near cooling plutons

Science.gov (United States)

Hayba, D.O.; Ingebritsen, S.E.

1997-01-01

We investigate groundwater flow near cooling plutons with a computer program that can model multiphase flow, temperatures up to 1200??C, thermal pressurization, and temperature-dependent rock properties. A series of experiments examines the effects of host-rock permeability, size and depth of pluton emplacement, single versus multiple intrusions, the influence of a caprock, and the impact of topographically driven groundwater flow. We also reproduce and evaluate some of the pioneering numerical experiments on flow around plutons. Host-rock permeability is the principal factor influencing fluid circulation and heat transfer in hydrothermal systems. The hottest and most steam-rich systems develop where permeability is of the order of 10-15 m2. Temperatures and life spans of systems decrease with increasing permeability. Conduction-dominated systems, in which permeabilities are ???10-16m2, persist longer but exhibit relatively modest increases in near-surface temperatures relative to ambient conditions. Pluton size, emplacement depth, and initial thermal conditions have less influence on hydrothermal circulation patterns but affect the extent of boiling and duration of hydrothermal systems. Topographically driven groundwater flow can significantly alter hydrothermal circulation; however, a low-permeability caprock effectively decouples the topographically and density-driven systems and stabilizes the mixing interface between them thereby defining a likely ore-forming environment.

6. Impact Detection for Characterization of Complex Multiphase Flows

Science.gov (United States)

Chan, Wai Hong Ronald; Urzay, Javier; Mani, Ali; Moin, Parviz

2016-11-01

Multiphase flows often involve a wide range of impact events, such as liquid droplets impinging on a liquid pool or gas bubbles coalescing in a liquid medium. These events contribute to a myriad of large-scale phenomena, including breaking waves on ocean surfaces. As impacts between surfaces necessarily occur at isolated points, numerical simulations of impact events will require the resolution of molecular scales near the impact points for accurate modeling. This can be prohibitively expensive unless subgrid impact and breakup models are formulated to capture the effects of the interactions. The first step in a large-eddy simulation (LES) based computational methodology for complex multiphase flows like air-sea interactions requires effective detection of these impact events. The starting point of this work is a collision detection algorithm for structured grids on a coupled level set / volume of fluid (CLSVOF) solver adapted from an earlier algorithm for cloth animations that triangulates the interface with the marching cubes method. We explore the extension of collision detection to a geometric VOF solver and to unstructured grids. Supported by ONR/A*STAR. Agency of Science, Technology and Research, Singapore; Office of Naval Research, USA.

7. Transport Phenomena and Interfacial Kinetics in Multiphase Combustion Systems. Revision

Science.gov (United States)

1992-08-01

not be interpreted as necessarily the official policy or the endorsements, either expressed or implied, of the Air Force Office of Scientific Research...43 867. 1991 0021 8502,91 S3.00+O.0 Pnnted in Gmat Britain C 1991 Pupmon Prm pic CORRECTION FOR SAMPLING ERRORS DUE TO COAGULATION AND WALL LOSS IN...for Brownian aerosols (in the absence of appreciable inertial- and sedimentation-phenomena), as well as guide the design/selection of sampling systems

8. Dan Joseph's contributions to disperse multiphase flow

Science.gov (United States)

Prosperetti, Andrea

2012-11-01

During his distinguished career, Dan Joseph worked on a vast array of problems. One of these, which occupied him off and on over the last two decades of his life, was that of flows with suspended finite-size particles at finite Reynolds numbers. He realized early on that progress in this field had to rely on the insight gained from numerical simulation, an area in which he was a pioneer. On the basis of the early numerical results he recognized the now famous drafting, kissing and tumbling'' mechanism of particle-particle interaction, the possibility of fluidization by lift and many others. With a number of colleagues and a series of gifted students he produced a significant body of work summarized in his on-line book Interrogations of Direct Numerical Simulation of Solid-Liquid Flows available from http://www.efluids.com/efluids/books/joseph.htm. This presentation will describe Joseph's contribution to the understanding of disperse multiphase flow and conclude with some examples from the author's recent work in this area. Supported by NSF.

9. Workshop on Scientific Issues in Multiphase Flow

Energy Technology Data Exchange (ETDEWEB)

Hanratty, Thomas J. [Univ. of Illinois, Urbana, IL (United States)

2003-01-02

This report outlines scientific issues whose resolution will help advance and define the field of multiphase flow. It presents the findings of four study groups and of a workshop sponsored by the Program on Engineering Physics of the Department of Energy. The reason why multiphase flows are much more difficult to analyze than single phase flows is that the phases assume a large number of complicated configurations. Therefore, it should not be surprising that the understanding of why the phases configure in a certain way is the principal scientific issue. Research is needed which identifies the microphysics controlling the organization of the phases, which develops physical models for the resultant multi-scale interactions and which tests their validity in integrative experiments/theories that look at the behavior of a system. New experimental techniques and recently developed direct numerical simulations will play important roles in this endeavor. In gas-liquid flows a top priority is to develop an understanding of why the liquid phase in quasi fully-developed pipe flow changes from one configuration to another. Mixing flows offer a more complicated situation in which several patterns can exist at the same time. They introduce new physical challenges. A second priority is to provide a quantitative description of the phase distribution for selected fully-developed flows and for simple mixing flows (that could include heat transfer and phase change). Microphysical problems of interest are identified – including the coupling of molecular and macroscopic behavior that can be observed in many situations and the formation/destruction of interfaces in the coalescence/breakup of drops and bubbles. Solid-fluid flows offer a simpler system in that interfaces are not changing. However, a variety of patterns exist, that depend on the properties of the particles, their concentration and the Reynolds number characterizing the relative velocity. A top priority is the

10. Progress in the Development of Compressible, Multiphase Flow Modeling Capability for Nuclear Reactor Flow Applications

Energy Technology Data Exchange (ETDEWEB)

R. A. Berry; R. Saurel; F. Petitpas; E. Daniel; O. Le Metayer; S. Gavrilyuk; N. Dovetta

2008-10-01

In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. Within the context of multiphase flows, two bubble-dynamic phenomena – boiling (heterogeneous) and flashing or cavitation (homogeneous boiling), with bubble collapse, are technologically very important to nuclear reactor systems. The main difference between boiling and flashing is that bubble growth (and collapse) in boiling is inhibited by limitations on the heat transfer at the interface, whereas bubble growth (and collapse) in flashing is limited primarily by inertial effects in the surrounding liquid. The flashing process tends to be far more explosive (and implosive), and is more violent and damaging (at least in the near term) than the bubble dynamics of boiling. However, other problematic phenomena, such as crud deposition, appear to be intimately connecting with the boiling process. In reality, these two processes share many details.

11. Numerical simulation of multiphase cavitating flows around an underwater projectile

Institute of Scientific and Technical Information of China (English)

2011-01-01

The present simulation investigates the multiphase cavitating flow around an underwater projectile.Based on the Homogeneous Equilibrium Flow assumption,a mixture model is applied to simulate the multiphase cavitating flow including ventilated cavitation caused by air injection as well as natural cavitation that forms in a region where the pressure of liquid falls below its vapor pressure. The transport equation cavitating model is applied.The calculations are executed based on a suite of CFD code.The hyd...

12. Multiphase Flow and Fluidization Continuum and Kinetic Theory Descriptions

CERN Document Server

Gidaspow, Dimitri

1994-01-01

Useful as a reference for engineers in industry and as an advanced level text for graduate engineering students, Multiphase Flow and Fluidization takes the reader beyond the theoretical to demonstrate how multiphase flow equations can be used to provide applied, practical, predictive solutions to industrial fluidization problems. Written to help advance progress in the emerging science of multiphase flow, this book begins with the development of the conservation laws and moves on through kinetic theory, clarifying many physical concepts (such as particulate viscosity and solids pressure) and i

13. Bleed Hole Flow Phenomena Studied

Science.gov (United States)

1997-01-01

Boundary-layer bleed is an invaluable tool for controlling the airflow in supersonic aircraft engine inlets. Incoming air is decelerated to subsonic speeds prior to entering the compressor via a series of oblique shocks. The low momentum flow in the boundary layer interacts with these shocks, growing in thickness and, under some conditions, leading to flow separation. To remedy this, bleed holes are strategically located to remove mass from the boundary layer, reducing its thickness and helping to maintain uniform flow to the compressor. The bleed requirements for any inlet design are unique and must be validated by extensive wind tunnel testing to optimize performance and efficiency. To accelerate this process and reduce cost, researchers at the NASA Lewis Research Center initiated an experimental program to study the flow phenomena associated with bleed holes. Knowledge of these flow properties will be incorporated into computational fluid dynamics (CFD) models that will aid engine inlet designers in optimizing bleed configurations before any hardware is fabricated. This ongoing investigation is currently examining two hole geometries, 90 and 20 (both with 5-mm diameters), and various flow features.

14. PREFACE: The 6th International Symposium on Measurement Techniques for Multiphase Flows

Science.gov (United States)

Okamoto, Koji; Murai, Yuichi

2009-02-01

Research on multi-phase flows is very important for industrial applications, including power stations, vehicles, engines, food processing, and so on. Also, from the environmental viewpoint, multi-phase flows need to be investigated to overcome global warming. Multi-phase flows originally have non-linear features because they are multi-phased. The interaction between the phases plays a very interesting role in the flows. The non-linear interaction causes the multi-phase flows to be very difficult to understand phenomena. The International Symposium on Measurement Techniques for Multi-phase Flows (ISMTMF) is a unique symposium. The target of the symposium is to exchange the state-of-the-art knowledge on the measurement techniques for non-linear multi-phase flows. Measurement technique is the key technology to understanding non-linear phenomena. The ISMTMF began in 1995 in Nanjing, China. The symposium has continuously been held every two or three years. The ISMTMF-2008 was held in Okinawa, Japan as the 6th symposium of ISMTMF on 15-17 December 2008. Okinawa has a long history as the Ryukyus Kingdom. China and Japan have had cultural and economic exchanges through Okinawa for more than 1000 years. Please enjoy Okinawa and experience its history to enhance our international communication. The present symposium was attended by 124 participants, the program included 107 contributions with 5 plenary lectures, 2 keynote lectures, and 100 oral regular paper presentations. The topics include, besides the ordinary measurement techniques for multiphase flows, acoustic and electric sensors, bubbles and microbubbles, computed tomography, gas-liquid interface, laser-imaging and PIV, oil/coal/drop and spray, solid and powder, spectral and multi-physics. This volume includes the presented papers at ISMTMF-2008. In addition to this volume, ten selected papers will be published in a special issue of Measurement Science and Technology. We would like to express special thanks to all

15. Comparative analysis of volumetric flow meters used for mass flow estimation in multiphase and multidensity environments

Science.gov (United States)

Pedone, Richard; Korman, Valentin; Wiley, John T.

2006-05-01

Accurate and reliable multiphase flow measurements are needed for liquid propulsion systems. Existing volumetric flow meters are adequate for flow measurements with well-characterized, clean liquids and gases. However, these technologies are inadequate for multiphase environments, such as cryogenic fluids. Although, properly calibrated turbine flow meters can provide highly accurate and repeatable data, problems are still prevalent with multiphase flows. Limitations are thus placed on the applicability of intrusive turbine flow meters.

16. Development of predictive simulation capability for reactive multiphase flow

Energy Technology Data Exchange (ETDEWEB)

VanderHeyden, W.B.; Kendrick, B.K.

1998-12-31

This is the final report of a Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to develop a self-sustained research program for advanced computer simulation of industrial reactive multiphase flows. The prototype research problem was a three-phase alumina precipitator used in the Bayer process, a key step in aluminum refining. Accomplishments included the development of an improved reaction mechanism of the alumina precipitation growth process, the development of an efficient methods for handling particle size distribution in multiphase flow simulation codes, the incorporation of precipitation growth and agglomeration kinetics in LANL's CFDLIB multiphase flow code library and the evaluation of multiphase turbulence closure models for bubbly flow simulations.

17. Massively Parallel Direct Simulation of Multiphase Flow

Energy Technology Data Exchange (ETDEWEB)

COOK,BENJAMIN K.; PREECE,DALE S.; WILLIAMS,J.R.

2000-08-10

The authors understanding of multiphase physics and the associated predictive capability for multi-phase systems are severely limited by current continuum modeling methods and experimental approaches. This research will deliver an unprecedented modeling capability to directly simulate three-dimensional multi-phase systems at the particle-scale. The model solves the fully coupled equations of motion governing the fluid phase and the individual particles comprising the solid phase using a newly discovered, highly efficient coupled numerical method based on the discrete-element method and the Lattice-Boltzmann method. A massively parallel implementation will enable the solution of large, physically realistic systems.

18. Multiphase flow metering: 4 years on

Energy Technology Data Exchange (ETDEWEB)

Falcone, G.; Hewitt, G.F.; Alimonti, C.; Harrison, B.

2005-07-01

Since the authors' last review in 2001 [1], the use of Multiphase Flow Metering (MFM) within the oil and gas industry continues to grow apace, being more popular in some parts of the world than others. Since the early 1990's, when the first commercial meters started to appear, there have been more than 1,600 field applications of MFM for field allocation, production optimisation and mobile well testing. As the authors predicted, wet gas metering technology has improved to such an extent that its use has rapidly increased worldwide. A ''who's who'' of the MFM sector is provided, which highlights the mergers in the sector and gives an insight into the meters and measurement principles available today. Cost estimates, potential benefits and reliability in the field of the current MFM technologies are revisited and brought up to date. Several measurements technologies have resurfaced, such as passive acoustic energy patterns, infrared wavelengths, Nuclear Magnetic Resonance (NMR) and Electrical Capacitance Tomography (ECT), and they are becoming commercial. The concept of ''virtual metering'', integrated with ''classical MFM'', is now widely accepted. However, sometimes the principles of the MFM measurements themselves are forgotten, submerged in the sales and marketing hype. (author) (tk)

19. FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)

Science.gov (United States)

Wu, Yulin

2015-01-01

The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and

20. Development of Next Generation Multiphase Pipe Flow Prediction Tools

Energy Technology Data Exchange (ETDEWEB)

Cem Sarica; Holden Zhang

2006-05-31

The developments of oil and gas fields in deep waters (5000 ft and more) will become more common in the future. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas, oil and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of hydrocarbon recovery from design to operation. Recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications, including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is crucial for any multiphase separation technique, either at topside, seabed or bottom-hole, to know inlet conditions such as flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. Therefore, the development of a new generation of multiphase flow predictive tools is needed. The overall objective of the proposed study is to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). In the current multiphase modeling approach, flow pattern and flow behavior (pressure gradient and phase fractions) prediction modeling are separated. Thus, different models based on different physics are employed, causing inaccuracies and discontinuities. Moreover, oil and water are treated as a pseudo single phase, ignoring the distinct characteristics of both oil and water, and often resulting in inaccurate design that leads to operational problems. In this study, a new model is being developed through a theoretical and experimental study employing a revolutionary approach. The

1. Viscous and gravitational fingering in multiphase compositional and compressible flow

Science.gov (United States)

Moortgat, Joachim

2016-03-01

Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.

2. Viscous and Gravitational Fingering in Multiphase Compositional and Compressible Flow

CERN Document Server

Moortgat, Joachim

2016-01-01

Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for 1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and 2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, w...

3. Multisensor Acquirement System of Electrokinetic in Multiphase Flow

Directory of Open Access Journals (Sweden)

Yahui Bu

2013-09-01

Full Text Available Streaming potential is one kind of electrokinetic effect coupled with fluid flow in porous media, and it has the ability to evaluate properties of rock and fluid in reservoirs. Geophysicists are much concerned about its application in geophysical survey, especially to monitor multiphase flow which is widespread in petroleum industry. To study the electrokinetic effect during multiphase flow, it is necessary to collect electrical and hydraulic parameters in real time. So we designed an acquisition system of multisensors (pressure, flow rate, electrical potential and resistivity, which could conduct measurement process automatically, introduced noise reduction algorithm to the primary analog signals. Data and control command were transmitted in network based on TCP/IP protocol and USB converter. Result from an water-oil displacement experiment showed that this system can effectively and rightly monitor the state of electrokinetic process during multiphase flow

4. Predictive simulation of granular flows applied to compressible multiphase flow modeling

Science.gov (United States)

Goetsch, Ryan J.; Regele, Jonathan D.

2014-11-01

Multiphase flows have been an active area of research for decades due to their complex nature and occurrence in many engineering applications. However, little information exists about the dense compressible flow regime. Recent experimental work [Wagner et al., Exp. Fluids 52, 1507 (2012)] using a multiphase shock tube has studied gas-solid flows with high solid volume fractions (α = 0 . 2) by measuring shock wave-particle cloud interactions. It is still unclear what occurs at the particle scale inside and behind the particle cloud during this interaction. The objective of this work is to perform direct numerical simulations to understand this phenomena. With this goal in mind, a discrete element method (DEM) solver was developed to predict the properties of a particle cloud formed by gravity driven granular flow through a slit opening. For validation purposes, the results are compared with experimental channel flow data. It is found that the mean velocity profile and mass flow rates correlate well with the experiment, however the fluctuation velocities are significantly under-predicted for both smooth and rough wall cases.

5. Direct numerical simulations of gas-liquid multiphase flows

CERN Document Server

Tryggvason, Grétar; Zaleski, Stéphane

2011-01-01

Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and

6. Multiphase flow of immiscible fluids on unstructured moving meshes

DEFF Research Database (Denmark)

Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam

2012-01-01

In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...

7. Electrification of particulates in industrial and natural multiphase flows

CERN Document Server

Gu, Zhaolin

2017-01-01

This book introduces comprehensive fundamentals, numerical simulations and experimental methods of electrification of particulates entrained multiphase flows. The electrifications of two particulate forms, liquid droplets and solid particles, are firstly described together. Liquid droplets can be charged under preset or associated electric fields, while solid particles can be charged through contact. Different charging ways in gas (liquid)-liquid or gas-solid multiphase flows are summarized, including ones that are beneficial to industrial processes, such as electrostatic precipitation, electrostatic spraying, and electrostatic separation, etc., ones harmful for shipping and powder industry, and ones occurring in natural phenomenon, such as wind-blown sand and thunderstorm. This book offers theoretical references to the control and utilization of the charging or charged particulates in multiphase flows as well.

8. Nonequilibrium Physics and Phase-Field Modeling of Multiphase Flow in Porous Media

Energy Technology Data Exchange (ETDEWEB)

Juanes, Ruben [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

2016-09-01

The overarching goal of this project was to develop a new continuum theory of multiphase flow in porous media. The theory follows a phase-field modeling approach, and therefore has a sound thermodynamical basis. It is a phenomenological theory in the sense that its formulation is driven by macroscopic phenomena, such as viscous instabilities during multifluid displacement. The research agenda was organized around a set of hypothesis on hitherto unexplained behavior of multiphase flow. All these hypothesis are nontrivial, and testable. Indeed, a central aspect of the project was testing each hypothesis by means of carefully-designed laboratory experiments, therefore probing the validity of the proposed theory. The proposed research places an emphasis on the fundamentals of flow physics, but is motivated by important energy-driven applications in earth sciences, as well as microfluidic technology.

9. Dynamic effects in multiphase flow: A pore-scale network approach

NARCIS (Netherlands)

Gielen, T.; Hassanizadeh, S.M.; Leijnse, A.; Nordhaug, H.F.

2005-01-01

Current theories of multiphase flow rely on capillary pressure and saturation relationships that are commonly measured under static conditions. To incorporate transient behaviour, new multiphase flow theories have been proposed. These include an extended capillary pressure-saturation relationship

10. Dynamic effects in multiphase flow: A pore-scale network approach

NARCIS (Netherlands)

Gielen, T.; Hassanizadeh, S.M.; Leijnse, A.; Nordhaug, H.F.

2005-01-01

Current theories of multiphase flow rely on capillary pressure and saturation relationships that are commonly measured under static conditions. To incorporate transient behaviour, new multiphase flow theories have been proposed. These include an extended capillary pressure-saturation relationship th

11. Multiphase flow in a confined geometry with Dissipative Particle Dynamics

NARCIS (Netherlands)

Visser, D.C.

2015-01-01

The research presented in this thesis is focused on the modelling of multiphase flow in a confined geometry with Dissipative Particle Dynamics (DPD). DPD is a particle-based mesoscopic simulation technique that obeys the Navier-Stokes equations and is particularly useful to model complex fluids and

12. Qualification of CFD-models for multiphase flows

Energy Technology Data Exchange (ETDEWEB)

Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)

2016-05-15

While Computational Fluid Dynamics (CFD) is already an accepted industrial tool for single phase flows it is not yet mature for two-phase flows. For this reason the qualification of CFD for reactor safety relevant applications which involve multiphase flows is a present topic of research. At the CFD division of Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hereby beside an application-oriented model development and validation also more generic investigations are done. Thus, the baseline model strategy aims on the consolidation of the CFD-modelling for multiphase to enable reliable predictions for well-defined flow pattern in future. In addition the recently developed GENTOP-concept broadens the range of applicability of CFD. Different flow morphologies including transitions between them can be considered in frame of this concept.

13. Multiphase forces on bend structures – critical gas fraction for transition single phase gas to multiphase flow behaviour

NARCIS (Netherlands)

Belfroid, S.P.C.; Nennie, E.D.; Lewis, M.

2016-01-01

Piping structures are generally subjected to high dynamic loading due to multiphase forces. In particular subsea structures are very vulnerable as large flexibility is required to cope for instance with thermal stresses. The forces due to multiphase flow are characterized by a broadband spectrum wit

14. Multiphase forces on bend structures – critical gas fraction for transition single phase gas to multiphase flow behaviour

NARCIS (Netherlands)

Belfroid, S.P.C.; Nennie, E.D.; Lewis, M.

2016-01-01

Piping structures are generally subjected to high dynamic loading due to multiphase forces. In particular subsea structures are very vulnerable as large flexibility is required to cope for instance with thermal stresses. The forces due to multiphase flow are characterized by a broadband spectrum wit

15. Some Specific CASL Requirements for Advanced Multiphase Flow Simulation of Light Water Reactors

Energy Technology Data Exchange (ETDEWEB)

R. A. Berry

2010-11-01

Because of the diversity of physical phenomena occuring in boiling, flashing, and bubble collapse, and of the length and time scales of LWR systems, it is imperative that the models have the following features: • Both vapor and liquid phases (and noncondensible phases, if present) must be treated as compressible. • Models must be mathematically and numerically well-posed. • The models methodology must be multi-scale. A fundamental derivation of the multiphase governing equation system, that should be used as a basis for advanced multiphase modeling in LWR coolant systems, is given in the Appendix using the ensemble averaging method. The remainder of this work focuses specifically on the compressible, well-posed, and multi-scale requirements of advanced simulation methods for these LWR coolant systems, because without these are the most fundamental aspects, without which widespread advancement cannot be claimed. Because of the expense of developing multiple special-purpose codes and the inherent inability to couple information from the multiple, separate length- and time-scales, efforts within CASL should be focused toward development of a multi-scale approaches to solve those multiphase flow problems relevant to LWR design and safety analysis. Efforts should be aimed at developing well-designed unified physical/mathematical and high-resolution numerical models for compressible, all-speed multiphase flows spanning: (1) Well-posed general mixture level (true multiphase) models for fast transient situations and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve interface level phenmena like flashing and boiling flows, and critical heat flux determination (necessarily including conjugate heat transfer), and (3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon specified mesh resolution, and to couple different flow models (single-phase, multiphase with several velocities and pressures, multiphase with single

16. Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes

DEFF Research Database (Denmark)

Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam;

2013-01-01

In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...... complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization....

17. Shock driven multiphase flow with particle evaporation

Science.gov (United States)

Dahal, Jeevan; McFarland, Jacob

2016-11-01

The computational study of the shock driven instability of a multiphase system with particle evaporation is presented. The particle evaporation modifies the evolution of the interface due to the addition of the vapor phase to the gas. The effects can be quantitatively measured by studying various gas parameters like density, temperature, vorticity and particle properties like diameter and temperature. In addition, the size distribution of particles also modifies the development of instability as the larger size particles damp the evolution of interface in comparison to the smaller size particles. The simulation results are presented to study these effects using FLASH developed at the FLASH Center at the University of Chicago. The capabilities of FLASH for particle modeling were extended using the Particle in Cell (PIC) technique for coupling of mass, momentum, and energy between the particle and carrier gas. A seeded cylinder of gas with particles having either a single radius or a distribution of radii was studied. The enstrophy production and destruction mechanisms were explored to understand the reason for change in vorticity with particle size.

18. Development of Next Generation Multiphase Pipe Flow Prediction Tools

Energy Technology Data Exchange (ETDEWEB)

Tulsa Fluid Flow

2008-08-31

The developments of fields in deep waters (5000 ft and more) is a common occurrence. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas-oil-and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of the hydrocarbon recovery from design to operation. The recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is very crucial to any multiphase separation technique that is employed either at topside, seabed or bottom-hole to know inlet conditions such as the flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. The overall objective was to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict the flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). The project was conducted in two periods. In Period 1 (four years), gas-oil-water flow in pipes were investigated to understand the fundamental physical mechanisms describing the interaction between the gas-oil-water phases under flowing conditions, and a unified model was developed utilizing a novel modeling approach. A gas-oil-water pipe flow database including field and laboratory data was formed in Period 2 (one year). The database was utilized in model performance demonstration. Period 1 primarily consisted of the development of a unified model and software to predict the gas-oil-water flow, and experimental studies of the gas-oil-water project, including flow behavior description and

19. Numerical modeling of a compressible multiphase flow through a nozzle

Science.gov (United States)

Niedzielska, Urszula; Rabinovitch, Jason; Blanquart, Guillaume

2012-11-01

New thermodynamic cycles developed for more efficient low temperature resource utilization can increase the net power production from geothermal resources and sensible waste heat recovery by 20-40%, compared to the traditional organic Rankine cycle. These improved systems consist of a pump, a liquid heat exchanger, a two-phase turbine, and a condenser. The two-phase turbine is used to extract energy from a high speed multiphase fluid and consists of a nozzle and an axial impulse rotor. In order to model and optimize the fluid flow through this part of the system an analysis of two-phase flow through a specially designed convergent-divergent nozzle has to be conducted. To characterize the flow behavior, a quasi-one-dimensional steady-state model of the multiphase fluid flow through a nozzle has been constructed. A numerical code capturing dense compressible multiphase flow under subsonic and supersonic conditions and the coupling between both liquid and gas phases has been developed. The output of the code delivers data vital for the performance optimization of the two-phase nozzle.

20. Vertical flow of a multiphase mixture in a channel

Directory of Open Access Journals (Sweden)

2001-01-01

Full Text Available The flow of a multiphase mixture consisting of a viscous fluid and solid particles between two vertical plates is studied. The theory of interacting continua or mixture theory is used. Constitutive relations for the stress tensor of the granular materials and the interaction force are presented and discussed. The flow of interest is an ideal one where we assume the flow to be steady and fully developed; the mixture is flowing between two long vertical plates. The non-linear boundary value problem is solved numerically, and the results are presented for the dimensionless velocity profiles and the volume fraction as functions of various dimensionless numbers.

1. Mixing and reactions in multiphase flow through porous media

Science.gov (United States)

Jimenez-Martinez, J.; Le Borgne, T.; Meheust, Y.; Porter, M. L.; De Anna, P.; Hyman, J.; Tabuteau, H.; Turuban, R.; Carey, J. W.; Viswanathan, H. S.

2016-12-01

The understanding and quantification of flow and transport processes in multiphase systems remains a grand scientific and engineering challenge in natural and industrial systems (e.g., soils and vadose zone, CO2 sequestration, unconventional oil and gas extraction, enhanced oil recovery). Beyond the kinetic of the chemical reactions, mixing processes in porous media play a key role in controlling both fluid-fluid and fluid-solid reactions. However, conventional continuum-scale models and theories oversimplify and/or ignore many important pore-scale processes. Multiphase flows, with the creation of highly heterogeneous fluid velocity fields (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), makes conservative and reactive transport more complex. We present recent multi-scale experimental developments and theoretical approaches to quantify transport, mixing, and reaction and their coupling with multiphase flows. We discuss our main findings: i) the sustained concentration gradients and enhanced reactivity in a two-phase system for a continuous injection, and the comparison with a pulse line injection; ii) the enhanced mixing by a third mobile-immiscible phase; and iii) the role that capillary forces play in the localization of the fluid-solid reactions. These experimental results are for highly-idealized geometries, however, the proposed models are related to basic porous media and unsaturated flow properties, and could be tested on more complex systems.

2. A Virtual Reality Technique for Multi-phase Flows

Science.gov (United States)

Loth, Eric; Sherman, William; Auman, Aric; Navarro, Christopher

2004-04-01

A virtual reality (VR) technique has been developed to allow user immersion (stereo-graphic rendering, user tracking and object interactivity) in generic unsteady three-dimensional multi-phase flow data sets. This article describes the structure and logic used to design and construct a VR technique that employs a multi-phase flow-field computed a priori as an input (i.e. simulations are conducted beforehand with a researcher's multi-phase CFD code). The input field for this flow visualization is divided into two parts: the Eulerian three-dimensional grid nodes and velocities for the continuous fluid properties (specified using conventional TECLOT data format) and the Lagrangian time-history trajectory files for the dispersed fluid. While tracking the dispersed phase trajectories as animated spheres of adjustable size and number, the continuous-phase flow can be simultaneously rendered with velocity vectors, iso-contour surfaces and planar flood-contour maps of different variables. The geometric and notional view of the combined visualization of both phases is interactively controlled throughout a user session. The resulting technique is demonstrated with a 3-D unsteady data set of Lagrangian particles dispersing in a Eulerian description of a turbulent boundary layer, stemming from a direct numerical simulation of the Navier-Stokes equations.

3. Numerical study on multiphase flows induced by wall adhesion

Energy Technology Data Exchange (ETDEWEB)

Myong, Hyon Kook [Kookmin Univ., Seoul (Korea, Republic of)

2012-07-15

The present paper presents a numerical study on multiphase flows induced by wall adhesion. The continuum surface force (CSF) model with the wall adhesion boundary condition model is used for calculating the surface tension force; this model is implemented in an in house solution code (PowerCFD). The present method (code) employs an unstructured cell centered method based on a conservative pressure based finite volume method with a volume capturing method (CICSAM) in a volume of fluid (VOF) scheme for phase interface capturing. The effects of wall adhesion are then numerically simulated by using the present method for a shallow pool of water located at the bottom of a cylindrical tank with no external forces such as gravity. Two different cases are computed, one it which the water wets the wall and one in which the water does not wet the wall. It is found that the present method efficiently simulates the surface tension dominant multiphase flows induced by wall adhesion.

4. Multiphase flow in fractured porous media

Energy Technology Data Exchange (ETDEWEB)

1995-02-01

The major goal of this research project was to improve the understanding of the gas-oil two-phase flow in fractured porous media. In addition, miscible displacement was studied to evaluate its promise for enhanced recovery.

5. Numerical modeling of multiphase flow in rough and propped fractures

Science.gov (United States)

Dabrowski, Marcin; Dzikowski, Michał; Jasinski, Lukasz; Olkiewicz, Piotr

2017-04-01

crystalline rocks. The detailed pattern of flow paths and effective fracture conductivity are largely dependent on the level of confining stresses and fracture wall roughness, which both determine the shape and distribution of fracture apertures and contact areas. The distribution of proppant grains, which are used to maintain apertures of hydraulic fractures, is a key factor governing fracture flow in industrial applications. The flow of multiphase fluids in narrow apertures of rock fractures may substantially differ from the flow of a single-phase fluid. For example, multiphase flow effects play an important role during all stages of unconventional reservoir life cycle. Multiphase flow conditions are also expected to prevail in high temperature geothermal fields and during the transport of non aqueous phase liquid contaminants in groundwaters. We use direct numerical simulations to study single- and multiphase flow in rough and propped fractures. We compute the fluid flow using either the finite element or the lattice Boltzmann method. Body-fitting, unstructured computational meshes are used to improve the numerical accuracy. The fluid-fluid and fluid-solid interfaces are directly resolved and an implicit approach to surface tension is used to alleviate restrictions due to capillary CFL condition. In FEM simulations, the Beltrami-Laplace operator is integrated by parts to avoid interface curvature computation during evaluation of the surface tension term. We derive and validate an upscaled approach to Stokes flow in propped and rough fractures. Our upscaled 2.5D fracture flow model features a Brinkman term and is capable of treating no-slip boundary conditions on the rims of proppant grains and fracture wall contact areas. The Stokes-Brinkman fracture flow model provides an improvement over the Reynolds model, both in terms of the effective fracture permeability and the local flow pattern. We present numerical and analytical models for the propped fracture

6. Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications

Energy Technology Data Exchange (ETDEWEB)

Lee, Taehun [City Univ. (CUNY), NY (United States)

2015-10-20

The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations, better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.

7. Chemical reactor modeling multiphase reactive flows

CERN Document Server

Jakobsen, Hugo A

2014-01-01

Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics.  The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling, and in a post graduate course in modern reactor m...

8. Viscosity and surface tension effects during multiphase flow in propped fractures

Science.gov (United States)

Dzikowski, Michał; Dąbrowski, Marcin

2017-04-01

Geological sequestration of CO2 was proposed as an important mechanism to reduce its emission into atmosphere. CO2 exhibits a higher affinity to organic matter than methane molecules and, potentially, it could be pumped and stored in shale reservoirs while enhancing late stage shale gas production. A successful analysis of CO2 sequestration in low matrix permeability rocks such as shales requires a thorough understanding of multiphase flow in stimulated rock fractures, which provide most significant pathways for fluids in such systems. Multiphase fracture flows are also of great relevance to brine, oil and gas migration in petroleum systems, water and stream circulation in geothermal reservoirs, and chemical transport of non-aqueous phase liquids in shallow hydrogeological systems, particularly in partially saturated zones. There are various physical models that describe phenomena taking place during multiphase flow through porous media. One of key aspects that need to be considered are pore-scale effects related to capillarity. Unfortunately, detailed models that describe motion and evolution of phase or component boundary require direct numerical simulations and spatial resolutions that are hard to reach when considering industrial relevant systems. Main aim of the presented work was the development of reduced 2.5D models based on Brinkman approximation of thin domain flow that would be able to capture local scale phenomena without expensive 3D simulations. Presented approach was designed specifically to tackle incompressible and immiscible systems and is based on Continuous Surface Force approach presented by Brackbill et al., implemented using Lattice Boltzmann Method. Presented approach where firstly validated against standard test cases with known classical solution and known experimental data. In the second part, we present and discuss two component, immiscible permeability data for rough and propped fracture obtained with our code for a rage of proppants

9. CONTINOUS MULTI-PHASE FLOW REACTOR FOR SMALL AND LARGE FLOW CAPACITIES THAN L/MIN

NARCIS (Netherlands)

Al-Rawashdeh, Ma'moun; Schouten, Jaap; Nijhuis, T. Alexander; Yue, Jun

2014-01-01

Multiphase flow processing in flow reactors holds great promises for diverse applications in fine chemicals and materials synthesis primarily due to its precise control over the flow, mixing and reaction inside or between each phase. Even though, flow reactors have shown superior performance, so far

10. CONTINOUS MULTI-PHASE FLOW REACTOR FOR SMALL AND LARGE FLOW CAPACITIES THAN L/MIN

NARCIS (Netherlands)

Al-Rawashdeh, Ma'moun; Schouten, Jaap; Nijhuis, T. Alexander; Yue, Jun

2014-01-01

Multiphase flow processing in flow reactors holds great promises for diverse applications in fine chemicals and materials synthesis primarily due to its precise control over the flow, mixing and reaction inside or between each phase. Even though, flow reactors have shown superior performance, so far

11. Statistic fluid dynamic of multiphase flow

Science.gov (United States)

Lim, Hyunkyung; Glimm, James; Zhou, Yijie; Jiao, Xiangmin

2012-11-01

We study a turbulent two-phase fluid mixing problem from a statistical point of view. The test problem is high speed turbulent two-phase Taylor-Couette flow. We find extensive mixing in a transient state between an initial unstable and a final stable configuration. With chemical processing as a motivation, we estimate statistically surface area, droplet size distribution and transient droplet duration. This work is supported in part by the Nuclear Energy University Program of the Department of Energy, Battelle Energy Alliance LLC 00088495.

12. Stability Analysis of Reactive Multiphase Slug Flows in Microchannels

Directory of Open Access Journals (Sweden)

Alejandro A. Munera Parra

2014-05-01

Full Text Available Conducting multiphase reactions in micro-reactors is a promising strategy for intensifying chemical and biochemical processes. A major unresolved challenge is to exploit the considerable benefits offered by micro-scale operation for industrial scale throughputs by numbering-up whilst retaining the underlying advantageous flow characteristics of the single channel system in multiple parallel channels. Fabrication and installation tolerances in the individual micro-channels result in different pressure losses and, thus, a fluid maldistribution. In this work, an additional source of maldistribution, namely the flow multiplicities, which can arise in a multiphase reactive or extractive flow in otherwise identical micro-channels, was investigated. A detailed experimental and theoretical analysis of the flow stability with and without reaction for both gas-liquid and liquid-liquid slug flow has been developed. The model has been validated using the extraction of acetic acid from n-heptane with the ionic liquid 1-Ethyl-3-methylimidazolium ethyl sulfate. The results clearly demonstrate that the coupling between flow structure, the extent of reaction/extraction and pressure drop can result in multiple operating states, thus, necessitating an active measurement and control concept to ensure uniform behavior and optimal performance.

13. Multiphase flow of immiscible fluids on unstructured moving meshes

DEFF Research Database (Denmark)

Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam;

2012-01-01

In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization...... that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted...

14. Modelling of flow phenomena during DC casting

NARCIS (Netherlands)

Zuidema, J.

2005-01-01

Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an instanta

15. Modelling of flow phenomena during DC casting

NARCIS (Netherlands)

Zuidema, J.

2005-01-01

Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an

16. Multiphase flows in complex geometries: a UQ perspective

KAUST Repository

Icardi, Matteo

2015-01-07

Nowadays computer simulations are widely used in many multiphase flow applications involving interphases, dispersed particles, and complex geometries. Most of these problems are solved with mixed models composed of fundamental physical laws, rigorous mathematical upscaling, and empirical correlations/closures. This means that classical inference techniques or forward parametric studies, for example, becomes computationally prohibitive and must take into account the physical meaning and constraints of the equations. However mathematical techniques commonly used in Uncertainty Quantification can come to the aid for the (i) modeling, (ii) simulation, and (iii) validation steps. Two relevant applications for environmental, petroleum, and chemical engineering will be presented to highlight these aspects and the importance of bridging the gaps between engineering applications, computational physics and mathematical methods. The first example is related to the mathematical modeling of sub-grid/sub-scale information with Probability Density Function (PDF) models in problems involving flow, mixing, and reaction in random environment. After a short overview of the research field, some connections and similarities with Polynomial Chaos techniques, will be investigated. In the second example, averaged correlations laws and effective parameters for multiphase flow and their statistical fluctuations, will be considered and efficient computational techniques, borrowed from high-dimensional stochastic PDE problems, will be applied. In presence of interfacial flow, where small spatial scales and fast time scales are neglected, the assessment of robustness and predictive capabilities are studied. These illustrative examples are inspired by common problems arising, for example, from the modeling and simulation of turbulent and porous media flows.

17. Multiphase flow of gas-liquid and gas coal slurry mixtures in vertical tubes

Energy Technology Data Exchange (ETDEWEB)

Javdani, K; Schwalbe, S; Fishcher, J

1977-01-01

This research was done as a support study for the SYNTHOIL process and other coal liquefaction processes being developed to produce clean liquid fuels from coal. The objective of this work is to obtain experimental data on flow characteristics for upward flow of gas-liquid-solid mixtures in vertical tubes simulating conditions in the SYNTHOIL process. Study of the transport phenomena of multiphase mixtures is of importance to many chemical engineering operations in general and to some other coal conversion processes in particular. A brief review of the application of this work to existing processes is presented. The first part of the program was devoted to the study of the flow characteristics of two-phase gas--liquid systems, and the second was devoted to the flow characteristics of gas--slurry mixtures.

18. Noninvasive tomographic and velocimetric monitoring of multiphase flows

Energy Technology Data Exchange (ETDEWEB)

Chaouki, J. [Ecole Polytechnique de Montreal, Quebec (Canada). Dept. of Chemical Engineering; Larachi, F. [Laval Univ., Quebec (Canada); Dudukovic, M.P. [Washington Univ., St. Louis, MO (United States). Chemical Reaction Engineering Lab.

1997-11-01

A condensed review of recent advances accomplished in the development and the applications of noninvasive tomographic and velocimetric measurement techniques to multiphase flows and systems is presented. In recent years utilization of such noninvasive techniques has become widespread in many engineering disciplines that deal with systems involving two immiscible phases or more. Tomography provides concentration, holdup, or 2D or 3D density distribution of at least one component of the multiphase system, whereas velocimetry provides the dynamic features of the phase of interest such as the flow pattern, the velocity field, the 2D or 3D instantaneous movements, etc. The following review is divided into two parts. The first part summarizes progress and developments in flow imaging techniques using {gamma}-ray and X-ray transmission tomography; X-ray radiography; neutron transmission tomography and radiography; positron emission tomography; X-ray diffraction tomography; nuclear magnetic resonance imaging; electrical capacitance tomography; optical tomography; microwave tomography; and ultrasonic tomography. The second part of the review summarizes progress and developments in the following velocimetry techniques: positron emission particle tracking; radioactive particle tracking; cinematography; laser-Doppler anemometry; particle image velocimetry; and fluorescence particle image velocimetry. The basic principles of tomography and velocimetry techniques are outlined, along with advantages and limitations inherent to each technique. The hydrodynamic and structural information yielded by these techniques is illustrated through a literature survey on their successful applications to the study of multiphase systems in such fields as particulate solids processes, fluidization engineering, porous media, pipe flows, transport within packed beds and sparged reactors, etc.

19. Interface effects on multiphase flows in porous media

Energy Technology Data Exchange (ETDEWEB)

Zhang, Duan Z [Los Alamos National Laboratory

2008-01-01

Most models for multiphase flows in a porous medium are based on the straightforward extension of Darcy's law, in which each fluid phase is driven by its own pressure gradient. The pressure difference between the phases is thought to be an effect of surface tension and is called capillary pressure. Independent of Darcy's law, for liquid imbibition processes in a porous material, diffusion models are sometime used. In this paper, an ensemble phase averaging technique for continuous multi phase flows is applied to derive averaged equations and to examine the validity of the commonly used models. The closure for the averaged equations is quite complicated for general multiphase flows in a porous material. For flows with a small ratio of the characteristic length of the phase interfaces to the macroscopic length, the closure relations can be simplified significantly by an approximation with a second order error in the length ratio. The approximation reveals the information of the length scale separation obscured during the ensemble averaging process, and leads to an equation system similar to Darcy's law, but with additional terms. Based on interactions on phase interfaces, relations among closure quantities are studied.

20. Intrusive Method for Uncertainty Quantification in a Multiphase Flow Solver

Science.gov (United States)

Turnquist, Brian; Owkes, Mark

2016-11-01

Uncertainty quantification (UQ) is a necessary, interesting, and often neglected aspect of fluid flow simulations. To determine the significance of uncertain initial and boundary conditions, a multiphase flow solver is being created which extends a single phase, intrusive, polynomial chaos scheme into multiphase flows. Reliably estimating the impact of input uncertainty on design criteria can help identify and minimize unwanted variability in critical areas, and has the potential to help advance knowledge in atomizing jets, jet engines, pharmaceuticals, and food processing. Use of an intrusive polynomial chaos method has been shown to significantly reduce computational cost over non-intrusive collocation methods such as Monte-Carlo. This method requires transforming the model equations into a weak form through substitution of stochastic (random) variables. Ultimately, the model deploys a stochastic Navier Stokes equation, a stochastic conservative level set approach including reinitialization, as well as stochastic normals and curvature. By implementing these approaches together in one framework, basic problems may be investigated which shed light on model expansion, uncertainty theory, and fluid flow in general. NSF Grant Number 1511325.

1. Computational Fluid Dynamics Simulation of Multiphase Flow in Structured Packings

Directory of Open Access Journals (Sweden)

Saeed Shojaee

2012-01-01

Full Text Available A volume of fluid multiphase flow model was used to investigate the effective area and the created liquid film in the structured packings. The computational results revealed that the gas and liquid flow rates play significant roles in the effective interfacial area of the packing. In particular, the effective area increases as the flow rates of both phases increase. Numerical results were compared with the Brunazzi and SRP models, and a good agreement between them was found. Attention was given to the process of liquid film formation in both two-dimensional (2D and three-dimensional (3D models. The current study revealed that computational fluid dynamics (CFD can be used as an effective tool to provide information on the details of gas and liquid flows in complex packing geometries.

2. Application of microwave reflectometry to disordered petroleum multiphase flow study

Science.gov (United States)

Jannier, B.; Dubrunfaut, O.; Ossart, F.

2013-02-01

Microwave reflectometry is applied to multiphase flow metering in the context of oil extraction. Our sensor consists of two open-ended coaxial probes operating at complementary frequencies (at 600 MHz and around 36 GHz) and was designed to resist harsh field conditions. This paper presents and comments on results obtained in realistic dynamic conditions, on a triphasic flow loop (water-oil-gas). The main conclusions are the following: Bruggeman-Hanai's mixing rule applies to natural emulsions and can be used to determine the composition of the water-oil liquid phase; results obtained for annular flows are very sensitive to small perturbations such as bubbles or waves at the liquid-gas interface; in the case of triphasic slug flows, the composition of the liquid phase can be estimated by proper filtering of the data.

3. WD-XRA technique in multiphase flow measuring

Energy Technology Data Exchange (ETDEWEB)

Gogolev, A.S.; Cherepennikov, Yu.M.; Vukolov, A.V. [Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050 (Russian Federation); Rezaev, R.O. [Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050 (Russian Federation); Nuclear University MEPhI, Kashirskoye Shosse 31, Moscow 115409 (Russian Federation); Stuchebrov, S.G. [Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050 (Russian Federation); Hampai, D. [INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Dabagov, S.B. [INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Nuclear University MEPhI, Kashirskoye Shosse 31, Moscow 115409 (Russian Federation); RAS P.N. Lebedev Physical Institute, Lenin Avenue 53, Moscow 119991 (Russian Federation); Liedl, A.; Polese, C. [INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy)

2015-07-15

A new technique to perform the analysis of multiphase fluid flow based on wave dispersive X-ray absorptiometry is suggested. The numerical simulation and comparison of this technique with currently used approaches are provided and a way to increase the luminosity intensity is found that includes the usage the X-ray focusing optics by a bent crystal and a polycapillary semilens. Based on numerical simulation of radiation spectrum the influence of the bent crystal on the luminosity is evaluated and experimentally shown the advantages of using the multicapillary optics.

4. WD-XRA technique in multiphase flow measuring

Science.gov (United States)

Gogolev, A. S.; Cherepennikov, Yu. M.; Vukolov, A. V.; Rezaev, R. O.; Stuchebrov, S. G.; Hampai, D.; Dabagov, S. B.; Liedl, A.; Polese, C.

2015-07-01

A new technique to perform the analysis of multiphase fluid flow based on wave dispersive X-ray absorptiometry is suggested. The numerical simulation and comparison of this technique with currently used approaches are provided and a way to increase the luminosity intensity is found that includes the usage the X-ray focusing optics by a bent crystal and a polycapillary semilens. Based on numerical simulation of radiation spectrum the influence of the bent crystal on the luminosity is evaluated and experimentally shown the advantages of using the multicapillary optics.

5. Complementary Constrains on Component based Multiphase Flow Problems, Should It Be Implemented Locally or Globally?

Science.gov (United States)

Shao, H.; Huang, Y.; Kolditz, O.

2015-12-01

Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in

6. Numerical Simulation of Dynamic Contact Angles and Contact Lines in Multiphase Flows using Level Set Method

Science.gov (United States)

Pendota, Premchand

Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.

7. Examples of the Potential of DNS for the Understanding of Reactive Multiphase Flows

Directory of Open Access Journals (Sweden)

J. Reveillon

2011-03-01

Full Text Available The objective of this article is to point out the ability of the multiphase flow DNS (Direct Numerical Simulation to help to understand basic physics and to interpret some experimental observations. To illustrate the DNS' potential to give access to key phenomena involved in reactive multiphase flows, several recent results obtained by the authors are summed up with a bridge to experimental results. It includes droplet dispersion, laminar spray flame instability, spray combustion regimes or acoustic modulation effect on a two-phase flow Bunsen burner. As a perspective, two-phase flow DNS auto-ignition is considered thanks to a skeletal mechanism for the n-heptane chemistry involving 29 species and 52 reactions. Results highlight evaporating droplet effects on the auto-ignition process that is generally dramatically modified by spray distribution resulting from the turbulent fluid motion. This paper shows that DNS is a powerful tool to understand the intricate coupling between the evaporating spray, the turbulent fluid motion and the detailed chemistry, inseparable in the experimental context.

8. Equations and simulations for multiphase compressible gas-dust flows

Science.gov (United States)

Oran, Elaine; Houim, Ryan

2014-11-01

Dust-gas multiphase flows are important in physical scenarios such as dust explosions in coal mines, asteroid impact disturbing lunar regolith, and soft aircraft landings dispersing desert or beach sand. In these cases, the gas flow regime can range from highly subsonic and nearly incompressible to supersonic and shock-laden flow, the grain packing can range from fully packed to completely dispersed, and both the gas and the dust can range from chemically inert to highly exothermic. To cover the necessary parameter range in a single model, we solve coupled sets of Navier-Stokes equations describing the background gas and the dust. As an example, a reactive-dust explosion that results in a type of shock-flame complex is described and discussed. Sponsored by the University of Maryland through Minta Martin Endowment Funds in the Department of Aerospace Engineering, and through the Glenn L. Martin Institute Chaired Professorship at the A. James Clark School of Engineering.

9. Direct numerical simulation of incompressible multiphase flow with phase change

Science.gov (United States)

Lee, Moon Soo; Riaz, Amir; Aute, Vikrant

2017-09-01

Simulation of multiphase flow with phase change is challenging because of the potential for unphysical pressure oscillations, spurious velocity fields and mass flux errors across the interface. The resulting numerical errors may become critical when large density contrasts are present. To address these issues, we present a new approach for multiphase flow with phase change that features, (i) a smooth distribution of sharp velocity jumps and mass flux within a narrow region surrounding the interface, (ii) improved mass flux projection from the implicit interface onto the uniform Cartesian grid and (iii) post-advection velocity correction step to ensure accurate velocity divergence in interfacial cells. These new features are implemented in combination with a sharp treatment of the jumps in pressure and temperature gradient. A series of 1-D, 2-D, axisymmetric and 3-D problems are solved to verify the improvements afforded by the new approach. Axisymmetric film boiling results are also presented, which show good qualitative agreement with heat transfer correlations as well as experimental observations of bubble shapes.

10. Advanced tomographic flow diagnostics for opaque multiphase fluids

Energy Technology Data Exchange (ETDEWEB)

Torczynski, J.R.; OHern, T.J.; Adkins, D.R.; Jackson, N.B.; Shollenberger, K.A.

1997-05-01

This report documents the work performed for the Advanced Tomographic Flow Diagnostics for Opaque Multiphase Fluids LDRD (Laboratory-Directed Research and Development) project and is presented as the fulfillment of the LDRD reporting requirement. Dispersed multiphase flows, particularly gas-liquid flows, are industrially important to the chemical and applied-energy industries, where bubble-column reactors are employed for chemical synthesis and waste treatment. Due to the large range of length scales (10{sup {minus}6}-10{sup 1}m) inherent in real systems, direct numerical simulation is not possible at present, so computational simulations are forced to use models of subgrid-scale processes, the accuracy of which strongly impacts simulation fidelity. The development and validation of such subgrid-scale models requires data sets at representative conditions. The ideal measurement techniques would provide spatially and temporally resolved full-field measurements of the distributions of all phases, their velocity fields, and additional associated quantities such as pressure and temperature. No technique or set of techniques is known that satisfies this requirement. In this study, efforts are focused on characterizing the spatial distribution of the phases in two-phase gas-liquid flow and in three-phase gas-liquid-solid flow. Due to its industrial importance, the bubble-column geometry is selected for diagnostics development and assessment. Two bubble-column testbeds are utilized: one at laboratory scale and one close to industrial scale. Several techniques for measuring the phase distributions at conditions of industrial interest are examined: level-rise measurements, differential-pressure measurements, bulk electrical impedance measurements, electrical bubble probes, x-ray tomography, gamma-densitometry tomography, and electrical impedance tomography.

11. 4. Workshop - Measurement techniques of stationary and transient multiphase flow

Energy Technology Data Exchange (ETDEWEB)

Prasser, H.M. (ed.)

2001-05-01

In November 2000, the 4th Workshop on Measurement Techniques for Stationary and Transient Multiphase Flows took place in Rossendorf. Three previous workshops of this series were national meetings; this time participants from different countries took part. The programme comprised 14 oral presentations, 9 of which are included in these proceedings in full length. A special highlight of the meeting was the main lecture ''Ultrasonic doppler method for bubbly flow measurement'' of Professor Masanori Aritomi, Dr. Hiroshige Kikura and Dr. Yumiko Suzuki. The workshop again dealt with high-resolution phase distribution and phase velocity measurement techniques based on electrical conductivity, ultrasound, laser light and high-speed cinematography. A number of presentations were dedicated to the application of wire-mesh sensors developed by FZR for different applications used by the Technical Universities of Delft and Munich and the Tokyo Institute of Technology. (orig.)

12. Linear Power-Flow Models in Multiphase Distribution Networks: Preprint

Energy Technology Data Exchange (ETDEWEB)

Bernstein, Andrey; Dall' Anese, Emiliano

2017-05-26

This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- from advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.

13. Multiphase flow in lab on chip devices: A real tool for the future

NARCIS (Netherlands)

Shui, Lingling; Pennathur, S.; Pennathur, Sumita; Eijkel, Jan C.T.; van den Berg, Albert

2008-01-01

Many applications for lab on a chip (LOC) devices require the use of two or more fluids that are either not chemically related (e.g. oil and water) or in different phases (e.g. liquid and gas). Utilizing multiphase flow in LOC devices allows for both the fundamental study of multiphase flow and the

14. Multiphase flow dynamics 2 thermal and mechanical interactions

CERN Document Server

Kolev, Nikolay I

2007-01-01

The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. This book contains theory, methods and practical experience for describing complex transient multi-phase processes. It provides a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics.

15. Multi-phase multi-component reactive flow in Geodynamics

Science.gov (United States)

Oliveira, Beñat; Afonso, Juan Carlos; Zlotnik, Sergio

2016-04-01

Multi-phase multi-component reactive flow (MPMCRF) controls a number of important complex geodynamic/geochemical problems, such as melt generation and percolation, metasomatism, rheological weakening, magmatic differentiation, ore emplacement, and fractionation of chemical elements, to name a few. These interacting processes occur over very different spatial and temporal scales and under very different physico-chemical conditions. Therefore, there is a strong motivation in geodynamics for investigating the equations governing MPMCRF, their mathematical structure and properties, and the numerical techniques necessary to obtain reliable and accurate results. In this contribution we present results from a novel numerical framework to solve multiscale MPMCRF problems in geodynamic contexts. Our approach is based on the effective tracking of the most basic building blocks: internal energy and chemical composition. This is achieved through the combination of rigorous solutions to the conservation equations (mass, energy and momentum) for each dynamic phase (instead of the more common "mixture-type" approach) and the transport equation for the chemical species, within the context of classical irreversible thermodynamics. Interfacial processes such as phase changes, chemical diffusion+reaction, and surface tension effects are explicitly incorporated in the context of ensemble averaging. Phase assemblages, mineral and melt compositions, and all other physical parameters of multi-phase systems are obtained through dynamic free-energy minimization procedures.

16. A Fractional-Flow Based Compressible Multiphase Flow Model with Newly Proposed Constitutive Retentions

Science.gov (United States)

Tsai, C.; Yeh, G.

2011-12-01

In this investigation, newly proposed constitutive retentions are implemented to a fractional-flow based compressible multiphase-phase flow model. With the new model, a compressible three-phase (water, non-aqueous phase liquid (NAPL) and air) flow problem is simulated. In fractional-flow approaches, the three mass balance equations written in terms of three phase pressures are transformed to those in terms of the total pressure, saturation of water, and saturation of total liquid. These three governing equations are discretized with the Galerkin finite element method (FEM). The resulted matrix equation is solved with Bi-CGSTAB. Several numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results show the presented fractional-flow based multiphase flow model is feasible and yields physically realistic solutions for compressible three-phase flow problems in porous media.

17. Cooperative phenomena in flows; Poster abstracts

Energy Technology Data Exchange (ETDEWEB)

Loekseth, Trine (ed.)

2011-05-15

The objective of this 'Geilo School' was to bring together researchers with various interests and background including theoretical experimental physicists, material scientists and molecular biologists to identify and discuss areas where synergism between these disciplines may be most fruitfully applied to the study of various aspects of 'Cooperative phenomena in flows'. There were altogether 21 lecturers at the School with about 80 participants from 19 countries. This was the 21. Geilo School held biannually since the first one in I971. Reference to the earlier Geilo Schools 1971-2009 may be found here: http://www.ife.no/departments/physics/projects/geilo (Author)

18. Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries

Science.gov (United States)

Xu, Ao; Shyy, Wei; Zhao, Tianshou

2017-06-01

Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electrochemical systems requires powerful numerical tools. Over the past decades, the lattice Boltzmann (LB) method has attracted broad interest in the computational fluid dynamics and the numerical heat transfer communities, primarily due to its kinetic nature making it appropriate for modeling complex multiphase transport phenomena. More importantly, the LB method fits well with parallel computing due to its locality feature, which is required for large-scale engineering applications. In this article, we review the LB method for gas-liquid two-phase flows, coupled fluid flow and mass transport in porous media, and particulate flows. Examples of applications are provided in fuel cells and flow batteries. Further developments of the LB method are also outlined.

19. Convection in multiphase flows using Lattice Boltzmann methods

CERN Document Server

Biferale, L; Sbragaglia, M; Toschi, F

2011-01-01

We present high resolution numerical simulations of convection in multiphase flows (boiling) using a novel algorithm based on a Lattice Boltzmann method. We first validate the thermodynamical and kinematical properties of the algorithm. Then, we perform a series of 3d numerical simulations at changing the mean properties in the phase diagram and compare convection with and without phase coexistence at $Ra \\sim 10^7$. We show that in presence of nucleating bubbles non-Oberbeck Boussinesq effects develops, mean temperature profile becomes asymmetric, heat-transfer and heat-transfer fluctuations are enhanced. We also show that small-scale properties of velocity and temperature fields are strongly affected by the presence of buoyant bubble leading to high non-Gaussian profiles in the bulk.

20. 3d Forced multiphase flow on the pore scale

Science.gov (United States)

Scholl, Hagen; Singh, Kamaljit; Scheel, Mario; Dimichiel, Marco; Herminghaus, Stephan; Seemann, Ralf

2013-11-01

Using ultra fast x-ray tomography the forced imbibition of an aqueous phase into an initially oil filled matrix is studied. The water is volume controlled flushed into cylindrical columns filled with oil saturated spherical bead packs. The oil displacement is imaged in real time having a spacial resolution of 11 microns and a temporal resolution of about 1 second. To clearly distinguish the aqueous from the oily phase a contrast agent was added to the aqueous phase. The influence of wettability, oil viscosity, gravity and flow velocity was explored and analyzed in terms of temporal development of oil saturation and front shape. It turned out that capillary forces are the key to understand the forced multiphase behavior in the explored parameter range. Funding was provided by the BP-ExploRe project.

1. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

Science.gov (United States)

McQuillen, John; Sankovic, John; Lekan, Jack

2006-01-01

The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

2. Meso-scale modeling: beyond local equilibrium assumption for multiphase flow

CERN Document Server

Wang, Wei

2015-01-01

This is a summary of the article with the same title, accepted for publication in Advances in Chemical Engineering, 47: 193-277 (2015). Gas-solid fluidization is a typical nonlinear nonequilibrium system with multiscale structure. In particular, the mesoscale structure in terms of bubbles or clusters, which can be characterized by nonequilibrium features in terms of bimodal velocity distribution, energy non equipartition, and correlated density fluctuations, is the critical factor. Traditional two-fluid model (TFM) and relevant closures depend on local equilibrium and homogeneous distribution assumptions, and fail to predict the dynamic, nonequilibrium phenomena in circulating fluidized beds even with fine-grid resolution. In contrast, the mesoscale modeling, as exemplified by the energy-minimization multiscale (EMMS) model, is consistent with the nonequilibrium features in multiphase flows. Thus, the structure-dependent multi-fluid model conservation equations with the EMMS-based mesoscale modeling greatly i...

3. On the predictive capabilities of multiphase Darcy flow models

KAUST Repository

Icardi, Matteo

2016-01-09

Darcy s law is a widely used model and the limit of its validity is fairly well known. When the flow is sufficiently slow and the porosity relatively homogeneous and low, Darcy s law is the homogenized equation arising from the Stokes and Navier- Stokes equations and depends on a single effective parameter (the absolute permeability). However when the model is extended to multiphase flows, the assumptions are much more restrictive and less realistic. Therefore it is often used in conjunction with empirical models (such as relative permeability and capillary pressure curves), derived usually from phenomenological speculations and experimental data fitting. In this work, we present the results of a Bayesian calibration of a two-phase flow model, using high-fidelity DNS numerical simulation (at the pore-scale) in a realistic porous medium. These reference results have been obtained from a Navier-Stokes solver coupled with an explicit interphase-tracking scheme. The Bayesian inversion is performed on a simplified 1D model in Matlab by using adaptive spectral method. Several data sets are generated and considered to assess the validity of this 1D model.

4. Multiphase flow in microfluidic systems - Control and applications of droplets and interfaces

NARCIS (Netherlands)

Shui, Lingling; Eijkel, Jan C.T.; Berg, van den Albert

2007-01-01

Micro- and nanotechnology can provide us with many tools for the production, study and detection of colloidal and interfacial systems. In multiphase flow in micro- and nanochannels several immiscible fluids will be separated from each other by flexible fluidic interfaces. The multiphase coexistence

5. Compositional multiphase flow and transport in heterogeneous porous media

Energy Technology Data Exchange (ETDEWEB)

Huber, R.U.

2000-07-01

This work first treats the conceptual models for the description of multiphase flow processes in porous media. The thermodynamic laws are explained and the description and quantification of multi-fluid equilibria are discussed in order to account for fluid composition. The fully and weakly coupled approaches for the mathematical description of such flow processes with respect to systems consisting of two and three fluid phases as well as with respect to compositional single and multiphase systems are assessed. For the discretization of the two-phase flow equations node- and cell-centered finite volume methods and mixed and mixed-hybrid finite element approaches are applied. Based upon these methods five solution algorithms are developed. Four of these algorithms are based on the simultaneous solution of the discretized equations in combination with the Newton-Raphson technique. Methods 1 and 2 treat two- three-phase flow processes, Method 3 applies to the solution of partially miscible three-component systems while Method 4 is created for three-phase three-component systems. The latter method uses a variable substitution dependent on the local presence of the fluid phases. Method 5 is based on the IMPES/IMPESC concept. The time-implicit pressure equation is discretized with the mixed-hybrid finite element method. The saturation and concentration equations, respectively, are solved with a cell-centered finite volume scheme. The developed algorithms are applied to the two- and three-phase Buckley-Leverett problems. A partitioning interwell tracer test is simulated. The propagation behavior of nonaqueous phase liquids (NAPLs) in the saturated and unsaturated ground zone under the influence of heterogeneities are examined. In addition, a larger-scale experiment is simulated, which involves an injection of trichloroethylene into the subsurface and the subsequent distribution. Here, the development of a dissolved contaminant plume as well as the behavior of organic

6. Multiphase flow analysis using population balance modeling bubbles, drops and particles

CERN Document Server

Yeoh, Guan Heng; Tu, Jiyuan

2013-01-01

Written by leading multiphase flow and CFD experts, this book enables engineers and researchers to understand the use of PBM and CFD frameworks. Population balance approaches can now be used in conjunction with CFD, effectively driving more efficient and effective multiphase flow processes. Engineers familiar with standard CFD software, including ANSYS-CFX and ANSYS-Fluent, will be able to use the tools and approaches presented in this book in the effective research, modeling and control of multiphase flow problems. Builds a complete understanding of the theory behind the

7. Rheological flow laws for multiphase magmas: An empirical approach

Science.gov (United States)

Pistone, Mattia; Cordonnier, Benoît; Ulmer, Peter; Caricchi, Luca

2016-07-01

The physical properties of magmas play a fundamental role in controlling the eruptive dynamics of volcanoes. Magmas are multiphase mixtures of crystals and gas bubbles suspended in a silicate melt and, to date, no flow laws describe their rheological behaviour. In this study we present a set of equations quantifying the flow of high-viscosity (> 105 Pa·s) silica-rich multiphase magmas, containing both crystals (24-65 vol.%) and gas bubbles (9-12 vol.%). Flow laws were obtained using deformation experiments performed at high temperature (673-1023 K) and pressure (200-250 MPa) over a range of strain-rates (5 · 10- 6 s- 1 to 4 · 10- 3 s- 1), conditions that are relevant for volcanic conduit processes of silica-rich systems ranging from crystal-rich lava domes to crystal-poor obsidian flows. We propose flow laws in which stress exponent, activation energy, and pre-exponential factor depend on a parameter that includes the volume fraction of weak phases (i.e. melt and gas bubbles) present in the magma. The bubble volume fraction has opposing effects depending on the relative crystal volume fraction: at low crystallinity bubble deformation generates gas connectivity and permeability pathways, whereas at high crystallinity bubbles do not connect and act as "lubricant" objects during strain localisation within shear bands. We show that such difference in the evolution of texture is mainly controlled by the strain-rate (i.e. the local stress within shear bands) at which the experiments are performed, and affect the empirical parameters used for the flow laws. At low crystallinity ( 44 vol.%) the viscosity decreases with increasing strain-rate. Because these behaviours are also associated with modifications of sample textures during the experiment and, thus, are not purely the result of different deformation rates, we refer to "apparent shear-thickening" and "apparent shear-thinning" for the behaviours observed at low and high crystallinity, respectively. At low

8. Hybrid Explicit Residual Distribution Scheme for Compressible Multiphase Flows

Science.gov (United States)

Bacigaluppi, Paola; Abgrall, Rémi; Kaman, Tulin

2017-03-01

The aim of this work is the development of a fully explicit scheme in the framework of time dependent hyperbolic problems with strong interacting discontinuities to retain high order accuracy in the context of compressible multiphase flows. A new methodology is presented to compute compressible two-fluid problems applied to the five equation reduced model given in Kapila et al. (Physics of Fluids 2001). With respect to other contributions in that area, we investigate a method that provides mesh convergence to the exact solutions, where the studied non-conservative system is associated to consistent jump relations. The adopted scheme consists of a coupled predictor-corrector scheme, which follows the concept of residual distributions in Ricchiuto and Abgrall (J. Comp. Physics 2010), with a classical Glimm’s scheme (J. Sci. Stat. Comp. 1982) applied to the area where a shock is occurring. This numerical methodology can be easily extended to unstructured meshes. Test cases on a perfect gas for a two phase compressible flow on a Riemann problem have verified that the approximation converges to its exact solution. The results have been compared with the pure Glimm’s scheme and the expected exact solution, finding a good overlap.

9. Laser velocimeter measurements of multiphase flow of solids

Energy Technology Data Exchange (ETDEWEB)

Kadambi, J.R.; Chen, R.C.; Bhunia, S.

1989-01-01

A unique refractive index matched facility for studying solid-liquid multiphase flow has been developed. The refractive index matching of the solid and the liquid allows the use of non-intrusive Laser Doppler Velocimetry (LDV) to measure the solid and the liquid velocities. These measurements will be useful in developing a better understanding of solid-liquid flows, especially solid-liquid and solid-solid interactions. Silica gel and 50% sodium iodide solution in water (refractive index {approx}1.443) are used as the refractive index matched solid and liquid respectively. A two color back scatter mode LDV is used for making velocity measurements. Tests were conducted in solid-liquid slurries with volumetric solid concentration levels of 5% and 15% in the Reynolds number (Re) range of 400 to 9200. Silica gel particles of mean diameter 40 microns were used. Measurements included mapping of the solid and liquid velocities and obtaining the pressure drop data. Signal processing technique utilizing histogram of velocity measurements made at a point and signal amplitude discrimination was successfully used for differentiating between solid and liquid velocities. 34 refs., 61 figs., 5 tabs.

10. Microscopic interfacial phenomena during flow in porous media

Energy Technology Data Exchange (ETDEWEB)

Miksis, M.J.; Ida, M.P. [Northwestern Univ., Evanston, IL (United States)

1996-12-31

A fundamental process during any multiphase flow in porous media is the breaking apart of one of the phases into smaller components. Here the authors investigate this breaking process as applied to a thin liquid film. They study the breaking of both a two dimensional planar film and a cylindrical thread of liquid using both analytical and numerical methods.

11. Investigation of hydrate formation and transportability in multiphase flow systems

Science.gov (United States)

Grasso, Giovanny A.

The oil and gas industry is moving towards offshore developments in more challenging environments, where evaluating hydrate plugging risks to avoid operational/safety hazards becomes more difficult (Sloan, 2005). Even though mechanistic models for hydrate plug formation have been developed, components for a full comprehensive model are still missing. Prior to this work, research efforts were focused on flowing hydrate particles with relatively little research on hydrate accumulation, leaving hydrate deposition in multiphase flow an unexplored subject. The focus of this thesis was to better understand hydrate deposition as a form of accumu- lation in pipelines. To incorporate the multiphase flow effect, hydrate formation experiments were carried out at varying water cut (WC) from 15 to 100 vol.%, liquid loading (LL) from 50 to 85 vol.%, mixture velocity (vmix) from 0.75 to 3 m/s, for three fluids systems (100 % WC, water in Conroe crude oil emulsions and King Ranch condensate + water) on the ExxonMobil flowloop (4 in. nominal size and 314 ft. long) at Friendswood, TX. For the 100 % WC flowloop tests, hydrate particle distribution transitions beyond a critical hydrate volume concentration, observed values were between 8.2 to 29.4 vol.%, causing a sudden increase in pressure drop (DP). A revised correlation of the transition as a function of Reynolds number and liquid loading was developed. For Conroe emulsions, DP starts increasing at higher hydrate concentrations than King Ranch condensate, many times at 10 vol.%. Experiments with King Ranch show higher relative DP (10 to 25) than Conroe (2 to 10) performed at the same vmix and LL. Cohesive force measurements between cyclopentane hydrate particles were reduced from a value of 3.32 mN/m to 1.26 mN/m when 6 wt.% Conroe was used and to 0.41 mN/m when 5 wt.% Caratinga crude oil was used; similar values were obtained when extracted asphaltenes were used. King Ranch condensate (11 wt.%) did not significantly change the

12. Particle-in-cell method in multiphase flow simulations

Science.gov (United States)

Zhang, Duan; Zou, Qisu; Vanderheyden, Brian

2004-11-01

In many disperse multiphase flows there is of great interest to know the deformations and the possibility of break up of the grains of the disperse phase. Some examples are the pneumatic transport of agriculture grains and the fragment-gas-structure interaction in an explosion. In these examples one needs to consider the stress states in both the disperse phase and the continuous phase. The use of Eulerian method encounters significant difficulties associated with numerical diffusion. The use of Lagrangian method encounters mesh-tangling problem. Expensive re-meshing procedures need to be done frequently. The particle-in-cell method possesses advantages of both methods while avoids their difficulties. A grain of the disperse phase is represented by particles. A particle in the method is not only a Lagrangian marker; it carries mass, momentum, energy and other quantities associated with the grain. Although the particle-in-cell method was invented in the sixties, its recent developments significantly enhanced its capabilities. In this presentation, we outline basic principles and numerical schemes of the particle-in-cell method and then provide examples of its applications. This work is supported by the U.S. Department of Energy. (LA-UR-04-4177)

13. Multi-phase flow effect on SRM nozzle flow field and thermal protection materials

Institute of Scientific and Technical Information of China (English)

SHAFQAT Wahab; XIE Kan; LIU Yu

2009-01-01

Multi-phase flow effect generated from the combustion of aluminum based com-posite propellant was performed on the thermal protection material of solid rocket motor (SRM) nozzle. Injection of alumina (Al2O3) particles from 5% to 10% was tried on SRM nozzle flow field to see the influence of multiphase flow on heat transfer computations. A coupled, time resolved CFD (computational fluid dynamics) approach was adopted to solve the conjugate problem of multi-phase fluid flow and heat transfer in the solid rocket motor nozzle. The governing equations are discretized by using the finite volume method. Spalart-Allmaras (S-A) turbulence model was employed. The computation was executed on the dif-ferent models selected for the analysis to validate the temperature variation in the throat in-serts and baking material of SRM nozzle. Comparison for temperatures variations were also carried out at different expansion ratios of nozzle. This paper also characterized the advanced SRM nozzle composites material for their high thermo stability and their high thermo me-chanical capabilities to make it more reliable simpler and lighter.

14. Small scale laboratory studies of flow and transport phenomena in pores and fractures: Phase 2. Technical completion report

Energy Technology Data Exchange (ETDEWEB)

Wilson, J.L.

1997-01-01

Pore level laboratory experiments using microscopy permit the in situ visualization of flow and transport phenomena, that can be recorded on film or videotape. One of the principal tools for visualization is the etched glass micromodel, which is composed of a transparent two dimensional network of three dimensional pores. The spatial scale of interest in these models extends from the individual pore, up to a network of pores, perhaps with small scale heterogeneities. Micromodels are best used to help validate concepts and assumptions, and to elucidate new, previously unrecognized phenomena for further study. They are not quantitative tools, but should be used in combination with quantitative tools such as column studies or mathematical models. There are three applications: multi-phase flow, colloid transport, and bacterial transport and colonization. Specifically the authors have examined behavior of relevance to liquid-liquid mass transfer (solubilization of capillary trapped organic liquids); liquid-gas mass transfer (in situ volatilization); mathematical models of multi-phase pressure-saturation relationships; colloid movement, attachment and detachment in the presence of fluid-fluid interfaces, clay interference with multi-phase flow; and heterogeneity effects on multi-phase flow and colloid movement.

15. Monitoring sand particle concentration in multiphase flow using acoustic emission technology

OpenAIRE

El-Alej, Mohamed Essid

2014-01-01

Multiphase flow is the simultaneous flow of two or several phases through a system such as a pipe. This common phenomenon can be found in the petroleum and chemical engineering industrial fields. Transport of sand particles in multiphase production has attracted considerable attention given sand production is a common problem especially to the oil and gas industry. The sand production causes loss of pipe wall thickness which can lead to expensive failures and loss of product...

16. Classification of debris flow phenomena in the Faroe Islands

DEFF Research Database (Denmark)

Dahl, Mads-Peter Jakob; E. Mortensen, Lis; Jensen, Niels H.

2012-01-01

Landslides and debris flow phenomena in particular constitute a threat to human activities in the Faroe Islands. As a contribution to ongoing landslide risk management research, this paper proposes a classification scheme for debris flow phenomena in the Faroe Islands. The scheme, produced through...... with international landslide classification systems, significantly increases the knowledge of debris flow phenomena and promotes a consistent terminology of these within the Faroe Islands....

17. Well testing for radially heterogeneous reservoirs under single and multiphase flow conditions

Energy Technology Data Exchange (ETDEWEB)

Thompson, L.G.; Reynolds, A.C. [Univ. of Tulsa, OK (United States)

1997-03-01

In this work, the authors examine the behavior of pressure-transient data for single and multiphase flow in radially heterogeneous reservoirs. To illustrate multiphase flow behavior in these systems, they focus on heterogeneous gas-condensate reservoirs; however, they also consider other multiphase flow problems. It is well known that in some instances, e.g., water injection/falloff in homogeneous reservoirs, pressure-transient data from buildup (or falloff) tests cannot be obtained by superposition of drawdown (injection) pressure responses. In fact, drawdown and buildup reflect properties in different regions of the reservoir. This behavior is common to most occurrences of multiphase reservoir flow and is exaggerated in the presence of radial heterogeneity. This theoretical work describes the information contained in transient pressure derivative data and explains the fundamental difference in behavior between multiphase drawdown and buildup pressure-transient data in radially heterogeneous reservoirs. The authors show that multiphase buildup data may be treated like single-phase buildup data, but drawdown data is most indicative of properties in that region of the reservoir where mobility is changing most rapidly with time.

18. Well testing for heterogeneous reservoirs under single and multiphase flow conditions

Energy Technology Data Exchange (ETDEWEB)

Thompson, L.G.; Reynolds, A.C. [Univ. of Tulsa, OK (United States)

1995-12-31

In this work, we examine the behavior of pressure transient data for single and multiphase flow in heterogeneous reservoirs. In order to illustrate multiphase flow behavior in these systems, we focus on heterogeneous gas condensate reservoirs, however, we also consider other multiphase flow problems. It is well known that in some instances, e. g., water injection/falloff in homogeneous reservoirs, pressure transient data from buildup (or falloff) tests cannot be obtained by superposition of drawdown (injection) pressure responses. In fact, drawdown and buildup reflect properties in different regions of the reservoir. This behavior is common to most occurrences of multiphase reservoir flow, and is exaggerated in the presence of radial heterogeneity. This theoretical work describes the information contained in transient pressure derivative data, and explains the fundamental difference in behavior between multiphase drawdown and buildup pressure transient data in radially heterogeneous reservoirs. We show that whereas multiphase buildup data may be treated like single-phase buildup data, drawdown data is most indicative of properties in that region of the reservoir where mobility is changing most rapidly with time.

19. Prediction of Separation Length of Turbulent Multiphase Flow Using Radiotracer and Computational Fluid Dynamics Simulation

Directory of Open Access Journals (Sweden)

S. Sugiharto1

2013-04-01

Full Text Available Multiphase flow modeling presents great challenges due to its extreme importance in various industrial and environmental applications. In the present study, prediction of separation length of multiphase flow is examined experimentally by injection of two kinds of iodine-based radiotracer solutions into a hydrocarbon transport pipeline (HCT having an inner diameter of 24 in (60,96 m. The main components of fluids in the pipeline are water 95%, crude oil 3% and gas 2%. A radiotracing experiment was carried out at the segment of pipe which is located far from branch points with assumptions that stratified flows in such segment were achieved. Two radiation detectors located at 80 and 100 m from injection point were used to generate residence time distribution (RTD curve resulting from injection of radiotracer solutions. Multiphase computational fluid dynamics (CFD simulations using Eulerian-Eulerian control volume and commercial CFD package Fluent 6.2 were employed to simulate separation length of multiphase flow. The results of study shows that the flow velocity of water is higher than the flow rate of crude oil in water-dominated system despite the higher density of water than the density of the crude oil. The separation length in multiphase flow predicted by Fluent mixture model is approximately 20 m, measured from injection point. This result confirms that the placement of the first radiation detector at the distance 80 m from the injection point was correct

20. Modelling of transit-time ultrasonic flow meters under multi-phase flow conditions

DEFF Research Database (Denmark)

Simurda, Matej; Duggen, Lars; Lassen, Benny

2016-01-01

A pseudospectral model for transit time ultrasonic flowmeters under multiphase flow conditions is presented. The method solves first order stress-velocity equations of elastodynamics, with acoustic media being modelled by setting shear modulus to zero. Additional terms to account for the effect...... of the background flow are included. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the Fast Fourier transform. The method is compared against analytical solutions and experimental measurements. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating...

1. Multiphase Flow Dynamics 4 Turbulence, Gas Adsorption and Release, Diesel Fuel Properties

CERN Document Server

Kolev, Nikolay Ivanov

2012-01-01

The present Volume 4 of the successful monograh package “Multiphase Flow Dynamics”is devoted to selected Chapters of the multiphase fluid dynamics that are important for practical applications but did not find place in the previous volumes. The state of the art of the turbulence modeling in multiphase flows is presented. As introduction, some basics of the single phase boundary layer theory including some important scales and flow oscillation characteristics in pipes and rod bundles are presented. Then the scales characterizing the dispersed flow systems are presented. The description of the turbulence is provided at different level of complexity: simple algebraic models for eddy viscosity, simple algebraic models based on the Boussinesq hypothesis, modification of the boundary layer share due to modification of the bulk turbulence, modification of the boundary layer share due to nucleate boiling. The role of the following forces on the mathematical description of turbulent flows is discussed: the lift fo...

2. Experiments on the transition from stratified to slug flow in multiphase pipe flow

Energy Technology Data Exchange (ETDEWEB)

Kristiansen, Olav

2004-12-01

Severe slugging is reported from some field operations, where an increase in the production rate leads to a transition from steady stratified flow to slug flow in the pipeline. The slugs can be longer than anticipated for hydrodynamic slugging and the flow transients can then be a limitation for the production capacity. The objective was to perform a study on the flow pattern transition from stratified to slug flow. A particular point of interest was the possible occurrence of metastable flow and large initial slugs at elevated pressures. New data have been acquired in an experimental investigation of the transition from stratified to slug flow in horizontal and near-horizontal pipes at atmospheric and pressurised conditions. The experiments were performed with two-phase gas liquid and three-phase gas-liquid-liquid flows. Two flow facilities were used the NTNU Multiphase Flow Laboratory (short flow loop) and the SINTEF Multi-phase Flow Laboratory (long flow loop). Hold-up and pressure drop were measured, and flow patterns were determined visually and by evaluation of hold-up time traces. The following parameters were varied: 1) Inlet flow condition by variation of inlet pipe inclination. 2) System pressure (gas density). 3) Test section inclination (horizontal and near-horizontal). 4) Water cut. 5) Gas and liquid flow rates. 6) Pipe length. Slug flow or stratified flow was introduced upstream to promote either early or delayed transition to slug flow in the test section. A time series analysis was performed on the hold-up time traces, and average and distribution slug characteristics are reported, e.g. slug frequency, bubble propagation velocity, slug fraction, slug length, and growth rate. The results have been compared with steady state model predictions. The work consists of the following parts. 1) An initial study was performed at atmospheric air-water conditions in a short pipe. 2) Experiments at atmospheric and elevated pressures were performed in the medium

3. Pattern recognition techniques for horizontal and vertically upward multiphase flow measurement

Science.gov (United States)

Arubi, Tesi I. M.; Yeung, Hoi

2012-03-01

The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves that has led oil companies to develop smaller and marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective solutions of on-line continuous multiphase flow measurement for well testing, production monitoring, production optimisation, process control and automation. The pattern recognition approach for clamp-on multiphase measurement employed in this study provides one means for meeting this need. High speed caesium-137 radioisotope-based densitometers were installed vertically at the top of a 50.8mm and 101.6mm riser as well as horizontally at the riser base in the Cranfield University multiphase flow test facility. A comprehensive experimental campaign comprising flow conditions typical of operating conditions found in the Petroleum Industry was conducted. The application of a single gamma densitometer unit, in conjunction with pattern recognition techniques to determine both the phase volume fractions and velocities to yield the individual phase flow rates of horizontal and vertically upward multiphase flows was investigated. The pattern recognition systems were trained to map the temporal fluctuations in the multiphase mixture density with the individual phase flow rates using statistical features extracted from the gamma counts signals as their inputs. Initial results yielded individual phase flow rate predictions to within ±5% relative error for the two phase airwater flows and ±10% for three phase air-oil-water flows data.

4. Multiphase Flow and Wear in the Cutting Head of Ultra-high Pressure Abrasive Water Jet

Institute of Scientific and Technical Information of China (English)

YANG Minguan; WANG Yuli; KANG Can; YU Feng

2009-01-01

Abrasive water jet cutting technology is widely applied in the materials processing today and attracts great attention from scholars, but many phenomena concerned are not well understood, especially in the internal jet flow of the cutting head at the condition of ultra-high pressure. The multiphase flow in the cutting head is numerically simulated to study the abrasive motion mechanism and wear inside the cutting head at the pressure beyond 300 Mpa. Visible predictions of the particles trajectories and wear rate in the cutting head are presented. The influences of the abrasive physical properties, size of the jewel orifice and the operating pressure on the trajectories are discussed. Based on the simulation, a wear experiment is carried out under the corresponding pressures. The simulation and experimental results show that the flow in the mixing chamber is composed of the jet core zone and the disturbance zone, both affect the particles trajectories. The mixing efficiency drops with the increase of the abrasive granularity. The abrasive density determines the response of particles to the effects of different flow zones, the abrasive with medium density gives the best general performance. Increasing the operating pressure or using the jewel with a smaller orifice improves the coherency of particles trajectories but increases the wear rate of the jewel holder at the same time. Walls of the jewel holder, the entrance of the mixing chamber and the convergence part of the mixing tube are subject to wear out. The computational and experimental results give a qualitative consistency which proves that this numerical method can provide a reliable and visible cognition of the flow characteristics of ultra-high pressure abrasive water jet. The investigation is benefit for improving the machining properties of water jet cutting systems and the optimization design of the cutting head.

5. Numerical Simulation of the Multiphase Flow in the Rheinsahl-Heraeus (RH) System

Science.gov (United States)

Geng, Dian-Qiao; Lei, Hong; He, Ji-Cheng

2010-02-01

Knowledge of gas-liquid multiphase flow behavior in the Rheinsahl-Heraeus (RH) system is of great significance to clarify the circulation flow rate, decarburization, and inclusion removal with a reliable description. Thus, based on the separate model of injecting gas behavior, a novel mathematical model of multiphase flow has been developed to give the distribution of gas holdup in the RH system. The numerical results show that the predicted circulation flow rates, the predicted flow velocities, and the predicted mixing times agree with the measured results in a water model and that the predicted tracer concentration curve agrees with the results obtained in an actual RH system. With a lower lifting gas flow rate, the rising gas bubbles are concentrated near the wall; with a higher lifting gas flow rate, gas bubbles can reach the center of the up-snorkel. A critical lifting gas flow rate is used to obtain the maximum circulation flow rate.

6. Multi-phase flow modeling of soil contamination and soil remediation.

NARCIS (Netherlands)

Dijke, van M.I.J.

1997-01-01

In this thesis multi-phase flow models are used to study the flow behavior of liquid contaminants in aquifers and of gases that are injected below the groundwater table for remediation purposes. Considered problems are redistribution of a lens of light nonaqueous phase liquid(LNAPL)on a hor

7. Capabilities of Numerical Simulation of Multiphase Flows in Centrifugal Pumps using Modern CFD Software

CERN Document Server

Kochevsky, A N

2005-01-01

The paper describes capabilities of numerical simulation of liquid flows with solid and/or gas admixtures in centrifugal pumps using modern commercial CFD software packages, with the purpose to predict performance curves of the pumps treating such media. In particular, the approaches and multiphase flow models available in the package CFX-5 are described; their advantages and disadvantages are analyzed.

8. RECENT ADVANCES IN STUDIES ON MULTIPHASE AND REACTING FLOWS IN CHINA

Institute of Scientific and Technical Information of China (English)

周力行

2002-01-01

The recent developments and advances of studies on multiphase and reacting flows, including gas-solid, gas-liquid, liquid-solid and reacting flows, in China are reviewed. Special emphasis is laid on the fundamental studies and numerical models. Some important experimental results are also reported. But measurement techniques are not covered.

9. Modeling hyperelasticity in non-equilibrium multiphase flows

Science.gov (United States)

Hank, Sarah; Favrie, Nicolas; Massoni, Jacques

2017-02-01

The aim of this article is the construction of a multiphase hyperelastic model. The Eulerian formulation of the hyperelasticity represents a system of 14 conservative partial differential equations submitted to stationary differential constraints. This model is constructed with an elegant approach where the specific energy is given in separable form. The system admits 14 eigenvalues with 7 characteristic eigenfields. The associated Riemann problem is not easy to solve because of the presence of 7 waves. The shear waves are very diffusive when dealing with the full system. In this paper, we use a splitting approach to solve the whole system using 3 sub-systems. This method reduces the diffusion of the shear waves while allowing to use a classical approximate Riemann solver. The multiphase model is obtained by adapting the discrete equations method. This approach involves an additional equation governing the evolution of a phase function relative to the presence of a phase in a cell. The system is integrated over a multiphase volume control. Finally, each phase admits its own equations system composed of three sub-systems. One and three dimensional test cases are presented.

10. Dispersion phenomena in helical flow in a concentric annulus.

Science.gov (United States)

Song, Young Seok; Brenner, Howard

2009-12-14

We examined dispersion phenomena of solutes in helical flow in a concentric annulus through a multiscale approach. The helical flow was developed by the combination of the Poiseuille flow and Couette flow. Here, we present an analytic model that can address the multidimensional Taylor dispersion in the helical flow under a lateral field of thermophoresis (or thermal diffusion) in the gapwise direction. Macroscopic parameters including the average solute velocity and dispersivity were analyzed using relevant microscopic physicochemical properties. The mathematically obtained results were validated by the numerical simulation carried out in this study. The findings show that macrotransport processes are robust and straightforward to handle multidimensional dispersion phenomena of solutes in helical flow. This study is expected to provide a theoretical platform for applications of helical flow such as tube exchangers, oil drilling, and multidimensional field flow fractionations (e.g., helical flow field flow fractionation).

11. Direct numerical simulation of a compressible multiphase flow through the fast Eulerian approach

CERN Document Server

Cerminara, Matteo; Ongaro, Tomaso Esposti; Salvetti, Maria Vittoria

2014-01-01

Our work is motivated by the analysis of ash plume dynamics, arising in the study of volcanic eruptions. Such phenomena are characterized by large Reynolds number (exceeding $10^7$) and a large number of polydispersed particles~[1]. Thus, the choice of the methodology to be used is straightforward: we need LES of a multiphase gas-particles flow. Since the simulation of the behavior of a large number of dispersed particles is very difficult with Lagrangian methods, we model the particles as a continuum, Eulerian fluid (dust), by using reduced models involving two fluids, as proposed in Ref.~[2,3,4]. Moreover, we need a robust numerical scheme to simultaneously treat compressibility, buoyancy effects and turbulent dispersal dynamics. We analyze the turbulence properties of such models in a homogeneous and isotropic setting, with the aim of formulating a LES model. In particular, we examine the development of freely decaying homogeneous and isotropic turbulence in subsonic regime (the r.m.s. Mach number either 0...

12. Effect of surface chemistry on the behaviour of solid particles in multiphase flow

Energy Technology Data Exchange (ETDEWEB)

Gulbrandsen, Egil; Pedersen, Anette

2006-03-15

The surface chemical properties of solids particles strongly influence their behaviour in multiphase flow, e.g. their tendency to be transported by the oil or water phase, their tendency to stick to the oil-water interfaces, or their tendency to aggregate. The behaviour of the solid particles may influence various processes such as emulsion breakdown, oil-water separation, or sedimentation of solids in a pipeline, and thereby issues as erosion, and corrosion under deposits. These issues were addressed in the present laboratory study. The reported results focus on behaviour of sand in a simple oil-water system in presence of a model corrosion inhibitor compound, cetyltrimethylammonium bromide. A refined oil was used in the tests. The system was studied by various methods like zeta-potential measurements, assessment of wetting properties and tendency of aggregation and sedimentation in oil-water system. It was found that surface-active corrosion inhibitor could strongly influence the wetting of the sand. By addition of the corrosion inhibitor, the sand changed from water wet to oil wet. This change induced a tendency to aggregation of the sand grains. The aggregation led to sticky deposits of sand. This may have an impact on under deposit corrosion phenomena. (Author)

13. Microdevices enabled by rarefied flow phenomena

Science.gov (United States)

Alexeenko, Alina A.; Strongrich, A. D.; Cofer, A. G.; Pikus, A.; Sebastiao, I. B.; Tholeti, S. S.; Shivkumar, G.

2016-11-01

In this paper we review emerging applications of rarefied gas dynamics for microscale sensing, actuation, power generation and thermal management. The performance of conventional fluidic devices such as pumps, combustors and heat engines drops with the decrease of characteristic length scale due to greater viscous and heat transfer losses. However, the close coupling between non-equilibrium gas, liquid and solid-state transport and electromagnetic phenomena enables unconventional micro/nanodevices. We specifically consider three distinct examples of devices with non-equilibrium gas-phase transport based on i) very large thermal gradients; ii) increased capillary forces; iii) high electric fields - all of which are generated by scaling down device size by using nano/micromanufacturing techniques.

14. Modeling of multiphase flow with solidification and chemical reaction in materials processing

Science.gov (United States)

Wei, Jiuan

moving the side insulation layer upward. It is possible to produce high quality crystal with a good combination of heating and cooling. SiC based ceramic materials fabricated by polymer pyrolysis and synthesis becomes a promising candidate for nuclear applications. To obtain high uniformity of microstructure/concentration fuel without crack at high operating temperature, it is important to understand transport phenomena in material processing at different scale levels. In our prior work, a system level model based on reactive porous media theory was developed to account for the pyrolysis process in uranium-ceramic nuclear fabrication In this thesis, a particle level mesoscopic model based on the Smoothed Particle Hydrodynamics (SPH) is developed for modeling the synthesis of filler U3O8 particles and SiC matrix. The system-level model provides the thermal boundary conditions needed in the particle level simulation. The evolution of particle concentration and structure as well as composition of composite produced will be investigated. Since the process temperature and heat flux play the important roles in material quality and uniformity, the effects of heating rate at different directions, filler particle size and distribution on uniformity and microstructure of the final product are investigated. Uncertainty issue is also discussed. For the multiphase flow with directional solidification, a system level based on FVM is established. In this model, melt convection, temperature distribution, phase change and solidification interface can be investigated. For the multiphase flow with chemical reaction, a particle level model based on SPH method is developed to describe the pyrolysis and synthesis process of uranium-ceramic nuclear fuel. Due to its mesh-free nature, SPH can easily handle the problems with multi phases and components, large deformation, chemical reactions and even solidifications. A multi-scale meso-macroscopic approach, which combine a mesoscopic model based

15. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

Energy Technology Data Exchange (ETDEWEB)

Edited by Guenther, Chris; Garg, Rahul

2013-08-19

The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

16. An experimental investigation of the multiphase flows in a photobioreactor for algae cultivation

Science.gov (United States)

Yang, Zifeng; Hu, Hui; Del Ninno, Matteo; Wen, Zhiyou

2011-11-01

Algal biomass is a promising feedstock for biofuels production, with photobioreactors being one of the major cultivation systems for algal cells. Light absorption, fluid dynamics, and algal metabolism are three key factors in determining the overall performance of a photobioreactor. The behavior of the multiphase flow (i.e., liquid phase - water, gas phase - CO2 and O2, and solid phase - algal cells) and turbulent mixing inside the reactor are the core connecting the three factors together. One of the major challenges in the optimal design of photobioreactors for algae cultivation is the lack of in-depth understanding of the characteristics of the multiphase flows and turbulent mixing. In this study, we present a comprehensive experimental study to investigate the effects of turbulent mixing in photobioreactors on the performance of a photobioreactor for algae cultivation. A high-resolution particle image velocity (PIV) system is used to achieve time-resolved, in-situ flow field measurements to quantify the turbulent mixing of the multiphase flows inside the bioreactor, while algal cultures are also grown in the same reactor with the same experimental settings. The mixing characteristics of the multiphase flow are correlated with the algal growth performance in the bioreactors to elucidate the underlying physics to explore/optimize design paradigms for the optimization of photobioreactor designs for algae cultivation.

17. Numerical simulation of multi-phase phenomena in IVR related processes

Energy Technology Data Exchange (ETDEWEB)

Cheng, Xu [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Bereich Innovative Reaktorsysteme; Shanghai Jiao Tong Univ. (China). School of Nuclear Science and Engineering

2016-05-15

IVR (in-vessel retention) is one of the severe accident mitigation measures, which is widely applied in the advanced light water reactors (LWRs) such as KERENA of AREVA, AP1000 of Westinghouse and CAP1400 of SNPTC, and attracts extensive interests of the German and Chinese nuclear scientists. The ultimate target of IVR is to keep the core melt inside the reactor pressure vessel (RPV) and to provide cooling capability via water flowing outside the RPV, the so called external reactor vessel cooling (ERVC). This paper summarizes some activities ongoing in both KIT and SJTU (Shanghai Jiao Tong University) with a few results examples.

18. A Multiphase Flow Measurement System Comprising an Impedance Cross Correlation (ICC) Device and an Imaging Electromagnetic Flow Meter (IEF).

OpenAIRE

Meng, Yiqing; Lucas, Gary

2012-01-01

Flow measurements are playing increasingly important roles in many different application areas, such as manufacturing processes and the oil & gas industry. Multiphase flow measurement in particular is becoming increasingly important to the oil industry. This project concerns the design and implementation of a two-phase flow measurement system which integrates an impedance cross correlation (ICC) flow meter - which can be utilized for measuring the local dispersed phase volume fraction distrib...

19. Simultaneous measurement of hysteresis in capillary pressure and electric permittivity for multiphase flow through porous media

NARCIS (Netherlands)

Plug, W.J.; Slob, E.C.; Bruining, J.; Moreno Tirado, L.M.

2007-01-01

We present a tool that simultaneously measures the complex permittivity and the capillary pressure characteristics for multiphase flow. The sample holder is a parallel plate capacitor. A precision component analyzer is used to measure the impedance amplitude and phase angle as a function of frequenc

20. Non-isothermal effects on multi-phase flow in porous medium

DEFF Research Database (Denmark)

Singh, Ashok; Wang, W; Park, C. H.

2010-01-01

In this paper a ppT -formulation for non-isothermal multi-phase flow is given including diffusion and latent heat effects. Temperature and pressure dependencies of governing parameters are considered, in particular surface tension variation on phase interfaces along with temperature changes. A weak...

1. Modelling multiphase flow inside the porous media of a polymer electrolyte membrane fuel cell

DEFF Research Database (Denmark)

Berning, Torsten; Kær, Søren Knudsen

2011-01-01

Transport processes inside polymer electrolyte membrane fuel cells (PEMFC’s) are highly complex and involve convective and diffusive multiphase, multispecies flow through porous media along with heat and mass transfer and electrochemical reactions in conjunction with water transport through an el...

2. Forces on bends and T-joints due to multiphase flow

NARCIS (Netherlands)

Belfroid, S.P.C.; Cargnelutti, M.F.; Schiferli, W.; Osch, M.M.E. van

2010-01-01

To be able to assess the mechanical integrity of piping structures for loading to multiphase flow conditions, air-water experiments were carried out in a horizontal 1" pipe system. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating co

3. Forces on bends and T-joints due to multiphase flow

NARCIS (Netherlands)

Belfroid, S.P.C.; Cargnelutti, M.F.; Schiferli, W.; Osch, M.M.E. van

2010-01-01

To be able to assess the mechanical integrity of piping structures for loading to multiphase flow conditions, air-water experiments were carried out in a horizontal 1" pipe system. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating

4. Gas-to-liquids process using multi-phase flow, non-thermal plasma microreactor

NARCIS (Netherlands)

Agiral, Anil; Nozaki, Tomohiro; Nakase, Masahiko; Yuzawa, Shuhei; Okazaki, Ken; Gardeniers, J.G.E. (Han)

2011-01-01

A multi-phase flow non-thermal plasma microreactor based on dielectric barrier discharge has been developed for partial oxidation of methane to liquid oxygenates at atmospheric pressure. A pulsed water injection method has been used to remove condensable liquid components from the active discharge r

5. Scaling Relations for Viscous and Gravitational Flow Instabilities in Multiphase Multicomponent Compressible Flow

Science.gov (United States)

Moortgat, J.; Amooie, M. A.; Soltanian, M. R.

2016-12-01

Problems in hydrogeology and hydrocarbon reservoirs generally involve the transport of solutes in a single solvent phase (e.g., contaminants or dissolved injection gas), or the flow of multiple phases that may or may not exchange mass (e.g., brine, NAPL, oil, gas). Often, flow is viscously and gravitationally unstable due to mobility and density contrasts within a phase or between phases. Such instabilities have been studied in detail for single-phase incompressible fluids and for two-phase immiscible flow, but to a lesser extent for multiphase multicomponent compressible flow. The latter is the subject of this presentation. Robust phase stability analyses and phase split calculations, based on equations of state, determine the mass exchange between phases and the resulting phase behavior, i.e., phase densities, viscosities, and volumes. Higher-order finite element methods and fine grids are used to capture the small-scale onset of flow instabilities. A full matrix of composition dependent coefficients is considered for each Fickian diffusive phase flux. Formation heterogeneity can have a profound impact and is represented by realistic geostatistical models. Qualitatively, fingering in multiphase compositional flow is different from single-phase problems because 1) phase mobilities depend on rock wettability through relative permeabilities, and 2) the initial density and viscosity ratios between phases may change due to species transfer. To quantify mixing rates in different flow regimes and for varying degrees of miscibility and medium heterogeneities, we define the spatial variance, scalar dissipation rate, dilution index, skewness, and kurtosis of the molar density of introduced species. Molar densities, unlike compositions, include compressibility effects. The temporal evolution of these measures shows that, while transport at the small-scale (cm) is described by the classical advection-diffusion-dispersion relations, scaling at the macro-scale (> 10 m) shows

6. CFD-DP Modeling of Multiphase Flow in Dense Medium Cyclone

Directory of Open Access Journals (Sweden)

Okan Topcu

2012-03-01

Full Text Available A numerical study of the gas-liquid-solid multi-phase flow in a hydrocyclone is summarized in this paper. The turbulent flow of the gas and the liquid is modelled using the realizable k-epsilon turbulence model, the interface between the liquid and the air core is modelled using the Eulerian multi-phase model and the simulation of the particle flow described by the dense discrete phase model in which the data of the multi-phase flow are used. Separation efficiency, particle trajectories, split ratios, flow field and pressure drop are the examined flow features. The results show that the flow fields in the hydrocyclones are possible to simulate by realizable k-epsilon model which is a fast solver for turbulent flows. The cut size is achieved between 3 and 15 µm. The air-core development is observed to be a transport effect due to the velocity of surrounding fluid rather than a pressure effect. The approach offers a useful method to observe the ﬂow of a hydrocyclone in relation to design of the system and operational conditions.

7. Modelling of fluid-structure interaction with multiphase viscous flows using an immersed-body method

Science.gov (United States)

Yang, P.; Xiang, J.; Fang, F.; Pavlidis, D.; Latham, J.-P.; Pain, C. C.

2016-09-01

An immersed-body method is developed here to model fluid-structure interaction for multiphase viscous flows. It does this by coupling a finite element multiphase fluid model and a combined finite-discrete element solid model. A coupling term containing the fluid stresses is introduced within a thin shell mesh surrounding the solid surface. The thin shell mesh acts as a numerical delta function in order to help apply the solid-fluid boundary conditions. When used with an advanced interface capturing method, the immersed-body method has the capability to solve problems with fluid-solid interfaces in the presence of multiphase fluid-fluid interfaces. Importantly, the solid-fluid coupling terms are treated implicitly to enable larger time steps to be used. This two-way coupling method has been validated by three numerical test cases: a free falling cylinder in a fluid at rest, elastic membrane and a collapsing column of water moving an initially stationary solid square. A fourth simulation example is of a water-air interface with a floating solid square being moved around by complex hydrodynamic flows including wave breaking. The results show that the immersed-body method is an effective approach for two-way solid-fluid coupling in multiphase viscous flows.

8. Experimental and computational analysis of pressure response in a multiphase flow loop

Science.gov (United States)

Morshed, Munzarin; Amin, Al; Rahman, Mohammad Azizur; Imtiaz, Syed

2016-07-01

The characteristics of multiphase fluid flow in pipes are useful to understand fluid mechanics encountered in the oil and gas industries. In the present day oil and gas exploration is successively inducing subsea operation in the deep sea and arctic condition. During the transport of petroleum products, understanding the fluid dynamics inside the pipe network is important for flow assurance. In this case the information regarding static and dynamic pressure response, pressure loss, optimum flow rate, pipe diameter etc. are the important parameter for flow assurance. The principal aim of this research is to represents computational analysis and experimental analysis of multi-phase (L/G) in a pipe network. This computational study considers a two-phase fluid flow through a horizontal flow loop with at different Reynolds number in order to determine the pressure distribution, frictional pressure loss profiles by volume of fluid (VOF) method. However, numerical simulations are validated with the experimental data. The experiment is conducted in 76.20 mm ID transparent circular pipe using water and air in the flow loop. Static pressure transducers are used to measure local pressure response in multiphase pipeline.

9. Optical diagnostics for turbulent and multiphase flows: Particle image velocimetry and photorefractive optics

Energy Technology Data Exchange (ETDEWEB)

OHern, T.J.; Torczynski, J.R.; Shagam, R.N.; Blanchat, T.K.; Chu, T.Y.; Tassin-Leger, A.L.; Henderson, J.A.

1997-01-01

This report summarizes the work performed under the Sandia Laboratory Directed Research and Development (LDRD) project Optical Diagnostics for Turbulent and Multiphase Flows. Advanced optical diagnostics have been investigated and developed for flow field measurements, including capabilities for measurement in turbulent, multiphase, and heated flows. Particle Image Velocimetry (PIV) includes several techniques for measurement of instantaneous flow field velocities and associated turbulence quantities. Nonlinear photorefractive optical materials have been investigated for the possibility of measuring turbulence quantities (turbulent spectrum) more directly. The two-dimensional PIV techniques developed under this LDRD were shown to work well, and were compared with more traditional laser Doppler velocimetry (LDV). Three-dimensional PIV techniques were developed and tested, but due to several experimental difficulties were not as successful. The photorefractive techniques were tested, and both potential capabilities and possible problem areas were elucidated.

10. Sharp Interface Algorithm for Large Density Ratio Incompressible Multiphase Magnetohydrodynamic Flows

Science.gov (United States)

2013-01-01

Incompressible MHD solver for Arbitrary Geome- tries) is developed to model the flow of liquid metal with free surfaces in the presence of strong multi...24] C. B. Reed S. Molokov. Review of free-surface mhd experiments and modeling . Technical Report ANL/TD/TM99-08, Argonne National Laboratory, 1999...and the corresponding paralleled implementation for the study of magnetohydrodynamics ( MHD ) of large density ratio, three-dimensional multiphase flows

11. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

Science.gov (United States)

Meng, Yiqing; Lucas, Gary P.

2017-05-01

This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

12. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer

CERN Document Server

Li, Qing; Kang, Q J; He, Y L; Chen, Q; Liu, Q

2016-01-01

Over the past few decades, tremendous progress has been made in the development of particle-based discrete simulation methods versus the conventional continuum-based methods. In particular, the lattice Boltzmann (LB) method has evolved from a theoretical novelty to a ubiquitous, versatile and powerful computational methodology for both fundamental research and engineering applications. It is a kinetic-based mesoscopic approach that bridges the microscales and macroscales, which offers distinctive advantages in simulation fidelity and computational efficiency. Applications of the LB method have been found in a wide range of disciplines including physics, chemistry, materials, biomedicine and various branches of engineering. The present work provides a comprehensive review of the LB method for thermofluids and energy applications, focusing on multiphase flows, thermal flows and thermal multiphase flows with phase change. The review first covers the theoretical framework of the LB method, revealing the existing ...

13. One-Dimensional, Two-Phase Flow Modeling Toward Interpreting Motor Slag Expulsion Phenomena

Science.gov (United States)

Kibbey, Timothy P.

2012-01-01

Aluminum oxide slag accumulation and expulsion was previously shown to be a player in various solid rocket motor phenomena, including the Space Shuttle's Reusable Solid Rocket Motor (RSRM) pressure perturbation, or "blip," and phantom moment. In the latter case, such un ]commanded side accelerations near the end of burn have also been identified in several other motor systems. However, efforts to estimate the mass expelled during a given event have come up short. Either bulk calculations are performed without enough physics present, or multiphase, multidimensional Computational Fluid Dynamic analyses are performed that give a snapshot in time and space but do not always aid in grasping the general principle. One ]dimensional, two ]phase compressible flow calculations yield an analytical result for nozzle flow under certain assumptions. This can be carried further to relate the bulk motor parameters of pressure, thrust, and mass flow rate under the different exhaust conditions driven by the addition of condensed phase mass flow. An unknown parameter is correlated to airflow testing with water injection where mass flow rates and pressure are known. Comparison is also made to full ]scale static test motor data where thrust and pressure changes are known and similar behavior is shown. The end goal is to be able to include the accumulation and flow of slag in internal ballistics predictions. This will allow better prediction of the tailoff when much slag is ejected and of mass retained versus time, believed to be a contributor to the widely-observed "flight knockdown" parameter.

14. Modeling and simulation challenges in Eulerian-Lagrangian computations of multiphase flows

Science.gov (United States)

Diggs, Angela; Balachandar, S.

2017-01-01

The present work addresses the numerical methods required for particle-gas and particle-particle interactions in Eulerian-Lagrangian simulations of multiphase flow. Local volume fraction as seen by each particle is the quantity of foremost importance in modeling and evaluating such interactions. We consider a general multiphase flow with a distribution of particles inside a fluid flow discretized on an Eulerian grid. Particle volume fraction is needed both as a Lagrangian quantity associated with each particle and also as an Eulerian quantity associated with the flow. In Grid-Based (GB) methods, the volume fraction is first obtained within each cell as an Eulerian quantity and then interpolated to each particle. In Particle-Based (PB) methods, the particle volume fraction is obtained at each particle and then projected onto the Eulerian grid. Traditionally, GB methods are used in multiphase flow, but sub-grid resolution can be obtained through use of PB methods. By evaluating the total error and its components we compare the performance of GB and PB methods. The standard von Neumann error analysis technique has been adapted for rigorous evaluation of rate of convergence. The methods presented can be extended to obtain accurate field representations of other Lagrangian quantities.

15. Discrete fracture modeling of multiphase flow and hydrocarbon production in fractured shale or low permeability reservoirs

Science.gov (United States)

Hao, Y.; Settgast, R. R.; Fu, P.; Tompson, A. F. B.; Morris, J.; Ryerson, F. J.

2016-12-01

It has long been recognized that multiphase flow and transport in fractured porous media is very important for various subsurface applications. Hydrocarbon fluid flow and production from hydraulically fractured shale reservoirs is an important and complicated example of multiphase flow in fractured formations. The combination of horizontal drilling and hydraulic fracturing is able to create extensive fracture networks in low permeability shale rocks, leading to increased formation permeability and enhanced hydrocarbon production. However, unconventional wells experience a much faster production decline than conventional hydrocarbon recovery. Maintaining sustainable and economically viable shale gas/oil production requires additional wells and re-fracturing. Excessive fracturing fluid loss during hydraulic fracturing operations may also drive up operation costs and raise potential environmental concerns. Understanding and modeling processes that contribute to decreasing productivity and fracturing fluid loss represent a critical component for unconventional hydrocarbon recovery analysis. Towards this effort we develop a discrete fracture model (DFM) in GEOS (LLNL multi-physics computational code) to simulate multiphase flow and transfer in hydraulically fractured reservoirs. The DFM model is able to explicitly account for both individual fractures and their surrounding rocks, therefore allowing for an accurate prediction of impacts of fracture-matrix interactions on hydrocarbon production. We apply the DFM model to simulate three-phase (water, oil, and gas) flow behaviors in fractured shale rocks as a result of different hydraulic stimulation scenarios. Numerical results show that multiphase flow behaviors at the fracture-matrix interface play a major role in controlling both hydrocarbon production and fracturing fluid recovery rates. The DFM model developed in this study will be coupled with the existing hydro-fracture model to provide a fully integrated

16. Optical density measurements in a multiphase cryogenic fluid flow system

Science.gov (United States)

Korman, Valentin; Wiley, John; Gregory, Don A.

2006-05-01

An accurate determination of fluid flow in a cryogenic propulsion environment is difficult under the best of circumstances. The extreme thermal environment increases the mechanical constraints, and variable density conditions create havoc with traditional flow measurement schemes. Presented here are secondary results of cryogenic testing of an all-optical sensor capable of a mass flow measurement by directly interrogating the fluid's density state and a determination of the fluid's velocity. The sensor's measurement basis does not rely on any inherent assumptions as to the state of the fluid flow (density or otherwise). The fluid sensing interaction model will be discussed. Current test and evaluation data and future development work will be presented.

17. Advanced Multi-Phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis

Science.gov (United States)

Liaw, Paul; Chen, Y. S.; Shang, H. M.; Doran, Denise

1993-01-01

It is known that the simulations of solid rocket motor internal flow field with AL-based propellants require complex multi-phase turbulent flow model. The objective of this study is to develop an advanced particulate multi-phase flow model which includes the effects of particle dynamics, chemical reaction and hot gas flow turbulence. The inclusion of particle agglomeration, particle/gas reaction and mass transfer, particle collision, coalescence and breakup mechanisms in modeling the particle dynamics will allow the proposed model to realistically simulate the flowfield inside a solid rocket motor. The Finite Difference Navier-Stokes numerical code FDNS is used to simulate the steady-state multi-phase particulate flow field for a 3-zone 2-D axisymmetric ASRM model and a 6-zone 3-D ASRM model at launch conditions. The 2-D model includes aft-end cavity and submerged nozzle. The 3-D model represents the whole ASRM geometry, including additional grain port area in the gas cavity and two inhibitors. FDNS is a pressure based finite difference Navier-Stokes flow solver with time-accurate adaptive second-order upwind schemes, standard and extended k-epsilon models with compressibility corrections, multi zone body-fitted formulations, and turbulence particle interaction model. Eulerian/Lagrangian multi-phase solution method is applied for multi-zone mesh. To simulate the chemical reaction, penalty function corrected efficient finite-rate chemistry integration method is used in FDNS. For the AL particle combustion rate, the Hermsen correlation is employed. To simulate the turbulent dispersion of particles, the Gaussian probability distribution with standard deviation equal to (2k/3)(exp 1/2) is used for the random turbulent velocity components. The computational results reveal that the flow field near the juncture of aft-end cavity and the submerged nozzle is very complex. The effects of the turbulent particles affect the flow field significantly and provide better

18. Multiphase flow modeling of landslide induced impulse wave by VOF method

Science.gov (United States)

Paik, J.; Shin, C.

2015-12-01

Numerical simulations of impulse waves induced by landslides are carried out using a multiphase modeling approach. The three-dimensional filtered Navier-Stokes equations are used for reproduces the propagation and interaction of Newtonian water wave and non-Newtonian debris flow along the bottom. A multiphase volume of fluid (VOF) method is employed for tracking of fluid interfaces. The governing equations are solved by a second-order-accurate in space and time, finite volume methods and the no-slip conditions are applied for all solid wall. The turbulent shear stress is calculated the Smagorinsky model and the non-Newtonian behavior of debris flow is computed by the Hershel-Bulkley fluid model. The multiphase flow model is applied to reproduce the laboratory measurements of Fritz (Pure Appl. Geophys., 166, 153, 2009) who experimentally investigated the propagation of impulse wave induced by the 1958 Lituya Bay Landslide. The numerical results shows that the proper treatment of the non-Newtonian behavior of debris flow is essential to reproduce its head speed and shape which control the deformation and propagation of the resulting impulse wave.

19. Laboratory setup and results of experiments on two-dimensional multiphase flow in porous media

Energy Technology Data Exchange (ETDEWEB)

McBride, J.F. (ed.) (Pacific Northwest Lab., Richland, WA (USA)); Graham, D.N. (ed.); Schiegg, H.O. (SIMULTEC Ltd., Meilen/Zurich (Switzerland))

1990-10-01

In the event of an accidental release into earth's subsurface of an immiscible organic liquid, such as a petroleum hydrocarbon or chlorinated organic solvent, the spatial and temporal distribution of the organic liquid is of great interest when considering efforts to prevent groundwater contamination or restore contaminated groundwater. An accurate prediction of immiscible organic liquid migration requires the incorporation of relevant physical principles in models of multiphase flow in porous media; these physical principles must be determined from physical experiments. This report presents a series of such experiments performed during the 1970s at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. The experiments were designed to study the transient, two-dimensional displacement of three immiscible fluids in a porous medium. This experimental study appears to be the most detailed published to date. The data obtained from these experiments are suitable for the validation and test calibration of multiphase flow codes. 73 refs., 140 figs.

20. THE WORK SIMULATION OF FLOW RATE FOR CARRIAGES' REPAIR AS A MULTIPHASE, MULTIPLEX AND MULTIDISCIPLINARY SYSTEM OF MASS SERVICE

Directory of Open Access Journals (Sweden)

V. V. Myamlin

2011-04-01

Full Text Available The algorithm of computer simulation of the flexible flow for repair of cars as a multiphase polychannel manyobject queuing system is presented. The basic operators of the model are given and their work is described.

1. A new limiting procedure for discontinuous Galerkin methods applied to compressible multiphase flows with shocks and interfaces

Science.gov (United States)

Henry de Frahan, Marc T.; Varadan, Sreenivas; Johnsen, Eric

2015-01-01

Although the Discontinuous Galerkin (DG) method has seen widespread use for compressible flow problems in a single fluid with constant material properties, it has yet to be implemented in a consistent fashion for compressible multiphase flows with shocks and interfaces. Specifically, it is challenging to design a scheme that meets the following requirements: conservation, high-order accuracy in smooth regions and non-oscillatory behavior at discontinuities (in particular, material interfaces). Following the interface-capturing approach of Abgrall [1], we model flows of multiple fluid components or phases using a single equation of state with variable material properties; discontinuities in these properties correspond to interfaces. To represent compressible phenomena in solids, liquids, and gases, we present our analysis for equations of state belonging to the Mie-Grüneisen family. Within the DG framework, we propose a conservative, high-order accurate, and non-oscillatory limiting procedure, verified with simple multifluid and multiphase problems. We show analytically that two key elements are required to prevent spurious pressure oscillations at interfaces and maintain conservation: (i) the transport equation(s) describing the material properties must be solved in a non-conservative weak form, and (ii) the suitable variables must be limited (density, momentum, pressure, and appropriate properties entering the equation of state), coupled with a consistent reconstruction of the energy. Further, we introduce a physics-based discontinuity sensor to apply limiting in a solution-adaptive fashion. We verify this approach with one- and two-dimensional problems with shocks and interfaces, including high pressure and density ratios, for fluids obeying different equations of state to illustrate the robustness and versatility of the method. The algorithm is implemented on parallel graphics processing units (GPU) to achieve high speedup.

2. Monitoring of multiphase flows for superconducting accelerators and others applications

Science.gov (United States)

Filippov, Yu. P.; Kakorin, I. D.; Kovrizhnykh, A. M.; Miklayev, V. M.

2017-07-01

This paper is a review on implementation of measuring systems for two-phase helium, hydrogen, liquefied natural gas (LNG), and oil-formation/salty water flows. Two types of such systems are presented. The first type is based on two-phase flow-meters combining void fraction radio-frequency (RF) sensors and narrowing devices. They can be applied for superconducting accelerators cooled with two-phase helium, refueling hydrogen system for space ships and some applications in oil production industry. The second one is based on combination of a gamma-densitometer and a narrowing device. These systems can be used to monitor large two-phase LNG and oil-formation water flows. An electronics system based on a modular industrial computer is described as well. The metrological characteristics for different flow-meters are presented and the obtained results are discussed. It is also shown that the experience gained allows separationless flow-meter for three-phase oil-gas-formation water flows to be produced.

3. Efficient computations for multiphase flow problems using coupled lattice Boltzmann-level set methods

OpenAIRE

2016-01-01

Multiphase flow simulations benefit a variety of applications in science and engineering as for example in the dynamics of bubble swarms in heat exchangers and chemical reactors or in the prediction of the effects of droplet or bubble impacts in the design of turbomachinery systems. Despite all the progress in the modern computational fluid dynamics (CFD), such simulations still present formidable challenges both from numerical and computational cost point of view. Emerging as ...

4. Accounting for Surface Concentrations Using a VOF Front Tracking Method in Multiphase Flow

OpenAIRE

Martin, David Warren

2015-01-01

In this dissertation, we present a numerical method for trackingsurfactants on an interface in multiphase flow, along withapplications of the method to two physical problems. We alsopresent an extension of our method to track charged droplets. Ourmethod combines a traditional volume of fluid (VOF) method withmarker tracking. After describing this method in detail, wepresent a series of tests we used to validate our method. Theapplications we consider are the coalescence of surfactant-ladendro...

5. Experimental Study of Stable Surfaces for Anti-Slug Control in Multi-phase Flow

DEFF Research Database (Denmark)

Pedersen, Simon; Løhndorf, Petar Durdevic; Yang, Zhenyu

2014-01-01

The severe slugging flow is always challenging in oil & gas production, especially for the current offshore based production. The slugging flow can cause a lot of potential problems, such as those relevant to production safety, fatigue as well as capability. As one typical phenomenon in multi......-phase flow dynamics, the slug can be avoided or eliminated by proper facility design and control of operational conditions. Based on a testing facility which can emulate a pipeline-riser or a gas-lifted production well in a scaled-down manner, this paper experimentally studies the correlations of key...

6. Non-invasive studies of multiphase flow in process equipment. Positron emission particle tracking technique

Science.gov (United States)

Balakin, B. V.; Adamsen, T. C. H.; Chang, Y.-F.; Kosinski, P.; Hoffmann, A. C.

2017-01-01

Positron emission particle tracking (PEPT) is a novel experimental technique for non-invasive inspection of industrial fluid/particle flows. The method is based on the dynamic positioning of a positron-emitting, flowing object (particle) performed through the sensing of annihilation events and subsequent numerical treatment to determine the particle position. The present paper shows an integrated overview of PEPT studies which were carried out using a new PET scanner in the Bergen University Hospital to study multiphase flows in different geometric configurations.

7. Numerical simulation of complex multi-phase fluid of casting process and its applications

Institute of Scientific and Technical Information of China (English)

CHEN Li-liang; LIU Rui-xiang; C. Beckermann

2006-01-01

The fluid of casting process is a typical kind of multi-phase flow. Actually, many casting phenomena have close relationship with the multi-phase flow, such as molten metal filling process, air entrapment, slag movement, venting process of die casting, gas escaping of lost foam casting and so on. Obviously, in order to analyze these phenomena accurately,numerical simulation of the multi-phase fluid is necessary. Unfortunately, so far, most of the commercial casting simulation systems do not have the ability of multi-phase flow modeling due to the difficulty in the multi-phase flow calculation. In the paper, Finite Different Method (FDM) technique was adopt to solve the multi-phase fluid model. And a simple object of the muiti-phase fluid was analyzed to obtain the fluid rates of the liquid phase and the entrapped air phase.

8. Numerical simulation of complex multi-phase fluid of casting process and its applications

Directory of Open Access Journals (Sweden)

CHEN Li-liang

2006-05-01

Full Text Available The fluid of casting process is a typical kind of multi-phase flow. Actually, many casting phenomena have close relationship with the multi-phase flow, such as molten metal filling process, air entrapment, slag movement, venting process of die casting, gas escaping of lost foam casting and so on. Obviously, in order to analyze these phenomena accurately, numerical simulation of the multi-phase fluid is necessary. Unfortunately, so far, most of the commercial casting simulation systems do not have the ability of multi-phase flow modeling due to the difficulty in the multi-phase flow calculation. In the paper, Finite Different Method (FDM technique was adopt to solve the multi-phase fluid model. And a simple object of the muiti-phase fluid was analyzed to obtain the fluid rates of the liquid phase and the entrapped air phase.

9. Complexity Reduction of Multiphase Flows in Heterogeneous Porous Media

KAUST Repository

Ghommem, Mehdi

2015-04-22

In this paper, we apply mode decomposition and interpolatory projection methods to speed up simulations of two-phase flows in heterogeneous porous media. We propose intrusive and nonintrusive model-reduction approaches that enable a significant reduction in the size of the subsurface flow problem while capturing the behavior of the fully resolved solutions. In one approach, we use the dynamic mode decomposition. This approach does not require any modification of the reservoir simulation code but rather post-processes a set of global snapshots to identify the dynamically relevant structures associated with the flow behavior. In the second approach, we project the governing equations of the velocity and the pressure fields on the subspace spanned by their proper-orthogonal-decomposition modes. Furthermore, we use the discrete empirical interpolation method to approximate the mobility-related term in the global-system assembly and then reduce the online computational cost and make it independent of the fine grid. To show the effectiveness and usefulness of the aforementioned approaches, we consider the SPE-10 benchmark permeability field, and present a numerical example in two-phase flow. One can efficiently use the proposed model-reduction methods in the context of uncertainty quantification and production optimization.

10. Multiphase flow through porous media: an adaptive control volume finite element formulation

Science.gov (United States)

Mostaghimi, P.; Tollit, B.; Gorman, G.; Neethling, S.; Pain, C.

2012-12-01

Accurate modeling of multiphase flow in porous media is of great importance in a wide range of applications in science and engineering. We have developed a numerical scheme which employs an implicit pressure explicit saturation (IMPES) algorithm for the temporal discretization of the governing equations. The saturation equation is spatially discretized using a node centered control volume method on an unstructured finite element mesh. The face values are determined through an upwind scheme. The pressure equation is spatially discretized using a continuous control volume finite element method (CV-FEM) to achieve consistency with the discrete saturation equation. The numerical simulation is implemented in Fluidity, an open source and general purpose fluid simulator capable of solving a number of different governing equations for fluid flow and accompanying field equations on arbitrary unstructured meshes. The model is verified against the Buckley-Leverett problem where a quasi-analytical solution is available. We discuss the accuracy and the order of convergence of the scheme. We demonstrate the scheme for modeling multiphase flow in a synthetic heterogeneous porous medium along with the use of anisotropic mesh adaptivity to control local solution errors and increase computational efficiency. The adaptive method is also used to simulate two-phase flow in heap leaching, an industrial mining process, where the flow of the leaching solution is gravitationally dominated. Finally we describe the extension of the developed numerical scheme for simulation of flow in multiscale fractured porous media and its capability to model the multiscale characterization of flow in full scale.

11. Frictional Fluid Dynamics and Plug Formation in Multiphase Millifluidic Flow

Science.gov (United States)

Dumazer, Guillaume; Sandnes, Bjørnar; Ayaz, Monem; Mâløy, Knut Jørgen; Flekkøy, Eirik Grude

2016-07-01

We study experimentally the flow and patterning of a granular suspension displaced by air inside a narrow tube. The invading air-liquid interface accumulates a plug of granular material that clogs the tube due to friction with the confining walls. The gas percolates through the static plug once the gas pressure exceeds the pore capillary entry pressure of the packed grains, and a moving accumulation front is reestablished at the far side of the plug. The process repeats, such that the advancing interface leaves a trail of plugs in its wake. Further, we show that the system undergoes a fluidization transition—and complete evacuation of the granular suspension—when the liquid withdrawal rate increases beyond a critical value. An analytical model of the stability condition for the granular accumulation predicts the flow regime.

12. An adaptive solution domain algorithm for solving multiphase flow equations

Science.gov (United States)

Katyal, A. K.; Parker, J. C.

1992-01-01

An adaptive solution domain (ASD) finite-element model for simulating hydrocarbon spills has been developed that is computationally more efficient than conventional numerical methods. Coupled flow of water and oil with an air phase at constant pressure is considered. In the ASD formulation, the solution domain for water- and oil-flow equations is restricted by eliminating elements from the global matrix assembly which are not experiencing significant changes in fluid saturations or pressures. When any nodes of an element exhibit changes in fluid pressures more than a stipulated tolerance τ, or changes in fluid saturations greater than tolerance τ 2 during the current time step, it is labeled active and included in the computations for the next iteration. This formulation achieves computational efficiency by solving the flow equations for only the part of the domain where changes in fluid pressure or the saturations take place above stipulated tolerances. Examples involving infiltration and redistribution of oil in 1- and 2-D spatial domains are described to illustrate the application of the ASD method and the savings in the processor time achieved by this formulation. Savings in the computational effort up to 84% during infiltration and 63% during redistribution were achieved for the 2-D example problem.

13. Stochastic Rotation Dynamics simulations of wetting multi-phase flows

Science.gov (United States)

Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin

2016-06-01

Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.

14. A Radiative Transfer Modeling Methodology in Gas-Liquid Multiphase Flow Simulations

Directory of Open Access Journals (Sweden)

Gautham Krishnamoorthy

2014-01-01

Full Text Available A methodology for performing radiative transfer calculations in computational fluid dynamic simulations of gas-liquid multiphase flows is presented. By considering an externally irradiated bubble column photoreactor as our model system, the bubble scattering coefficients were determined through add-on functions by employing as inputs the bubble volume fractions, number densities, and the fractional contribution of each bubble size to the bubble volume from four different multiphase modeling options. The scattering coefficient profiles resulting from the models were significantly different from one another and aligned closely with their predicted gas-phase volume fraction distributions. The impacts of the multiphase modeling option, initial bubble diameter, and gas flow rates on the radiation distribution patterns within the reactor were also examined. An increase in air inlet velocities resulted in an increase in the fraction of larger sized bubbles and their contribution to the scattering coefficient. However, the initial bubble sizes were found to have the strongest impact on the radiation field.

15. Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations

Science.gov (United States)

Lei, Huan; Baker, Nathan A.; Wu, Lei; Schenter, Gregory K.; Mundy, Christopher J.; Tartakovsky, Alexandre M.

2016-08-01

Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a multiphase smoothed dissipative particle dynamics (SDPD) model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semianalytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models dynamic processes, such as bubble coalescence and capillary spectra across the interface.

16. Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations

Energy Technology Data Exchange (ETDEWEB)

Lei, Huan; Baker, Nathan A.; Wu, Lei; Schenter, Gregory K.; Mundy, Christopher J.; Tartakovsky, Alexandre M.

2016-08-05

Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface.

17. Draft tube flow phenomena across the bulb turbine hill chart

Science.gov (United States)

Duquesne, P.; Fraser, R.; Maciel, Y.; Aeschlimann, V.; Deschênes, C.

2014-03-01

In the framework of the BulbT project launched by the Consortium on Hydraulic Machines and the LAMH (Hydraulic Machine Laboratory of Laval University) in 2011, an intensive campaign to identify flow phenomena in the draft tube of a model bulb turbine has been done. A special focus was put on the draft tube component since it has a particular importance for recuperation in low head turbines. Particular operating points were chosen to analyse flow phenomena in this component. For each of these operating points, power, efficiency and pressure were measured following the IEC 60193 standard. Visualizations, unsteady wall pressure and efficiency measurements were performed in this component. The unsteady wall pressure was monitored at seven locations in the draft tube. The frequency content of each pressure signal was analyzed in order to characterize the flow phenomena across the efficiency hill chart. Visualizations were recorded with a high speed camera using tufts and cavitation bubbles as markers. The predominant detected phenomena were mapped and categorized in relation to the efficiency hill charts obtained for three runner blade openings. At partial load, the vortex rope was detected and characterized. An inflection in the partial load efficiency curves was found to be related to complex vortex rope instabilities. For overload conditions, the efficiency curves present a sharp drop after the best efficiency point, corresponding to an inflection on the power curves. This break off is more severe towards the highest blade openings. It is correlated to a flow separation at the wall of the draft tube. Also, due to the separation occurring in these conditions, a hysteresis effect was observed on the efficiency curves.

18. Research on Underwater Vehicle Based on Multiphase Flow Control

Directory of Open Access Journals (Sweden)

Zhang Xiaoshi

2015-01-01

Full Text Available The commercial software ANSYS CFX is used for modeling the hydrodynamic characteristics of submarine-launched vehicle. In the numerical simulations, the SST (Shear Stress Transport turbulence model is employed to describe the turbulence phenomenon occurring in the continuous fluid. The Rayleigh-Plesset equations are applied to analyze the cavitation phenomenon. Three-dimensional numerical simulation was carried out to study the cavity shape, the surface pressure distribution and the drag force with different flow control. The result shows that the gas and the number of ventilation holes control to show any significant impact on the cavity shape and the surface pressure are effective measures to decrease resistance.

19. Dynamic Visualization Approach of the Multiphase Flow Using Electrical Capacitance Tomography

Institute of Scientific and Technical Information of China (English)

王泽璞; 陈琪; 王雪瑶; 李志宏; 韩振兴

2012-01-01

Identifying the flow patterns is vital for understanding the complicated physical mechanisms in multiphase flows.For this purpose,electrical capacitance tomography（ECT） technique is considered as a promising visualization method for the flow pattern identification,in which image reconstruction algorithms play an important role.In this paper,a generalized dynamic reconstruction model,which integrates ECT measurement information and physical evolution information of the objects of interest,was presented.A generalized objective functional that simultaneously considers the spatial constraints,temporal constraints and dynamic evolution information of the objects of interest was proposed.Numerical simulations and experiments were implemented to evaluate the feasibility and efficiency of the proposed algorithm.For the cases considered in this paper,the proposed algorithm can well reconstruct the flow patterns,and the quality of the reconstructed images is improved,which indicates that the proposed algorithm is competent to reconstruct the flow patterns in the visualization of multiphase flows.

20. A pseudopotential-based multiple-relaxation-time lattice Boltzmann model for multicomponent/multiphase flows

Institute of Scientific and Technical Information of China (English)

Zhen-Hua Chai; Tian-Shou Zhao

2012-01-01

In this paper,a pseudopotential-based multiplerelaxation-time lattice Boltzmann model is proposed for multicomponent/multiphase flow systems.Unlike previous models in the literature,the present model not only enables the study of multicomponent flows with different molecular weights,different viscosities and different Schmidt numbers,but also ensures that the distribution function of each component evolves on the same square lattice without invoking additional interpolations.Furthermore,the Chapman-Enskog analysis shows that the present model results in the correct hydrodynamic equations,and satisfies the indifferentiability principle.The numerical validation exercises further demonstrate that the favorable performance of the present model.

1. Modelling multiphase flow inside the porous media of a polymer electrolyte membrane fuel cell

DEFF Research Database (Denmark)

Berning, Torsten; Kær, Søren Knudsen

2011-01-01

Transport processes inside polymer electrolyte membrane fuel cells (PEMFC’s) are highly complex and involve convective and diffusive multiphase, multispecies flow through porous media along with heat and mass transfer and electrochemical reactions in conjunction with water transport through...... an electrolyte membrane. We will present a computational model of a PEMFC with focus on capillary transport of water through the porous layers and phase change and discuss the impact of the liquid phase boundary condition between the porous gas diffusion layer and the flow channels, where water droplets can...

2. Coherent structures and extreme events in rotating multiphase turbulent flows

CERN Document Server

Biferale, Luca; Mazzitelli, Irene M; van Hinsberg, Michel A T; Lanotte, Alessandra S; Musacchio, Stefano; Perlekar, Prasad; Toschi, Federico

2016-01-01

By using direct numerical simulations (DNS) at unprecedented resolution we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify -for the first time- the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force and centripetal forces along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light ...

3. Coherent Structures and Extreme Events in Rotating Multiphase Turbulent Flows

Directory of Open Access Journals (Sweden)

L. Biferale

2016-11-01

Full Text Available By using direct numerical simulations (DNS at unprecedented resolution, we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify—for the first time—the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force, and centripetal force along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light particles in the directions parallel and perpendicular to the rotation axis.

4. Coherent Structures and Extreme Events in Rotating Multiphase Turbulent Flows

Science.gov (United States)

Biferale, L.; Bonaccorso, F.; Mazzitelli, I. M.; van Hinsberg, M. A. T.; Lanotte, A. S.; Musacchio, S.; Perlekar, P.; Toschi, F.

2016-10-01

By using direct numerical simulations (DNS) at unprecedented resolution, we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify—for the first time—the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force, and centripetal force along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light particles in the directions parallel and perpendicular to the rotation axis.

5. Solutions for a hyperbolic model of multi-phase flow

Directory of Open Access Journals (Sweden)

2013-07-01

Full Text Available We discuss a model for the flow of an inviscid fluid admitting liquid and vapor phases, as well as a mixture of them. The flow is modeled in one spatial dimension; the state variables are the specific volume, the velocity and the mass density fraction λ of vapor in the fluid. The equation governing the time evolution of λ contains a source term, which enables metastable states and drives the fluid towards stable pure phases. We first discuss, for the homogeneous system, the BV stability of Riemann solutions generated by large initial data and check the validity of several sufficient conditions that are known in the literature. Then, we review some recent results about the existence of solutions, which are globally defined in time, for λ close either to 0 or to 1 (corresponding to almost pure phases. These solutions possibly contain large shocks. Finally, in the relaxation limit, solutions are proved to satisfy a reduced system and the related entropy condition. On discute un modèle pour l’écoulement d’un fluide non visqueux admettant phases liquides et de vapeur, ainsi qu’un mélange d’entre eux. L’écoulement est modélisé dans une dimension spatiale ; les variables d’état sont le volume spécifique, la vitesse et la fraction de densité de masse λ de la vapeur dans le liquide. L’équation régissant l’évolution temporelle de λ contient un terme de source, ce qui permet des états métastables et conduit le fluide vers de phases stables pures. Nous discutons d’abord, pour le système homogène, la stabilité BV des solutions de Riemann générés par des grandes données initiales et vérifions la validité de plusieurs conditions suffisantes qui sont connues dans la littérature. Ensuite, nous passons en revue quelques résultats récents sur l’existence de solutions, qui sont definies pour tous les temps, pour λ soit près de 0 ou de 1 (correspondant à des phases presque pures. Ces solutions sont susceptibles

6. Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction

Directory of Open Access Journals (Sweden)

Kent E. Wardle

2013-01-01

Full Text Available The flows in stage-wise liquid-liquid extraction devices include both phase segregated and dispersed flow regimes. As a additional layer of complexity, for extraction equipment such as the annular centrifugal contactor, free-surface flows also play a critical role in both the mixing and separation regions of the device and cannot be neglected. Traditionally, computional fluid dynamics (CFD of multiphase systems is regime dependent—different methods are used for segregated and dispersed flows. A hybrid multiphase method based on the combination of an Eulerian multifluid solution framework (per-phase momentum equations and sharp interface capturing using Volume of Fluid (VOF on selected phase pairs has been developed using the open-source CFD toolkit OpenFOAM. Demonstration of the solver capability is presented through various examples relevant to liquid-liquid extraction device flows including three-phase, liquid-liquid-air simulations in which a sharp interface is maintained between each liquid and air, but dispersed phase modeling is used for the liquid-liquid interactions.

7. Dynamic fluid connectivity during steady-state multiphase flow in a sandstone

Science.gov (United States)

Reynolds, Catriona A.; Menke, Hannah; Andrew, Matthew; Blunt, Martin J.; Krevor, Samuel

2017-08-01

The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term “dynamic connectivity,” using fast pore-scale X-ray imaging. We image the flow of N2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.

8. Numerical modeling of geophysical granular flows: 1. A comprehensive approach to granular rheologies and geophysical multiphase flows

Science.gov (United States)

Dartevelle, SéBastien

2004-08-01

Geophysical granular materials display a wide variety of behaviors and features. Typically, granular flows (1) are multiphase flows, (2) are very dissipative over many different scales, (3) display a wide range of grain concentrations, and (4), as a final result of these previous features, display complex nonlinear, nonuniform, and unsteady rheologies. Therefore the objectives of this manuscript are twofold: (1) setting up a hydrodynamic model which acknowledges the multiphase nature of granular flows and (2) defining a comprehensive rheological model which accounts for all the different forms of viscous dissipations within granular flows at any concentration. Hence three important regimes within granular flows must be acknowledged: kinetic (pure free flights of grain), kinetic-collisional, and frictional. The momentum and energy transfer will be different according to the granular regimes, i.e., strain rate dependent in the kinetic and kinetic-collisional cases and strain rate independent in the frictional case. A "universal" granular rheological model requires a comprehensive unified stress tensor able to adequately describe viscous stress within the flow for any of these regimes, and without imposing a priori what regime will dominate over the others. The kinetic-collisional viscous regime is defined from a modified Boltzmann's kinetic theory of dense gas. The frictional viscous regime is defined from the plastic potential and the critical state theories which account for compressibility of granular matter (e.g., dilatancy, consolidation, and critical state). In the companion paper [, 2004] we will introduce a multiphase computer code, (G)MFIX, which accounts for all the granular regimes and rheology and present typical simulations of diluted (e.g., plinian clouds) and concentrated geophysical granular flows (i.e., pyroclastic flows and surges).

9. Constitutive Relations for Reactive Transport Modeling: Effects of Chemical Reactions on Multi-Phase Flow Properties

Science.gov (United States)

Zhang, S.; Liu, H. H.; van Dijke, M. I.; Geiger, S.; Agar, S. M.

2016-12-01

The relationship between flow properties and chemical reactions is key to modeling subsurface reactive transport. This study develops closed-form equations to describe the effects of mineral precipitation and dissolution on multiphase flow properties (capillary pressure and relative permeabilities) of porous media. The model accounts for the fact that precipitation/dissolution only takes place in the water-filled part of pore space. The capillary tube concept was used to connect pore-scale changes to macroscopic hydraulic properties. Precipitation/dissolution induces changes in the pore radii of water-filled pores and consequently in the pore-size distribution. The updated pore-size distribution is converted back to a new capillary pressure-water saturation relation from which the new relative permeabilities are calculated. Pore network modeling is conducted on a Berea sandstone to validate the new continuum-scale relations. The pore network modeling results are satisfactorily predicted by the new closed-form equations. Currently the effects of chemical reactions on flow properties are represented as a relation between permeability and porosity in reactive transport modeling. Porosity is updated after chemical calculations from the change of mineral volumes, then permeability change is calculated from the porosity change using an empirical permeability-porosity relation, most commonly the Carman-Kozeny relation, or the Verma-Pruess relation. To the best of our knowledge, there are no closed-form relations available yet for the effects of chemical reactions on multi-phase flow properties, and thus currently these effects cannot be accounted for in reactive transport modeling. This work presents new constitutive relations to represent how chemical reactions affect multi-phase flow properties on the continuum scale based on the conceptual model of parallel capillary tubes. The parameters in our new relations are either pre-existing input in a multi-phase flow

10. Synthetic Observations of Carbon Lines of Turbulent Flows in Diffuse Multiphase Interstellar Medium

CERN Document Server

Yamada, M; Omukai, K; Inutsuka, S

2006-01-01

We examine observational characteristics of multi-phase turbulent flows in the diffuse interstellar medium (ISM) using a synthetic radiation field of atomic and molecular lines. We consider the multi-phase ISM which is formed by thermal instability under the irradiation of UV photons with moderate visual extinction $A_V\\sim 1$. Radiation field maps of C$^{+}$, C$^0$, and CO line emissions were generated by calculating the non-local thermodynamic equilibrium (nonLTE) level populations from the results of high resolution hydrodynamic simulations of diffuse ISM models. By analyzing synthetic radiation field of carbon lines of [\\ion{C}{2}] 158 $\\mu$m, [\\ion{C}{1}] $^3P_2-^3P_1$ (809 GHz), $^3P_1-^3P_0$ (492 GHz), and CO rotational transitions, we found a high ratio between the lines of high- and low-excitation energies in the diffuse multi-phase interstellar medium. This shows that simultaneous observations of the lines of warm- and cold-gas tracers will be useful in examining the thermal structure, and hence the...

11. Direct Numerical Simulation of Boiling Multiphase Flows: State-of-the-Art, Modeling, Algorithmic and Computer Needs

Energy Technology Data Exchange (ETDEWEB)

Nourgaliev R.; Knoll D.; Mousseau V.; Berry R.

2007-04-01

The state-of-the-art for Direct Numerical Simulation (DNS) of boiling multiphase flows is reviewed, focussing on potential of available computational techniques, the level of current success for their applications to model several basic flow regimes (film, pool-nucleate and wall-nucleate boiling -- FB, PNB and WNB, respectively). Then, we discuss multiphysics and multiscale nature of practical boiling flows in LWR reactors, requiring high-fidelity treatment of interfacial dynamics, phase-change, hydrodynamics, compressibility, heat transfer, and non-equilibrium thermodynamics and chemistry of liquid/vapor and fluid/solid-wall interfaces. Finally, we outline the framework for the {\\sf Fervent} code, being developed at INL for DNS of reactor-relevant boiling multiphase flows, with the purpose of gaining insight into the physics of multiphase flow regimes, and generating a basis for effective-field modeling in terms of its formulation and closure laws.

12. An open-source toolbox for multiphase flow in porous media

Science.gov (United States)

Horgue, P.; Soulaine, C.; Franc, J.; Guibert, R.; Debenest, G.

2015-02-01

Multiphase flow in porous media provides a wide range of applications: from the environmental understanding (aquifer, site-pollution) to industrial process improvements (oil production, waste management). Modeling of such flows involves specific volume-averaged equations and therefore specific computational fluid dynamics (CFD) tools. In this work, we develop a toolbox for modeling multiphase flow in porous media with OpenFOAM®, an open-source platform for CFD. The underlying idea of this approach is to provide an easily adaptable tool that can be used in further studies to test new mathematical models or numerical methods. The package provides the most common effective properties models of the literature (relative permeability, capillary pressure) and specific boundary conditions related to porous media flows. To validate this package, solvers based on the IMplicit Pressure Explicit Saturation (IMPES) method are developed in the toolbox. The numerical validation is performed by comparison with analytical solutions on academic cases. Then, a satisfactory parallel efficiency of the solver is shown on a more complex configuration.

13. Annular multiphase flow behavior during deep water drilling and the effect of hydrate phase transition

Institute of Scientific and Technical Information of China (English)

Wang Zhiyuan; Sun Baojiang

2009-01-01

It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conservation equations, were established for annular flow with gas hydrate phase transition during gas kick. The behavior of annular multiphase flow with hydrate phase transition was investigated by analyzing the hydrate-forming region, the gas fraction in the fluid flowing in the annulus, pit gain, bottom hole pressure, and shut-in casing pressure. The simulation shows that it is possible to move the hydrate-forming region away from sea floor by increasing the circulation rate. The decrease in gas volume fraction in the annulus due to hydrate formation reduces pit gain, which can delay the detection of well kick and increase the risk of hydrate plugging in lines. Caution is needed when a well is monitored for gas kick at a relatively low gas production rate, because the possibility of hydrate presence is much greater than that at a relatively high production rate. The shut-in casing pressure cannot reflect the gas kick due to hydrate formation, which increases with time.

14. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

Energy Technology Data Exchange (ETDEWEB)

Yortsos, Yanis C.

2001-08-07

This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

15. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

Energy Technology Data Exchange (ETDEWEB)

Yortsos, Y.C.

2001-05-29

This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

16. Density and Cavitating Flow Results from a Full-Scale Optical Multiphase Cryogenic Flowmeter

Science.gov (United States)

Korman, Valentin

2007-01-01

Liquid propulsion systems are hampered by poor flow measurements. The measurement of flow directly impacts safe motor operations, performance parameters as well as providing feedback from ground testing and developmental work. NASA Marshall Space Flight Center, in an effort to improve propulsion sensor technology, has developed an all optical flow meter that directly measures the density of the fluid. The full-scale sensor was tested in a transient, multiphase liquid nitrogen fluid environment. Comparison with traditional density models shows excellent agreement with fluid density with an error of approximately 0.8%. Further evaluation shows the sensor is able to detect cavitation or bubbles in the flow stream and separate out their resulting effects in fluid density.

17. DEVELOPMENT OF MULTI-PHASE AND MULTI-COMPONENT FLOW MODEL WITH REACTION IN POROUS MEDIA FOR RISK ASSESSMENT ON SOIL CONTAMINATION DUE TO MINERAL OIL

Science.gov (United States)

Sakamoto, Yasuhide; Nishiwaki, Junko; Hara, Junko; Kawabe, Yoshishige; Sugai, Yuichi; Komai, Takeshi

In late years, soil contamination due to mineral oil in vacant lots of oil factory and oil field has become obvious. Measure for soil contamina tion and risk assessment are neces sary for sustainable development of industrial activity. Especially, in addition to contaminated sites, various exposure paths for human body such as well water, soil and farm crop are supposed. So it is very important to comprehend the transport phenomena of contaminated material under the environments of soil and ground water. In this study, mineral oil as c ontaminated material consisting of mu lti-component such as aliphatic and aromatic series was modeled. Then numerical mode l for transport phenomena in surface soil and aquifer was constructed. On the basis of modeling for mineral oil, our numerical model consists of three-phase (oil, water and gas) forty three-component. This numerical model becomes base program for risk assessment system on soil contamination due to mineral oil. Using this numerical model, we carried out some numerical simulation for a laboratory-scale experiment on oil-water multi-phase flow. Relative permeability that dominate flow behavior in multi-phase condition was formulated and the validity of the numerical model developed in this study was considered.

18. TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows

Energy Technology Data Exchange (ETDEWEB)

Pruess, K. [Lawrence Berkeley Lab., CA (United States)

1991-06-01

Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such compositional systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application of MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate equation-of-state (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for transport of unsaturated groundwater and heat and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.

19. Review of multiphase flow and pollutant transport models for the Hanford site

Energy Technology Data Exchange (ETDEWEB)

Kincaid, C.T.; Mitchell. P.J.

1986-11-01

This report provides a review of the physical processes, geochemical reactions, and microbiological kinetics that interact to determine the migration and fate of these pollutants. This review of processes and reactions provides a background from which codes for the analysis of contaminant migration and fate can be evaluated. Single codes representing classes of pollutant migration problems are cited to show how commonly employed and publicly available codes are not always applicable to the complex problems of multiphase fluid flow and pollutant migration. This review provides guidance on selecting and using codes; it also provides recommendations for development work needed to address deficiencies identified in existing models, codes, and data bases.

20. Numerical modeling to investigate slopes and mass flow phenomena

Institute of Scientific and Technical Information of China (English)

Heinz Konietzky; Lei NIE; Youhong SUN

2006-01-01

An overview is given about up-to-date techniques for slope stability and deformation analysis as well as mass flow phenomena simulation. The paper concentrates on a few aspects in respect to the use of numerical modeling techniques, especially in relation to the shear strength reduction techniques, discontinuum modeling, probabilistic concepts, the combination of GIS and numerical modeling as well as sophisticated hydro-mechanical coupling with time-dependent material behavior. At present these topics are preferred topics of scientific and technical research.

1. Collision energy dependence of elliptic flow splitting between particles and their antiparticles from an extended multiphase transport model

CERN Document Server

Xu, Jun

2016-01-01

Based on an extended multiphase transport model, which includes mean-field potentials in both the partonic and hadronic phases, uses the mix-event coalescence, and respects charge conservation during the hadronic evolution, we have studied the collision energy dependence of the elliptic flow splitting between particles and their antiparticles. This extended transport model reproduces reasonably well the experimental data at lower collision energies but only describes qualitatively the elliptic flow splitting at higher beam energies. The present study thus indicates the existence of other mechanisms for the elliptic flow splitting besides the mean-field potentials and the need of further improvements of the multiphase transport model.

2. Teflon-coated silicon microreactors: impact on segmented liquid-liquid multiphase flows.

Science.gov (United States)

Kuhn, Simon; Hartman, Ryan L; Sultana, Mahmooda; Nagy, Kevin D; Marre, Samuel; Jensen, Klavs F

2011-05-17

We describe fluoropolymer modification of silicon microreactors for control of wetting properties in chemical synthesis applications and characterize the impact of the coating on liquid-liquid multiphase flows of solvents and water. Annular flow of nitrogen gas and a Teflon AF (DuPont) dispersion enable controlled evaporation of fluoropolymer solvent, which in turn brings about three-dimensional polymer deposition on microchannel walls. Consequently, the wetting behavior is switched from hydrophilic to hydrophobic. Analysis of microreactors reveals that the polymer layer thickness increases down the length of the reactor from ∼1 to ∼13 μm with an average thickness of ∼7 μm. Similarly, we show that microreactor surfaces can be modified with poly(tetrafluoroethylene) (PTFE). These PTFE-coated microreactors are further characterized by measuring residence time distributions in segmented liquid-liquid multiphase flows, which display reduced axial dispersion for the coated microreactors. Applying particle image velocimetry, changes in segment shape and velocity fluctuations are observed resulting in reduced axial dispersion. Furthermore, the segment size distribution is narrowed for the hydrophobic microreactors, enabling further control of residence distributions for synthesis and screening applications.

3. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

Energy Technology Data Exchange (ETDEWEB)

Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B., E-mail: otero@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: brandao@ien.gov.b [Instituto de Engenharia Nuclear (DIRA/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos

2011-07-01

This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

4. Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles

Energy Technology Data Exchange (ETDEWEB)

Owis, F.M.; Nayfeh, A.H. [Blacksburg State University, Dept. of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute, VA (United States)

2004-04-01

The hydrodynamic cavitation over axisymmetric projectiles is computed using the unsteady incompressible Navier-Stokes equations for multi-fluid elements. The governing equations are discretized on a structured grid using an upwind difference scheme with flux limits. A preconditioning dual-time stepping method is used for the unsteady computations. The Eigen-system is derived for the Jacobian matrices. This Eigen-system is suitable for high-density ratio multi-fluid flows and it provides high numerical stability and fast convergence. This method can be used to compute single- as well as multi-phase flows. Cavitating flows over projectiles with different geometries are computed and the results are in good agreement with available experimental data and other published computations. (authors)

5. Experimental Study of Stable Surfaces for Anti-Slug Control in Multi-phase Flow

DEFF Research Database (Denmark)

Pedersen, Simon; Løhndorf, Petar Durdevic; Stampe, Kasper;

2016-01-01

Severe slugging flow is always challenging in oil & gas production, especially for the current offshore based production. The slugging flow can cause a lot of problems, such as those relevant to production safety, fatigue as well as capability. As one typical phenomenon in multi-phase flow dynamics......, the slug can be avoided or eliminated by proper facility design or control of operational conditions. Based on a testing facility which can emulate a pipeline-riser or a gas-lifted production well in a scaled-down manner, this paper experimentally studies the correlations of key operational parameters...... that the capability, performance and efficiency of anti-slug control can be dramatically improved if these stable surfaces can be experimentally determined beforehand. The paper concludes that obtaining the stable surface on the new developed map can significantly improve the production rate in a control scheme. Even...

6. Non-Isothermal, Multi-phase, Multi-component Flows through Deformable Methane Hydrate Reservoirs

CERN Document Server

Gupta, Shubhangi; Wohlmuth, Barbara

2015-01-01

We present a hydro-geomechanical model for subsurface methane hydrate systems. Our model considers kinetic hydrate phase change and non-isothermal, multi-phase, multi-component flow in elastically deforming soils. The model accounts for the effects of hydrate phase change and pore pressure changes on the mechanical properties of the soil, and also for the effect of soil deformation on the fluid-solid interaction properties relevant to reaction and transport processes (e.g., permeability, capillary pressure, reaction surface area). We discuss a 'cause-effect' based decoupling strategy for the model and present our numerical discretization and solution scheme. We then identify the important model components and couplings which are most vital for a hydro-geomechanical hydrate simulator, namely, 1) dissociation kinetics, 2) hydrate phase change coupled with non-isothermal two phase two component flow, 3) two phase flow coupled with linear elasticity (poroelasticity coupling), and finally 4) hydrate phase change c...

7. A Coupled Model of Multiphase Flow, Reactive Biogeochemical Transport, Thermal Transport and Geo-Mechanics.

Science.gov (United States)

Tsai, C. H.; Yeh, G. T.

2015-12-01

In this investigation, a coupled model of multiphase flow, reactive biogeochemical transport, thermal transport and geo-mechanics in subsurface media is presented. It iteratively solves the mass conservation equation for fluid flow, thermal transport equation for temperature, reactive biogeochemical transport equations for concentration distributions, and solid momentum equation for displacement with successive linearization algorithm. With species-based equations of state, density of a phase in the system is obtained by summing up concentrations of all species. This circumvents the problem of having to use empirical functions. Moreover, reaction rates of all species are incorporated in mass conservation equation for fluid flow. Formation enthalpy of all species is included in the law of energy conservation as a source-sink term. Finite element methods are used to discretize the governing equations. Numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results demonstrate the feasibility and capability of present model in subsurface media.

8. DENSE MULTIPHASE FLOW SIMULATION: CONTINUUM MODEL FOR POLY-DISPERSED SYSTEMS USING KINETIC THEORY

Energy Technology Data Exchange (ETDEWEB)

Moses Bogere

2011-08-31

The overall objective of the project was to verify the applicability of the FCMOM approach to the kinetic equations describing the particle flow dynamics. For monodispersed systems the fundamental equation governing the particle flow dynamics is the Boltzmann equation. During the project, the FCMOM was successfully applied to several homogeneous and in-homogeneous problems in different flow regimes, demonstrating that the FCMOM has the potential to be used to solve efficiently the Boltzmann equation. However, some relevant issues still need to be resolved, i.e. the homogeneous cooling problem (inelastic particles cases) and the transition between different regimes. In this report, the results obtained in homogeneous conditions are discussed first. Then a discussion of the validation results for in-homogeneous conditions is provided. And finally, a discussion will be provided about the transition between different regimes. Alongside the work on development of FCMOM approach studies were undertaken in order to provide insights into anisotropy or particles kinetics in riser hydrodynamics. This report includes results of studies of multiphase flow with unequal granular temperatures and analysis of momentum re-distribution in risers due to particle-particle and fluid-particle interactions. The study of multiphase flow with unequal granular temperatures entailed both simulation and experimental studies of two particles sizes in a riser and, a brief discussion of what was accomplished will be provided. And finally, a discussion of the analysis done on momentum re-distribution of gas-particles flow in risers will be provided. In particular a discussion of the remaining work needed in order to improve accuracy and predictability of riser hydrodynamics based on two-fluid models and how they can be used to model segregation in risers.

9. Application of partially-coupled hydro-mechanical schemes to multiphase flow problems

Science.gov (United States)

Tillner, Elena; Kempka, Thomas

2016-04-01

Utilization of subsurface reservoirs by fluid storage or production generally triggers pore pressure changes and volumetric strains in reservoirs and cap rocks. The assessment of hydro-mechanical effects can be undertaken using different process coupling strategies. The fully-coupled geomechanics and flow simulation, constituting a monolithic system of equations, is rarely applied for simulations involving multiphase fluid flow due to the high computational efforts required. Pseudo-coupled simulations are driven by static tabular data on porosity and permeability changes as function of pore pressure or mean stress, resulting in a rather limited flexibility when encountering complex subsurface utilization schedules and realistic geological settings. Partially-coupled hydro-mechanical simulations can be distinguished into one-way and iterative two-way coupled schemes, whereby the latter one is based on calculations of flow and geomechanics, taking into account the iterative exchange of coupling parameters between the two respective numerical simulators until convergence is achieved. In contrast, the one-way coupling scheme is determined by the provision of pore pressure changes calculated by the flow simulator to the geomechanical simulator neglecting any feedback. In the present study, partially-coupled two-way schemes are discussed in view of fully-coupled single-phase flow and geomechanics, and their applicability to multiphase flow simulations. For that purpose, we introduce a comparison study between the different coupling schemes, using selected benchmarks to identify the main requirements for the partially-coupled approach to converge with the numerical solution of the fully-coupled one.

10. Design of Parallel Electrical Resistance Tomography System for Measuring Multiphase Flow

Institute of Scientific and Technical Information of China (English)

董峰; 许聪; 张志强; 任尚杰

2012-01-01

ERT（electrical resistance tomography） is effective method for visualization of multiphase flows,offering some advantages of rapid response and low cost,so as to explore the transient hydrodynamics.Aiming at this target,a fully programmable and reconfigurable FPGA（field programmable gate array）-based Compact PCI（peripheral component interconnect） bus linked sixteen-channel ERT system has been presented.The data acquisition system is carefully designed with function modules of signal generator module;Compact PCI transmission module and data processing module（including data sampling,filtering and demodulating）.The processing module incorporates a powerful FPGA with Compact PCI bus for communication,and the measurement process management is conducted in FPGA.Image reconstruction algorithms with different speed and accuracy are also coded for this system.The system has been demonstrated in real time（1400 frames per second for 50 kHz excitation） with signal-noise-ratio above 62 dB and repeatability error below 0.7%.Static experiments have been conducted and the images manifested good resolution relative to the actual object distribution.The parallel ERT system has provided alternative experimental platform for the multiphase flow measurements by the dynamic experiments in terms of concentration and velocity.

11. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery.

Science.gov (United States)

Zhao, Chun-Xia

2013-11-01

Considerable effort has been directed towards developing novel drug delivery systems. Microfluidics, capable of generating monodisperse single and multiple emulsion droplets, executing precise control and operations on these droplets, is a powerful tool for fabricating complex systems (microparticles, microcapsules, microgels) with uniform size, narrow size distribution and desired properties, which have great potential in drug delivery applications. This review presents an overview of the state-of-the-art multiphase flow microfluidics for the production of single emulsions or multiple emulsions for drug delivery. The review starts with a brief introduction of the approaches for making single and multiple emulsions, followed by presentation of some potential drug delivery systems (microparticles, microcapsules and microgels) fabricated in microfluidic devices using single or multiple emulsions as templates. The design principles, manufacturing processes and properties of these drug delivery systems are also discussed and compared. Furthermore, drug encapsulation and drug release (including passive and active controlled release) are provided and compared highlighting some key findings and insights. Finally, site-targeting delivery using multiphase flow microfluidics is also briefly introduced.

12. Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes

Science.gov (United States)

McGrath, T.; St. Clair, J.; Balachandar, S.

2017-06-01

Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.

13. X-ray visualisation and dissolved gas quantification: multiphase flow research and development at NEL

Energy Technology Data Exchange (ETDEWEB)

Hall, Andrew R.W.; Corlett, Anne E.

1997-07-01

NEL is actively investigating new techniques for the measurement of multiphase flows. This paper describes two such investigations, an X-ray system to visualise three-phase flows and a manometric/volumetric system to quantify the dissolved gas content of oil/gas flows. The X-ray system was used in both horizontal and vertical flows, covering slug, annular and bubble flow regimes. Also covered were stratified (horizontal only) and churn (vertical only) flows. The system was able to provide visualisation of features not visible in flows with low water cut (due to poor light transmission through oil) and therefore increased the understanding of three-phase flow behaviour. Quantifying the amount of dissolved gas within a hydrocarbon oil is of importance to the oil industry due to the problems associated with the artificial decrease in density of a gas filled oil and the effects of gas breakout. The present study found that the gas uptake by the oil was highly dependent on the following factors; volumetric gas fraction, line pressure and liquid flowrate. The underlying water cut of the oil also appeared to have an effect. (author)

14. Multiphase flow modelling using non orthogonal collocated finite volumes : application to fluid catalytical cracking and large scale geophysical flows.

Science.gov (United States)

Martin, R. M.; Nicolas, A. N.

2003-04-01

A modeling approach of gas solid flow, taking into account different physical phenomena such as gas turbulence and inter-particle interactions is presented. Moment transport equations are derived for the second order fluctuating velocity tensor which allow to involve practical closures based on single phase turbulence modeling on one hand and kinetic theory of granular media on the other hand. The model is applied to fluid catalytic cracking processes and explosive volcanism. In the industry as well as in the geophysical community, multiphase flows are modeled using a finite volume approach and a multicorrector algorithm in time in order to determine implicitly the pressures, velocities and volume fractions for each phase. Pressures, and velocities are generally determined at mid-half mesh step from each other following the staggered grid approach. This ensures stability and prevents oscillations in pressure. It allows to treat almost all the Reynolds number ranges for all speeds and viscosities. The disadvantages appear when we want to treat more complex geometries or if a generalized curvilinear formulation of the conservation equations is considered. Too many interpolations have to be done and accuracy is then lost. In order to overcome these problems, we use here a similar algorithm in time and a Rhie and Chow interpolation (1983) of the collocated variables and essentially the velocities at the interface. The Rhie and Chow interpolation of the velocities at the finite volume interfaces allows to have no oscillations of the pressure without checkerboard effects and to stabilize all the algorithm. In a first predictor step, fluxes at the interfaces of the finite volumes are then computed using 2nd and 3rd order shock capturing schemes of MUSCL/TVD or Van Leer type, and the orthogonal stress components are treated implicitly while cross viscous/diffusion terms are treated explicitly. Pentadiagonal linear systems are solved in each geometrical direction (the so

15. A fast Eulerian multiphase flow model for volcanic ash plumes: turbulence, heat transfer and particle non-equilibrium dynamics.

Science.gov (United States)

Cerminara, Matteo; Esposti Ongaro, Tomaso; Carlo Berselli, Luigi

2014-05-01

We have developed a compressible multiphase flow model to simulate the three-dimensional dynamics of turbulent volcanic ash plumes. The model describes the eruptive mixture as a polydisperse fluid, composed of different types of gases and particles, treated as interpenetrating Eulerian phases. Solid phases represent the discrete ash classes into which the total granulometric spectrum is discretized, and can differ by size and density. The model is designed to quickly and accurately resolve important physical phenomena in the dynamics of volcanic ash plumes. In particular, it can simulate turbulent mixing (driving atmospheric entrainment and controlling the heat transfer), thermal expansion (controlling the plume buoyancy), the interaction between solid particles and volcanic gas (including kinetic non-equilibrium effects) and the effects of compressibility (over-pressured eruptions and infrasonic measurements). The model is based on the turbulent dispersed multiphase flow theory for dilute flows (volume concentration <0.001, implying that averaged inter-particle distance is larger than 10 diameters) where particle collisions are neglected. Moreover, in order to speed up the code without losing accuracy, we make the hypothesis of fine particles (Stokes number <0.2 , i.e., volcanic ash particles finer then a millimeter), so that we are able to consider non-equilibrium effects only at the first order. We adopt LES formalism (which is preferable in transient regimes) for compressible flows to model the non-linear coupling between turbulent scales and the effect of sub-grid turbulence on the large-scale dynamics. A three-dimensional numerical code has been developed basing on the OpenFOAM computational framework, a CFD open source parallel software package. Numerical benchmarks demonstrate that the model is able to capture important non-equilibrium phenomena in gas-particle mixtures, such as particle clustering and ejection from large-eddy turbulent structures, as well

16. On the Analysis and Evaluation of Direct Containement Heating with the Multidimensional Multiphase Flow Code MC3D

Directory of Open Access Journals (Sweden)

Tanguy Janin

2010-01-01

Full Text Available In the course of a postulated severe accident in an NPP, Direct Containment Heating (DCH may occur after an eventual failure of the vessel. DCH is related to dynamical, thermal, and chemical phenomena involved by the eventual fine fragmentation and dispersal of the corium melt out of the vessel pit. It may threaten the integrity of the containment by pressurization of its atmosphere. Several simplified modellings have been proposed in the past but they require a very strong fitting which renders any extrapolation regarding geometry, material, and scales rather doubtful. With the development of multidimensional multiphase flow computer codes, it is now possible to investigate the phenomenon numerically with more details. We present an analysis of the potential of the MC3D code to support the analysis of this phenomenon, restricting our discussion to the dynamical processes. The analysis is applied to the case of French 1300 MWe PWR reactors for which we derive a correlation for the corium dispersal rate for application in a Probabilistic Safety Analysis (PSA level 2 study.

17. Latest progress in numerical simulations on multiphase flow and thermodynamics in production of natural gas from gas hydrate reservoir

Institute of Scientific and Technical Information of China (English)

Lin ZUO; Lixia SUN; Changfu YOU

2009-01-01

Natural gas hydrates are promising potential alternative energy resources. Some studies on the multiphase flow and thermodynamics have been conducted to investigate the feasibility of gas production from hydrate dissociation. The methods for natural gas production are analyzed and several models describing the dissociation process are listed and compared. Two prevailing models, one for depressurization and the other for thermal stimulation, are discussed in detail. A comprehensive numerical method considering the multiphase flow and thermodynamics of gas production from various hydrate-bearing reservoirs is required to better understand the dissociation process of natural gas hydrate, which would be of great benefit to its future exploration and exploitation.

18. Adaptive mesh refinement and multilevel iteration for multiphase, multicomponent flow in porous media

Energy Technology Data Exchange (ETDEWEB)

Hornung, R.D. [Duke Univ., Durham, NC (United States)

1996-12-31

An adaptive local mesh refinement (AMR) algorithm originally developed for unsteady gas dynamics is extended to multi-phase flow in porous media. Within the AMR framework, we combine specialized numerical methods to treat the different aspects of the partial differential equations. Multi-level iteration and domain decomposition techniques are incorporated to accommodate elliptic/parabolic behavior. High-resolution shock capturing schemes are used in the time integration of the hyperbolic mass conservation equations. When combined with AMR, these numerical schemes provide high resolution locally in a more efficient manner than if they were applied on a uniformly fine computational mesh. We will discuss the interplay of physical, mathematical, and numerical concerns in the application of adaptive mesh refinement to flow in porous media problems of practical interest.

19. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model

CERN Document Server

Li, Q; Li, X J

2012-01-01

Owing to its conceptual simplicity and computational efficiency, the pseudopotential multiphase lattice Boltzmann (LB) model has attracted significant attention since its emergence. In this work, we aim to extend the pseudopotential LB model to the simulations of multiphase flows at large density ratio and relatively high Reynolds number. First, based on our recent work [Li et al., Phys. Rev. E. 86, 016709 (2012)], an improved forcing scheme is proposed for the multiple-relaxation-time (MRT) pseudopotential LB model in order to achieve thermodynamic consistency and large density ratio in the model. Next, through investigating the effects of the parameter a in the Carnahan-Starling equation of state, we find that, as compared with a = 1, a = 0.25 is capable of greatly reducing the magnitude of the spurious currents at large density ratio. Furthermore, it is found that a lower liquid viscosity can be gained in the pseudopotential LB model by increasing the kinematic viscosity ratio between the vapor and liquid ...

20. Multiphase flow modelling of explosive volcanic eruptions using adaptive unstructured meshes

Science.gov (United States)

Jacobs, Christian T.; Collins, Gareth S.; Piggott, Matthew D.; Kramer, Stephan C.

2014-05-01

Explosive volcanic eruptions generate highly energetic plumes of hot gas and ash particles that produce diagnostic deposits and pose an extreme environmental hazard. The formation, dispersion and collapse of these volcanic plumes are complex multiscale processes that are extremely challenging to simulate numerically. Accurate description of particle and droplet aggregation, movement and settling requires a model capable of capturing the dynamics on a range of scales (from cm to km) and a model that can correctly describe the important multiphase interactions that take place. However, even the most advanced models of eruption dynamics to date are restricted by the fixed mesh-based approaches that they employ. The research presented herein describes the development of a compressible multiphase flow model within Fluidity, a combined finite element / control volume computational fluid dynamics (CFD) code, for the study of explosive volcanic eruptions. Fluidity adopts a state-of-the-art adaptive unstructured mesh-based approach to discretise the domain and focus numerical resolution only in areas important to the dynamics, while decreasing resolution where it is not needed as a simulation progresses. This allows the accurate but economical representation of the flow dynamics throughout time, and potentially allows large multi-scale problems to become tractable in complex 3D domains. The multiphase flow model is verified with the method of manufactured solutions, and validated by simulating published gas-solid shock tube experiments and comparing the numerical results against pressure gauge data. The application of the model considers an idealised 7 km by 7 km domain in which the violent eruption of hot gas and volcanic ash high into the atmosphere is simulated. Although the simulations do not correspond to a particular eruption case study, the key flow features observed in a typical explosive eruption event are successfully captured. These include a shock wave resulting

1. CFD analysis of multiphase blood flow within aorta and its thoracic branches of patient with coarctation of aorta using multiphase Euler - Euler approach

Science.gov (United States)

Ostrowski, Z.; Melka, B.; Adamczyk, W.; Rojczyk, M.; Golda, A.; Nowak, A. J.

2016-09-01

In the research a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analyzed. A real geometry of aorta and its thoracic branches of 8-year old patient diagnosed with a congenital heart defect - coarctation of aorta was used. The inlet boundary condition were implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase: plasma, set as the primary fluid phase, was dominant with volume fraction of 0.585 and morphological elements of blood were treated in Euler-Euler approach as dispersed phases (with 90% Red Blood Cells and White Blood Cells as remaining solid volume fraction).

2. Theoretical analysis of multiphase flow during oil-well drilling by a conservative model

Science.gov (United States)

Nicolas-Lopez, Ruben

2005-11-01

In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.

3. Multiphase flow dynamics and control; Dynamique et controle des ecoulements polyphasiques

Energy Technology Data Exchange (ETDEWEB)

Duret, E.

2005-02-01

Production in the petroleum industry requires a better knowledge of multiphase flow, as the design of pipelines may cause the flow to become strongly unstable. For instance, for low flow rates and when a sea line ends at a riser, the riser base may accumulate liquid and stop the flow of gas. Then, the upstream gas is compressed until its pressure is large enough to push the liquid slug downstream. Under such conditions, a cyclic process occurs which is called severe slugging, generating large and fast fluctuations in pressure and flow rates. This thesis is devoted to two methods to stabilize this undesirable phenomenon. Using the pipeline's ability to separate phases to pick-up the gas upstream the riser base, they are mainly based on the perturbation theory (fast proportional effect, slow integral effect). The first one uses a secondary riser to transport the gas to the surface facilities. A stability study worked out with the phase diagrams technique shows that it is a good method to control this phenomenon. However, it imposes a high pressure in all the system. Thus, the second controller re-injects the gas at a determined height in the riser to decrease the hydrostatic pressure. A first stability study in open loop give a criterion on the minimal reinjection height. Then, the controller is developed by using the two-time scale control techniques. Finally, let us denote that these two controllers have been validated with a small size experimental set up. (author)

4. Recent results on anisotropic flow and related phenomena in ALICE

CERN Document Server

Bilandzic, Ante

2016-01-01

The exploration of properties of an extreme state of matter, the Quark--Gluon Plasma, has broken new ground with the recent Run 2 operation of the Large Hadron Collider with heavy-ion collisions at the highest energy to date. With the heavy-ion data taken at the end of 2015, the ALICE Collaboration has made the first observation of anisotropic flow of charged particles and related phenomena in lead--lead collisions at the record breaking energy of 5.02 TeV per nucleon pair. The Run 2 results come after the proton-lead collisions, which provided a lot of unexpected results obtained with two- and multi-particle correlation techniques. In these proceedings, a brief overview of these results will be shown. We will discuss how they further enlighten the properties of matter produced in ultrarelativistic nuclear collisions. We indicate the possibility that, to leading order, the striking universality of flow results obtained with correlation techniques in pp, p--A and A--A collisions might have purely mathematical ...

5. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

Science.gov (United States)

Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

2011-12-01

One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

6. Particle methods for simulation of subsurface multiphase fluid flow and biogeological processes

Energy Technology Data Exchange (ETDEWEB)

Meakin, Paul; Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Tartakovsky, Daniel M.; Redden, George; Long, Philip E.; Brooks, Scott C.; Xu, Zhijie

2007-08-01

A number of particle models that are suitable for simulating multiphase fluid flow and biogeological processes have been developed during the last few decades. Here we discuss three of them: a microscopic model - molecular dynamics; a mesoscopic model - dissipative particle dynamics; and a macroscopic model - smoothed particle hydrodynamics. Particle methods are robust and versatile, and it is relatively easy to add additional physical, chemical and biological processes into particle codes. However, the computational efficiency of particle methods is low relative to continuum methods. Multiscale particle methods and hybrid (particle–particle and particle–continuum) methods are needed to improve computational efficiency and make effective use of emerging computational capabilities. These new methods are under development.

7. Lattice Boltzmann Simulations for High Density Ratio Flows of Multiphase Fluids

Science.gov (United States)

Wei, Yikun; Qian, Yuehong

2010-11-01

In the present communication, we will show that the compression effect of the Redlich-Kwong equation of state(EOS) is lower than that of the van der Waals (vdW) EOS. The Redlich-Kwong equation of state has a better agreement with experimental data for the coexistence curve than the van derWaals (vdW) EOS. We implement the Redlich-Kwong EOS in the lattice Boltzmann simulations via a pseudo-potential. As a result, multi-phase flows with large density ratios may be simulated, thus many real applications in engineering problems can be applied. Acknowledgement: This research is supported in part by Ministry of Education in China via project IRT0844 and NSFC project 10625210 and Shanghai Sci and Tech. Com. Project 08ZZ43

8. Investigating the NCQ scaling of elliptic flow at LHC with a multiphase transport model

CERN Document Server

Zheng, Liang; Qin, Hong; Shou, Qi-Ye; Yin, Zhong-Bao

2016-01-01

The number of constituent quark (NCQ) scaling behavior of elliptic flow has been systematically studied at the LHC energy within the framework of a multiphase transport model (AMPT) in this work. We find that the parameters used to generate the initial states and the collision centrality are important for the existence of NCQ scaling even when hadronic rescattering contribution is off in Pb-Pb collisions of $\\sqrt{s_{NN}}=2.76$ TeV. By turning on the hadron rescattering process, the hadronic evolution impacts are also found to be significant. Extending the analysis to Pb-Pb collsions of $\\sqrt{s_{NN}}=5.02$ TeV, one would observe similar qualitative features.

9. A fast algorithm for simulating multiphase flows through periodic geometries of arbitrary shape

CERN Document Server

Marple, Gary; Gillman, Adrianna; Veerapaneni, Shravan

2015-01-01

This paper presents a new boundary integral equation (BIE) method for simulating particulate and multiphase flows through periodic channels of arbitrary smooth shape in two dimensions. The authors consider a particular system---multiple vesicles suspended in a periodic channel of arbitrary shape---to describe the numerical method and test its performance. Rather than relying on the periodic Green's function as classical BIE methods do, the method combines the free-space Green's function with a small auxiliary basis, and imposes periodicity as an extra linear condition. As a result, we can exploit existing free-space solver libraries, quadratures, and fast algorithms, and handle a large number of vesicles in a geometrically complex channel. Spectral accuracy in space is achieved using the periodic trapezoid rule and product quadratures, while a first-order semi-implicit scheme evolves particles by treating the vesicle-channel interactions explicitly. New constraint-correction formulas are introduced that prese...

10. The impact of interfacial tension on multiphase flow in the CO2-brine-sandstone system

Science.gov (United States)

Reynolds, C. A.; Blunt, M. J.; Krevor, S. C.

2013-12-01

Two dominant controls on continuum scale multiphase flow properties are interfacial tension (IFT) and wetting. In hydrocarbon-brine systems, relative permeability is known to increase with decreasing IFT, while residual trapping is controlled by the wetting properties of a permeable rock and the hysteresis between drainage and imbibtion (Amaefule & Handy, 1982; Bardon & Longeron, 1980; Juanes et al., 2006). Fluid properties of the CO2-brine system, such as viscosity, density and interfacial tension, are well characterised and have known dependencies on temperature, pressure and brine salinity. Interest in this particular fluid system is motivated by CO2 storage and enhanced oil recovery. Despite increased interest in CO2 storage, the response of the CO2-brine relative permeability to varying IFT has yet to be comprehensively evaluated. Additionally the wide range of thermophysical properties (density, viscosity etc.) that exist across a relatively small range of pressures and temperatures makes it an ideal system with which to investigate the physics of multiphase flow in general. This is the first systematic study to investigate the impact of IFT on drainage and imbibition relative permeability for the CO2-brine-sandstone system. The experimental design has been adapted from a traditional steady state core flood in two ways. First, while conditions may be easily selected to obtain a range of interfacial tensions, isolating the independent impact of interfacial tension on relative permeability is less simple. Thus experimental conditions are selected so as to vary interfacial tension, while minimising the variation in viscosity ratio between CO2 and brine. Second, in order to attribute the impacts of changing conditions, it is necessary to have precise results such that small shifts in observations can be identified. Multiphase flow theory is used to both design the conditions of the test and interpret the observations, leading to a much higher precision in

11. Particle methods for simulation of subsurface multiphase fluid flow and biogeological processes

Energy Technology Data Exchange (ETDEWEB)

Paul Meakin; Alexandre Tartakovsky; Tim Scheibe; Daniel Tartakovsky; Georgr Redden; Philip E. Long; Scott C. Brooks; Zhijie Xu

2007-06-01

A number of particle models that are suitable for simulating multiphase fluid flow and biogeological processes have been developed during the last few decades. Here we discuss three of them: a microscopic model - molecular dynamics; a mesoscopic model - dissipative particle dynamics; and a macroscopic model - smoothed particle hydrodynamics. Particle methods are robust and versatile, and it is relatively easy to add additional physical, chemical and biological processes into particle codes. However, the computational efficiency of particle methods is low relative to continuum methods. Multiscale particle methods and hybrid (particle–particle and particle–continuum) methods are needed to improve computational efficiency and make effective use of emerging computational capabilities. These new methods are under development.

12. Cyclonic multiphase flow measurement system GLCC®1 for oil well capacity evaluation

Directory of Open Access Journals (Sweden)

J.M. Godoy–Alcántar

2008-10-01

Full Text Available This paper shows the development of a portable multiphase flow measurement system based in cyclonic separation technology GLCC@1. This system is aimed for oil well measurement and was developed in three phases; the first devoted to the geometric design of a cyclonic separator by means of design software GLCC V7.8 and the selection of measurement instrumentation and flux control valves. In the second phase, the automatic control system was designed for the implementation of four control strategies each one related with a possible scenario of the well behavior. The third constitutes the integration of the measurement and control devices through a user interface aimed for visualization, information processing and system's operation and control. Experimental results in oil well measurements show the efficiency and workability of the integrated system.

13. Overestimating climate warming-induced methane gas escape from the seafloor by neglecting multiphase flow dynamics

Science.gov (United States)

Stranne, C.; O'Regan, M.; Jakobsson, M.

2016-08-01

Continental margins host large quantities of methane stored partly as hydrates in sediments. Release of methane through hydrate dissociation is implicated as a possible feedback mechanism to climate change. Large-scale estimates of future warming-induced methane release are commonly based on a hydrate stability approach that omits dynamic processes. Here we use the multiphase flow model TOUGH + hydrate (T + H) to quantitatively investigate how dynamic processes affect dissociation rates and methane release. The simulations involve shallow, 20-100 m thick hydrate deposits, forced by a bottom water temperature increase of 0.03°C yr-1 over 100 years. We show that on a centennial time scale, the hydrate stability approach can overestimate gas escape quantities by orders of magnitude. Our results indicate a time lag of > 40 years between the onset of warming and gas escape, meaning that recent climate warming may soon be manifested as widespread gas seepages along the world's continental margins.

14. A Solver for Massively Parallel Direct Numerical Simulation of Three-Dimensional Multiphase Flows

CERN Document Server

Shin, S; Juric, D

2014-01-01

We present a new solver for massively parallel simulations of fully three-dimensional multiphase flows. The solver runs on a variety of computer architectures from laptops to supercomputers and on 65536 threads or more (limited only by the availability to us of more threads). The code is wholly written by the authors in Fortran 2003 and uses a domain decomposition strategy for parallelization with MPI. The fluid interface solver is based on a parallel implementation of the LCRM hybrid Front Tracking/Level Set method designed to handle highly deforming interfaces with complex topology changes. We discuss the implementation of this interface method and its particular suitability to distributed processing where all operations are carried out locally on distributed subdomains. We have developed parallel GMRES and Multigrid iterative solvers suited to the linear systems arising from the implicit solution of the fluid velocities and pressure in the presence of strong density and viscosity discontinuities across flu...

15. Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows

CERN Document Server

Li, Q; Gao, Y J

2011-01-01

The existing lattice Boltzmann models for incompressible multiphase flows are mostly constructed with two distribution functions, one is the order parameter distribution function, which is used to track the interface between different phases, and the other is the pressure distribution function for solving the velocity field. In this brief report, it is shown that in these models the recovered momentum equation is inconsistent with the target one: an additional interfacial force is included in the recovered momentum equation. The effects of the additional force are investigated by numerical simulations of droplet splashing on a thin liquid film and falling droplet under gravity. In the former test, it is found that the formation and evolution of secondary droplets are greatly affected, while in the latter the additional force is found to increase the falling velocity and limit the stretch of the droplet.

16. Recurrence CFD - a novel approach to simulate multiphase flows with strongly separated time scales

CERN Document Server

Lichtenegger, Thomas

2016-01-01

Classical Computational Fluid Dynamics (CFD) of long-time processes with strongly separated time scales is computationally extremely demanding if not impossible. Consequently, the state-of-the-art description of such systems is not capable of real-time simulations or online process monitoring. In order to bridge this gap, we propose a new method suitable to decouple slow from fast degrees of freedom in many cases. Based on the recurrence statistics of unsteady flow fields, we deduce a recurrence process which enables the generic representation of pseudo-periodic motion at high spatial and temporal resolution. Based on these fields, passive scalars can be traced by recurrence CFD. While a first, Eulerian Model A solves a passive transport equation in a classical implicit finite-volume environment, a second, Lagrangian Model B propagates fluid particles obeying a stochastic differential equation explicitly. Finally, this new concept is tested by two multiphase processes - a lab scale oscillating bubble column a...

17. Parameters in Multiphase Flowing of Natural Gas NGH Slurry via Vertical Pipe

Directory of Open Access Journals (Sweden)

Dai Maolin

2016-01-01

Full Text Available In recent years, the pipeline flowing of natural gas hydrate (hereinafter NGH slurry has been a promising technique of multiphase flowing via pipe and that of crushed hydrate mixture slurry is also a key technique in solid fluidization mining method of nondiagenetic NGH reservoir below the seabed. In this paper, by using similarity rules, a small-scale simulation model was established to shorten the calculation time. The correctness of the simulation model has been verified through comparison with experiment. Thereby, the distribution of velocity and volume fraction of each phase in the vertical pipe was obtained, and the prototype of vertical pipe was analyzed. By study on the pipe resistance, the pressure drop of slurry, when flowing in vertical pipe, could be calculated as ΔP=ρgh+0.23Cρv1.8. In the end, by adjusting volume fraction of particles in the mixture slurry, the relationship between the solid particles’ volume fraction and piezometric pressure drop was obtained. When the optimal flow velocity of the slurry is 2 m/s and the ratio of NGH volume fraction to that of sand is 4 : 1, the optimal particle volume fraction ranges from 20% to 40%.

18. The simulation of multiphase flow field in implantable blood pump and analysis of hemolytic capability

Institute of Scientific and Technical Information of China (English)

LI Tie-yan; YE Liang; HONG Fang-wen; LIU Deng-cheng; FAN Hui-min; LIU Zhong-min

2013-01-01

The numerical simulation of the axial flow impeller blood pump NIVADIII is carried out by using a CFD multiphase flow model.The hydrodynamic performance of the pump and the flow field in the pump are analyzed,and the shear stress distribution is obtained.A hemolytic prediction model based on the shear stress is built based on the calculation results,and it can be used for quantitative predictions of the hemolytic behavior of a blood pump.Hemolysis tests in vitro were performed 6 times with fresh bovine blood.At each time,the flow of the pump NIVADIII is 5 L/min and the outflow tract pressure is 100 mmHg.According to the tests,the plasma free hemoglobin (FHB) content and the hematocrit (HCT) are measured after 0 s,0.5 s,1 s,1.5 s,...4 s.At the end of each experiment Normal Index of Hemolysis (NIH) of NIVADIII is calculated.The average of NIH is 0.0055 g/100L,almost identical with that obtained from the hemolytic prediction model.This method can be applied in the selection stage of a blood pump.

19. Low parameter model to monitor bottom hole pressure in vertical multiphase flow in oil production wells

Directory of Open Access Journals (Sweden)

2016-09-01

Full Text Available The importance of the flow patterns through petroleum production wells proved for upstream experts to provide robust production schemes based on the knowledge about flow behavior. To provide accurate flow pattern distribution through production wells, accurate prediction/representation of bottom hole pressure (BHP for determining pressure drop from bottom to surface play important and vital role. Nevertheless enormous efforts have been made to develop mechanistic approach, most of the mechanistic and conventional models or correlations unable to estimate or represent the BHP with high accuracy and low uncertainty. To defeat the mentioned hurdle and monitor BHP in vertical multiphase flow through petroleum production wells, inventive intelligent based solution like as least square support vector machine (LSSVM method was utilized. The evolved first-break approach is examined by applying precise real field data illustrated in open previous surveys. Thanks to the statistical criteria gained from the outcomes obtained from LSSVM approach, the proposed least support vector machine (LSSVM model has high integrity and performance. Moreover, very low relative deviation between the model estimations and the relevant actual BHP data is figured out to be less than 6%. The output gained from LSSVM model are closed the BHP while other mechanistic models fails to predict BHP through petroleum production wells. Provided solutions of this study explicated that implies of LSSVM in monitoring bottom-hole pressure can indicate more accurate monitoring of the referred target which can lead to robust design with high level of reliability for oil and gas production operation facilities.

20. Investigation of Multiphase Flow in a Packed Bed Reactor Under Microgravity Conditions

Science.gov (United States)

Lian, Yongsheng; Motil, Brian; Rame, Enrique

2016-01-01

In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.

1. Numerical simulation of flow phenomena and optimum operation of tundish

Institute of Scientific and Technical Information of China (English)

时章明; 鄂加强; 刘春洋; 梅炽; 张全; 周应其

2003-01-01

To enhance the quality of grade 20 carbon-steel on the continuous casting production line, the mechanism of forming blowholes and non-metallic inclusions in billets and numerical simulation of flow phenomena about liquid steel in tundish were studied. The results show that the configuration and operation of tundish play an important part in quality assurance of grade 20 carbon-steel products. By optimizing the configuration of the tundish, the depth of liquid bath in tundish is enhanced, the impact of liquid steel is decreased, and the residence time of liquid steel is lengthened, which is useful for eliminating inclusions and blowholes and improving the service life of tundish. Improving the pouring and tapping operation of liquid steel can avoid the contact of liquid steel with air, and decrease re-oxidation. Strict control of the superheat degree of casting liquid steel can decrease the non-metallic inclusion content of the re-oxidation in billets and reduce the erosion of tundish. The inclusions and blowholes in the continuous casting grade 20 steel billets are reduced to a great extent and qualification rate is enhanced from 60 % to 80 %.

2. A Variational Multiscale - High-Resolution Method for the Simulation of Unstable Multiphase Flow in Heterogeneous Formations

Science.gov (United States)

Dub, F.; Juanes, R.

2007-12-01

Multiscale phenomena are ubiquitous to flow and transport in porous media. They manifest themselves through at least the following three facets: (1) effective parameters in the governing equations are scale dependent; (2) some features of the flow (especially sharp fronts and boundary layers) cannot be resolved on practical computational grids; and (3) dominant physical processes may be different at different scales. Numerical methods should therefore reflect the multiscale character of the solution. In this paper, we concentrate on the development of simulation techniques that account for the heterogeneity present in realistic reservoirs, and have the ability to capture (on coarse grids) the detailed pattern of unstable flows due to viscous fingering and channeling. We express the governing equations of multiphase flow as a pressure equation and a saturation equation. Both are nonlinear but are only weakly coupled. The pressure equation is elliptic, while the saturation equation is quasi-hyperbolic. Traditionally, the large degree of heterogeneity in the coefficients of the pressure equation has been tackled by upscaling the fine-scale properties to coarse-scale effective coefficients. Here, we avoid upscaling and propose a variational multiscale (VMS) method that splits the original problem is (rigorously) into a coarse-scale problem and a subgrid-scale problem. The framework is very flexible with respect to how each of these problems is approximated. The proposed VMS method employs a low-order mixed finite element method at the coarse scale, and a finite volume method at the subgrid scale. The method is therefore locally conservative at both the coarse and fine scales. We pay special attention to the definition of the local boundary conditions for the subgrid problems. In particular, we develop a well model, which accounts for subgrid heterogeneity and radial flow regime in a consistent fashion, without compromising the local mass conservation property. The

3. Thermodynamically Consistent Fluid Mixing in Porous Media Induced by Viscous Fingering and Channeling of Multiphase Flow

Science.gov (United States)

2016-11-01

Fluid mixing and its interplay with viscous fingering as well as flow channeling through heterogeneous media have been traditionally studied for fully (im)miscible conditions in which a (two-) single-phase system is represented by two components, e.g. a solvent and a solute, with (zero) infinite mutual solubility. However, many subsurface problems, e.g. gas injection/migration in hydrocarbon reservoirs, involve multiple species transfer. Multicomponent fluid properties behave non-linearly, through an equation of state, as a function of temperature, pressure, and compositions. Depending on the minimum miscibility pressure, a two-phase region with finite, non-zero mutual solubility may develop, e.g. in a partially-miscible system. Here we study mixing of fluids with partial mutual solubility, induced by viscous flow fingering, channeling, and species transport within and between phases. We uncover non-linear mixing dynamics of a finite-size slug of a less viscous fluid attenuated by a carrier fluid during rectilinear displacement. We perform accurate numerical simulations that are thermodynamically-consistent to capture fingering patterns and complex phase behavior of mixtures. The results provide a broad perspective into how multiphase flow can alter fluid mixing in porous media.

4. Tar Production from Biomass Pyrolysis in a Fluidized Bed Reactor: A Novel Turbulent Multiphase Flow Formulation

Science.gov (United States)

Bellan, J.; Lathouwers, D.

2000-01-01

A novel multiphase flow model is presented for describing the pyrolysis of biomass in a 'bubbling' fluidized bed reactor. The mixture of biomass and sand in a gaseous flow is conceptualized as a particulate phase composed of two classes interacting with the carrier gaseous flow. The solid biomass is composed of three initial species: cellulose, hemicellulose and lignin. From each of these initial species, two new solid species originate during pyrolysis: an 'active' species and a char, thus totaling seven solid-biomass species. The gas phase is composed of the original carrier gas (steam), tar and gas; the last two species originate from the volumetric pyrolysis reaction. The conservation equations are derived from the Boltzmann equations through ensemble averaging. Stresses in the gaseous phase are the sum of the Newtonian and Reynolds (turbulent) contributions. The particulate phase stresses are the sum of collisional and Reynolds contributions. Heat transfer between phases, and heat transfer between classes in the particulate phase is modeled, the last resulting from collisions between sand and biomass. Closure of the equations must be performed by modeling the Reynolds stresses for both phases. The results of a simplified version (first step) of the model are presented.

5. A ghost fluid method for sharp interface simulations of compressible multiphase flows

Energy Technology Data Exchange (ETDEWEB)

Majidi, Sahand; Afshari, Asghar [University of Tehran, Teheran (Iran, Islamic Republic of)

2016-04-15

A ghost fluid based computational tool is developed to study a wide range of compressible multiphase flows involving strong shocks and contact discontinuities while accounting for surface tension, viscous stresses and gravitational forces. The solver utilizes constrained reinitialization method to predict the interface configuration at each time step. Surface tension effect is handled via an exact interface Riemann problem solver. Interfacial viscous stresses are approximated by considering continuous velocity and viscous stress across the interface. To assess the performance of the solver several benchmark problems are considered: One-dimensional gas-water shock tube problem, shock-bubble interaction, air cavity collapse in water, underwater explosion, Rayleigh-Taylor Instability, and ellipsoidal drop oscillations. Results obtained from the numerical simulations indicate that the numerical methodology performs reasonably well in predicting flow features and exhibit a very good agreement with prior experimental and numerical observations. To further examine the accuracy of the developed ghost fluid solver, the obtained results are compared to those by a conventional diffuse interface solver. The comparison shows the capability of our ghost fluid method in reproducing the experimentally observed flow characteristics while revealing more details regarding topological changes of the interface.

6. Multiphase flow and multicomponent reactive transport model of the ventilation experiment in Opalinus clay

Energy Technology Data Exchange (ETDEWEB)

Zheng, L.; Samper, J.; Montenegro, L.; Major, J.C.

2008-10-15

During the construction and operational phases of a high-level radioactive waste (HLW) repository constructed in a clay formation, ventilation of underground drifts will cause desaturation and oxidation of the rock. The Ventilation Experiment (VE) was performed in a 1.3 m diameter unlined horizontal microtunnel on Opalinus clay at Mont Terri underground research laboratory in Switzerland to evaluate the impact of desaturation on rock properties. A multiphase flow and reactive transport model of VE is presented here. The model accounts for liquid, vapor and air flow, evaporation/condensation and multicomponent reactive solute transport with kinetic dissolution of pyrite and siderite and local-equilibrium dissolution/precipitation of calcite, ferrihydrite, dolomite, gypsum and quartz. Model results reproduce measured vapor flow, liquid pressure and hydrochemical data and capture the trends of measured relative humidities, although such data are slightly overestimated near the rock interface due to uncertainties in the turbulence factor. Rock desaturation allows oxygen to diffuse into the rock and triggers pyrite oxidation, dissolution of calcite and siderite, precipitation of ferrihydrite, dolomite and gypsum and cation exchange. pH in the unsaturated rock varies from 7.8 to 8 and is buffered by calcite. Computed changes in the porosity and the permeability of Opalinus clay in the unsaturated zone caused by oxidation and mineral dissolution/precipitation are smaller than 5%. Therefore, rock properties are not expected to be affected significantly by ventilation of underground drifts during construction and operational phases of a HLW repository in clay.

7. Multiphase integral reacting flow computer code (ICOMFLO): Users guide

Energy Technology Data Exchange (ETDEWEB)

Chang, S.L.; Lottes, S.A.; Petrick, M.

1997-11-01

A copyrighted computational fluid dynamics computer code, ICOMFLO, has been developed for the simulation of multiphase reacting flows. The code solves conservation equations for gaseous species and droplets (or solid particles) of various sizes. General conservation laws, expressed by elliptic type partial differential equations, are used in conjunction with rate equations governing the mass, momentum, enthalpy, species, turbulent kinetic energy, and turbulent dissipation. Associated phenomenological submodels of the code include integral combustion, two parameter turbulence, particle evaporation, and interfacial submodels. A newly developed integral combustion submodel replacing an Arrhenius type differential reaction submodel has been implemented to improve numerical convergence and enhance numerical stability. A two parameter turbulence submodel is modified for both gas and solid phases. An evaporation submodel treats not only droplet evaporation but size dispersion. Interfacial submodels use correlations to model interfacial momentum and energy transfer. The ICOMFLO code solves the governing equations in three steps. First, a staggered grid system is constructed in the flow domain. The staggered grid system defines gas velocity components on the surfaces of a control volume, while the other flow properties are defined at the volume center. A blocked cell technique is used to handle complex geometry. Then, the partial differential equations are integrated over each control volume and transformed into discrete difference equations. Finally, the difference equations are solved iteratively by using a modified SIMPLER algorithm. The results of the solution include gas flow properties (pressure, temperature, density, species concentration, velocity, and turbulence parameters) and particle flow properties (number density, temperature, velocity, and void fraction). The code has been used in many engineering applications, such as coal-fired combustors, air

8. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU)

Science.gov (United States)

Fourtakas, G.; Rogers, B. D.

2016-06-01

A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.

9. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

Energy Technology Data Exchange (ETDEWEB)

Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

2009-01-15

A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

10. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

Energy Technology Data Exchange (ETDEWEB)

Snider, D.M. [SAIC, Albuquerque, NM (United States); ORourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

1997-06-01

A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

11. New mathematical model for bottom hole pressure control development in multiphase flowing wells while performing UBD operation

Science.gov (United States)

Kootiani, Reza Cheraghi; Chehrehgosha, Soroush; Mirali, Sasan; Samsuri, Ariffin Bin

2014-10-01

The analytical model for predicting the pressure at any point in a flow string is essential in determining optimum production string dimension and in the design of gas-lift installations. This information is also invaluable in predicting bottom-hole pressure in flowing wells. A variety of model on bottom-hole pressure in flowing wells have been reported in the literatures. Most of the early models on pressure drop in the flowing wells were based on single phase flowing wells, even the recent investigators treated the multiphase (liquid and gas phase) as a homogenous single phase flow without accounting for dissolved gas in oil. This paper present a modification of previous models for single phase flowing gas wells and the model was adapted to predict the pressure drop in multiphase flowing wells. In this paper, we can solve numerically to obtain the pressure upstream of the nozzle in two phase flow. The key operational and fluid/ pipe parameters which influence the degree of pressure drop in flowing wells are identified through the modification.

12. Multiphase flow of carbon dioxide and brine in dual porosity carbonates

Science.gov (United States)

Pentland, Christopher; Oedai, Sjaam; Ott, Holger

2014-05-01

The storage of carbon dioxide in subsurface formations presents a challenge in terms of multiphase flow characterisation. Project planning requires an understanding of multiphase flow characteristics such as the relationship between relative permeability and saturation. At present there are only a limited number of relative permeability relations for carbon dioxide-brine fluid systems, most of which are measured on sandstone rocks. In this study coreflood experiments are performed to investigate the relative permeability of carbon dioxide and brine in two dual porosity carbonate systems. Carbon dioxide is injected into the brine saturated rocks in a primary drainage process. The rock fluid system is pre-equilibrated to avoid chemical reactions and physical mass transfer between phases. The pressure drop across the samples, the amount of brine displaced and the saturation distribution within the rocks are measured. The experiments are repeated on the same rocks for the decane-brine fluid system. The experimental data is interpreted by simulating the experiments with a continuum scale Darcy solver. Selected functional representations of relative permeability are investigated, the parameters of which are chosen such that a least squares objective function is minimised (i.e. the difference between experimental observations and simulated response). The match between simulation and measurement is dependent upon the form of the functional representations. The best agreement is achieved with the Corey [Brooks and Corey, 1964] or modified Corey [Masalmeh et al., 2007] functions which best represent the relative permeability of brine at low brine saturations. The relative permeability of carbon dioxide is shown to be lower than the relative permeability of decane over the saturation ranges investigated. The relative permeability of the brine phase is comparable for the two fluid systems. These observations are consistent with the rocks being water-wet. During the experiment

13. A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM +-up scheme

Science.gov (United States)

Chang, Chih-Hao; Liou, Meng-Sing

2007-07-01

In this paper, we propose a new approach to compute compressible multifluid equations. Firstly, a single-pressure compressible multifluid model based on the stratified flow model is proposed. The stratified flow model, which defines different fluids in separated regions, is shown to be amenable to the finite volume method. We can apply the conservation law to each subregion and obtain a set of balance equations . Secondly, the AUSM + scheme, which is originally designed for the compressible gas flow, is extended to solve compressible liquid flows. By introducing additional dissipation terms into the numerical flux, the new scheme, called AUSM +-up, can be applied to both liquid and gas flows. Thirdly, the contribution to the numerical flux due to interactions between different phases is taken into account and solved by the exact Riemann solver. We will show that the proposed approach yields an accurate and robust method for computing compressible multiphase flows involving discontinuities, such as shock waves and fluid interfaces. Several one-dimensional test problems are used to demonstrate the capability of our method, including the Ransom's water faucet problem and the air-water shock tube problem. Finally, several two dimensional problems will show the capability to capture enormous details and complicated wave patterns in flows having large disparities in the fluid density and velocities, such as interactions between water shock wave and air bubble, between air shock wave and water column(s), and underwater explosion. However, conservative form is lost in these balance equations when considering each individual phase; in fact, the interactions that exist simultaneously in both phases manifest themselves as nonconservative terms.

14. Grain scale simulation of multiphase flow through porous media; Simulacao em escala granular do escoamento multifasico em meio poroso

Energy Technology Data Exchange (ETDEWEB)

Domingos, Ricardo Golghetto; Cheng, Liang-Yee [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica

2012-07-01

Since the grain scale modeling of multi-phase flow in porous media is of great interest for the oil industry, the aim of the present research is to show an implementation of Moving Particle Semi-Implicit (MPS) method for the grain scale simulation of multi-phase flow in porous media. Geometry data obtained by a high-resolution CT scan of a sandstone sample has been used as input for the simulations. The results of the simulations performed considering different resolutions are given, the head loss and permeability obtained numerically, as well as the influence of the wettability of the fluids inside the sample of the reservoir's sandstone. (author)

15. An extension of the open-source porousMultiphaseFoam toolbox dedicated to groundwater flows solving the Richards' equation

CERN Document Server

Horgue, Pierre; Guibert, Romain; Debenest, Gérald

2015-01-01

In this note, the existing porousMultiphaseFoam toolbox, developed initially for any two-phase flow in porous media is extended to the specific case of the Richards' equation which neglect the pressure gradient of the non-wetting phase. This model is typically used for saturated and unsaturated groundwater flows. A Picard's algorithm is implemented to linearize and solve the Richards' equation developed in the pressure head based form. This new solver of the porousMultiphaseFoam toolbox is named groundwaterFoam. The validation of thesolver is achieved by a comparison between numerical simulations and results obtained from the literature. Finally, a parallel efficiency test is performed on a large unstructured mesh and exhibits a super-linear behavior as observed for the other solvers of the toolbox.

16. A two-stage adaptive stochastic collocation method on nested sparse grids for multiphase flow in randomly heterogeneous porous media

Science.gov (United States)

Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi

2017-02-01

A new computational method is proposed for efficient uncertainty quantification of multiphase flow in porous media with stochastic permeability. For pressure estimation, it combines the dimension-adaptive stochastic collocation method on Smolyak sparse grids and the Kronrod-Patterson-Hermite nested quadrature formulas. For saturation estimation, an additional stage is developed, in which the pressure and velocity samples are first generated by the sparse grid interpolation and then substituted into the transport equation to solve for the saturation samples, to address the low regularity problem of the saturation. Numerical examples are presented for multiphase flow with stochastic permeability fields to demonstrate accuracy and efficiency of the proposed two-stage adaptive stochastic collocation method on nested sparse grids.

17. Radiotracer method for residence time distribution study in multiphase flow system

Energy Technology Data Exchange (ETDEWEB)

Sugiharto, S. [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132 (Indonesia); Center for the Application of Isotopes and Radiation Technology - National Nuclear Energy Agency, Jl Lebak Bulus No. 49, Jakarta 12440 (Indonesia)], E-mail: sugi@batan.go.id; Su' ud, Z. [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132 (Indonesia)], E-mail: szaki@fi.itb.ac.id; Kurniadi, R. [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132 (Indonesia); Wibisono, W.; Abidin, Z. [Center for the Application of Isotopes and Radiation Technology - National Nuclear Energy Agency, Jl Lebak Bulus No. 49, Jakarta 12440 (Indonesia)

2009-07-15

[{sup 131}I] isotope in different chemical compounds have been injected into 24 in hydrocarbon transmission pipeline containing approximately 95% water, 3% crude oil, 2% gas and negligible solid material, respectively. The system is operated at the temperature around 70 deg. C enabling fluids flow is easier in the pipeline. The segment of measurement was chosen far from the junction point of the pipeline, therefore, it was reasonably to assume that the fluids in such multiphase system were separated distinctively. Expandable tubing of injector was used to ensure that the isotopes were injected at the proper place in the sense that [{sup 131}I]Na isotope was injected into water layer and iodo-benzene, {sup [131]}IC{sub 6}H{sub 5,} was injected into crude oil regime. The radiotracer selection was based on the compatibility of radiotracer with each of fluids under investigation. [{sup 131}I]Na was used for measuring flow of water while iodo-benzene, {sup [131]}IC{sub 6}H{sub 5,} was used for measuring flow of crude oil. Two scintillation detectors were used and they are put at the distances 80 and 100 m, respectively, from injection point. The residence time distribution data were utilized for calculation water and crude oil flows. Several injections were conducted in the experiments. Although the crude oil density is lighter than the density of water, the result of measurement shows that the water flow is faster than the crude oil flow. As the system is water-dominated, water may act as carrier and the movement of crude oil is slowed due to friction between crude oil with water and crude oil with gas at top layer. Above of all, this result was able to give answer on the question why crude oil always arrives behind water as it is checked at gathering station. In addition, the flow patterns of the water in the pipeline calculated by Reynolds number and predicted by simple tank-in-series model is turbulence in character.

18. Investigation of Gas and Liquid Multiphase Flow in the Rheinsahl-Heraeus (RH) Reactor by Using the Euler-Euler Approach

Science.gov (United States)

Chen, Gujun; He, Shengping; Li, Yugang; Guo, Yintao; Wang, Qian

2016-08-01

In the present work, a mathematical model was developed to understand the multiphase flow behavior in a Rheinsahl-Heraeus (RH) reactor by using the Euler-Euler approach, and the effects of initial bubble diameter, nonequilibrium expansion of bubble caused by sudden thermal effect and sharp pressure drop, and various interphase forces were considered and clarified. The simulation results of mixing time, liquid circulation rate, and local liquid velocity in RH agree well with the measured results. The result indicates that the initial bubble diameter has a weak impact on the multiphase flow but that the bubble expansion has a tremendous impact on it for an actual RH. Meanwhile, the drag force and turbulent dispersion force strongly influence the multiphase flow, whereas the lift force and virtual mass force only have negligible influence on it. Furthermore, the turbulent dispersion force should be responsible for reasonable prediction of multiphase flow behavior in the RH reactor.

19. Multiphase flow modelling of volcanic ash particle settling in water using adaptive unstructured meshes

Science.gov (United States)

Jacobs, C. T.; Collins, G. S.; Piggott, M. D.; Kramer, S. C.; Wilson, C. R. G.

2013-02-01

Small-scale experiments of volcanic ash particle settling in water have demonstrated that ash particles can either settle slowly and individually, or rapidly and collectively as a gravitationally unstable ash-laden plume. This has important implications for the emplacement of tephra deposits on the seabed. Numerical modelling has the potential to extend the results of laboratory experiments to larger scales and explore the conditions under which plumes may form and persist, but many existing models are computationally restricted by the fixed mesh approaches that they employ. In contrast, this paper presents a new multiphase flow model that uses an adaptive unstructured mesh approach. As a simulation progresses, the mesh is optimized to focus numerical resolution in areas important to the dynamics and decrease it where it is not needed, thereby potentially reducing computational requirements. Model verification is performed using the method of manufactured solutions, which shows the correct solution convergence rates. Model validation and application considers 2-D simulations of plume formation in a water tank which replicate published laboratory experiments. The numerically predicted settling velocities for both individual particles and plumes, as well as instability behaviour, agree well with experimental data and observations. Plume settling is clearly hindered by the presence of a salinity gradient, and its influence must therefore be taken into account when considering particles in bodies of saline water. Furthermore, individual particles settle in the laminar flow regime while plume settling is shown (by plume Reynolds numbers greater than unity) to be in the turbulent flow regime, which has a significant impact on entrainment and settling rates. Mesh adaptivity maintains solution accuracy while providing a substantial reduction in computational requirements when compared to the same simulation performed using a fixed mesh, highlighting the benefits of an

20. Effects of Average and Point Capillary Pressure-Saturation Function Parameters on Multiphase Flow Simulations

Science.gov (United States)

Cheng, C.; Perfect, E.; Cropper, C.

2011-12-01

Numerical models are an important tool in petroleum engineering, geoscience, and environmental applications, e.g. feasibility evaluation and prediction for enhanced oil recovery, enhanced geothermal systems, geological carbon storage, and remediation of contaminated sites. Knowledge of capillary pressure-saturation functions is essential in such applications for simulating multiphase fluid flow and chemical transport in variably-saturated rocks and soils in the subsurface. Parameters from average capillary pressure-saturation functions are sometimes employed due to their relative ease of measurement in the laboratory. However, the use of average capillary pressure-saturation function parameters instead of point capillary pressure-saturation function parameters for numerical simulations of flow and transport can result in significant errors, especially in the case of coarse-grained sediments and fractured rocks. Such erroneous predications can impose great risks and challenges to decision-making. In this paper we present a comparison of simulation results based on average and point estimates of van Genuchten model parameters (Sr, α, and n) for Berea sandstone, packed glass beads, and Hanford sediments. The capillary pressure-saturation functions were measured using steady-state centrifugation. Average and point parameters were estimated for each sample using the averaging and integral methods, respectively. Results indicated that the Sr and α parameters estimated using averaging and integral methods were close to a 1-to-1 correspondence, with R-squared values of 0.958 and 0.994, respectively. The n parameter, however, showed a major curvilinear deviation from the 1-to-1 line for the two estimation methods. This trend indicates that the averaging method systematically underestimates the n parameter relative to the point-based estimates of the integral method leading to an over predication of the breadth of the pore size distribution. Forward numerical simulations

1. AOI 1— COMPUTATIONAL ENERGY SCIENCES:MULTIPHASE FLOW RESEARCH High-fidelity multi-phase radiation module for modern coal combustion systems

Energy Technology Data Exchange (ETDEWEB)

Modest, Michael

2013-11-15

2. Subsurface Transport Over Reactive Multiphases (STORM): A general, coupled, nonisothermal multiphase flow, reactive transport, and porous medium alteration simulator, Version 2 user's guide

Energy Technology Data Exchange (ETDEWEB)

DH Bacon; MD White; BP McGrail

2000-03-07

The Hanford Site, in southeastern Washington State, has been used extensively to produce nuclear materials for the US strategic defense arsenal by the Department of Energy (DOE) and its predecessors, the US Atomic Energy Commission and the US Energy Research and Development Administration. A large inventory of radioactive and mixed waste has accumulated in 177 buried single- and double shell tanks. Liquid waste recovered from the tanks will be pretreated to separate the low-activity fraction from the high-level and transuranic wastes. Vitrification is the leading option for immobilization of these wastes, expected to produce approximately 550,000 metric tons of Low Activity Waste (LAW) glass. This total tonnage, based on nominal Na{sub 2}O oxide loading of 20% by weight, is destined for disposal in a near-surface facility. Before disposal of the immobilized waste can proceed, the DOE must approve a performance assessment, a document that described the impacts, if any, of the disposal facility on public health and environmental resources. Studies have shown that release rates of radionuclides from the glass waste form by reaction with water determine the impacts of the disposal action more than any other independent parameter. This report describes the latest accomplishments in the development of a computational tool, Subsurface Transport Over Reactive Multiphases (STORM), Version 2, a general, coupled non-isothermal multiphase flow and reactive transport simulator. The underlying mathematics in STORM describe the rate of change of the solute concentrations of pore water in a variably saturated, non-isothermal porous medium, and the alteration of waste forms, packaging materials, backfill, and host rocks.

3. Third-order analysis of pseudopotential lattice Boltzmann model for multiphase flow

CERN Document Server

Huang, Rongzong

2016-01-01

In this work, a third-order Chapman-Enskog analysis of the multiple-relaxation-time (MRT) pseudopotential lattice Boltzmann (LB) model for multiphase flow is performed for the first time. The leading terms on the interaction force, consisting of an anisotropic and an isotropic term, are successfully identified in the third-order macroscopic equation recovered by the lattice Boltzmann equation (LBE), and then new mathematical insights into the pseudopotential LB model are provided. For the third-order anisotropic term, numerical tests show that it can cause the stationary droplet to become out-of-round, which suggests the isotropic property of the LBE needs to be seriously considered in the pseudopotential LB model. By adopting the classical equilibrium moment or setting the so-called "magic" parameter to 1/12, the anisotropic term can be eliminated, which is found from the present third-order analysis and also validated numerically. As for the third-order isotropic term, when and only when it is considered, a...

4. KIVA-hpFE. Predictive turbulent reactive and multiphase flow in engines - An Overview

Energy Technology Data Exchange (ETDEWEB)

Carrington, David Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

2016-05-23

Research and development of KIVA-hpFE for turbulent reactive and multiphase flow particularly as related to engine modeling program has relevance to National energy security and climate change. Climate change is a source problem, and energy national security is consumption of petroleum products problem. Accurately predicting engine processes leads to, lower greenhouse gas (GHG) emission, where engines in the transportation sector currently account for 26% of the U.S. GHG emissions. Less dependence on petroleum products leads to greater energy security. By Environmental Protection Agency standards, some vehicles are now reaching 42 to the 50 mpg mark. These are conventional gasoline engines. Continued investment and research into new technical innovations, the potential exists to save more than 4 million barrels of oil per day or approximately $200 to$400 million per day. This would be a significant decrease in emission and use of petroleum and a very large economic stimulus too! It is estimated with further advancements in combustion, the current emissions can be reduced up to 40%. Enabling better understanding of fuel injection and fuel-air mixing, thermodynamic combustion losses, and combustion/emission formation processes enhances our ability to help solve both problems. To provide adequate capability for accurately simulating these processes, minimize time and labor for development of engine technology, are the goals of our KIVA development program.

5. A Multiphase Flow in the Antroduodenal Portion of the Gastrointestinal Tract: A Mathematical Model

Directory of Open Access Journals (Sweden)

P. V. Trusov

2016-01-01

Full Text Available A group of authors has developed a multilevel mathematical model that focuses on functional disorders in a human body associated with various chemical, physical, social, and other factors. At this point, the researchers have come up with structure, basic definitions and concepts of a mathematical model at the “macrolevel” that allow describing processes in a human body as a whole. Currently we are working at the “mesolevel” of organs and systems. Due to complexity of the tasks, this paper deals with only one meso-fragment of a digestive system model. It describes some aspects related to modeling multiphase flow in the antroduodenal portion of the gastrointestinal tract. Biochemical reactions, dissolution of food particles, and motor, secretory, and absorbing functions of the tract are taken into consideration. The paper outlines some results concerning influence of secretory function disorders on food dissolution rate and tract contents acidity. The effect which food density has on inflow of food masses from a stomach to a bowel is analyzed. We assume that the future development of the model will include digestive enzymes and related reactions of lipolysis, proteolysis, and carbohydrates breakdown.

6. Multiphase fluid hammer: modeling, experiments and simulations

OpenAIRE

Lema Rodríguez, Marcos

2013-01-01

This thesis deals with the experimental and numerical analysis of the water hammer phenomenon generated by the discharge of a pressurized liquid into a pipeline kept under vacuum conditions. This flow configuration induces several multiphase phenomena such as cavitation and gas desorption that cannot be ignored in the water hammer behavior.The motivation of this research work comes from the liquid propulsion systems used in spacecrafts, which can undergo fluid hammer effects threatening the s...

7. Coupling of geochemical and multiphase flow processes for validation of the MUFITS reservoir simulator against TOUGHREACT

Science.gov (United States)

De Lucia, Marco; Kempka, Thomas; Afanasyev, Andrey; Melnik, Oleg; Kühn, Michael

2016-04-01

Coupled reactive transport simulations, especially in heterogeneous settings considering multiphase flow, are extremely time consuming and suffer from significant numerical issues compared to purely hydrodynamic simulations. This represents a major hurdle in the assessment of geological subsurface utilization, since it constrains the practical application of reactive transport modelling to coarse spatial discretization or oversimplified geological settings. In order to overcome such limitations, De Lucia et al. [1] developed and validated a one-way coupling approach between geochemistry and hydrodynamics, which is particularly well suited for CO2 storage simulations, while being of general validity. In the present study, the models used for the validation of the one-way coupling approach introduced by De Lucia et al. (2015), and originally performed with the TOUGHREACT simulator, are transferred to and benchmarked against the multiphase reservoir simulator MUFITS [2]. The geological model is loosely inspired by an existing CO2 storage site. Its grid comprises 2,950 elements enclosed in a single layer, but reflecting a realistic three-dimensional anticline geometry. For the purpose of this comparison, homogeneous and heterogeneous scenarios in terms of porosity and permeability were investigated. In both cases, the results of the MUFITS simulator are in excellent agreement with those produced with the fully-coupled TOUGHREACT simulator, while profiting from significantly higher computational performance. This study demonstrates how a computationally efficient simulator such as MUFITS can be successfully included in a coupled process simulation framework, and also suggests ameliorations and specific strategies for the coupling of chemical processes with hydrodynamics and heat transport, aiming at tackling geoscientific problems beyond the storage of CO2. References [1] De Lucia, M., Kempka, T., and Kühn, M. A coupling alternative to reactive transport simulations

8. Quantum Simulator for Transport Phenomena in Fluid Flows.

Science.gov (United States)

Mezzacapo, A; Sanz, M; Lamata, L; Egusquiza, I L; Succi, S; Solano, E

2015-08-17

Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.

9. Subsurface Multiphase Flow and Multicomponent Reactive Transport Modeling using High-Performance Computing

Energy Technology Data Exchange (ETDEWEB)

Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan

2007-08-01

Numerical modeling has become a critical tool to the Department of Energy for evaluating the environmental impact of alternative energy sources and remediation strategies for legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most “state of the art” groundwater models. Of particular concern are the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. Clearly, there is a need for higher-resolution modeling (i.e. more spatial, temporal, and chemical degrees of freedom) and increasingly mechanistic descriptions of subsurface physicochemical processes. We present research being performed in the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers and has exhibited impressive strong scalability on up to 4000 processors on the ORNL Cray XT3. We are employing PFLOTRAN in the simulation of uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies where overly-simplistic historical modeling erroneously predicted decade removal times for uranium by ambient groundwater flow. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.

10. Robust second-order scheme for multi-phase flow computations

Science.gov (United States)

Shahbazi, Khosro

2017-06-01

A robust high-order scheme for the multi-phase flow computations featuring jumps and discontinuities due to shock waves and phase interfaces is presented. The scheme is based on high-order weighted-essentially non-oscillatory (WENO) finite volume schemes and high-order limiters to ensure the maximum principle or positivity of the various field variables including the density, pressure, and order parameters identifying each phase. The two-phase flow model considered besides the Euler equations of gas dynamics consists of advection of two parameters of the stiffened-gas equation of states, characterizing each phase. The design of the high-order limiter is guided by the findings of Zhang and Shu (2011) [36], and is based on limiting the quadrature values of the density, pressure and order parameters reconstructed using a high-order WENO scheme. The proof of positivity-preserving and accuracy is given, and the convergence and the robustness of the scheme are illustrated using the smooth isentropic vortex problem with very small density and pressure. The effectiveness and robustness of the scheme in computing the challenging problem of shock wave interaction with a cluster of tightly packed air or helium bubbles placed in a body of liquid water is also demonstrated. The superior performance of the high-order schemes over the first-order Lax-Friedrichs scheme for computations of shock-bubble interaction is also shown. The scheme is implemented in two-dimensional space on parallel computers using message passing interface (MPI). The proposed scheme with limiter features approximately 50% higher number of inter-processor message communications compared to the corresponding scheme without limiter, but with only 10% higher total CPU time. The scheme is provably second-order accurate in regions requiring positivity enforcement and higher order in the rest of domain.

11. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

Energy Technology Data Exchange (ETDEWEB)

Chang, Y.C.; Mani, V.; Mohanty, K.K. [Univ. of Houston, TX (United States)

1997-08-01

Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

12. Two equations of state assembled for basic analysis of multiphase CO 2 flow and in deep sedimentary basin conditions

Science.gov (United States)

McPherson, Brian J. O. L.; Han, Weon Shik; Cole, Barret S.

2008-05-01

The purpose of the study presented in this manuscript is to describe and make available two equation-of-state (EOS) algorithms assembled for multiphase flow and transport of carbon dioxide (CO2). The algorithms presented here calculate solubility, compressibility factor, density, viscosity, fugacity, and enthalpy of CO2 in gaseous and supercritical phases, and mixtures or solutions of CO2 in water, as functions of pressure and temperature. Several features distinguish the two algorithms, but the primary distinction concerns treatment of supercritical/gas-phase CO2: one EOS we assembled is based on Redlich and Kwong's original algorithm developed in 1949, and the other is based on an algorithm developed by Span and Wagner in 1996. Both were modified for application to sedimentary basin studies of multiphase CO2 flow processes, including carbon sequestration applications. We present a brief comparison of these two EOS algorithms. Source codes for both algorithms are provided, including "stand-alone" Matlab © scripts for the interactive calculation of fluid properties at specified P-T conditions and FORTRAN subroutines for inclusion in existing FORTRAN multiphase fluid simulation packages. These routines are intended for fundamental analyses of CO2 sequestration and the like; more advanced studies, such as brine processes and reactive transport, require more advanced EOS algorithms.

13. Instantaneous equations for multiphase flow in porous media without length-scale restrictions using a non-local averaging volume

Energy Technology Data Exchange (ETDEWEB)

Espinosa-Paredes, Gilberto, E-mail: gepe@xanum.uam.m [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Apartado Postal 55-535, Mexico D.F. 09340 (Mexico)

2010-05-15

The aim of this paper is to propose a framework to obtain a new formulation for multiphase flow conservation equations without length-scale restrictions, based on the non-local form of the averaged volume conservation equations. The simplification of the local averaging volume of the conservation equations to obtain practical equations is subject to the following length-scale restrictions: d << l << L, where d is the characteristic length of the dispersed phases, l is the characteristic length of the averaging volume, and L is the characteristic length of the physical system. If the foregoing inequality does not hold, or if the scale of the problem of interest is of the order of l, the averaging technique and therefore, the macroscopic theories of multiphase flow should be modified in order to include appropriate considerations and terms in the corresponding equations. In these cases the local form of the averaged volume conservation equations are not appropriate to describe the multiphase system. As an example of the conservation equations without length-scale restrictions, the natural circulation boiling water reactor was consider to study the non-local effects on the thermal-hydraulic core performance during steady-state and transient behaviors, and the results were compared with the classic local averaging volume conservation equations.

14. Study on absorption coefficients of dual-energy γ-rays in determining phase fractions of multiphase flows

Institute of Scientific and Technical Information of China (English)

LI Zhi-biao; LI Dong-hui; WU Ying-xiang

2005-01-01

This paper discusses the principle and mathematical method to measure the phase fractions of multiphase flows by using a dual-energy gamma-ray system. The dual-energy gamma-ray device is composed of radioactive isotopes of 241Am and 137Cs with emission energies of 59.5 keV and 662 keV respectively. A rational method to calibrate the absorption coefficient was introduced in detail. The statistical error has been analyzed on the basis of the accurate absorption coefficient which enables determination phrase fractions almost independent of the flow regime. Improvement has been achieved on the measurement accuracy of phase fractions.

15. Dynamical system analysis of unstable flow phenomena in centrifugal blower

Directory of Open Access Journals (Sweden)

Garcia David

2015-09-01

Full Text Available Methods of dynamical system analysis were employed to analyze unsteady phenomena in a centrifugal blower. Pressure signals gathered at different control points were decomposed into their Principal Components (PCs by means of Singular Spectrum Analysis (SSA. Certain number of PCs was considered in the analysis based on their statistical correlation. Projection of the original signal onto its PCs allowed to draw the phase trajectory that clearly separated non-stable blower working conditions from its regular operation.

16. Micro-Ct Imaging of Multi-Phase Flow in Carbonates and Sandstones

Science.gov (United States)

Andrew, M. G.; Bijeljic, B.; Blunt, M. J.

2013-12-01

One of the most important mechanisms that limits the escape of CO2 when injected into the subsurface for the purposes of carbon storage is capillary trapping, where CO2 is stranded as pore-scale droplets (ganglia). Prospective storage sites are aquifers or reservoirs that tend to be at conditions where CO2 will reside as a super-critical phase. In order to fully describe physical mechanisms characterising multi-phase flow during and post CO2 injection, experiments need to be conducted at these elevated aquifer/reservoir conditions - this poses a considerable experimental challenge. A novel experimental apparatus has been developed which uses μCT scanning for the non-invasive imaging of the distribution of CO2 in the pore space of rock with resolutions of 7μm at temperatures and pressures representative of the conditions present in prospective saline aquifer CO2 storage sites. The fluids are kept in chemical equilibrium with one-another and with the rock into which they are injected. This is done to prevent the dissolution of the CO2 in the brine to form carbonic acid, which can then react with the rock, particularly carbonates. By eliminating reaction we study the fundamental mechanisms of capillary trapping for an unchanging pore structure. In this study we present a suite of results from three carbonate and two sandstone rock types, showing that, for both cases the CO2 acts as the non-wetting phase and significant quantities of CO2 is trapped. The carbonate examined represent a wide variety of pore topologies with one rock with a very well connected, high porosity pore space (Mt Gambier), one with a lower porosity, poorly connected pore space (Estaillades) and one with a cemented bead pack type pore space (Ketton). Both sandstones (Doddington and Bentheimer) were high permeability granular quartzites. CO2 was injected into each rock, followed by brine injection. After brine injection the entire length of the rock core was scanned, processed and segmented into

17. Hybrid dynamic radioactive particle tracking (RPT) calibration technique for multiphase flow systems

Science.gov (United States)

Khane, Vaibhav; Al-Dahhan, Muthanna H.

2017-04-01

The radioactive particle tracking (RPT) technique has been utilized to measure three-dimensional hydrodynamic parameters for multiphase flow systems. An analytical solution to the inverse problem of the RPT technique, i.e. finding the instantaneous tracer positions based upon instantaneous counts received in the detectors, is not possible. Therefore, a calibration to obtain a counts-distance map is needed. There are major shortcomings in the conventional RPT calibration method due to which it has limited applicability in practical applications. In this work, the design and development of a novel dynamic RPT calibration technique are carried out to overcome the shortcomings of the conventional RPT calibration method. The dynamic RPT calibration technique has been implemented around a test reactor with 1foot in diameter and 1 foot in height using Cobalt-60 as an isotopes tracer particle. Two sets of experiments have been carried out to test the capability of novel dynamic RPT calibration. In the first set of experiments, a manual calibration apparatus has been used to hold a tracer particle at known static locations. In the second set of experiments, the tracer particle was moved vertically downwards along a straight line path in a controlled manner. The obtained reconstruction results about the tracer particle position were compared with the actual known position and the reconstruction errors were estimated. The obtained results revealed that the dynamic RPT calibration technique is capable of identifying tracer particle positions with a reconstruction error between 1 to 5.9 mm for the conditions studied which could be improved depending on various factors outlined here.

18. A numerical method for shock driven multiphase flow with evaporating particles

Science.gov (United States)

Dahal, Jeevan; McFarland, Jacob A.

2017-09-01

A numerical method for predicting the interaction of active, phase changing particles in a shock driven flow is presented in this paper. The Particle-in-Cell (PIC) technique was used to couple particles in a Lagrangian coordinate system with a fluid in an Eulerian coordinate system. The Piecewise Parabolic Method (PPM) hydrodynamics solver was used for solving the conservation equations and was modified with mass, momentum, and energy source terms from the particle phase. The method was implemented in the open source hydrodynamics software FLASH, developed at the University of Chicago. A simple validation of the methods is accomplished by comparing velocity and temperature histories from a single particle simulation with the analytical solution. Furthermore, simple single particle parcel simulations were run at two different sizes to study the effect of particle size on vorticity deposition in a shock-driven multiphase instability. Large particles were found to have lower enstrophy production at early times and higher enstrophy dissipation at late times due to the advection of the particle vorticity source term through the carrier gas. A 2D shock-driven instability of a circular perturbation is studied in simulations and compared to previous experimental data as further validation of the numerical methods. The effect of the particle size distribution and particle evaporation is examined further for this case. The results show that larger particles reduce the vorticity deposition, while particle evaporation increases it. It is also shown that for a distribution of particles sizes the vorticity deposition is decreased compared to single particle size case at the mean diameter.

19. Third-order analysis of pseudopotential lattice Boltzmann model for multiphase flow

Science.gov (United States)

Huang, Rongzong; Wu, Huiying

2016-12-01

In this work, a third-order Chapman-Enskog analysis of the multiple-relaxation-time (MRT) pseudopotential lattice Boltzmann (LB) model for multiphase flow is performed for the first time. The leading terms on the interaction force, consisting of an anisotropic and an isotropic term, are successfully identified in the third-order macroscopic equation recovered by the lattice Boltzmann equation (LBE), and then new mathematical insights into the pseudopotential LB model are provided. For the third-order anisotropic term, numerical tests show that it can cause the stationary droplet to become out-of-round, which suggests the isotropic property of the LBE needs to be seriously considered in the pseudopotential LB model. By adopting the classical equilibrium moment or setting the so-called "magic" parameter to 1/12, the anisotropic term can be eliminated, which is found from the present third-order analysis and also validated numerically. As for the third-order isotropic term, when and only when it is considered, accurate continuum form pressure tensor can be definitely obtained, by which the predicted coexistence densities always agree well with the numerical results. Compared with this continuum form pressure tensor, the classical discrete form pressure tensor is accurate only when the isotropic term is a specific one. At last, in the framework of the present third-order analysis, a consistent scheme for third-order additional term is proposed, which can be used to independently adjust the coexistence densities and surface tension. Numerical tests are subsequently carried out to validate the present scheme.

20. Theoretical study on the constricted flow phenomena in arteries

Science.gov (United States)

Sen, S.; Chakravarty, S.

2012-12-01

The present study is dealt with the constricted flow characteristics of blood in arteries by making use of an appropriate mathematical model. The constricted artery experiences the generated wall shear stress due to flow disturbances in the presence of constriction. The disturbed flow in the stenosed arterial segment causes malfunction of the cardiovascular system leading to serious health problems in the form of heart attack and stroke. The flowing blood contained in the stenosed artery is considered to be non-Newtonian while the flow is treated to be two-dimensional. The present pursuit also accounts for the motion of the arterial wall and its effect on local fluid mechanics. The flow analysis applies the time-dependent, two-dimensional incompressible nonlinear Navier-Stokes equations for non-Newtonian fluid representing blood. An extensive quantitative analysis presented at the end of the paper based on large scale numerical computations of the quantities of major physiological significance enables one to estimate the constricted flow characteristics in the arterial system under consideration which deviates significantly from that of normal physiological flow conditions.

1. Quantum Simulator for Transport Phenomena in Fluid Flows

CERN Document Server

Mezzacapo, A; Lamata, L; Egusquiza, I L; Succi, S; Solano, E

2015-01-01

Transport phenomena are one of the most challenging problems in computational physics. We present a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics problems within a lattice kinetic formalism. This quantum simulator is obtained by exploiting the analogies between Dirac and lattice Boltzmann equations. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.

2. Numerical Modeling of Multiphase Fluid Flow in Ore-Forming Hydrothermal Systems

Science.gov (United States)

Weis, P.; Driesner, T.; Coumou, D.; Heinrich, C. A.

2007-12-01

Two coexisting fluid phases - a variably saline liquid and a vapor phase - are ubiquitous in ore-forming and other hydrothermal systems. Understanding the dynamics of phase separation and the distinct physical and chemical evolution of the two fluids probably plays a key role in generating different ore deposit types, e.g. porphyry type, high and low sulfidation Cu-Mo-Au deposits. To this end, processes within hydrothermal systems have been studied with a refined numerical model describing fluid flow in transient porous media (CSP~5.0). The model is formulated on a mass, energy and momentum conserving finite-element-finite-volume (FEFV) scheme and is capable of simulating multiphase flow of NaCl-H20 fluids. Fluid properties are computed from an improved equation of state (SOWAT~2.0). It covers conditions with temperatures of up to 1000 degrees~C, pressures of up to 500 MPa, and fluid salinities of 0~to 100%~NaCl. In particular, the new set-up allows for a more accurate description of fluid phase separation during boiling of hydrothermal fluids into a vapor and a brine phase. The geometric flexibility of the FEFV-meshes allows for investigations of a large variety of geological settings, ranging from ore-forming processes in magmatic hydrothermal system to the dynamics of black smokers at mid-ocean ridges. Simulations demonstrated that hydrothermal convection patterns above cooling plutons are primarily controlled by the system-scale permeability structure. In porphyry systems, high fluid pressures develop in a stock rising from the magma chamber which can lead to rock failure and, eventually, an increase in permeability due to hydrofracturing. Comparisons of the thermal evolution as inferred from modeling studies with data from fluid inclusion studies of the Pb-Zn deposits of Madan, Bulgaria are in a strikingly good agreement. This indicates that cross-comparisons of field observations, analytical data and numerical simulations will become a powerful tool towards a

3. Visualizing Time-Varying Phenomena In Numerical Simulations Of Unsteady Flows

Science.gov (United States)

Lane, David A.

1996-01-01

Streamlines, contour lines, vector plots, and volume slices (cutting planes) are commonly used for flow visualization. These techniques are sometimes referred to as instantaneous flow visualization techniques because calculations are based on an instant of the flowfield in time. Although instantaneous flow visualization techniques are effective for depicting phenomena in steady flows,they sometimes do not adequately depict time-varying phenomena in unsteady flows. Streaklines and timelines are effective visualization techniques for depicting vortex shedding, vortex breakdown, and shock waves in unsteady flows. These techniques are examples of time-dependent flow visualization techniques, which are based on many instants of the flowfields in time. This paper describes the algorithms for computing streaklines and timelines. Using numerically simulated unsteady flows, streaklines and timelines are compared with streamlines, contour lines, and vector plots. It is shown that streaklines and timelines reveal vortex shedding and vortex breakdown more clearly than instantaneous flow visualization techniques.

4. Numerical simulation of multi-phase combustion flow in solid rocket motors with metalized propellant%Nmerical simulation of multi-phase combustion flow in solid rocket motors with metalized propellant

Institute of Scientific and Technical Information of China (English)

SHAFQAT Wahab; XIE Kan; LIU Yu

2009-01-01

Multi-phase flow field simulation has been performed on solid rocket motor and effect of multi-phases on the performance prediction of the solid rocket motor(SRM)is in- vestigation.During the combustion of aluminized propellant,the aluminum particles in the propellant melt and form liquid aluminum at the burning propellant surface.So the flow within the rocket motor is multi phase or two phase because it contains droplets and smoke particles of Al2O3.Flow simulations have been performed on a large scale motor,to observe the effect of the flowfield on the chamber and nozzle as well.Uniform particles diameters and Rosin-Rammler diameter distribution method that is based on the assumption that an expo- nential relationship exists between the droplet diameter,d and mass fraction of droplets with diameter greater than d have been used for the simulation of different distribution of Al2O3 droplets present in SRM.Particles sizes in the range of 1-1 00μm are used,as being the most common droplets.In this approach the complete range of particle sizes is divided into a set of discrete size ranges,each to be defined by single stream that is part of the group.Roe scheme-flux differencing splitting based on approximate Riemann problem has been used to simulate the effects of the multi-phase flowfeild.This is second order upwind scheme in which flux differencing splitting method is employed.To cater for the turbulence effect, Spalart-Allmaras model has been used.The results obtained show the great sensitivity of this diameters distribution and particles concentrations to the SRM flow dynamics,primarily at the motor chamber and nozzle exit.The results are shown with various sizes of the parti- cles concentrations and geometrical configurations including models for SRM and nozzle.The analysis also provides effect of multi-phase on performance prediction of solid rocket motor.

Science.gov (United States)

Breitsamter, C.

2008-01-01

This paper presents selected results from extensive experimental investigations on turbulent flow fields and unsteady surface pressures caused by leading-edge vortices, in particular, for vortex breakdown flow. Such turbulent flows may cause severe dynamic aeroelastic problems like wing and/or fin buffeting on fighter-type aircraft. The wind tunnel models used include a generic delta wing as well as a detailed aircraft configuration of canard-delta wing type. The turbulent flow structures are analyzed by root-mean-square and spectral distributions of velocity and pressure fluctuations. Downstream of bursting local maxima of velocity fluctuations occur in a limited radial range around the vortex center. The corresponding spectra exhibit significant peaks indicating that turbulent kinetic energy is channeled into a narrow band. These quasi-periodic velocity oscillations arise from a helical mode instability of the breakdown flow. Due to vortex bursting there is a characteristic increase in surface pressure fluctuations with increasing angle of attack, especially when the burst location moves closer to the apex. The pressure fluctuations also show dominant frequencies corresponding to those of the velocity fluctuations. Using the measured flow field data, scaling parameters are derived for design purposes. It is shown that a frequency parameter based on the local semi-span and the sinus of angle of attack can be used to estimate the frequencies of dynamic loads evoked by vortex bursting.

6. Multiphase Binary Mixture Flows in Porous Media in a Wide Pressure and Temperature Range Including Critical Conditions

Science.gov (United States)

Afanasyev, A.

2011-12-01

Multiphase flows in porous media with a transition between sub- and supercritical thermodynamic conditions occur in many natural and technological processes (e.g. in deep regions of geothermal reservoirs where temperature reaches critical point of water or in gas-condensate fields where subject to critical conditions retrograde condensation occurs and even in underground carbon dioxide sequestration processes at high formation pressure). Simulation of these processes is complicated due to degeneration of conservation laws under critical conditions and requires non-classical mathematical models and methods. A new mathematical model is proposed for efficient simulation of binary mixture flows in a wide range of pressures and temperatures that includes critical conditions. The distinctive feature of the model lies in the methodology for mixture properties determination. Transport equations and Darcy law are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. Such approach allows determination not only single-phase states and two-phase states of liquid-gas type as in classical models but also two-phase states of liquid-liquid type and three-phase states. The proposed mixture model was implemented in MUFITS (Multiphase Filtration Transport Simulator) code for hydrodynamic simulations. As opposed to classical approaches pressure, enthalpy and composition variables together with fully implicit method and cascade procedure are used. The code is capable of unstructured grids, heterogeneous porous media, relative permeability and capillary pressure dependence on temperature and pressure, multiphase diffusion, optional number of sink and sources, etc. There is an additional module for mixture properties specification. The starting point for the simulation is a cubic equation of state that is

7. A Computational Model for Multi-phase Flow in a Heterogeneous Layered System (poster)

NARCIS (Netherlands)

Musivand Arzanfudi, M.

2013-01-01

CO2 sequestration in underground formations is currently utilized as a means to mitigate CO2 from indefinitely emitted to the atmosphere. The main concern in such a system is the possible occurrence of leakage to upper layers or to the earth surface. Computational modeling of leakage of a multiphase

8. Vortex dominated flows. Analysis and computation for multiple scale phenomena

Energy Technology Data Exchange (ETDEWEB)

Ting, L. [New York Univ., NY (United States). Courant Inst. of Mathematical Sciences; Klein, R. [Freie Univ. Berlin (Germany). Fachbereich Mathematik und Informatik; Knio, O.M. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Mechanical Engineering

2007-07-01

This monograph provides in-depth analyses of vortex dominated flows via matched and multiscale asymptotics, and demonstrates how insight gained through these analyses can be exploited in the construction of robust, efficient, and accurate numerical techniques. The book explores the dynamics of slender vortex filaments in detail, including fundamental derivations, compressible core structure, weakly non-linear limit regimes, and associated numerical methods. Similarly, the volume covers asymptotic analysis and computational techniques for weakly compressible flows involving vortex-generated sound and thermoacoustics. The book is addressed to both graduate students and researchers. (orig.)

9. Numerical Tools for Multicomponent, Multiphase, Reactive Processes: Flow of CO{sub 2} in Porous Medium

Energy Technology Data Exchange (ETDEWEB)

Khattri, Sanjay Kumar

2006-07-01

The thesis is concerned with numerically simulating multicomponent, multiphase, reactive transport in heterogeneous porous medium. Such processes are ubiquitous, for example, deposition of green house gases, flow of hydrocarbons and groundwater remediation. Understanding such processes is important from social and economic point of view. For the success of geological sequestration, an accurate estimation of migration patterns of green-house gases is essential. Due to an ever increasing computer power, computational mathematics has become an important tool for predicting dynamics of porous media fluids. Numerical and mathematical modelling of processes in a domain requires grid generation in the domain, discretization of the continuum equations on the generated grid, solution of the formed linear or nonlinear system of discrete equations and finally visualization of the results. The thesis is composed of three chapters and eight papers. Chapter 2 presents two techniques for generating structured quadrilateral and hexahedral meshes. These techniques are called algebraic and elliptic methods. Algebraic techniques are by far the most simple and computationally efficient method for grid generation. Transfinite interpolation operators are a kind of algebraic grid generation technique. In this chapter, many transfinite interpolation operators for grid generation are derived from 1D projection operators. In this chapter, some important properties of hexahedral elements are also mentioned. These properties are useful in discretization of partial differential equations on hexahedral mesh, improving quality of the hexahedral mesh, mesh generation and visualization. Chapter 3 is about CO{sub 2} flow in porous media. In this chapter, we present the mathematical models and their discretization for capturing major physical processes associated with CO{sub 2} deposition in geological formations. Some important simulations of practical applications in 2D and 3D are presented

10. Numerical Tools for Multicomponent, Multiphase, Reactive Processes: Flow of CO{sub 2} in Porous Medium

Energy Technology Data Exchange (ETDEWEB)

Khattri, Sanjay Kumar

2006-07-01

The thesis is concerned with numerically simulating multicomponent, multiphase, reactive transport in heterogeneous porous medium. Such processes are ubiquitous, for example, deposition of green house gases, flow of hydrocarbons and groundwater remediation. Understanding such processes is important from social and economic point of view. For the success of geological sequestration, an accurate estimation of migration patterns of green-house gases is essential. Due to an ever increasing computer power, computational mathematics has become an important tool for predicting dynamics of porous media fluids. Numerical and mathematical modelling of processes in a domain requires grid generation in the domain, discretization of the continuum equations on the generated grid, solution of the formed linear or nonlinear system of discrete equations and finally visualization of the results. The thesis is composed of three chapters and eight papers. Chapter 2 presents two techniques for generating structured quadrilateral and hexahedral meshes. These techniques are called algebraic and elliptic methods. Algebraic techniques are by far the most simple and computationally efficient method for grid generation. Transfinite interpolation operators are a kind of algebraic grid generation technique. In this chapter, many transfinite interpolation operators for grid generation are derived from 1D projection operators. In this chapter, some important properties of hexahedral elements are also mentioned. These properties are useful in discretization of partial differential equations on hexahedral mesh, improving quality of the hexahedral mesh, mesh generation and visualization. Chapter 3 is about CO{sub 2} flow in porous media. In this chapter, we present the mathematical models and their discretization for capturing major physical processes associated with CO{sub 2} deposition in geological formations. Some important simulations of practical applications in 2D and 3D are presented

11. A multi-phase ferrofluid flow model with equation of state for thermomagnetic pumping and heat transfer

CERN Document Server

Aursand, Eskil; Lervåg, Karl Yngve; Lund, Halvor

2016-01-01

A one-dimensional multi-phase flow model for thermomagnetically pumped ferrofluid with heat transfer is proposed. The thermodynamic model is a combination of a simplified particle model and thermodynamic equations of state for the base fluid. The magnetization model is based on statistical mechanics, taking into account non-uniform particle size distributions. An implementation of the proposed model is validated against experiments from the literature, and found to give good predictions for the thermomagnetic pumping performance. However, the results reveal a very large sensitivity to uncertainties in heat transfer coefficient predictions.

12. Numerical simulation of compressor endwall and casing treatment flow phenomena

Science.gov (United States)

Crook, A. J.; Greitzer, E. M.; Tan, C. S.; Adamczyk, J. J.

1992-01-01

A numerical study is presented of the flow in the endwall region of a compressor blade row, in conditions of operation with both smooth and grooved endwalls. The computations are first compared to velocity field measurements in a cantilevered stator/rotating hub configuration to confirm that the salient features are captured. Computations are then interrogated to examine the tip leakage flow structure since this is a dominant feature of the endwall region. In particular, the high blockage that can exist near the endwalls at the rear of a compressor blade passage appears to be directly linked to low total pressure fluid associated with the leakage flow. The fluid dynamic action of the grooved endwall, representative of the casing treatments that have been most successful in suppressing stall, is then simulated computationally and two principal effects are identified. One is suction of the low total pressure, high blockage fluid at the rear of the passage. The second is energizing of the tip leakage flow, most notably in the core of the leakage vortex, thereby suppressing the blockage at its source.

13. Microwave assisted flow synthesis: Coupling of electromagnetic and hydrodynamic phenomena

NARCIS (Netherlands)

Patil, N.G.; Benaskar, F.; Meuldijk, J.; Hulshof, L.A.; Hessel, V.; Schouten, J.C.; Esveld, D.C.; Rebrov, E.V.

2014-01-01

This article describes the results of a modeling study performed to understand the microwave heating process in continuous-flow reactors. It demonstrates the influence of liquid velocity profiles on temperature and microwave energy dissipation in a microwave integrated milli reactor-heat exchanger.

14. ASSESSMENT OF A CENTRAL DIFFERENCE FINITE VOLUME SCHEME FOR MODELING OF CAVITATING FLOWS USING PRECONDITIONED MULTIPHASE EULER EQUATIONS

Institute of Scientific and Technical Information of China (English)

HEJRANFAR Kazem; FATTAH-HESARY Kasra

2011-01-01

A numerical treatment for the prediction of cavitating flows is presented and assessed.The algorithm uses the preconditioned multiphase Euler equations with appropriate mass transfer terms.A central difference finite volume scheme with suitable dissipation terms to account for density jumps across the cavity interface is shown to yield an effective method for solving the multiphase Euler equations.The Euler equations are utilized herein for the cavitation modeling, because some certain characteristics of cavitating flows can be obtained using the solution of this system of equations with relative low computational effort.In addition, the Euler equations are appropriate for the assessment of the numerical method used, because of the sensitivity of the solution to the numerical instabilities.For this reason, a sensitivity study is conducted to evaluate the effects of various parameters, such as numerical dissipation coefficients and grid size, on the accuracy and performance of the solution.The computations are performed for steady cavitating flows around the NACA 0012 and NACA 66 (MOD) hydrofoils and also an axisymmetric hemispherical fore-body under different conditions and the results are compared with the available numerical and experimental data.The solution procedure presented is shown to be accurate and efficient for predicting steady sheet- and super-cavitation for 2D/axisymmetric geometries.

15. Multi-phase micro-scale flow simulation in the electrodes of a PEM fuel cell by lattice Boltzmann method

Science.gov (United States)

Park, J.; Li, X.

The gas diffusion layer of a polymer electrolyte membrane (PEM) fuel cell is a porous medium generally made of carbon cloth or paper. The gas diffusion layer has been modeled conventionally as a homogeneous porous medium with a constant permeability in the literature of PEM fuel cell. However, in fact, the permeability of such fibrous porous medium is strongly affected by the fiber orientation having non-isotropic permeability. In this work, the lattice Boltzmann (LB) method is applied to the multi-phase flow phenomenon in the inhomogeneous gas diffusion layer of a PEM fuel cell. The inhomogeneous porous structure of the carbon cloth and carbon paper has been modeled as void space and porous area using Stokes/Brinkman formulation and void space and impermeable fiber distributions obtained from various microscopic images. The permeability of the porous medium is calculated and compared to the experimental measurements in literature showing a good agreement. Simulation results for various fiber distributions indicate that the permeability of the medium is strongly influenced by the effect of fiber orientation. Present lattice Boltzmann flow models are applied to the multi-phase flow simulations by incorporating multi-component LB model with inter-particle interaction forces. The model successfully simulates the complicated unsteady behaviors of liquid droplet motion in the porous medium providing a useful tool to investigate the mechanism of liquid water accumulation/removal in a gas diffusion layer of a PEM fuel cell.

16. The impact of reservoir conditions and rock heterogeneity on multiphase flow in CO2-brine-sandstone systems

Science.gov (United States)

Krevor, S. C.; Reynolds, C. A.; Al-Menhali, A.; Niu, B.

2015-12-01

Capillary strength and multiphase flow are key for modeling CO2 injection for CO2 storage. Past observations of multiphase flow in this system have raised important questions about the impact of reservoir conditions on flow through effects on wettability, interfacial tension and fluid-fluid mass transfer. In this work we report the results of an investigation aimed at resolving many of these outstanding questions for flow in sandstone rocks. The drainage capillary pressure, drainage and imbibition relative permeability, and residual trapping [1] characteristic curves have been characterized in Bentheimer and Berea sandstone rocks across a pressure range 5 - 20 MPa, temperatures 25 - 90 C and brine salinities 0-5M NaCl. Over 30 reservoir condition core flood tests were performed using techniques including the steady state relative permeability test, the semi-dynamic capillary pressure test, and a new test for the construction of the residual trapping initial-residual curve. Test conditions were designed to isolate effects of interfacial tension, viscosity ratio, density ratio, and salinity. The results of the tests show that, in the absence of rock heterogeneity, reservoir conditions have little impact on flow properties, consistent with continuum scale multiphase flow theory for water wet systems. The invariance of the properties is observed, including transitions of the CO2 from a gas to a liquid to a supercritical fluid, and in comparison with N2-brine systems. Variations in capillary pressure curves are well explained by corresponding changes in IFT although some variation may reflect small changes in wetting properties. The low viscosity of CO2at certain conditions results in sensitivity to rock heterogeneity. We show that (1) heterogeneity is the likely source of uncertainty around past relative permeability observations and (2) that appropriate scaling of the flow potential by a quantification of capillary heterogeneity allows for the selection of core flood

17. Numerical and Physical Modelling of Bubbly Flow Phenomena - Final Report to the Department of Energy

Energy Technology Data Exchange (ETDEWEB)

Andrea Prosperetti

2004-12-21

This report describes the main features of the results obtained in the course of this project. A new approach to the systematic development of closure relations for the averaged equations of disperse multiphase flow is outlined. The focus of the project is on spatially non-uniform systems and several aspects in which such systems differ from uniform ones are described. Then, the procedure used in deriving the closure relations is given and some explicit results shown. The report also contains a list of publications supported by this grant and a list of the persons involved in the work.

18. Dissipative Particle Dynamics and Other Particle Methods for Multiphase Fluid Flow in Fractured and Porous Media

Energy Technology Data Exchange (ETDEWEB)

Paul Meakin; Zhijie Xu

2008-06-01

Particle methods are much less computationally efficient than grid based numerical solution of the Navier Stokes equation, and they have been used much less extensively, particularly for engineering applications. However, they have important advantages for some applications. These advantages include rigorous mast conservation, momentum conservation and isotropy. In addition, there is no need for explicit interface tracking/capturing. Code development effort is relatively low, and it is relatively simple to simulate flows with moving boundaries. In addition, it is often quite easy to include coupling of fluid flow with other physical phenomena such a phase separation. Here we describe the application of three particle methods: molecular dynamics, dissipative particle dynamics and smoothed particle hydrodynamics. While these methods were developed to simulate fluids and other materials on three quite different scales – the molecular, meso and continuum scales, they are very closely related from a computational point of view. The mesoscale (between the molecular and continuum scales) dissipative particle dynamics method can be used to simulate systems that are too large to simulate using molecular dynamics but small enough for thermal fluctuations to play an important role. Important examples include polymer solutions, gels, small particle suspensions and membranes. In these applications inter particle and intra molecular hydrodynamic interactions are automatically included

19. Turbulence and Complex Flow Phenomena in Axial Turbomachines

Science.gov (United States)

2007-11-02

Adamczyk J. J., 1996, "Wake Mixing in Axial Flow Compressors," ASME Paper No. 96-GT-029 Adamczyk J.J., Mulac R.A., Celestina M.L., 1986, "A Model for...Closing the Inviscid Form of the Average-Passage Equation System," ASME Paper No. 86-GT-227 Adamczyk J.J.; Celestina M.L.; Beach T.A.; Barnett M., 1990

20. Vocal Fold Pathologies and Three-Dimensional Flow Separation Phenomena

Science.gov (United States)

Apostoli, Adam G.; Weiland, Kelley S.; Plesniak, Michael W.

2013-11-01

Polyps and nodules are two different pathologies, which are geometric abnormalities that form on the medial surface of the vocal folds, and have been shown to significantly disrupt a person's ability to communicate. Although the mechanism by which the vocal folds self-oscillate and the three-dimensional nature of the glottal jet has been studied, the effect of irregularities caused by pathologies is not fully understood. Examining the formation and evolution of vortical structures created by a geometric protuberance is important, not only for understanding the aerodynamic forces exerted by these structures on the vocal folds, but also in the treatment of the above-mentioned pathological conditions. Using a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, the present investigation considers three-dimensional flow separation induced by a model vocal fold polyp. Building on previous work using skin friction line visualization, both the velocity flow field and wall pressure measurements around the model polyp are presented and compared. Supported by the National Science Foundation, Grant No. CBET-1236351 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

1. Simulation of the Internal Transport Phenomena for PEM Fuel Cells with Different Modes of Flow

Institute of Scientific and Technical Information of China (English)

胡鸣若; 朱新坚; 顾安忠

2004-01-01

A numerical model for proton exchange membrane (PEM) fuel cell is developed, which can simulate such basic transport phenomena as gas-liquid two-phase flow in a working fuel cell. Boundary conditions for both the conventional and the interdigitated modes of flow are presented on a three-dimensional basis. Numerical techniques for this model are discussed in detail. Validation shows good agreement between simulating results and experimental data. Furthermore, internal transport phenomena are discussed and compared for PEM fuel cells with conventional and interdigitated flows. It is found that the dead-ended structure of an interdigitated flow does increase the oxygen mass fraction and decrease the liquid water saturation in the gas diffusion layer as compared to the conventional mode of flow. However, the cathode humidification is important for an interdigitated flow to acquire better performance than a conventional flow fuel cell.

2. Air flow phenomena in the model of the blind drift

Directory of Open Access Journals (Sweden)

Jaszczur Marek

2016-01-01

Full Text Available In the presented paper, Particle Image Velocimetry (PIV has been used to investigate flow pattern and turbulent structure in the model of blind drift. The presented model exist in mining, and has been analyzed to resolve ventilation issues. Blind region is particularly susceptible to unsafe methane accumulation. The measurement system allows us to evaluate all components of the velocity vector in channel cross-section simultaneously. First order and second order statistic of the velocity fields from different channel cross-section are computed and analyzed.

3. Effect of asynchrony on numerical simulations of fluid flow phenomena

Science.gov (United States)

Konduri, Aditya; Mahoney, Bryan; Donzis, Diego

2015-11-01

Designing scalable CFD codes on massively parallel computers is a challenge. This is mainly due to the large number of communications between processing elements (PEs) and their synchronization, leading to idling of PEs. Indeed, communication will likely be the bottleneck in the scalability of codes on Exascale machines. Our recent work on asynchronous computing for PDEs based on finite-differences has shown that it is possible to relax synchronization between PEs at a mathematical level. Computations then proceed regardless of the status of communication, reducing the idle time of PEs and improving the scalability. However, accuracy of the schemes is greatly affected. We have proposed asynchrony-tolerant (AT) schemes to address this issue. In this work, we study the effect of asynchrony on the solution of fluid flow problems using standard and AT schemes. We show that asynchrony creates additional scales with low energy content. The specific wavenumbers affected can be shown to be due to two distinct effects: the randomness in the arrival of messages and the corresponding switching between schemes. Understanding these errors allow us to effectively control them, rendering the method's feasibility in solving turbulent flows at realistic conditions on future computing systems.

4. LDRD final report: Physical simulation of nonisothermal multiphase multicomponent flow in porous media

Energy Technology Data Exchange (ETDEWEB)

Martinez, M.J.; Hopkins, P.L.; Shadid, J.N.

1997-07-01

This document reports on the accomplishments of a laboratory-directed research and development (LDRD) project whose objective was to initiate a research program for developing a fundamental understanding of multiphase multicomponent subsurface transport in heterogeneous porous media and to develop parallel processing computational tools for numerical simulation of such problems. The main achievement of this project was the successful development of a general-purpose, unstructured grid, multiphase thermal simulator for subsurface transport in heterogeneous porous media implemented for use on massively parallel (MP) computers via message-passing and domain decomposition techniques. The numerical platform provides an excellent base for new and continuing project development in areas of current interest to SNL and the DOE complex including, subsurface nuclear waste disposal and cleanup, groundwater availability and contamination studies, fuel-spill transport for accident analysis, and DNAPL transport and remediation.

5. Modeling and Simulation of Pore Scale Multiphase Fluid Flow and Reactive Transport in Fractured and Porous Media

Energy Technology Data Exchange (ETDEWEB)

Paul Meakin; Alexandre Tartakovsky

2009-07-01

In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity

6. Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media

Energy Technology Data Exchange (ETDEWEB)

Meakin, Paul; Tartakovsky, Alexandre M.

2009-01-01

In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity

7. Magnetic field flow phenomena in a falling particle receiver

Science.gov (United States)

Armijo, Kenneth M.; Ho, Clifford; Anderson, Ryan; Christian, Joshua; Babiniec, Sean; Ortega, Jesus

2016-05-01

Concentrating solar power (CSP) falling particle receivers are being pursued as a desired means for utilizing low-cost, high-absorptance particulate materials that can withstand high concentration ratios (˜1000 suns), operating temperatures above 700 °C, and inherent storage capabilities which can be used to reduce to levelized cost of electricity (LCOE)1. Although previous falling particle receiver designs have proven outlet temperatures above 800 °C, and thermal efficiencies between 80-90%, performance challenges still exist to operate at higher concentration ratios above 1000 suns and greater solar absorptance levels. To increase absorptance, these receivers will require enhanced particle residence time within a concentrated beam of sunlight. Direct absorption solid particle receivers that can enhance this residence time will have the potential to achieve heat-transfer media temperatures2 over 1000 °C. However, depending on particle size and external forces (e.g., external wind and flow due to convective heat losses), optimized particle flow can be severely affected, which can reduce receiver efficiency. To reduce particle flow destabilization and increase particle residence time on the receiver an imposed magnetic field is proposed based on a collimated design for two different methodologies. These include systems with ferromagnetic and charged particle materials. The approaches will be analytically evaluated based on magnetic field strength, geometry, and particle parameters, such as magnetic moment. A model is developed using the computational fluid dynamics (CFD) code ANSYS FLUENT to analyze these approaches for a ˜2 MWth falling particle receiver at Sandia National Laboratories5,6. Here, assessment will be made with respect to ferromagnetic particles such as iron-oxides, as well as charged particles. These materials will be parametrically assessed (e.g., type, size, dipole moment and geometry) over a range of magnetic permeability, μ values. Modeling

8. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions

Energy Technology Data Exchange (ETDEWEB)

Xu, T.; Spycher, N.; Sonnenthal, E.; Zhang, G.; Zheng, L.; Pruess, K.

2010-08-01

TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO{sub 2} geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO{sub 2} in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.

9. Fluctuations around Bjorken Flow and the onset of turbulent phenomena

CERN Document Server

Floerchinger, Stefan

2011-01-01

We study how fluctuations in fluid dynamic fields can be dissipated or amplified within the characteristic spatio-temporal structure of a heavy ion collision. The initial conditions for a fluid dynamic evolution of heavy ion collisions may contain significant fluctuations in all fluid dynamical fields, including the velocity field and its vorticity components. We formulate and analyze the theory of local fluctuations around average fluid fields described by Bjorken's model. For conditions of laminar flow, when a linearized treatment of the dynamic evolution applies, we discuss explicitly how fluctuations of large wave number get dissipated while modes of sufficiently long wave-length pass almost unattenuated or can even be amplified. In the opposite case of large Reynold's numbers (which is inverse to viscosity), we establish that (after suitable coordinate transformations) the dynamics is governed by an evolution equation of non-relativistic Navier-Stokes type that becomes essentially two-dimensional at late...

10. Critical flow phenomena and modeling in advanced nuclear safety technology

Energy Technology Data Exchange (ETDEWEB)

Chen, Yuzhou [China Institute of Atomic Energy, Beijing (China)

2016-05-15

The discharge could be non-choking or choking, depending on the break shape, length and conditions. This presents a challenge in the calculation of standard problems. A stable experiment of water was performed to study the break flow rate in nozzles of diameter of 1.41 and 2.0 mm with rounded-edge and sharp-edge. The pressure covered the ranges of 0.5 to 29.5 MPa, inlet quality 0 to 1.0 and subcooling up to 350 C. The results exhibited a close relation of thermal non-equilibrium with pressure. For supercritical pressure a modified equilibrium model in combination with the Bernoulli equation is presented.

11. NUMERICAL STUDY ON TURBULENT COUNTER-GRADIENT-TRANSPORT PHENOMENA IN ASYMMETRIC TURBULENT CHANNEL FLOW

Institute of Scientific and Technical Information of China (English)

Wang Li-bing; Liu Yu-lu; Qiu Xiang

2003-01-01

In this paper, the turbulence characteristics were numerically investigated in an asymmetric turbulent channel flow and the computational results were compared with the relevant experimental data. It shows that the results are consistent with the experiments and there exist Counter-Gradient Momentum Transport(CGMT) phenomena in the central region near the smooth wall, and this region is as large as 6 percent of the channel width. In addition, a region, in which Counter-Gradient-Transport (CGT) phenomena occur more evidently, is found close to the rough wall. These results can help to gain a deeper insight into the mechanism of CGT phenomena.

12. Orthogonal wavelet analysis of counter gradient transport phenomena in turbulent asymmetric channel flow

Institute of Scientific and Technical Information of China (English)

Jianbo Jiang; Xiang Qiu; Zhiming Lu; Yulu Liu

2005-01-01

In this paper four families of orthogonal wavelets are applied to analyze the turbulent counter gradient transport phenomena in fully developed asymmetric channel flows,The results show that: (1) In the instance of counter gradient transport, the principal scale of the coherent structure is responsible for the strong local counter gradient transport; (2)Counter gradient transport phenomena have a strong effect on the intermittency of turbulence; (3) Non-Gaussian part of the principal coherent structure is essential for counter gradient transport phenomena.

13. Multiphase Venturi Dual Energy Gamma Ray combination performance in NUEX flow loop; Desempenho no flowloop do NUEX da medicao multifasica Venturi Dual Energy Gamma Ray

Energy Technology Data Exchange (ETDEWEB)

Barreiros, Claudio; Taranto, Cleber; Costa, Alcemir [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Pinguet, Bruno; Heluey, Vitor; Bessa, Fabiano; Loicq, Olivier [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

2008-07-01

The Multiphase Venturi Dual Energy Gamma Ray Combination, Vx* technology, arrived in Brazil in 2000. PETROBRAS, Brazilian Oil Company, has been putting big efforts in its production business and also has demonstrated a large interest in having a multiphase meter approved by ANP for back allocation purposes. The oil industry was looking for ways to improve the back allocation process using an approved on line multiphase flow measurement device, thus replacing punctual test done today by a permanent monitoring device. Considering this scenario, a partnership project between PETROBRAS and Schlumberger was created in Brazil. The main objective of this project, which was held in NUEX flow loop, was to demonstrate to INMETRO (Brazilian Metrology Institute) that the Multiphase Venturi Dual Energy Gamma Ray Combination meter is able to be used for back allocation purpose. PETROBRAS and Schlumberger elaborated a complete methodology in the NUEX flow loop to demonstrate the results and benefits of the Multiphase Venturi Dual Energy Gamma Ray Combination meter. The test was witnessed by INMETRO and had a very good performance at the end. The results were within what was expected by Schlumberger, PETROBRAS and INMETRO. These results has been very useful to PETROBRAS in order to start using the Venturi Dual Energy Gamma Ray technology for well allocation purposes. (author)

14. Transport phenomena of reactive fluid flow in heterogeneous combustion processes.

Science.gov (United States)

Hung, W. S. Y.; Chen, C. S.; Haviland, J. K.

1972-01-01

A previously developed computer program was used to model two transient hybrid combustion processes involving tubes of solid Plexiglas. In the first study, representing combustion of a hybrid rocket, the oxidizing gas was oxygen, and calculations were continued sufficiently long to obtain steady-state values. Systematic variations were made in reaction rate constant, mass flow rate, and pressure, alternatively using constant and temperature dependent regression rate models for the fuel surface. Consistent results were obtained, as is evidenced by the values for the mass function of the reaction product and the flame temperature, for which plots are supplied. In the second study, fire initiation in a duct was studied, with an air mixture as the oxidizing gas. It was demonstrated that a satisfactory flame spread mechanism could be reproduced on the computer. In both of the above applications, the general, transient, two-dimensional conservation equations were represented, together with chemical reactions, solid-fuel interface conditions, and heat conduction in the solid fuel.

15. Unsteady flow phenomena in human undulatory swimming: a numerical approach.

Science.gov (United States)

Pacholak, Steffen; Hochstein, Stefan; Rudert, Alexander; Brücker, Christoph

2014-06-01

The undulatory underwater sequence is one of the most important phases in competitive swimming. An understanding of the recurrent vortex dynamics around the human body and their generation could therefore be used to improve swimming techniques. In order to produce a dynamic model, we applied human joint kinematics to three-dimensional (3D) body scans of a female swimmer. The flow around this dynamic model was then calculated using computational fluid dynamics with the aid of moving 3D meshes. Evaluation of the numerical results delivered by the various motion cycles identified characteristic vortex structures for each of the cycles, which exhibited increasing intensity and drag influence. At maximum thrust, drag forces appear to be 12 times higher than those of a passive gliding swimmer. As far as we know, this is the first disclosure of vortex rings merging into vortex tubes in the wake after vortex recapturing. All unsteady structures were visualized using a modified Q-criterion also incorporated into our methods. At the very least, our approach is likely to be suited to further studies examining swimmers engaging in undulatory swimming during training or competition.

16. MOFAT: A two-dimensional finite element program for multiphase flow and multicomponent transport. Program documentation and user's guide

Science.gov (United States)

Katyal, A. K.; Kaluarachchi, J. J.; Parker, J. C.

1991-05-01

The manual describes a two-dimensional finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. Flow and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are considered by the program. The program can simulate flow only or coupled flow and transport. The flow module can be used to analyze two phases, water and NAPL, with the gas phase held at constant pressure, or explicit three-phase flow of water, NAPL, and gas at various pressures. The transport module can handle up to five components which partition among water, NAPL, gas and solid phases assuming either local equilibrium or first-order mass transfer. Three phase permeability-saturation-capillary pressure relations are defined by an extension of the van Genuchten model. The governing equations are solved using an efficient upstream-weighted finite element scheme. The required inputs for flow and transport analysis are described. Detailed instructions for creating data files needed to run the program and examples of input and output files are given in appendices.

17. Assessment of the application of acoustic emission technology for monitoring the presence of sand under multiphase flow condition

Energy Technology Data Exchange (ETDEWEB)

El-Alej, M., E-mail: m.elalej@cranfield.ac.uk; Mba, D., E-mail: m.elalej@cranfield.ac.uk; Yeung, H., E-mail: m.elalej@cranfield.ac.uk [School of Engineering, Cranfield University, Cranfield, Bedfordshire, MK43 OAL (United Kingdom)

2014-04-11

The monitoring of multiphase flow is an established process that has spanned several decades. This paper demonstrates the use of acoustic emission (AE) technology to investigate sand transport characteristic in three-phase (air-water-sand) flow in a horizontal pipe where the superficial gas velocity (VSG) had a range of between 0.2 ms{sup −1} to 2.0 ms{sup −1} and superficial liquid velocity (VSL) had a range of between 0.2 ms{sup −1} to 1.0 ms{sup −1}. The experimental findings clearly show a correlation exists between AE energy levels, sand concentration, superficial gas velocity (VSG) and superficial liquid velocity (VSL)

18. Wall-bounded multiphase flows of N immiscible incompressible fluids: consistency and contact-angle boundary condition

CERN Document Server

Dong, S

2016-01-01

We present an effective method for simulating wall-bounded multiphase flows consisting of $N$ ($N\\geqslant 2$) immiscible incompressible fluids with different densities, viscosities and pairwise surface tensions. The N-phase physical formulation is based on a modified thermodynamically consistent phase field model that is more general than in a previous work, and it is developed by considering the reduction consistency if some of the fluid components were absent from the system. We propose an N-phase contact-angle boundary condition that is reduction consistent between $N$ phases and $M$ phases ($2\\leqslant M\\leqslant N-1$). We also present a numerical algorithm for solving the N-phase governing equations together with the contact-angle boundary conditions developed herein. Extensive numerical experiments are presented for several flow problems involving multiple fluid components and solid-wall boundaries to investigate the wettability effects with multiple types of contact angles. In particular, we compare s...

19. Pseudo-2D model of a cross-flow membrane humidifier for a PEM fuel cell under multiphase conditions

Energy Technology Data Exchange (ETDEWEB)

Dalet, C.; Diny, M. [Peugeot Citroen Automobile, Carrieres sous Poissy (France). Fuel Cell Program; Maranzana, G.; Lottin, O.; Dillet, J. [Nancy Univ., Vanoeuvre les Nancy (France). Centre national de la recherche scientifique

2009-07-01

Membrane dehydration can reduce the performance of proton exchange membrane fuel cells (PEMFCs). However, excessive water at the inlet of the fuel cells can flood cathodes. An understanding of the coupled mass and heat transfer processes involved in membrane humidifiers is needed in order to successfully manage water in PEMFCs. This paper discussed a pseudo-2D model of a cross-flow membrane humidifier for PEMFCs. The model was used to test correlations of the water transport coefficient through a Nafion 115 membrane. The study showed that results obtained using the model differed from experimental results. The effects of inlet operating conditions, flow rates, and temperature on the performance of a planar membrane humidifier under both single- and multi-phase conditions were also investigated.

20. Atomistic Simulation of Non-Equilibrium Phenomena in Hypersonic Flows

Science.gov (United States)

Norman, Paul Erik

-equilibrium rarefied gas flows that employs trajectory calculations to determine the outcome of molecular collisions. We compare CTC-DSMC to direct molecular dynamics calculations for one-dimensional shocks, where exact agreement between the two methods is demonstrated. We also discuss a number of topics important in CTC-DSMC simulations, including GPU enabled acceleration, a preliminary algorithm for modeling three-body collisions, and characterizing high temperature rovibrational effects.

1. Analytic expressions for first order correction to inviscid unsteady forces due to surrounding particles in a multiphase flow

Science.gov (United States)

Annamalai, Subramanian; Balachandar, S.; Mehta, Yash

2015-11-01

The various inviscid and viscous forces experienced by an isolated spherical particle situated in a compressible fluid have been widely studied in literature and are well established. Further, these force expressions are used even in the context of particulate (multiphase) flows with appropriate empirical correction factors that depend on local particle volume fraction. Such approach can capture the mean effect of the neighboring particles, but fails to capture the effect of the precise arrangement of the neighborhood of particles. To capture this inherent dependence of force on local particle arrangement a more accurate evaluation of the drag forces proves necessary. Towards this end, we consider an acoustic wave of a given frequency to impinge on a sphere. Scattering due to this particle (reference) is computed and termed scattering coefficients.'' The effect of the reference particle on another particle in its vicinity, is analytically computed via the above mentioned scattering coefficients'' and as a function of distance between particles. In this study, we consider only the first-order scattering effect. Moreover, this theory is extended to compressible spheres and used to compute the pressure in the interior of the sphere and to shock interaction over an array of spheres. We would like to thank the center for compressible multiphase turbulence (CCMT) and acknowledge support from the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program.

2. Coupling Analysis of Low-Speed Multiphase Flow and High-Frequency Electromagnetic Field in a Complex Pipeline Structure

Directory of Open Access Journals (Sweden)

Xiaokai Huo

2014-01-01

Full Text Available Accurate estimation of water content in an oil-water mixture is a key technology in oil exploration and production. Based on the principles of the microwave transmission line (MTL, the logging probe is an important water content measuring apparatus. However, the effects of mixed fluid flow on the measurement of electromagnetic field parameters are rarely considered. This study presents the coupling model for low-speed multiphase flow and high-frequency electromagnetic field in a complex pipeline structure. We derived the S-parameter equations for the stratified oil/water flow model. The corresponding relationship between the S-parameters and water holdup is established. Evident coupling effects of the fluid flow and the electromagnetic field are confirmed by comparing the calculated S-parameters for both stratified and homogeneous flow patterns. In addition, a multiple-solution problem is analyzed for the inversion of dielectric constant from the S-parameters. The most sensitive phase angle range is determined to improve the detection of variation in the dielectric constant. Suggestions are proposed based on the influence of the oil/water layer on measurement sensitivity to optimize the geometric parameters of a device structure. The method proposed elucidates how accuracy and sensitivity can be improved in water holdup measurements under high water content conditions.

3. Investigation for Transient Phenomena in Concentric Annular Turbulent Flow with Sudden Outer-Wall-Rotation

OpenAIRE

岡本, 正芳; 永江, 聡美; Masayoshi, OKAMOTO; Satomi, NAGAE; 静岡大工; 東北大流体研; Dept. of Mech. Eng., Shizuoka Univ.; Institute of Fluid Science, Tohoku Univ.

2007-01-01

Transient phenomena in turbulent concentric annular pipe flow with sudden outer-wall rotation were investigated by means of the direct numerical simulation (DNS). Due to the sudden rotation, the wall friction becomes small and the flow is stabilized. In the transient state, the axial mean velocity profile changes drastically and the Reynolds stresses vanish near the outer wall. When the wall friction increases suddenly, the vortex structures are invigorated.

4. Multiphase flow through multilayers of thin porous media: General balance equations and constitutive relationships for a solid-gas-liquid three-phase system

NARCIS (Netherlands)

2014-01-01

In this work, we propose a new approach to modeling multiphase flow and solute transport through a stack of thin porous layers. Currently, numerical simulation of thin layers involves discretization across the layer thickness. In our new approach, thin porous layers are treated as a bunch of two-dim

5. IMPLEMENTATION OF MIXED METHODS AS FINITE DIFFERENCE METHODS AND APPLICATIONS TO NONISOTHERMAL MULTIPHASE FLOW IN POROUS MEDIA

Institute of Scientific and Technical Information of China (English)

Zhang-xin Chen; Xi-jun Yu

2006-01-01

In this paper we consider mixed finite element methods for second order elliptic problems. In the case of the lowest order Brezzi-Douglás-Marini elements (if d = 2) or Brezzi--Douglás-Fortin element(if d =3) on rectangular parallelepipeds, we show that the mixed method system, by incorporating certain quadrature rules, can be written as asimple, cell-centered finite difference method. This leads to the solution of a sparse, positive semidefinite linear system for the scalar unknown. For a diagonal tensor coefficient,the sparsity pattern for the scalar unknown is a five point stencil if d = 2, and seven ifd = 3. For a general tensor coefficient, it is a nine point stencil, and nineteen, respectively.Applications of the mixed method implementation as finite differences to nonisothermal multiphase, multicomponent flow in porous media are presented.

6. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

Science.gov (United States)

Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

2016-05-01

Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

7. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

Institute of Scientific and Technical Information of China (English)

ZHAI Guofu; BO Kai; CHEN Mo; ZHOU Xue; QIAO Xinlei

2016-01-01

Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit.We characterized the arc plasma jet flow appearance at different currents by using high-speed photography,and two polished contacts were used to search for the relationship between roughness and plasma jet flow.Then,to make the nature of arc plasma jet flow phenomena clear,a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated.The simulated DC arc plasma was presented with the temperature distribution and the current density distribution.Furthermore,the calculated arc flow vclocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress.The combined action of volume force and contact surface was the main reason of the arc jet flow.

8. A thermodynamical formulation for chemically active multi-phase turbulent flows

Energy Technology Data Exchange (ETDEWEB)

1995-03-01

A generalized thermodynamics for chemically active multiphase solid-fluid mixtures in turbulent state of motion is formulated. The global equations of balance for each phase are ensemble averaged and the local conservation laws for the mean motions are derived. The averaged and the local conservation laws for the mean motions are derived. The averaged form of the Clausius-Duhem inequality is used and the thermodynamics of the chemically active mixtures in turbulent motion is studied. Particular attention is given to the species concentration and chemical reaction effects, in addition to transport and interaction of the phasic fluctuation energies. Based on the averaged entropy inequality, constitutive equations for the stresses, energy, heat and mass fluxes of various species are developed. The explicit governing equations of motion are derived and discussed.

9. Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids

Science.gov (United States)

2016-06-01

Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.

10. Multiphase forces on bend structures

NARCIS (Netherlands)

Nennie, E.D.; Belfroid, S.P.C.

2016-01-01

Piping structures are generally subjected to high dynamic loading due to multiphase forces. In particular subsea structures are very vulnerable as large flexibility is required to cope for instance with thermal stresses. The forces due to multiphase flow are characterized by a broadband spectrum wit

11. Multiphase forces on bend structures

NARCIS (Netherlands)

Nennie, E.D.; Belfroid, S.P.C.

2016-01-01

Piping structures are generally subjected to high dynamic loading due to multiphase forces. In particular subsea structures are very vulnerable as large flexibility is required to cope for instance with thermal stresses. The forces due to multiphase flow are characterized by a broadband spectrum wit

12. Non-linear hydrotectonic phenomena: Part I - fluid flow in open fractures under dynamical stress loading

Energy Technology Data Exchange (ETDEWEB)

Archambeau, C.B. [Univ. of Colorado, Boulder, CO (United States)

1994-01-01

A fractured solid under stress loading (or unloading) can be viewed as behaving macroscopically as a medium with internal, hidden, degrees of freedom, wherein changes in fracture geometry (i.e. opening, closing and extension) and flow of fluid and gas within fractures will produce major changes in stresses and strains within the solid. Likewise, the flow process within fractures will be strongly coupled to deformation within the solid through boundary conditions on the fracture surfaces. The effects in the solid can, in part, be phenomenologically represented as inelastic or plastic processes in the macroscopic view. However, there are clearly phenomena associated with fracture growth and open fracture fluid flows that produce effects that can not be described using ordinary inelastic phenomenology. This is evident from the fact that a variety of energy release phenomena can occur, including seismic emissions of previously stored strain energy due to fracture growth, release of disolved gas from fluids in the fractures resulting in enhanced buoyancy and subsequent energetic flows of gas and fluids through the fracture system which can produce raid extension of old fractures and the creation of new ones. Additionally, the flows will be modulated by the opening and closing of fractures due to deformation in the solid, so that the flow process is strongly coupled to dynamical processes in the surrounding solid matrix, some of which are induced by the flow itself.

13. Application of Wavelets Transform to Analysis of Multiphase Flow%小波分析技术在多相流系统中的应用

Institute of Scientific and Technical Information of China (English)

冀海峰; 黄志尧; 吴贤国; 王保良; 李海青

2001-01-01

A method of analysis of multiphase flow using wavelets transform for identifying the flow regimes was proposed．After the wavelet decomposition of the multiphase flow signal，the eigenvalue of different scales were calculated and were used to analyze the multiphase flow system．Methods for obtaining eigenvalue of gas-liquid two phase flow or gas-solid fluidized bed were developed．The results showed that the method was effective for identification of the regime of gas-liquid two phase flow and the transformation of gas-solid fluidized bed from fixed bed to fluidized bed．%提出了一种将小波分析技术应用于多相流系统进行流型判别的方法。对采集的多相流信号进行小波分解，在不同尺度上提取特征值，并提出了两种特征值参数的提取方法，分别应用于气液两相流和气固流化床系统中，进行流型的辨识。试验结果表明利用所提出的特征值可以有效地对气液两相流流型以及气固流化床从固定床向鼓泡床的转变进行判别。

14. Comprehensive Approaches to Multiphase Flows in Geophysics - Application to nonisothermal, nonhomogenous, unsteady, large-scale, turbulent dusty clouds I. Hydrodynamic and Thermodynamic RANS and LES Models

Energy Technology Data Exchange (ETDEWEB)

S. Dartevelle

2005-09-05

The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either a spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a

15. An Improved Car-Following Model for Multiphase Vehicular Traffic Flow and Numerical Tests

Science.gov (United States)

Li, Zhi-Peng; Gong, Xiao-Bo; Liu, Yun-Cai

2006-08-01

This paper attempts to introduce an improved difference model that modifies a car-following model, which takes the next-nearest-neighbor interaction into account. The improvement of this model over the previous one lies in that it performs more realistically in the dynamical motion for small delay time. The traffic behavior of the improved model is investigated with analytic and numerical methods with the finding that the new consideration could further stabilize traffic flow. And some simulation tests verify that the proposed model can demonstrate some complex physical features observed recently in real traffic such as the existence of three phases: free flow, coexisting flow, and jam flow; spontaneous formation of density waves; sudden flow drop in flow-density plane; traffic hysteresis in transition between the free and the coexisting flow. Furthermore, the improved model also predicts that the stable state to relative density in the coexisting flow is insusceptible to noise.

16. An Improved Car-Following Model for Multiphase Vehicular Traffic Flow and Numerical Tests

Institute of Scientific and Technical Information of China (English)

LI Zhi-Peng; GONG Xiao-Bo; LIU Yun-Cai

2006-01-01

This paper attempts to introduce an improved difference model that modifies a car-following model, which takes the next-nearest-neighbor interaction into account. The improvement of this modelover the previous one lies in that it performs more realistically in the dynamical motion for small delay time. The traffic behavior of the improved model is investigated with analytic and numerical methods with the finding that the new consideration could further stabilize traffic flow. And some simulation tests verify that the proposed model can demonstrate some complex physical features observed recently in real traffic such as the existence of three phases: free flow, coexisting flow, and jam flow;spontaneous formation of density waves; sudden flow drop in flow-density plane; traffic hysteresis in transition between the free and the coexisting flow. Furthermore, the improved model also predicts that the stable state to relative density in the coexisting flow is insusceptible to noise.

17. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

Energy Technology Data Exchange (ETDEWEB)

Yorstos, Yannis C.

2003-03-19

The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.

18. Modelling compressible multiphase flows Quelques résultats concernant la modélisation des écoulements multiphasiques

Directory of Open Access Journals (Sweden)

Coquel Frédéric

2013-07-01

Full Text Available We give in this paper a short review of some recent achievements within the framework of multiphase flow modeling. We focus first on a class of compressible two-phase flow models, detailing closure laws and their main properties. Next we briefly summarize some attempts to model two-phase flows in a porous region, and also a class of compressible three-phase flow models. Some of the main difficulties arising in the numerical simulation of solutions of these complex and highly non-linear systems of PDEs are then discussed, and we eventually show some numerical results when tackling two-phase flows with mass transfer. Nous présentons dans cet article quelques résultats récents concernant la modélisation et la simulation numérique des écoulements multiphasiques. Nous nous concentrons tout d’abord sur une classe de modèles diphasiques compressibles, en détaillant les lois de fermeture et les principales propriétés du sytème. Nous résumons ensuite brièvement les propositions de modélisation d’écoulements diphasiques en milieu poreux et d’écoulements triphasiques. Quelques difficultés apparaissant dans la simulation numérique de ces modèles sont présentées, et des résultats récents comportant un transfert de masse entre phases sont finalement décrits.

19. Numerical modelling of thermal and fluid flow phenomena in the mould channel

Directory of Open Access Journals (Sweden)

L. Sowa

2007-12-01

Full Text Available In the paper, a mathematical and a numerical model of the solidification of a cylindrical slender shaped casting, which take into account the process of filling the mould cavity with molten metal, has been proposed. Pressure and velocity fields were obtained by solving the momentum equations and the continuity equation, while the thermal fields were obtained by solving the heat conduction equation containing the convection term. Next, the numerical analysis of the solidification process of metals alloy in a cylindrical mould channel has been made. In the model one takes into account interdependence the heat transfer and fluid flow phenomena. Coupling of the thermal and fluid flow phenomena has been taken into consideration by the changes of the fluidity function and thermophysical parameters of alloy with respect to the temperature. The influence of the pressure and the temperature of metal pouring on the solid phase growth kinetics were estimated. The problem has been solved by the finite element method.

20. Significance of radiation models in investigating the flow phenomena around a Jovian entry body

Science.gov (United States)

Tiwari, S. N.; Subramanian, S. V.

1978-01-01

Formulation is presented to demonstrate the significance of a simplified radiation model in investigating the flow-phenomena in the viscous radiating shock layer of a Jovian entry body. For this, a nongray absorption model for hydrogen-helium gas is developed which consists of 30 steps over the spectral range of 0-20 eV. By employing this model results were obtained for temperature, pressure, density, and radiative flux in the shock layer and along the body surface. These are compared with results of two sophisticated radiative transport models available in the literature. Use of the present radiation model results in significant reduction in computational time. Results of this model are found to be in general agreement with results of other models. It is concluded that use of the present model is justified in investigating the flow phenomena around a Jovian entry body because it is relatively simple, computationally fast, and yields fairly accurate results.

1. FT-IR spectroscopic imaging of reactions in multiphase flow in microfluidic channels.

Science.gov (United States)

Chan, K L Andrew; Kazarian, Sergei G

2012-05-01

Rapid, in situ, and label-free chemical analysis in microfluidic devices is highly desirable. FT-IR spectroscopic imaging has previously been shown to be a powerful tool to visualize the distribution of different chemicals in flows in a microfluidic device at near video rate imaging speed without tracers or dyes. This paper demonstrates the possibility of using this imaging technology to capture the chemical information of all reactants and products at different points in time and space in a two-phase system. Differences in the rates of chemical reactions in laminar flow and segmented flow systems are also compared. Neutralization of benzoic acid in decanol with disodium phosphate in water has been used as the model reaction. Quantitative information, such as concentration profiles of reactant and products, can be extracted from the imaging data. The same feed flow rate was used in both the laminar flow and segmented flow systems. The laminar flow pattern was achieved using a plain wide T-junction, whereas the segmented flow was achieved by introducing a narrowed section and a nozzle at the T-junction. The results show that the reaction rate is limited by diffusion and is much slower with the laminar flow pattern, whereas the reaction is completed more quickly in the segmented flow due to better mixing.

2. Microtomographic imaging of multiphase flow in porous media: Validation of image analysis algorithms, and assessment of data representativeness and quality

Science.gov (United States)

Wildenschild, D.; Porter, M. L.

2009-04-01

Significant strides have been made in recent years in imaging fluid flow in porous media using x-ray computerized microtomography (CMT) with 1-20 micron resolution; however, difficulties remain in combining representative sample sizes with optimal image resolution and data quality; and in precise quantification of the variables of interest. Tomographic imaging was for many years focused on volume rendering and the more qualitative analyses necessary for rapid assessment of the state of a patient's health. In recent years, many highly quantitative CMT-based studies of fluid flow processes in porous media have been reported; however, many of these analyses are made difficult by the complexities in processing the resulting grey-scale data into reliable applicable information such as pore network structures, phase saturations, interfacial areas, and curvatures. Yet, relatively few rigorous tests of these analysis tools have been reported so far. The work presented here was designed to evaluate the effect of image resolution and quality, as well as the validity of segmentation and surface generation algorithms as they were applied to CMT images of (1) a high-precision glass bead pack and (2) gas-fluid configurations in a number of glass capillary tubes. Interfacial areas calculated with various algorithms were compared to actual interfacial geometries and we found very good agreement between actual and measured surface and interfacial areas. (The test images used are available for download at the website listed below). http://cbee.oregonstate.edu/research/multiphase_data/index.html

3. Effect of wellbore storage on the analysis of multiphase-flow-pressure data

Energy Technology Data Exchange (ETDEWEB)

Hatzignatiou, D.G. (Univ. of Alaska, Fairbanks, AK (United States)); Peres, A.M.M. (Petrobras S.A., Rio de Janeiro (Brazil)); Reynolds, A.C. (Univ. of Tulsa, OK (United States))

1994-09-01

This paper investigates the effect of wellbore storage on the analysis of pressure drawdown data obtained at a well producing a solution-gas-drive reservoir. Wellbore storage effects are incorporated by specifying a sandface oil flow rate that increases exponentially from zero to the specified constant value of the oil flow rate at the surface. Use of new computational equations derived here shows that effective oil permeability as a pointwise function of pressure can be computed directly from the measured values of the flowing wellbore pressure, provided the sandface oil flow rate is measured and incorporated into the analysis. If the sandface flow rate is unknown, effective permeability can be computed only after wellbore storage effects become negligible. In all cases, a semilog plot of wellbore pressure squared vs. time is shown to be a viable method for estimating effective oil permeability at initial conditions, effective oil permeability at the final flowing wellbore pressure value, and mechanical skin factor.

4. Multiphase flow solution in horizontal wells using a drift-flux model

Energy Technology Data Exchange (ETDEWEB)

Soprano, Arthur Besen; Silva, Antonio Fabio Carvalho da; Maliska, Clovis R. [Universidade Federal de Santa Catarina (EMC/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica], E-mails: arthur@sinmec.ufsc.br, afabio@sinmec.ufsc.br, maliska@sinmec.ufsc.br

2011-04-15

This study presents a procedure to solve two-phase (gas and liquid) flows throughout an oil well with lateral mass inflow from the reservoir. The flow is considered isothermal and one-dimensional. Equations are discretized using a finite volume method with a C ++ (OOP) code implementation. This algorithm is intended to be used with a reservoir simulator to solve the coupled flow between the reservoir and well. (author)

5. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

Energy Technology Data Exchange (ETDEWEB)

Yortsos, Yanis C.

2002-10-08

In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

6. Non-equilibrium processes in ash-laden volcanic plumes: new insights from 3D multiphase flow simulations

Science.gov (United States)

Esposti Ongaro, Tomaso; Cerminara, Matteo

2016-10-01

In the framework of the IAVCEI (International Association of Volcanology and Chemistry of the Earth Interior) initiative on volcanic plume models intercomparison, we discuss three-dimensional numerical simulations performed with the multiphase flow model PDAC (Pyroclastic Dispersal Analysis Code). The model describes the dynamics of volcanic and atmospheric gases (in absence of wind) and two pyroclastic phases by adopting a non-equilibrium Eulerian-Eulerian formulation. Accordingly, gas and particulate phases are treated as interpenetrating fluids, interacting with each other through momentum (drag) and heat exchange. Numerical results describe the time-wise and spatial evolution of weak (mass eruption rate: 1.5 × 106 kg/s) and strong (mass eruption rate: 1.5 × 109 kg/s) plumes. The two tested cases display a remarkably different phenomenology, associated with the different roles of atmospheric stratification, compressibility and mechanism of buoyancy reversal, reflecting in a different structure of the plume, of the turbulent eddies and of the atmospheric circulation. This also brings about different rates of turbulent mixing and atmospheric air entrainment. The adopted multiphase flow model allows to quantify temperature and velocity differences between the gas and particles, including settling, preferential concentration by turbulence and thermal non-equilibrium, as a function of their Stokes number, i.e., the ratio between their kinetic equilibrium time and the characteristic large-eddy turnover time of the turbulent plume. As a result, the spatial and temporal distribution of coarse ash in the atmosphere significantly differs from that of the fine ash, leading to a modification of the plume shape. Finally, three-dimensional numerical results have been averaged in time and across horizontal slices in order to obtain a one-dimensional picture of the plume in a stationary regime. For the weak plume, the results are consistent with one-dimensional models, at

7. Modeling Plasma Flow in Solid Propellant Charges Using the NGEN Multiphase CFD Code

Science.gov (United States)

2006-04-01

using these equations derived by a formal averaging technique applied to the microscopic flow. These equations require a number of constitutive laws...disk (dimensions shown are from Chang and Howard [32]). acrylic, that allows cinematography of plasma flows and ignition events along the propellant

8. Sizing of safety valves for multi-phase flow - ISO 4126 and state of knowledge

CERN Document Server

CERN. Geneva

2016-01-01

In Industry sizing of safety valves for two-phase flow is still a challenge. Hazard analysis to identify the worst case scenaio, mechanical and thermodynamic non-equilibrium conditions to estimate the mass flow rate and multiple critical flow conditions are among others topics that may lead to differences in sizing a safety valve of up to 1 order of magnitude. There are more than 20 models available to size a safety valve. All of them are based on ideal nozzle flow and corrected by an experimentally determined discharge coefficient. API 520 recommend a homogeneous equilibrium flow model to conservatively estimate the mass flow rate to be discharged. Whereas ISO 4126-10 includes a method for condidering boiling delay and slip effects, which lead to much lesser valve sizes. The discharge coefficient for two-phase flow is part of a model and will not be measured. Valve manufacturer certify only the capacitance and valve functioning under ideal laboratory conditions without inlet and outlet piping. Unfortunat...

9. Thermofluidynamics of the multiphase flow inside cylindroconical fermenters with different scales

Directory of Open Access Journals (Sweden)

Meironke Heiko

2014-01-01

Full Text Available In this work the experimental investigations of the flow and the temperature field during the fermentation of beer in cylindroconical tanks are presented. The flow stability is affected of the height/diameter ratio. Increasing the ratio leads to an unsteady, three-dimensional flow with several smaller vortices. In the course of our research the experiments have been performed with real fermentation fluid (wort under various height/diameter ratio. In the study, two tanks have been used in the laboratory and on an industrial scale, which were equipped with special design features. The velocity fields during a real fermentation process are measured by means of Ultrasound Doppler Velocimetry. It permits measurements in opaque fluids. Furthermore temperature measurements are conducted to analyse the interrelationship between the heat transfer and flow structure.

10. Multiphase imaging of gas flow in a nanoporous material usingremote detection NMR

Energy Technology Data Exchange (ETDEWEB)

Harel, Elad; Granwehr, Josef; Seeley, Juliette A.; Pines, Alex

2005-10-03

Pore structure and connectivity determine how microstructured materials perform in applications such as catalysis, fluid storage and transport, filtering, or as reactors. We report a model study on silica aerogel using a recently introduced time-of-flight (TOF) magnetic resonance imaging technique to characterize the flow field and elucidate the effects of heterogeneities in the pore structure on gas flow and dispersion with Xe-129 as the gas-phase sensor. The observed chemical shift allows the separate visualization of unrestricted xenon and xenon confined in the pores of the aerogel. The asymmetrical nature of the dispersion pattern alludes to the existence of a stationary and a flow regime in the aerogel. An exchange time constant is determined to characterize the gas transfer between them. As a general methodology, this technique provides new insights into the dynamics of flow in porous media where multiple phases or chemical species may be present.

11. Computational modeling of blood flow steal phenomena caused by subclavian stenoses.

Science.gov (United States)

Blanco, P J; Müller, L O; Watanabe, S M; Feijóo, R A

2016-06-14

The study of steal mechanisms caused by vessel obstructions is of the utmost importance to gain understanding about their pathophysiology, as well as to improve diagnosis and management procedures. The goal of this work is to perform a computational study to gain insight into the hemodynamic forces that drive blood flow steal mechanisms caused by subclavian artery stenosis. Such condition triggers a flow disorder known as subclavian steal. When this occurs in patients with internal thoracic artery anastomosed to the coronary vessels, the phenomenon includes a coronary-subclavian steal. True steal can exist in cases of increased arm blood flow, potentially resulting in neurological complications and, in the case of coronary-subclavian steal, graft function failure. In this context, the anatomically detailed arterial network (ADAN) model is employed to simulate subclavian steal and coronary-subclavian steal phenomena. Model results are verified by comparison with published data. It is concluded that this kind of model allows us to effectively address complex hemomdynamic phenomena occurring in clinical practice. More specifically, in the studied conditions it is observed that a regional brain steal occurs, primarily affecting the posterior circulation, not fully compensated by the anterior circulation. In the case of patients with coronary revascularization, it is concluded that there is a large variability in graft hemodynamic environments, which physically explain both the success of the procedure in cases of severe occlusive disease, and the reason for graft dysfunction in mildly stenosed left anterior descending coronary artery, due to alternating graft flow waveform signatures.

12. Multiphase flow simulation with gravity effect in anisotropic porous media using multipoint flux approximation

KAUST Repository

Negara, Ardiansyah

2015-03-04

Numerical investigations of two-phase flows in anisotropic porous media have been conducted. In the flow model, the permeability has been considered as a full tensor and is implemented in the numerical scheme using the multipoint flux approximation within the framework of finite difference method. In addition, the experimenting pressure field approach is used to obtain the solution of the pressure field, which makes the matrix of coefficient of the global system easily constructed. A number of numerical experiments on the flow of two-phase system in two-dimensional porous medium domain are presented. In this work, the gravity is included in the model to capture the possible buoyancy-driven effects due to density differences between the two phases. Different anisotropy scenarios have been considered. From the numerical results, interesting patterns of the flow, pressure, and saturation fields emerge, which are significantly influenced by the anisotropy of the absolute permeability field. It is found that the two-phase system moves along the principal direction of anisotropy. Furthermore, the effects of anisotropy orientation on the flow rates and the cross flow index are also discussed in the paper.

13. Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction

Science.gov (United States)

Tóth, Ádám; Havril, Tímea; Simon, Szilvia; Galsa, Attila; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

2016-08-01

Groundwater flow, driven, controlled and determined by topography, geology and climate, is responsible for several natural surface manifestations and affected by anthropogenic processes. Therefore, flowing groundwater can be regarded as an environmental agent. Numerical simulation of groundwater flow could reveal the flow pattern and explain the observed features. In complex geologic framework, where the geologic-hydrogeologic knowledge is limited, the groundwater flow model could not be constructed based solely on borehole data, but geophysical information could aid the model building. The integrated model construction was presented via the case study of the Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, such as wetlands, surface water-groundwater interaction, slope instability, and revealing the potential effect of anthropogenic activity and climate change. The hydrogeologic model was prepared on the basis of the compiled archive geophysical database and the results of recently performed geophysical measurements complemented with geologic-hydrogeologic data. Derivation of different electrostratigraphic units, revealing fracturing and detecting tectonic elements was achieved by systematically combined electromagnetic geophysical methods. The deduced information can be used as model input for groundwater flow simulation concerning hydrostratigraphy, geometry and boundary conditions. The results of numerical modelling were interpreted on the basis of gravity-driven regional groundwater flow concept and validated by field mapping of groundwater-related phenomena. The 3D model clarified the hydraulic behaviour of the formations, revealed the subsurface hydraulic connection between groundwater and wetlands and displayed the groundwater discharge pattern, as well. The position of wetlands, their vegetation type, discharge features and induced landslides were explained as

14. A sharp interface method for coupling multiphase flow, heat transfer and multicomponent mass transfer with interphase diffusion

Science.gov (United States)

He, Ping; Ghoniem, Ahmed F.

2017-03-01

Mixing of partially miscible fluids plays an important role in many physical and chemical processes. The modeling complexities lie in the tight coupling of the multiphase flow, heat transfer and multicomponent mass transfer, as well as diffusions across the phase interface. We present a sharp interface method for modeling such process. The non-ideal equation of state is used to compute the fluid properties such as density, fugacity and enthalpy, and to predict phase equilibrium composition. The phase interface location is tracked using the phase propagation velocity. A third-order one-sided finite difference scheme using a variable grid size according to the interface location is utilized to discretize the partial derivatives immediately next to the interface, while a second-order central scheme is used for the bulk of fluids. An optimization method, the Nelder-Mead method, is applied to search for (1) the phase compositions on both sides of the interface, and (2) the phase propagation velocity based on the coupling of the multicomponent phase equilibrium and the species' balance across the interface. The temperature at the interface is determined by the energy balance. Numerical results are used to demonstrate the convergence of our method and show its capability to simulate the mixing of multicomponent partially miscible fluids.

15. Simulation of Multiphase Flow of the Oil-Water Separation in a Rotating Packed Bed for Oil Purification

Directory of Open Access Journals (Sweden)

Xiaojun Zhang

2013-01-01

particle contaminant, moisture and gas simultaneously. As the major unit of HIGEE, the RPB uses centrifugal force to intensify mass transfer. Because of the special structure of RPB, the hydraulic characteristics of the RPB are very important. In this study, the multiphase flow model in porous media of the RPB is presented, and the dynamical oil-water separation in the RPB is simulated using a commercial computational fluid dynamics code. The operating conditions and configuration on the hydraulic performance of the RPB are investigated. The results have indicated that the separation efficiency of HIGEE rotating oil purifier is predominantly affected by operating conditions and the configurations. The best inlet pressure is 0.002 MPa. When the liquid inlet is placed in the outside of the lower surface of RPB; oil outlet is placed in the upper surface, where it is near the rotation axis; and water outlet is placed in the middle of the RPB, where it is far away from the oil outlet, the separating efficiency is the best.

16. A free energy-based surface tension force model for simulation of multiphase flows by level-set method

Science.gov (United States)

Yuan, H. Z.; Chen, Z.; Shu, C.; Wang, Y.; Niu, X. D.; Shu, S.

2017-09-01

In this paper, a free energy-based surface tension force (FESF) model is presented for accurately resolving the surface tension force in numerical simulation of multiphase flows by the level set method. By using the analytical form of order parameter along the normal direction to the interface in the phase-field method and the free energy principle, FESF model offers an explicit and analytical formulation for the surface tension force. The only variable in this formulation is the normal distance to the interface, which can be substituted by the distance function solved by the level set method. On one hand, as compared to conventional continuum surface force (CSF) model in the level set method, FESF model introduces no regularized delta function, due to which it suffers less from numerical diffusions and performs better in mass conservation. On the other hand, as compared to the phase field surface tension force (PFSF) model, the evaluation of surface tension force in FESF model is based on an analytical approach rather than numerical approximations of spatial derivatives. Therefore, better numerical stability and higher accuracy can be expected. Various numerical examples are tested to validate the robustness of the proposed FESF model. It turns out that FESF model performs better than CSF model and PFSF model in terms of accuracy, stability, convergence speed and mass conservation. It is also shown in numerical tests that FESF model can effectively simulate problems with high density/viscosity ratio, high Reynolds number and severe topological interfacial changes.

17. Discussion on Flow-Through Phenomena in the Air Gauge Cascade

Directory of Open Access Journals (Sweden)

Jermak Czesław Janusz

2017-03-01

Full Text Available In the paper, the flow-through phenomena in the air gauge are under discussion form the thermodynamic and gasodynamic perspective. The main elements of the cascade are considered the inlet nozzle (restriction, measuring chamber and the measuring nozzle with the measuring slot (displacement between the nozzle head and measured surface. The purpose of the analysis was to point out the impact on the metrological characteristics of the air gauge. In particular, attention was paid to the airflow through the measuring slot. Here, the complex phenomena take place, among others the supersonic areas and a “bubble ring,” which cause discontinuity and hysteresis in the static characteristic. On the other hand, the air stream expansion after the restriction (inlet nozzle is observed in the measuring chamber. The point of the above discussion was to work out some recommendation on the nozzles geometry and the localization of the back-pressure measuring point in the chamber.

18. Experimental Characterization of Interchannel Mixing of Multiphase Flow Through a Narrow Gap

Science.gov (United States)

Mäkiharju, Simo A.; Gose, James W.; Buchanan, John R., Jr.; Mychkovsky, Alexander G.; Lowe, Kirk T.; Ceccio, Steven L.

2016-11-01

Two-phase mass transfer through a gap connecting two adjacent channels was investigated as a function of gap geometry and flow conditions. An experiment with a simplified geometry was conducted to aid in the physical understanding and to provide data for validation of numerical computations. The flow loop consisted of two (127 mm)2 channels connected by a 1,219 mm (L) x 229 mm (W) gap, the height of which could be adjusted from 0 to 50 mm. The inlet Reynolds number in each channel could be independently varied from 4x104 - 1x105. During previous experiments, the single phase mixing was extensively investigated. The inlet void fraction was varied from 1 to 20%. Gas was injected as nominally monodisperse bubbles with diameter O(5 mm). The mass transfer through the gap was determined from measurements of the flow rates of water and air, and tracer concentration taken at channel inlets/outlets. The void fraction, bubble diameter distribution and gas flux was determined at the inlets based on flow rate measurements prior to gas injection, optical probes and Wire Mesh Sensor (WMS) data. At the outlets the gas fluxes were based on WMS measurements and the liquid phase mixing was determined based on measurement of the tracer concentration and liquid flow rate after separation of gas. Imaging of fluorescent tracer dye was utilized for select conditions to examine the dynamics of the mixing.

19. Towards multi-phase flow simulations in the PDE framework Peano

KAUST Repository

Bungartz, Hans-Joachim

2011-07-27

In this work, we present recent enhancements and new functionalities of our flow solver in the partial differential equation framework Peano. We start with an introduction including an overview of the Peano development and a short description of the basic concepts of Peano and the flow solver in Peano concerning the underlying structured but adaptive Cartesian grids, the data structure and data access optimisation, and spatial and time discretisation of the flow solver. The new features cover geometry interfaces and additional application functionalities. The two geometry interfaces, a triangulation-based description supported by the tool preCICE and a built-in geometry using geometry primitives such as cubes, spheres, or tetrahedra allow for the efficient treatment of complex and changing geometries, an essential ingredient for most application scenarios. The new application functionality concerns a coupled heat-flow problem and two-phase flows. We present numerical examples, performance and validation results for these new functionalities. © 2011 Springer-Verlag.

20. Multiphase fluid flow and subsequent geochemical transport invariably saturated fractured rocks: 1. Approaches

Energy Technology Data Exchange (ETDEWEB)

Xu, Tianfu; Pruess, Karsten

2000-08-08

Reactive fluid flow and geochemical transport in unsaturated fractured rocks has received increasing attention for studies of contaminant transport, groundwater quality, waste disposal, acid mine drainage remediation, mineral deposits, sedimentary diagenesis, and fluid-rock interactions in hydrothermal systems. This paper presents methods for modeling geochemical systems that emphasize: (1) involvement of the gas phase in addition to liquid and solid phases in fluid flow, mass transport and chemical reactions, (2) treatment of physically and chemically heterogeneous and fractured rocks, (3) the effect of heat on fluid flow and reaction properties and processes, and (4) the kinetics of fluid-rock interaction. The physical and chemical process model is embodied in a system of partial differential equations for flow and transport, coupled to algebraic equations and ordinary differential equations for chemical interactions. For numerical solution, the continuum equations are discretized in space and time. Space discretization is based on a flexible integral finite difference approach that can use irregular gridding to model geologic structure; time is discretized fully implicitly as a first-order finite difference. Heterogeneous and fractured media are treated with a general multiple interacting continua method that includes double-porosity, dual-permeability, and multi-region models as special cases. A sequential iteration approach is used to treat the coupling between fluid flow and mass transport on the one hand, chemical reactions on the other. Applications of the methods developed here to variably saturated geochemical systems are presented in a companion paper (part 2, this issue).

1. Cine phase-contrast magnetic resonance imaging for analysis of flow phenomena in experimental aortic dissection.

Science.gov (United States)

Iwai, F; Sostman, H D; Evans, A J; Nadel, S N; Hedlund, L W; Beam, C A; Charles, H C; Spritzer, C E

1991-12-01

Using a 1.5 T magnetic resonance imaging (MRI) system, cine phase-contrast and magnitude images were obtained in three phantoms that simulated different anatomic configurations of aortic dissection. The dissection phantoms were made of compliant materials, and pulsatile flow was used in all experiments. Phantoms differed only in the location of the fenestration between the true and false lumens (I: an upstream "entry" only, II: both upstream "entry" and downstream "re-entry," and III: a downstream "entry" only). Flow jets, flap motion, and wave propagation were clearly visualized in cine MR images of each phantom, and quantitatively analyzed with reference to the stimulated cardiac cycle of the pump. Flow in the false lumen was always bidirectional. Upstream and downstream flow waves collided and dispersed within the false lumen. Flow through the false lumen was the same in phantoms I and II, and least in phantom III. The average area of the true lumen was largest in phantom III and smallest in I. Phantom I had the highest overall flow rate in the false lumen and greatest change in false lumen size during the cardiac cycle, while the downstream "entry" phantom had the lowest of both parameters. Flow phenomena in aortic dissections can be studied by cine phase-contrast MRI.

2. AN EXPERIMENTAL STUDY ON THE COHERENT STRUCTURES AND CHAOTIC PHENOMENA IN THE AXISYMMETRIC COUNTERCURRENT SHEAR FLOW

Institute of Scientific and Technical Information of China (English)

麻伟巍; 谢锡麟; 周慧良

2001-01-01

The coherent structures and the chaotic phenomena in the transition of the axisymmetric countercurrent mixing shear flow were investigated experimentally. Two kinds of self-excited oscillation modes could exist in the axisymmetric countercurrent mixing shear flow. One is the shear layer self-excited oscillation mode corresponding to the high Reynolds number regime and the other is the jet column self-excited oscillation mode corresponding to the low Reynolds number regime in the case of the velocity ratio ranging from 1 to 1.5. Analyzing the auto-power spec trum, self-correlation-function and three dimensional reconstructed phase trajectory,the route to chaos through three Hopf bifurcations intercepted by an intermittence of the dynamical system corresponding to the axisymmetric countercurrent mixing shear flow was discovered when the velocity ratio is equal to 1.32.

3. Numerical Simulation of Multi-phase Flow in Porous Media on Parallel Computers

CERN Document Server

Liu, Hui; Chen, Zhangxin; Luo, Jia; Deng, Hui; He, Yanfeng

2016-01-01

This paper is concerned with developing parallel computational methods for two-phase flow on distributed parallel computers; techniques for linear solvers and nonlinear methods are studied, and the standard and inexact Newton methods are investigated. A multi-stage preconditioner for two-phase flow is proposed and advanced matrix processing strategies are implemented. Numerical experiments show that these computational methods are scalable and efficient, and are capable of simulating large-scale problems with tens of millions of grid blocks using thousands of CPU cores on parallel computers. The nonlinear techniques, preconditioner and matrix processing strategies can also be applied to three-phase black oil, compositional and thermal models.

4. Molecular dynamics simulation of complex multiphase flow on a computer cluster with GPUs

Institute of Scientific and Technical Information of China (English)

CHEN Fei-Guo; GE Wei; LI Jing-Hai

2009-01-01

Compute Unified Device Architecture (CUDA) was used to design and implement molecular dynamics (MD) simulations on graphics processing units (GPU). With an NVIDIA Tesla C870, a 20-60 fold speedup over that of one core of the Intel Xeon 5430 CPU was achieved, reaching up to 150 Gflopa. MD simulation of cavity flow and particle-bubble interaction in liquid was implemented on multiple GPUs using a message passing interface (MPI). Up to 200 GPUs were tested on a special network topology, which achieves good scalability. The capability of GPU clusters for large-scale molecular dynamics simulation of meso-scale flow behavior was, therefore, uncovered.

5. Molecular dynamics simulation of complex multiphase flow on a computer cluster with GPUs

Institute of Scientific and Technical Information of China (English)

2009-01-01

Compute Unified Device Architecture (CUDA) was used to design and implement molecular dynamics (MD) simulations on graphics processing units (GPU). With an NVIDIA Tesla C870, a 20-60 fold speedup over that of one core of the Intel Xeon 5430 CPU was achieved, reaching up to 150 Gflops. MD simulation of cavity flow and particle-bubble interaction in liquid was implemented on multiple GPUs using a message passing interface (MPI). Up to 200 GPUs were tested on a special network topology, which achieves good scalability. The capability of GPU clusters for large-scale molecular dynamics simulation of meso-scale flow behavior was, therefore, uncovered.

6. High-resolution simulations of multi-phase flow in magmatic-hydrothermal systems with realistic fluid properties

Science.gov (United States)

Geiger, S.; Driesner, T.; Matthai, S.; Heinrich, C.

2002-12-01

Realistic modelling of multi-phase fluid flow, energy and component transport in magmatic-hydrothermal systems is very challenging because hydrological properties of fluids and rocks vary over many orders of magnitude and the geometric complexities of such systems. Furthermore, density dependent component transport and transient permeability variations due to P-T changes and fluid-rock interactions introduce additional difficulties. As a result, the governing equations for the hydrodynamics, energy and component transport, and thermodynamics in magmatic hydrothermal systems are highly non-linear and strongly coupled. Essential requirements of a numerical formulation for such a system are: (1) a treatment of the hydrodynamics that can accurately resolve complex geological structures and represent the highly variable fluid velocities herein, (2) a realistic thermodynamic representation of the fluid properties including the wide P-T-X range of liquid+vapour coexistence for the highly saline fluids, and (3) an accurate handling of the highly contrasting transport properties of the two fluids. We are combining higher order finite-element (FE) methods with total variation diminishing finite volume (TVDFV) methods to model the hydrodynamics and energy and component transport of magmatic hydrothermal systems. Combined FE and TVDFV methods are mass and shock preserving, yield great geometric flexibility in 2D and 3D [2]. Furthermore, efficient matrix solvers can be employed to model fluid flow in geologically realistic structures [5]. The governing equations are linearized by operator-splitting and solved sequentially using a Picard iteration scheme. We chose the system water-NaCl as a realistic proxy for natural fluids occurring in magmatic-hydrothermal systems. An in-depth evaluation of the available experimental and theoretical data led to a consistent and accurate set of formulations for the PVTXH relations that are valid from 0 to 800 C, 0 to 500 MPa, and 0 to 1 XNa

7. An Experimental and Computational Study of Multiphase Flow Behaviour in Circulating Fluidized Beds

Energy Technology Data Exchange (ETDEWEB)

Mathiesen, Vidar

1997-12-31

Gas/solid flows have been studied extensively, mainly because they are important in nuclear, chemical and petroleum industries. This thesis describes an experiment done at two different circulating fluidized bed systems. Laser Doppler anemometry (LDA) and phase Doppler anemometry (PDA) were used to measure mean and fluctuating velocity, diameter and solids concentration. A typical core-annulus flow was obtained in both cases. The measurements show a relative mean velocity as well as a relative fluctuating velocity between different particle sizes. An axial segregation by size and its variation with the superficial gas velocity are demonstrated. Significant radial segregation is found in both risers. A three-dimensional Computational Fluid Dynamics model was developed based on Eulerian description of the phases where the kinetic theory of granular flow is the basis of the turbulence modelling in the solid phases. There are one gas phase and any number of solid phases. Simulations of flow behaviour in two- and three-dimensions agree well with experiments and the model is able to handle axial segregation by size for different superficial gas velocities and particle size distributions. 107 refs., 79 figs., 6 tabs.

8. Flow Dynamic Analysis of Core Shooting Process through Experiment and Multiphase Modeling

Directory of Open Access Journals (Sweden)

Changjiang Ni

2016-01-01

Full Text Available Core shooting process is the most widely used technique to make sand cores and it plays an important role in the quality of sand cores as well as the manufacture of complicated castings in metal casting industry. In this paper, the flow behavior of sand particles in the core box was investigated synchronously with transparent core box, high-speed camera, and pressure measuring system. The flow pattern of sand particles in the shooting head of the core shooting machine was reproduced with various colored core sand layers. Taking both kinetic and frictional stress into account, a kinetic-frictional constitutive correlation was established to describe the internal momentum transfer in the solid phase. Two-fluid model (TFM simulations with turbulence model were then performed and good agreement was achieved between the experimental and simulation results on the flow behavior of sand particles in both the shooting head and the core box. Based on the experimental and simulation results, the flow behavior of sand particles in the core box, the formation of “dead zone” in the shooting head, and the effect of drag force were analyzed in terms of sand volume fraction (αs, sand velocity (Vs, and pressure variation (P.

9. Complexity reduction of multi-phase flows in heterogeneous porous media

KAUST Repository

Ghommem, Mehdi

2013-01-01

In this paper, we apply mode decomposition and interpolatory projection methods to speed up simulations of two-phase flows in highly heterogeneous porous media. We propose intrusive and non-intrusive model reduction approaches that enable a significant reduction in the dimension of the flow problem size while capturing the behavior of the fully-resolved solutions. In one approach, we employ the dynamic mode decomposition (DMD) and the discrete empirical interpolation method (DEIM). This approach does not require any modification of the reservoir simulation code but rather postprocesses a set of global snapshots to identify the dynamically-relevant structures associated with the flow behavior. In a second approach, we project the governing equations of the velocity and the pressure fields on the subspace spanned by their proper orthogonal decomposition (POD) modes. Furthermore, we use DEIM to approximate the mobility related term in the global system assembly and then reduce the online computational cost and make it independent of the fine grid. To show the effectiveness and usefulness of the aforementioned approaches, we consider the SPE 10 benchmark permeability field and present a variety of numerical examples of two-phase flow and transport. The proposed model reduction methods can be efficiently used when performing uncertainty quantification or optimization studies and history matching.

10. Visualization and measurement of pressurized multiphase flow using neutron radiography of JRR-3M system

Energy Technology Data Exchange (ETDEWEB)

Katoh, Yasuo [Yamaguchi Univ. (Japan); Matsubayasi, Masahito

1998-01-01

Concerning the transient phenomenon of solid-gas two-phase flow, an attempt was made to visualize and measure a flow phenomenon in which three-dimensional bubbles occurred, grew and collapsed in the vicinity of a gas injection nozzle while solid particles were circulating. Such a phenomenon could not or hardly be visualized and measured by conventional methods. Such two-phase flow was visualized using neutron radiography, its characteristics measured and the usefulness of the visualization by neutron radiography confirmed. For this purpose, three-dimensional fluidized bed vessels, rectangular or cylindrical-shaped, made of steel or aluminum sheet, were prepared. Polyethylene or glass beads were used as solid particles and activated carbon particles as the tracer. In the experiment, nitrogen gas was blown into the vessel from one nozzle and distributors provided at the bottom of the vessel and exhausted from the top via the exhaust valve, by which the pressure in the vessel was controlled. The imaging was done in the following way: A test chamber was provided beside the vessel to receive neutron beams from the JRR-3M system, the intensity of transmitted neutrons was converted to visible light by scintillator and the images were videotaped. The initial objectives of visualizing and measuring bubbles occurring, growing and collapsing and solid particles circulating in the solid-gas two-phase flow have been achieved by means of neutron radiography. (N.H.)

11. INVESTIGATION OF MULTISCALE AND MULTIPHASE FLOW, TRANSPORT AND REACTION IN HEAVY OIL RECOVERY PROCESSES

Energy Technology Data Exchange (ETDEWEB)

Yannis C. Yortsos

2003-02-01

This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.

12. Experimental study on atomization phenomena of kerosene in supersonic cold flow

Institute of Scientific and Technical Information of China (English)

FEI LiSen; XU ShengLi; WANG ChangJian; LI Qiang; HUANG ShengHong

2008-01-01

Experiments were conducted to study the atomization phenomena of kerosene jet in supersonic flow. The kerosene jet was driven by compressed nitrogen. Meanwhile, the shadowgraph and planar laser-induced fluorescence (PLIF) were used to visualize the flow field in the case of different total pressure and jet pressure. The results imply the followings: The combination of shadowgraph and PLIF is a reasonable method to study the atomization phenomena in supersonic flow. PLIF can detect the distribution of kerosene droplets accurately. Shadowgraph can visualize the wave structure. Higher jet-to-freestream dynamic pressure initiates higher penetration height and the jet column will be easier to breakup and atomize, but it also induces stronger shock waves and aggravate total pressure lost. Three-dimensional, unsteady surface wave plays an important role in making the jet break up and atomize. Higher jet-to-freestream dynamic pressure will accelerate the development of surface wave and enlarge the amplitude of surface wave, while lower jet-to-freestream ratio will inhibit the development of surface wave.

13. Modeling and Simulation of Nanoparticle Transport in Multiphase Flows in Porous Media: CO2 Sequestration

KAUST Repository

El-Amin, Mohamed

2012-09-03

Geological storage of anthropogenic CO2 emissions in deep saline aquifers has recently received tremendous attention in the scientific literature. Injected CO2 plume buoyantly accumulates at the top part of the deep aquifer under a sealing cap rock, and some concern that the high-pressure CO2 could breach the seal rock. However, CO2 will diffuse into the brine underneath and generate a slightly denser fluid that may induce instability and convective mixing. Onset times of instability and convective mixing performance depend on the physical properties of the rock and fluids, such as permeability and density contrast. The novel idea is to adding nanoparticles to the injected CO2 to increase density contrast between the CO2-rich brine and the underlying resident brine and, consequently, decrease onset time of instability and increase convective mixing. As far as it goes, only few works address the issues related to mathematical and numerical modeling aspects of the nanoparticles transport phenomena in CO2 storages. In the current work, we will present mathematical models to describe the nanoparticles transport carried by injected CO2 in porous media. Buoyancy and capillary forces as well as Brownian diffusion are important to be considered in the model. IMplicit Pressure Explicit Saturation-Concentration (IMPESC) scheme is used and a numerical simulator is developed to simulate the nanoparticles transport in CO2 storages.

14. Visualization analysis of tiger-striped flow mark generation phenomena in injection molding

Science.gov (United States)

2016-03-01

The generation mechanism of tiger-striped flow marks of polypropylene (PP)/rubber/talc blends in injection molding was investigated by dynamic visualization analysis in a glass-inserted mold. The analysis revealed that the behavior of the melt flow front correlates with the flow mark generation. The cloudy part in the tiger-striped flow marks corresponded to the low transcription rate area of the melt diverging near the cavity wall, while the glossy part corresponded to the high transcription rate area of the melt converging toward the cavity wall side. The melt temperature at the high transcription rate area was slightly lower than that at the low transcription rate area. These phenomena resulted due to the difference in the temperature of the melt front that was caused by the asymmetric fountain flow. These results suggest the followings; At the moment when the melt is broken near the one side of cavity wall due to piling the extensional strains up to a certain level, the melt spurts out near the broken side. It results in generating asymmetric fountain flow temporarily to relax the extensional front surface, which moves toward the opposite side to form the high transcription area.

15. Numerical investigation of the flow phenomena around a low specific speed Francis turbine's guide vane cascade

Science.gov (United States)

Chitrakar, Sailesh; Singh Thapa, Biraj; Dahlhaug, Ole Gunnar; Prasad Neopane, Hari

2016-11-01

Guide vanes of Francis turbines convey a significant influence on the flow field at the inlet of the runner. This influence is in the form of pressure pulsation, caused due to rotor-stator-interaction. A guide vane cascade containing a single blade passage was developed to predict the flow field experimentally. Firstly, this paper investigates flow phenomena around the guide vane cascade through computational techniques. A numerical model is prepared with three different turbulence models. The velocity distribution obtained from these models are compared with experimental results at two circumferential midspan locations. Secondly, the influence of increasing the clearance gap on the flow is studied. Such gaps are expected to increase when the flow containing eroding particles passes through the turbine. This paper also shows that the pressure difference between the pressure and the suction side of guide vane influences the leakage flow through the gap. Hence, reduction of the pressure gradient will reduce leakages through clearance gaps, hereby condensing the subsequent effect of pressure pulsations and erosion. This study also shows that the effect of the gap is prominent in the near wall regions which are close to the gap, whereas it dissipates gradually towards the midspan.

16. EXPERIMENTAL INVESTIGATION ON THE CHAOTIC PHENOMENA IN THE WAKE OF A NATURAL THERMAL CONVECTION FLOW

Institute of Scientific and Technical Information of China (English)

林贞彬; 郭大华; 余西龙; 朱进生

2000-01-01

Chaotic phenomena in the wake of thermal convection flow fields above a heating fiat plate were investigated experimentally. A newly developed electron beam fluorescence technique (EBF) was used to simultaneously measure density fluctuation at 7 points in a cross section above the plate. Correlation dimensions,intermittence coefficients, Fourier spectrum have been obtained for different Grashof numbers. Spatial distribution of correlation dimensions are presented. The experimental result shows that there is a certain relationship between the density fluctuation and the Gr number. And time-spacial characteristic of chaos evolution is also given.

17. Two problems in multiphase biological flows: Blood flow and particulate transport in microvascular network, and pseudopod-driven motility of amoeboid cells

Science.gov (United States)

Bagchi, Prosenjit

2016-11-01

In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.

18. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

Energy Technology Data Exchange (ETDEWEB)

Tartakovsky, Alexandre M.; Panchenko, Alexander

2016-01-01

We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics Model (PF-SPH) and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the accuracy of the model under static and dynamic conditions. Finally, to demonstrate the capabilities and robustness of the model we use it to simulate flow of three fluids in a porous material.

19. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

Science.gov (United States)

Tartakovsky, Alexandre M.; Panchenko, Alexander

2016-01-01

We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) model and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method, and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the model's accuracy under static and dynamic conditions. Finally, we use the Pf-SPH model to simulate three phase flow in a porous medium.

20. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem

Science.gov (United States)

Abas, Aizat; Mokhtar, N. Hafizah; Ishak, M. H. H.; Abdullah, M. Z.; Ho Tian, Ang

2016-01-01

This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221

1. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem.

Science.gov (United States)

Abas, Aizat; Mokhtar, N Hafizah; Ishak, M H H; Abdullah, M Z; Ho Tian, Ang

2016-01-01

This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required.

2. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem

Directory of Open Access Journals (Sweden)

Aizat Abas

2016-01-01

Full Text Available This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI. Three different types of Lattice Boltzmann (LB models are computed, namely, single relaxation time (SRT, multiple relaxation time (MRT, and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV- based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required.

3. Numerical simulation of nonsteady-state multiphase flows. The 2D TURBO-FLOW computer code used to perform express analysis of designs

Energy Technology Data Exchange (ETDEWEB)

Sergey I Shcherbakov [SSC RF IPPE named after A.I. Leypunsky, Bondarenko sq. 1, Obninsk, 249033, Kaluga region (Russian Federation)

2005-07-01

Full text of publication follows: The paper presents the key features of the TURBO-FLOW 2D computer code designed for on-line numerical solving of multiphase flow problems (at present, three phases) in the units of NPP equipment. The code implements a direct non-stationary calculation of velocity distribution and phase concentrations. The fields of application of the TURBO-FLOW code are the following: multi-version calculations for optimizing a construction design or regime; dynamic processes with a sampling up to 10{sup 5} of time steps (impacts, explosions, vibrations, and so on); express calculations. The code is characterized by the simplicity of giving the calculation object and very little time required for producing results (dozens of time steps per second). The system requirements are as follows: Win98/ME, Pentium3-600 (256 k L2 Cache), 32 Mb. The peculiarities of mathematical statement consist in dividing velocity variations into components (by reasons of their occurrence), calculating them independently, and using the medium-volume velocity of mixture and velocities of phase slip. To evaluate the medium-volume velocity, the current function and velocity potential calculated by the circulation and mass conservation equations are used. Preliminarily, the current functions and potentials are calculated for time-varying volumetric sources and boundary conditions. A concept of permissible velocity variations is used. The friction models for empty domain and porous solid are involved. The slip velocity is given by a continuous function of phase concentration and local pressure gradient. The equations of phase transfer are solved with individual velocities of phases and phase transfers (the rate and localization of phase breakdown into each other to be specified). In addition, the equations for the functions of phase particle age are solved. The two-dimensional computational model being given by the user on a rectangular nonuniform mesh is used. The procedure of

4. Continuum modelling of pedestrian flows - Part 2: Sensitivity analysis featuring crowd movement phenomena

Science.gov (United States)

Duives, Dorine C.; Daamen, Winnie; Hoogendoorn, Serge P.

2016-04-01

In recent years numerous pedestrian simulation tools have been developed that can support crowd managers and government officials in their tasks. New technologies to monitor pedestrian flows are in dire need of models that allow for rapid state-estimation. Many contemporary pedestrian simulation tools model the movements of pedestrians at a microscopic level, which does not provide an exact solution. Macroscopic models capture the fundamental characteristics of the traffic state at a more aggregate level, and generally have a closed form solution which is necessary for rapid state estimation for traffic management purposes. This contribution presents a next step in the calibration and validation of the macroscopic continuum model detailed in Hoogendoorn et al. (2014). The influence of global and local route choice on the development of crowd movement phenomena, such as dissipation, lane-formation and stripe-formation, is studied. This study shows that most self-organization phenomena and behavioural trends only develop under very specific conditions, and as such can only be simulated using specific parameter sets. Moreover, all crowd movement phenomena can be reproduced by means of the continuum model using one parameter set. This study concludes that the incorporation of local route choice behaviour and the balancing of the aptitude of pedestrians with respect to their own class and other classes are both essential in the correct prediction of crowd movement dynamics.

5. Studies on CFD simulation of hydrodynamic phenomena with vortex flow around the bow of a blunt ship

OpenAIRE

上浦, 鉄平

2014-01-01

In the present studies, hydrodynamic phenomena with vortex flow around the bow of a blunt ship are simulated by using various CFD (Computational Fluid Dynamics) codes. In the conventional experimental studies, some flow properties in front of the bow beneath the free surface have been found out and reported; for example, a necklace vortex based on the wave breaking phenomena is the typical one. In CFD simulations, however, reliable results have not been obtained yet.In this study, the authors...

6. Characterization of multiphase fluid flow during air-sparged hydrocyclone flotation by x-ray CT. Final report, 14 August 1990--13 August 1994

Energy Technology Data Exchange (ETDEWEB)

Miller, J.D.

1994-10-18

Air sparged hydrocyclone (ASH) flotation is a new particle separation technology that has been developed at the University of Utah. This technology combines froth flotation principles with the flow characteristics of a hydrocyclone such that the ASH system can perform flotation separations in less than a second. This feature provides the ASH with a high specific capacity, 100 to 600 times greater than the specific capacity of conventional flotation machines. In an effort to develop a more detailed understanding of ASH flotation, multiphase flow characteristics of the air sparged hydrocyclone were studied and the relationship of these characteristics with flotation performance was investigated. This investigation was divided into four phases. In the first phase, the time-averaged multiphase flow characteristics of the ASH during its steady state operation were studied using x-ray computed tomography (x-ray CT). In this regard, a model system, mono-sized quartz flotation with dodecyl amine as collector, using a 2 in. diameter ASH unit (ASH-2C), was selected for study. Various flow regimes, namely, the air core, the froth phase, and the swirl layer, were identified and their spatial extent established for different experimental conditions by x-ray CT analysis. In the second phase, a detailed parametric study of flotation response of the ASH for the same system was carried out in order to establish the effect of various operating variables on flotation response. The findings of this phase of investigation were then correlated with the multiphase flow characteristics as revealed by x-ray CT in the first phase. Thus, the impact of various operating variables on the flow regimes, and hence, on flotation response was established.

7. Multi-Phase Flow and Heat Transfer of a Micro-Pump Thermally Driven by a Multi-Output Pulse Laser

Institute of Scientific and Technical Information of China (English)

HUAI Xiu-Lan; TANG Zhi-Wei; WANG Guo-Xiang; WANG Wei-Wei

2005-01-01

@@ We present an experimental study of multi-phase flow and heat transfer in a micro-tube induced by a multi-output pulse laser. Extensive flow and heat transfer measurements and visualization experiments have been carried out to characterize the micro-pump behaviour under various conditions. The experiments reveal extremely unsteady and complex flow patterns in the micro tube with the flow closely related with generation and collapse of bubbles.It is found that the flow rates are controlled by the heating and condensation conditions within the tube. The laser pulse duration, pulse interval and output-power as well as the tube diameter all show a strong influence on the flow rate of the micro-pump. This study provides a basis for the design of thermally-driven micro-pump induced by a pulsed laser beam.

8. Unravelling the multiphase run-out conditions of a slide-flow mass movement

Science.gov (United States)

van Asch, Th. W. J.; Xu, Q.; Dong, X. J.

2015-02-01

In this paper an attempt is made to unravel the run-out characteristics of a mass movement in the Sichuan Province, SW China by means of 1D numerical modelling and calibration on the topography of run-out profiles. The Dagou mass movement started as a rockslide with an initial volume of 480,000 m3, which transformed into a debris flow, increasing in volume due to entrainment of loose material in the upper part of the travelling track. The rapid mass movement had a run-out distance of 1380 m and a run-out time of about 50 s. Numerical calculations were conducted with the depth average shallow water equation to explain the variation in thickness of the debris flow deposits along the run-out track. For the calibration of the first run-out phase, three rheological models were applied, namely the Bingham, Voellmy and Quadratic rheology. Calibration was done on 1) the run-out distance, 2) the run-out time and 3) the goodness of fit with the thickness of the deposits along the track. In addition the erosion constant in the entrainment equation was calibrated on the observed versus calculated run-out volumes. Sensitivity analyses of the resistance parameters for the different rheologies showed that the viscosity, the basal friction, the turbulence term and the resistance factor are the most sensitive ones. It appeared that the variation in thickness along the run-out track can be explained by entrainment of material in the upper part of the track and a change in parametric values during the run-out process. The three rheologies produced a reasonable fit with the observed geometry of the run-out profile, run-out time and run-out volume. It was argued that the Voellmy rheology seems to give the most appropriate explanation for the difference in resistance along the run-out path. The main problem in the simulation was to stop the debris flow on a slope with a gradient around 22°. A reactivation of the mass movement by frictional sliding of the material half way the run

9. New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence

CERN Document Server

Nicolleau, FCGA; Redondo, J-M

2012-01-01

This book contains a collection of the main contributions from the first five workshops held by Ercoftac Special Interest Group on Synthetic Turbulence Models (SIG42. It is intended as an illustration of the sig's activities and of the latest developments in the field. This volume investigates the use of Kinematic Simulation (KS) and other synthetic turbulence models for the particular application to environmental flows. This volume offers the best syntheses on the research status in KS, which is widely used in various domains, including Lagrangian aspects in turbulence mixing/stirring, partic

10. Effects of Capillary Pressure on Multiphase Flow during CO2 Injection in Saline Aquifer

Directory of Open Access Journals (Sweden)

Pau J.S.

2014-07-01

Full Text Available This paper focused on supercritical CO2 injection into saline aquifer, in particular its capillarity’s effects on the plume migration, reservoir pressure alteration and CO2 flux density. The numerical method used to solve the incompressible two-phase flow equations is based on the mimetic method, which conserves the mass and fluxes simultaneously. The investigation showed that exclusion of capillarity can greatly underestimate the CO2 plume migration and resulted in distinctive reservoir pressure distribution. It is found that capillarity showed no significant effect on the flux intensity of CO2.

11. Modeling of finite-size droplets and particles in multiphase flows

Directory of Open Access Journals (Sweden)

Prashant Khare

2015-08-01

Full Text Available The conventional point-particle approach for treating the dispersed phase in a continuous flowfield is extended by taking into account the effect of finite particle size, using a Gaussian interpolation from Lagrangian points to the Eulerian field. The inter-phase exchange terms in the conservation equations are distributed over the volume encompassing the particle size, as opposed to the Dirac delta function generally used in the point-particle approach. The proposed approach is benchmarked against three different flow configurations in a numerical framework based on large eddy simulation (LES turbulence closure. First, the flow over a circular cylinder is simulated for a Reynolds number of 3900 at 1 atm pressure. Results show good agreement with experimental data for the mean streamwise velocity and the vortex shedding frequency in the wake region. The calculated flowfield exhibits correct physics, which the conventional point-particle approach fails to capture. The second case deals with diesel jet injection in quiescent environment over a pressure range of 1.1–5.0 MPa. The calculated jet penetration depth closely matches measurements. It decreases with increasing chamber pressure, due to enhanced drag force in a denser fluid environment. Finally, water and acetone jet injection normal to air crossflow is studied at 1 atm. The calculated jet penetration and Sauter mean diameter of liquid droplets compare very well with measurements.

12. Numerical modelling of the thermal and fluid flow phenomena of the fluidity test

Directory of Open Access Journals (Sweden)

A. Bokota

2010-01-01

Full Text Available In the paper, two mathematical models of the solidification of a cylindrical shaped casting, which take into account the process of filling the mould cavity with molten metal during the vertical fluidity test, has been proposed. In the general model, velocity and pressure fields were obtained by solving the momentum equations and the continuity equation, whereas the thermal fields were obtained by solving the heat conduction equation containing the convection term. In the simplified model, making assumptions relating to both the material and the geometry of the region, the general equations for continuity and momentum have been reduced to single equation for pressure. This approach leads as to accelerate significantly of the fluid flow calculations. In this model, coupling of the thermal and fluid flow phenomena has been taken into consideration by the changes of the fluidity function and thermophysical parameters of alloy with respect to the temperature. The problem has been solved by the finite element method.

13. Self-organized phenomena of pedestrian counter flow in a channel under periodic boundary conditions

Institute of Scientific and Technical Information of China (English)

Li Xiang; Duan Xiao-Yin; Dong Li-Yun

2012-01-01

In this paper we investigate self-organized phenomena such as lane formation generated by pedestrian counter flow in a channel.The lattice gas model is extended to take the effect of walkers in the opposite direction into account simultaneously when they are in the view field of a walker,i.e.,walkers tend to follow the leaders in the same direction and avoid conflicts with those walking towards them.The improved model is then used to mimic pedestrian counter flow in a channel under periodic boundary conditions.Numerical simulations show that lane formation is well reproduced,and this process is rather rapid which coincides with real pedestrian traffic.The average velocity and critical density are found to increase to some degree with the consideration of view field.

14. Effects of probe shape change on flow phenomena during Jovian entry

Science.gov (United States)

Tiwari, S. N.; Subramanian, S. V.

1979-01-01

The effects of probe shape change on the flow phenomena around a Jovian entry body is investigated. The initial body shapes considered are: 45-degree sphere cone, 35-degree hyperboloid, and 45-degree ellipsoid. The radiating shock-layer flow is assumed to be axisymmetric, inviscid, and in chemical and local thermodynamic equilibrium. The radiative transfer is calculated with an existing nongray radiation model that accounts for molecular band, atomic line, and continuum transitions. The results indicate that the shock-standoff distance, shock temperature and density, wall pressure distribution and radiative heating to the body are influenced significantly because of the probe shape change. The effect of shape change on radiative heating of the afterbody was considerably larger for the sphere cone and ellipsoid than for the hyperboloid. For the peak heating conditions, the net radiative heating to the body was found to be highest for the ellipsoid

15. PIV and CFD studies on analyzing intragastric flow phenomena induced by peristalsis using a human gastric flow simulator.

Science.gov (United States)

Kozu, Hiroyuki; Kobayashi, Isao; Neves, Marcos A; Nakajima, Mitsutoshi; Uemura, Kunihiko; Sato, Seigo; Ichikawa, Sosaku

2014-08-01

This study quantitatively analyzed the flow phenomena in model gastric contents induced by peristalsis using a human gastric flow simulator (GFS). Major functions of the GFS include gastric peristalsis simulation by controlled deformation of rubber walls and direct observation of inner flow through parallel transparent windows. For liquid gastric contents (water and starch syrup solutions), retropulsive flow against the direction of peristalsis was observed using both particle image velocimetry (PIV) and computational fluid dynamics (CFD). The maximum flow velocity was obtained in the region occluded by peristalsis. The maximum value was 9 mm s(-1) when the standard value of peristalsis speed in healthy adults (UACW = 2.5 mm s(-1)) was applied. The intragastric flow-field was laminar with the maximum Reynolds number (Re = 125). The viscosity of liquid gastric contents hardly affected the maximum flow velocity in the applied range of this study (1 to 100 mPa s). These PIV results agreed well with the CFD results. The maximum shear rate in the liquid gastric contents was below 20 s(-1) at UACW = 2.5 mm s(-1). We also measured the flow-field in solid-liquid gastric contents containing model solid food particles (plastic beads). The direction of velocity vectors was influenced by the presence of the model solid food particle surface. The maximum flow velocity near the model solid food particles ranged from 8 to 10 mm s(-1) at UACW = 2.5 mm s(-1). The maximum shear rate around the model solid food particles was low, with a value of up to 20 s(-1).

16. CVFEM for Multiphase Flow with Disperse and Interface Tracking, and Algorithms Performances

Directory of Open Access Journals (Sweden)

M. Milanez

2015-12-01

Full Text Available A Control-Volume Finite-Element Method (CVFEM is newly formulated within Eulerian and spatial averaging frameworks for effective simulation of disperse transport, deposit distribution and interface tracking. Their algorithms are implemented alongside an existing continuous phase algorithm. Flow terms are newly implemented for a control volume (CV fixed in a space, and the CVs' equations are assembled based on a finite element method (FEM. Upon impacting stationary and moving boundaries, the disperse phase changes its phase and the solver triggers identification of CVs with excess deposit and their neighboring CVs for its accommodation in front of an interface. The solver then updates boundary conditions on the moving interface as well as domain conditions on the accumulating deposit. Corroboration of the algorithms' performances is conducted on illustrative simulations with novel and existing Eulerian and Lagrangian solutions, such as (- other, i. e. external methods with analytical and physical experimental formulations, and (- characteristics internal to CVFEM.

17. Modeling of Potential Distribution of Electrical Capacitance Tomography Sensor for Multiphase Flow Image

Directory of Open Access Journals (Sweden)

S. Sathiyamoorthy

2007-09-01

Full Text Available Electrical Capacitance Tomography (ECT was used to develop image of various multi phase flow of gas-liquid-solid in a closed pipe. The principal difficulties to obtained real time image from ECT sensor are permittivity distribution across the plate and capacitance is nonlinear; the electric field is distorted by the material present and is also sensitive to measurement errors and noise. This work present a detailed description is given on method employed for image reconstruction from the capacitance measurements. The discretization and iterative algorithm is developed for improving the predictions with minimum error. The author analyzed eight electrodes square sensor ECT system with two-phase water-gas and solid-gas.

18. Paper capillary force driven hollow channel as a platform for multiphase flows bioassays

Directory of Open Access Journals (Sweden)

Zheng Tengfei

2016-05-01

Full Text Available This paper develops a simple, inexpensive, and portable diagnostic assays that may be useful in remote settings, and in particular, in less industrialized countries where simple assays are becoming increasingly important for detecting disease and monitoring health. In this assays, the paper capillary force is first used to transport complex fluids such as whole blood or colloidal suspensions that contain particulates in a new type channel - paper capillary driven hollow channel, which offset the disadvantages of current paper microfluidic technologies. To demonstrate the various applications of the paper capillary force driven hollow channel, several devices are design and made to complete the purpose of exhibiting laminar flow in a T-junction microchannel, sheath a core stream in a three-inlet channel and transportation whole blood.

19. Dual FIB-SEM 3D Imaging and Lattice Boltzmann Modeling of Porosimetry and Multiphase Flow in Chalk

Science.gov (United States)

Rinehart, A. J.; Yoon, H.; Dewers, T. A.; Heath, J. E.; Petrusak, R.

2010-12-01

Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage. This work was supported by the US Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

20. A study of flow boiling phenomena using real time neutron radiography

Science.gov (United States)

Novog, David Raymond

decreased with increasing radial distance. For swirling flow, the void concentration was highest in the center of each subchannel formed by the twisted tape insert, producing two local void maxima at each axial position. Furthermore, the instantaneous RTNR results show that the effects of bubble agglomeration change from one geometry to the next. To further examine the application of RTNR for void distribution measurement, both vertical and horizontal orientations were examined. These experimental results show similar cross sectional averaged axial distributions of the void fraction but significant differences in the local void behavior. The HS-XCT experiments were conducted on swirl-flow boiling of Refrigerant 123 at similar conditions as the RTNR experiments. These tests were conducted to qualitatively compare and verify the void distribution and behavior obtained using RTNR techniques. The HS-XCT results verify that during smooth flow boiling in a vertical tube the void tends to concentrate in the center of the channel and decrease outward to the channel walls. For swirl flow, the void tends to concentrate near the center of each subchannel formed by the twisted tape. Furthermore, wall region void fraction for smooth-flow boiling was significantly higher than swirling flow conditions due to the significant centrifugal forces present in swirl-flow. These centrifugal forces may improve the heat transfer and dryout behavior during swirl-flow conditions. This work contributes to the development of two-phase flow diagnostics based on penetrating radiative techniques, i.e., RTNR and HS-XCT for void distribution measurement, and enhances the knowledge of flow boiling systems. The application of HS-XCT and RTNR for the study of flow boiling phenomena using smooth and swirl-flow geometries has clearly demonstrated that differences in local void distribution result in differences in heat transfer behavior.

1. Towards an integrated petrophysical tool for multiphase flow properties of core samples

Energy Technology Data Exchange (ETDEWEB)

Lenormand, R. [Institut Francais du Petrole, Rueil Malmaison (France)

1997-08-01

This paper describes the first use of an Integrated Petrophysical Tool (IPT) on reservoir rock samples. The IPT simultaneously measures the following petrophysical properties: (1) Complete capillary pressure cycle: primary drainage, spontaneous and forced imbibitions, secondary drainage (the cycle leads to the wettability of the core by using the USBM index); End-points and parts of the relative permeability curves; Formation factor and resistivity index. The IPT is based on the steady-state injection of one fluid through the sample placed in a Hassler cell. The experiment leading to the whole Pc cycle on two reservoir sandstones consists of about 30 steps at various oil or water flow rates. It takes about four weeks and is operated at room conditions. Relative permeabilities are in line with standard steady-state measurements. Capillary pressures are in accordance with standard centrifuge measurements. There is no comparison for the resistivity index, but the results are in agreement with literature data. However, the accurate determination of saturation remains the main difficulty and some improvements are proposed. In conclusion, the Integrated Petrophysical Tool is as accurate as standard methods and has the advantage of providing the various parameters on the same sample and during a single experiment. The FIT is easy to use and can be automated. In addition, it can be operated in reservoir conditions.

2. An Experimenting Field Approach for the Numerical Solution of Multiphase Flow in Porous Media.

Science.gov (United States)

Salama, Amgad; Sun, Shuyu; Bao, Kai

2016-03-01

In this work, we apply the experimenting pressure field technique to the problem of the flow of two or more immiscible phases in porous media. In this technique, a set of predefined pressure fields are introduced to the governing partial differential equations. This implies that the velocity vector field and the divergence at each cell of the solution mesh can be determined. However, since none of these fields is the true pressure field entailed by the boundary conditions and/or the source terms, the divergence at each cell will not be the correct one. Rather the residue which is the difference between the true divergence and the calculated one is obtained. These fields are designed such that these residuals are used to construct the matrix of coefficients of the pressure equation and the right-hand side. The experimenting pressure fields are generated in the solver routine and are fed to the different routines, which may be called physics routines, which return to the solver the elements of the matrix of coefficients. Therefore, this methodology separates the solver routines from the physics routines and therefore results in simpler, easy to construct, maintain, and update algorithms.

3. Computer assisted gamma and X-ray tomography: Applications to multiphase flow systems

Energy Technology Data Exchange (ETDEWEB)

Kumar, S.B.; Dudukovic, M.

1998-01-01

In process vessels, involving two or three phases it is often important not only to know the volume fraction (holdup) of each phase but also the spatial distribution of such holdups. This information is needed in control, trouble shooting and assessment of flow patterns and can be observed noninvasively by the application of Computed Tomography (CT). This report presents a complete overview of X-ray and gamma ray transmission tomography principles, equipment design to specific tasks and application in process industry. The fundamental principles of tomography, the algorithms for image reconstruction, the measurement method and the possible sources of error are discussed in detail. A case study highlights the methodology involved in designing a scanning system for the study of a given process unit, e.g., reactor, separations column etc. Results obtained in the authors laboratory for the gas holdup distribution in bubble columns are also presented. Recommendations are made for the Advanced Fuels Development Unit (AFDU) in LaPorte, TX.

4. A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows

Energy Technology Data Exchange (ETDEWEB)

Owkes, Mark, E-mail: mfc86@cornell.edu; Desjardins, Olivier

2013-09-15

The accurate conservative level set (ACLS) method of Desjardins et al. [O. Desjardins, V. Moureau, H. Pitsch, An accurate conservative level set/ghost fluid method for simulating turbulent atomization, J. Comput. Phys. 227 (18) (2008) 8395–8416] is extended by using a discontinuous Galerkin (DG) discretization. DG allows for the scheme to have an arbitrarily high order of accuracy with the smallest possible computational stencil resulting in an accurate method with good parallel scaling. This work includes a DG implementation of the level set transport equation, which moves the level set with the flow field velocity, and a DG implementation of the reinitialization equation, which is used to maintain the shape of the level set profile to promote good mass conservation. A near second order converging interface curvature is obtained by following a height function methodology (common amongst volume of fluid schemes) in the context of the conservative level set. Various numerical experiments are conducted to test the properties of the method and show excellent results, even on coarse meshes. The tests include Zalesak’s disk, two-dimensional deformation of a circle, time evolution of a standing wave, and a study of the Kelvin–Helmholtz instability. Finally, this novel methodology is employed to simulate the break-up of a turbulent liquid jet.

5. Measurement of Turbulent Flow Phenomena for the Lower Plenum of a Prismatic Gas-Cooled Reactor

Energy Technology Data Exchange (ETDEWEB)

Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink; Keith G. Condie; Glenn E. McCreery

2007-09-01

Mean velocity field and turbulence data are presented for flow phenomena in a lower plenum of a typical prismatic gas-cooled reactor (GCR), such as in a Very High Temperature Reactor (VHTR) concept. In preparation for design, safety analyses and licensing, research has begun on readying the computational tools that will be needed to predict the thermal-hydraulics behavior of the reactor design. Fluid dynamics experiments have been designed and built to develop benchmark databases for the assessment of computational fluid dynamics (CFD) codes and their turbulence models for a typical VHTR plenum geometry in the limiting case of negligible buoyancy and constant fluid properties. This experiment has been proposed as a “Standard Problem” for assessing advanced reactor (CFD) analysis tools. Present results concentrate on the region of the plenum near its far reflector wall (away from the outlet duct). The flow in the lower plenum can locally be considered as multiple jets into a confined cross flow - with obstructions. A model of the lower plenum has been fabricated and scaled to the geometric dimensions of the Next Generation Nuclear Plant (NGNP) Point Design. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to induce flow features somewhat comparable to those expected from the staggered parallel rows of posts in the reactor design. Posts, side walls and end walls are fabricated from clear, fused quartz to match the refractive-index of the working fluid so that optical techniques may be employed for the measurements. The experiments were conducted in the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Laboratory (INL). The benefit of the MIR technique is that it permits optical measurements to determine complex flow characteristics in passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The

6. Simulation experiments for hot-leg U-bend two-phase flow phenomena

Energy Technology Data Exchange (ETDEWEB)

Ishii, M.; Hsu, J.T.; Tucholke, D.; Lambert, G.; Kataoka, I.

1986-01-01

In order to study the two-phase natural circulation and flow termination during a small break loss of coolant accident in LWR, simulation experiments have been performed. Based on the two-phase flow scaling criteria developed under this program, an adiabatic hot leg U-bend simulation loop using nitrogen gas and water and a Freon 113 boiling and condensation loop were built. The nitrogen-water system has been used to isolate key hydrodynamic phenomena from heat transfer problems, whereas the Freon loop has been used to study the effect of phase changes and fluid properties. Various tests were carried out to establish the basic mechanism of the flow termination and reestablishment as well as to obtain essential information on scale effects of parameters such as the loop frictional resistance, thermal center, U-bend curvature and inlet geometry. In addition to the above experimental study, a preliminary modeling study has been carried out for two-phase flow in a large vertical pipe at relatively low gas fluxes typical of natural circulation conditions.

7. Numerical Modeling of Reactive Multiphase Flow for FCC and Hot Gas Desulfurization Circulating Fluidized Beds

Energy Technology Data Exchange (ETDEWEB)

Miller, Aubrey L. [WSU Research Corporation, Morgantown, WV (USA)

2005-07-01

This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFB riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.

8. Electrical capacitance tomography (ECT) and gamma radiation meter for comparison with and validation and tuning of computational fluid dynamics (CFD) modeling of multiphase flow

Science.gov (United States)

Pradeep, Chaminda; Yan, Ru; Vestøl, Sondre; Melaaen, Morten C.; Mylvaganam, Saba

2014-07-01

The electrical capacitance tomographic (ECT) approach is increasingly seen as attractive for measurement and control applications in the process industries. Recently, there is increased interest in using the tomographic details from ECT for comparing with and validating and tuning CFD models of multiphase flow. Collaboration with researchers working in the field of computational fluid dynamics (CFD) modeling of multiphase flows gives valuable information for both groups of researchers in the field of ECT and CFD. By studying the ECT tomograms of multiphase flows under carefully monitored inflow conditions of the different media and by obtaining the capacitance values, C(i, j, t) with i = 1…N, j = 1, 2,…N and i ≠ j obtained from ECT modules with N electrodes, it is shown how the interface heights in a pipe with stratified flow of oil and air can be fruitfully compared to the values of those obtained from ECT and gamma radiation meter (GRM) for improving CFD modeling. Monitored inflow conditions in this study are flow rates of air, water and oil into a pipe which can be positioned at varying inclinations to the horizontal, thus emulating the pipelines laid in subsea installations. It is found that ECT-based tomograms show most of the features seen in the GRM-based visualizations with nearly one-to-one correspondence to interface heights obtained from these two methods, albeit some anomalies at the pipe wall. However, there are some interesting features the ECT manages to capture: features which the GRM or the CFD modeling apparently do not show, possibly due to parameters not defined in the inputs to the CFD model or much slower response of the GRM. Results presented in this paper indicate that a combination of ECT and GRM and preferably with other modalities with enhanced data fusion and analysis combined with CFD modeling can help to improve the modeling, measurement and control of multiphase flow in the oil and gas industries and in the process industries

9. Coupling of Multiphase Flow and Geomechanics in Fractured Porous Media: Application to CO2 Leakages from Natural and Stimulated Fractures

Science.gov (United States)

Ezzedine, S. M.

2015-12-01

Leakage to the atmosphere of a significant fraction of injected CO2 would constitute a failure of a geological CO2 storage project from a greenhouse gas mitigation perspective. We present a numerical model that simulates flow and transport of CO2 into heterogeneous subsurface systems. The model, StoTran, is a flexible numerical environment that uses state-of-the-art finite element and finite volume methods and unstructured adaptive mesh refinement scheme implemented using MPI and OpenMP protocols. Multiphase flow equations and the geomechanical equations are implicitly solved and either fully or sequentially coupled. StoTran can address inverse and forward problems under deterministic or stochastic conditions. For the current study, StoTran has been used to simulate several scenarios spanning from a homogeneous single layered reservoir to heterogeneous multi-layered systems, which including cap-rock with embedded fractures, have been simulated under different operations of CO2 injection and CO2 leakages conditions. Results show the impact of the injection and leakage rates on the time evolution of the spread of the CO2 plume, its interception of the fractured cap-rock and the risk associated with the contamination of the overlaying aquifer. Spatial and temporal moments have been calculated for different, deterministic of stochastic, subsurface physical and chemical properties. Spatial moments enable assessing the extent of the region of investigation under conditions of uncertainty. Furthermore, several leakage scenarios show the intermittence behavior and development of the CO2 plume in the subsurface; its first interception with the fractures located further far from the injection well then, at a second stage, its interception with the fracture within the immediate vicinity of the injection well. We will present a remedy to CO2 leakages from the reservoir in order to enhance a long term containment of the injected CO2. This work performed under the auspices of

10. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

Energy Technology Data Exchange (ETDEWEB)

Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

2010-09-01

The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

11. Uncertainty quantification tools for multiphase gas-solid flow simulations using MFIX

Energy Technology Data Exchange (ETDEWEB)

Fox, Rodney O. [Iowa State Univ., Ames, IA (United States); Passalacqua, Alberto [Iowa State Univ., Ames, IA (United States)

2016-02-01

Computational fluid dynamics (CFD) has been widely studied and used in the scientific community and in the industry. Various models were proposed to solve problems in different areas. However, all models deviate from reality. Uncertainty quantification (UQ) process evaluates the overall uncertainties associated with the prediction of quantities of interest. In particular it studies the propagation of input uncertainties to the outputs of the models so that confidence intervals can be provided for the simulation results. In the present work, a non-intrusive quadrature-based uncertainty quantification (QBUQ) approach is proposed. The probability distribution function (PDF) of the system response can be then reconstructed using extended quadrature method of moments (EQMOM) and extended conditional quadrature method of moments (ECQMOM). The report first explains the theory of QBUQ approach, including methods to generate samples for problems with single or multiple uncertain input parameters, low order statistics, and required number of samples. Then methods for univariate PDF reconstruction (EQMOM) and multivariate PDF reconstruction (ECQMOM) are explained. The implementation of QBUQ approach into the open-source CFD code MFIX is discussed next. At last, QBUQ approach is demonstrated in several applications. The method is first applied to two examples: a developing flow in a channel with uncertain viscosity, and an oblique shock problem with uncertain upstream Mach number. The error in the prediction of the moment response is studied as a function of the number of samples, and the accuracy of the moments required to reconstruct the PDF of the system response is discussed. The QBUQ approach is then demonstrated by considering a bubbling fluidized bed as example application. The mean particle size is assumed to be the uncertain input parameter. The system is simulated with a standard two-fluid model with kinetic theory closures for the particulate phase implemented into

12. Flow rate impacts on capillary pressure and interface curvature of connected and disconnected fluid phases during multiphase flow in sandstone

Science.gov (United States)

Herring, Anna L.; Middleton, Jill; Walsh, Rick; Kingston, Andrew; Sheppard, Adrian

2017-09-01

We investigate capillary pressure-saturation (PC-S) relationships for drainage-imbibition experiments conducted with air (nonwetting phase) and brine (wetting phase) in Bentheimer sandstone cores. Three different flow rate conditions, ranging over three orders of magnitude, are investigated. X-ray micro-computed tomographic imaging is used to characterize the distribution and amount of fluids and their interfacial characteristics. Capillary pressure is measured via (1) bulk-phase pressure transducer measurements, and (2) image-based curvature measurements, calculated using a novel 3D curvature algorithm. We distinguish between connected (percolating) and disconnected air clusters: curvatures measured on the connected phase interfaces are used to validate the curvature algorithm and provide an indication of the equilibrium condition of the data; curvature and volume distributions of disconnected clusters provide insight to the snap-off processes occurring during drainage and imbibition under different flow rate conditions.

13. Numerical Analysis of Flow Phenomena in a Residual Heat Removal Pump

Directory of Open Access Journals (Sweden)

Jianping Yuan

2015-02-01

Full Text Available The hydraulic performances as well as the cavitation phenomena in a scaled residual heat removal pump were investigated by experimental and numerical methods, respectively. In particular, a 3D numerical model of cavitation was adopted to simulate the internal cavitating flow through the model pump. The hydraulic performances of the model pump predicted by numerical simulations were in good agreement with the corresponding experimental data. The main generation and evolution of attached cavitation throughout the blade channels at different cavitating conditions have been investigated using the vapor fraction ISO surface and in-plane velocity vectors. Results show that the low static pressure at the impeller inlet is the main reason for leading edge cavitation by correlation analysis of static pressure on the midspan of impeller. Cavitation proved to occur over a wide range of flow rates, producing a characteristic creeping shape of the head-drop curve and developing in the form of nonaxisymmetric cavities at design flow rate. Moreover, the occurrence of these cavities, attached to the suction surface of blades, was found to depend on the NPSHA value. Numerical and experimental results in this paper can provide better understanding of the origin of leading edge cavitation in residual heat removal pumps.

14. Experimental study of collective flow phenomena in high-energy nucleus-nucleus collisions

CERN Document Server

Chkhaidze, L V; Kharkhelauri, L L

2002-01-01

The results of the experimental study of collective flow phenomena, such as the sideward and elliptic flow of nuclear matter, discovered during the last 10-15 years in high-energy nucleus-nucleus collisions are presented in this review. Sideward (often termed directed) and elliptic flows have been observed for protons, antiprotons, light nuclei, pions, kaons, and lambdas emitted in nucleus-nucleus collisions at 0.1-1.8 GeV/nucleon of LBL Bevalac and GSI/SIS by Plastic-Ball, Streamer Chamber, EOS-NPC, FOPI, LAND, TAPS, and KAOS collaborations; at 2-4 GeV/nucleon of Dubna JINR by SKM-200-GIBS, Propane Buble Chamber, and Emulsion Chamber collaborations; at 2-14 GeV/nucleon of BNL AGS, by the E877, E895, and E917 collaborations; and at 60 and 200 GeV/nucleon of CERN SPS, by the WA98 and NA49 collaborations and more recently by the STAR at RHIC BNL. In the review, the results of the SKM-200-GIBS collaboration of JINR are presented and compared with the results of different experiments by Bevalac, GSI/SIS, BNL, and...

15. Computational simulation of coupled nonequilibrium discharge and compressible flow phenomena in a microplasma thruster

Science.gov (United States)

Deconinck, Thomas; Mahadevan, Shankar; Raja, Laxminarayan L.

2009-09-01

The microplasma thruster (MPT) concept is a simple extension of a cold gas micronozzle propulsion device, where a direct-current microdischarge is used to preheat the gas stream to improve the specific impulse of the device. Here we study a prototypical MPT device using a detailed, self-consistently coupled plasma and flow computational model. The model describes the microdischarge power deposition, plasma dynamics, gas-phase chemical kinetics, coupling of the plasma phenomena with high-speed flow, and overall propulsion system performance. Compared to a cold gas micronozzle, a significant increase in specific impulse is obtained from the power deposition in the diverging section of the MPT nozzle. For a discharge voltage of 750 V, a power input of 650 mW, and an argon mass flow rate of 5 SCCM (SCCM denotes cubic centimeter per minute at STP), the specific impulse of the device is increased by a factor of ˜1.5 to about 74 s. The microdischarge remains mostly confined inside the micronozzle and operates in an abnormal glow discharge regime. Gas heating, primarily due to ion Joule heating, is found to have a strong influence on the overall discharge behavior. The study provides a validation of the MPT concept as a simple and effective approach to improve the performance of micronozzle cold gas propulsion devices.

16. A Model for Transport Phenomena in a Cross-Flow Ultrafiltration Module with Microchannels

Directory of Open Access Journals (Sweden)

Shiro Yoshikawa

2010-12-01

Full Text Available Cross-flow ultrafiltration of macromolecular solutions in a module with microchannels is expected to have the advantages of fast diffusion from the membrane surface and a high ratio of membrane surface area to feed liquid volume. Cross-flow ultrafiltration modules with microchannels are expected to be used for separation and refining and as membrane reactors in microchemical processes. Though these modules can be applied as a separator connected with a micro-channel reactor or a membrane reactor, there have been few papers on their performance. The purpose of this study was to clarify the relationship between operational conditions and performance of cross-flow ultrafiltration devices with microchannels. In this study, Poly Vinyl Pyrrolidone (PVP aqueous solution was used as a model solute of macromolecules such as enzymes. Cross-flow ultrafiltration experiments were carried out under constant pressure conditions, varying other operational conditions. The permeate flux decreased in the beginning of each experiment. After enough time passed, the permeate flux reached a constant value. The performance of the module was discussed based on the constant values of the flux. It was observed that the permeate flux increased with increasing transmembrane pressure (TMP and feed flow rate, and decreased with an increase of feed liquid concentration. A model of the transport phenomena in the feed liquid side channel and the permeation through the membrane was developed based on the concentration and velocity distributions in the feed side channel. The experimental results were compared with those based on the model and the performance of the ultrafiltration module is discussed.

17. Reaction-transport-mechanical (RTM) simulator Sym.CS: Putting together water-rock interaction, multi-phase and heat flow, composite petrophysics model, and fracture mechanics

Science.gov (United States)

Paolini, C.; Park, A. J.; Mellors, R. J.; Castillo, J.

2009-12-01

A typical CO2 sequestration scenario involves the use of multiple simulators for addressing multiphase fluid and heat flow, water-rock interaction and mass-transfer, rock mechanics, and other chemical and physical processes. The benefit of such workflow is that each model can be constrained rigorously; however, the drawback is final modeling results may achieve only a limited extent of the theoretically possible capabilities of each model. Furthermore, such an approach in modeling carbon sequestration cannot capture the nonlinearity of the various chemical and physical processes. Hence, the models can only provide guidelines for carbon sequestration processes with large margins of error. As an alternative, a simulator is being constructed by a multi-disciplinary team with the aim of implementing a large array of fundamental phenomenologies, including, but not limited to: water-rock interaction using elemental mass-balance and explicit mass-transfer and reaction coupling methods; multi-phase and heat flow, including super-critical CO2 and oil; fracture mechanics with anisotropic permeabilities; rheological rock mechanics based on incremental stress theory; and a composite petrophysics model capable of describing changing rock composition and properties. The modules representing the processes will be solved using a layered iteration method, with the goal of capturing the nonlinear feedback among all of the processes. The simulator will be constructed using proven optimization and modular, object-oriented, and service-oriented programming methods. Finally, a novel AJAX (asynchronous JavaScript and XML) user interface is being tested to host the simulator that will allow usage through an Internet browser. Currently, the water-rock interaction, composite petrophysics, and multi-phase fluid and heat flow modules are available for integration. Results of the water-rock interaction and petrophysics coupling has been used to model interaction between a CO2-charged water and

18. PIV Experiments to Measure Flow Phenomena in a Scaled Model of a VHTR Lower Plenum

Energy Technology Data Exchange (ETDEWEB)

Hugh M. McIlroy, Jr.; Donald M. McEligot; Richard R. Schultz; Daniel Christensen; Robert J. Pink; Ryan C. Johnson

2006-09-01

A report of experimental data collected at the Matched-Index-of-Refraction (MIR) Laboratory in support of contract DE-AC07-05ID14517 and the INL Standard Problem on measurements of flow phenomena occurring in a lower plenum of a typical prismatic VHTR concept reactor to assess CFD code is presented. Background on the experimental setup and procedures is provided along with several samples of data obtained from the 3-D PIV system and an assessment of experimental uncertainty is provided. Data collected in this study include 3-dimensional velocity-field descriptions of the flow in all four inlet jets and the entire lower plenum with inlet jet Reynolds numbers (ReJet) of approximately 4300 and 12,400. These investigations have generated over 2 terabytes of data that has been processed to describe the various velocity components in formats suitable for external release and archived on removable hard disks. The processed data from both experimental studies are available in multi-column text format.

19. A new high-performance 3D multiphase flow code to simulate volcanic blasts and pyroclastic density currents: example from the Boxing Day event, Montserrat

Science.gov (United States)

Ongaro, T. E.; Clarke, A.; Neri, A.; Voight, B.; Widiwijayanti, C.

2005-12-01

For the first time the dynamics of directed blasts from explosive lava-dome decompression have been investigated by means of transient, multiphase flow simulations in 2D and 3D. Multiphase flow models developed for the analysis of pyroclastic dispersal from explosive eruptions have been so far limited to 2D axisymmetric or Cartesian formulations which cannot properly account for important 3D features of the volcanic system such as complex morphology and fluid turbulence. Here we use a new parallel multiphase flow code, named PDAC (Pyroclastic Dispersal Analysis Code) (Esposti Ongaro et al., 2005), able to simulate the transient and 3D thermofluid-dynamics of pyroclastic dispersal produced by collapsing columns and volcanic blasts. The code solves the equations of the multiparticle flow model of Neri et al. (2003) on 3D domains extending up to several kilometres in 3D and includes a new description of the boundary conditions over topography which is automatically acquired from a DEM. The initial conditions are represented by a compact volume of gas and pyroclasts, with clasts of different sizes and densities, at high temperature and pressure. Different dome porosities and pressurization models were tested in 2D to assess the sensitivity of the results to the distribution of initial gas pressure, and to the total mass and energy stored in the dome, prior to 3D modeling. The simulations have used topographies appropriate for the 1997 Boxing Day directed blast on Montserrat, which eradicated the village of St. Patricks. Some simulations tested the runout of pyroclastic density currents over the ocean surface, corresponding to observations of over-water surges to several km distances at both locations. The PDAC code was used to perform 3D simulations of the explosive event on the actual volcano topography. The results highlight the strong topographic control on the propagation of the dense pyroclastic flows, the triggering of thermal instabilities, and the elutriation

Directory of Open Access Journals (Sweden)

H. Saathoff

2003-01-01

Full Text Available This article describes an investigation of the casingwall flow phenomena in a single-stage, axial-flow, low-speed compressor at part-load conditions, utilizing an oil-flow technique to visualize the boundary layer development and highfrequency sensors to measure ensemble-averaged velocity and flow-angle distributions as well as unsteady total pressure distributions. Representative results are shown and discussed. The results enable different sources of endwall blockage to be identified and changes with flow rate to be determined.

1. Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

Energy Technology Data Exchange (ETDEWEB)

Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

2008-12-01

The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i

2. Evaluation of CFD Methods for Simulation of Two-Phase Boiling Flow Phenomena in a Helical Coil Steam Generator

Energy Technology Data Exchange (ETDEWEB)

Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shaver, Dillon [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, Yang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vegendla, Prasad [Argonne National Lab. (ANL), Argonne, IL (United States); Tentner, Adrian [Argonne National Lab. (ANL), Argonne, IL (United States)

2016-09-30

The U.S. Department of Energy, Office of Nuclear Energy charges participants in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program with the development of advanced modeling and simulation capabilities that can be used to address design, performance and safety challenges in the development and deployment of advanced reactor technology. The NEAMS has established a high impact problem (HIP) team to demonstrate the applicability of these tools to identification and mitigation of sources of steam generator flow induced vibration (SGFIV). The SGFIV HIP team is working to evaluate vibration sources in an advanced helical coil steam generator using computational fluid dynamics (CFD) simulations of the turbulent primary coolant flow over the outside of the tubes and CFD simulations of the turbulent multiphase boiling secondary coolant flow inside the tubes integrated with high resolution finite element method assessments of the tubes and their associated structural supports. This report summarizes the demonstration of a methodology for the multiphase boiling flow analysis inside the helical coil steam generator tube. A helical coil steam generator configuration has been defined based on the experiments completed by Polytecnico di Milano in the SIET helical coil steam generator tube facility. Simulations of the defined problem have been completed using the Eulerian-Eulerian multi-fluid modeling capabilities of the commercial CFD code STAR-CCM+. Simulations suggest that the two phases will quickly stratify in the slightly inclined pipe of the helical coil steam generator. These results have been successfully benchmarked against both empirical correlations for pressure drop and simulations using an alternate CFD methodology, the dispersed phase mixture modeling capabilities of the open source CFD code Nek5000.

3. Cascaded lattice Boltzmann method with improved forcing scheme for large-density-ratio multiphase flow at high Reynolds and Weber numbers.

Science.gov (United States)

Lycett-Brown, Daniel; Luo, Kai H

2016-11-01

A recently developed forcing scheme has allowed the pseudopotential multiphase lattice Boltzmann method to correctly reproduce coexistence curves, while expanding its range to lower surface tensions and arbitrarily high density ratios [Lycett-Brown and Luo, Phys. Rev. E 91, 023305 (2015)PLEEE81539-375510.1103/PhysRevE.91.023305]. Here, a third-order Chapman-Enskog analysis is used to extend this result from the single-relaxation-time collision operator, to a multiple-relaxation-time cascaded collision operator, whose additional relaxation rates allow a significant increase in stability. Numerical results confirm that the proposed scheme enables almost independent control of density ratio, surface tension, interface width, viscosity, and the additional relaxation rates of the cascaded collision operator. This allows simulation of large density ratio flows at simultaneously high Reynolds and Weber numbers, which is demonstrated through binary collisions of water droplets in air (with density ratio up to 1000, Reynolds number 6200 and Weber number 440). This model represents a significant improvement in multiphase flow simulation by the pseudopotential lattice Boltzmann method in which real-world parameters are finally achievable.

4. Cascaded lattice Boltzmann method with improved forcing scheme for large-density-ratio multiphase flow at high Reynolds and Weber numbers

Science.gov (United States)

Lycett-Brown, Daniel; Luo, Kai H.

2016-11-01

A recently developed forcing scheme has allowed the pseudopotential multiphase lattice Boltzmann method to correctly reproduce coexistence curves, while expanding its range to lower surface tensions and arbitrarily high density ratios [Lycett-Brown and Luo, Phys. Rev. E 91, 023305 (2015), 10.1103/PhysRevE.91.023305]. Here, a third-order Chapman-Enskog analysis is used to extend this result from the single-relaxation-time collision operator, to a multiple-relaxation-time cascaded collision operator, whose additional relaxation rates allow a significant increase in stability. Numerical results confirm that the proposed scheme enables almost independent control of density ratio, surface tension, interface width, viscosity, and the additional relaxation rates of the cascaded collision operator. This allows simulation of large density ratio flows at simultaneously high Reynolds and Weber numbers, which is demonstrated through binary collisions of water droplets in air (with density ratio up to 1000, Reynolds number 6200 and Weber number 440). This model represents a significant improvement in multiphase flow simulation by the pseudopotential lattice Boltzmann method in which real-world parameters are finally achievable.

5. 2. Workshop 'Measuring Systems for Steady-State and Transient Multiphase Flows'; 2. Workshop 'Messtechnik fuer stationaere und transiente Mehrphasenstroemungen'

Energy Technology Data Exchange (ETDEWEB)

Prasser, H.M. [ed.

1998-11-01

The 2nd Workshop on measuring systems for steady-state and transient multiphase flows was held at Rossendorf on September 24/25, 1988. 14 Papers were presented, whose subjects ranged from optical and radiometric methods to impedance sensors, hot film probes and model-assisted methods of measurement. In the field of computer simulation of multiphase flow, a trend towards 3D models was identified which makes higher demands on the spatial and time resolution and on the information volume to be acquired and processed. [German] Vom 24.-25. September 1998 fand in Rossendorf der 2. Workshop ueber Messtechnik fuer stationaere und transiente Mehrphasenstroemungen statt. Es standen 14 Vortraege auf dem Programm, das Spektrum reichte von optischen ueber radiometrische Methoden bis hin zu verschiedenen Impedanzsensoren, Heissfilmsonden und modellgestuetzten Messverfahren. Auf dem Gebiet der Computersimulation von Mehrphasenstroemungen zeichnet sich zunehmend der Uebergang zu dreidimensionalen Modellen ab. Hieraus ergeben sich neue Anforderungen an die Messtechnik, sowohl hinsichtlich der raeumlich-zeitlichen Aufloesung als auch was den Umfang der zu erfassenden Informationen betrifft. (orig./AKF)

6. MOFAT: A two-dimensional finite-element program for multiphase flow and multicomponent transport. Program documentation and user's guide

Energy Technology Data Exchange (ETDEWEB)

Katyal, A.K.; Kaluarachchi, J.J.; Parker, J.C.

1991-05-01

The manual describes a two-dimensional finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. Flow and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are considered by the program. The program can simulate flow only or coupled flow and transport. The flow module can be used to analyze two phases, water and NAPL, with the gas phase held at constant pressure, or explicit three-phase flow of water, NAPL, and gas at various pressures. The transport module can handle up to five components which partition among water, NAPL, gas and solid phases assuming either local equilibrium or first-order mass transfer. Three phase permeability-saturation-capillary pressure relations are defined by an extension of the van Genuchten model. The governing equations are solved using an efficient upstream-weighted finite element scheme. The report describes the required inputs for flow analysis and transport analysis. Time dependent boundary conditions for flow and transport analysis can be handled by the program and are described in the report. Detailed instructions for creating data files needed to run the program and example input and output files are given in appendices.

7. Beyond the Black Box: Coupling x-ray tomographic imaging of multi-phase flow processes to numerical models and traditional laboratory measurements

DEFF Research Database (Denmark)

Wildenschild, Dorthe; Porter, M.L.; Schaap, M.G.

Quantitative non-invasive imaging has evolved rapidly in the last decade, and is now being used to assess a variety of problems in vadose zone research, including unsaturated flow and transport of water and contaminants, macropore-dominated processes, soil-water-root interactions, more recent work...... on colloidal processes, and significant work on NAPL-water interactions . We are now able to use non-invasive imaging to probe processes that could not previously be quantified because of lack of opacity, resolution, or accurate techniques for quantitative measurement. This work presents an overview of recent...... advances in x-ray microtomography techniques that can generate high-resolution image-based data for (1) validation of pore-scale multi-phase flow models such as the lattice-Boltzmann technique and pore network models (with respect to fluid saturations, fluid distribution, and relationships among capillary...

8. TOPFLOW - a new multipurpose thermalhydraulic test facility for the investigation of steady state and transient two phase flow phenomena

Energy Technology Data Exchange (ETDEWEB)

Schaffrath, A.; Kruessenberg, A.K.; Weiss, F.P.; Beyer, M.; Carl, H.; Prasser, H.M.; Schuster, J.; Schuetz, P.; Tamme, M.; Zimmermann, W. [Forschungszentrum Rossendorf e.V. (FZR) (Germany). Inst. fuer Sicherheitsforschung; Hicken, E.F. [Forschungszentrum Juelich (Germany). Inst. fuer Sicherheitsforschung und Reaktortechnik

2001-08-01

The Forschungszentrum Rossendorf (FZR) e. V. is constructing a new large-scale test facility, TOPFLOW, for thermalhydraulic single effect tests. The acronym stands for transient two phase flow test facility. It will mainly be used for the investigation of generic and applied steady state and transient two phase flow phenomena and the development and validation of models of computational fluid dynamic (CFD) codes. (orig.)

9. Drag phenomena within a torque converter driven automotive transmission - laminar flow approach

Science.gov (United States)

Alexa, O.; Marinescu, M.; Olaru, Gh; Costache, D.; Ilie, C. O.; Vinturis, V.

2015-11-01

When discussing a torque converter driven, automotive transmission with respect to the vehicle's coasting mode, automotive engineers have to take into account the slip between the converter's propeller and turbine. If the turbine isn't locked to the propellers during coasting process, drag phenomena within the converter's fluid occur and they have to be properly assessed when computing the coasting process dynamics. The best way to make the needed evaluation is to have a separate torque converter and test it on a test bench, if the data provided by the manufacturer, in this respect, weren't available. But there are several issues that could baffle this action. Among them, one could find the lack of information from the manufacturer, missing (bankrupted) manufacturer, classified information, old (out of date) products and so on. An even more challenging situation consists in dealing with a military special vehicle. Actually, the vehicle that would be subjected to the following topic is a military tracked, heavy vehicle (MBT) with a planetary driveline, driven by its engine via a hydraulic torque converter. In the attempt to assess its’ coasting dynamic performances, we faced the problem of the reverse rotation of the torque converter that strongly influences the general drag of the vehicle's motion. Hence, this paper tries to provide a method to determine the transmission overall drag considering the torque converter as being its main contributor. The method is based on the experimental research our team has performed in the last several months. Using high-quality software and adjacent mathematics while assuming a certain sort of flow type within the torque converter, we aimed at determining the parameter of interest of the flow. The method can be successfully used for all type of hydrodynamic components of the transmission under the condition of developing the necessary experimental research. As far as the test were concerned, they were the typical ones designed

10. Higher-order conservative interpolation between control-volume meshes: Application to advection and multiphase flow problems with dynamic mesh adaptivity

Science.gov (United States)

Adam, A.; Pavlidis, D.; Percival, J. R.; Salinas, P.; Xie, Z.; Fang, F.; Pain, C. C.; Muggeridge, A. H.; Jackson, M. D.

2016-09-01

A general, higher-order, conservative and bounded interpolation for the dynamic and adaptive meshing of control-volume fields dual to continuous and discontinuous finite element representations is presented. Existing techniques such as node-wise interpolation are not conservative and do not readily generalise to discontinuous fields, whilst conservative methods such as Grandy interpolation are often too diffusive. The new method uses control-volume Galerkin projection to interpolate between control-volume fields. Bounded solutions are ensured by using a post-interpolation diffusive correction. Example applications of the method to interface capturing during advection and also to the modelling of multiphase porous media flow are presented to demonstrate the generality and robustness of the approach.

11. NUMERICAL STUDY ON THE MIXING OF UNSORTED SEDIMENT PARTICLES DISCHARGED INTO A CROSS-FLOW BY MULTIPHASE PARTICLE-IN-CELL (MP-PIC) METHOD

Institute of Scientific and Technical Information of China (English)

Jie GU; Chiwai LI; Hong YANG; Yong ZHAN

2007-01-01

The mixing characteristics of dredged sediments of variable size discharged into cross-flow are studied by an Eulerian-Lagrangian method. A three-dimensional (3D) numerical model has been developed by using the modified k-ε parameterization for the turbulence in fluid phase/water and a Lagrangian method for the solid phase/sediments. In the model the wake turbulence induced by sediments has been included as additional source and sink terms in the k-ε model; and the trajectories of the sediments are tracked by the Lagrangian method in which the sediment drift velocities in cross-flow are computed by a multiphase particle-in-cell (MP-PIC) method and the diffusion process is approximated by a random walk model. The hydrodynamic behavior of dumped sediment cloud is governed by the total buoyancy on the cloud, the drag force on each particle and velocity of cross-flow. The cross-flow destroys more or less the double vortices occurred in stagnant ambience and dominates the longitudinal movement of sediment cloud. The computed results suggest satisfactory agreement by comparison with the experimental results of laboratory.

12. High-resolution numerical methods for compressible multi-phase flow in hierarchical porous media. Progress report, September 1993--September 1994

Energy Technology Data Exchange (ETDEWEB)

Trangenstein, J.A.

1994-03-15

This is the second year in the proposed three-year effort to develop high-resolution numerical methods for multi-phase flow in hierarchical porous media. The issues being addressed in this research are: Computational efficiency: Field-scale simulation of enhanced oil recovery, whether for energy production or aquifer remediation, is typically highly under-resolved. This is because rock transport properties vary on many scales, and because current numerical methods have low resolution. Effective media properties: Since porous media are formed through complex geologic processes, they involve significant uncertainty and scale-dependence. Given this uncertainty, knowledge of ensemble averages of flow in porous media can be preferable to knowledge of flow in specific realizations of the reservoir. However, current models of effective properties do not represent the observed behavior very well. Relative permeability models present a good example of this problem. In practice, these models seldom provide realistic representations of hysteresis, interfacial tension effects or three-phase flow; there are no models that represent well all three effects simultaneously.

13. Numerical simulation of fluid/structure interaction phenomena in viscous dominated flows

Science.gov (United States)

Tran, Hai Duong

2001-12-01

The accurate prediction of buffet boundaries is essential in modern military aircraft and suspension bridge design in order to avoid the potentially disastrous consequences of unsteady loads. The design of lightweight structures and thermal protection systems for supersonic and hypersonic vehicles depends on the accurate prediction of the aerothermal loads, the structural temperatures and their gradients, and the structural deformations and stresses. Despite their bounded nature, limit-cycle oscillations can exhibit important amplitudes which affect the fatigue life of aircraft structures. Therefore, the main objective of this thesis is to develop and design an integrated multidisciplinary computational methodology for the analyses of the coupled responses exhibited by these phenomena. To simulate fluid/structure interaction problems in turbulent flows, we formulate the k--epsilon turbulence model and Reichardt's wall law in ALE form for dynamic meshes. This law is used with the generalized boundary conditions on k and epsilon of Jaeger and Dhatt and allows a closer integration to the wall compared to standard logarithmic laws and boundary conditions on k and epsilon. In order to apply the methodology to buffeting problems dominated by vortex shedding, we validate our solution approach on the square cylinder benchmark problem. There, we stress the minimization of numerical dissipation induced by an upwinding scheme, and apply our methodology to the aeroelastic stability analysis of a sectional dynamic model of the Tacoma Narrows Bridge. Then, we extend the three field formulation of aeroelasticity to a four-field formulation of aerothermoelasticity for the analysis of aerodynamic heating on structures. With a k--epsilon model, the time-averaged Navier-Stokes equations are integrated up to a distance delta from the real wall. This gap creates a problem for the transmission of the structural temperature to the fluid system. To resolve this problem, we exchange the

14. Solution of the Burger’s Equation for Longitudinal Dispersion Phenomena Occurring in Miscible Phase Flow through Porous Media

Directory of Open Access Journals (Sweden)

Monika N. Mehta

2012-04-01

Full Text Available An approximate solution of longitudinal dispersion phenomena occurring in two phase miscible fluid flow through porous media has been obtained by using the group theoretic approach. The longitudinal dispersion coefficient is assumed to be directly proportional to the concentration of the fluid for a distance x and at any time t > 0. The graphical representation for the concentration of the fluid for a distance x and at time t > 0 has been obtained using Mat lab coding.

15. GLOBAL EXISTENCE AND BLOW-UP PHENOMENA OF CLASSICAL SOLUTIONS FOR THE SYSTEM OF COMPRESSIBLE ADIABATIC FLOW THROUGH POROUS MEDIA

Institute of Scientific and Technical Information of China (English)

刘法贵; 孔德兴

2004-01-01

By means of maximum principle for nonlinear hyperbolic systems,the results given by HSIAO Ling and D.Serre was improved for Cauchy problem of compressible adiabatic flow through porous media,and a complete result on the global existence and the blow-up phenomena of classical solutions of these systems.These results show that the dissipation is strong enough to preserve the smoothness of 'small ' solution.

16. Energy Equation Derivation of the Multiphase Flow Pipeline%考虑焦汤效应等因素的两相管流热力学模型

Institute of Scientific and Technical Information of China (English)

尹铁男; 姚海元; 邓道明; 张金波; 宫敬

2011-01-01

在油气混输管道多相流模拟计算中,热力学模型是与水力模型相互耦合的重要组成部分,影响程序的收敛性和结果的准确性.通过对管段微元进行能量守恒分析推导了能量方程,该方程涵盖了焦汤效应、压力做功、剪切力做功、相变换热、管外换热等因素,是考虑全面的能量方程形式,可以比较准确地反映混输管道气液两相管流的实际情况.将模型嵌入到TPCOMP软件中,选取了现场实际管线英买-牙哈混输管道作为算例进行计算,并将沿线温度分布与OLGA软件进行了对比.算例结果表明,该模型较好地模拟了管线的温度分布,相比TPCOMP原有模块计算精度提高,并与OLGA极为吻合,证明了模型的正确性.%In the simulation of oil - gas pipeline multiphase flow, thermodynamic computation was an important process interacting with the hydraulic calculation, and it influences the convergence of the program and the accuracy of the results. The form of the energy equation was key to the thermodynamic computation. Through analysis of energy conservation, the energy equation was derived. This new energy equation has considered many factors, such as Joule-Thomson effect, pressure work, friction work, phase change heat transfer, and heat transfer with the pipe wall. So it was an overall form of energy equation, which could reflect the actual fact of multiphase pipeline accurately. This model was incorporated into the TPCOMP, and a simulation was carried out with a practical pipeline, Yingmai - Yaha multiphase pipeline, and the temperature result was compared with OLGA. The results show that this model has simulated the temperature distribution very well. It is better than the original TPCOMP thermodynamic model, and the result is similar with that of OLGA, so the accuracy of the model is evident.

17. CFD studies on the phenomena around counter-current flow limitations of gas/liquid two-phase flow in a model of a PWR hot leg

Energy Technology Data Exchange (ETDEWEB)

Deendarlianto, E-mail: deendarlianto@ugm.ac.id [Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany); Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2, Yogyakarta 55281 (Indonesia); Hoehne, Thomas; Lucas, Dirk; Vallee, Christophe [Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany); Zabala, Gustavo Adolfo Montoya [Department of Chemical Engineering, Simon Bolivar University, Valle of Sartenejas, Caracas 1080 (Venezuela, Bolivarian Republic of)

2011-12-15

Highlights: Black-Right-Pointing-Pointer We modelled CCFL in a PWR hot leg using Algebraic Interfacial Area Density model. Black-Right-Pointing-Pointer The model is able to distinguish the local flow morphologies. Black-Right-Pointing-Pointer Test fluids are air-water and steam-water. Black-Right-Pointing-Pointer Calculated CCFL and water level are in good agreement with experimental data. - Abstract: In order to improve the understanding of counter-current two-phase flow and to validate new physical models, CFD simulations of a 1/3rd scale model of the hot leg of a German Konvoi pressurized water reactor (PWR) with rectangular cross section were performed. Selected counter-current flow limitation (CCFL) experiments conducted at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) were calculated with ANSYS CFX using the multi-fluid Euler-Euler modelling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a shear stress transport (SST) turbulence model. In the simulation, the drag law was approached by a newly developed correlation of the drag coefficient in the Algebraic Interfacial Area Density (AIAD) model. The model can distinguish the bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicate also a quantitative agreement between calculations and experimental data for the CCFL characteristics and the water level inside the hot leg channel.

18. Transport Phenomena During Equiaxed Solidification of Alloys

Science.gov (United States)

Beckermann, C.; deGroh, H. C., III

1997-01-01

Recent progress in modeling of transport phenomena during dendritic alloy solidification is reviewed. Starting from the basic theorems of volume averaging, a general multiphase modeling framework is outlined. This framework allows for the incorporation of a variety of microscale phenomena in the macroscopic transport equations. For the case of diffusion dominated solidification, a simplified set of model equations is examined in detail and validated through comparisons with numerous experimental data for both columnar and equiaxed dendritic growth. This provides a critical assessment of the various model assumptions. Models that include melt flow and solid phase transport are also discussed, although their validation is still at an early stage. Several numerical results are presented that illustrate some of the profound effects of convective transport on the final compositional and structural characteristics of a solidified part. Important issues that deserve continuing attention are identified.

19. Arcing flow phenomena; Visualisation des ecoulements en presence d'un arc de coupure

Energy Technology Data Exchange (ETDEWEB)

Rachard, H.; Mottet, C. [Schneider Electric, Centre de Recherches A2, 75 - Paris (France)

2002-06-01

Optical diagnostic techniques have been used for studying electric arcing phenomena at Schneider Electric for many years now, and are integrated in new-product development practice. Studies have so far focused on electric arc behaviour, but today we are especially interested in studying the interaction of an electric arc with its immediate environment, i.e. gaseous medium and neighbouring materials. This article starts by discussing the specificities of electric arcs in low-voltage circuit-breakers, then goes on to examine diagnostic methods for viewing the physical phenomena of interest. After setting out and analysing the results obtained, we conclude with details on planned upgrades targeting enhanced diagnostic performance. (author)

20. Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames

Science.gov (United States)

2015-06-01

dynamic adaptive hybrid integration, was developed for stiff chemistry. 15. SUBJECT TERMS chemical explosive mode analysis ( CEMA ...TECHNICAL DISCUSSION 1. Chemical explosive mode analysis ( CEMA ) for computational flame diagnostics The method of chemical explosive mode...analysis ( CEMA ) is a systematic approach to identify limit flame phenomena, including local ignition, extinction, and premixed and non- premixed reaction

1. Implementation of leak detection techniques in ducts with critical regimen multiphase flow; Implementacao de tecnicas de deteccao de vazamentos em dutos em regime de escoamento multifasico critico

Energy Technology Data Exchange (ETDEWEB)

Martins, Rodrigo S.; Maitelli, Andr L.; Doria Neto, Adriao D.; Salazar, Andres O. [Rio Grande do Norte Univ., Natal, RN (Brazil)

2005-07-01

This paper presents signals processing techniques and artificial neural networks to identify leaks in multiphase flow pipeline. The greatest difficulty on traditional methods of leak detection (volume balance, pressure point analysis, etc) is that they are insufficient to design an adequate profile for the real conditions of oil pipeline transport. These difficult conditions goes since unevenly soil, that cause columns or vacuum throughout pipelines, until the presence of multi phases like water, gas and oil; plus other components as sand, which use to produce discontinuous flow off and diverse variations. To attenuate these difficulties, the transform wavelet was used to map the signal pressure in different resolution plan allowing the extraction of descriptors that identify leaks patterns and with then to provide training for the neural network multilayer perceptron (MLP) to learning of how to classify this pattern and report whenever this characterize leaks. During the tests were used transient and regime signals and pipelines with punctures with size variations from 1/2'' to 1'' of diameter to simulate leaks and, this way, it was possible to detect leaks with a time window of two minutes. The result show that the proposed descriptors considered, based in statistical methods applied in domain transform, are sufficient to identify leaks patterns and make it possible to train the neural classifier to indicate the occurrence of pipeline leaks. (author)

2. Coupled modeling of non-isothermal multiphase flow, solutetransport and reactive chemistry in porous and fractured media: 1. ModelDevelopment and Validation

Energy Technology Data Exchange (ETDEWEB)

Xu, Tianfu; Pruess, Karsten

1998-09-01

Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, mineral deposition, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. Here they present a numerical simulation model, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered. The model can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions is considered, such as aqueous complexation, gas dissolution/exsolution, cation exchange, and surface complexation. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. The coupled model employs a sequential iteration approach with reasonable computing efficiency. The development of the governing equations and numerical approach is presented along with the discussion of the model implementation and capabilities. The model is verified for a wide range of subsurface physical and chemical processes. The model is well suited for flow and reactive transport in variably saturated porous and fractured media. In the second of this two-part paper, three applications covering a variety of problems are presented to illustrate the capabilities of the model.

3. CFD analysis of flow phenomena inside thermo vapor compressor influenced by operating conditions and converging duct angles

Energy Technology Data Exchange (ETDEWEB)

Jeong, Hyo Min; Utomo, Tony; Ji, Myoung Kuk; Lee, Yong Hun; Lee, Gyeong Hwan; Chung, Han Shik [Gyeongsang National University, Tongyeong (Korea, Republic of)

2009-09-15

A thermo vapor compressor is simply a steam ejector employed in a multi effect desalination process. A greater understanding of flow phenomena inside an ejector plays an important role in its performance improvement. In this paper, CFD investigation has been carried out to study the flow structure inside a steam ejector. This research revealed the influence of operating pressures and ejector geometries on the flow structure and the performance of a steam ejector. The CFD results were verified with available experimental data. The angle of the converging duct as the geometry parameter was varied as 0 .deg., 0.5 .deg., 1 .deg., 2 .deg., 3.5 .deg. and 4.5 .deg.. The best performance was obtained by the ejector with converging duct angle of 1 .deg.

4. Techniques de débitmétrie polyphasique non intrusive. Revue bibliographique Non Intrusive Multiphase Flow Measurement Techniques. Bibliographic Review

Directory of Open Access Journals (Sweden)

Lynch J.

2006-11-01

Full Text Available Cet article présente les différentes techniques de débitmétrie polyphasique non intrusive décrites dans la littérature du domaine public. Ces techniques sont considérées du point de vue de leur application dans le cadre de la production pétrolière sous-marine (mélange eau/huile/gaz. A partir d'une analyse des différentes méthodes physiques qui peuvent être utilisées, des perspectives d'avenir sont proposées. Several operations in the oil reservoir exploitation industry call for flowmeters capable of delivering information on the quantity and rate of flow of the different phases (gas, oil, water, solids . . . present in a pipeline. Amongst these are the estimation of remaining reserves and of well performance, control of production units such as multiphase pumping systems and fiscal monitoring in the case of pipeline networking. Existing methods, based on phase separation, require separate test lines and thus tend to be cumbersome, give only intermittent values of flow parameters and need to be calibrated due to the intrusive nature of the measurements. These drawbacks are seen to be all the more critical in subsea production where the ideal flowmeter would be compact, require little maintenance and supply precise real time data for network and multiphase pump control. In recent years flow measurement in two or more phase systems has received increasing attention both in laboratory studies and for applications in a variety of industries (for example : nuclear power production and food processing as well as of course oil production. We review here the many methods considered for non-intrusive flow metering with two or more components from the point of view of an industrial (in particular subsea oil production application. The situation is rendered delicate, in particular for density measurement, by the uncontrolled nature of the flow which may occur in any of several regimes with differing spatial distributions of the components

5. THE RELATIONS BETWEEN MODEL PARAMETERS AND CERTAIN PHENOMENA IN TRAFFIC FLOW

Institute of Scientific and Technical Information of China (English)

OU Zhong-hui; TAO Ming-de; WU Zheng

2004-01-01

Based on the dimensionless dynamic model of traffic flow, the model parameters were compared with numerically simulating solutions, and the effects of the former on the latter was investigated. Some relations between the parameters were obtained. Investigation several idealized results from dimensionless dynamic model of traffic flow were concluded.

6. Turbulent Phenomena in the Aerobreakup of Liquid Droplets

Directory of Open Access Journals (Sweden)

Andras Horvath

2012-09-01

Full Text Available This work presents the computational simulation results of turbulent phenomena in a high velocity multiphase flow, where the predominantly turbulent phase is the gaseous phase. For reliable simulation results the code is validated by comparing results of a single phase supersonic turbulent flow to other simulation and experimental results and good agreement is found. This is a precondition for the simulation of the initial stages of the breakup of a liquid droplet in a high Weber number flow. The role of the subgrid-scale turbulence is investigated and two distinct regions are identified. In the second region turbulence phenomena seem to be the predominant factors for the characteristic shape. Simulation results are compared to experiments of the droplet breakup at high Weber number.

7. Influence of core sand properties on flow dynamics of core shooting process based on experiment and multiphase simulation

Directory of Open Access Journals (Sweden)

Chang-jiang Ni

2017-03-01

Full Text Available The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant turbulence, the flow pattern of sand particles in the shooting head and core box was reproduced with colored core sands. By incorporating the kinetic theory of granular flow (KTGF, kinetic-frictional constitutive correlation and turbulence model, a two-fluid model (TFM was established to study the flow dynamics of the core shooting process. Two-fluid model (TFM simulations were then performed and a areasonable agreement was achieved between the simulation and experimental results. Based on the experimental and simulation results, the effects of turbulence, sand density, sand diameter and binder ratio were analyzed in terms of filling process, sand volume fraction (αs and sand velocity (Vs.

8. Shock Train and Pseudo-shock Phenomena in Supersonic Internal Flows

Institute of Scientific and Technical Information of China (English)

Kazuyasu Matsuo

2003-01-01

When a normal shock wave interacts with a boundary layer along a wall surface in supersonic internal flows and the shock is strong enough to separate the boundary layer, the shock is bifurcated and a series of shocks called "shock train" is formed. The flow is decelerated from supersonic to subsonic through the whole interaction region that is referred to as "pseudo-shock". In the present paper some characteristics of the shock train and pseudo-shock and some examples of the pseudo-shocks in some flow devices are described.

9. Transport Phenomena in Stratified Multi-Fluid Flow in the Presence and Absence of Gravity

Science.gov (United States)

Chigier, Norman; Humphrey, William

1996-01-01

Experiments are being conducted to study the effects of buoyancy on planar density-stratified shear flows. A wind tunnel generates planar flows separated by an insulating splitter plate, with either flow heated, which emerge from a two-dimensional nozzle. The objective is to isolate and define the effect of gravity and buoyancy on a stratified shear layer. To this end, both stably and unstably stratified layers will be investigated. This paper reports on the results of temperature and velocity measurements across the nozzle exit plane and downstream along the nozzle center plane.

10. Mathematical Simulation of Flow Phenomena in CAS-OB Refining Ladle

Institute of Scientific and Technical Information of China (English)

ZHOU Yun; DONG Yuan-chi; WANG Hai-chuan; WANG Shi-jun; LIU Yong-bing

2003-01-01

A mathematical model which describes the fluid flow in a gas stirred original ladle and CAS-OB ladle was introduced. The fluid field analysis was obtained through mathematical simulation. In order to decrease the ladle refractory wearing and increase the heating speed of liquid steel, some measures should be adopted. The result shows that the flow fields in CAS-OB ladle and original ladle are different. With a fixed gas flow rate, the flow field is related to the plug position and the snorkel depth. When the nozzle is located at 0.45 r, where r is the radius of ladle bottom, the fluid field predicted by water modeling is quite satisfactory for improving the quality of liquid steel.

11. Study of DSMC algorithm and model for hypersonic multiphase rarefied flow%高超声速稀薄流的气粒多相流动DSMC算法建模研究

Institute of Scientific and Technical Information of China (English)

李洁; 石于中; 徐振富; 王小虎

2012-01-01

Based on Direct Simulation Monte Carlo (DSMC) method, the model of coalescence and separation in binary collision of liquid drops and solid particles is presented with considering of DSMC algorithm. An approach of DSMC for a gas-particle two-way coupled model is developed for multiphase rarefied flow. Simulations are performed for the case of two-dimensional hypersonic multiphase rarefied jet flows. The results show that the method is provided as a new approach for the multiphase flow in the transitional regime of rarefied gas.%基于直接模拟Monte Carlo(DSMC)方法,构造适用于DSMC算法的固态和液态颗粒碰撞、聚合和分离模型,发展稀薄条件下双向耦合作用的气粒多相流的DSMC算法,在此基础上初步实现高超声速稀薄流环境中的气粒多相喷流流场数值模拟.算例结果表明该方法能为稀薄过渡区气粒多相流动提供一种新的应用研究手段.

12. Numerical thermal-hydraulics study on sodium-water phenomena. Development of computational code 'SERAPHIM'

Energy Technology Data Exchange (ETDEWEB)

Takata, Takashi; Yamaguchi, Akira [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

2002-12-01

A multi-component and multi-phase numerical analysis method is developed to investigate a mechanism of sodium-water reaction phenomena, which occur when pressurized water leaks from failed heat transfer tubes in the steam generator of a fast reactor. It is named SERAPHIM: Sodium-watEr Reaction Analysis PHysics of Interdisciplinary Multi-phase flow. In this code, the surface reaction model and the gas phase reaction model are implemented as a sodium-water reaction mechanism. The HSMAC method is adopted for numerical solution. A validation for compressible multi-phase flow analysis is carried out in the present paper. Two-dimensional analyses of the sodium-water reaction are also carried out and it is demonstrated that the numerical quantification of a sodium-water reaction accident by the SERAPHIM code is practicable. (author)

13. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell with nature inspired flow field design

Directory of Open Access Journals (Sweden)

2015-01-01

Full Text Available Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM fuel cell with nature inspired flow field designs has been developed. The design inspired from the existed biological fluid flow patterns in the leaf. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally.

14. Design and Construction of a Shock Tube Experiment for Multiphase Instability Experiments

Science.gov (United States)

Middlebrooks, John; Black, Wolfgang; Avgoustopoulos, Constantine; Allen, Roy; Kathakapa, Raj; Guo, Qiwen; McFarland, Jacob

2016-11-01

Hydrodynamic instabilities are important phenomena that have a wide range of practical applications in engineering and physics. One such instability, the shock driven multiphase instability (SDMI), arises when a shockwave accelerates an interface between two particle-gas mixtures with differing multiphase properties. The SDMI is present in high energy explosives, scramjets, and supernovae. A practical way of studying shock wave driven instabilities is through experimentation in a shock tube laboratory. This poster presentation will cover the design and data acquisition process of the University of Missouri's Fluid Mixing Shock Tube Laboratory. In the shock tube, a pressure generated shockwave is passed through a multiphase interface, creating the SDMI instability. This can be photographed for observation using high speed cameras, lasers, and advance imaging techniques. Important experimental parameters such as internal pressure and temperature, and mass flow rates of gases can be set and recorded by remotely controlled devices. The experimental facility provides the University of Missouri's Fluid Mixing Shock Tube Laboratory with the ability to validate simulated experiments and to conduct further inquiry into the field of shock driven multiphase hydrodynamic instabilities. Advisor.

15. The role of different grain shapes in modifying intra-pore flow and transport phenomena

Science.gov (United States)

Chaudhary, K.; Cardenas, B.; Bennett, P.; Ketcham, R. A.

2010-12-01

Intra-pore (10 -100 µm) fluid flow and mass transport depend on pore geometry. This has implication on microbial and biogeochemical processes within pores and residual trapping of Supercritical CO2. Since effects of grain size and grain sorting are already known, we investigate the effect of grain shapes in modifying intra-pore fluid flow and mass transport both inside and between pores and stagnant zones. Numerical simulations are carried out by solving the Navier-Stokes equations on idealized 2-D domains representing grain shapes such as squares and circles. We conduct a sensitivity study by varying grain angularity and imposing different Reynolds numbers flows to analyze their influence on permeability and distribution of vortices, also known as recirculation zones. We observe that the coupled effects of pore geometries and vortices lead to large variation in the fluid velocity, which consequently leads to non-Fickian transport even though flow can still be described by a continuum-scale Darcy equation. We find that the permeability increases and vorticity decreases with decreasing angularity of the grains. The flow velocities in the stagnant zone increases linearly with higher Reynolds number flows, with the rate of increase largest among the angular grains. The mass transfer mechanism between main pores and stagnant zones is mainly molecular diffusion, but the concentration gradient between the main pore and the stagnant zone is significantly influenced by the mixing effect associated with vortices. The overall effect of an increase in vorticity manifests itself as an increase in the global dispersion of the solute, which results both in an early arrival and a prolonged tail of a solute’s break-through curve. We find that the related effects of grain shapes and vortices are important in understanding pore scale flow and transport processes and may have significant implication on the issues of contaminant transport in aquifers and the geological storage of

16. Numerical Modelling of Fluid Flow and Thermal Phenomena in the Tundish of CSC Machine

Directory of Open Access Journals (Sweden)

Sowa L.

2014-03-01

Full Text Available The mathematical and numerical simulation model of the liquid steel flow in a tundish is presented in this paper. The problem was treated as a complex and solved by the finite element method. The single-strand slab tundish is used to continuous casting slabs. The internal work space of the tundish was modified by the following flow control devices. The first device was a striker pad situated in the pouring tundish zone. The second device was a baffle with three holes and the third device was a baffle without hole. The main purpose of using these devices was to cause a quiet liquid mixing as well as give directional metal flow upwards which facilitated inclusion floatation. The interaction of flow control devices on hydrodynamic conditions was received from numerical simulation. As a result of the computations carried out, the liquid steel flow and steel temperature fields were obtained. The influence of the tundish modification on velocity fields in the liquid phase of steel was estimated, because these have an essential influence on high quality of a continuous steel cast slab.

17. Experimental Study and Simulation Principles of An Oil-Gas Multiphase Transportation System

Institute of Scientific and Technical Information of China (English)

2000-01-01

－ Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic simulation analysis is conducted to deduce simulation parameters of the system and similarity criteria under simplified conditions are obtained. The reliability and feasibility of two-phase flow experiment with oil and natural gas simulated by water and air are discussed by using the similarity criteria.

18. National laboratories capabilities summaries for the DOE Virtual Center for Multiphase Dynamics (VCMD)

Energy Technology Data Exchange (ETDEWEB)

Joyce, E.L.

1997-03-01

The Virtual Center For Multiphase Dynamics (VCMD) integrates and develops the resources of industry, government, academia, and professional societies to enable reliable analysis in multiphase computational fluid dynamics. The primary means of the VCMD focus will be by the creation, support, and validation of a computerized simulation capability for multiphase flow and multiphase flow applications. This paper briefly describes the capabilities of the National Laboratories in this effort.

19. Development Of An Experiment For Measuring Flow Phenomena Occurring In A Lower Plenum For VHTR CFD Assessment

Energy Technology Data Exchange (ETDEWEB)

D. M. McEligot; K.G. Condie; G. E. Mc Creery; H. M. Mc Ilroy

2005-09-01

The objective of the present report is to document the design of our first experiment to measure generic flow phenomena expected to occur in the lower plenum of a typical prismatic VHTR (Very High Temperature Reactor) concept. In the process, fabrication sketches are provided for the use of CFD (computational fluid dynamics) analysts wishing to employ the data for assessment of their proposed codes. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. One aspect of the complex flow in a prismatic VHTR is being addressed: flow and thermal mixing in the lower plenum ("hot streaking" issue). Current prismatic VHTR concepts were examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses were applied to determine key non-dimensional parameters and their magnitudes over this operating range. The flow in the lower plenum can locally be considered to be a situation of multiple jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentum-dominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other.

20. Turbulence and Complex Flow Phenomena in Multi-Stage Axial Turbomachines

Science.gov (United States)

2007-05-10

J.J., Mulac R.A., Celestina M.L., 1986, "A Model for Closing the Inviscid Form of the Average-Passage Equation System," ASME Paper No. 86-GT-227...Adamczyk J.J.; Celestina M.L.; Beach T.A.; Barnett M., 1990, "Simulation Of Three Dimensional Viscous Flow Within A Multistage Turbine," J. of

1. Mixed-Hybrid and Vertex-Discontinuous-Galerkin Finite Element Modeling of Multiphase Compositional Flow on 3D Unstructured Grids

CERN Document Server

Moortgat, Joachim

2016-01-01

Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide ...

2. Study on the Multi-phase Flow and Fluid Saturation in 2D Fractured Media by Light Transmission Technique

Science.gov (United States)

Zhang, Y.; Ye, S.; Wu, J.

2013-12-01

Immiscible two-phase flows in fractured media are encountered in many engineering processes such as recovery of oil and gas, exploitation of geothermal energy, and groundwater contamination by immiscible chemicals. A two-dimensional rough wall parallel plate fracture model was set up and light transmission method (LTM) was applied to study two-phase flow system in fractured media. The fracture model stood with up and bottom flow and no flow on other two sides. A charge-coupled device (CCD) camera was used to monitor the migration of DNAPL and gas bubbles in the fracture model. To simulate two-phase system in fracture media, air was injected into the water saturated cell (C1) through the middle of the bottom and NAPL was injected into another water saturated cell (C2) through the middle of the top of the cell. The results show LTM was an effective way in monitoring the migration of DNAPL and gas bubbles in the fracture models. Gas moved upwards quickly to the top of C1 in the way of air bubbles generated at the injection position and formed a continuous distribution. The migration of TCE was controlled by its own weight and fracture aperture. TCE migrated to large aperture firstly when moving downwards, and intruded into smaller one with accumulation of TCE. Light Intensity-Saturation Models (LISMs) were developed to estimate the gas or NAPL saturation in two-phase system. The volume amount of infiltration of gas bubbles or NAPL could be estimated from light intensities by LISMs. There were strong correlations between the added and calculated amounts of gas or TCE. It is feasible to use the light transmission method to characterize the movement and spatial distribution of gas or NAPL in fractured media.

3. Numerical and experimental analysis of local flow phenomena in laminar Taylor flow in a square mini-channel

Science.gov (United States)

Falconi, C. J.; Lehrenfeld, C.; Marschall, H.; Meyer, C.; Abiev, R.; Bothe, D.; Reusken, A.; Schlüter, M.; Wörner, M.

2016-01-01

The vertically upward Taylor flow in a small square channel (side length 2 mm) is one of the guiding measures within the priority program "Transport Processes at Fluidic Interfaces" (SPP 1506) of the German Research Foundation (DFG). This paper presents the results of coordinated experiments and three-dimensional numerical simulations (with three different academic computer codes) for typical local flow parameters (bubble shape, thickness of the liquid film, and velocity profiles) in different cutting planes (lateral and diagonal) for a specific co-current Taylor flow. For most quantities, the differences between the three simulation results and also between the numerical and experimental results are below a few percent. The experimental and computational results consistently show interesting three-dimensional flow effects in the rear part of the liquid film. There, a local back flow of liquid occurs in the fixed frame of reference which leads to a temporary reversal of the direction of the wall shear stress during the passage of a Taylor bubble. Notably, the axial positions of the region with local backflow and those of the minimum vertical velocity differ in the lateral and the diagonal liquid films. By a thorough analysis of the fully resolved simulation results, this previously unknown phenomenon is explained in detail and, moreover, approximate criteria for its occurrence in practical applications are given. It is the different magnitude of the velocity in the lateral film and in the corner region which leads to azimuthal pressure differences in the lateral and diagonal liquid films and causes a slight deviation of the bubble from the rotational symmetry. This deviation is opposite in the front and rear parts of the bubble and has the mentioned significant effects on the local flow field in the rear part of the liquid film.

4. Solution to the Riemann problem for a five-equation model of multiphase flows in non-conservative form

SAHADEB KUILA; T RAJA SEKHAR; G C SHIT

2016-09-01

In this paper, we consider the Riemann problem for a five-equation, two-pressure (5E2P) model proposed by Ransom and Hicks for an isentropic compressible gas–liquid two-phase flows. The model is given by a strictly hyperbolic, non-conservative system of five partial differential equations (PDEs). We investigate the structure of the Riemann problem and construct an approximate solution for it. We solve the Riemann problemfor this model approximately assuming that all waves corresponding to the genuinely nonlinear characteristic fields are rarefaction and discuss their properties. To verify the solver, a series of test problems selected from the literature are presented.

5. FINAL REPORT on Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

Energy Technology Data Exchange (ETDEWEB)

Chang H. Oh; Eung S. Kim; Hee C. NO; Nam Z. Cho

2011-01-01

The U.S. Department of Energy is performing research and development that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Generation IV very high temperature reactor (VHTR). Phenomena Identification and Ranking studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important. Consequently, the development of advanced air ingress-related models and verification & validation are of very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air ingress will occur through the break, leading to oxidation of the in-core graphite structure and fuel. This study indicates that depending on the location and the size of the pipe break, the air ingress phenomena are different. In an effort to estimate the proper safety margin, experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model are required. It will also require effective strategies to mitigate the effects of oxidation, eventually. This 3-year project (FY 2008–FY 2010) is focused on various issues related to the VHTR air-ingress accident, including (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the core bottom structures, (d) structural tests of the oxidized core bottom structures, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

6. Unsteady RANS and detached eddy simulation of the multiphase flow in a co-current spray drying☆

Institute of Scientific and Technical Information of China (English)

Jolius Gimbun; Noor Intan Shafinas Muhammad; Woon Phui Law

2015-01-01

A detached eddy simulation (DES) and a k-ε-based Reynolds-averaged Navier–Stokes (RANS) calculation on the co-current spray drying chamber is presented. The DES used here is based on the Spalart–Al maras (SA) turbu-lence model, whereas the standard k-ε(SKE) was considered here for comparison purposes. Predictions of the mean axial velocity, temperature and humidity profile have been evaluated and compared with experimental measurements. The effects of the turbulence model on the predictions of the mean axial velocity, temperature and the humidity profile are most noticeable in the (highly anisotropic) spraying region. The findings suggest that DES provide a more accurate prediction (with error less than 5%) of the flow field in a spray drying chamber compared with RANS-based k-εmodels. The DES simulation also confirmed the presence of anisotropic turbulent flow in the spray dryer from the analysis of the velocity component fluctuations and turbulent structure as il us-trated by the Q-criterion.

7. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell with serpentine gas flow channels

Directory of Open Access Journals (Sweden)

2014-01-01

Full Text Available Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM fuel cell with serpentine gas flow channels has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally.

8. 3. Workshop on measuring instruments for steady and transient multiphase flow; 3. Workshop: Messtechnik fuer stationaere und transiente Mehrphasenstroemungen

Energy Technology Data Exchange (ETDEWEB)

Prasser, H.M. [ed.

1999-12-01

The emphasis of the conference was on methods of measurement that show spatial distributions of phase fractions and velocity, particle sizes and bubbles of the disperse phase. Among the methods described were 3D X-ray tomography, grid sensor measurement of velocity profiles, and simultaneous measurement of bubble sizes and gas and liquid flow rates using an optical particle tracking method. Also presented were interesting developments in the field of local probes, e.g. an electrodiffusion probe. Another new development was the attempt to use optical tomography for investigations of two-phase flows. [German] Am 14. Oktober 1999 wurde in Rossendorf die dritte Veranstaltung in einer Serie von Workshops ueber Messtechnik fuer stationaere und transiente Mehrphasenstroemungen durchgefuehrt. Dieses Jahr koennen wir auf 11 interessante Vortraege zurueckblicken. Besonders hervorzuheben sind die beiden Hauptvortraege, die von Herrn Professor Hetsroni aus Haifa und Herrn Dr. Sengpiel aus Karlsruhe gehalten wurden. Ihnen und allen anderen Vortragenden moechten wir herzlich fuer ihren Beitrag zum Gelingen des Workshops danken. Erneut lag ein wichtiger Schwerpunkt auf Messverfahren, die raeumliche Verteilungen von Phasenanteilen und Geschwindigkeiten sowie die Groesse von Partikeln bzw. Blasen der dispersen Phase zugaenglich machen. So wurde ueber einen dreidimensional arbeitenden Roentgentomographen, ein Verfahren zur Messung von Geschwindigkeitsprofilen mit Gittersensoren und eine Methode zur simultanen Messung von Blasengroessen sowie Feldern von Gas- und Fluessigkeitsgeschwindigkeit mit einer optischen Partikelverfolgungstechnik vorgetragen. Daneben wurden interessante Entwicklungen auf dem Gebiet der lokalen Sonden vorgestellt, wie z.B. eine Elektrodiffusionssonde. Neue messtechnische Ansaetze waren ebenfalls vertreten; hervorzuheben ist der Versuch, die Methode der optischen Tomographie fuer die Untersuchung von Zweiphasenstroemungen nutzbar zu machen. (orig.)

9. An Advanced Reservoir Simulator for Tracer Transport in Multicomponent Multiphase Compositional Flow and Applications to the Cranfield CO2 Sequestration Site

Science.gov (United States)

Moortgat, J.

2015-12-01

Reservoir simulators are widely used to constrain uncertainty in the petrophysical properties of subsurface formations by matching the history of injection and production data. However, such measurements may be insufficient to uniquely characterize a reservoir's properties. Monitoring of natural (isotopic) and introduced tracers is a developing technology to further interrogate the subsurface for applications such as enhanced oil recovery from conventional and unconventional resources, and CO2 sequestration. Oak Ridge National Laboratory has been piloting this tracer technology during and following CO2 injection at the Cranfield, Mississippi, CO2 sequestration test site. Two campaigns of multiple perfluorocarbon tracers were injected together with CO2 and monitored at two wells at 68 m and 112 m from the injection site. The tracer data suggest that multiple CO2 flow paths developed towards the monitoring wells, indicative of either channeling through high permeability pathways or of fingering. The results demonstrate that tracers provide an important complement to transient pressure data. Numerical modeling is essential to further explain and interpret the observations. To aid the development of tracer technology, we enhanced a compositional multiphase reservoir simulator to account for tracer transport. Our research simulator uses higher-order finite element (FE) methods that can capture the small-scale onset of fingering on the coarse grids required for field-scale modeling, and allows for unstructured grids and anisotropic heterogeneous permeability fields. Mass transfer between fluid phases and phase behavior are modeled with rigorous equation-of-state based phase-split calculations. We present our tracer simulator and preliminary results related to the Cranfield experiments. Applications to noble gas tracers in unconventional resources are presented by Darrah et al.

10. New upscaled equations for multiphase flows in porous media based on a phase field formulation for general free energies

Science.gov (United States)

2014-11-01

Based on thermodynamic and variational principles we formulate novel equations for mixtures of incompressible fluids in strongly heterogeneous domains, such as composites and porous media, using elements from the regular solution theory. Starting with equations that fully resolve the pores of a porous medium, represented as a periodic covering of a single reference pore, we rigorously derive effective macroscopic phase field equations under the assumption of periodic and strongly convective flow. Our derivation is based on the multiple scale method with drift and our recently introduced splitting strategy for Ginzburg-Landau/Cahn-Hilliard-type equations. We discover systematically diffusion-dispersion relations (including Taylor-Aris-dispersion) as in classical convection-diffusion problems. Our results represent a systematic and efficient computational strategy to macroscopically track interfaces in heterogeneous media which together with the well-known versatility of phase field models forms a promising basis for the analysis of a wide spectrum of engineering and scientific applications such as oil recovery, for instance.

11. An Experimenting Field Approach for the Numerical Solution of Multiphase Flow in Porous Media

KAUST Repository

2015-07-14

In this work, we apply the experimenting pressure field technique to the problem of the flow of two or more immiscible phases in porous media. In this technique, a set of predefined pressure fields are introduced to the governing partial differential equations. This implies that the velocity vector field and the divergence at each cell of the solution mesh can be determined. However, since none of these fields is the true pressure field entailed by the boundary conditions and/or the source terms, the divergence at each cell will not be the correct one. Rather the residue which is the difference between the true divergence and the calculated one is obtained. These fields are designed such that these residuals are used to construct the matrix of coefficients of the pressure equation and the right-hand side. The experimenting pressure fields are generated in the solver routine and are fed to the different routines, which may be called physics routines, which return to the solver the elements of the matrix of coefficients. Therefore, this methodology separates the solver routines from the physics routines and therefore results in simpler, easy to construct, maintain, and update algorithms.

12. MSTS - Multiphase Subsurface Transport Simulator theory manual

Energy Technology Data Exchange (ETDEWEB)

White, M.D.; Nichols, W.E.

1993-05-01

The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the {open_quotes}User`s Guide and Reference{close_quotes} companion document.

13. Applying non-uniform grids to evaluating susceptibility from flow-type phenomena: an example of application to Mount Etna

Science.gov (United States)

Bongolan, Vena Pearl; Lupiano, Valeria; D'Ambrosio, Donato; Rongo, Rocco; Spataro, William; Iovine, Giulio

2013-04-01

The hazard induced by dangerous flow-type phenomena - e.g. lava flows, earth flows, debris flows, and debris avalanches - can be assessed by analysing a proper set of simulations of hypothetical events. Non-uniform grids are commonly used to study particular areas of interest in computational domains. Examples of application concern, for instance, the turbulence in a boundary layer. While non-uniform grids frequently appear in adaptive methods, they may also be used in a "static" environment. A purposive sampling method, based on a non-uniform grid of sources coupled with numerical simulations of independent events, has recently been employed to evaluate the hazard induced by flow-type phenomena. An example of application to lava-flows at Mount Etna (Italy) is described in this study. The method aims at refining the spatial distribution of hypothetical eruptive vents with respect to an original uniform grid. The density of eruptive vents has been determined by considering the historical distribution of lateral and eccentric vents, and the distribution of the main faults/structures on the volcano. A higher number of sources marks higher-probability zones of vent opening, based on classes of activation: the number of vents in each class has been set proportionally to the probability of activation of the class. By considering the different types of eruption expected from the considered volcano, based on the historical activity of the past 400 years, a set of simulations per each vent has been performed. The employed model is SCIARA-fv2, a Cellular Automata numerical code recently applied to the same study area for preliminary hazard analyses. In this work, calibration could therefore be skipped, by taking advantage from such experience of tuning of the parameters. Performed simulations have been analysed by a GIS, to verify the number of events affecting each cell of the domain. A probability of occurrence could be assigned to each simulation, based on statistics of

14. Multiphase, multicomponent flow and transport models for Nuclear Test-Ban Treaty monitoring and nuclear waste disposal applications

Science.gov (United States)

Jordan, Amy

Open challenges remain in using numerical models of subsurface flow and transport systems to make useful predictions related to nuclear waste storage and nonproliferation. The work presented here addresses the sensitivity of model results to unknown parameters, states, and processes, particularly uncertainties related to incorporating previously unrepresented processes (e.g., explosion-induced fracturing, hydrous mineral dehydration) into a subsurface flow and transport numerical simulator. The Finite Element Heat and Mass (FEHM) transfer code is used for all numerical models in this research. An experimental campaign intended to validate the predictive capability of numerical models that include the strongly coupled thermal, hydrological, and chemical processes in bedded salt is also presented. Underground nuclear explosions (UNEs) produce radionuclide gases that may seep to the surface over weeks to months. The estimated timing of gas arrival at the surface may be used to deploy personnel and equipment to the site of a suspected UNE, if allowed under the terms of the Comprehensive Nuclear Test-Ban Treaty. A model was developed using FEHM that considers barometrically pumped gas transport through a simplified fractured medium and was used to quantify the impact of uncertainties in hydrologic parameters (fracture aperture, matrix permeability, porosity, and saturation) and season of detonation on the timing of gas breakthrough. Numerical sensitivity analyses were performed for the case of a 1 kt UNE at a 400 m burial depth. Gas arrival time was found to be most affected by matrix permeability and fracture aperture. Gases having higher diffusivity were more sensitive to uncertainty in the rock properties. The effect of seasonality in the barometric pressure forcing was found to be important, with detonations in March the least likely to be detectable based on barometric data for Rainier Mesa, Nevada. Monte Carlo modeling was also used to predict the window of

15. Proceedings of submicron multiphase materials

Energy Technology Data Exchange (ETDEWEB)

Baney, R.; Gilliom, L.; Hirano, S.I.; Schmidt, H.

1992-01-01

This book contains the papers presented at Symposium R of the spring 1992 Materials Research Society meeting held in San Francisco, California. The title of the symposium, Submicron Multiphase Materials, was selected by the organizers to encompass the realm of composite materials from those smaller than conventional fiber matrix composites to those with phase separation dimensions approaching molecular dimensions. The development of composite materials is as old as the development of materials. Humans quickly learned that, by combining materials, the best properties of each can be realized and that, in fact, synergistic effects often arise. For example, chopped straw was used by the Israelites to limit cracking in bricks. The famed Japanese samurai swords were multilayers of hard oxide and tough ductile materials. One also finds in nature examples of composite materials. These range form bone to wood, consisting of a hard phase which provides strength and stiffness and a softer phase for toughness. Advanced composites are generally thought of as those which are based on a high modulus, discontinuous, chopped or woven fiber phase and a continuous polymer phase. In multiphase composites, dimensions can range from meters in materials such as steel rod-reinforced concrete structures to angstroms. In macrophase separated composite materials, properties frequently follow the rule of mixtures with the properties approximating the arithmetic mean of the properties of each individual phase, if there is good coupling between the phases. As the phases become smaller, the surface to volume ratio grows in importance with respect to properties. Interfacial and interphase phenomena being to dominate. Surface free energies play an ever increasing role in controlling properties. In recent years, much research in materials science has been directed at multiphase systems where phase separations are submicron in at least some dimension.

16. Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe

Energy Technology Data Exchange (ETDEWEB)

Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

2015-10-15

The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B{sub 4}C) to have the ability of reactivity control. It has annular vapor space and

17. A Probabilistic Approach of Hazard Mapping for flow-type phenomena. An example of application at Mt. Etna

Science.gov (United States)

Bongolan, Vena Pearl; Iovine, Giulio; D'Ambrosio, Donato; Rongo, Rocco; Spataro, William

2014-05-01

The hazard induced by dangerous flow-type phenomena like lava flows, debris flows and debris avalanches can be usefully assessed by analysing a proper set of simulations of hypothetical events characterized in probability. In particular, to map lava-flow hazard, simulations can be performed by assuming a number of nodes from a regular grid of potential vents, selected to uniformly covering the study area. A probability of occurrence can then be assigned to each simulation, based on statistics of historical events and location of each vent with respect to the volcano. In this study, different hazard scenarios for Mt. Etna (Italy) have been realized, based on computer simulations of lava flows generated by a non-uniform grid of sources. The adopted grid covers the volcano with a variable density of nodes. Five macro-areas can in fact be recognised, in which at higher densities of nodes correspond higher probabilities of vent activation. Moreover, 4 distinct temporal frames have been considered (next 1, 25, 50 and 100 years) and related hazard scenarios have been computed. In addition, the topographic effects of the expected simulation within the considered temporal frames have been analysed, aiming at evaluating hazard trends due to natural morphological changes. Model parameters, e.g. the probability distribution function for vent activation and for types of eruption (distinguished into classes by duration and volume), have been derived by analysing the past 400-years volcanic history at Mt. Etna. Probabilities of vent activation for the 4 considered scenarios have been computed in terms of total number of expected events per each temporal frame. The actual number of events to be simulated per each scenario has been obtained by considering a Poisson distribution, with the number of expected events in that frame being the mean of the obtained probabilities. For each frame, a total of 240 runs have been performed. Each run is made of the set of simulations expected

18. Computational transport phenomena of fluid-particle systems

CERN Document Server

2017-01-01

This book concerns the most up-to-date advances in computational transport phenomena (CTP), an emerging tool for the design of gas-solid processes such as fluidized bed systems. The authors examine recent work in kinetic theory and CTP and illustrate gas-solid processes’ many applications in the energy, chemical, pharmaceutical, and food industries. They also discuss the kinetic theory approach in developing constitutive equations for gas-solid flow systems and how it has advanced over the last decade as well as the possibility of obtaining innovative designs for multiphase reactors, such as those needed to capture CO2 from flue gases. Suitable as a concise reference and a textbook supplement for graduate courses, Computational Transport Phenomena of Gas-Solid Systems is ideal for practitioners in industries involved with the design and operation of processes based on fluid/particle mixtures, such as the energy, chemicals, pharmaceuticals, and food processing. Explains how to couple the population balance e...

19. Imaging cross fault multiphase flow using time resolved high pressure-temperature synchrotron fluid tomography: implications for the geological storage of carbon dioxide within sandstone saline aquifers

Science.gov (United States)

Seers, Thomas; Andrew, Matthew; Bijeljic, Branko; Blunt, Martin; Dobson, Kate; Hodgetts, David; Lee, Peter; Menke, Hannah; Singh, Kamaljit; Parsons, Aaron

2015-04-01

Applied shear stresses within high porosity granular rocks result in characteristic deformation responses (rigid grain reorganisation, dilation, isovolumetric strain, grain fracturing and/or crushing) emanating from elevated stress concentrations at grain contacts. The strain localisation features produced by these processes are generically termed as microfaults (also shear bands), which occur as narrow tabular regions of disaggregated, rotated and/or crushed grains. Because the textural priors that favour microfault formation make their host rocks (esp. porous sandstones) conducive to the storage of geo-fluids, such structures are often abundant features within hydrocarbon reservoirs, aquifers and potential sites of CO2 storage (i.e. sandstone saline aquifers). The porosity collapse which accompanies microfault formation typically results in localised permeability reduction, often encompassing several orders of magnitude. Given that permeability is the key physical parameter that governs fluid circulation in the upper crust, this petrophysical degradation implicates microfaults as being flow impeding structures which may act as major baffles and/or barriers to fluid flow within the subsurface. Such features therefore have the potential to negatively impact upon hydrocarbon production or CO2 injection, making their petrophysical characterisation of considerable interest. Despite their significance, little is known about the pore-scale processes involved in fluid trapping and transfer within microfaults, particularly in the presence of multiphase flow analogous to oil accumulation, production and CO2 injection. With respect to the geological storage of CO2 within sandstone saline aquifers it has been proposed that even fault rocks with relatively low phyllosilicate content or minimal quartz cementation may act as major baffles or barriers to migrating CO2 plume. Alternatively, as ubiquitous intra-reservoir heterogeneities, micro-faults also have the potential to

20. Study of modeling theory of multiphase gas distribution in exhaust process of automobile

Institute of Scientific and Technical Information of China (English)

臧杰

2004-01-01

According to experiments and the phenomena that tailpipes often have dirty particulate matter, this paper takes dynamic theory analysis as its study aim, beginning with the description method of multiphase gas distribution differential equation. According to the characteristics that exhaust gas will flow with high velocity in a tailpipe, it is supposed that gas mass that differ largely will layer when flowing with high velocity in a tailpipe.This means the exhaust gas is mixed with particulate matter, gas with large mass (CO2 ,HC,NOx ) and gas with small mass (CO,H2O,N2 ,O2). The interface of two phase fluid will be become clearer as it flows in the pipe for a long distance. The fluid continuous equation between gas phase and solid phase and the mathematical relationship between the geometry parameter and the flowing are established by a multiphase gas flowing theory. Analyzing the interface and state of layers will provide a basic theory for developing a catalytic converter with high efficiency.