WorldWideScience

Sample records for multimode polymer waveguides

  1. Multimode polymer waveguides for high-speed optical interconnects

    Science.gov (United States)

    Bamiedakis, N.; Ingham, J. D.; Penty, R. V.; White, I. H.; DeGroot, J. V.; Clapp, T. V.

    2017-11-01

    Polymeric multimode waveguides are of particular interest for optical interconnections in short-reach data links. In some applications, for example in space-borne systems, the use of advanced materials with outstanding performance in extreme environments is required (temperature and radiation). In this paper therefore, we present novel siloxane polymers suitable for these applications. The materials are used to form straight, 90° bent and spiral polymer waveguides by low-cost conventional photolithographic techniques on FR4 substrates. The samples have been tested to investigate their propagation characteristics and demonstrate their potential for high-speed data links. Overall, there is strong evidence that these multimode waveguides can be successfully employed as high-speed short-reach data links. Their excellent thermal properties, their low cost and the simple fabrication process indicate their suitability for a wide range of space applications.

  2. Flexible multimode polymer waveguides for high-speed short-reach communication links

    Science.gov (United States)

    Bamiedakis, N.; Shi, F.; Chu, D.; Penty, R. V.; White, I. H.

    2018-02-01

    Multimode polymer waveguides have attracted great interest for use in high-speed short-reach communication links as they can be cost-effectively integrated onto standard PCBs using conventional methods of the electronics industry and provide low loss (30 GHz×m) interconnection. The formation of such waveguides on flexible substrates can further provide flexible low-weight low-thickness interconnects and offer additional freedom in the implementation of high-speed short-reach optical links. These attributes make these flexible waveguides particularly attractive for use in low-cost detachable chip-to-chip links and in environments where weight and shape conformity become important, such as in cars and aircraft. However, the highly-multimoded nature of these waveguides raises important questions about their performance under severe flex due to mode loss and mode coupling. In this work therefore, we investigate the loss, crosstalk and bandwidth performance of such waveguides under out-of plane bending and in-plane twisting under different launch conditions and carry out data transmission tests at 40 Gb/s on a 1 m long spiral flexible waveguide under flexure. Excellent optical transmission characteristics are obtained while robust loss, crosstalk and bandwidth performance are demonstrated under flexure. Error-free (BER<10-12) 40 Gb/s data transmission is achieved over the 1 m long spiral waveguide for a 180° bend with a 4 mm radius. The obtained results demonstrate the excellent optical and mechanical properties of this technology and highlight its potential for use in real-world systems.

  3. High-aggregate-capacity visible light communication links using stacked multimode polymer waveguides and micro-pixelated LED arrays

    Science.gov (United States)

    Bamiedakis, N.; McKendry, J. J. D.; Xie, E.; Gu, E.; Dawson, M. D.; Penty, R. V.; White, I. H.

    2018-02-01

    In recent years, light emitting diodes (LEDs) have gained renewed interest for use in visible light communication links (VLC) owing to their potential use as both high-quality power-efficient illumination sources as well as low-cost optical transmitters in free-space and guided-wave links. Applications that can benefit from their use include optical wireless systems (LiFi and Internet of Things), in-home and automotive networks, optical USBs and short-reach low-cost optical interconnects. However, VLC links suffer from the limited LED bandwidth (typically 100 MHz). As a result, a combination of novel LED devices, advanced modulation formats and multiplexing methods are employed to overcome this limitation and achieve high-speed (>1 Gb/s) data transmission over such links. In this work, we present recent advances in the formation of high-aggregate-capacity low cost guided wave VLC links using stacked polymer multimode waveguides and matching micro-pixelated LED (μLED) arrays. μLEDs have been shown to exhibit larger bandwidths (>200 MHz) than conventional broad-area LEDs and can be formed in large array configurations, while multimode polymer waveguides enable the formation of low-cost optical links onto standard PCBs. Here, three- and four-layered stacks of multimode waveguides, as well as matching GaN μLED arrays, are fabricated in order to generate high-density yet low-cost optical interconnects. Different waveguide topologies are implemented and are investigated in terms of loss and crosstalk performance. The initial results presented herein demonstrate good intrinsic crosstalk performance and indicate the potential to achieve >= 0.5 Tb/s/mm2 aggregate interconnection capacity using this low-cost technology.

  4. Sm 3+-doped polymer optical waveguide amplifiers

    Science.gov (United States)

    Huang, Lihui; Tsang, Kwokchu; Pun, Edwin Yue-Bun; Xu, Shiqing

    2010-04-01

    Trivalent samarium ion (Sm 3+) doped SU8 polymer materials were synthesized and characterized. Intense red emission at 645 nm was observed under UV laser light excitation. Spectroscopic investigations show that the doped materials are suitable for realizing planar optical waveguide amplifiers. About 100 μm wide multimode Sm 3+-doped SU8 channel waveguides were fabricated using a simple UV exposure process. At 250 mW, 351 nm UV pump power, a signal enhancement of ˜7.4 dB at 645 nm was obtained for a 15 mm long channel waveguide.

  5. Refractive index modulation of SU-8 polymer optical waveguides by means of hybrid photothermal process

    OpenAIRE

    Salazar-Miranda, D.; Castillón, F. F.; Sánchez-Sánchez, J. J.; Angel-Valenzuela, J. L.; Márquez, H.

    2010-01-01

    This paper describes the fabrication and characterization of multimode polymer optical waveguides obtained using a SU-8-2005 polymer by means of photolithographic process. Critical information about refractive index modulation of polymer waveguides as function of fabrication parameters as pre-baked and ultraviolet exposure times is presented. Physical properties of the waveguides were determined by means prism-coupling technique, optical and SEM microscopy. Este trabajo describe la fabrica...

  6. Acoustic multimode interference and self-imaging phenomena realized in multimodal phononic crystal waveguides

    International Nuclear Information System (INIS)

    Zou, Qiushun; Yu, Tianbao; Liu, Jiangtao; Wang, Tongbiao; Liao, Qinghua; Liu, Nianhua

    2015-01-01

    We report an acoustic multimode interference effect and self-imaging phenomena in an acoustic multimode waveguide system which consists of M parallel phononic crystal waveguides (M-PnCWs). Results show that the self-imaging principle remains applicable for acoustic waveguides just as it does for optical multimode waveguides. To achieve the dispersions and replicas of the input acoustic waves produced along the propagation direction, we performed the finite element method on M-PnCWs, which support M guided modes within the target frequency range. The simulation results show that single images (including direct and mirrored images) and N-fold images (N is an integer) are identified along the propagation direction with asymmetric and symmetric incidence discussed separately. The simulated positions of the replicas agree well with the calculated values that are theoretically decided by self-imaging conditions based on the guided mode propagation analysis. Moreover, the potential applications based on this self-imaging effect for acoustic wavelength de-multiplexing and beam splitting in the acoustic field are also presented. (paper)

  7. Multimode waveguide speckle patterns for compressive sensing.

    Science.gov (United States)

    Valley, George C; Sefler, George A; Justin Shaw, T

    2016-06-01

    Compressive sensing (CS) of sparse gigahertz-band RF signals using microwave photonics may achieve better performances with smaller size, weight, and power than electronic CS or conventional Nyquist rate sampling. The critical element in a CS system is the device that produces the CS measurement matrix (MM). We show that passive speckle patterns in multimode waveguides potentially provide excellent MMs for CS. We measure and calculate the MM for a multimode fiber and perform simulations using this MM in a CS system. We show that the speckle MM exhibits the sharp phase transition and coherence properties needed for CS and that these properties are similar to those of a sub-Gaussian MM with the same mean and standard deviation. We calculate the MM for a multimode planar waveguide and find dimensions of the planar guide that give a speckle MM with a performance similar to that of the multimode fiber. The CS simulations show that all measured and calculated speckle MMs exhibit a robust performance with equal amplitude signals that are sparse in time, in frequency, and in wavelets (Haar wavelet transform). The planar waveguide results indicate a path to a microwave photonic integrated circuit for measuring sparse gigahertz-band RF signals using CS.

  8. Nanoporous polymer liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Christiansen, Mads Brøkner; Ndoni, Sokol

    2010-01-01

    We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented.......We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented....

  9. Computer Aided Analysis of TM-Multimode Planar Graded-index Optical Waveguides

    International Nuclear Information System (INIS)

    Ashry, M.; Nasr, A.S.; Abou El-Fadl, A.A.

    2000-01-01

    An algorithm is developed for analysis TM-Multimode Planar graded-index optical waveguides. A Modified Impedance Boundary Method of Moments (MIBMOM) for the analysis of planar graded-index optical waveguide structures is presented. The algorithm is used to calculate the dispersion characteristics and the field distribution of TM-multimode planar graded-index optical waveguides. The technique is based on Galerkin s procedure and the exact boundary condition at the interfaces between the graded index region and the step index cladding. Legendre polynomials are used as basis functions. The efficiency of this algorithm is examined with waveguides having various index profiles such as exponential, Gaussian and complementary error functions. The advantage of the MIBMOM is the complete solution of TM-multimode as presented which is very difficult by the other methods. With this algorithm a minimum number of basis functions to give accurate results is used. The obtained results show good agreement with the experimental results

  10. Transverse Writing of Multimode Interference Waveguides inside Silica Glass by Femtosecond Laser Pulses

    International Nuclear Information System (INIS)

    Da-Yong, Liu; Yan, Li; Yan-Ping, Dou; Heng-Chang, Guo; Hong, Yang; Qi-Huang, Gong

    2008-01-01

    Multi-mode interference waveguides are fabricated inside silica glass by transverse writing geometry with femtosecond laser pulses. The influences of several writing and reading factors on the output mode are systematically studied. The experimental results of straight waveguides are in good agreement with the simulations by the beam propagation method. By integrating a straight waveguide with a bent waveguide, a 1 × 2 multi-mode splitter is formed and 2 × 3 lobes are observed in the output mode. (fundamental areas of phenomenology (including applications))

  11. Optical sensor in planar configuration based on multimode interference

    Science.gov (United States)

    Blahut, Marek

    2017-08-01

    In the paper a numerical analysis of optical sensors based on multimode interference in planar one-dimensional step-index configuration is presented. The structure consists in single-mode input and output waveguides and multimode waveguide which guide only few modes. Material parameters discussed refer to a SU8 polymer waveguide on SiO2 substrate. The optical system described will be designed to the analysis of biological substances.

  12. Compact Spectrometer based on a silicon multimode waveguide

    DEFF Research Database (Denmark)

    Piels, Molly; Zibar, Darko

    2017-01-01

    A multimode waveguide spectrometer with 4 GHz resolution, 250 GHz usable range, and a 1.6 mm × 2.1 mm footprint is demonstrated. The operating range is greatly extended by including distinct mode-exciting elements on chip....

  13. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    Science.gov (United States)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated

  14. A self-repairing polymer waveguide sensor

    International Nuclear Information System (INIS)

    Song, Young J; Peters, Kara J

    2011-01-01

    This paper presents experimental demonstrations of a self-repairing strain sensor waveguide created by self-writing in a photopolymerizable resin system. The sensor is fabricated between two multi-mode optical fibers via lightwaves in the ultraviolet (UV) wavelength range and operates as a sensor through interrogation of the power transmitted through the waveguide in the infrared (IR) wavelength range. After failure of the sensor occurs due to loading, the waveguide re-bridges the gap between the two optical fibers through the UV resin. The response of the original sensor and the self-repaired sensor to strain are measured and show similar behaviors

  15. Dry-film polymer waveguide for silicon photonics chip packaging.

    Science.gov (United States)

    Hsu, Hsiang-Han; Nakagawa, Shigeru

    2014-09-22

    Polymer waveguide made by dry film process is demonstrated for silicon photonics chip packaging. With 8 μm × 11.5 μm core waveguide, little penalty is observed up to 25 Gbps before or after the light propagate through a 10-km long single-mode fiber (SMF). Coupling loss to SMF is 0.24 dB and 1.31 dB at the polymer waveguide input and output ends, respectively. Alignment tolerance for 0.5 dB loss increase is +/- 1.0 μm along both vertical and horizontal directions for the coupling from the polymer waveguide to SMF. The dry-film polymer waveguide demonstrates promising performance for silicon photonics chip packaging used in next generation optical multi-chip module.

  16. Fabrication of optical waveguides by imprinting: usage of positive tone resist as a mould for UV-curable polymer.

    Science.gov (United States)

    Hiltunen, Jussi; Hiltunen, Marianne; Puustinen, Jarkko; Lappalainen, Jyrki; Karioja, Pentti

    2009-12-07

    Optical ridge type waveguides based on UV-curable polymer were fabricated by imprinting method. Positive tone resist patterned on a silicon wafer was used as a mould. The characterization of waveguides was carried out by coupling TE-polarized light from a tapered fiber into a waveguide with 30 mm length and mapping the intensity distribution with another tapered fiber at the output facet of a waveguide. Proper single- or multimode operation was observed depending on the waveguide width being either 2 microm or 6 microm. Experimental observations on the mode profiles were also supported by the simulation results. Average power transmissions of 32% at 1530 nm wavelength and 45% at 1310 nm wavelength were characterized. The results suggest that the simple mould fabrication process might be a useful technique for device prototyping and that the performance of replicated waveguides can meet the requirements for certain applications.

  17. Fabrication of raised and inverted SU8 polymer waveguides

    Science.gov (United States)

    Holland, Anthony S.; Mitchell, Arnan; Balkunje, Vishal S.; Austin, Mike W.; Raghunathan, Mukund K.

    2005-01-01

    Polymer films with high optical transmission have been investigated for making optical devices for several years. SU8 photoresist and optical adhesives have been investigated for use as thin films for optical devices, not what they were originally designed for. Optical adhesives are typically a one component thermoset polymer and are convenient to use for making thin film optical devices such as waveguides. They are prepared in minutes as thin films unlike SU8, which has to be carefully thermally cured over several hours for optimum results. However SU8 can be accurately patterned to form the geometry of structures required for single mode optical waveguides. SU8 in combination with the lower refractive index optical adhesive films such as UV15 from Master Bond are used to form single and multi mode waveguides. SU8 is photopatternable but we have also used dry etching of the SU8 layer or the other polymer layers e.g. UV15 to form the ribs, ridges or trenches required to guide single modes of light. Optical waveguides were also fabricated using only optical adhesives of different refractive indices. The resolution obtainable is poorer than with SU8 and hence multi mode waveguides are obtained. Loss measurements have been obtained for waveguides of different geometries and material combinations. The process for making polymer waveguides is demonstrated for making large multi mode waveguides and microfluidic channels by scaling the process up in size.

  18. All-silicon thermal independent Mach-Zehnder interferometer with multimode waveguides

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Frandsen, Lars Hagedorn

    2016-01-01

    A novel all-silicon thermal independent Mach-Zehnder interferometer consisting of two multimode waveguide arms having equal lengths and widths but transmitting different modes is proposed and experimentally demonstrated. The interferometer has a temperature sensitivity smaller than 8pm/°C in a wa...

  19. Integrated-optic current sensors with a multimode interference waveguide device.

    Science.gov (United States)

    Kim, Sung-Moon; Chu, Woo-Sung; Kim, Sang-Guk; Oh, Min-Cheol

    2016-04-04

    Optical current sensors based on polarization-rotated reflection interferometry are demonstrated using polymeric integrated optics and various functional optical waveguide devices. Interferometric sensors normally require bias feedback control for maintaining the operating point, which increases the cost. In order to resolve this constraint of feedback control, a multimode interference (MMI) waveguide device is integrated onto the current-sensor optical chip in this work. From the multiple outputs of the MMI, a 90° phase-shifted transfer function is obtained. Using passive quadrature demodulation, we demonstrate that the sensor could maintain the output signal regardless of the drift in the operating bias-point.

  20. THz waveguides, devices and hybrid polymer-chalcogenide photonic crystal fibers

    DEFF Research Database (Denmark)

    Bao, Hualong; Markos, Christos; Nielsen, Kristian

    2014-01-01

    In this contribution, we review our recent activities in the design, fabrication and characterization of polymer THz waveguides. Besides the THz waveguides, we finally will also briefly show some of our initial results on a novel hybrid polymer photonic crystal fiber with integrated chalcogenide...

  1. Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Feng; Spring, Andrew M. [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Sato, Hiromu [Department of Molecular and Material Sciences, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Maeda, Daisuke; Ozawa, Masa-aki; Odoi, Keisuke [Nissan Chemical Industries, Ltd., 2-10-1 Tuboi Nishi, Funabashi, Chiba 274-8507 (Japan); Aoki, Isao; Otomo, Akira [National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe 651-2492 (Japan); Yokoyama, Shiyoshi, E-mail: s-yokoyama@cm.kyushu-u.ac.jp [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Department of Molecular and Material Sciences, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan)

    2015-09-21

    Ultra-thin silicon and electro-optic (EO) polymer hybrid waveguide modulators have been designed and fabricated. The waveguide consists of a silicon core with a thickness of 30 nm and a width of 2 μm. The cladding is an EO polymer. Optical mode calculation reveals that 55% of the optical field around the silicon extends into the EO polymer in the TE mode. A Mach-Zehnder interferometer (MZI) modulator was prepared using common coplanar electrodes. The measured half-wave voltage of the MZI with 7 μm spacing and 1.3 cm long electrodes is 4.6 V at 1550 nm. The evaluated EO coefficient is 70 pm/V, which is comparable to that of the bulk EO polymer film. Using ultra-thin silicon is beneficial in order to reduce the side-wall scattering loss, yielding a propagation loss of 4.0 dB/cm. We also investigated a mode converter which couples light from the hybrid EO waveguide into a strip silicon waveguide. The calculation indicates that the coupling loss between these two devices is small enough to exploit the potential fusion of a hybrid EO polymer modulator together with a silicon micro-photonics device.

  2. Optical Splitters Based on Self-Imaging Effect in Multi-Mode Waveguide Made by Ion Exchange in Glass

    Directory of Open Access Journals (Sweden)

    O. Barkman

    2013-04-01

    Full Text Available Design and modeling of single mode optical multi-mode interference structures with graded refractive index is reported. Several samples of planar optical channel waveguides were obtained by Ag+, Na+ and K+, Na+ one step thermal ion exchange process in molten salt on GIL49 glass substrate and new special optical glass for ion exchange technology. Waveguide properties were measured by optical mode spectroscopy. Obtained data were used for further design and modeling of single mode channel waveguide and subsequently for the design of 1 to 3 multimode interference power splitter in order to improve simulation accuracy. Designs were developed by utilizing finite difference beam propagation method.

  3. Multi-mode interference revealed by two photon absorption in silicon rich SiO2 waveguides

    International Nuclear Information System (INIS)

    Manna, S.; Ramiro-Manzano, F.; Mancinelli, M.; Turri, F.; Pavesi, L.; Ghulinyan, M.; Pucker, G.

    2015-01-01

    Photoluminescence (PL) from Si nanocrystals (NCs) excited by two-photon absorption (TPA) has been observed in Si nanocrystal-based waveguides fabricated by plasma enhanced chemical vapor deposition. The TPA excited photoluminescence emission resembles the one-photon excited photoluminescence arising from inter-band transitions in the quantum confined Si nanocrystals. By measuring the non-linear transmission of waveguides, a large TPA coefficient of β up to 10 −8  cm/W has been measured at 1550 nm. These values of β depend on the Si NCs size and are two orders of magnitude larger than the bulk silicon value. Here, we propose to use the TPA excited visible PL emission as a tool to map the spatial intensity profile of the 1550 nm propagating optical modes in multimode waveguides. In this way, multimode interference has been revealed experimentally and confirmed through a finite element simulation

  4. A Multimode Equivalent Network Approach for the Analysis of a 'Realistic' Finite Array of Open Ended Waveguides

    NARCIS (Netherlands)

    Neto, A.; Bolt, R.; Gerini, G.; Schmitt, D.

    2003-01-01

    In this contribution we present a theoretical model for the analysis of finite arrays of open-ended waveguides mounted on finite mounting platforms or having radome coverages. This model is based on a Multimode Equivalent Network (MEN) [1] representation of the radiating waveguides complete with

  5. Scalable electro-photonic integration concept based on polymer waveguides

    Science.gov (United States)

    Bosman, E.; Van Steenberge, G.; Boersma, A.; Wiegersma, S.; Harmsma, P.; Karppinen, M.; Korhonen, T.; Offrein, B. J.; Dangel, R.; Daly, A.; Ortsiefer, M.; Justice, J.; Corbett, B.; Dorrestein, S.; Duis, J.

    2016-03-01

    A novel method for fabricating a single mode optical interconnection platform is presented. The method comprises the miniaturized assembly of optoelectronic single dies, the scalable fabrication of polymer single mode waveguides and the coupling to glass fiber arrays providing the I/O's. The low cost approach for the polymer waveguide fabrication is based on the nano-imprinting of a spin-coated waveguide core layer. The assembly of VCSELs and photodiodes is performed before waveguide layers are applied. By embedding these components in deep reactive ion etched pockets in the silicon substrate, the planarity of the substrate for subsequent layer processing is guaranteed and the thermal path of chip-to-substrate is minimized. Optical coupling of the embedded devices to the nano-imprinted waveguides is performed by laser ablating 45 degree trenches which act as optical mirror for 90 degree deviation of the light from VCSEL to waveguide. Laser ablation is also implemented for removing parts of the polymer stack in order to mount a custom fabricated connector containing glass fiber arrays. A demonstration device was built to show the proof of principle of the novel fabrication, packaging and optical coupling principles as described above, combined with a set of sub-demonstrators showing the functionality of the different techniques separately. The paper represents a significant part of the electro-photonic integration accomplishments in the European 7th Framework project "Firefly" and not only discusses the development of the different assembly processes described above, but the efforts on the complete integration of all process approaches into the single device demonstrator.

  6. Broadband and scalable optical coupling for silicon photonics using polymer waveguides

    Science.gov (United States)

    La Porta, Antonio; Weiss, Jonas; Dangel, Roger; Jubin, Daniel; Meier, Norbert; Horst, Folkert; Offrein, Bert Jan

    2018-04-01

    We present optical coupling schemes for silicon integrated photonics circuits that account for the challenges in large-scale data processing systems such as those used for emerging big data workloads. Our waveguide based approach allows to optimally exploit the on-chip optical feature size, and chip- and package real-estate. It further scales well to high numbers of channels and is compatible with state-of-the-art flip-chip die packaging. We demonstrate silicon waveguide to polymer waveguide coupling losses below 1.5 dB for both the O- and C-bands with a polarisation dependent loss of <1 dB. Over 100 optical silicon waveguide to polymer waveguide interfaces were assembled within a single alignment step, resulting in a physical I/O channel density of up to 13 waveguides per millimetre along the chip-edge, with an average coupling loss of below 3.4 dB measured at 1310 nm.

  7. Polymer waveguide Bragg grating Fabry–Perot filter using a nanoimprinting technique

    International Nuclear Information System (INIS)

    Binfeng, Yun; Guohua, Hu; Yiping, Cui

    2014-01-01

    A narrow band waveguide Fabry–Perot filter at 1550 nm, which is composed of two polymer waveguide Bragg gratings as reflectors, is presented. By using conventional lithography, a low-loss polymer channel waveguide was fabricated, and the submicron Bragg grating structure was transferred onto the waveguide surface using a nanoimprinting technique. The transmission spectrum of the device was measured, and the results show that there is a very narrow transmission peak, with a 3 dB bandwidth of 0.011 nm in the 0.38 nm rejection band of the waveguide Bragg grating. A quality factor of Q ≈ 1.41 × 10 5 is achieved. The insertion loss and the extinction ratio of the Fabry–Perot filter are about −12.5 dB and 17 dB, respectively. In addition, the measured transmission spectrum is in excellent accordance with the numerical simulation. (paper)

  8. Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2014-01-01

    to phase mismatch. A two-mode division multiplexing circuit with tapered directional coupler based (de)multiplexers and a multimode waveguide is designed and fabricated for this application. Experimental results show clear eye-diagrams and moderate power penalties for the wavelength conversion of both...

  9. Effects of design geometry on SU8 polymer waveguides

    Science.gov (United States)

    Holland, Anthony S.; Balkunje, Vishal S.; Mitchell, Arnan; Austin, Michael W.; Raghunathan, Mukund K.; Kostovski, Gorgi

    2005-02-01

    The spin-on photoresist SU8 from MicroChem has a relatively high refractive index (n=1.57 at 1550nm) compared with other polymers. It is stable and has high optical transmission at optical communication wavelengths. In this paper we study rib waveguides fabricated using SU8 as the core layer and thermoset polymers UV15 (n=1.50 at 1550nm) from Master Bond and NOA61 (n=1.54 at 1550nm) from Gentec as the cladding layers. The rib height is varied from 0.3 to 1.7μm high. This is part of the SU8 layer sandwiched between the cladding layers. The waveguides are tested to determine the effects of varying this geometry for single mode optical transmission. The lengths of the waveguides were 1.5 cm to 5 cm.

  10. Waveguiding properties of individual electrospun polymer nanofibers

    Science.gov (United States)

    Ishii, Yuya; Kaminose, Ryohei; Fukuda, Mitsuo

    2013-09-01

    Optical circuits are needed to achieve high-speed, high-capacity information processing. An optical waveguide is an essential element in optical circuits. Electrospun polymer fibers have diameters in the nanometer range and high aspect ratios, so they are prime candidates for small waveguides. In this work, we fabricate uniform electrospun polymer nanofibers and characterize their optical waveguiding properties. Poly(methyl methacrylate) (PMMA) solutions of different concentration that contain a small amount of Nile Blue A perchlorate (NBA) are electrospun. Uniform PMMA/NBA nanofibers are obtained from the 10 wt% solution. The fibers are covered with transparent cladding and their ends cut vertically. A laser beam with a wavelength of 533 nm is irradiated onto the fiber from the direction vertical to the fiber axis so that it scans along the fiber. Photoluminescence (PL) at the end face of individual fibers is then measured. The PL intensity decreases with increasing distance (d) between the end face of a fiber and irradiating point of the laser beam as ~exp(-αd) with a loss coefficient (α). Measurements of five individual fibers reveal α is in the range of 17-75 cm-1.

  11. Polymer waveguide couplers based on metal nanoparticle–polymer nanocomposites

    International Nuclear Information System (INIS)

    Signoretto, M; Suárez, I; Chirvony, V S; Martínez-Pastor, J; Abargues, R; Rodríguez-Cantó, P J

    2015-01-01

    In this work Au nanoparticles (AuNPs) are incorporated into poly(methyl methacrylate) (PMMA) waveguides to develop optical couplers that are compatible with planar organic polymer photonics. A method for growing AuNPs (of 10 to 100 nm in size) inside the commercially available Novolak resist is proposed with the intention of tuning the plasmon resonance and the absorption/scattering efficiencies inside the patterned structures. The refractive index of the MNP–Novolak nanocomposite (MNPs: noble metal nanoparticles) is carefully analysed both experimentally and numerically in order to find the appropriate fabrication conditions (filling factor and growth time) to optimize the scattering cross section at a desired wavelength. Then the nanocomposite is patterned inside a PMMA waveguide to exploit its scattering properties to couple and guide a normal incident laser light beam along the polymer. In this way, light coupling is experimentally demonstrated in a broad wavelength range (404–780 nm). Due to the elliptical shape of the MNPs the nanocomposite demonstrates a birefringence, which enhances the coupling to the TE mode up to efficiencies of around 1%. (paper)

  12. Mode-Selective Wavelength Conversion Based on Four-Wave Mixing in a Multimode Silicon Waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2013-01-01

    We report all-optical mode-selective wavelength conversion based on four-wave mixing in a multimode Si waveguide. A two-mode division multiplexing circuit using tapered directional coupler based (de)multiplexers is used for the application. Experimental results show clear eye-diagrams and moderate...

  13. Liquid Core Waveguides by UV Modification of Nanoporous Polymer

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Gopalakrishnan, Nimi; Sagar, Kaushal Shashikant

    2011-01-01

    Liquid core waveguides are fabricated from a self-assembled nanoporous polymer, with a porosity of 40%. The high porosity results in an effective refractive index of 1.26 for visible light, i.e. below the refractive index of aqueous solutions. However, since the polymer is hydrophobic, fluids...

  14. A Novel Multimode Waveguide Coupler for Accurate Power Measurement of Traveling Wave Tube Harmonic Frequencies

    Science.gov (United States)

    Wintucky, Edwin G.; Simons, Rainee N.

    2014-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.

  15. Photonic bandpass filter characteristics of multimode SOI waveguides integrated with submicron gratings.

    Science.gov (United States)

    Sah, Parimal; Das, Bijoy Krishna

    2018-03-20

    It has been shown that a fundamental mode adiabatically launched into a multimode SOI waveguide with submicron grating offers well-defined flat-top bandpass filter characteristics in transmission. The transmitted spectral bandwidth is controlled by adjusting both waveguide and grating design parameters. The bandwidth is further narrowed down by cascading two gratings with detuned parameters. A semi-analytical model is used to analyze the filter characteristics (1500  nm≤λ≤1650  nm) of the device operating in transverse-electric polarization. The proposed devices were fabricated with an optimized set of design parameters in a SOI substrate with a device layer thickness of 250 nm. The pass bandwidth of waveguide devices integrated with single-stage gratings are measured to be ∼24  nm, whereas the device with two cascaded gratings with slightly detuned periods (ΔΛ=2  nm) exhibits a pass bandwidth down to ∼10  nm.

  16. TM-pass polarizer based on multilayer graphene polymer waveguide

    Science.gov (United States)

    Cai, Ke-su; Li, Yue-e.; Wei, Wen-jing; Mu, Xi-jiao; Ma, A.-ning; Wang, Zhong; Song, Dan-ming

    2018-05-01

    A TM-pass polarizer based on multilayer graphene polymer waveguide is proposed and theoretically analyzed. The mode properties, the extinction ratio, the insertion loss and the bandwidth are also discussed. The results show that a TM-pass polarizer, which only guides the TM mode, can be achieved by multilayer graphene polymer waveguide. With length of 150 μm, the proposed polarizer can achieve extinction ratio of 33 dB and insertion loss of 0.5 dB at optical wavelength of 1.55 μm. This device has an excellent performance, including large extinction ratio and low insertion loss within the spectral range from 1.45 μm to 1.6 μm.

  17. Low-loss single mode light waveguides in polymer

    Science.gov (United States)

    Sieber, Heinrich; Boehm, Hans-Jürgen; Hollenbach, Uwe; Mohr, Jürgen; Ostrzinski, Ute; Pfeiffer, Karl; Szczurowski, Marcin; Urbanczyk, Waclaw

    2012-06-01

    We report on the development of a UV-lithography manufacturing process for low loss single mode light waveguides in a novel polymer and the characterization of the fabricated components in a broad wavelength range from 808 nm to 1550 nm. The main focus of this work lies in providing a quick and cost efficient production technique for single mode waveguides and low loss integrated optical circuits. To achieve this goal we chose a novel photo-structurable polymer host-guest-system consisting of SU8 and a low refractive dopant monomer. Near and far-field measurements at different wavelengths show that the mode propagating within a well designed integrated waveguide structure and the mode of a standard fiber can exhibit a mode overlap value of approximately 1 and suffer only very low coupling losses. We demonstrate excess loss of 0.14 dB/cm for 808 nm, 0.33 dB/cm for 1310 nm and 2.86 dB/cm for 1550 nm. Typical insertion loss values of straight waveguides with a length of 36 mm are 0.9 dB for 808 nm, 1.5 dB for 1310 nm and 10.4 dB for 1550 nm. Polarization dependent loss was found to be less than 0.2 dB on sets of test structures of 36 mm length. We measured material attenuation in the novel polymer material before cross-linking of approximately 0.04 dB/cm for 808 nm and around 0.20 dB/cm for 1310 nm respectively. The presented production technique is suitable to provide low loss and low cost integrated optical circuits for sensor and communication applications in a broad wavelength range.

  18. Polymer waveguides for electro-optical integration in data centers and high-performance computers.

    Science.gov (United States)

    Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan

    2015-02-23

    To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.

  19. Comparison of self-written waveguide techniques and bulk index matching for low-loss polymer waveguide interconnects

    Science.gov (United States)

    Burrell, Derek; Middlebrook, Christopher

    2016-03-01

    Polymer waveguides (PWGs) are used within photonic interconnects as inexpensive and versatile substitutes for traditional optical fibers. The PWGs are typically aligned to silica-based optical fibers for coupling. An epoxide elastomer is then applied and cured at the interface for index matching and rigid attachment. Self-written waveguides (SWWs) are proposed as an alternative to further reduce connection insertion loss (IL) and alleviate marginal misalignment issues. Elastomer material is deposited after the initial alignment, and SWWs are formed by injecting ultraviolet (UV) light into the fiber or waveguide. The coupled UV light cures a channel between the two differing structures. A suitable cladding layer can be applied after development. Such factors as longitudinal gap distance, UV cure time, input power level, polymer material selection and choice of solvent affect the resulting SWWs. Experimental data are compared between purely index-matched samples and those with SWWs at the fiber-PWG interface. It is shown that writing process. Successfully fabricated SWWs reduce overall processing time and enable an effectively continuous low-loss rigid interconnect.

  20. Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector.

    Science.gov (United States)

    Kim, Kyung-Jo; Seo, Jun-Kyu; Oh, Min-Cheol

    2008-02-04

    A tunable wavelength filter is demonstrated by imposing a strain on a polymeric Bragg reflection waveguide fabricated on a flexible substrate. The highly elastic property of flexible polymer device enables much wider tuning than the silica fiber. To produce a uniform grating pattern on a flexible plastic substrate, a post lift-off process along with an absorbing layer is incorporated. The flexible Bragg reflector shows narrow bandwidth, which is convincing the uniformity of the grating structure fabricated on plastic film. By stretching the flexible polymer device, the Bragg reflection wavelength is tuned continuously up to 45 nm for the maximum strain of 31,690 muepsilon, which is determined by the elastic expansion limit of waveguide polymer. From the linear wavelength shift proportional to the strain, the photoelastic coefficient of the ZPU polymer is found.

  1. Design of Polymer Wavelength Splitter 1310 nm/1550 nm Based on Multimode Interferences

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2010-12-01

    Full Text Available We report about design of 1x2 1310/1550 nm optical wavelength division multiplexer based on polymer waveguides. The polymer splitter was designed by using RSoft software based on beam propagation method. Epoxy novolak resin polymer was used as core waveguides layer, silicon substrate with silica layer was used as buffer layer and polymethylmethacrylate was used as protection cover layer. The simulation shows that the output energy for the fundamental mode is 67.1 % for 1310 nm and 67.8 % for 1550 nm wavelength.

  2. High-performance polymer waveguide devices via low-cost direct photolithography process

    Science.gov (United States)

    Wang, Jianguo; Shustack, Paul J.; Garner, Sean M.

    2002-09-01

    All-optical networks provide unique opportunities for polymer waveguide devices because of their excellent mechanical, thermo-optic, and electro-optic properties. Polymer materials and components have been viewed as a viable solution for metropolitan and local area networks where high volume and low cost components are needed. In this paper, we present our recent progress on the design and development of photoresist-like highly fluorinated maleimide copolymers including waveguide fabrication and optical testing. We have developed and synthesized a series of thermally stable, (Tg>150 oC, Td>300 oC) highly fluorinated (>50%) maleimide copolymers by radical co-polymerization of halogenated maleimides with various halogenated co-monomers. A theoretical correlation between optical loss and different co-polymer structures has been quantitatively established from C-H overtone analysis. We studied this correlation through design and manipulation of the copolymer structure by changing the primary properties such as molecular weight, copolymer composition, copolymer sequence distribution, and variations of the side chain including photochemically functional side units. Detailed analysis has been obtained using various characterization methods such as (H, C13, F19) NMR, UV-NIR, FTIR, GPC and so forth. The co-polymers exhibit excellent solubility in ketone solvents and high quality thin films can be prepared by spin coating. The polymer films were found to have a refractive index range of 1.42-1.67 and optical loss in the range of 0.2 to 0.4 dB/cm at 1550nm depending on the composition as extrapolated from UV-NIR spectra. When glycidyl methacrylate is incorporated into the polymer backbone, the material behaves like a negative photoresist with the addition of cationic photoinitiator. The final crosslinked waveguides show excellent optical and thermal properties. The photolithographic processing of the highly fluorinated copolymer material was examined in detail using in

  3. Scalable electro-photonic integration concept based on polymer waveguides

    NARCIS (Netherlands)

    Bosman, E.; Steenberge, G. van; Boersma, A.; Wiegersma, S.; Harmsma, P.J.; Karppinen, M.; Korhonen, T.; Offrein, B.J.; Dangel, R.; Daly, A.; Ortsiefer, M.; Justice, J.; Corbett, B.; Dorrestein, S.; Duis, J.

    2016-01-01

    A novel method for fabricating a single mode optical interconnection platform is presented. The method comprises the miniaturized assembly of optoelectronic single dies, the scalable fabrication of polymer single mode waveguides and the coupling to glass fiber arrays providing the I/O's. The low

  4. Optimizing imbalance and loss in 2 x 2 3dB multimode interference couplers via access waveguide width

    NARCIS (Netherlands)

    Hill, M.T.; Leijtens, X.J.M.; Khoe, G.D.; Smit, M.K.

    2003-01-01

    The imbalance and excess loss in multimode interference couplers with fabrication errors are examined. Remarkably, there exists a number of optimum access waveguide widths which give a minimum imbalance. Furthermore, quite low excess loss can be simultaneously achieved by choosing one particular

  5. Polymer/silica hybrid waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer

    Science.gov (United States)

    Niu, Donghai; Wang, Xibin; Sun, Shiqi; Jiang, Minghui; Xu, Qiang; Wang, Fei; Wu, Yuanda; Zhang, Daming

    2018-04-01

    A highly sensitive waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer was designed and experimentally demonstrated. The interferometer is based on the polymer/silica hybrid waveguide structure, and Norland Optical Adhesive 73 (NOA 73) was employed as the waveguide core to enhance the temperature sensitivity. The influence of the different length differences between the two interferometer arms on the sensitivity of the sensor was systemically studied. It is shown that the maximum temperature sensitivity of -431 pm °C-1 can be obtained in the range of 25 °C-75 °C, while the length difference is 92 μm. Moreover, the temperature sensitivity contributions from different core materials were also investigated experimentally. It is shown that the waveguide material and microstructure of the device have significant influences on the sensitivity of the waveguide temperature sensor.

  6. Heterogeneous integration of thin film compound semiconductor lasers and SU8 waveguides on SiO2/Si

    Science.gov (United States)

    Palit, Sabarni; Kirch, Jeremy; Mawst, Luke; Kuech, Thomas; Jokerst, Nan Marie

    2010-02-01

    We present the heterogeneous integration of a 3.8 μm thick InGaAs/GaAs edge emitting laser that was metal-metal bonded to SiO2/Si and end-fire coupled into a 2.8 μm thick tapered SU8 polymer waveguide integrated on the same substrate. The system was driven in pulsed mode and the waveguide output was captured on an IR imaging array to characterize the mode. The waveguide output was also coupled into a multimode fiber, and into an optical head and spectrum analyzer, indicating lasing at ~997 nm and a threshold current density of 250 A/cm2.

  7. Low Loss Nanostructured Polymers for Chip-scale Waveguide Amplifiers.

    Science.gov (United States)

    Chen, George F R; Zhao, Xinyu; Sun, Yang; He, Chaobin; Tan, Mei Chee; Tan, Dawn T H

    2017-06-13

    On-chip waveguide amplifiers offer higher gain in small device sizes and better integration with photonic devices than the commonly available fiber amplifiers. However, on-chip amplifiers have yet to make its way into the mainstream due to the limited availability of materials with ideal light guiding and amplification properties. A low-loss nanostructured on-chip channel polymeric waveguide amplifier was designed, characterized, fabricated and its gain experimentally measured at telecommunication wavelength. The active polymeric waveguide core comprises of NaYF 4 :Yb,Er,Ce core-shell nanocrystals dispersed within a SU8 polymer, where the nanoparticle interfacial characteristics were tailored using hydrolyzed polyhedral oligomeric silsesquioxane-graft-poly(methyl methacrylate) to improve particle dispersion. Both the enhanced IR emission intensity from our nanocrystals using a tri-dopant scheme and the reduced scattering losses from our excellent particle dispersion at a high solid loading of 6.0 vol% contributed to the outstanding optical performance of our polymeric waveguide. We achieved one of the highest reported gain of 6.6 dB/cm using a relatively low coupled pump power of 80 mW. These polymeric waveguide amplifiers offer greater promise for integrated optical circuits due to their processability and integration advantages which will play a key role in the emerging areas of flexible communication and optoelectronic devices.

  8. Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect

    DEFF Research Database (Denmark)

    Zhu, Zhihong; García Ortíz, César Eduardo; Han, Zhanghua

    2013-01-01

    We theoretically, numerically, and experimentally demonstrate that a directional coupling function can be realized with a wide bandwidth (greater than 200 nm) in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect. The functional size of the structure...

  9. 2×2 polymeric electro-optic MZI switch using multimode interference couplers

    Science.gov (United States)

    Li, H. P.; Liao, J. K.; Tang, X. G.; Lu, R. G.; Liu, Y. Z.

    2009-11-01

    We present the design of a 2×2 photonic switch operating at 1.55-μm wavelength using electro-optic (EO) polymer waveguides. A Mach-Zehnder interferometer (MZI) is used to implement the proposed switch in which two identical 2×2 multimode interference (MMI) couplers are connected by two identical parallel single mode waveguides (two MZI arms). These two single-mode waveguides with electrodes allow modulating the phase difference between the two MZI arms based on the EO effect. In the proposed switch, the EO polymer, IPC-E/polysulfone, is used for the core layer of optical waveguides. UV15 and NOA61 are employed for the lower and upper cladding layers, respectively. The singlemode waveguide structure and 2×2 MMI coupler have been designed and analyzed for the EO switch. Device performance has been simulated using the beam propagation method. It is found that the switch performance is most sensitive to the MMI width and less sensitive to the MMI length. Optimized structure has been obtained for the 2×2 polymeric EO switch, which has a crosstalk level better than -25 dB and insertion loss lower than -1.8 dB. This performance makes the switch a potential candidate for practical use in photonic systems.

  10. The passive optical properties of a silicon nanoparticle-embedded benzocyclobutene polymer waveguide

    International Nuclear Information System (INIS)

    Chiu, J.-J.; Perng, Tsong P

    2008-01-01

    The passive optical properties of a silicon nanoparticle-embedded benzocyclobutene (BCB) waveguide were investigated. The silicon nanoparticles, of a size varying from 6 to 25 nm, were prepared by vapor condensation. The transmission modes and losses were examined by the prism coupler and cut-back methods. A He-Ne laser beam with a wavelength of 6328 A was used to measure the effective index and thickness of the waveguide. Laser light could be efficiently coupled into the BCB waveguide when the embedded Si nanoparticles were smaller than 6 nm. The film thickness and effective index of the Si-embedded BCB waveguide were measured to be 1.825 μm and 1.565, respectively. The optical transmission losses of the pure BCB and Si-embedded ridge waveguides measured by the cut-back method were 0.85 and 1.63 dB cm -1 , respectively. Although the optical loss was increased by the embedded Si, the disturbance of the output contour was quite small. This result demonstrates that the nanoparticle-embedded polymer waveguide may be used for optoelectronic integrated circuits

  11. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon-Gallium-Nitride Slot Waveguide Structures.

    Science.gov (United States)

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-06-25

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)-gallium nitride (GaN) slot waveguide structure is presented-to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530-1565 nm) into four output ports with low insertion losses (0.07 dB).

  12. Elastomeric polymer resonant waveguide grating based pressure sensor

    International Nuclear Information System (INIS)

    Song, Fuchuan; Xie, Antonio Jou; Seo, Sang-Woo

    2014-01-01

    In this paper, we demonstrate an elastomeric polymer resonant waveguide grating structure to be used as a pressure sensor. The applied pressure is measured by optical resonance spectrum peak shift. The sensitivity—as high as 86.74 pm psi −1 or 12.58 pm kPa −1 —has been experimentally obtained from a fabricated sensor. Potentially, the sensitivity of the demonstrated sensor can be tuned to different pressure ranges by the choices of elastic properties and layer thicknesses of the waveguide and cladding layers. The simulation results agree well with experimental results and indicate that the dominant effect on the sensor is the change of grating period when external pressure is applied. Based on the two-dimensional planar structure, the demonstrated sensor can be used to measure applied surface pressure optically, which has potential applications for optical ultrasound imaging and pressure wave detection/mapping

  13. Manufacturing of polymer optical waveguides using self-assembly effect on pre-conditioned 3D-thermoformed flexible substrates

    Science.gov (United States)

    Hoffmann, Gerd-Albert; Wolfer, Tim; Zeitler, Jochen; Franke, Jörg; Suttmann, Oliver; Overmeyer, Ludger

    2017-02-01

    Optical data communication is increasingly interesting for many applications in industrial processes. Therefore mass production is required to meet the requested price and lot sizes. Polymer optical waveguides show great promises to comply with price requirements while providing sufficient optical quality for short range data transmission. A high efficient fabrication technology using polymer materials could be able to create the essential backbone for 3D-optical data transmission in the future. The approach for high efficient fabrication technology of micro optics described in this paper is based on a self-assembly effect of fluids on preconditioned 3D-thermoformed polymer foils. Adjusting the surface energy on certain areas on the flexible substrate by flexographic printing mechanism is presented in this paper. With this technique conditioning lines made of silicone containing UV-varnish are printed on top of the foils and create gaps with the exposed substrate material in between. Subsequent fabrication processes are selected whether the preconditioned foil is coated with acrylate containing waveguide material prior or after the thermoforming process. Due to the different surface energy this material tends to dewet from the conditioning lines. It acts like regional barriers and sets the width of the arising waveguides. With this fabrication technology it is possible to produce multiple waveguides with a single coating process. The relevant printing process parameters that affect the quality of the generated waveguides are discussed and results of the produced waveguides with width ranging from 10 to 300 μm are shown.

  14. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon–Gallium-Nitride Slot Waveguide Structures

    Directory of Open Access Journals (Sweden)

    Dror Malka

    2016-06-01

    Full Text Available In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI coupler in a silicon (Si–gallium nitride (GaN slot waveguide structure is presented—to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM. Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530–1565 nm into four output ports with low insertion losses (0.07 dB.

  15. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon–Gallium-Nitride Slot Waveguide Structures

    Science.gov (United States)

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-01-01

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)–gallium nitride (GaN) slot waveguide structure is presented—to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530–1565 nm) into four output ports with low insertion losses (0.07 dB). PMID:28773638

  16. Acrylic and metal based Y-branch plastic optical fiber splitter with optical NOA63 polymer waveguide taper region

    Science.gov (United States)

    Ehsan, Abang Annuar; Shaari, Sahbudin; Rahman, Mohd Kamil Abd.

    2011-01-01

    We proposed a simple low-cost acrylic and metal-based Y-branch plastic optical fiber (POF) splitter which utilizes a low cost optical polymer glue NOA63 as the main waveguiding medium at the waveguide taper region. The device is composed of three sections: an input POF waveguide, a middle waveguide taper region and output POF waveguides. A desktop high speed CNC engraver is utilized to produce the mold inserts used for the optical devices. Short POF fibers are inserted into the engraved slots at the input and output ports. UV curable optical polymer glue NOA63 is injected into the waveguide taper region and cured. The assembling is completed when the top plate is positioned to enclose the device structure and connecting screws are secured. Both POF splitters have an average insertion loss of 7.8 dB, coupling ratio of 55: 45 and 57: 43 for the acrylic and metal-based splitters respectively. The devices have excess loss of 4.82 and 4.73 dB for the acrylic and metal-based splitters respectively.

  17. Design and Modeling of Symmetric Three Branch Polymer Planar Optical Power Dividers

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2013-04-01

    Full Text Available Two types of polymer-based three-branch symmetric planar optical power dividers (splitters were designed, multimode interference (MMI splitter and triangular shape-spacing splitter. By means of modeling the real structures were simulated as made of Epoxy Novolak Resin on silicon substrate, with silica buffer layer and polymethylmethacrylate as protection cover layer. The design of polymer waveguide structure was done by Beam Propagation Method. After comparing properties of both types of the splitters we have demonstrated that our new polymer based triangular shaped splitter can work simultaneously in broader spectrum, the only condition would be that the waveguides are single-mode guiding. It practically means that, what concerns communication wavelengths, it can on principle simultaneously operate at two mainly used wavelengths, 1310 and 1550 nm.

  18. Reverse-symmetry waveguides: Theory and fabrication

    DEFF Research Database (Denmark)

    Horvath, R.; Lindvold, Lars René; Larsen, N.B.

    2002-01-01

    We present an extensive theoretical analysis of reverse-symmetry waveguides with special focus on their potential application as sensor components in aqueous media and demonstrate a novel method for fabrication of such waveguides. The principle of reverse symmetry is based on making the refractive...... index of the waveguide substrate less than the refractive index of the medium covering the waveguiding film (n(water) = 1.33). This is opposed to the conventional waveguide geometry, where the substrate is usually glass or polymers with refractive indices of approximate to1.5. The reverse configuration...... are combined with air-grooved polymer supports to form freestanding single-material polymer waveguides of reverse symmetry capable of guiding light....

  19. GaN microring waveguide resonators bonded to silicon substrate by a two-step polymer process.

    Science.gov (United States)

    Hashida, Ryohei; Sasaki, Takashi; Hane, Kazuhiro

    2018-03-20

    Using a polymer bonding technique, GaN microring waveguide resonators were fabricated on a Si substrate for future hybrid integration of GaN and Si photonic devices. The designed GaN microring consisted of a rib waveguide having a core of 510 nm in thickness, 1000 nm in width, and a clad of 240 nm in thickness. A GaN crystalline layer of 1000 nm in thickness was grown on a Si(111) substrate by metal organic chemical vapor deposition using a buffer layer of 300 nm in thickness for the compensation of lattice constant mismatch between GaN and Si crystals. The GaN/Si wafer was bonded to a Si(100) wafer by a two-step polymer process to prevent it from trapping air bubbles. The bonded GaN layer was thinned from the backside by a fast atom beam etching to remove the buffer layer and to generate the rib waveguides. The transmission characteristics of the GaN microring waveguide resonators were measured. The losses of the straight waveguides were measured to be 4.0±1.7  dB/mm around a wavelength of 1.55 μm. The microring radii ranged from 30 to 60 μm, where the measured free-spectral ranges varied from 2.58 to 5.30 nm. The quality factors of the microring waveguide resonators were from 1710 to 2820.

  20. Demonstration of an optical phased array using electro-optic polymer phase shifters

    Science.gov (United States)

    Hirano, Yoshikuni; Motoyama, Yasushi; Tanaka, Katsu; Machida, Kenji; Yamada, Toshiki; Otomo, Akira; Kikuchi, Hiroshi

    2018-03-01

    We have been investigating an optical phased array (OPA) using electro-optic (EO) polymers in phase shifters to achieve ultrafast optical beam steering. In this paper, we describe the basic structures of the OPA using EO polymer phase shifters and show the beam steering capability of the OPA. The designed OPA has a multimode interference (MMI) beam splitter and 8-channel polymer waveguides with EO polymer phase shifters. We compare 1 × 8 MMI and cascaded 1 × 2 MMI beam splitters numerically and experimentally, and then obtain uniform intensity outputs from the 1 × 8 beam splitter. We fabricate the EO polymer OPA with a 1 × 8 MMI beam splitter to prevent intensity dispersion due to radiation loss in bending waveguides. We also evaluate the optical beam steering capability of the fabricated OPA and found a 2.7° deflection of far-field patterns when applying a voltage difference of 25 V in adjacent phase shifters.

  1. 24-ch microlens-integrated no-polish connector for optical interconnection with polymer waveguides

    Science.gov (United States)

    Shiraishi, Takashi; Yagisawa, Takatoshi; Ikeuchi, Tadashi; Daikuhara, Osamu; Tanaka, Kazuhiro

    2013-02-01

    We successfully developed a new 24-ch optical connector for polymer waveguides. The connector consists of a transparent thermoplastic resin that has two rectangular slits on one side for alignment of the waveguide films and integrated microlens arrays on the other side for coupling to the MT connector. Two 12-ch waveguide films were cut to a 3-mm width. The thickness of each waveguide film was controlled at 100 μm. The waveguide films were inserted into the slits until they touched the bottom face of the slit. Ultraviolet curing adhesive was used to achieve a short hardening process. The expanded beam in the transparent material is focused by the microlens arrays formed on the connector surface. This lens structure enables assembly without the need for a polishing process. We designed the lens for coupling between a step-index 40-μm rectangular waveguide and a graded-index 50-μm fiber. We achieved low-loss optical coupling by designing a method of providing asymmetric magnification between the horizontal and vertical directions in order to compensate for the asymmetric numerical aperture of the waveguide. The typical measured coupling losses from/to the waveguide to/from the fiber were 1.2 dB and 0.6 dB, respectively. The total coupling loss was as small as that of a physical contact connection.

  2. Single-mode glass waveguide technology for optical interchip communication on board level

    Science.gov (United States)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  3. Polymer Design and Processing for Liquid-Core waveguides

    DEFF Research Database (Denmark)

    Sagar, Kaushal Shashikant

    precursor material. Upon attaining thermodynamically stable gyroid phase segregation, nanoporosity is induced by chemically removing PDMS, the so-called sacrificial block. The isotropic nanoporosity in the polymer is utilized in fabricating a novel type of waveguides for opto-fluidic applications, which we...... are spontaneously filled with water by capillary suction, forming the core, while the unmodified hydrophobic regions remain dry, forming the clad. Two types of photo-modification reactions are presented in this thesis: photo-oxidation and thiol-ene photo-clicking. The hydrophilicity is firstly induced by surface...

  4. Printing polymer optical waveguides on conditioned transparent flexible foils by using the aerosol jet technology

    Science.gov (United States)

    Reitberger, Thomas; Hoffmann, Gerd-Albert; Wolfer, Tim; Overmeyer, Ludger; Franke, Joerg

    2016-09-01

    The optical data transfer is considered as the future of signal transfer due to its various advantages compared to conventional copper-based technologies. The Aerosol Jet Printing (AJP) technology offers the opportunity to print materials with high viscosities, such as liquid transparent polymer adhesives (epoxy resins), on almost any possible substrate material and even in third dimension. This paper introduces a new flexible and comparatively cost-effective way of generating polymer optical waveguides through AJP. Furthermore, the conditioning of the substrate material and the printing process of planar waveguides are presented. In the first step, two lines with hydrophobic behavior are applied on foil material (PMMA, PVC, PI) by using a flexographic printing machine. These silicone based patterns containing functional polymer form barriers for the core material due to their low surface energy after curing. In the second step, the core material (liquid polymer, varnish) is printed between the barrier lines. Because of the hydrophobic behavior of the lines, the contact angle between the substrate surface and the liquid core material is increased which yields to higher aspect ratio. The distance between the barrier lines is at least 100 μm, which defines the width of the waveguide. The minimum height of the core shall be 50 μm. After UV-curing of the core polymer, the cladding material is printed on the top. This is also applied by using the AJP technology. Various tests were performed to achieve the optimal surface properties for adequate adhesion and machine process parameters.

  5. Three-dimensional patterning in polymer optical waveguides using focused ion beam milling

    Science.gov (United States)

    Kruse, Kevin; Burrell, Derek; Middlebrook, Christopher

    2016-07-01

    Waveguide (WG) photonic-bridge taper modules are designed for symmetric planar coupling between silicon WGs and single-mode fibers (SMFs) to minimize photonic chip and packaging footprint requirements with improving broadband functionality. Micromachined fabrication and evaluation of polymer WG tapers utilizing high-resolution focused ion beam (FIB) milling is performed and presented. Polymer etch rates utilizing the FIB and optimal methods for milling polymer tapers are identified for three-dimensional patterning. Polymer WG tapers with low sidewall roughness are manufactured utilizing FIB milling and optically tested for fabrication loss. FIB platforms utilize a focused beam of ions (Ga+) to etch submicron patterns into substrates. Fabricating low-loss polymer WG taper prototypes with the FIB before moving on to mass-production techniques provides theoretical understanding of the polymer taper and its feasibility for connectorization devices between silicon WGs and SMFs.

  6. Self-imaging effect of TM modes in photonic crystal multimode waveguides only exhibiting band gaps for TE modes

    International Nuclear Information System (INIS)

    Yu Tianbao; Jiang Xiaoqing; Yang Jianyi; Zhou Haifeng; Liao Qinghua; Wang Minghua

    2007-01-01

    This Letter presents the properties of transverse-magnetic (TM) modes in multimode photonic crystal waveguides (PCWs), which only exhibit photonic band gaps for transverse-electric (TE) modes. A good equivalent model is applied to analysis the designed structures on the basis of multimode interference effect and self-imaging principle. The performance shows that the TM modes can also be propagated with high efficiency, and resemble index-guided modes owing to the combination of total internal reflection (TIR) and distribution Bragg reflection. It provides a novel way to realize the components for both TM and TE polarizations by combining PBG and TIR effect in PCWs. As one of potential applications, polarization-insensitive power splitter based on the proposed structures can be designed

  7. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide.

    Science.gov (United States)

    Guan, Xiaowei; Wu, Hao; Shi, Yaocheng; Dai, Daoxin

    2014-01-15

    A novel polarization beam splitter (PBS) with an extremely small footprint is proposed based on a multimode interference (MMI) coupler with a silicon hybrid plasmonic waveguide. The MMI section, covered with a metal strip partially, is designed to achieve mirror imaging for TE polarization. On the other hand, for TM polarization, there is almost no MMI effect since the higher-order TM modes are hardly excited due to the hybrid plasmonic effect. With this design, the whole PBS including the 1.1 μm long MMI section as well as the output section has a footprint as small as ∼1.8 μm×2.5 μm. Besides, the fabrication process is simple since the waveguide dimension is relatively large (e.g., the input/output waveguides widths w ≥300 nm and the MMI width w(MMI)=800 nm). Numerical simulations show that the designed PBS has a broad band of ∼80 nm for an ER >10 dB as well as a large fabrication tolerance to allow a silicon core width variation of -30 nm<Δw<50 nm and a metal strip width variation of -200 nm<Δw(m)<0.

  8. Numerical characterization of nanopillar photonic crystal waveguides and directional couplers

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Lavrinenko, Andrei; Sotomayor Torres, Clivia M.

    2005-01-01

    We numerically characterize a novel type of a photonic crystal waveguide, which consists of several rows of periodically arranged dielectric cylinders. In such a nanopillar photonic crystal waveguide, light confinement is due to the total internal reflection. A nanopillar waveguide is a multimode...

  9. Ultra-compact Higher-Order-Mode Pass Filter in a Silicon Waveguide

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Frandsen, Lars Hagedorn; Ding, Yunhong

    2015-01-01

    An 3.7 μm long higher-order-mode pass filter with an extinction ratio larger than 20 dB is demonstrated in a 1D corrugated silicon multimode waveguide......An 3.7 μm long higher-order-mode pass filter with an extinction ratio larger than 20 dB is demonstrated in a 1D corrugated silicon multimode waveguide...

  10. Design and fabrication of three-dimensional polymer mode multiplexer based on asymmetric waveguide couplers

    Science.gov (United States)

    He, Guobing; Gao, Yang; Xu, Yan; Ji, Lanting; Sun, Xiaoqiang; Wang, Xibin; Yi, Yunji; Chen, Changming; Wang, Fei; Zhang, Daming; Wu, Yuanda

    2018-05-01

    A polymer mode multiplexer based on asymmetric couplers is theoretically designed and experimentally demonstrated. The proposed X-junction coupler is formed by waveguides overlapped with different crossing angles in the vertical direction. A beam propagation method is adopted to optimize the dimensional parameters of the mode multiplexer to convert LP01 mode of two lower waveguides to LP11a and LP21a mode of the upper waveguide. The ultraviolet lithography and wet chemical etching are used in the fabrication process. A conversion ratio over 98% for both LP11a and LP21a mode in the wavelength range from 1530 to 1570 nm are experimentally demonstrated. This mode multiplexer has potential in broadband mode-division multiplexing transmission systems.

  11. Optical Amplification at 1525 nm in BaYF5: 20% Yb3+, 2% Er3+ Nanocrystals Doped SU-8 Polymer Waveguide

    Directory of Open Access Journals (Sweden)

    Pengcheng Zhao

    2014-01-01

    Full Text Available We demonstrated optical amplification in BaYF5: 20% Yb3+, 2% Er3+ (BYF nanocrystals doped polymer waveguide. BYF nanocrystals with an average size of ∼13 nm were synthesized by a high-boiling solvent process. Intense 1.53 μm fluorescence was obtained in the nanocrystals under excitation at 980 nm. An optical polymer waveguide was fabricated by using BYF nanocrystals doped SU-8 polymer as the core material. A relative optical gain of ∼10.4 dB at 1525 nm was achieved in a 1.1 cm long waveguide for an input signal power of ∼0.09 mW and a pump power of ∼212 mW.

  12. Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography

    NARCIS (Netherlands)

    Khan, M.U.; Justice, J.; Petäjä, J.; Korhonen, T.; Boersma, A.; Wiegersma, S.; Karppinen, M.; Corbett, B.

    2015-01-01

    Single and multi-layer passive optical interconnects using single mode polymer waveguides are demonstrated using UV nano-imprint lithography. The fabrication tolerances associated with imprint lithography are investigated and we show a way to experimentally quantify a small variation in index

  13. Polymer slab waveguides for the optical detection of nanoparticles in evanescent field based biosensors

    NARCIS (Netherlands)

    Teigell Beneitez, N.; Missinne, J.; Schleipen, J.J.H.B.; Orsel, J.G.; Prins, M.W.J.; Steenberge, Van G.; Cartwright, A.N.; Nicolau, D.V.

    2010-01-01

    We present a polymer optical waveguide integration technology for the detection of nanoparticles in an evanescent field based biosensor. In the proposed biosensor concept, super-paramagnetic nanoparticles are used as optical contrast labels. The nanoparticles capture target molecules from a sample

  14. Highly stable and low loss electro-optic polymer waveguides for high speed microring modulators using photodefinition

    Science.gov (United States)

    Balakrishnan, M.; Diemeer, M. B. J.; Driessen, A.; Faccini, M.; Verboom, W.; Reinhoudt, D. N.; Leinse, A.

    2006-02-01

    Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature (T g) and photodefinable properties. The polymers tested are polysulfone (PS) and SU8. The electro-optic chromophore, tricyanovinylidenediphenylaminobenzene (TCVDPA), which was reported to have a high photochemical stability 1 has been employed in the current work. Tert-butyl-TCVDPA, having bulky side groups, was synthesized and a doubling of the electro-optic coefficient (r33) compared to the unmodified TCVDPA was shown. A microring resonator design was made based on the PS-TCVDPA system. SU8 (passive) and TCVDPA (active) channel waveguides were fabricated by the photodefinition technique and the passive waveguide losses were measured to be 5 dB/cm at 1550 nm.

  15. Photonic lantern with multimode fibers embedded

    Science.gov (United States)

    Yu, Hai-Jiao; Yan, Qi; Huang, Zong-Jun; Tian, He; Jiang, Yu; Liu, Yong-Jun; Zhang, Jian-Zhong; Sun, Wei-Min

    2014-08-01

    A photonic lantern is studied which is formed by seven multimode fibers inserted into a pure silica capillary tube. The core of the tapered end has a uniform refractive index because the polymer claddings are removed before the fibers are inserted. Consequently, the light distribution is also uniform. Two theories describing a slowly varying waveguide and multimode coupling are used to analyze the photonic lantern. The transmission loss decreases as the length of the tapered part increases. For a device with a taper length of 3.4 cm, the loss is about 1.06 dB on average for light propagating through the taper from an inserted fiber to the tapered end and 0.99 dB in the reverse direction. For a device with a taper length of 0.7 cm, the two loss values are 2.63 dB and 2.53 dB, respectively. The results show that it is possible to achieve a uniform light distribution with the tapered end and a low-loss transmission in the device if parameters related to the lantern are reasonably defined.

  16. Photonic lantern with multimode fibers embedded

    International Nuclear Information System (INIS)

    Yu Hai-Jiao; Yan Qi; Huang Zong-Jun; Tian He; Jiang Yu; Liu Yong-Jun; Zhang Jian-Zhong; Sun Wei-Min

    2014-01-01

    A photonic lantern is studied which is formed by seven multimode fibers inserted into a pure silica capillary tube. The core of the tapered end has a uniform refractive index because the polymer claddings are removed before the fibers are inserted. Consequently, the light distribution is also uniform. Two theories describing a slowly varying waveguide and multimode coupling are used to analyze the photonic lantern. The transmission loss decreases as the length of the tapered part increases. For a device with a taper length of 3.4 cm, the loss is about 1.06 dB on average for light propagating through the taper from an inserted fiber to the tapered end and 0.99 dB in the reverse direction. For a device with a taper length of 0.7 cm, the two loss values are 2.63 dB and 2.53 dB, respectively. The results show that it is possible to achieve a uniform light distribution with the tapered end and a low-loss transmission in the device if parameters related to the lantern are reasonably defined. (research papers)

  17. Coupled-Mode Theory derivation of the formal equivalence between a three-mode waveguide and a set of three mutually coupled single-mode waveguides

    Directory of Open Access Journals (Sweden)

    Boucher Yann G.

    2017-01-01

    Full Text Available The formal identification between a two-mode waveguide and a system of two mutually coupled single-mode waveguides stems from the symmetries of the evolution operator. When the gap tends to zero, the super-modes of the coupled system merge continuously into the modes of the multimode waveguide. For modelling purposes, it is very tempting to extend the analogy to three-mode waveguides (and beyond. But not without some precautions…

  18. Fano resonances in a high-Q terahertz whispering-gallery mode resonator coupled to a multi-mode waveguide.

    Science.gov (United States)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2017-11-01

    We report on Fano resonances in a high-quality (Q) whispering-gallery mode (WGM) spherical resonator coupled to a multi-mode waveguide in the terahertz (THz) frequency range. The asymmetric line shape and phase of the Fano resonances detected with coherent continuous-wave (CW) THz spectroscopy measurements are in excellent agreement with the analytical model. A very high Q factor of 1600, and a finesse of 22 at critical coupling is observed around 0.35 THz. To the best of our knowledge this is the highest Q factor ever reported for a THz WGM resonator.

  19. Low-loss bloch wave guiding in open structures and highly compact efficient waveguide-crossing arrays

    Science.gov (United States)

    Popovic, Milos

    2011-03-08

    Low-loss waveguide structures may comprise a multimode waveguide supporting a periodic light intensity pattern, and attachments disposed at the waveguide adjacent low-intensity regions of the light intensity pattern.

  20. Optical gain at 650 nm from a polymer waveguide with dye-doped cladding

    Science.gov (United States)

    Reilly, M. A.; Coleman, B.; Pun, E. Y. B.; Penty, R. V.; White, I. H.; Ramon, M.; Xia, R.; Bradley, D. D. C.

    2005-12-01

    Signal amplification at the polymer optical fiber low-loss window of 650 nm is reported in an SU8 rib waveguide coated with Rhodamine-640 doped poly(methyl methacrylate). A signal beam is end-fired into the facet of a 7×100μm waveguide and amplified by top pumping of the 2-μm-thick cladding region with a pulsed pump source focused into a 9-mm-long stripe. A gain of 14dB and a minimum signal-to-noise ratio of around 2 dB are achieved in a 15-mm-long device with a low threshold pump intensity of 0.25μJ/mm2, which is an order of magnitude lower than previously reported.

  1. Integrated polymer waveguides for absorbance detection in chemical analysis systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; El-Ali, Jamil; Wolff, Anders

    2003-01-01

    A chemical analysis system for absorbance detection with integrated polymer waveguides is reported for the first time. The fabrication procedure relies on structuring of a single layer of the photoresist SU-8, so both the microfluidic channel network and the optical components, which include planar....... The emphasis of this paper is on the signal-to-noise ratio of the detection and its relation to the sensitivity. Two absorbance cells with an optical path length of 100 μm and 1000 μm were characterized and compared in terms of sensitivity, limit of detection and effective path length for measurements...

  2. Micro-scale truss structures with three-fold and six-fold symmetry formed from self-propagating polymer waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Alan J. [HRL Laboratories LLC, Sensors and Materials Laboratory, 3011 Malibu Canyon Road, Malibu, CA 90265-4797 (United States); Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA (United States)], E-mail: ajjacobsen@hrl.com; Barvosa-Carter, William [HRL Laboratories LLC, Sensors and Materials Laboratory, 3011 Malibu Canyon Road, Malibu, CA 90265-4797 (United States); Nutt, Steven [Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA (United States)

    2008-06-15

    A process for interconnecting a three-dimensional pattern of self-propagating polymer waveguides was used to form micro-truss structures with two new unit cell architectures. The structures were formed using a two-dimensional mask with a hexagonal pattern of apertures. Distinct unit cell architectures were possible by exposing the mask to a different number of incident UV exposure beams, which are used to form the waveguides. One unit cell design featured three intersecting waveguides per node, resulting in a structure with three-fold symmetry. The second unit cell design had six-fold symmetry and was characterized by primary nodes with six intersecting waveguides and secondary nodes with two intersecting waveguides. Compression loading experiments were conducted on micro-truss samples with comparable relative density values ({rho}/{rho}{sub s} = 6.5%), but different unit cell architectures. The addition of secondary nodes in the structures based on the second design led to an increase in compressive modulus of up to 70% and an average increase in peak strength of 42%. The increase in compressive strength and modulus was attributed to a reduction in the truss-member slenderness ratio achieved through increased waveguide connectivity.

  3. Micro-scale truss structures with three-fold and six-fold symmetry formed from self-propagating polymer waveguides

    International Nuclear Information System (INIS)

    Jacobsen, Alan J.; Barvosa-Carter, William; Nutt, Steven

    2008-01-01

    A process for interconnecting a three-dimensional pattern of self-propagating polymer waveguides was used to form micro-truss structures with two new unit cell architectures. The structures were formed using a two-dimensional mask with a hexagonal pattern of apertures. Distinct unit cell architectures were possible by exposing the mask to a different number of incident UV exposure beams, which are used to form the waveguides. One unit cell design featured three intersecting waveguides per node, resulting in a structure with three-fold symmetry. The second unit cell design had six-fold symmetry and was characterized by primary nodes with six intersecting waveguides and secondary nodes with two intersecting waveguides. Compression loading experiments were conducted on micro-truss samples with comparable relative density values (ρ/ρ s = 6.5%), but different unit cell architectures. The addition of secondary nodes in the structures based on the second design led to an increase in compressive modulus of up to 70% and an average increase in peak strength of 42%. The increase in compressive strength and modulus was attributed to a reduction in the truss-member slenderness ratio achieved through increased waveguide connectivity

  4. A novel C-shaped, gold nanoparticle coated, embedded polymer waveguide for localized surface plasmon resonance based detection.

    Science.gov (United States)

    Prabhakar, Amit; Mukherji, Soumyo

    2010-12-21

    In this study, a novel embedded optical waveguide based sensor which utilizes localized surface plasmon resonance of gold nanoparticles coated on a C-shaped polymer waveguide is being reported. The sensor, as designed, can be used as an analysis chip for detection of minor variations in the refractive index of its microenvironment, which makes it suitable for wide scale use as an affinity biosensor. The C-shaped waveguide coupled with microfluidic channel was fabricated by single step patterning of SU8 on an oxidized silicon wafer. The absorbance due to the localized surface plasmon resonance (LSPR) of SU8 waveguide bound gold nano particle (GNP) was found to be linear with refractive index changes between 1.33 and 1.37. A GNP coated C-bent waveguide of 200 μ width with a bend radius of 1 mm gave rise to a sensitivity of ~5 ΔA/RIU at 530 nm as compared to the ~2.5 ΔA/RIU (refractive index units) of the same dimension bare C-bend SU8 waveguide. The resolution of the sensor probe was ~2 × 10(-4) RIU.

  5. A Novel Ku-Band/Ka-Band and Ka-Band/E-Band Multimode Waveguide Couplers for Power Measurement of Traveling-Wave Tube Amplifier Harmonic Frequencies

    Science.gov (United States)

    Wintucky, Edwin G.; Simons, Rainee N.

    2015-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).

  6. Using quasi-guided modes for modeling the transfer behavior of bent dielectric slab waveguides

    Directory of Open Access Journals (Sweden)

    M. Stallein

    2010-09-01

    Full Text Available The connection of two straight dielectric multimode slab waveguides by a circular bent waveguide is analyzed by means of quasi-guided modes. These modes correspond to the well known leaky modes, but own real eigenvalues, thus the mathematical description is simpler. Furthermore they are derived as approximate solutions of the exact theory. This work will first give a brief introduction to the basic theory, followed by a discussion of the properties of quasi-guided modes. After a validation by comparison with a numerical simulation using the Finite Integration Technique, results for the bending loss of multimode waveguides are presented.

  7. Reconfigurable optical interconnection network for multimode optical fiber sensor arrays

    Science.gov (United States)

    Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.

    1992-01-01

    A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.

  8. TE modes of UV-laser generated waveguides in a planar polymer chip of parabolic refractive index profile

    Science.gov (United States)

    Shams El-Din, M. A.

    2018-04-01

    The UV-laser lithographic method is used for the preparation of Polymeric integrated-optical waveguides in a planar polymer chip. The waveguide samples are irradiated by an excimer laser of wavelength 248 nm with different doses and with the same fluencies. The refractive index depth profile for the waveguides, in the first zone is found to have a parabolic shape and Gaussian shape in the second one that can be determined by Mach-Zehnder interferometer. Both the mode field distribution and the effective mode indices for the first zone only are determined by making use of the theoretical mode and the experimental data. It is found that the model field distribution is strongly dependent on the refractive indices for each zone.

  9. Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery.

    Science.gov (United States)

    Xu, Huan; Cheng, Liang; Wang, Chao; Ma, Xinxing; Li, Yonggang; Liu, Zhuang

    2011-12-01

    Multimodal imaging and imaging-guided therapies have become a new trend in the current development of cancer theranostics. In this work, we encapsulate hydrophobic upconversion nanoparticles (UCNPs) together with iron oxide nanoparticles (IONPs) by using an amphiphilic block copolymer, poly (styrene-block-allyl alcohol) (PS(16)-b-PAA(10)), via a microemulsion method, obtaining an UC-IO@Polymer multi-functional nanocomposite system. Fluorescent dye and anti-cancer drug molecules can be further loaded inside the UC-IO@Polymer nanocomposite for additional functionalities. Utilizing the Squaraine (SQ) dye loaded nanocomposite (UC-IO@Polymer-SQ), triple-modal upconversion luminescence (UCL)/down-conversion fluorescence (FL)/magnetic resonance (MR) imaging is demonstrated in vitro and in vivo, and also applied for in vivo cancer cell tracking in mice. On the other hand, a chemotherapy drug, doxorubicin, is also loaded into the nanocomposite, forming an UC-IO@Polymer-DOX complex, which enables novel imaging-guided and magnetic targeted drug delivery. Our work provides a method to fabricate a nanocomposite system with highly integrated functionalities for multimodal biomedical imaging and cancer therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Friis, Peter; Hübner, Jörg

    2001-01-01

    The UV wavelength region is of great interest in absorption spectroscopy, which is employed for chemical analysis, since many organic compounds absorb in only this region. Germanium-doped silica, which is often preferred as the waveguide core material in optical devices for telecommunication....... The applicability of these waveguides was demonstrated in a biochemical microsystem consisting of multimode buried-channel SiOxNy waveguides that were monolithically integrated with microfluidic channels. Absorption measurements of a beta -blocking agent, propranolol, at 212-215 nm were performed. The detection...

  11. Investigating the Strain, Temperature and Humidity Sensitivity of a Multimode Graded-Index Perfluorinated Polymer Optical Fiber with Bragg Grating.

    Science.gov (United States)

    Zheng, Yulong; Bremer, Kort; Roth, Bernhard

    2018-05-05

    In this work we investigate the strain, temperature and humidity sensitivity of a Fiber Bragg Grating (FBG) inscribed in a near infrared low-loss multimode perfluorinated polymer optical fiber based on cyclic transparent optical polymer (CYTOP). For this purpose, FBGs were inscribed into the multimode CYTOP fiber with a core diameter of 50 µm by using a krypton fluoride (KrF) excimer laser and the phase mask method. The evolution of the reflection spectrum of the FBG detected with a multimode interrogation technique revealed a single reflection peak with a full width at half maximum (FHWM) bandwidth of about 9 nm. Furthermore, the spectral envelope of the single FBG reflection peak can be optimized depending on the KrF excimer laser irradiation time. A linear shift of the Bragg wavelength due to applied strain, temperature and humidity was measured. Furthermore, depending on irradiation time of the KrF excimer laser, both the failure strain and strain sensitivity of the multimode fiber with FBG can be controlled. The inherent low light attenuation in the near infrared wavelength range (telecommunication window) of the multimode CYTOP fiber and the single FBG reflection peak when applying the multimode interrogation set-up will allow for new applications in the area of telecommunication and optical sensing.

  12. Rectangular-cladding silicon slot waveguide with improved nonlinear performance

    Science.gov (United States)

    Huang, Zengzhi; Huang, Qingzhong; Wang, Yi; Xia, Jinsong

    2018-04-01

    Silicon slot waveguides have great potential in hybrid silicon integration to realize nonlinear optical applications. We propose a rectangular-cladding hybrid silicon slot waveguide. Simulation result shows that, with a rectangular-cladding, the slot waveguide can be formed by narrower silicon strips, so the two-photon absorption (TPA) loss in silicon is decreased. When the cladding material is a nonlinear polymer, the calculated TPA figure of merit (FOMTPA) is 4.4, close to the value of bulk nonlinear polymer of 5.0. This value confirms the good nonlinear performance of rectangular-cladding silicon slot waveguides.

  13. Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes

    Science.gov (United States)

    Bigeon, J.; Huby, N.; Amela-Cortes, M.; Molard, Y.; Garreau, A.; Cordier, S.; Bêche, B.; Duvail, J.-L.

    2016-06-01

    We investigate 1D nanostructures based on a Mo6@SU8 hybrid nanocomposite in which photoluminescent Mo6 clusters are embedded in the photosensitive SU8 resist. Tens of micrometers long Mo6@SU8-based tubular nanostructures were fabricated by the wetting template method, enabling the control of the inner and outer diameter to about 190 nm and 240 nm respectively, as supported by structural and optical characterizations. The image plane optical study of these nanotubes under optical pumping highlights the efficient waveguiding phenomenon of the red luminescence emitted by the clusters. Moreover, the wave vector distribution in the Fourier plane determined by leakage radiation microscopy gives additional features of the emission and waveguiding. First, the anisotropic red luminescence of the whole system can be attributed to the guided mode along the nanotube. Then, a low-loss propagation behavior is evidenced in the Mo6@SU8-based nanotubes. This result contrasts with the weaker waveguiding signature in the case of UV210-based nanotubes embedding PFO (poly(9,9-di-n-octylfluorenyl-2,7-diyl)). It is attributed to the strong reabsorption phenomenon, owing to overlapping between absorption and emission bands in the semi-conducting conjugated polymer PFO. These results make this Mo6@SU8 original class of nanocomposite a promising candidate as nanosources for submicronic photonic integration.

  14. Towards a portable microchip system with integrated thermal control and polymer waveguides for real-time PCR

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Sekulovic, Andrea; Kutter, Jörg Peter

    2006-01-01

    A novel real-time PCR microchip platform with integrated thermal system and polymer waveguides has been developed. The integrated polymer optical system for real-time monitoring of PCR was fabricated in the same SU-8 layer as the PCR chamber, without additional masking steps. Two suitable DNA...... binding dyes, SYTOX Orange and TO-PRO-3, were selected and tested for the real-time PCR processes. As a model, cadF gene of Campylobacter jejuni has been amplified on the microchip. Using the integrated optical system of the real-time PCR microchip, the measured cycle threshold values of the real-time PCR...

  15. Direct imaging of optical interference in erbium-doped Al2O3 waveguides

    NARCIS (Netherlands)

    Hoven, van den G.N.; Polman, A.; Dam, van C.; Uffelen, van J.W.M.; Smit, M.K.

    1996-01-01

    Interference of 1.48-mu m light in multimode interference waveguides is made visible by imaging green and infrared upconversion luminescence from Er3+ ions dispersed in the waveguide. A two-dimensional mode density image can be derived from the data and agrees well with mode calculations for this

  16. Finite mode analysis through harmonic waveguides

    NARCIS (Netherlands)

    Alieva, T.; Wolf, K.B.

    2000-01-01

    The mode analysis of signals in a multimodal shallow harmonic waveguide whose eigenfrequencies are equally spaced and finite can be performed by an optoelectronic device, of which the optical part uses the guide to sample the wave field at a number of sensors along its axis and the electronic part

  17. Multilayered photonic integration on SOI platform using waveguide-based bridge structure

    Science.gov (United States)

    Majumder, Saikat; Chakraborty, Rajib

    2018-06-01

    A waveguide based structure on silicon on insulator platform is proposed for vertical integration in photonic integrated circuits. The structure consists of two multimode interference couplers connected by a single mode (SM) section which can act as a bridge over any other underlying device. Two more SM sections acts as input and output of the first and second multimode couplers respectively. Potential application of this structure is in multilayered photonic links. It is shown that the efficiency of the structure can be improved by making some design modifications. The entire simulation is done using effective-index based matrix method. The feature size chosen are comparable to waveguides fabricated previously so as to fabricate the proposed structure easily.

  18. On the bi-orthogonality conditions for multi-modal elastic waveguides

    DEFF Research Database (Denmark)

    Sorokin, Sergey

    2013-01-01

    The bi-orthogomality conditions in terms of generalised forces and displacements are derived from the reciprocity relations for a hierarchy of elastic waveguides, which support several travelling and evanescent modes (free waves). In the simple cases of waves in a straight beam and axisymmetric...... waves in a thin elastic cylindrical shell, these conditions are formulated as identities in an explicit form via wavenumbers. The forced vibrations of these waveguides under localised excitation are also considered with these identities being employed. The bi-orthogonality conditions in more advanced...... cases, specifically, for non-axisymmetric waves in an elastic cylindrical shell and for waves in an elastic helical spring, are derived, but not presented in an explicit form via wavenumbers. The results obtained for the hierarchy of waveguides are discussed in view of the classical bi...

  19. UV patterned nanoporous solid-liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Sagar, Kaushal Shashikant; Christiansen, Mads Brøkner

    2010-01-01

    Nanoporous Solid-Liquid core waveguides were prepared by UV induced surface modification of hydrophobic nanoporous polymers. With this method, the index contrast (delta n = 0.20) is a result of selective water infiltration. The waveguide core is defined by UV light, rendering the exposed part...

  20. Optical Cladding Waveguides in Dielectric Crystals Produced by Femtosecond Laser Inscription

    Directory of Open Access Journals (Sweden)

    Chen Feng

    2013-11-01

    Full Text Available In this work, the recent progress of our research on optical cladding waveguides in dielectric crystals produced by femtosecond laser inscription has been overviewed. With different scales at cross sections, the cladding waveguides support guidance from single mode to highly multi-modes, and work for wavelength till mid-infrared regimes. Applications of the fabricated cladding structures as new integrated light sources are introduced.

  1. Bi-directional triplexer with butterfly MMI coupler using SU-8 polymer waveguides

    Science.gov (United States)

    Mareš, David; Jeřábek, Vítězslav; Prajzler, Václav

    2015-01-01

    We report about a design of a bi-directional planar optical multiplex/demultiplex filter (triplexer) for the optical part of planar hybrid WDM bi-directional transceiver in fiber-to-the-home (FTTH) PON applications. The triplex lightwave circuit is based on the Epoxy Novolak Resin SU-8 waveguides on the silica-on-silicon substrate with Polymethylmethacrylate cladding layer. The triplexer is comprised of a linear butterfly concept of multimode interference (MMI) coupler separating downstream optical signals of 1490 nm and 1550 nm. For the upstream channel of 1310 nm, an additional directional coupler (DC) is used to add optical signal of 1310 nm propagating in opposite direction. The optical triplexer was designed and optimized using beam propagation method. The insertion losses, crosstalk attenuation, and extinction ratio for all three inputs/outputs were investigated. The intended triplexer was designed using the parameters of the separated DC and MMI filter to approximate the idealized direct connection of both devices.

  2. Extracting interface locations in multilayer polymer waveguide films using scanning angle Raman spectroscopy

    International Nuclear Information System (INIS)

    Bobbitt, Jonathan M.; Smith, Emily A.

    2017-01-01

    There is an increasing demand for nondestructive in situ techniques that measure chemical content, total thickness, and interface locations for multilayer polymer films, and SA Raman spectroscopy in combination with appropriate data models can provide this information. A scanning angle (SA) Raman spectroscopy method was developed to measure the chemical composition of multilayer polymer waveguide films and to extract the location of buried interfaces between polymer layers with 7–80-nm axial spatial resolution. The SA Raman method measures Raman spectra as the incident angle of light upon a prism-coupled thin film is scanned. Six multilayer films consisting of poly(methyl methacrylate)/polystyrene or poly(methyl methacrylate)/polystyrene/poly(methyl methacrylate) were prepared with total thicknesses ranging from 330-1260 nm. The interface locations were varied by altering the individual layer thicknesses between 140-680 nm. The Raman amplitude ratio of the 1605 cm -1 peak for PS and 812 cm -1 peak for PMMA was used in calculations of the electric field intensity within the polymer layers to model the SA Raman data and extract the total thickness and interface locations. There is an average 8% and 7% difference in the measured thickness between the SA Raman and profilometry measurements for bilayer and trilayer films, respectively.

  3. Monolithic integration of DUV-induced waveguides into plastic microfluidic chip for optical manipulation

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Vannahme, Christoph; Sørensen, Kristian Tølbøl

    2014-01-01

    A monolithic polymer optofluidic chip for manipulation of microbeads in flow is demonstrated. On this chip, polymer waveguides induced by Deep UV lithography are integrated with microfluidic channels. The optical propagation losses of the waveguides are measured to be 0.66±0.13 dB/mm at a wavelen......A monolithic polymer optofluidic chip for manipulation of microbeads in flow is demonstrated. On this chip, polymer waveguides induced by Deep UV lithography are integrated with microfluidic channels. The optical propagation losses of the waveguides are measured to be 0.66±0.13 d......B/mm at a wavelength of λ = 808 nm. An optimized bead tracking algorithm is implemented, allowing for determination of the optical forces acting on the particles. The algorithm features a spatio-temporal mapping of coordinates for uniting partial trajectories, without increased processing time. With an external laser...

  4. Planar optical waveguide sensor of ammonia

    Science.gov (United States)

    Sarkisov, Sergey S.; Curley, Michael J.; Boykin, Courtney; Diggs, Darnell E.; Grote, James G.; Hopkins, Frank K.

    2004-12-01

    We describe a novel sensor of ammonia based on a planar optical waveguide made of a thin film of polymer polyimide doped with indicator dye bromocresol purple. The film of dye-doped polyimide demonstrated reversible increase of absorption with a peak near 600 nm in response to presence of ammonia in ambient air. Coupling of input and output optic fibers with the waveguide was done by means of coupling prisms or coupling grooves. The latter configuration has the advantage of low cost, less sensitivity to temperature variation, and the possibility of coupling from both sides of the waveguide. Special experimental setup was built to test the sensor. It included test gas chamber with sealed optic fiber feed-throughs, gas filling line, laser source, photodetector, and signal processing hardware and software. The sensor was capable of detecting 100 ppm of ammonia in air within 8 seconds. Further increase of sensitivity can be achieved by adding more dye dopant to the polymer, increase of the length of the waveguide, and suppression of noise. Overexposure of the sensor to more than 5000 ppm of ammonia led to the saturation of the polymer film and, as a result, significant decrease of sensitivity and increase of the response time. The sensor can be used as low cost component of a distributed optical network of chemical sensors for monitoring presence of hazardous industrial pollutants in air.

  5. Strong guided mode resonant local field enhanced visible harmonic generation in an azo-polymer resonant waveguide grating.

    Science.gov (United States)

    Lin, Jian Hung; Tseng, Chun-Yen; Lee, Ching-Ting; Young, Jeff F; Kan, Hung-Chih; Hsu, Chia Chen

    2014-02-10

    Guided mode resonance (GMR) enhanced second- and third-harmonic generation (SHG and THG) is demonstrated in an azo-polymer resonant waveguide grating (RWG), comprised of a poled azo-polymer layer on top of a textured SU8 substrate with a thin intervening layer of TiO2. Strong SHG and THG outputs are observed by matching either in-coming fundamental- or out-going harmonic-wavelength to the GMR wavelengths of the azo-polymer RWG. Without the azo-polymer coating, pure TiO2 RWGs, do not generate any detectable SHG using a fundamental beam peak intensity of 2 MW/cm(2). Without the textured TiO2 layer, a planar poled azo-polymer layer results in 3650 times less SHG than the full nonlinear RWG structure under identical excitation conditions. Rigorous coupled-wave analysis calculations confirm that this enhancement of the nonlinear conversion is due to strong local electric fields that are generated at the interfaces of the TiO2 and azo-polymer layers when the RWG is excited at resonant wavelengths associated with both SHG and THG conversion processes.

  6. Structure with improved self-imaging in its graded-index multimode interference region

    International Nuclear Information System (INIS)

    Yin Rui; Jiang Xiaoqing; Yang Jianyi; Wang Minghua

    2002-01-01

    Propagation constant errors (PCEs) of guided modes in regions of multimode interference in optical networks were analyzed. Results show that a graded-index waveguide can effectively decrease the PCEs. An example based on an exponential function is presented. Numerical results show that addition of a graded-index waveguide greatly improves device performance in this structure

  7. Modeling of Slot Waveguide Sensors Based on Polymeric Materials

    Science.gov (United States)

    Bettotti, Paolo; Pitanti, Alessandro; Rigo, Eveline; De Leonardis, Francesco; Passaro, Vittorio M. N.; Pavesi, Lorenzo

    2011-01-01

    Slot waveguides are very promising for optical sensing applications because of their peculiar spatial mode profile. In this paper we have carried out a detailed analysis of mode confinement properties in slot waveguides realized in very low refractive index materials. We show that the sensitivity of a slot waveguide is not directly related to the refractive index contrast of high and low materials forming the waveguide. Thus, a careful design of the structures allows the realization of high sensitivity devices even in very low refractive index materials (e.g., polymers) to be achieved. Advantages of low index dielectrics in terms of cost, functionalization and ease of fabrication are discussed while keeping both CMOS compatibility and integrable design schemes. Finally, applications of low index slot waveguides as substitute of bulky fiber capillary sensors or in ring resonator architectures are addressed. Theoretical results of this work are relevant to well established polymer technologies. PMID:22164020

  8. Modeling of Slot Waveguide Sensors Based on Polymeric Materials

    Directory of Open Access Journals (Sweden)

    Lorenzo Pavesi

    2011-07-01

    Full Text Available Slot waveguides are very promising for optical sensing applications because of their peculiar spatial mode profile. In this paper we have carried out a detailed analysis of mode confinement properties in slot waveguides realized in very low refractive index materials. We show that the sensitivity of a slot waveguide is not directly related to the refractive index contrast of high and low materials forming the waveguide. Thus, a careful design of the structures allows the realization of high sensitivity devices even in very low refractive index materials (e.g., polymers to be achieved. Advantages of low index dielectrics in terms of cost, functionalization and ease of fabrication are discussed while keeping both CMOS compatibility and integrable design schemes. Finally, applications of low index slot waveguides as substitute of bulky fiber capillary sensors or in ring resonator architectures are addressed. Theoretical results of this work are relevant to well established polymer technologies.

  9. Polarization independent polymer waveguide tunable receivers incorporating a micro-optic circulator

    Science.gov (United States)

    Wu, Xiaoping; Park, Tae-Hyun; Park, Su-Hyun; Seo, Jun-Kyu; Oh, Min-Cheol

    2018-06-01

    In order to simplify the receiver configuration in a wavelength division multiplexed optical fiber network, compact wavelength tunable filters have long been expected to be used as channel selectors. Bragg reflector inherently has the most suitable reflection spectrum for filtering a single wavelength from the densely multiplexed wavelength signal. Polymer has high thermo-optic coefficient and good thermal insulation property compared to the other optical waveguide materials such as silicon and silica materials. This can be used to broadly tune the reflection spectrum of Bragg reflector using a simple micro-heater. In this work, a micro-optic circulator component and a polymeric Bragg reflector device are assembled to produce a small form factor tunable receiver. Compared to the integrated-optical versions, the micro-optics are based on well-developed manufacturing processes and can achieve competitive production yields. The device exhibits high reflectivity with a flat top passband, and a polarization dependence of 0.06 nm achieved by virtue of the low birefringence of LFR polymer, which make a significant contribution to the implementation of polarization independent tunable receiver. The wavelength tuning range of 40 nm is demonstrated by using a bottom located heater with a groove for heat isolation.

  10. Real-Time PCR using a PCR Microchip with Integrated Thermal System and Polymer Waveguides for the Detection of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Sekulovic, Andrea; Kutter, Jörg Peter

    2006-01-01

    A novel real-time PCR microchip platform with integrated thermal system and polymer waveguides has been developed. By using the integrated optical system of the real-time PCR chip, cadF – a virulence gene of Campylobacter jejuni, could specifically be detected. Two different DNA binding dyes, SYTOX...

  11. Energy flow in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    2000-01-01

    Theoretical and numerical investigations of energy flow in photonic crystal waveguides made of line defects and branching points are presented. It is shown that vortices of energy flow may occur, and the net energy flow along: the line defect is described via the effective propagation velocity....... Single-mode and multimode operations are studied, and dispersion relations are computed for different waveguide widths. Both strong positive, strong negative, and zero dispersion an possible. It is shown that geometric parameters such as the nature of the lattice, the line defect orientation, the defect...... width, and the branching-point geometry have a significant influence on the electrodynamics. These are important issues for the fabrication of photonic crystal structures....

  12. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits.

    Science.gov (United States)

    Dai, Daoxin; Mao, Mao

    2015-11-02

    An inverse taper on silicon is proposed and designed to realize an efficient mode converter available for the connection between multimode silicon nanophotonic integrated circuits and few-mode fibers. The present mode converter has a silicon-on-insulator inverse taper buried in a 3 × 3μm(2) SiN strip waveguide to deal with not only for the fundamental mode but also for the higher-order modes. The designed inverse taper enables the conversion between the six modes (i.e., TE(11), TE(21), TE(31), TE(41), TM(11), TM(12)) in a 1.4 × 0.22μm(2) multimode SOI waveguide and the six modes (like the LP(01), LP(11a), LP(11b) modes in a few-mode fiber) in a 3 × 3μm(2) SiN strip waveguide. The conversion efficiency for any desired mode is higher than 95.6% while any undesired mode excitation ratio is lower than 0.5%. This is helpful to make multimode silicon nanophotonic integrated circuits (e.g., the on-chip mode (de)multiplexers developed well) available to work together with few-mode fibers in the future.

  13. Optical vortex propagation in few-mode rectangular polymer waveguides

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Chipouline, Arkadi; Zywietz, Urs

    2017-01-01

    We demonstrate that rectangular few-mode dielectric waveguides, fabricated with standard lithographic technique, can support on-chip propagation of optical vortices. We show that specific superpositions of waveguide eigenmodes form quasi-degenerate modes carrying light with high purity states...

  14. Phase Radiation Characteristics of an Open-Ended Circular Waveguide

    DEFF Research Database (Denmark)

    Shishkova, A.V.; Pivnenko, Sergiy; Kim, O.S.

    2002-01-01

    Analytic expressions for phase radiation characteristics of a semi-infinite open-ended circular waveguide regardless of its aperture size and operating frequency have been obtained making use of the rigorous Weinstein's theory. The analysis of phase radiation patterns has been carried out...... for the dominant mode (TE11) as well as for the high order modes TM01 and TE01, both for a single and multimode propagation. The measurement of radiation characteristics of an open-ended circular waveguide has been carried out at the DTU-ESA Spherical Near-Field Antenna Test Facility. It is shown...

  15. Low Loss 1×2 Optical Coupler Based on Cosine S-bend with Segmented Waveguides

    Science.gov (United States)

    Yulianti, Ian; Sahmah, Abu; Supa'at, M.; Idrus, Sevia M.; Ridwanto, Muhammad; Al-hetar, Abdulaziz M.

    2011-05-01

    This paper presents an optimization of 1×2 polymer Y-junction optical coupler. The optimized optical coupler comprises straight polymer waveguide as the input waveguide, tapered waveguide, modified cosine S-bend and linear waveguide. At the branching point, N short waveguides with small width are introduced to reduce evanescent field. At operating wavelength of 1550 nm the excess loss of the coupler is ˜0.18 dB. In term of polarization dependence loss (PDL), the proposed coupler also shows a good performance with PDL value of less than 0.015 dB for wavelength range of 1470 nm-1550 nm. The proposed coupler could reduce excess loss more than 25% compared to conventional Y junction optical coupler.

  16. Numerical simulation of terahertz-wave propagation in photonic crystal waveguide based on sapphire shaped crystal

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Katyba, Gleb M; Mukhina, Elena E; Kudrin, Konstantin G; Karasik, Valeriy E; Yurchenko, Stanislav O; Kurlov, Vladimir N; Shikunova, Irina A; Reshetov, Igor V

    2016-01-01

    Terahertz (THz) waveguiding in sapphire shaped single crystal has been studied using the numerical simulations. The numerical finite-difference analysis has been implemented to characterize the dispersion and loss in the photonic crystalline waveguide containing hollow cylindrical channels, which form the hexagonal lattice. Observed results demonstrate the ability to guide the THz-waves in multi-mode regime in wide frequency range with the minimal power extinction coefficient of 0.02 dB/cm at 1.45 THz. This shows the prospectives of the shaped crystals for highly-efficient THz waveguiding. (paper)

  17. Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses.

    Science.gov (United States)

    Okhrimchuk, Andrey; Mezentsev, Vladimir; Shestakov, Alexander; Bennion, Ian

    2012-02-13

    A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.

  18. Fabrication of an electro optic polymer ringresonator

    NARCIS (Netherlands)

    Leinse, Arne; Driessen, A.; Diemeer, Mart; de Ridder, R.M.; de Ridder, R.M; Altena, G.; Altena, G; Geuzebroek, D.H.; Dekker, R; Dekker, R.

    2003-01-01

    A ringresonator made of an electro optic (EO) polymer was designed, realized and characterized. The ring was made of a 4-dimethylamino-4-nitrostilbene (DANS) containing polymer and used in a vertical coupling with the waveguides. The waveguides were made of the photo-definable SU8, preventing an

  19. Polymer Waveguide Fabrication Techniques

    Science.gov (United States)

    Ramey, Delvan A.

    1985-01-01

    The ability of integrated optic systems to compete in signal processing aplications with more traditional analog and digital electronic systems is discussed. The Acousto-Optic Spectrum Analyzer is an example which motivated the particular work discussed herein. Provided real time processing is more critical than absolute accuracy, such integrated optic systems fulfill a design need. Fan-out waveguide arrays allow crosstalk in system detector arrays to be controlled without directly limiting system resolution. A polyurethane pattern definition process was developed in order to demonstrate fan-out arrays. This novel process is discussed, along with further research needs. Integrated optic system market penetration would be enhanced by development of commercial processes of this type.

  20. Differential modal delay measurements in a graded-index multimode fibre waveguide, using a single-mode fibre pro mode selection

    International Nuclear Information System (INIS)

    Sunak, H.R.D.; Soares, S.M.

    1981-01-01

    Differential model delay (DMD) measurements in graded-index multimode optical fibre waveguides, which are very promising for many types of communication system were carried out. These DMD measurements give a direct indication of the deviation of the refractive index profile, from the optimum value, at a given wavelength. For the first time, by using a single-mode fibre, a few guided modes in the graded-index fibre were selected, in two different ways: launching a few modes at the input end or selecting a few modes at the output end. By doing so important features of propagation in the fibre were revealed, especially the intermodal coupling that may exist. The importance of this determination of intermodal coupling or mode mixing, particularly when many fibres are joined together in a link, and the merits of DMD measurements in general and their importance for the production of high bandwidth graded-index fibres are discussed. (Author) [pt

  1. Large core plastic planar optical splitter fabricated by 3D printing technology

    Science.gov (United States)

    Prajzler, Václav; Kulha, Pavel; Knietel, Marian; Enser, Herbert

    2017-10-01

    We report on the design, fabrication and optical properties of large core multimode optical polymer splitter fabricated using fill up core polymer in substrate that was made by 3D printing technology. The splitter was designed by the beam propagation method intended for assembling large core waveguide fibers with 735 μm diameter. Waveguide core layers were made of optically clear liquid adhesive, and Veroclear polymer was used as substrate and cover layers. Measurement of optical losses proved that the insertion optical loss was lower than 6.8 dB in the visible spectrum.

  2. Multiple-mode reconfigurable electro-optic switching network for optical fiber sensor array

    Science.gov (United States)

    Chen, Ray T.; Wang, Michael R.; Jannson, Tomasz; Baumbick, Robert

    1991-01-01

    This paper reports the first switching network compatible with multimode fibers. A one-to-many cascaded reconfigurable interconnection was built. A thin glass substrate was used as the guiding medium which provides not only higher coupling efficiency from multimode fiber to waveguide but also better tolerance of phase-matching conditions. Involvement of a total-internal-reflection hologram and multimode waveguide eliminates interface problems between fibers and waveguides. The DCG polymer graft has proven to be reliable from -180 C to +200 C. Survivability of such an electrooptic system in harsh environments is further ensured. LiNbO3 was chosen as the E-O material because of its stability at high temperatures (phase-transition temperature of more than 1000 C) and maturity of E-O device technology. Further theoretical calculation was conducted to provide the optimal interaction length and device capacitance.

  3. Femtosecond laser-written double line waveguides in germanate and tellurite glasses

    Science.gov (United States)

    S. da Silva, Diego; Wetter, Niklaus U.; de Rossi, Wagner; Samad, Ricardo E.; Kassab, Luciana R. P.

    2018-02-01

    The authors report the fabrication and characterization of passive waveguides in GeO2-PbO and TeO2-ZnO glasses written with a femtosecond laser delivering pulses with 3μJ, 30μJ and 80fs at 4kHz repetition rate. Permanent refractive index change at the focus of the laser beam was obtained and waveguides were formed by two closely spaced laser written lines, where the light guiding occurs between them. The refractive index change at 632 nm is around 10-4 . The value of the propagation losses was around 2.0 dB/cm. The output mode profiles indicate multimodal guiding behavior. Raman measurements show structural modification of the glassy network. The results show that these materials are potential candidates for passive waveguides applications as low-loss optical components.

  4. Fiber‐free coupling between bulk laser beams and on‐chip polymer‐based multimode waveguides

    DEFF Research Database (Denmark)

    Jensen, Thomas Glasdam; Nielsen, Lars Bue; Kutter, Jörg Peter

    2011-01-01

    light from a bulk beam to on‐chip waveguides and back into a bulk beam again. Using this setup, as much as 20% of the light coming from the source can be retrieved after passing through the on‐chip waveguides. The proposed setup is based on a pin‐aided alignment system that makes it possible to change...

  5. UV Defined Nanoporous Liquid Core Waveguides

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Gopalakrishnan, Nimi; Ndoni, Sokol

    2011-01-01

    Nanoporous liquid core waveguides, where both core and cladding are made from the same material, are presented. The nanoporous polymer used is intrinsically hydrophobic, but selective UV exposure enables it to infiltrate with an aqueous solution, thus raising the refractive index from 1.26 to 1...

  6. Characterization of long-range plasmonic waveguides at visible to near-infrared regime

    Directory of Open Access Journals (Sweden)

    Sheng-Ting Huang

    2017-12-01

    Full Text Available Long-range surface plasmon polariton waveguides composed with thin gold stripes embedded in SU-8 polymer cladding with various stripe widths were fabricated. Material properties of the polymer cladding layer, gold thin film, and the device structures were discussed. Optical properties based on modal propagation were characterized at visible to near-infrared wavelengths. The measured propagation losses of waveguide widths from 3 to 9 μm at 633, 785, and 1550 nm are 7.5-18.8, 6.8-12.5, and 1.9-3.9 dB/mm, respectively. Guiding mode properties such as overlap integrals between the simulated and the measured fields and the polarization extinction ratios of the waveguides with different stripe widths were investigated at the telecommunication wavelength. Good accordance between the measurement and simulation results was presented.

  7. Semiconductor laser using multimode interference principle

    Science.gov (United States)

    Gong, Zisu; Yin, Rui; Ji, Wei; Wu, Chonghao

    2018-01-01

    Multimode interference (MMI) structure is introduced in semiconductor laser used in optical communication system to realize higher power and better temperature tolerance. Using beam propagation method (BPM), Multimode interference laser diode (MMI-LD) is designed and fabricated in InGaAsP/InP based material. As a comparison, conventional semiconductor laser using straight single-mode waveguide is also fabricated in the same wafer. With a low injection current (about 230 mA), the output power of the implemented MMI-LD is up to 2.296 mW which is about four times higher than the output power of the conventional semiconductor laser. The implemented MMI-LD exhibits stable output operating at the wavelength of 1.52 μm and better temperature tolerance when the temperature varies from 283.15 K to 293.15 K.

  8. Inorganic Nanoparticles for Multimodal Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Magdalena Swierczewska

    2011-01-01

    Full Text Available Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles.

  9. Polymeric flat focal field arrayed waveguide grating using electron-beam direct writing

    Science.gov (United States)

    Lu, Si; Yan, Yingbai; Jin, Guofan; Wong, W. H.; Pun, E. Y. B.

    2004-06-01

    A four-channel 400-GHz spacing flat focal field arrayed waveguide grating (AWG) demultiplexer is designed based on polymeric optical waveguide. The waveguide core-layer material is a newly developed negative tone epoxy Novolak resin (ENR) polymer with ultravoilet (UV) cured resin Norland optical adhesive 61 (NOA61) as the cladding layer. The device is fabricated using electron-beam direct writing, which has less processing steps than the reported polymeric AWGs. The experimental result is presented.

  10. Polarization-dependent plasmonic splitter based on low-loss polymer optical materials

    Science.gov (United States)

    Qian, Guang; Fu, Xing-Chang; Zhang, Li-Jiang; Liu, Yi-Ran; Zhao, Ning; Zhang, Tong

    2018-01-01

    A polarization-dependent optical beam splitter consisting of a straight long-range surface plasmon polariton (LRSPP) waveguide and an S-bend polymer waveguide was designed, fabricated and measured in this paper. At the splitting section, the two different waveguides are vertically coupled. The measurenment results show that the splitter operated in dual-channel mode at TM polarization, and single-channel mode at TE polarization. In addition, the polymer waveguide and LRSPP waveguide in the splitter exhibit low propagation loss of 0.51 dB/cm and 1.7 dB/cm, respectively. The hybrid beam splitter has wide potential applications in three dimensional (3D) multilayer photonic integrated circuits (PICs).

  11. Large-core single-mode rib SU8 waveguide using solvent-assisted microcontact molding.

    Science.gov (United States)

    Huang, Cheng-Sheng; Wang, Wei-Chih

    2008-09-01

    This paper describes a novel fabrication technique for constructing a polymer-based large-core single-mode rib waveguide. A negative tone SU8 photoresist with a high optical transmission over a large wavelength range and stable mechanical properties was used as a waveguide material. A waveguide was constructed by using a polydimethylsiloxane stamp combined with a solvent-assisted microcontact molding technique. The effects on the final pattern's geometry of four different process conditions were investigated. Optical simulations were performed using beam propagation method software. Single-mode beam propagation was observed at the output of the simulated waveguide as well as the actual waveguide through the microscope image.

  12. Photolithographic fabrication of solid–liquid core waveguides by thiol-ene chemistry

    International Nuclear Information System (INIS)

    Sagar, Kaushal; Gopalakrishnan, Nimi; Christiansen, Mads Brøkner; Kristensen, Anders; Ndoni, Sokol

    2011-01-01

    In this work we demonstrate an efficient and cleanroom compatible method for the fabrication of solid–liquid core waveguides based on nanoporous polymers. We have used thiol-ene photo-grafting to tune and pattern the hydrophilicity of an originally hydrophobic nanoporous 1, 2-polybutadiene. The generated refractive index contrast between the patterned water-filled volume and the surrounding empty hydrophobic porous polymer allows for light confinement within the water-filled volume—the solid–liquid core. The presented fabrication process is simple and fast. It allows a high degree of flexibility on the type and grade of surface chemistry imparted to the large nanoporous area depending upon the application. The fabrication does not need demanding chemical reaction conditions. Thus, it can be readily used on a standard silicon lithography bench. The propagation loss values reported in this work are comparable with literature values for state-of-the-art liquid-core waveguide devices. The demonstrated waveguide function added to the nanoporous polymer with a very high internal surface area makes the system interesting for many applications in different areas, such as diagnostics and bio-chemical sensing

  13. Colloidal QDs-polymer nanocomposites

    Science.gov (United States)

    Gordillo, H.; Suárez, I.; Rodríguez-Cantó, P.; Abargues, R.; García-Calzada, R.; Chyrvony, V.; Albert, S.; Martínez-Pastor, J.

    2012-04-01

    Nanometer-size colloidal semiconductor nanocrystals, or Quantum Dots (NQD), are very prospective active centers because their light emission is highly efficient and temperature-independent. Nanocomposites based on the incorporation of QDs inside a polymer matrix are very promising materials for application in future photonic devices because they combine the properties of QDs with the technological feasibility of polymers. In the present work some basic applications of these new materials have been studied. Firstly, the fabrication of planar and linear waveguides based on the incorporation of CdS, CdSe and CdTe in PMMA and SU-8 are demonstrated. As a result, photoluminescence (PL) of the QDs are coupled to a waveguide mode, being it able to obtain multicolor waveguiding. Secondly, nanocomposite films have been evaluated as photon energy down-shifting converters to improve the efficiency of solar cells.

  14. Whimsicality of multi-mode Hasegawa space-charge waves in a complex plasma containing collision-dominated electrons and streaming ions

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-09-01

    The influence of collision-dominated electrons on multi-mode Hasegawa space-charge waves are investigated in a complex plasma containing streaming ions. The dispersion relation for the multi-mode Hasegawa space-charge wave propagating in a cylindrical waveguide filled with dusty plasma containing collision-dominated electrons and streaming ions is derived by using the fluid equations and Poisson’s equation which lead to a Bessel equation. By the boundary condition, the roots of the Bessel function would characterize the property of space-charge wave propagation. It is found that two solutions exist for wave frequency, which are affected by the radius of waveguide and the roots of the Bessel function. The damping and growing modes are found to be enhanced by an increase of the radius. However, an increase of electron collision frequency would suppress the damping and the growing modes of the propagating space-charge wave in a cylindrical waveguide plasma.

  15. Optical touch screen based on waveguide sensing

    DEFF Research Database (Denmark)

    Pedersen, Henrik Chresten; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2011-01-01

    We disclose a simple, optical touch screen technique based on a planar injection molded polymer waveguide, a single laser, and a small linear detector array. The solution significantly reduces the complexity and cost as compared to existing optical touch technologies. Force detection of a touching...

  16. Inscription of type I and depressed cladding waveguides in lithium niobate using a femtosecond laser.

    Science.gov (United States)

    Bhardwaj, S; Mittholiya, K; Bhatnagar, A; Bernard, R; Dharmadhikari, J A; Mathur, D; Dharmadhikari, A K

    2017-07-10

    We describe two types of waveguides (type I and depressed cladding) inscribed in lithium niobate using a variable repetition rate (200 kHz-25 MHz), 270 fs duration fiber laser. The type I modification-based waveguides have propagation losses in the range from 1.2 to 10 dB/cm at 1550 nm, depending on experimental parameters. These waveguides are not permanent; they deteriorate over time. Such deterioration of waveguides can be slowed down from 30 days to 100 days by pre-annealing the samples and by writing at a 720 kHz laser repetition rate. The propagation losses measured at 1550 nm show significant improvement for pre-annealed samples. The depressed cladding-inscribed waveguides are permanent, but the propagation loss depends on the number of damage tracks. A track separation of ∼1  μm between adjacent damage tracks yields the lowest propagation loss of 0.5 dB/cm at 1550 nm for a 40 μm diameter waveguide. We observe multimode guidance for sizes in the range of 20-80 μm in these waveguide structures at 1550 nm. Their crystalline nature is found to remain intact, as inferred from second-harmonic generation within the waveguide region.

  17. Optical modelling of far-infrared astronomical instrumentation exploiting multimode horn antennas

    Science.gov (United States)

    O'Sullivan, Créidhe; Murphy, J. Anthony; Mc Auley, Ian; Wilson, Daniel; Gradziel, Marcin L.; Trappe, Neil; Cahill, Fiachra; Peacocke, T.; Savini, G.; Ganga, K.

    2014-07-01

    In this paper we describe the optical modelling of astronomical telescopes that exploit bolometric detectors fed by multimoded horn antennas. In cases where the horn shape is profiled rather than being a simple cone, we determine the beam at the horn aperture using an electromagnetic mode-matching technique. Bolometers, usually placed in an integrating cavity, can excite many hybrid modes in a corrugated horn; we usually assume they excite all modes equally. If the waveguide section feeding the horn is oversized these modes can propagate independently, thereby increasing the throughput of the system. We use an SVD analysis on the matrix that describes the scattering between waveguide (TE/TM) modes to recover the independent orthogonal fields (hybrid modes) and then propagate these to the sky independently where they are added in quadrature. Beam patterns at many frequencies across the band are then added with a weighting appropriate to the source spectrum. Here we describe simulations carried out on the highest-frequency (857-GHz) channel of the Planck HFI instrument. We concentrate in particular on the use of multimode feedhorns and consider the effects of possible manufacturing tolerances on the beam on the sky. We also investigate the feasibility of modelling far-out sidelobes across a wide band for electrically large structures and bolometers fed by multi-mode feedhorns. Our optical simulations are carried out using the industry-standard GRASP software package.

  18. Manipulating single second mode transparency in a corrugated waveguide via the thickness of sputtered gold

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dan [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Fan, Ya-Xian, E-mail: yxfan@hrbeu.edu.cn [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Sang, Tang-Qing; Xu, Lan-Lan; Bibi, Aysha [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Tao, Zhi-Yong, E-mail: zytao@hrbeu.edu.cn [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China)

    2016-03-11

    We propose a classical analog of electromagnetically induced transparency in a cylindrical waveguide with undulated metallic walls. The transparency, induced by multi-mode interactions in waveguides, not only has a narrow line-width, but also consists of a single second-order transverse mode, which corresponds to the Bessel function distributions investigated extensively due to their unique characteristics. By increasing the thickness of sputtered gold layers of the waveguide, we demonstrate a frequency-agile single mode transparency phenomenon in a terahertz radiation. It is found that the center frequency of the transparency is linearly related to the gold thickness, indicating the achievement of a controllable single mode terahertz device. The field distributions at the cross-sections of outlets verify the single second mode transparency and indicate the mechanism of its frequency manipulation, which will significantly benefit the mode-control engineering in terahertz applications. - Highlights: • An analog of electromagnetically induced transparency in terahertz tubes is proposed. • A single second transverse mode of Bessel distributions is observed in the pass band. • The operating frequency can be linearly controlled by the sputtered gold thickness. • We can effectively manipulate the slow down factor of light by the gold thickness. • The transparency characteristics rely on the transition of multi-mode interactions.

  19. Manipulating single second mode transparency in a corrugated waveguide via the thickness of sputtered gold

    International Nuclear Information System (INIS)

    Xu, Dan; Fan, Ya-Xian; Sang, Tang-Qing; Xu, Lan-Lan; Bibi, Aysha; Tao, Zhi-Yong

    2016-01-01

    We propose a classical analog of electromagnetically induced transparency in a cylindrical waveguide with undulated metallic walls. The transparency, induced by multi-mode interactions in waveguides, not only has a narrow line-width, but also consists of a single second-order transverse mode, which corresponds to the Bessel function distributions investigated extensively due to their unique characteristics. By increasing the thickness of sputtered gold layers of the waveguide, we demonstrate a frequency-agile single mode transparency phenomenon in a terahertz radiation. It is found that the center frequency of the transparency is linearly related to the gold thickness, indicating the achievement of a controllable single mode terahertz device. The field distributions at the cross-sections of outlets verify the single second mode transparency and indicate the mechanism of its frequency manipulation, which will significantly benefit the mode-control engineering in terahertz applications. - Highlights: • An analog of electromagnetically induced transparency in terahertz tubes is proposed. • A single second transverse mode of Bessel distributions is observed in the pass band. • The operating frequency can be linearly controlled by the sputtered gold thickness. • We can effectively manipulate the slow down factor of light by the gold thickness. • The transparency characteristics rely on the transition of multi-mode interactions.

  20. Multi-Mode Analysis of Dual Ridged Waveguide Systems for Material Characterization

    Science.gov (United States)

    2015-09-17

    analysis”. Instrumenta- tion and Measurement, IEEE Transactions on, 44(1):19–27, 1995. [26] Maode, Niu, Su Yong, Yan Jinkui, Fu Chenpeng, and Xu Deming ...waveguide method”. Instrumentation and Measurement, IEEE Transactions on, 46(2):519–522, 1997. [35] Wang, Shoujun, Maode Niu, and Deming Xu. “A frequency

  1. Optical Forces on Non-Spherical Nanoparticles Trapped by Optical Waveguides

    Science.gov (United States)

    Hasan Ahmed, Dewan; Sung, Hyung Jin

    2011-07-01

    Numerical simulations of a solid-core polymer waveguide structure were performed to calculate the trapping efficiencies of particles with nanoscale dimensions smaller than the wavelength of the trapping beam. A three-dimensional (3-D) finite element method was employed to calculate the electromagnetic field. The inlet and outlet boundary conditions were obtained using an eigenvalue solver to determine the guided and evanescent mode profiles. The Maxwell stress tensor was considered for the calculation of the transverse and downward trapping efficiencies. A particle at the center of the waveguide showed minimal transverse trapping efficiency and maximal downward trapping efficiency. This trend gradually reversed as the particle moved away from the center of the waveguide. Particles with larger surface areas exhibited higher trapping efficiencies and tended to be trapped near the waveguide. Particles displaced from the wave input tended to be trapped at the waveguide surface. Simulation of an ellipsoidal particle showed that the orientation of the major axis along the waveguide's lateral z-coordinate significantly influenced the trapping efficiency. The particle dimensions along the z-coordinate were more critical than the gap distance (vertical displacement from the floor of the waveguide) between the ellipsoid particle and the waveguide. The present model was validated using the available results reported in the literature for different trapping efficiencies.

  2. Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    An ultra-low-loss coupler for interfacing a silicon-on-insulator ridge waveguide and a single-mode fiber in both polarizations is presented. The inverted taper coupler, embedded in a polymer waveguide, is optimized for both the transverse-magnetic and transverse-electric modes through tapering...... the width of the silicon-on-insulator waveguide from 450 nm down to less than 15 nm applying a thermal oxidation process. Two inverted taper couplers are integrated with a 3-mm long silicon-on-insulator ridge waveguide in the fabricated sample. The measured coupling losses of the inverted taper coupler...... for transverse-magnetic and transverse-electric modes are ~0.36 dB and ~0.66 dB per connection, respectively....

  3. A Microfluidic Device with an Integrated Waveguide Beam Splitter for Velocity Measurements of Flowing Particles by Fourier Transformation

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kwok, Y.C.; Eijkel, J.C.T.

    2003-01-01

    A microfabricated capillary electrophoresis device for velocity measurements of flowing particles is presented. It consists of a 1 x 128 planar waveguide beam splitter monolithically integrated with an electrically insulated fluidic channel network for fluorescence excitation at multiple points...... optics. The integrated planar waveguide beam splitter was, furthermore, permanently connected to the light source by a glued-on optical fiber, to achieve a robust and alignment-free operation of the system. The velocity was measured using a Fourier transformation with a Shah function, since the response...... of the fight array was designed to approximate a square profile. Deviations from this response were observed as a result of the multimode nature of the integrated waveguides....

  4. All-optical flip-flop operation based on asymmetric active-multimode interferometer bi-stable laser diodes

    DEFF Research Database (Denmark)

    Jiang, H.; Chaen, Y.; Hagio, T.

    2011-01-01

    We demonstrate fast and low energy all optical flip-flop devices based on asymmetric active-multimode interferometer using high-mesa waveguide structure. The implemented devices showed high speed alloptical flip-flop operation with 25ps long pulses. The rising and falling times of the output sign...

  5. Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Boisen, Anja

    2007-01-01

    Fabrication and optical characterization of singlemode polymeric embedded waveguides are performed. A specific material combination (SU-8 2005 as core and the modified SU-8 mr-L 6050XP as cladding) is chosen in order to obtain a small refractive index difference for single-mode propagation combined...... can fabricate waveguides with an index difference in the order of 10−3, where both the core material and the cladding material are based on SU-8. The refractive index measurements are performed on thin polymeric films, while further optical characterizations are performed on waveguides with a height...

  6. High-gain polymer optical waveguide amplifiers based on core-shell NaYF4/NaLuF4: Yb3+, Er3+ NPs-PMMA covalent-linking nanocomposites

    Science.gov (United States)

    Zhang, Meiling; Zhang, Weiwei; Wang, Fei; Zhao, Dan; Qu, Chunyang; Wang, Xibin; Yi, Yunji; Cassan, Eric; Zhang, Daming

    2016-11-01

    Waveguide amplifiers have always been significant key components for optical communication. Unfortunately, the low concentration of rare earth ions doped in the host material and the inadequate optimization of the waveguide structure have been the common bottleneck limitations. Here, a novel material, NaYF4/NaLuF4: 20% Yb3+, 2% Er3+ nanoparticle-Polymeric Methyl Methacrylate covalent-linking nanocomposite, was synthesized. The concentrations of Er3+ and Yb3+ doping increased an order of magnitude. Under a 980 nm laser excitation, highly efficient emission at 1.53 μm was obtained. The characteristic parameters of the single mode waveguide were carefully designed and optimized by using a finite difference method. A formulized iteration method is presented for solving the rate equations and the propagation equations of the EYCDWA, and both the steady state behavior and the gain were numerically simulated. The optimal Er3+ and Yb3+ concentrations are 2.8 × 1026 m-3 and 2.8 × 1027 m-3, and the optimal waveguide length is 1.3 cm. Both theoretical and experimental results indicated that, for an input signal power of 0.1 mW and a pump power of 400 mW, a net gain of 15.1 dB at 1530 nm is demonstrated. This result is the highest gain ever reported in polymer-based waveguide amplifiers doped with inorganic Er3+-Yb3+ codoped nanocrystals.

  7. Azo biphenyl polyurethane: Preparation, characterization and application for optical waveguide switch

    Science.gov (United States)

    Jiang, Yan; Da, Zulin; Qiu, Fengxian; Yang, Dongya; Guan, Yijun; Cao, Guorong

    2018-01-01

    Azo waveguide polymers are of particular interest in the design of materials for applications in optical switch. The aim of this contribution was the synthesis and thermo-optic waveguide switch properties of azo biphenyl polyurethanes. A series of monomers and azo biphenyl polyurethanes (Azo BPU1 and Azo BPU2) were synthesized and characterized by FT-IR, UV-Vis spectroscopy and 1H NMR. The physical and mechanical properties of thin polymer films were measured. The refractive index and thermo-optic coefficient (dn/dT) of polymer films were investigated for TE (transversal electric) polarizations by ATR technique. The transmission loss of film was measured using the Charge Coupled Device digital imaging devices. The results showed the Azo BPU2 containing chiral azobenzene chromophore had higher dn/dT and lower transmission loss. Subsequently, a 1 × 2 Y-branch and 2 × 2 Mach-Zehnder optical switches based on the prepared polymers were designed and simulated. The results showed that the power consumption of all switches was less than 1.0 mW. Compared with 1 × 2 Y-branch optical switch, the 2 × 2 Mach-Zehnder optical switches based on the same polymer have the faster response time, which were about only 1.2 and 2.0 ms, respectively.

  8. Highly stable polymer coated nano-clustered silver plates: a multimodal optical contrast agent for biomedical imaging

    International Nuclear Information System (INIS)

    Ray, Aniruddha; Mukundan, Ananya; Karamchand, Leshern; Kopelman, Raoul; Xie, Zhixing; Wang, Xueding

    2014-01-01

    Here, we present a new optical contrast agent based on silver nanoplate clusters embedded inside of a polymer nano matrix. Unlike nanosphere clusters, which have been well studied, nanoplate clusters have unique properties due to the different possible orientations of interaction between the individual plates, resulting in a significant broadening of the absorption spectra. These nanoclusters were immobilized inside of a polymer cladding so as to maintain their stability and optical properties under in vivo conditions. The polymer-coated silver nanoplate clusters show a lower toxicity compared to the uncoated nanoparticles. At high nanoparticle concentrations, cell death occurs mostly due to apoptosis. These nanoparticles were used for targeted fluorescence imaging in a rat glioma cell line by incorporating a fluorescent dye into the matrix, followed by conjugation of a tumor targeting an F3 peptide. We further used these nanoparticles as photoacoustic contrast agents in vivo to enhance the contrast of the vasculature structures in a rat ear model. We observed a contrast enhancement of over 90% following the nanoparticle injection. It is also shown that these NPs can serve as efficient contrast agents, with specific targeting abilities for broadband multimodal imaging that are usable for diagnostic applications and that extend into use as therapeutic agents as well. (paper)

  9. Single-mode solid-state polymer dye laser fabricated with standard I-line UV lithography

    DEFF Research Database (Denmark)

    Balslev, Søren; Mironov, Andrej; Nilsson, Daniel

    2005-01-01

    We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G.......We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G....

  10. Production and characterization of femtosecond laser-written double line waveguides in heavy metal oxide glasses

    Science.gov (United States)

    da Silva, Diego Silvério; Wetter, Niklaus Ursus; de Rossi, Wagner; Kassab, Luciana Reyes Pires; Samad, Ricardo Elgul

    2018-01-01

    We report the fabrication and characterization of double line waveguides directly written in tellurite and germanate glasses using a femtosecond laser delivering 30 μJ, 80 fs pulses at 4 kHz repetition rate. The double line waveguides produced presented internal losses inferior to 2.0 dB/cm. The output mode profile and the M2 measurements indicate multimodal guiding behavior. A better beam quality for the GeO2 - PbO waveguide was observed when compared with TeO2 - ZnO glass. Raman spectroscopy of the waveguides showed structural modification of the glassy network and indicates that a negative refractive index modification occurs at the focus of the laser beam, therefore allowing for light guiding in between two closely spaced laser written lines. The refractive index change at 632 nm is around 10-4, and the structural changes in the laser focal region of the writing, evaluated by Raman spectroscopy, corroborated our findings that these materials are potential candidates for optical waveguides and passive components. To the best of our knowledge, the two double line configuration demonstrated in the present work was not reported before for germanate or tellurite glasses.

  11. Integrated lasers for polymer Lab-on-a-Chip systems

    DEFF Research Database (Denmark)

    Mappes, Timo; Vannahme, Christoph; Grosmann, Tobias

    2012-01-01

    We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers.......We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers....

  12. UV waveguides light fabricated in fluoropolymer CYTOP by femtosecond laser direct writing.

    Science.gov (United States)

    Hanada, Yasutaka; Sugioka, Koji; Midorikawa, Katsumi

    2010-01-18

    We have fabricated optical waveguides inside the UV-transparent polymer, CYTOP, by femtosecond laser direct writing for propagating UV light in biochip applications. Femtosecond laser irradiation is estimated to increase the refractive index of CYTOP by 1.7 x 10(-3) due to partial bond breaking in CYTOP. The waveguide in CYTOP has propagation losses of 0.49, 0.77, and 0.91 dB/cm at wavelengths of 632.8, 355, and 266 nm, respectively.

  13. Integration of active and passive polymer optics

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Kristensen, Anders

    2007-01-01

    We demonstrate a wafer scale fabrication process for integration of active and passive polymer optics: Polymer DFB lasers and waveguides. Polymer dye DFB lasers are fabricated by combined nanoimprint and photolithography (CNP). The CNP fabrication relies on an UV transparent stamp with nm sized...... wavelength from temperature and refractive index changes in the surroundings is investigated, pointing towards the use of the described fabrication method for on-chip polymer sensor systems....

  14. Stress effects in prism coupling measurements of thin polymer films

    NARCIS (Netherlands)

    Agan, S.; Ay, F.; Kocabas, A.; Aydinli, A.

    Due to the increasingly important role of some polymers in optical waveguide technologies, precise measurement of their optical properties has become important. Typically, prism coupling to slab waveguides made of materials of interest is used to measure the relevant optical parameters. However,

  15. Integrated Active and Passive Polymer Optical Components with nm to mm Features

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Kristensen, Anders

    2007-01-01

    We present wafer-scale fabrication of integrated active and passive polymer optics with nm to mm features. First order DFB lasers, defined in dye doped SU-8 resist are integrated with SU-8 waveguides.......We present wafer-scale fabrication of integrated active and passive polymer optics with nm to mm features. First order DFB lasers, defined in dye doped SU-8 resist are integrated with SU-8 waveguides....

  16. Chiral spiral waveguides based on MMI crossings: theory and experiments

    Science.gov (United States)

    Cherchi, Matteo; Ylinen, Sami; Harjanne, Mikko; Kapulainen, Markku; Vehmas, Tapani; Aalto, Timo

    2016-03-01

    We introduce a novel type of chiral spiral waveguide where the usual waveguide crossings are replaced by 100:0 Multimode Interferometers (MMIs), i.e. 2x2 splitters that couple all the input light in the cross output port. Despite the topological equivalence with the standard configuration, we show how resorting to long MMIs has non-trivial advantages in terms of footprint and propagation length. An accurate analytic model is also introduced to show the impact of nonidealities on the spiral performances, including propagation loss and cross-talk. We have designed and fabricated three chiral spirals on our platform, based on 3 μm thick silicon strip waveguides with 0.13 dB/cm propagation loss, and 1.58 mm long MMIs. The fabricated spirals have 7, 13 and 49 loops respectively, corresponding to the effective lengths 6.6 cm, 12.5 cm and 47.9 cm. The proposed model is successfully applied to the experimental results, highlighting MMI extinction ratio of about 16.5 dB and MMI loss of about 0.08 dB, that are much worse compared to the simulated 50 dB extinction and 0.01 dB loss. This imposes an upper limit to the number of rounds, because light takes shortcuts through the bar MMI ports. Nevertheless, the novel chiral spiral waveguides outperform what is achievable in mainstream silicon photonics platforms based on submicron waveguides in terms of length and propagation losses, and they are promising candidates for the realization of integrated gyroscopes. They can be significantly further improved by replacing the MMIs with adiabatic 100:0 splitters, ensuring lower cross-talk and broader bandwidth.

  17. Soap Films as 1D waveguides

    Directory of Open Access Journals (Sweden)

    Emile Olivier

    2014-01-01

    Full Text Available Laser light is injected in a free standing horizontal draining soap film through the glass frame sustaining the film. Two propagation regimes are clearly identified depending on the film thickness. At the beginning of the drainage, the soap film behaves as a multimode-one dimensional optofiuidic waveguide. In particular, we observe that the injected light creates a bottleneck in the film and part of the injected light is refracted leading to whiskers. At the end of the drainage where the film thickness is below 1μm, there is a strong selection among the various possible optical modes in the film, and part of the light is defiected. This leads to a self selection of the mode propagation inside the film.

  18. Space-division-multiplexed transmission of 3x3 multiple-input multiple-output wireless signals over conventional graded-index multimode fiber

    NARCIS (Netherlands)

    Lei, Yi; Li, Jianqiang; Fan, Yuting; Yu, Dawei; Fu, Songnian; Yin, Feifei; Dai, Yitang; Xu, Kun

    2016-01-01

    In this paper, we experimentally demonstrate space-division-multiplexed (SDM) transmission of IEEE 802.11ac-compliant 3-spatial-stream WLAN signals over 3 spatial modes of conventional 50um graded-index (GI) multimode fiber (MMF) employing non-mode-selective 3D-waveguide photonic lantern. Two kinds

  19. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Wang, Xiaoyan; Frandsen, Lars Hagedorn

    2016-01-01

    We report on a novel design of an on-chip optical temperature sensor based on a Mach-Zehnder interferometer configuration where the two arms consist of hybrid waveguides providing opposite temperature-dependent phase changes to enhance the temperature sensitivity of the sensor. The sensitivity...... of the fabricated sensor with silicon/polymer hybrid waveguides is measured to be 172 pm/°C, which is two times larger than a conventional all-silicon optical temperature sensor (∼80 pm/°C). Moreover, a design with silicon/titanium dioxide hybrid waveguides is by calculation expected to have a sensitivity as high...

  20. Integration of a photonic crystal polarization beam splitter and waveguide bend.

    Science.gov (United States)

    Zheng, Wanhua; Xing, Mingxin; Ren, Gang; Johnson, Steven G; Zhou, Wenjun; Chen, Wei; Chen, Lianghui

    2009-05-11

    In this work, we present the design of an integrated photonic-crystal polarization beam splitter (PC-PBS) and a low-loss photonic-crystal 60 degrees waveguide bend. Firstly, the modal properties of the PC-PBS and the mechanism of the low-loss waveguide bend are investigated by the two-dimensional finite-difference time-domain (FDTD) method, and then the integration of the two devices is studied. It shows that, although the individual devices perform well separately, the performance of the integrated circuit is poor due to the multi-mode property of the PC-PBS. By introducing deformed airhole structures, a single-mode PC-PBS is proposed, which significantly enhance the performance of the circuit with the extinction ratios remaining above 20 dB for both transverse-electric (TE) and transverse-magnetic (TM) polarizations. Both the specific result and the general idea of integration design are promising in the photonic crystal integrated circuits in the future.

  1. Flexible Bragg reflection waveguide devices fabricated on a plastic substrate

    Science.gov (United States)

    Kim, Kyung-Jo; Yi, Jeong-Ah; Oh, Min-Cheol; Noh, Young-Ouk; Lee, Hyung-Jong

    2007-09-01

    Bragg reflecting waveguide devices are fabricated on a flexible substrate by using a post lift-off process in order to provide highly uniform grating patterns on a wide range. In this process, the flexible substrate spin-coated on silicon wafer is released after the final fabrication process of chip dicing. The fabricated flexible Bragg reflector shows very sharp transmission spectrum with 3-dB bandwidth of 0.1 nm and 10-dB bandwidth of 0.4 nm, which proves the Bragg reflector has excellent uniformity. To achieve athermal operation of the flexible Bragg reflector, thermal expansion property of the plastic substrate is controlled by the thickness of two polymer materials constructing the plastic substrate. The flexible substrate with 0.7-μm SU-8 layers sandwiching 100-μm NOA61 layer provides an optimized thermal expansion property to compensate the thermo-optic effect of the waveguide made of ZPU polymer. The temperature dependence of the Bragg reflector is decreased to -0.011 nm/°C through the incorporation of the plastic substrate.

  2. Integrated polymer micro-ring resonators for optical sensing applications

    Science.gov (United States)

    Girault, Pauline; Lorrain, Nathalie; Poffo, Luiz; Guendouz, Mohammed; Lemaitre, Jonathan; Carré, Christiane; Gadonna, Michel; Bosc, Dominique; Vignaud, Guillaume

    2015-03-01

    Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as core layer and PMATRIFE polymer as lower cladding layer. The refractive index of the polymers and of the waveguide structure as a function of the wavelength is presented. Using these results, a theoretical study of the coupling between ring and straight waveguides has been undertaken in order to define the MR design. Sub-micronic gaps of 0.5 μm to 1 μm between the ring and the straight waveguides have been successfully achieved with UV (i-lines) photolithography. Different superstrates such as air, water, and aqueous solutions with glucose at different concentrations have been studied. First results show a good normalized transmission contrast of 0.98, a resonator quality factor around 1.5 × 104 corresponding to a coupling ratio of 14.7%, and ring propagation losses around 5 dB/cm. Preliminary sensing experiments have been performed for different concentrations of glucose; a sensitivity of 115 ± 8 nm/RIU at 1550 nm has been obtained with this couple of polymers.

  3. Exact equivalent straight waveguide model for bent and twisted waveguides

    DEFF Research Database (Denmark)

    Shyroki, Dzmitry

    2008-01-01

    Exact equivalent straight waveguide representation is given for a waveguide of arbitrary curvature and torsion. No assumptions regarding refractive index contrast, isotropy of materials, or particular morphology in the waveguide cross section are made. This enables rigorous full-vector modeling...... of in-plane curved or helically wound waveguides with use of available simulators for straight waveguides without the restrictions of the known approximate equivalent-index formulas....

  4. Design and Fabrication of Slotted Multimode Interference Devices for Chemical and Biological Sensing

    Directory of Open Access Journals (Sweden)

    M. Mayeh

    2009-01-01

    Full Text Available We present optical sensors based on slotted multimode interference waveguides. The sensor can be tuned to highest sensitivity in the refractive index ranges necessary to detect protein-based molecules or other water-soluble chemical or biological materials. The material of choice is low-loss silicon oxynitride (SiON which is highly stable to the reactivity with biological agents and processing chemicals. Sensors made with this technology are suited to high volume manufacturing.

  5. Floating dielectric slab optical interconnection between metal-dielectric interface surface plasmon polariton waveguides.

    Science.gov (United States)

    Kang, Minsu; Park, Junghyun; Lee, Il-Min; Lee, Byoungho

    2009-01-19

    A simple and effective optical interconnection which connects two distanced single metal-dielectric interface surface plasmon waveguides by a floating dielectric slab waveguide (slab bridge) is proposed. Transmission characteristics of the suggested structure are numerically studied using rigorous coupled wave analysis, and design rules based on the study are given. In the wave-guiding part, if the slab bridge can support more than the fundamental mode, then the transmission efficiency of the interconnection shows strong periodic dependency on the length of the bridge, due to the multi-mode interference (MMI) effect. Otherwise, only small fluctuation occurs due to the Fabry-Pérot effect. In addition, light beating happens when the slab bridge is relatively short. In the wave-coupling part, on the other hand, gap-assisted transmission occurs at each overlapping region as a consequence of mode hybridization. Periodic dependency on the length of the overlap region also appears due to the MMI effect. According to these results, we propose design principles for achieving both high transmission efficiency and stability with respect to the variation of the interconnection distance, and we show how to obtain the transmission efficiency of 68.3% for the 1mm-long interconnection.

  6. Dramatic enhancement of XUV laser output using a multi-mode, gas-filled capillary waveguide

    Czech Academy of Sciences Publication Activity Database

    Mocek, Tomáš; McKenna, C.M.; Cros, B.; Sebban, S.; Spence, D.J.; Maynard, G.; Bettaibi, I.; Vorontsov, V.; Gonsavles, A.J.; Hooker, S.M.

    2005-01-01

    Roč. 71, 01 (2005), 013804/1-013804/5 ISSN 1050-2947 Grant - others:EU(XE) HPRI-1999-CT-00086; EU(XE) HPMF-CT-2002-01554 Institutional research plan: CEZ:AV0Z10100523 Keywords : waveguiding * x-ray laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.997, year: 2005

  7. Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits

    International Nuclear Information System (INIS)

    Bonneau, D; Engin, E; O'Brien, J L; Thompson, M G; Ohira, K; Suzuki, N; Yoshida, H; Iizuka, N; Ezaki, M; Natarajan, C M; Tanner, M G; Hadfield, R H; Dorenbos, S N; Zwiller, V

    2012-01-01

    Integrated quantum photonic waveguide circuits are a promising approach to realizing future photonic quantum technologies. Here, we present an integrated photonic quantum technology platform utilizing the silicon-on-insulator material system, where quantum interference and the manipulation of quantum states of light are demonstrated in components orders of magnitude smaller than previous implementations. Two-photon quantum interference is presented in a multi-mode interference coupler, and the manipulation of entanglement is demonstrated in a Mach-Zehnder interferometer, opening the way to an all-silicon photonic quantum technology platform. (paper)

  8. Percolated microstructures for multi-modal transport enhancement in porous active materials

    Energy Technology Data Exchange (ETDEWEB)

    McKay, Ian Salmon; Yang, Sungwoo; Wang, Evelyn N.; Kim, Hyunho

    2018-03-13

    A method of forming a composite material for use in multi-modal transport includes providing three-dimensional graphene having hollow channels, enabling a polymer to wick into the hollow channels of the three-dimensional graphene, curing the polymer to form a cured three-dimensional graphene, adding an active material to the cured three-dimensional graphene to form a composite material, and removing the polymer from within the hollow channels. A composite material formed according to the method is also provided.

  9. Low Loss Sol-Gel TiO2 Thin Films for Waveguiding Applications

    Directory of Open Access Journals (Sweden)

    Alexis Fischer

    2013-03-01

    Full Text Available TiO2 thin films were synthesized by sol-gel process: titanium tetraisopropoxide (TTIP was dissolved in isopropanol, and then hydrolyzed by adding a water/isopropanol mixture with a controlled hydrolysis ratio. The as prepared sol was deposited by “dip-coating” on a glass substrate with a controlled withdrawal speed. The obtained films were annealed at 350 and 500 °C (2 h. The morphological properties of the prepared films were analyzed by Scanning Electron Microscopy (SEM and Atomic Force Microscopy (AFM. The optical waveguiding properties of TiO2 films were investigated for both annealing temperature using m-lines spectroscopy. The refractive indices and the film thickness were determined from the measured effective indices. The results show that the synthesized planar waveguides are multimodes and demonstrate low propagation losses of 0.5 and 0.8 dB/cm for annealing temperature 350 and 500 °C, respectively.

  10. Wave-guided optical waveguides

    DEFF Research Database (Denmark)

    Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, George

    2012-01-01

    This work primarily aims to fabricate and use two photon polymerization (2PP) microstructures capable of being optically manipulated into any arbitrary orientation. We have integrated optical waveguides into the structures and therefore have freestanding waveguides, which can be positioned anywhe...... bridge the diffraction barrier. This structure-mediated paradigm may be carried forward to open new possibilities for exploiting beams from far-field optics down to the subwavelength domain....

  11. Fabrication of LD-3 Polymer Directional Couplers

    National Research Council Canada - National Science Library

    Chen, Ray T

    1998-01-01

    .... LD-3 polymer directional couplers arc designed and fabricated to operate at 1.3 microns. Waveguide propagation losses, device characterization, demonstration of cross coupling and packaged device pictures are presented in this final report.

  12. Design and analysis of dual-resonant filters in visible and infra-red region based on polymer LPWG

    Science.gov (United States)

    Sharma, Mukesh; Kushwaha, Aniruddha Singh; Pal, Suchandan

    2013-01-01

    Long-period waveguide gratings (LPWGs), by using a SU-8 polymer-based channel waveguide along with NOA61 optical epoxy coated upper- and lower-cladding, are designed and theoretical analyzed. Grating period of ~ 68μm is considered with optimized grating tooth-heights, so that the transmission spectra of the gratings show strong rejection bands both at visible (450 - 460 nm) and infrared (1530 - 1540 nm) wavelength regions. Phase-matching graphs are studied in order to observe the change in resonance wavelength of the grating with the variation of waveguide parameters. LPWG-based band pass filter are also designed and analyzed by considering the same set of polymer materials. Further, temperature sensitivity of these LPWGs is analyzed theoretically. These types of waveguide gratingbased filters can widely be used for visible and infrared wavelength sensing applications.

  13. Evaluation of hybrid polymers for high-precision manufacturing of 3D optical interconnects by two-photon absorption lithography

    Science.gov (United States)

    Schleunitz, A.; Klein, J. J.; Krupp, A.; Stender, B.; Houbertz, R.; Gruetzner, G.

    2017-02-01

    The fabrication of optical interconnects has been widely investigated for the generation of optical circuit boards. Twophoton absorption (TPA) lithography (or high-precision 3D printing) as an innovative production method for direct manufacture of individual 3D photonic structures gains more and more attention when optical polymers are employed. In this regard, we have evaluated novel ORMOCER-based hybrid polymers tailored for the manufacture of optical waveguides by means of high-precision 3D printing. In order to facilitate future industrial implementation, the processability was evaluated and the optical performance of embedded waveguides was assessed. The results illustrate that hybrid polymers are not only viable consumables for industrial manufacture of polymeric micro-optics using generic processes such as UV molding. They also are potential candidates to fabricate optical waveguide systems down to the chip level where TPA-based emerging manufacturing techniques are engaged. Hence, it is shown that hybrid polymers continue to meet the increasing expectations of dynamically growing markets of micro-optics and optical interconnects due to the flexibility of the employed polymer material concept.

  14. Interconnect Between a Waveguide and a Dielectric Waveguide Comprising an Impedance Matched Dielectric Lens

    Science.gov (United States)

    Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)

    2016-01-01

    A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.

  15. Optically reconfigurable patterning for control of the propagation characteristics of a planar waveguide

    Science.gov (United States)

    Wang, Y.; Klittnick, A.; Clark, N. A.; Keller, P.

    2008-10-01

    We demonstrate an easily fabricated all-optical and freely reconfigurable method of controlling the propagating characteristics of the optic path within a planar waveguide with low insertion losses by employing the optical patterning of the refractive index of an erasable and rewriteable photosensitive liquid crystal polymer cladding layer.

  16. Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode

    Science.gov (United States)

    Yuan, Sheng-Nan; Fang, Yun-Tuan

    2017-10-01

    In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA 0.25a; two kinds of modes coexist for 0.09a advantages in achieving slow light.

  17. Di-block co-polymer derived nanoporous polymer liquid core waveguides

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Gopalakrishnan, Nimi; Sagar, Kaushal Shashikant

    2010-01-01

    pores. When the PDMS is etched, the hydrophobic PB is left with a porosity of 44%. The polymer is subsequently UV exposed through a shadow mask. This renders the exposed part hydrophilic, making it possible for water to infiltrate these areas. Water infiltration raises the refractive index, thus forming...

  18. Development of a technology for fabricating low-cost parallel optical interconnects

    Science.gov (United States)

    Van Steenberge, Geert; Hendrickx, Nina; Geerinck, Peter; Bosman, Erwin; Van Put, Steven; Van Daele, Peter

    2006-04-01

    We present a fabrication technology for integrating polymer waveguides and 45° micromirror couplers into standard electrical printed circuit boards (PCBs). The most critical point that is being addressed is the low-cost manufacturing and the compatibility with current PCB production. The latter refers to the processes as well as material compatibility. In the fist part the waveguide fabrication technology is discussed, both photo lithography and laser ablation are proposed. It is shown that a frequency tripled Nd-YAG laser (355 nm) offers a lot of potential for defining single mode interconnections. Emphasis is on multimode waveguides, defined by KrF excimer laser (248 nm) ablation using acrylate polymers. The first conclusion out of loss spectrum measurements is a 'yellowing effect' of laser ablated waveguides, leading to an increased loss at shorter wavelengths. The second important conclusion is a potential low loss at a wavelength of 850 nm, 980 nm and 1310 nm. This is verified at 850 nm by cut-back measurements on 10-cm-long waveguides showing an average propagation loss of 0.13 dB/cm. Photo lithographically defined waveguides using inorganic-organic hybrid polymers show an attenuation loss of 0.15 dB/cm at 850 nm. The generation of debris and the presence of microstructures are two main concerns for KrF excimer laser ablation of hybrid polymers. In the second part a process for embedding metal coated 45° micromirrors in optical waveguiding layers is described. Mirrors are selectively metallized using a lift-off process. Filling up the angled via without the presence of air bubbles and providing a flat surface above the mirror is only possible by enhancing the cladding deposition process with ultrasound agitation. Initial loss measurements indicate an excess mirror loss of 1.5 dB.

  19. Cascaded-focus laser writing of low-loss waveguides in polymers.

    Science.gov (United States)

    Pätzold, Welm M; Reinhardt, Carsten; Demircan, Ayhan; Morgner, Uwe

    2016-03-15

    Waveguide writing in poly (methyl methacrylate) (PMMA) with femtosecond laser radiation is presented. An adequate refractive index change is induced in the border area below the irradiated focal volume. It supports an almost symmetric fundamental mode with propagation losses down to 0.5  dB/cm, the lowest losses observed so far in this class of materials. The writing process with a cascaded focus is demonstrated to be highly reliable over a large parameter range.

  20. Low-to-high refractive index contrast transition (RICT) device for low loss polymer-based optical coupling

    Science.gov (United States)

    Calabretta, N.; Cooman, I. A.; Stabile, R.

    2018-04-01

    We propose for the first time a coupling device concept for passive low-loss optical coupling, which is compatible with the ‘generic’ indium phosphide (InP) multi-project-wafer manufacturing. A low-to-high vertical refractive index contrast transition InP waveguide is designed and tapered down to adiabatically couple light into a top polymer waveguide. The on-chip embedded polymer waveguide is engineered at the chip facets for offering refractive-index and spot-size-matching to silica fiber-arrays. Numerical analysis shows that coupling losses lower than 1.5 dB can be achieved for a TE-polarized light between the InP waveguide and the on-chip embedded polymer waveguide at 1550 nm wavelength. The performance is mainly limited by the difficulty to control single-mode operation. However, coupling losses lower than 1.9 dB can be achieved for a bandwidth as large as 200 nm. Moreover, the foreseen fabrication process steps are indicated, which are compatible with the ‘generic’ InP multi-project-wafer manufacturing. A fabrication error tolerance study is performed, indicating that fabrication errors occur only in 0.25 dB worst case excess losses, as long as high precision lithography is used. The obtained results are promising and may open the route to large port counts and cheap packaging of InP-based photonic integrated chips.

  1. Waveguide-loaded silica fibers for coupling to high-index micro-resonators

    Science.gov (United States)

    Latawiec, P.; Burek, M. J.; Venkataraman, V.; Lončar, M.

    2016-01-01

    Tapered silica fibers are often used to rapidly probe the optical properties of micro-resonators. However, their low refractive index precludes phase-matching when coupling to high-index micro-resonators, reducing efficiency. Here, we demonstrate efficient optical coupling from tapered fibers to high-index micro-resonators by loading the fibers with an ancillary adiabatic waveguide-coupler fabricated via angled-etching. We demonstrate greatly enhanced coupling to a silicon multimode micro-resonator when compared to coupling via the bare fiber only. Signatures of resonator optical bistability are observed at high powers. This scheme can be applied to resonators of any size and material, increasing the functional scope of fiber coupling.

  2. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  3. A four-port launcher for a multi-moded DLDS power distribution system

    International Nuclear Information System (INIS)

    Eppley, K.; Li, Z.; Miller, R.; Nantista, C.; Tantawi, S.

    1998-06-01

    The authors describe a structure for launching the TE 01 and both polarizations of TE 12 modes into a highly overmoded low loss circular waveguide providing remote transmission for a multi-moded Delay Line Distribution System (DLDS). The power from four sources is delivered to four structure ports by rectangular waveguide, and the mode for each pulse subsection is selected by varying the relative phases of the sources. The four ports symmetrically feed a section of waveguide with a fourfold symmetric four-leaf clover-like (or quatrefoil) cross section, dimensioned so as to propagate only four TE modes, characterized as 0, π/2 (two polarizations), and π modes. The 0 and π/2 modes are well matched, the π mode only moderately so. A low loss taper transforms the initial cross section to a circular cross section; the 0 mode transforming to TE 01 , the π/2 to TE 11 , the π to TE 21 , all with negligible mode conversion. A sausage type mode transducer then converts TE 11 to TE 12 (a lower loss mode), and the diameter is then expanded to the full ∼five inch diameter of the delay line. A separate structure to divert power from the last pulse subsection to the local group of accelerator structures is required

  4. Multimode-singlemode-multimode optical fiber sensor coated with novolac resin for detecting liquid phase alcohol

    Science.gov (United States)

    Marfu'ah, Amalia, Niza Rosyda; Hatta, Agus Muhamad; Pratama, Detak Yan

    2018-04-01

    Alcohol sensor based on multimode-singlemode-multimode (MSM) optical fiber with novolac resin as the external medium is proposed and demonstrated experimentally. Novolac resin swells when it is exposed by the alcohol. This effect causes a change in the polymer density leading to the refractive index's variation. The transmission light of the sensor depends on the refractive index of external medium. Based on the results, alcohol sensor based on MSM optical fiber structure using novolac resin has a higher sensitivity compared to the sensor without using novolac resin in the mixture of alcohol and distilled water. Alcohol sensor based on MSM optical fiber structure using novolac resin in the mixture of alcohol and distilled water with a singlemode fiber length of 5 mm has a sensitivity of 0.028972 dBm per % V/V, and in the mixture of alcohol and sugar solution of 10% w/w has a sensitivity of 0.005005 dBm per % V/V.

  5. FDTD simulation of microwave sintering of ceramics in multimode cavities

    Energy Technology Data Exchange (ETDEWEB)

    Iskander, M.F.; Smith, R.L.; Andrade, A.O.M.; Walsh, L.M. (Univ. of Utah, Salt Lake City, UT (United States). Dept. of Electrical Engineering); Kimrey, H. Jr. (Oak Ridge National Lab., TN (United States))

    1994-05-01

    At present, various aspects of the sintering process such as preparation of sample sizes and shapes, types of insulations, and the desirability of including a process stimulus such as SiC rods are considered forms of art and highly dependent on human expertise. The simulation of realistic sintering experiments in a multimode cavity may provide an improved understanding of critical parameters involved and allow for the development of guidelines towards the optimization of the sintering process. In this paper, the authors utilize the FDTD technique to model various geometrical arrangements and material compatibility aspects in multimode microwave cavities and to simulate realistic sintering experiments. The FDTD procedure starts with the simulation of a field distribution in multimode microwave cavities that resembles a set of measured data using liquid crystal sheets. Also included in the simulation is the waveguide feed as well as a ceramic loading plate placed at the base of the cavity. The FDTD simulation thus provides realistic representation of a typical sintering experiment. Aspects that have been successfully simulated include the effects of various types of insulation, the role of SiC rods on the uniformity of the resulting microwave fields, and the possible shielding effects that may result from excessive use of SiC. These results as well as others showing the electromagnetic fields and power-deposition patterns in multiple ceramic samples are presented.

  6. Inductively coupled plasma etching of GaAs low loss waveguides for a traveling waveguide polarization converter, using chlorine chemistry

    Science.gov (United States)

    Lu, J.; Meng, X.; Springthorpe, A. J.; Shepherd, F. R.; Poirier, M.

    2004-05-01

    A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated ``T electrodes'' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ~0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 °C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes. .

  7. Inductively coupled plasma etching of GaAs low loss waveguides for a traveling waveguide polarization converter, using chlorine chemistry

    International Nuclear Information System (INIS)

    Lu, J.; Meng, X.; SpringThorpe, A.J.; Shepherd, F.R.; Poirier, M.

    2004-01-01

    A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated 'T electrodes' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl 2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ∼0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl 2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 deg. C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes

  8. Organic-inorganic hybrid material SUNCONNECT® for photonic integrated circuit

    Science.gov (United States)

    Nawata, Hideyuki; Oshima, Juro; Kashino, Tsubasa

    2018-02-01

    In this paper, we report the feature and properties about organic-inorganic hybrid material, "SUNCONNECT®" for photonic integrated circuit. "SUNCONNECT®" materials have low propagation loss at 1310nm (0.29dB/cm) and 1550nm (0.45dB/cm) respectively. In addition, the material has high thermal resistance both high temperature annealing test at 300°C and also 260°C solder heat resistance test. For actual device application, high reliability is required. 85°C /85% test was examined by using multi-mode waveguide. As a result, it indicated that variation of insertion loss property was not changed significantly after high temperature / high humidity test. For the application to photonic integrated circuit, it was demonstrated to fabricate polymer optical waveguide by using three different methods. Single-micron core pattern can be fabricated on cladding layer by using UV lithography with proximity gap exposure. Also, single-mode waveguide can be also fabricated with over cladding. On the other hands, "Mosquito method" and imprint method can be applied to fabricate polymer optical waveguide. Remarkably, these two methods can fabricate gradedindex type optical waveguide without using photo mask. In order to evaluate the optical performance, NFP's observation, measurement of insertion loss and propagation loss by cut-back methods were carried out by using each waveguide sample.

  9. Process development for waveguide chemical sensors with integrated polymeric sensitive layers

    Science.gov (United States)

    Amberkar, Raghu; Gao, Zhan; Park, Jongwon; Henthorn, David B.; Kim, Chang-Soo

    2008-02-01

    Due to the proper optical property and flexibility in the process development, an epoxy-based, high-aspect ratio photoresist SU-8 is now attracting attention in optical sensing applications. Manipulation of the surface properties of SU-8 waveguides is critical to attach functional films such as chemically-sensitive layers. We describe a new integration process to immobilize fluorescence molecules on SU-8 waveguide surface for application to intensity-based optical chemical sensors. We use two polymers for this application. Spin-on, hydrophobic, photopatternable silicone is a convenient material to contain fluorophore molecules and to pattern a photolithographically defined thin layer on the surface of SU-8. We use fumed silica powders as an additive to uniformly disperse the fluorophores in the silicone precursor. In general, additional processes are not critically required to promote the adhesion between the SU-8 and silicone. The other material is polyethylene glycol diacrylate (PEGDA). Recently we demonstrated a novel photografting method to modify the surface of SU-8 using a surface bound initiator to control its wettability. The activated surface is then coated with a monomer precursor solution. Polymerization follows when the sample is exposed to UV irradiation, resulting in a grafted PEGDA layer incorporating fluorophores within the hydrogel matrix. Since this method is based the UV-based photografting reaction, it is possible to grow off photolithographically defined hydrogel patterns on the waveguide structures. The resulting films will be viable integrated components in optical bioanalytical sensors. This is a promising technique for integrated chemical sensors both for planar type waveguide and vertical type waveguide chemical sensors.

  10. High speed electro optic polymer micro-ringresonator

    NARCIS (Netherlands)

    Leinse, Arne; Diemeer, Mart; Driessen, A.

    2004-01-01

    An electro-optic polymer micro-ring resonator for high speed modulation was designed, realized and characterized. The design of layer-stack and electrodes was done such that modulation frequencies up till 1 GHz should be possible. The device consists of a ridge waveguide, defined in a negative

  11. Graphene antidot lattice waveguides

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels

    2012-01-01

    We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...

  12. Analysis of the bending radius of the cylindrical waveguide of polydimethylsiloxane for the purpose of lighting

    Science.gov (United States)

    Novak, M.; Jargus, J.; Fajkus, M.; Bednarek, L.; Vasinek, V.

    2017-10-01

    Polydimethylsiloxane (PDMS) can be used for its optical properties and its composition offers the possibility of use in the dangerous environments. Therefore authors of this article focused on more detailed working with this material. The authors describe the use of PDMS polymer for the light transmission over short distances (up to tens of centimeters). PDMS offers good prerequisites (mechanical properties) for the creating cylindrical lighting waveguide e.g. for the purpose of the automotive industry. The objective is to determine the maximum bending radius of the cylindrical waveguide of polydimethylsiloxane for different wavelengths of the visible spectrum and thus extend the knowledge for subsequent use in lighting. The created cylindrical waveguide consist of a core and a cladding. Cladding was formed by a PDMS having a lower refractive index in order to respect the condition of total reflection.

  13. Optical waveguide demultiplexer

    International Nuclear Information System (INIS)

    Gajdaj, Yu.O.; Maslyukyivs'kij, R.M.; Sirota, A.V.

    2009-01-01

    For channels division in fibre-optical networks with wavelength multiplexing, the planar waveguide together with a prism coupler is offered for using. The planar waveguide fulfils a role of a dispersing unit, and prism coupler is the selector of optical channels. The parameters of the planar waveguide which provide maximal space division of adjacent information channels in networks with coarse wavelength multiplexing are calculated

  14. Evaluation of slot-to-slot coupling between dielectric slot waveguides and metal-insulator-metal slot waveguides.

    Science.gov (United States)

    Kong, Deqing; Tsubokawa, Makoto

    2015-07-27

    We numerically analyzed the power-coupling characteristics between a high-index-contrast dielectric slot waveguide and a metal-insulator-metal (MIM) plasmonic slot waveguide as functions of structural parameters. Couplings due mainly to the transfer of evanescent components in two waveguides generated high transmission efficiencies of 62% when the slot widths of the two waveguides were the same and 73% when the waveguides were optimized by slightly different widths. The maximum transmission efficiency in the slot-to-slot coupling was about 10% higher than that in the coupling between a normal slab waveguide and an MIM waveguide. Large alignment tolerance of the slot-to-slot coupling was also proved. Moreover, a small gap inserted into the interface between two waveguides effectively enhances the transmission efficiency, as in the case of couplings between a normal slab waveguide and an MIM waveguide. In addition, couplings with very wideband transmissions over a wavelength region of a few hundred nanometers were validated.

  15. Comparison of gamma, neutron and proton irradiations of multimode fibers

    International Nuclear Information System (INIS)

    Gingerich, M.E.; Dorsey, K.L.; Askins, C.G.; Friebele, E.J.

    1987-01-01

    The effects of pure gamma, pure proton, and mixed neutron-gamma irradiation fields on a set of both pure and doped silica core multimode fibers have been investigated. Only slight differences are found in the radiation response of pure and doped silica core fibers exposed to gamma or mixed neutron-gamma fields, indicating that Co-60 sources can be used to simulate the effects of the mixed field (except in the case of a pure neutron environment). Although it is noted that neither mix field nor gamma sources adequately simulate the effects of proton irradiation of doped silica core fibers, a good correspondence is found in the case of the pure silica core waveguide. 13 references

  16. MEMS optical sensor

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an all-optical sensor utilizing effective index modulation of a waveguide and detection of a wavelength shift of reflected light and a force sensing system accommodating said optical sensor. One embodiment of the invention relates to a sensor system comprising...... at least one multimode light source, one or more optical sensors comprising a multimode sensor optical waveguide accommodating a distributed Bragg reflector, at least one transmitting optical waveguide for guiding light from said at least one light source to said one or more multimode sensor optical...... waveguides, a detector for measuring light reflected from said Bragg reflector in said one or more multimode sensor optical waveguides, and a data processor adapted for analyzing variations in the Bragg wavelength of at least one higher order mode of the reflected light....

  17. Compound semiconductor optical waveguide switch

    Science.gov (United States)

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  18. Hybrid Photonic Integration on a Polymer Platform

    Directory of Open Access Journals (Sweden)

    Ziyang Zhang

    2015-09-01

    Full Text Available To fulfill the functionality demands from the fast developing optical networks, a hybrid integration approach allows for combining the advantages of various material platforms. We have established a polymer-based hybrid integration platform (polyboard, which provides flexible optical input/ouptut interfaces (I/Os that allow robust coupling of indium phosphide (InP-based active components, passive insertion of thin-film-based optical elements, and on-chip attachment of optical fibers. This work reviews the recent progress of our polyboard platform. On the fundamental level, multi-core waveguides and polymer/silicon nitride heterogeneous waveguides have been fabricated, broadening device design possibilities and enabling 3D photonic integration. Furthermore, 40-channel optical line terminals and compact, bi-directional optical network units have been developed as highly functional, low-cost devices for the wavelength division multiplexed passive optical network. On a larger scale, thermo-optic elements, thin-film elements and an InP gain chip have been integrated on the polyboard to realize a colorless, dual-polarization optical 90° hybrid as the frontend of a coherent receiver. For high-end applications, a wavelength tunable 100Gbaud transmitter module has been demonstrated, manifesting the joint contribution from the polyboard technology, high speed polymer electro-optic modulator, InP driver electronics and ceramic electronic interconnects.

  19. Brightness enhancement of a multi-mode ribbon fiber using transmitting Bragg gratings

    Science.gov (United States)

    Anderson, B. M.; Venus, G.; Ott, D.; Divliansky, I.; Dawson, J. W.; Drachenberg, D. R.; Messerly, M. J.; Pax, P. H.; Tassano, J. B.; Glebov, L. B.

    2015-03-01

    Increasing the dimensions of a waveguide provides the simplest means of reducing detrimental nonlinear effects, but such systems are inherently multi-mode, reducing the brightness of the system. Furthermore, using rectangular dimensions allows for improved heat extraction, as well as uniform temperature profile within the core. We propose a method of using the angular acceptance of a transmitting Bragg grating (TBG) to filter the fundamental mode of a fiber laser resonator, and as a means to increase the brightness of multi-mode fiber laser. Numerical modeling is used to calculate the diffraction losses needed to suppress the higher order modes in a laser system with saturable gain. The model is tested by constructing an external cavity resonator using an ytterbium doped ribbon fiber with core dimensions of 107.8μm by 8.3μm as the active medium. We show that the TBG increases the beam quality of the system from M2 = 11.3 to M2 = 1.45, while reducing the slope efficiency from 76% to 53%, overall increasing the brightness by 5.1 times.

  20. UV/Vis visible optical waveguides fabricated using organic-inorganic nanocomposite layers.

    Science.gov (United States)

    Simone, Giuseppina; Perozziello, Gerardo

    2011-03-01

    Nanocomposite layers based on silica nanoparticles and a methacrylate matrix are synthesized by a solvent-free process and characterized in order to realize UV/Vis transparent optical waveguides. Chemical functionalization of the silica nanoparticles permits to interface the polymers and the silica. The refractive index, roughness and wettability and the machinability of the layers can be tuned changing the silica nanoparticle concentration and chemical modification of the surface of the nanoparticles. The optical transparency of the layers is affected by the nanoparticles organization between the organic chains, while it increased proportionally with respect to silica concentration. Nanocomposite layers with a concentration of 40 wt% in silica reached UV transparency for a wavelength of 250 nm. UV/Vis transparent waveguides were micromilled through nanocomposite layers and characterized. Propagation losses were measured to be around 1 dB cm(-1) at a wavelength of 350 nm.

  1. Electro Optic Modulation In a Polymer Ringresonator

    Science.gov (United States)

    Leinse, A.; Driessen, A.; Diemeer, M. B. J.

    2004-05-01

    A thermo optic and electro optic (EO) tunable polymer ringresonator was realized and tested. The device consisted of a microring resonator made of the 4-dimethylamino-4‵-nitrostilbene (DANS) containing polymer and measurements were done on the through port of this device. The ring was used in a vertical coupling structure. The port waveguides were made of the photo-definable epoxy (SU8). The rings used had a diameter of 100 μm and thermo optic tuning of about 170 pm/°C was measured. EO modulation was measured for TE polarization.

  2. Integrated Photonic Devices Incorporating Low-Loss Fluorinated Polymer Materials

    Directory of Open Access Journals (Sweden)

    Hyung-Jong Lee

    2011-06-01

    Full Text Available Low-loss polymer materials incorporating fluorinated compounds have been utilized for the investigation of various functional optical devices useful for optical communication and optical sensor systems. Since reliability issues concerning the polymer device have been resolved, polymeric waveguide devices have been gradually adopted for commercial application systems. The two most successfully commercialized polymeric integrated optic devices, variable optical attenuators and digital optical switches, are reviewed in this paper. Utilizing unique properties of optical polymers which are not available in other optical materials, novel polymeric optical devices are proposed including widely tunable external cavity lasers and integrated optical current sensors.

  3. Controlling morphology and chain aggregation in semiconducting conjugated polymers: the role of solvent on optical gain in MEH-PPV.

    Science.gov (United States)

    Lampert, Zach E; Reynolds, C Lewis; Papanikolas, John M; Aboelfotoh, M Osama

    2012-10-25

    We report the results of a detailed investigation that addresses the influence of polymer morphology and chain aggregation, as controlled by the chemical nature of the solvent, on the optical gain properties of the conjugated polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV). Using the variable stripe length technique in the picosecond regime, we have extensively studied the optical gain performance of asymmetric planar waveguides formed with thin MEH-PPV films spin-cast from concentrated chlorobenzene (CB) and tetrahydrofuran (THF) solutions onto thermally oxidized silicon substrates. CB and THF solvents were chosen based on their known ability to promote and effectively limit aggregate formation, respectively. Very large net gain coefficients are demonstrated, reaching values of 330 and 365 cm(-1), respectively, when optically pumping the waveguides with a maximum energy density of 85 μJ/cm(2). Our results clearly demonstrate that polymer morphology, and hence, the chain conformation dependence of the degree of aggregation in the films as controlled by the solvent, has minimal impact on the net gain. Moreover, the waveguides exhibit low loss coefficients of 10-20 cm(-1) at the ASE wavelength. These results question the importance of polymer morphology and aggregate formation in polymer-based optical devices operating at high excitation densities in the stimulated emission regime as would be characteristic of lasers and optical amplifiers.

  4. Directional multimode coupler for planar magnonics: Side-coupled magnetic stripes

    Energy Technology Data Exchange (ETDEWEB)

    Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Sheshukova, S. E.; Romanenko, D. V.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)

    2015-11-16

    We experimentally demonstrate spin waves coupling in two laterally adjacent magnetic stripes. By the means of Brillouin light scattering spectroscopy, we show that the coupling efficiency depends both on the magnonic waveguides' geometry and the characteristics of spin-wave modes. In particular, the lateral confinement of coupled yttrium-iron-garnet stripes enables the possibility of control over the spin-wave propagation characteristics. Numerical simulations (in time domain and frequency domain) reveal the nature of intermodal coupling between two magnonic stripes. The proposed topology of multimode magnonic coupler can be utilized as a building block for fabrication of integrated parallel functional and logic devices such as the frequency selective directional coupler or tunable splitter, enabling a number of potential applications for planar magnonics.

  5. Silicon microphotonic waveguides

    International Nuclear Information System (INIS)

    Ta'eed, V.; Steel, M.J.; Grillet, C.; Eggleton, B.; Du, J.; Glasscock, J.; Savvides, N.

    2004-01-01

    Full text: Silicon microphotonic devices have been drawing increasing attention in the past few years. The high index-difference between silicon and its oxide (Δn = 2) suggests a potential for high-density integration of optical functions on to a photonic chip. Additionally, it has been shown that silicon exhibits strong Raman nonlinearity, a necessary property as light interaction can occur only by means of nonlinearities in the propagation medium. The small dimensions of silicon waveguides require the design of efficient tapers to couple light to them. We have used the beam propagation method (RSoft BeamPROP) to understand the principles and design of an inverse-taper mode-converter as implemented in several recent papers. We report on progress in the design and fabrication of silicon-based waveguides. Preliminary work has been conducted by patterning silicon-on-insulator (SOI) wafers using optical lithography and reactive ion etching. Thus far, only rib waveguides have been designed, as single-mode ridge-waveguides are beyond the capabilities of conventional optical lithography. We have recently moved to electron beam lithography as the higher resolutions permitted will provide the flexibility to begin fabricating sub-micron waveguides

  6. Waveguide harmonic damper for klystron amplifier

    International Nuclear Information System (INIS)

    Kang, Y.

    1998-01-01

    A waveguide harmonic damper was designed for removing the harmonic frequency power from the klystron amplifiers of the APS linac. Straight coaxial probe antennas are used in a rectangular waveguide to form a damper. A linear array of the probe antennas is used on a narrow wall of the rectangular waveguide for damping klystron harmonics while decoupling the fundamental frequency in dominent TE 01 mode. The klystron harmonics can exist in the waveguide as waveguide higher-order modes above cutoff. Computer simulations are made to investigate the waveguide harmonic damping characteristics of the damper

  7. Rectangular waveguide-to-coplanar waveguide transitions at U-band using e-plane probe and wire bonding

    DEFF Research Database (Denmark)

    Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2016-01-01

    This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide-to-CPW trans......This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide......-to-CPW transitions using E-plane probe and wire bonding are designed. The proposed rectangular waveguide-to-CPW transition using wire bonding can provide 10 GHz bandwidth at U-band and does not require extra CPWs or connections between CPWs and chips. A single layer rectangular waveguide-to-CPW transition using E......-plane probe with aluminum package has been fabricated and measured to validate the proposed transitions. To the authors' best knowledge, this is the first time that a wire bonding is used as a probe for rectangular waveguide-to-CPW transition at U-band....

  8. Omnidirectional optical waveguide

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.

    2016-08-02

    In one embodiment, a system includes a scintillator material; a detector coupled to the scintillator material; and an omnidirectional waveguide coupled to the scintillator material, the omnidirectional waveguide comprising: a plurality of first layers comprising one or more materials having a refractive index in a first range; and a plurality of second layers comprising one or more materials having a refractive index in a second range, the second range being lower than the first range, a plurality of interfaces being defined between alternating ones of the first and second layers. In another embodiment, a method includes depositing alternating layers of a material having a relatively high refractive index and a material having a relatively low refractive index on a substrate to form an omnidirectional waveguide; and coupling the omnidirectional waveguide to at least one surface of a scintillator material.

  9. Optical temperature sensing on flexible polymer foils

    Science.gov (United States)

    Sherman, Stanislav; Xiao, Yanfen; Hofmann, Meike; Schmidt, Thomas; Gleissner, Uwe; Zappe, Hans

    2016-04-01

    In contrast to established semiconductor waveguide-based or glass fiber-based integrated optical sensors, polymerbased optical systems offer tunable material properties, such as refractive index or viscosity, and thus provide additional degrees of freedom for sensor design and fabrication. Of particular interest in sensing applications are fully-integrated optical waveguide-based temperature sensors. These typically rely on Bragg gratings which induce a periodic refractive index variation in the waveguide so that a resonant wavelength of the structure is reflected.1,2 With broad-band excitation, a dip in the spectral output of the waveguide is thus generated at a precisely-defined wavelength. This resonant wavelength depends on the refractive index of the waveguide and the grating period, yet both of these quantities are temperature dependent by means of the thermo-optic effect (change in refractive index with temperature) and thermal expansion (change of the grating period with temperature). We show the design and fabrication of polymer waveguide-integrated temperature sensors based on Bragggratings, fabricated by replication technology on flexible PMMA foil substrates. The 175 μm thick foil serves as lower cladding for a polymeric waveguide fabricated from a custom-made UV-crosslinkable co-monomer composition. The fabrication of the grating structure includes a second replication step into a separate PMMA-foil. The dimensions of the Bragg-gratings are determined by simulations to set the bias point into the near infrared wavelength range, which allows Si-based detectors to be used. We present design considerations and performance data for the developed structures. The resulting sensor's signal is linear to temperature changes and shows a sensitivity of -306 nm/K, allowing high resolution temperature measurements.

  10. Low crosstalk Arrayed Waveguide Grating with Cascaded Waveguide Grating Filter

    International Nuclear Information System (INIS)

    Deng Yang; Liu Yuan; Gao Dingshan

    2011-01-01

    We propose a highly compact and low crosstalk arrayed waveguide grating (AWG) with cascaded waveguide grating (CWGF). The side lobes of the silicon nanowire AWG, which are normally introduced by fabrication errors, can be effectively suppressed by the CWGF. And the crosstalk can be improved about 15dB.

  11. Evanescent fields of laser written waveguides

    Science.gov (United States)

    Jukić, Dario; Pohl, Thomas; Götte, Jörg B.

    2015-03-01

    We investigate the evanescent field at the surface of laser written waveguides. The waveguides are written by a direct femtosecond laser writing process into fused silica, which is then sanded down to expose the guiding layer. These waveguides support eigenmodes which have an evanescent field reaching into the vacuum above the waveguide. We study the governing wave equations and present solution for the fundamental eigenmodes of the modified waveguides.

  12. Progress in planar optical waveguides

    CERN Document Server

    Wang, Xianping; Cao, Zhuangqi

    2016-01-01

    This book provides a comprehensive description of various slab waveguide structures ranged from graded-index waveguide to symmetrical metal-cladding waveguide. In this book, the transfer Matrix method is developed and applied to analyze the simplest case and the complex generalizations. A novel symmetrical metal-cladding waveguide structure is proposed and systematically investigated for several issues of interest, such as biochemical sensing, Goos-Hänchen shift and the slow light effect, etc. Besides, this book summarizes the authors’ research works on waveguides over the last decade. The readers who are familiar with basic optics theory may find this book easy to read and rather inspiring.

  13. Experiences with rectangular waveguide

    International Nuclear Information System (INIS)

    Beltran, J.; Sepulveda, J. J.; Navarro, E. A.

    2000-01-01

    A simple and didactic experimental arrangement is presented to show wave propagation along a structure with translational symmetry, particularly the rectangular waveguide. Parameters of this waveguide as cutoff frequency, guide wavelength and field distribution of fundamental mode can be measured. For this purpose a large paralelepipedical waveguide structure is designed and built, its dimensions can be varied in order to change its parameters. (Author) 9 refs

  14. Electro-optical logic gates based on graphene-silicon waveguides

    Science.gov (United States)

    Chen, Weiwei; Yang, Longzhi; Wang, Pengjun; Zhang, Yawei; Zhou, Liqiang; Yang, Tianjun; Wang, Yang; Yang, Jianyi

    2016-08-01

    In this paper, designs of electro-optical AND/NAND, OR/ NOR, XOR/XNOR logic gates based on cascaded silicon graphene switches and regular 2×1 multimode interference combiners are presented. Each switch consists of a Mach-Zehnder interferometer in which silicon slot waveguides embedded with graphene flakes are designed for phase shifters. High-speed switching function is achieved by applying an electrical signal to tune the Fermi levels of graphene flakes causing the variation of modal effective index. Calculation results show the crosstalk in the proposed optical switch is lower than -22.9 dB within a bandwidth from 1510 nm to 1600 nm. The designed six electro-optical logic gates with the operation speed of 10 Gbit/s have a minimum extinction ratio of 35.6 dB and a maximum insertion loss of 0.21 dB for transverse electric modes at 1.55 μm.

  15. Arbitrary-ratio power splitter based on nonlinear multimode interference coupler

    International Nuclear Information System (INIS)

    Tajaldini, Mehdi; Jafri, Mohd Zubir Mat

    2015-01-01

    We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used as the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI

  16. Arbitrary-ratio power splitter based on nonlinear multimode interference coupler

    Energy Technology Data Exchange (ETDEWEB)

    Tajaldini, Mehdi [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Young Researchers and Elite Club, Baft Branch, Islamic Azad University, Baft (Iran, Islamic Republic of); Jafri, Mohd Zubir Mat [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia)

    2015-04-24

    We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used as the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI.

  17. Patterned piezo-, pyro-, and ferroelectricity of poled polymer electrets

    International Nuclear Information System (INIS)

    Qiu, Xunlin

    2010-01-01

    Polymers with strong piezo-, pyro-, and ferroelectricity are attractive for a wide range of applications. In particular, semicrystalline ferroelectric polymers are suitable for a large variety of piezo- and pyroelectric transducers or sensors, while amorphous polymers containing chromophore molecules are particularly interesting for photonic devices. Recently, a new class of polymer materials has been added to this family: internally charged cellular space-charge polymer electrets (so-called “ferroelectrets”), whose piezoelectricity can be orders of magnitude higher than that of conventional ferroelectric polymers. Suitable patterning of these materials leads to improved or unusual macroscopic piezo-, pyro-, and ferroelectric or nonlinear optical properties that may be particularly useful for advanced transducer or waveguide applications. In the present paper, the piezo-, pyro-, and ferroelectricity of poled polymers is briefly introduced, an overview on the preparation of polymer electrets with patterned piezo-, pyro-, and ferroelectricity is provided and a survey of selected applications is presented.

  18. Synthesis of the Thickness Profile of the Waveguide Layer of the Thin Film Generalized Waveguide Luneburg Lens

    Directory of Open Access Journals (Sweden)

    Ayryan E.A.

    2016-01-01

    Full Text Available A local variation in the thickness of the waveguide layer of integrated optics waveguide causes a local decrease of phase velocity, and hence bending of rays and of the wave front. The relationship of the waveguide layer thickness profile h (y, z with the distribution of the effective refractive index of the waveguide β (y, z is described in terms of a particular model of waveguide solutions of the Maxwell equations. In the model of comparison waveguides the support of the thickness irregularity of the waveguide layer Δh coincides with the support of inhomogeneity of the effective refractive index Δβ. A more adequate but more cumbersome model of the adiabatic waveguide modes allows them to mismatch supp Δh ⊃ supp Δβ. In this paper, we solve the problem of the Δh reconstruction on the base of given Δβ of the thin film generalized waveguide Luneburg lens in a model of adiabatic waveguide modes. The solution is found in the form of a linear combination of Gaussian exponential functions and in the form of a cubic spline for the cylindrically symmetric Δh (r and in the form of a cubic spline for Δβ (r.

  19. Light-emitting waveguide-plasmon polaritions

    NARCIS (Netherlands)

    Rodriguez, S.R.K.; Murai, S.; Verschuuren, M.A.; Gómez Rivas, J.

    2012-01-01

    We demonstrate the generation of light in an optical waveguide strongly coupled to a periodic array of metallic nanoantennas. This coupling gives rise to hybrid waveguide-plasmon polaritons (WPPs), which undergo a transmutation from plasmon to waveguide mode and vice versa as the eigenfrequency

  20. PMMA to SU-8 Bonding for Polymer Based Lab-on-a-chip Systems with Integrated Optics

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Nielsen, Theodor; Nilsson, Daniel

    2003-01-01

    An adhesive bonding technique for wafer-level sealing of SU-8 based lab-on-a-chip microsystems with integrated optical components is presented. Microfluidic channels and optical components, e.g. waveguides, are fabricated in cross-linked SU-8 and sealed with a Pyrex glass substrate by means...... strength of 16 MPa is achieved at bonding temperatures between 110 oC and 120oC, at a bonding force of 2000 N on a 4-inch wafer. The optical propagation loss of multi-mode 10ym (thickness)x 30ym (width)SU-8 waveguides is measured. The propagation loss in PMMA bonded waveguide struc-tures is more than 5 d......B/cm lower, at wavelengths between 600nm and 900 nm, than in similar structures bonded by an intermediate layer of SU-8. Furthermore 950K PMMA shows no tendency to flow into the bonded structures during bonding because of its high viscosity....

  1. Nanoscale waveguiding methods

    Directory of Open Access Journals (Sweden)

    Wang Chia-Jean

    2007-01-01

    Full Text Available AbstractWhile 32 nm lithography technology is on the horizon for integrated circuit (IC fabrication, matching the pace for miniaturization with optics has been hampered by the diffraction limit. However, development of nanoscale components and guiding methods is burgeoning through advances in fabrication techniques and materials processing. As waveguiding presents the fundamental issue and cornerstone for ultra-high density photonic ICs, we examine the current state of methods in the field. Namely, plasmonic, metal slot and negative dielectric based waveguides as well as a few sub-micrometer techniques such as nanoribbons, high-index contrast and photonic crystals waveguides are investigated in terms of construction, transmission, and limitations. Furthermore, we discuss in detail quantum dot (QD arrays as a gain-enabled and flexible means to transmit energy through straight paths and sharp bends. Modeling, fabrication and test results are provided and show that the QD waveguide may be effective as an alternate means to transfer light on sub-diffraction dimensions.

  2. Optical Slot-Waveguide Based Biochemical Sensors

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2009-06-01

    Full Text Available Slot-waveguides allow light to be guided and strongly confined inside a nanometer-scale region of low refractive index. Thus stronger light-analyte interaction can be obtained as compared to that achievable by a conventional waveguide, in which the propagating beam is confined to the high-refractive-index core of the waveguide. In addition, slot-waveguides can be fabricated by employing CMOS compatible materials and technology, enabling miniaturization, integration with electronic, photonic and fluidic components in a chip, and mass production. These advantages have made the use of slot-waveguides for highly sensitive biochemical optical integrated sensors an emerging field. In this paper, recent achievements in slot-waveguide based biochemical sensing will be reviewed. These include slot-waveguide ring resonator based refractometric label-free biosensors, label-based optical sensing, and nano-opto-mechanical sensors.

  3. Photonic effects in microstructured conjugated polymer films and light emitting diodes

    International Nuclear Information System (INIS)

    Matterson, B.J.

    2002-03-01

    This thesis reports an investigation into the photonic effects caused by wavelength scale microstructure patterned onto films of conjugated polymers. The efficiency of light emitting diodes (LEDs) made from conjugated polymers is limited in part by the trapping of light into waveguide modes caused by the high refractive index of these materials. Waveguide modes in films of poly(p,-phenylene vinylene) (PPV) and poly(2-methoxy, 5-(2'ethylhexyloxy)-p-phenylene vinylene) (MEH-PPV) are analysed and the refractive index of these materials is calculated. The photoluminescence of conjugated polymer films that have been spun onto textured substrates is analysed. It is found that the photoluminescence quantum yield of a film spun onto a substrate inscribed with a grating is increased. It is also found that the photoluminescence spectrum of the film is dramatically altered and varies substantially with viewing angle. The features in the spectrum caused by the grating are strongly polarized. These effects are analysed and are attributed to the scattering of waveguided light out of the film. It is found that films spun onto metal gratings exhibit especially strong scattering. The effect of metal gratings with various grating depths is analysed. The possible contribution of band gaps to the photoluminescence spectrum from polymers on strong metal gratings is discussed. LEDs that include grating structures are constructed and analysed. It is found that having grating structures on the metal layers that are used as electrodes in the LED does not adversely affect the electrical properties of the LED. It is demonstrated that grating in the LED is able to substantially increase the light emission without using extra electrical power. The emission spectra from LEDs are observed to vary with angle, and exhibit considerable polarization. (author)

  4. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG

    1992-01-01

    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  5. Toward photostable multiplex analyte detection on a single mode planar optical waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Harshini [Los Alamos National Laboratory; Xei, Hongshi [Los Alamos National Laboratory; Anderson, Aaron S [Los Alamos National Laboratory; Grace, Wynne K [Los Alamos National Laboratory; Martinez, Jennifer S [NON LANL; Swanson, Basil [Los Alamos National Laboratory

    2009-01-01

    We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.

  6. Prototyping of Microfluidic Systems with Integrated Waveguides in Cyclin Olefin Copolymer

    DEFF Research Database (Denmark)

    Bundgaard, Frederik

    2007-01-01

    , in a collaboration with IMTEK in Freiburg, Germany, an optical detection principle was developed. Using the principle of total internal reflection of a laser beam incident on a fluidic channel, detection of air bubbles is possible. The principle was used on a rotating platform as well as on non-moving systems....... the substrate, optical layers and the lid in the microfluidic systems. • Thermal bonding of polymer structures, including roll lamination of foil onto substrates. • Laser bonding of two polymer layers, including transparent on black, and transparent on transparent with a particle doped spin coating. • Thermal...... treatment of waveguides to improve the surface roughness and lower the propagation loss. The fabrication methods have been characterised, and have been optimised to minimise parameters like fabrication time, surface roughness and interface bonding strength. Using these fabrication methods, microfluidic...

  7. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... due to photonic crystal dispersion. The observations are explained by the enhancement of net gain by light slow down. Another application based on active photonic crystal waveguides is micro lasers. Measurements on quantum dot micro laser cavities with different mirror configurations and photonic...

  8. Dispersion-modulation by high material loss in microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch

    2009-01-01

    The influence of strong loss peaks on the dispersion (through the Kramers-Kronig relations) of a nonlinear waveguide is investigated theore­ti­cally. It is found specifically for degenerate four-wave mixing in a poly(methyl methacrylate) microstructured polymer optical fiber that the loss...

  9. Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications

    OpenAIRE

    Nordström, Maria; Zauner, Dan; Boisen, Anja; Hübner, Jörg

    2007-01-01

    Fabrication and optical characterization of singlemode polymeric embedded waveguides are performed. A specific material combination (SU-8 2005 as core and the modified SU-8 mr-L 6050XP as cladding) is chosen in order to obtain a small refractive index difference for single-mode propagation combined with the conventional fabrication method UV lithography to facilitate the integration of different types of optical detection methods on lab-on-a-chip systems. We analyze the behavior of the refrac...

  10. Grating-Coupled Waveguide Cloaking

    International Nuclear Information System (INIS)

    Wang Jia-Fu; Qu Shao-Bo; Ma Hua; Wang Cong-Min; Wang Xin-Hua; Zhou Hang; Xu Zhuo; Xia Song

    2012-01-01

    Based on the concept of a grating-coupled waveguide (GCW), a new strategy for realizing EM cloaking is presented. Using metallic grating, incident waves are firstly coupled into the effective waveguide and then decoupled into free space behind, enabling EM waves to pass around the obstacle. Phase compensation in the waveguide keeps the wave-front shape behind the obstacle unchanged. Circular, rectangular and triangular cloaks are presented to verify the robustness of the GCW cloaking. Electric field animations and radar cross section (RCS) comparisons convincingly demonstrate the cloaking effect

  11. Attenuation in Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap

    2016-09-01

    Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.

  12. MHD waveguides in space plasma

    International Nuclear Information System (INIS)

    Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.

    2010-01-01

    The waveguide properties of two characteristic formations in the Earth's magnetotail-the plasma sheet and the current (neutral) sheet-are considered. The question of how the domains of existence of different types of MHD waveguide modes (fast and slow, body and surface) in the (k, ω) plane and their dispersion properties depend on the waveguide parameters is studied. Investigation of the dispersion relation in a number of particular (limiting) cases makes it possible to obtain a fairly complete qualitative pattern of all the branches of the dispersion curve. Accounting for the finite size of perturbations across the wave propagation direction reveals new additional effects such as a change in the critical waveguide frequencies, the excitation of longitudinal current at the boundaries of the sheets, and a change in the symmetry of the fundamental mode. Knowledge of the waveguide properties of the plasma and current sheets can explain the occurrence of preferred frequencies in the low-frequency fluctuation spectra in the magnetotail. In satellite observations, the type of waveguide mode can be determined from the spectral properties, as well as from the phase relationships between plasma oscillations and magnetic field oscillations that are presented in this paper.

  13. Micro-resonators based on integrated polymer technology for optical sensing

    Science.gov (United States)

    Girault, Pauline; Lemaitre, Jonathan; Guendouz, Mohammed; Lorrain, Nathalie; Poffo, Luiz; Gadonna, Michel; Bosc, Dominique

    2014-05-01

    Research on sensors has experienced a noticeable development over the last decades especially in label free optical biosensors. However, compact sensors without markers for rapid, reliable and inexpensive detection of various substances induce a significant research of new technological solutions. The context of this work is the development of a sensor based on easily integrated and inexpensive micro-resonator (MR) component in integrated optics, highly sensitive and selective mainly in the areas of health and food. In this work, we take advantage of our previous studies on filters based on micro-resonators (MR) to experiment a new couple of polymers in the objective to use MR as a sensing function. MRs have been fabricated by processing SU8 polymer as core and PMATRIFE polymer as cladding layer of the waveguide. The refractive index contrast reaches 0.16 @ 1550 nm. Sub-micronic ring waveguides gaps from 0.5 to 1 μm have been successfully achieved with UV (i-line) photolithography. This work confirms our forecasts, published earlier, about the resolution that can be achieved. First results show a good extinction coefficient of ~17 dB, a quality factor around 104 and a finesse of 12. These results are in concordance with the theoretical study and they allow us to validate our technology with this couple of polymers. Work is going on with others lower cladding materials that will be used to further increase refractive index contrast for sensing applications.

  14. A multimodal parallel architecture: A cognitive framework for multimodal interactions.

    Science.gov (United States)

    Cohn, Neil

    2016-01-01

    Human communication is naturally multimodal, and substantial focus has examined the semantic correspondences in speech-gesture and text-image relationships. However, visual narratives, like those in comics, provide an interesting challenge to multimodal communication because the words and/or images can guide the overall meaning, and both modalities can appear in complicated "grammatical" sequences: sentences use a syntactic structure and sequential images use a narrative structure. These dual structures create complexity beyond those typically addressed by theories of multimodality where only a single form uses combinatorial structure, and also poses challenges for models of the linguistic system that focus on single modalities. This paper outlines a broad theoretical framework for multimodal interactions by expanding on Jackendoff's (2002) parallel architecture for language. Multimodal interactions are characterized in terms of their component cognitive structures: whether a particular modality (verbal, bodily, visual) is present, whether it uses a grammatical structure (syntax, narrative), and whether it "dominates" the semantics of the overall expression. Altogether, this approach integrates multimodal interactions into an existing framework of language and cognition, and characterizes interactions between varying complexity in the verbal, bodily, and graphic domains. The resulting theoretical model presents an expanded consideration of the boundaries of the "linguistic" system and its involvement in multimodal interactions, with a framework that can benefit research on corpus analyses, experimentation, and the educational benefits of multimodality. Copyright © 2015.

  15. Photonic crystal waveguides in artificial opals

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Kiyan, Roman; Neumeister, Andrei

    2008-01-01

    3D photonic crystals based on Si inverted-opals are numerically explored as hosts for effective air-channel waveguides, which can serve as parts of photonic circuits. Two basic shapes of straight waveguides are considered: cylindrical and a chain of spheres. Modelling shows that transmission...... is heavily dependent on the lattice position of the waveguide and its direction. Our experiments of defect inscription by 2-photon polymerization for the production of straight and bent waveguides in opal templates are reported....

  16. Cantilever-based sensor with integrated optical read-out using single mode waveguides

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    This work presents the design, fabrication and mechanical characterisation of an integrated optical read-out scheme for cantilever-based biosensors. A cantilever can be used as a biosensor by monitoring its bending caused by the surface stress generated due to chemical reactions occurring on its...... surface. Here, we present a novel integrated optical read-out scheme based on single-mode waveguides that enables the fabrication of a compact system. The complete system is fabricated in the polymer SU-8. This manuscript shows the principle of operation and the design well as the fabrication...

  17. Coupled nanopillar waveguides: optical properties and applications

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Zhukovsky, Sergei V.; Lavrinenko, Andrei

    2007-01-01

    , while guided modes dispersion is strongly affected by the waveguide structure. We present a systematic analysis of the optical properties of coupled nanopillar waveguides and discuss their possible applications for integrated optics. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim......In this paper we review basic properties of coupled periodic and aperiodic nanopillar waveguides. A coupled nanopillar waveguide consists of several rows of periodically or aperiodically placed dielectric rods (pillars). In such a waveguide, light confinement is due to the total internal reflection...

  18. Effect of patterns and inhomogeneities on the surface of waveguides used for optical waveguide lightmode spectroscopy applications

    DEFF Research Database (Denmark)

    Horvath, R.; Voros, J.; Graf, R.

    2001-01-01

    It has been found that patterns acid inhomogeneities on the surface of the waveguide used fur optical waveguide lightmode spectroscopy applications can produce broadening and fine structure in the incoupled light peak spectra. During cell spreading on the waveguide, a broadening of the incoupling...

  19. Near-field characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Zenin, Volodymyr

    2014-01-01

    simply by changing geometric parameters of the waveguide, keeping in mind the trade-off between confinement and propagation losses. A broad variety of plasmonic waveguides and waveguide components, including antennas for coupling the light in/out of the waveguide, requires correspondent characterization...... capabilities, especially on experimental side. The most straight-forward and powerful technique for such purpose is scanning near-field optical microscopy, which allows to probe and map near-field distribution and therefore becomes the main tool in this project. The detailed description of the used setups...

  20. Optics Communications: Special issue on Polymer Photonics and Its Applications

    Science.gov (United States)

    Zhang, Ziyang; Pitwon, Richard C. A.; Feng, Jing

    2016-03-01

    In the last decade polymer photonics has witnessed a tremendous boost in research efforts and practical applications. Polymer materials can be engineered to exhibit unique optical and electrical properties. Extremely transparent and reliable passive optical polymers have been made commercially available and paved the ground for the development of various waveguide components. Advancement in the research activities regarding the synthesis of active polymers has enabled devices such as ultra-fast electro-optic modulators, efficient white light emitting diodes, broadband solar cells, flexible displays, and so on. The fabrication technology is not only fast and cost-effective, but also provides flexibility and broad compatibility with other semiconductor processing technologies. Reports show that polymers have been integrated in photonic platforms such as silicon-on-insulator (SOI), III-V semiconductors, and silica PLCs, and vice versa, photonic components made from a multitude of materials have been integrated, in a heterogeneous/hybrid manner, in polymer photonic platforms.

  1. Diffraction of an Electromagnetic Wave on a Dielectric Rod in a Rectangular Waveguide. A Method of Partial Waveguide Filling

    Science.gov (United States)

    Zav'yalov, A. S.

    2018-04-01

    A variant of the method of partial waveguide filling is considered in which a sample is put into a waveguide through holes in wide waveguide walls at the distance equal to a quarter of the wavelength in the waveguide from a short-circuiter, and the total input impedance of the sample in the waveguide is directly measured. The equivalent circuit of the sample is found both without and with account of the hole. It is demonstrated that consideration of the edge effect makes it possible to obtain more exact values of the dielectric permittivity.

  2. Multifunctional PHPMA-Derived Polymer for Ratiometric pH Sensing, Fluorescence Imaging, and Magnetic Resonance Imaging.

    Science.gov (United States)

    Su, Fengyu; Agarwal, Shubhangi; Pan, Tingting; Qiao, Yuan; Zhang, Liqiang; Shi, Zhengwei; Kong, Xiangxing; Day, Kevin; Chen, Meiwan; Meldrum, Deirdre; Kodibagkar, Vikram D; Tian, Yanqing

    2018-01-17

    In this paper, we report synthesis and characterization of a novel multimodality (MRI/fluorescence) probe for pH sensing and imaging. A multifunctional polymer was derived from poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and integrated with a naphthalimide-based-ratiometric fluorescence probe and a gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid complex (Gd-DOTA complex). The polymer was characterized using UV-vis absorption spectrophotometry, fluorescence spectrofluorophotometry, magnetic resonance imaging (MRI), and confocal microscopy for optical and MRI-based pH sensing and cellular imaging. In vitro labeling of macrophage J774 and esophageal CP-A cell lines shows the polymer's ability to be internalized in the cells. The transverse relaxation time (T 2 ) of the polymer was observed to be pH-dependent, whereas the spin-lattice relaxation time (T 1 ) was not. The pH probe in the polymer shows a strong fluorescence-based ratiometric pH response with emission window changes, exhibiting blue emission under acidic conditions and green emission under basic conditions, respectively. This study provides new materials with multimodalities for pH sensing and imaging.

  3. Arrayed waveguide Sagnac interferometer.

    Science.gov (United States)

    Capmany, José; Muñoz, Pascual; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz; Martinez, Alfonso

    2003-02-01

    We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2 x 2 coupler in a Sagnac configuration. The equations that describe the device's operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.

  4. Analysis of Waveguides on Lithium Niobate Thin Films

    Directory of Open Access Journals (Sweden)

    Yiwen Wang

    2018-04-01

    Full Text Available Waveguides formed by etching, proton-exchange (PE, and strip-loaded on single-crystal lithium niobate (LN thin film were designed and simulated by a full-vectorial finite difference method. The single-mode condition, optical power distribution, and bending loss of these kinds of waveguides were studied and compared systematically. For the PE waveguide, the optical power distributed in LN layer had negligible change with the increase of PE thickness. For the strip-loaded waveguide, the relationships between optical power distribution in LN layer and waveguide thickness were different for quasi-TE (q-TE and quasi-TM (q-TM modes. The bending loss would decrease with the increase of bending radius. There was a bending loss caused by the electromagnetic field leakage when the neff of q-TM waveguide was smaller than that of nearby TE planar waveguide. LN ridge waveguides possessed a low bending loss even at a relatively small bending radius. This study is helpful for the understanding of waveguide structures as well as for the optimization and the fabrication of high-density integrated optical components.

  5. Nanoscale devices based on plasmonic coaxial waveguide resonators

    Science.gov (United States)

    Mahigir, A.; Dastmalchi, P.; Shin, W.; Fan, S.; Veronis, G.

    2015-02-01

    Waveguide-resonator systems are particularly useful for the development of several integrated photonic devices, such as tunable filters, optical switches, channel drop filters, reflectors, and impedance matching elements. In this paper, we introduce nanoscale devices based on plasmonic coaxial waveguide resonators. In particular, we investigate threedimensional nanostructures consisting of plasmonic coaxial stub resonators side-coupled to a plasmonic coaxial waveguide. We use coaxial waveguides with square cross sections, which can be fabricated using lithography-based techniques. The waveguides are placed on top of a silicon substrate, and the space between inner and outer coaxial metals is filled with silica. We use silver as the metal. We investigate structures consisting of a single plasmonic coaxial resonator, which is terminated either in a short or an open circuit, side-coupled to a coaxial waveguide. We show that the incident waveguide mode is almost completely reflected on resonance, while far from the resonance the waveguide mode is almost completely transmitted. We also show that the properties of the waveguide systems can be accurately described using a single-mode scattering matrix theory. The transmission and reflection coefficients at waveguide junctions are either calculated using the concept of the characteristic impedance or are directly numerically extracted using full-wave three-dimensional finite-difference frequency-domain simulations.

  6. Waveguide-Based Biosensors for Pathogen Detection

    Directory of Open Access Journals (Sweden)

    Nile Hartman

    2009-07-01

    Full Text Available Optical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave—the evanescent field—whose amplitude decreases exponentially as the distance from the surface increases. Excitation of fluorophores within the evanescent wave allows for sensitive detection while minimizing background fluorescence from complex, “dirty” biological samples. In this review, we will describe the basic principles, advantages and disadvantages of planar optical waveguide-based biodetection technologies. This discussion will include already commercialized technologies (e.g., Corning’s EPIC® Ô, SRU Biosystems’ BIND™, Zeptosense®, etc. and new technologies that are under research and development. We will also review differing assay approaches for the detection of various biomolecules, as well as the thin-film coatings that are often required for waveguide functionalization and effective detection. Finally, we will discuss reverse-symmetry waveguides, resonant waveguide grating sensors and metal-clad leaky waveguides as alternative signal transducers in optical biosensing.

  7. Coupled mode theory of periodic waveguides arrays

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Chigrin, Dmitry N.

    We apply the scalar coupled mode theory to the case of waveguides array consisting om two periodic waveguides. One of the waveguides is arbitrary shifted along another. A longitudinal shift acts as a parameter in the coupled mode theory. The proposed theory explains peculiarities of modes dispers...... dispersion and transmission in coupled periodic waveguides systems. Analytical results are compared with the numerical ones obtained by the plane wave expansion and FDTD methods....

  8. Gap Surface Plasmon Waveguide Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2014-01-01

    Plasmonic waveguides supporting gap surface plasmons (GSPs) localized in a dielectric spacer between metal films are investigated numerically and the waveguiding properties at telecommunication wavelengths are presented. Especially, we emphasize that the mode confinement can advantageously...

  9. Theoretical study of the folded waveguide

    International Nuclear Information System (INIS)

    Chen, G.L.; Owens, T.L.; Whealton, J.H.

    1988-01-01

    We have applied a three-dimensional (3-D) algorithm for solving Maxwell's equations to the analysis of foleded waveguides used for fusion plasma heating at the ion cyclotron resonance frequency. A rigorous analysis of the magnetic field structure in the folded waveguide is presented. The results are compared to experimenntal measurements. Optimum conditions for the folded waveguide are discussed. 6 refs., 10 figs

  10. Fabrication of plasmonic waveguides for device applications

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Leosson, Kristjan; Rosenzveig, Tiberiu

    2007-01-01

    and thickness-modulated gold strips different waveguide components including reflecting gratings can be realized. For applications where polarization is random or changing, metal nanowire waveguides are shown to be suitable candidates for efficient guiding of arbitrary polarized light. Plasmonic waveguides...

  11. Direct milling and casting of polymer-based optical waveguides for improved transparency in the visible range

    DEFF Research Database (Denmark)

    Snakenborg, Detlef; Perozziello, Gerardo; Klank, Henning

    2006-01-01

    properties. Direct micromilling enabled us to fabricate 100 mu m wide optical waveguides. Propagation losses of less than 1 dB cm(-1) could be achieved throughout the entire visual range down to a wavelength of 400 nm. A casting process amenable to high number production of such devices was furthermore...

  12. Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Ding, Yunhong; Frandsen, Lars Hagedorn

    2015-01-01

    An ultra-compact and broadband higher order-mode pass filter in a 1D photonic crystal silicon waveguide is proposed and experimentally demonstrated. The photonic crystal is designed for the lower order mode to work in the photonic band gap, while the higher order mode is located in the air band....... Consequently, light on the lower order mode is prohibited to pass through the filter, while light on a higher order mode can be converted to a Bloch mode in the photonic crystal and pass through the filter with low insertion loss. As an example, we fabricate a similar to 15-mu m-long first-order-mode pass...

  13. Concept of ceramics-free coaxial waveguide

    International Nuclear Information System (INIS)

    Arai, Hiroyuki

    1994-01-01

    A critical key point of the ITER IC antenna is ceramics support of an internal conductor of a coaxial antenna feeder close to the plasma, because dielectric loss tangent of ceramics enhanced due to neutron irradiation limits significantly the antenna injection power. This paper presents a ceramics-free waveguide to overcome this problem by a T-shaped ridged waveguide with arms for the mechanical support. This ridged waveguide has a low cutoff frequency for its small cross section, which has been proposed for the conceptual design study of Fusion Experimental Reactor (FER) IC system and the high frequency supplementary IC system for ITER. This paper presents the concept of ceramics-free coaxial waveguide consisting of the coaxial-line and the ridged waveguide. This paper also presents the cutoff frequency and the electric field distribution of the ridged waveguide calculated by a finite element method and an approximate method. The power handling capability more than 3 MW is evaluated by using the transmission-line theory and the optimized antenna impedance considering the ITER plasma parameters. We verify this transmission-line model by one-tenth scale models experimentally. (author)

  14. Guided modes in silicene-based waveguides

    Science.gov (United States)

    Yu, Mengzhuo; He, Ying; Yang, Yanfang; Zhang, Huifang

    2018-02-01

    Silicene is a new Dirac-type electron system similar to graphene. A monolayer silicene sheet forms a quantum well induced by an electrostatic potential, which acts as an electron waveguide. The guided modes in the silicene waveguide have been investigated. Electron waves can propagate in the silicene-based waveguide in the cases of Klein tunneling and classical motion. The behavior of the wave function depends on the spin and valley indices. The amplitude of the electron wave function in the silicene waveguide can be controlled by the external electric field. These phenomena may be helpful for the potential applications of silicene-based electronic devices.

  15. Low-index discontinuity terahertz waveguides

    Science.gov (United States)

    Nagel, Michael; Marchewka, Astrid; Kurz, Heinrich

    2006-10-01

    A new type of dielectric THz waveguide based on recent approaches in the field of integrated optics is presented with theoretical and experimental results. Although the guiding mechanism of the low-index discontinuity (LID) THz waveguide is total internal reflection, the THz wave is predominantly confined in the virtually lossless low-index air gap within a high-index dielectric waveguide due to the continuity of electric flux density at the dielectric interface. Attenuation, dispersion and single-mode confinement properties of two LID structures are discussed and compared with other THz waveguide solutions. The new approach provides an outstanding combination of high mode confinement and low transmission losses currently not realizable with any other metal-based or photonic crystal approach. These exceptional properties might enable the breakthrough of novel integrated THz systems or endoscopy applications with sub-wavelength resolution.

  16. Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides.

    Science.gov (United States)

    Villangca, Mark; Bañas, Andrew; Palima, Darwin; Glückstad, Jesper

    2014-07-28

    We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested for a single WOW and we have experimentally demonstrated dynamic tracking and coupling for both lateral and axial displacements.

  17. Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Palima, Darwin

    2014-01-01

    We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use...... of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested...... for a single WOW and we have experimentally demonstrated dynamic tracking and coupling for both lateral and axial displacements....

  18. Simulation and optimization of a polymer directional coupler electro-optic switch with push pull electrodes

    Science.gov (United States)

    Zheng, Chuan-Tao; Ma, Chun-Sheng; Yan, Xin; Wang, Xian-Yin; Zhang, Da-Ming

    2008-07-01

    Structural model and design technique are proposed for a polymer directional coupler electro-optic switch with rib waveguides and push-pull electrodes, of which the electric field distribution is analyzed by the conformal transforming method and image method. In order to get the minimum mode loss and the minimum switching voltage, the parameters of the waveguide and electrode are optimized, such as the core with, core thickness, buffer layer between the core and the electrode, coupling gap between the waveguides, electrode thickness, electrode width and electrode gap. Switching Characteristics are analyzed, which include the output power, insertion loss, and crosstalk. To realize normal switching function, the fabrication error, spectrum shift, and coupling loss between a single mode fiber (SMF) and the waveguide are discussed. Simulation results show that the coupling length is 3082 μm, push-pull switching voltage is 2.14 V, insertion loss is less than 1.17 dB, and crosstalk is less than -30 dB for the designed device.

  19. Wafer-scale fabrication of polymer distributed feedback lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Balslev, Søren

    2006-01-01

    The authors demonstrate wafer-scale, parallel process fabrication of distributed feedback (DFB) polymer dye lasers by two different nanoimprint techniques: By thermal nanoimprint lithography (TNIL) in polymethyl methacrylate and by combined nanoimprint and photolithography (CNP) in SU-8. In both...... techniques, a thin film of polymer, doped with rhodamine-6G laser dye, is spin coated onto a Borofloat glass buffer substrate and shaped into a planar waveguide slab with first order DFB surface corrugations forming the laser resonator. When optically pumped at 532 nm, lasing is obtained in the wavelength...... range between 576 and 607 nm, determined by the grating period. The results, where 13 laser devices are defined across a 10 cm diameter wafer substrate, demonstrate the feasibility of NIL and CNP for parallel wafer-scale fabrication of advanced nanostructured active optical polymer components...

  20. Quantum Electrodynamics in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Nielsen, Henri Thyrrestrup

    In this thesis we have performed quantum electrodynamics (QED) experiments in photonic crystal (PhC) waveguides and cavity QED in the Anderson localized regime in disordered PhC waveguides. Decay rate measurements of quantum dots embedded in PhC waveguides has been used to map out the variations...... in the local density of states (LDOS) in PhC waveguides. From decay rate measurements on quantum dot lines temperature tuned in the vicinity of the waveguide band edge, a β-factor for a single quantum dot of more then 85% has been extracted. Finite difference time domain simulations (FDTD) for disordered Ph...... is shown to increase from 3 − 7 um for no intentional disorder to 25 um for 6% disorder. A distribution of losses is seen to be necessary to explain the measured Q-factor distributions. Finally we have performed a cavity QED experiment between single quantum dots and an Anderson localized mode, where a β...

  1. Functionalization of embedded thiol-ene waveguides for evanescent wave induced fluorescence detection in a microfluidic device

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Jensen, Thomas Glasdam; Lafleur, Josiane P.

    2013-01-01

    We demonstrate the use of functional surface groups inherently present on off-stoichiometric thiol−ene polymers, for site-specific immobilization of biomolecules and detection by evanescent wave-induced fluorescence. An optofluidic chip featuring an embedded thiol−ene waveguide was selectively...... functionalized with biotin using photografting. The biotin was used for immobilization of fluorescently labelled streptavidin, and experiments revealed a linear correlation between streptavidin concentration and fluorescent intensity. To further demonstrate the attractiveness of using thiol−ene for optofluidic...

  2. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  3. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  4. Adapting an optical nanoantenna for high E-field probing applications to a waveguided optical waveguide (WOW)

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Glückstad, Jesper

    2013-01-01

    In the current work we intend to use the optical nano-antenna to include various functionalities for the recently demonstrated waveguided optical waveguide (WOW) by Palima et al. (Optics Express 2012). Specifically, we intend to study a WOW with an optical nano-antenna which can block the guiding......-stop characteristic. We give geometrical parameters necessary for realizing functioning nanoantennas. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.......In the current work we intend to use the optical nano-antenna to include various functionalities for the recently demonstrated waveguided optical waveguide (WOW) by Palima et al. (Optics Express 2012). Specifically, we intend to study a WOW with an optical nano-antenna which can block the guiding...... light wavelength while admitting other wavelengths of light which address certain functionalities, e.g. drug release, in the WOW. In particular, we study a bow-tie optical nano-antenna to circular dielectric waveguides in aqueous environments. It is shown with finite element computer simulations...

  5. Waveguide Phased Array Antenna Analysis and Synthesis

    NARCIS (Netherlands)

    Visser, H.J.; Keizer, W.P.M.N.

    1996-01-01

    Results of two software packages for analysis and synthesis of waveguide phased array antennas are shown. The antennas consist of arrays of open-ended waveguides where irises can be placed in the waveguide apertures and multiple dielectric sheets in front of the apertures in order to accomplish a

  6. A microring multimode laser using hollow polymer optical fibre

    Indian Academy of Sciences (India)

    Dye-doped optical fibre; fibre laser; microcavity; whispering gallery mode. ... Cylindrical microcavities with diameters 155, 340 and 615 m were fabricated from a dye-doped hollow polymer optical fibre preform. ... International School of Photonics, Cochin University of Science and Technology, Kochi 682 022, India ...

  7. Spectroelectrochemical sensing: planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Susan E.; Shi Yining; Seliskar, Carl J.; Heineman, William R

    2003-09-30

    The spectroelectrochemical sensor combines in a single device electrochemistry, spectroscopy, and selective partitioning into a film, giving improved selectivity for applications that involve complex samples. Sensing is based on the change in optical signal that accompanies electrochemical modulation of analyte that has partitioned into the film. Two classes of optical quality chemically-selective films based on two different host materials, namely, sol-gel processed silica and cross-linked poly(vinyl alcohol) have been developed. Films are typically 400-700 nm thick. Three types of sensor platforms are discussed: a multiple internal reflection (MIR) optic consisting of a bilayer of an indium tin oxide (ITO) optically transparent electrode deposited on a 1-mm thick glass substrate, a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide (5-9 {mu}m thick) was over-coated with a thin film of ITO, and a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide channel was formed and a pair of electrodes deposited along side the channel. These sensors were evaluated with ferrocyanide and a selective film of PDMDAAC-SiO{sub 2}, where PDMDAAC=poly(dimethyl diallylammonium chloride)

  8. Spectroelectrochemical sensing: planar waveguides

    International Nuclear Information System (INIS)

    Ross, Susan E.; Shi Yining; Seliskar, Carl J.; Heineman, William R.

    2003-01-01

    The spectroelectrochemical sensor combines in a single device electrochemistry, spectroscopy, and selective partitioning into a film, giving improved selectivity for applications that involve complex samples. Sensing is based on the change in optical signal that accompanies electrochemical modulation of analyte that has partitioned into the film. Two classes of optical quality chemically-selective films based on two different host materials, namely, sol-gel processed silica and cross-linked poly(vinyl alcohol) have been developed. Films are typically 400-700 nm thick. Three types of sensor platforms are discussed: a multiple internal reflection (MIR) optic consisting of a bilayer of an indium tin oxide (ITO) optically transparent electrode deposited on a 1-mm thick glass substrate, a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide (5-9 μm thick) was over-coated with a thin film of ITO, and a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide channel was formed and a pair of electrodes deposited along side the channel. These sensors were evaluated with ferrocyanide and a selective film of PDMDAAC-SiO 2 , where PDMDAAC=poly(dimethyl diallylammonium chloride)

  9. Schroedinger covariance states in anisotropic waveguides

    International Nuclear Information System (INIS)

    Angelow, A.; Trifonov, D.

    1995-03-01

    In this paper Squeezed and Covariance States based on Schroedinger inequality and their connection with other nonclassical states are considered for particular case of anisotropic waveguide in LiNiO 3 . Here, the problem of photon creation and generation of squeezed and Schroedinger covariance states in optical waveguides is solved in two steps: 1. Quantization of electromagnetic field is provided in the presence of dielectric waveguide using normal-mode expansion. The photon creation and annihilation operators are introduced, expanding the solution A-vector(r-vector,t) in a series in terms of the Sturm - Liouville mode-functions. 2. In terms of these operators the Hamiltonian of the field in a nonlinear waveguide is derived. For such Hamiltonian we construct the covariance states as stable (with nonzero covariance), which minimize the Schroedinger uncertainty relation. The evolutions of the three second momenta of q-circumflex j and p-circumflex j are calculated. For this Hamiltonian all three momenta are expressed in terms of one real parameters s only. It is found out how covariance, via this parameter s, depends on the waveguide profile n(x,y), on the mode-distributions u-vector j (x,y), and on the waveguide phase mismatching Δβ. (author). 37 refs

  10. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics

    DEFF Research Database (Denmark)

    D’Angelo, Francesco; Mics, Zoltán; Bonn, Mischa

    2014-01-01

    -domain spectrometer employing air-photonics for the generation and detection of single-cycle sub-50 fs THz transients. The time domain measurements provide direct access to both the absorption and refractive index spectra. The polymers LDPE and TOPAS® demonstrate negligible absorption and spectrally-flat refractive...... index across the entire spectroscopy window, revealing the high potential of these polymers for applications in THz photonics such as ultra-broadband polymer-based dielectric mirrors, waveguides, and fibers. Resonant high-frequency polar vibrational modes are observed and assigned in polymers PA6...... and PTFE, and their dielectric functions in the complete frequency window 2-15 THz are theoretically reproduced. Our results demonstrate the potential of ultrabroadband air-photonics-based THz time domain spectroscopy as a valuable analytic tool for materials science....

  11. Large Core Three Branch Polymer Power Splitters

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2015-12-01

    Full Text Available We report about three branch large core polymer power splitters optimized for connecting standard plastic optical fibers. A new point of the design is insertion of a rectangle-shaped spacing between the input and the central part of the splitter, which will ensure more even distribution of the output optical power. The splitters were designed by beam propagation method using BeamPROP software. Acrylic-based polymers were used as optical waveguides being poured into the Y-grooves realized by computer numerical controlled engraving on poly(methyl methacrylate substrate. Measurement of the optical insertion losses proved that the insertion optical loss could be lowered to 2.1 dB at 650 nm and optical power coupling ratio could reach 31.8% : 37.3% : 30.9%.

  12. Polymer film strain gauges for measuring large elongations

    Science.gov (United States)

    Kondratov, A. P.; Zueva, A. M.; Varakin, R. S.; Taranec, I. P.; Savenkova, I. A.

    2018-02-01

    The paper shows the possibility to print polymer strain gages, microstrip lines, coplanar waveguides, and other prints for avionics using printing technology and equipment. The methods of screen and inkjet printing have been complemented by three new operations of preparing print films for application of an electrically conductive ink layer. Such additional operations make it possible to enhance the conductive ink layer adhesion to the film and to manufacture strain gages for measuring large elongations.

  13. Nonlinear optical localization in embedded chalcogenide waveguide arrays

    International Nuclear Information System (INIS)

    Li, Mingshan; Huang, Sheng; Wang, Qingqing; Chen, Kevin P.; Petek, Hrvoje

    2014-01-01

    We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm 2 , using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass

  14. Multimodality and Ambient Intelligence

    NARCIS (Netherlands)

    Nijholt, Antinus; Verhaegh, W.; Aarts, E.; Korst, J.

    2004-01-01

    In this chapter we discuss multimodal interface technology. We present eexamples of multimodal interfaces and show problems and opportunities. Fusion of modalities is discussed and some roadmap discussions on research in multimodality are summarized. This chapter also discusses future developments

  15. Finite-width plasmonic waveguides with hyperbolic multilayer cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogeniz......Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any...

  16. Multilayer cladding with hyperbolic dispersion for plasmonic waveguides

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    We study the properties of plasmonic waveguides with a dielectric core and multilayer metal-dielectric claddings that possess hyperbolic dispersion. The waveguides hyperbolic multilayer claddings show better performance in comparison to conventional plasmonic waveguides. © OSA 2015....

  17. Dispersion characteristics of plasmonic waveguides for THz waves

    Science.gov (United States)

    Markides, Christos; Viphavakit, Charusluk; Themistos, Christos; Komodromos, Michael; Kalli, Kyriacos; Quadir, Anita; Rahman, Azizur

    2013-05-01

    Today there is an increasing surge in Surface Plasmon based research and recent studies have shown that a wide range of plasmon-based optical elements and techniques have led to the development of a variety of active switches, passive waveguides, biosensors, lithography masks, to name just a few. The Terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, the metal-clad waveguides supporting surface plasmon modes waves and specifically hollow core structures, coated with insulating material are showing the greatest promise as low-loss waveguides for their use in active components and as well as passive waveguides. The H-field finite element method (FEM) based full-vector formulation is used to study the vectorial modal field properties and the complex propagation characteristics of Surface Plasmon modes of a hollow-core dielectric coated rectangular waveguide structure. Additionally, the finite difference time domain (FDTD) method is used to estimate the dispersion parameters and the propagation loss of the rectangular waveguide.

  18. Matrix method for two-dimensional waveguide mode solution

    Science.gov (United States)

    Sun, Baoguang; Cai, Congzhong; Venkatesh, Balajee Seshasayee

    2018-05-01

    In this paper, we show that the transfer matrix theory of multilayer optics can be used to solve the modes of any two-dimensional (2D) waveguide for their effective indices and field distributions. A 2D waveguide, even composed of numerous layers, is essentially a multilayer stack and the transmission through the stack can be analysed using the transfer matrix theory. The result is a transfer matrix with four complex value elements, namely A, B, C and D. The effective index of a guided mode satisfies two conditions: (1) evanescent waves exist simultaneously in the first (cladding) layer and last (substrate) layer, and (2) the complex element D vanishes. For a given mode, the field distribution in the waveguide is the result of a 'folded' plane wave. In each layer, there is only propagation and absorption; at each boundary, only reflection and refraction occur, which can be calculated according to the Fresnel equations. As examples, we show that this method can be used to solve modes supported by the multilayer step-index dielectric waveguide, slot waveguide, gradient-index waveguide and various plasmonic waveguides. The results indicate the transfer matrix method is effective for 2D waveguide mode solution in general.

  19. Optical gain of LaF3:Nd nanoparticle doped polymers for active integrated optical devices

    NARCIS (Netherlands)

    Stouwdam, J.W.; Klunder, D.J.W.; Borreman, A.; Diemeer, Mart; Worhoff, Kerstin; Driessen, A.; de Ridder, R.M.; de Ridder, R.M; Altena, G; Altena, G.; Geuzebroek, D.H.; Dekker, R; Dekker, R.

    2003-01-01

    We report on rare earth doped LaF3 nanoparticles dispersed in PMMA and SU-8 photosensitive polymers. We observed optical gain after we applied these materials for waveguides. Experimental results on various samples will be discussed. We theoretically discuss the improvements that can be obtained and

  20. Micro-fabricated solid state dye lasers based on a photo-definable polymer

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Balslev, Søren; Gregersen, Misha Marie

    2005-01-01

    the commercially available laser dye Rhodamine 6G, which is incorporated into the SU-8 polymer matrix. The single-mode slab waveguide is formed by three-step spin-coating deposition: a buffer layer of undoped SU-8, a core layer of SU-8 doped with Rhodamine, and a cladding layer of undoped SU-8. (c) 2005 Optical...

  1. Guided modes of elliptical metamaterial waveguides

    International Nuclear Information System (INIS)

    Halterman, Klaus; Feng, Simin; Overfelt, P. L.

    2007-01-01

    The propagation of guided electromagnetic waves in open elliptical metamaterial waveguide structures is investigated. The waveguide contains a negative-index media core, where the permittivity ε and permeability μ are negative over a given bandwidth. The allowed mode spectrum for these structures is numerically calculated by solving a dispersion relation that is expressed in terms of Mathieu functions. By probing certain regions of parameter space, we find the possibility exists to have extremely localized waves that transmit along the surface of the waveguide

  2. Talbot Effect in Three Waveguide Arrays

    International Nuclear Information System (INIS)

    Zhi, Li; Hai-Feng, Zhou; Jian-Yi, Yang; Xiao-Qing, Jiang

    2008-01-01

    By taking the coupling between the non-neighbourhood waveguides into account, the coupling characteristic of three waveguide arrays is analysed. The strong coupling equation of three waveguides is dealt with Laplace transform and LU decomposition. The general field evolution equation is obtained by inversion of the Laplace transform. The results show that the self-imaging conditions (Talbot effect) do not satisfy in general. The theoretical predictions are in good agreement with the BPM simulations. (fundamental areas of phenomenology (including applications))

  3. Sub-micrometer waveguide for nano-optics

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Dyndgaard, Morten Glarborg; Andersen, Karin Nordström

    2003-01-01

    With the recent progress within the field of processing nano structures, there is an increasing interest in coupling light into such structures both for characterization of optical properties and new optical components. In this work we propose the use of a sub-micrometer planar waveguide for prob......With the recent progress within the field of processing nano structures, there is an increasing interest in coupling light into such structures both for characterization of optical properties and new optical components. In this work we propose the use of a sub-micrometer planar waveguide...... for probing the reflection of light against a nano structure. The planar waveguide is based on a silicon nitride core layer, surrounded by a silica cladding region. In our design we utilize this waveguide to couple light into a nano-structure....

  4. Surface morphology of refractive-index waveguide gratings fabricated in polymer films

    Science.gov (United States)

    Dong, Yi; Song, Yan-fang; Ma, Lei; Gao, Fang-fang

    2016-09-01

    The characteristic modifications are reported on the surface of polymeric waveguide film in the process of volume- grating fabrication. The light from a mode-locked 76 MHz femtosecond laser with pulse duration of 200 fs and wavelength of 800 nm is focused normal to the surface of the sample. The surface morphology modifications are ascribed to a fact that surface swelling occurs during the process. Periodic micro-structure is inscribed with increasing incident power. The laser-induced swelling threshold on the grating, which is higher than that of two-photon initiated photo-polymerization (TPIP) (8 mW), is verified to be about 20 mW. It is feasible to enhance the surface smoothness of integrated optics devices for further encapsulation. The variation of modulation depth is studied for different values of incident power and scan spacing. Ablation accompanied with surface swelling appears when the power is higher. By optimizing the laser carving parameters, highly efficient grating devices can be fabricated.

  5. FDTD simulation of amorphous silicon waveguides for microphotonics applications

    Science.gov (United States)

    Fantoni, A.; Lourenço, P.; Pinho, P.; Vieira, M.,

    2017-05-01

    In this work we correlate the dimension of the waveguide with small variations of the refractive index of the material used for the waveguide core. We calculate the effective modal refractive index for different dimensions of the waveguide and with slightly variation of the refractive index of the core material. These results are used as an input for a set of Finite Difference Time Domain simulation, directed to study the characteristics of amorphous silicon waveguides embedded in a SiO2 cladding. The study considers simple linear waveguides with rectangular section for studying the modal attenuation expected at different wavelengths. Transmission efficiency is determined analyzing the decay of the light power along the waveguides. As far as near infrared wavelengths are considered, a-Si:H shows a behavior highly dependent on the light wavelength and its extinction coefficient rapidly increases as operating frequency goes into visible spectrum range. The simulation results show that amorphous silicon can be considered a good candidate for waveguide material core whenever the waveguide length is as short as a few centimeters. The maximum transmission length is highly affected by the a-Si:H defect density, the mid-gap density of states and by the waveguide section area. The simulation results address a minimum requirement of 300nm×400nm waveguide section in order to keep attenuation below 1 dB cm-1.

  6. Surface-Emitting Distributed Feedback Terahertz Quantum-Cascade Lasers in Metal-Metal Waveguides

    Science.gov (United States)

    Kumar, Sushil; Williams, Benjamin S.; Qin, Qi; Lee, Alan W. M.; Hu, Qing; Reno, John L.

    2007-01-01

    Single-mode surface-emitting distributed feedback terahertz quantumcascade lasers operating around 2.9 THz are developed in metal-metal waveguides. A combination of techniques including precise control of phase of reflection at the facets, and u e of metal on the sidewalls to eliminate higher-order lateral modes allow robust single-mode operation over a range of approximately 0.35 THz. Single-lobed far-field radiation pattern is obtained using a pi phase-shift in center of the second-order Bragg grating. A grating device operating at 2.93 THz lased up to 149 K in pulsed mode and a temperature tuning of 19 .7 GHz was observed from 5 K to 147 K. The same device lased up to 78 K in continuous-wave (cw) mode emitting more than 6 m W of cw power at 5 K. ln general, maximum temperature of pulsed operation for grating devices was within a few Kelvin of that of multi-mode Fabry-Perot ridge lasers

  7. Linear and nonlinear properties of segmented waveguides

    International Nuclear Information System (INIS)

    Katz, M.

    1998-07-01

    This dissertation deals with Periodically Segmented Waveguides (PSW), which are applied on KTiOP0 4 (KTP) crystals, by chemical ion-exchange process. In these waveguides, the crystal polarity and refractive index are periodically modulated to obtain Quasi Phase Matching (QPM) between the fundamental and second-harmonic waves. PSW is a relatively new optical device which exhibits unique optical properties in comparison with a continuous waveguide. The possibility of utilizing the KTP-PSW as a compact, cw, blue-violet, source by doubling infra-red light, is the main motivation for studying the optical properties of KTP segmented waveguides. Nevertheless, much attention in this work is also given to the study of linear optical properties of KTP-PSW, most of which, to my best knowledge, has not been studied yet. Controlling and understanding the linear optical properties of KTP-PSW, are required, for applying the PSW as an optical device by its own, and for control and characterization of the non-linear optical properties of the waveguide. In this work the dependence of the linear optical properties of KTP-PSW on geometrical parameters (period size, duty cycle and waveguide width) were studied. The experimental measured parameters include the PSW near field and the Bragg reflections, which appear due lo the grating structure of the waveguide. The possibility of controlling the wavelength and intensity, of the segmented waveguide Bragg reflections of regular period and super-period, is shown theoretically and experimentally. An unexpected dependence was found, by the experimental measurement, between the index profile and the ion-exchanged segment area,. The segmented waveguide dispersion curve, n eff (λ) in the infra-red region was found, A main part of the research work is dedicated to the study of nonlinear characteristics of PSW. The different factors, which effect the Second Harmonic Generation (SHG), are measured experimentally and analyzed. The experimental

  8. Pulsed Laser Deposition: passive and active waveguides

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Flory, F.; Escoubas, L.

    2009-01-01

    Roč. 34, č. 4 (2009), s. 438-449 ISSN 0268-1900 R&D Projects: GA ČR GA202/06/0216 Institutional research plan: CEZ:AV0Z10100522 Keywords : PLD * pulsed laser deposition * laser ablation * passive waveguides * active waveguides * waveguide laser * sensors * thin films * butane detection Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.384, year: 2009

  9. Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate

    Science.gov (United States)

    Himmer, Phillip; Battle, Philip; Suckow, William; Switzer, Greg

    2011-01-01

    This work proposes to establish the feasibility of fabricating isolated ridge waveguides in 5% MgO:LN. Ridge waveguides in MgO:LN will significantly improve power handling and conversion efficiency, increase photonic component integration, and be well suited to spacebased applications. The key innovation in this effort is to combine recently available large, high-photorefractive-damage-threshold, z-cut 5% MgO:LN with novel ridge fabrication techniques to achieve high-optical power, low-cost, high-volume manufacturing of frequency conversion structures. The proposed ridge waveguide structure should maintain the characteristics of the periodically poled bulk substrate, allowing for the efficient frequency conversion typical of waveguides and the high optical damage threshold and long lifetimes typical of the 5% doped bulk substrate. The low cost and large area of 5% MgO:LN wafers, and the improved performance of the proposed ridge waveguide structure, will enhance existing measurement capabilities as well as reduce the resources required to achieve high-performance specifications. The purpose of the ridge waveguides in MgO:LN is to provide platform technology that will improve optical power handling and conversion efficiency compared to existing waveguide technology. The proposed ridge waveguide is produced using standard microfabrication techniques. The approach is enabled by recent advances in inductively coupled plasma etchers and chemical mechanical planarization techniques. In conjunction with wafer bonding, this fabrication methodology can be used to create arbitrarily shaped waveguides allowing complex optical circuits to be engineered in nonlinear optical materials such as magnesium doped lithium niobate. Researchers here have identified NLO (nonlinear optical) ridge waveguide structures as having suitable value to be the leading frequency conversion structures. Its value is based on having the low-cost fabrication necessary to satisfy the challenging pricing

  10. Silicon Photonic Waveguides for Near- and Mid-Infrared Regions

    Science.gov (United States)

    Stankovic, S.; Milosevic, M.; Timotijevic, B.; Yang, P. Y.; Teo, E. J.; Crnjanski, J.; Matavulj, P.; Mashanovich, G. Z.

    2007-11-01

    The basic building block of every photonic circuit is a waveguide. In this paper we investigate the most popular silicon waveguide structures in the form of a silicon-on-insulator rib waveguide. We also analyse two structures that can find applications in mid- and long-wave infrared regions: free-standing and hollow core omnidirectional waveguides.

  11. Waveguide image-slicers for ultrahigh resolution spectroscopy

    Science.gov (United States)

    Beckert, Erik; Strassmeier, Klaus G.; Woche, Manfred; Eberhardt, Ramona; Tünnermann, Andreas; Andersen, Michael

    2008-07-01

    Waveguide image-slicer prototypes with resolutions up to 310.000 for the fiber fed PEPSI echelle spectrograph at the LBT and single waveguide thicknesses of down to 30 μm have been manufactured. The waveguides were macroscopically prepared, stacked up to an order of 7 and thinned back to square stack cross sections. A high filling ratio was achieved by realizing homogenous adhesive gaps of 4.6 μm, using index matching adhesives for TIR within the waveguides. The image-slicer stacks can be used in immersion mode and are miniaturized to be implemented in a set of four, measurements indicate an overall efficiency of above 80% for them.

  12. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  13. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy. II. Broadband characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sidabras, Jason W.; Anderson, James R.; Mainali, Laxman; Hyde, James S. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States); Strangeway, Robert A. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States); Department of Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, Wisconsin 53201 (United States); Mett, Richard R. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States); Department of Chemistry and Physics, Milwaukee School of Engineering, Milwaukee, Wisconsin 53201 (United States)

    2016-03-15

    Experimental results have been reported on an oversize rectangular waveguide assembly operating nominally at 94 GHz. It was formed using commercially available WR28 waveguide as well as a pair of specially designed tapers with a hyperbolic-cosine shape from WR28 to WR10 waveguide [R. R. Mett et al., Rev. Sci. Instrum. 82, 074704 (2011)]. The oversize section reduces broadband insertion loss for an Electron Paramagnetic Resonance (EPR) probe placed in a 3.36 T magnet. Hyperbolic-cosine tapers minimize reflection of the main mode and the excitation of unwanted propagating waveguide modes. Oversize waveguide is distinguished from corrugated waveguide, overmoded waveguide, or quasi-optic techniques by minimal coupling to higher-order modes. Only the TE{sub 10} mode of the parent WR10 waveguide is propagated. In the present work, a new oversize assembly with a gradual 90° twist was implemented. Microwave power measurements show that the twisted oversize waveguide assembly reduces the power loss in the observe and pump arms of a W-band bridge by an average of 2.35 dB and 2.41 dB, respectively, over a measured 1.25 GHz bandwidth relative to a straight length of WR10 waveguide. Network analyzer measurements confirm a decrease in insertion loss of 2.37 dB over a 4 GHz bandwidth and show minimal amplitude distortion of approximately 0.15 dB. Continuous wave EPR experiments confirm these results. The measured phase variations of the twisted oversize waveguide assembly, relative to an ideal distortionless transmission line, are reduced by a factor of two compared to a straight length of WR10 waveguide. Oversize waveguide with proper transitions is demonstrated as an effective way to increase incident power and the return signal for broadband EPR experiments. Detailed performance characteristics, including continuous wave experiment using 1 μM 2,2,6,6-tetramethylpiperidine-1-oxyl in aqueous solution, provided here serve as a benchmark for other broadband low-loss probes in

  14. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy. II. Broadband characterization

    International Nuclear Information System (INIS)

    Sidabras, Jason W.; Anderson, James R.; Mainali, Laxman; Hyde, James S.; Strangeway, Robert A.; Mett, Richard R.

    2016-01-01

    Experimental results have been reported on an oversize rectangular waveguide assembly operating nominally at 94 GHz. It was formed using commercially available WR28 waveguide as well as a pair of specially designed tapers with a hyperbolic-cosine shape from WR28 to WR10 waveguide [R. R. Mett et al., Rev. Sci. Instrum. 82, 074704 (2011)]. The oversize section reduces broadband insertion loss for an Electron Paramagnetic Resonance (EPR) probe placed in a 3.36 T magnet. Hyperbolic-cosine tapers minimize reflection of the main mode and the excitation of unwanted propagating waveguide modes. Oversize waveguide is distinguished from corrugated waveguide, overmoded waveguide, or quasi-optic techniques by minimal coupling to higher-order modes. Only the TE 10 mode of the parent WR10 waveguide is propagated. In the present work, a new oversize assembly with a gradual 90° twist was implemented. Microwave power measurements show that the twisted oversize waveguide assembly reduces the power loss in the observe and pump arms of a W-band bridge by an average of 2.35 dB and 2.41 dB, respectively, over a measured 1.25 GHz bandwidth relative to a straight length of WR10 waveguide. Network analyzer measurements confirm a decrease in insertion loss of 2.37 dB over a 4 GHz bandwidth and show minimal amplitude distortion of approximately 0.15 dB. Continuous wave EPR experiments confirm these results. The measured phase variations of the twisted oversize waveguide assembly, relative to an ideal distortionless transmission line, are reduced by a factor of two compared to a straight length of WR10 waveguide. Oversize waveguide with proper transitions is demonstrated as an effective way to increase incident power and the return signal for broadband EPR experiments. Detailed performance characteristics, including continuous wave experiment using 1 μM 2,2,6,6-tetramethylpiperidine-1-oxyl in aqueous solution, provided here serve as a benchmark for other broadband low-loss probes in

  15. The waveguide Free-Electron Laser. 14

    International Nuclear Information System (INIS)

    Walsh, J.E.

    1990-01-01

    The general characteristics of free-electron lasers (FELs) which employ a waveguiding structure to confine electromagnetic fields and to couple them to the electron beam is discussed. The mode structure of the basic parallel plate waveguide and its adaptation via quasi-optical techniques to FEL resonator design are considered in detail. A summary of the theory of FEL systems which depend intrinsically on a guide structure (micro-undulator, Cerenkov and metal-grating FELs) and a review of progress on waveguide FEL experiments are also presented. (author). 44 refs.; 16 figs

  16. Deep-probe metal-clad waveguide biosensors

    DEFF Research Database (Denmark)

    Skivesen, Nina; Horvath, Robert; Thinggaard, S.

    2007-01-01

    Two types of metal-clad waveguide biosensors, so-called dip-type and peak-type, are analyzed and tested. Their performances are benchmarked against the well-known surface-plasmon resonance biosensor, showing improved probe characteristics for adlayer thicknesses above 150-200 nm. The dip-type metal-clad...... waveguide sensor is shown to be the best all-round alternative to the surface-plasmon resonance biosensor. Both metal-clad waveguides are tested experimentally for cell detection, showing a detection linut of 8-9 cells/mm(2). (c) 2006 Elsevier B.V. All rights reserved....

  17. Systematic Design of Slow Light Waveguides

    DEFF Research Database (Denmark)

    Wang, Fengwen

    it is vulnerable to manufacturing disorders. This thesis aims to design novel waveguides to alleviate signal distortions and propagation loss using optimization methodologies, and to explore the design robustness with respect to manufacturing imperfections. To alleviate the signal distortions in waveguides...

  18. Hyperentangled photon sources in semiconductor waveguides

    DEFF Research Database (Denmark)

    Kang, Dongpeng; Helt, L. G.; Zhukovsky, Sergei

    2014-01-01

    We propose and analyze the performance of a technique to generate mode and polarization hyperentangled photons in monolithic semiconductor waveguides using two concurrent type-II spontaneous parametric down-conversion (SPDC) processes. These two SPDC processes are achieved by waveguide engineering...

  19. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying; Xu, Yuehong; Tian, Chunxiu; Xu, Quan; Zhang, Xueqian; Li, Yanfeng; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2017-01-01

    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  20. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying

    2017-12-11

    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  1. Perturbation measurement of waveguides for acoustic thermometry

    Science.gov (United States)

    Lin, H.; Feng, X. J.; Zhang, J. T.

    2013-09-01

    Acoustic thermometers normally embed small acoustic transducers in the wall bounding a gas-filled cavity resonator. At high temperature, insulators of transducers loss electrical insulation and degrade the signal-to-noise ratio. One essential solution to this technical trouble is to couple sound by acoustic waveguides between resonator and transducers. But waveguide will break the ideal acoustic surface and bring perturbations(Δf+ig) to the ideal resonance frequency. The perturbation model for waveguides was developed based on the first-order acoustic theory in this paper. The frequency shift Δf and half-width change g caused by the position, length and radius of waveguides were analyzed using this model. Six different length of waveguides (52˜1763 mm) were settled on the cylinder resonator and the perturbation (Δf+ig) were measured at T=332 K and p=250˜500 kPa. The experiment results agreed with the theoretical prediction very well.

  2. Systematic design of loss-engineered slow-light waveguides

    DEFF Research Database (Denmark)

    Wang, Fengwen; Jensen, Jakob Søndergaard; Mørk, Jesper

    2012-01-01

    This paper employs topology optimization to systematically design free-topology loss-engineered slow-light waveguides with enlarged group index bandwidth product (GBP). The propagation losses of guided modes are evaluated by the imaginary part of eigenvalues in complex band structure calculations......, where the scattering losses due to manufacturing imperfections are represented by an edge-related effective dissipation. The loss engineering of slow-light waveguides is realized by minimizing the propagation losses of design modes. Numerical examples illustrate that the propagation losses of free......-topology dispersion-engineered waveguides can be significantly suppressed by loss engineering. Comparisons between fixed- and free-topology loss-engineered waveguides demonstrate that the GBP can be enhanced significantly by the free-topology loss-engineered waveguides with a small increase of the propagation losses....

  3. Parametric resonance in superconducting micron-scale waveguides

    International Nuclear Information System (INIS)

    Fomin, N.V.; Shalaev, O.L.; Shantsev, D.V.

    1997-01-01

    A parametric resonance due to temperature oscillations in superconducting micron-scale waveguides is considered. Oscillations of superconductor temperature are assumed to be induced by the irradiation of the waveguide with a laser beam. The laser power and parameters of the waveguide providing a possibility of parametric excitation have been calculated. It is shown that for a waveguide made of a YBa 2 Cu 3 O 7 microstrip with resonant frequency of 10 GHz a laser with a power of about 70 W/cm 2 is needed to excite oscillations. The effect can be used for the creation of high-sensitivity tuneable filters and optoelectric transformers on superconducting microstrips in the GHz range. copyright 1997 American Institute of Physics

  4. Minimum wakefield achievable by waveguide damped cavity

    International Nuclear Information System (INIS)

    Lin, X.E.; Kroll, N.M.

    1995-01-01

    The authors use an equivalent circuit to model a waveguide damped cavity. Both exponentially damped and persistent (decay t -3/2 ) components of the wakefield are derived from this model. The result shows that for a cavity with resonant frequency a fixed interval above waveguide cutoff, the persistent wakefield amplitude is inversely proportional to the external Q value of the damped mode. The competition of the two terms results in an optimal Q value, which gives a minimum wakefield as a function of the distance behind the source particle. The minimum wakefield increases when the resonant frequency approaches the waveguide cutoff. The results agree very well with computer simulation on a real cavity-waveguide system

  5. Low-loss curved subwavelength grating waveguide based on index engineering

    Science.gov (United States)

    Wang, Zheng; Xu, Xiaochuan; Fan, D. L.; Wang, Yaoguo; Chen, Ray T.

    2016-03-01

    Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to its freedom to tune a few important waveguide properties such as dispersion and refractive index. Devices based on SWG waveguide have demonstrated impressive performances compared to those of conventional waveguides. However, the large loss of SWG waveguide bends jeopardizes their applications in integrated photonics circuits. In this work, we propose that a predistorted refractive index distribution in SWG waveguide bends can effectively decrease the mode mismatch noise and radiation loss simultaneously, and thus significantly reduce the bend loss. Here, we achieved the pre-distortion refractive index distribution by using trapezoidal silicon pillars. This geometry tuning approach is numerically optimized and experimentally demonstrated. The average insertion loss of a 5 μm SWG waveguide bend can be reduced drastically from 5.58 dB to 1.37 dB per 90° bend for quasi-TE polarization. In the future, the proposed approach can be readily adopted to enhance performance of an array of SWG waveguide-based photonics devices.

  6. Space-division-multiplexed transmission of 3x3 multiple-input multiple-output wireless signals over conventional graded-index multimode fiber.

    Science.gov (United States)

    Lei, Yi; Li, Jianqiang; Fan, Yuting; Yu, Dawei; Fu, Songnian; Yin, Feifei; Dai, Yitang; Xu, Kun

    2016-12-12

    In this paper, we experimentally demonstrate space-division-multiplexed (SDM) transmission of IEEE 802.11ac-compliant 3-spatial-stream WLAN signals over 3 spatial modes of conventional 50um graded-index (GI) multimode fiber (MMF) employing non-mode-selective 3D-waveguide photonic lantern. Two kinds of scenarios, including fiber-only transmission and fiber-wireless hybrid transmission, were investigated by measuring error vector magnitude (EVM) performance for each stream and condition number (CN) of the channel matrix. The experimental results show that, SDM-based MMF link could offer a CNwireless MIMO signals over existing in-building commercially-available MMFs with enormous cost-saving.

  7. Waveguide module comprising a first plate with a waveguide channel and a second plate with a raised portion in which a sealing layer is forced into the waveguide channel by the raised portion

    Science.gov (United States)

    Strassner, II, Bernd H.; Liedtke, Richard; McDonald, Jacob Jeremiah; Halligan, Matthew

    2018-04-17

    The various technologies presented herein relate to utilizing a sealing layer of malleable material to seal gaps, etc., at a joint between edges of a waveguide channel formed in a first plate and a surface of a clamping plate. A compression pad is included in the surface of the clamping plate and is dimensioned such that the upper surface of the pad is less than the area of the waveguide channel opening on the first plate. The sealing layer is placed between the waveguide plate and the clamping plate, and during assembly of the waveguide module, the compression pad deforms a portion of the sealing layer such that it ingresses into the waveguide channel opening. Deformation of the sealing layer results in the gaps, etc., to be filled, improving the operational integrity of the joint.

  8. Fundamental losses in planar Bragg waveguides

    NARCIS (Netherlands)

    Vinogradov, A. V.; Mitrofanov, A. N.; Popov, A. V.; Fedin, M. A.

    2007-01-01

    This paper considers a planar Bragg waveguide. The guided modes and their dissipation due to the fundamental absorption are described. In the interacting-wave approximation, an analytical relation between the characteristics of the modes and parameters of the Bragg-waveguide geometry was

  9. Diffractive beam shaping, tracking and coupling for wave-guided optical waveguides (WOWs)

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Aabo, Thomas

    2014-01-01

    techniques to create multiple focal spots that can be coupled into light manipulated WOWs. This is done by using a spatial light modulator to project the necessary phase to generate the multiple coupling light spots. We incorporate a diffractive setup in our Biophotonics Workstation (BWS) and demonstrate......We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). The full strength of this structure-mediated paradigm can be harnessed by addressing multiple WOWs and manipulating them to work in tandem. We propose the use of diffractive...

  10. Ultra-compact plasmonic waveguide modulators

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia

    of developing new material platforms for integrated plasmonic devices. Furthermore, novel plasmonic materials such as transparent conductive oxides and transition metal nitrides can offer a variety of new opportunities. In particular, they offer adjustable/tailorable and nonlinear optical properties, dynamic...... modulators based on ultra-compact waveguides with different active cores. Plasmonic modulators with the active core such as indium phosphides or ferroelectrics sandwiched between metal plates have promising characteristics. Apart from the speed and dimensions advantages, the metal plates can serve...... as electrodes for electrical pumping of the active material making it easier to integrate. Including an additional layer in the plasmonic waveguide, in particular an ultrathin transparent conductive oxide film, allows the control of the dispersive properties of the waveguide and thus the higher efficiency...

  11. Learning multimodal dictionaries.

    Science.gov (United States)

    Monaci, Gianluca; Jost, Philippe; Vandergheynst, Pierre; Mailhé, Boris; Lesage, Sylvain; Gribonval, Rémi

    2007-09-01

    Real-world phenomena involve complex interactions between multiple signal modalities. As a consequence, humans are used to integrate at each instant perceptions from all their senses in order to enrich their understanding of the surrounding world. This paradigm can be also extremely useful in many signal processing and computer vision problems involving mutually related signals. The simultaneous processing of multimodal data can, in fact, reveal information that is otherwise hidden when considering the signals independently. However, in natural multimodal signals, the statistical dependencies between modalities are in general not obvious. Learning fundamental multimodal patterns could offer deep insight into the structure of such signals. In this paper, we present a novel model of multimodal signals based on their sparse decomposition over a dictionary of multimodal structures. An algorithm for iteratively learning multimodal generating functions that can be shifted at all positions in the signal is proposed, as well. The learning is defined in such a way that it can be accomplished by iteratively solving a generalized eigenvector problem, which makes the algorithm fast, flexible, and free of user-defined parameters. The proposed algorithm is applied to audiovisual sequences and it is able to discover underlying structures in the data. The detection of such audio-video patterns in audiovisual clips allows to effectively localize the sound source on the video in presence of substantial acoustic and visual distractors, outperforming state-of-the-art audiovisual localization algorithms.

  12. Ultrasonic Waveguide Sensor with a Layer-Structured Plate

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2010-01-01

    In-vessel structures of a sodium-cooled fast reactor (SFR) are submerged in opaque liquid sodium in reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors had developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In the previous studies, the Ultrasonic waveguide sensor module had been designed and manufactured. And the feasibility study of the ultrasonic waveguide sensor has been performed. To Improve the performance of the ultrasonic waveguide sensor module in the under-sodium application, the dispersion effect due to the 10 m long distance propagation of the A 0 -mode Lamb wave should be minimized and the longitudinal leaky wave in a liquid sodium should be generated within the range of the effective radiation angle. In this study, a new concept of ultrasonic waveguide sensor with a layered-structured plate is suggested for the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor and the effective generation of leaky wave in a liquid sodium

  13. X-ray and gamma ray waveguide, cavity and method

    International Nuclear Information System (INIS)

    Vali, V.; Krogstad, R.S.; Willard, H.R.

    1978-01-01

    An x-ray and gamma ray waveguide, cavity, and method for directing electromagnetic radiation of the x-ray, gamma ray, and extreme ultraviolet wavelengths are described. A hollow fiber is used as the waveguide and is manufactured from a material having an index of refraction less than unity for these wavelengths. The internal diameter of the hollow fiber waveguide and the radius of curvature for the waveguide are selectively predetermined in light of the wavelength of the transmitted radiation to minimize losses. The electromagnetic radiation is obtained from any suitable source ad upon introduction into the waveguide is transmitted along a curvilinear path. The waveguide may be formed as a closed loop to create a cavity or may be used to direct the electromagnetic radiation to a utilization site

  14. Testing Born-Infeld Electrodynamics in Waveguides

    International Nuclear Information System (INIS)

    Ferraro, Rafael

    2007-01-01

    Waveguides can be employed to test nonlinear effects in electrodynamics. We solve Born-Infeld equations for TE waves in a rectangular waveguide. We show that the energy velocity acquires a dependence on the amplitude, and harmonic components appear as a consequence of the nonlinear behavior

  15. Multimodality

    DEFF Research Database (Denmark)

    Buhl, Mie

    2010-01-01

    In this paper, I address an ongoing discussion in Danish E-learning research about how to take advantage of the fact that digital media facilitate other communication forms than text, so-called ‘multimodal' communication, which should not be confused with the term ‘multimedia'. While multimedia...... on their teaching and learning situations. The choices they make involve e-learning resources like videos, social platforms and mobile devices, not just as digital artefacts we interact with, but the entire practice of using digital media. In a life-long learning perspective, multimodality is potentially very...

  16. High-power planar dielectric waveguide lasers

    International Nuclear Information System (INIS)

    Shepherd, D.P.; Hettrick, S.J.; Li, C.; Mackenzie, J.I.; Beach, R.J.; Mitchell, S.C.; Meissner, H.E.

    2001-01-01

    The advantages and potential hazards of using a planar waveguide as the host in a high-power diode-pumped laser system are described. The techniques discussed include the use of proximity-coupled diodes, double-clad waveguides, unstable resonators, tapers, and integrated passive Q switches. Laser devices are described based on Yb 3+ -, Nd 3+ -, and Tm 3+ -doped YAG, and monolithic and highly compact waveguide lasers with outputs greater than 10 W are demonstrated. The prospects for scaling to the 100 W level and for further integration of devices for added functionality in a monolithic laser system are discussed. (author)

  17. Reading Multimodal Texts for Learning – a Model for Cultivating Multimodal Literacy

    Directory of Open Access Journals (Sweden)

    Kristina Danielsson

    2016-08-01

    Full Text Available The re-conceptualisation of texts over the last 20 years, as well as the development of a multimodal understanding of communication and representation of knowledge, has profound consequences for the reading and understanding of multimodal texts, not least in educational contexts. However, if teachers and students are given tools to “unwrap” multimodal texts, they can develop a deeper understanding of texts, information structures, and the textual organisation of knowledge. This article presents a model for working with multimodal texts in education with the intention to highlight mutual multimodal text analysis in relation to the subject content. Examples are taken from a Singaporean science textbook as well as a Chilean science textbook, in order to demonstrate that the framework is versatile and applicable across different cultural contexts. The model takes into account the following aspects of texts: the general structure, how different semiotic resources operate, the ways in which different resources are combined (including coherence, the use of figurative language, and explicit/implicit values. Since learning operates on different dimensions – such as social and affective dimensions besides the cognitive ones – our inclusion of figurative language and values as components for textual analysis is a contribution to multimodal text analysis for learning.

  18. Coupled-resonator optical waveguides

    DEFF Research Database (Denmark)

    Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor

    2010-01-01

    Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued paramet......Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex...

  19. Silicon waveguides produced by wafer bonding

    DEFF Research Database (Denmark)

    Poulsen, Mette; Jensen, Flemming; Bunk, Oliver

    2005-01-01

    X-ray waveguides are successfully produced employing standard silicon technology of UV photolithography and wafer bonding. Contrary to theoretical expectations for similar systems even 100 mu m broad guides of less than 80 nm height do not collapse and can be used as one dimensional waveguides...

  20. Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    Directory of Open Access Journals (Sweden)

    Sabarinathan J

    2010-01-01

    Full Text Available Abstract In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  1. Acoustic one-way mode conversion and transmission by sonic crystal waveguides

    Science.gov (United States)

    Ouyang, Shiliang; He, Hailong; He, Zhaojian; Deng, Ke; Zhao, Heping

    2016-09-01

    We proposed a scheme to achieve one-way acoustic propagation and even-odd mode switching in two mutually perpendicular sonic crystal waveguides connected by a resonant cavity. The even mode in the entrance waveguide is able to switch to the odd mode in the exit waveguide through a symmetry match between the cavity resonant modes and the waveguide modes. Conversely, the odd mode in the exit waveguide is unable to be converted into the even mode in the entrance waveguide as incident waves and eigenmodes are mismatched in their symmetries at the waveguide exit. This one-way mechanism can be applied to design an acoustic diode for acoustic integration devices and can be used as a convertor of the acoustic waveguide modes.

  2. All silicon waveguide spherical microcavity coupler device.

    Science.gov (United States)

    Xifré-Pérez, E; Domenech, J D; Fenollosa, R; Muñoz, P; Capmany, J; Meseguer, F

    2011-02-14

    A coupler based on silicon spherical microcavities coupled to silicon waveguides for telecom wavelengths is presented. The light scattered by the microcavity is detected and analyzed as a function of the wavelength. The transmittance signal through the waveguide is strongly attenuated (up to 25 dB) at wavelengths corresponding to the Mie resonances of the microcavity. The coupling between the microcavity and the waveguide is experimentally demonstrated and theoretically modeled with the help of FDTD calculations.

  3. Silica suspended waveguide splitter-based biosensor

    Science.gov (United States)

    Harrison, M. C.; Hawk, R. M.; Armani, A. M.

    2012-03-01

    Recently, a novel integrated optical waveguide 50/50 splitter was developed. It is fabricated using standard lithographic methods, a pair of etching steps and a laser reflow step. However, unlike other integrated waveguide splitters, the waveguide is elevated off of the silicon substrate, improving its interaction with biomolecules in solution and in a flow field. Additionally, because it is fabricated from silica, it has very low optical loss, resulting in a high signal-to-noise ratio, making it ideal for biosensing. By functionalizing the device using an epoxy-silane method using small samples and confining the protein solutions to the device, we enable highly efficient detection of CREB with only 1 μL of solution. Therefore, the waveguide coupler sensor is representative of the next generation of ultra-sensitive optical biosensors, and, when combined with microfluidic capabilities, it will be an ideal candidate for a more fully-realized lab-on-a-chip device.

  4. Spatial mode discriminator based on leaky waveguides

    Science.gov (United States)

    Xu, Jing; Liu, Jialing; Shi, Hongkang; Chen, Yuntian

    2018-06-01

    We propose a conceptually simple and experimentally compatible configuration to discriminate the spatial mode based on leaky waveguides, which are inserted in-between the transmission link. The essence of such a spatial mode discriminator is to introduce the leakage of the power flux on purpose for detection. Importantly, the leaky angle of each individual spatial mode with respect to the propagation direction are different for non-degenerated modes, while the radiation patterns of the degenerated spatial modes in the plane perpendicular to the propagation direction are also distinguishable. Based on these two facts, we illustrate the operation principle of the spatial mode discriminators via two concrete examples; a w-type slab leaky waveguide without degeneracy, and a cylindrical leaky waveguide with degeneracy. The correlation between the leakage angle and the spatial mode distribution for a slab leaky waveguide, as well as differences between the in-plane radiation patterns of degenerated modes in a cylindrical leaky waveguide, are verified numerically and analytically. Such findings can be readily useful in discriminating the spatial modes for optical communication or optical sensing.

  5. Critical Analysis of Multimodal Discourse

    DEFF Research Database (Denmark)

    van Leeuwen, Theo

    2013-01-01

    This is an encyclopaedia article which defines the fields of critical discourse analysis and multimodality studies, argues that within critical discourse analysis more attention should be paid to multimodality, and within multimodality to critical analysis, and ends reviewing a few examples of re...

  6. Direct Wafer Bonding and Its Application to Waveguide Optical Isolators

    Directory of Open Access Journals (Sweden)

    Ryohei Takei

    2012-05-01

    Full Text Available This paper reviews the direct bonding technique focusing on the waveguide optical isolator application. A surface activated direct bonding technique is a powerful tool to realize a tight contact between dissimilar materials. This technique has the potential advantage that dissimilar materials are bonded at low temperature, which enables one to avoid the issue associated with the difference in thermal expansion. Using this technique, a magneto-optic garnet is successfully bonded on silicon, III-V compound semiconductors and LiNbO3. As an application of this technique, waveguide optical isolators are investigated including an interferometric waveguide optical isolator and a semileaky waveguide optical isolator. The interferometric waveguide optical isolator that uses nonreciprocal phase shift is applicable to a variety of waveguide platforms. The low refractive index of buried oxide layer in a silicon-on-insulator (SOI waveguide enhances the magneto-optic phase shift, which contributes to the size reduction of the isolator. A semileaky waveguide optical isolator has the advantage of large fabrication-tolerance as well as a wide operation wavelength range.

  7. Direct Wafer Bonding and Its Application to Waveguide Optical Isolators.

    Science.gov (United States)

    Mizumoto, Tetsuya; Shoji, Yuya; Takei, Ryohei

    2012-05-24

    This paper reviews the direct bonding technique focusing on the waveguide optical isolator application. A surface activated direct bonding technique is a powerful tool to realize a tight contact between dissimilar materials. This technique has the potential advantage that dissimilar materials are bonded at low temperature, which enables one to avoid the issue associated with the difference in thermal expansion. Using this technique, a magneto-optic garnet is successfully bonded on silicon, III-V compound semiconductors and LiNbO₃. As an application of this technique, waveguide optical isolators are investigated including an interferometric waveguide optical isolator and a semileaky waveguide optical isolator. The interferometric waveguide optical isolator that uses nonreciprocal phase shift is applicable to a variety of waveguide platforms. The low refractive index of buried oxide layer in a silicon-on-insulator (SOI) waveguide enhances the magneto-optic phase shift, which contributes to the size reduction of the isolator. A semileaky waveguide optical isolator has the advantage of large fabrication-tolerance as well as a wide operation wavelength range.

  8. Apodized coupled resonator waveguides.

    Science.gov (United States)

    Capmany, J; Muñoz, P; Domenech, J D; Muriel, M A

    2007-08-06

    In this paper we propose analyse the apodisation or windowing of the coupling coefficients in the unit cells of coupled resonator waveguide devices (CROWs) as a means to reduce the level of secondary sidelobes in the bandpass characteristic of their transfer functions. This technique is regularly employed in the design of digital filters and has been applied as well in the design of other photonic devices such as corrugated waveguide filters and fiber Bragg gratings. The apodisation of both Type-I and Type-II structures is discussed for several windowing functions.

  9. Position dependent spin wave spectrum in nanostrip magnonic waveguides

    International Nuclear Information System (INIS)

    Wang, Qi; Zhang, Huaiwu; Ma, Guokun; Liao, Yulong; Zhong, Zhiyong; Zheng, Yun

    2014-01-01

    The dispersion curves of propagating spin wave along different positions in nanostrip magnonic waveguides were studied by micromagnetic simulation. The results show that the modes of spin wave in the nanostrip magnonic waveguide are dependent on the position and the weak even modes of spin wave are excited even by symmetric excitation fields in a nanostrip magnonic waveguide. The reasons of the position dependent dispersion curve are explained by associating with geometrical confinement in the nanostrip magnonic waveguide

  10. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap....

  11. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter

    Science.gov (United States)

    Reichel, Kimberly S.; Mendis, Rajind; Mittleman, Daniel M.

    2016-06-01

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting.

  12. Quantitative study of rectangular waveguide behavior in the THz.

    Energy Technology Data Exchange (ETDEWEB)

    Rowen, Adam M.; Nordquist, Christopher Daniel; Wanke, Michael Clement

    2009-10-01

    This report describes our efforts to quantify the behavior of micro-fabricated THz rectangular waveguides on a configurable, robust semiconductor-based platform. These waveguides are an enabling technology for coupling THz radiation directly from or to lasers, mixers, detectors, antennas, and other devices. Traditional waveguides fabricated on semiconductor platforms such as dielectric guides in the infrared or co-planar waveguides in the microwave regions, suffer high absorption and radiative losses in the THz. The former leads to very short propagation lengths, while the latter will lead to unwanted radiation modes and/or crosstalk in integrated devices. This project exploited the initial developments of THz micro-machined rectangular waveguides developed under the THz Grand Challenge Program, but instead of focusing on THz transceiver integration, this project focused on exploring the propagation loss and far-field radiation patterns of the waveguides. During the 9 month duration of this project we were able to reproduce the waveguide loss per unit of length in the waveguides and started to explore how the loss depended on wavelength. We also explored the far-field beam patterns emitted by H-plane horn antennas attached to the waveguides. In the process we learned that the method of measuring the beam patterns has a significant impact on what is actually measured, and this may have an effect on most of the beam patterns of THz that have been reported to date. The beam pattern measurements improved significantly throughout the project, but more refinements of the measurement are required before a definitive determination of the beam-pattern can be made.

  13. Competition and transformation of modes of unidirectional air waveguide

    Science.gov (United States)

    Sun, Yu-xin; Kong, Xiang-kun; Fang, Yun-tuan

    2016-10-01

    In order to study the mode excitation of the unidirectional air waveguide, we place a line source at different positions in the waveguide. The source position plays an important role in determining the result of the competition of the even mode and the odd mode. For the source at the edge of the waveguide, the odd mode gets advantage over the even mode. As a result, the odd mode is excited, but the even mode is suppressed. For the source at the center of the waveguide, the even mode is excited, but the odd mode is suppressed. With two sources at two edges of the waveguide, the even mode is released because the two odd modes are canceled.

  14. General coupled mode theory in non-Hermitian waveguides.

    Science.gov (United States)

    Xu, Jing; Chen, Yuntian

    2015-08-24

    In the presence of loss and gain, the coupled mode equation on describing the mode hybridization of various waveguides or cavities, or cavities coupled to waveguides becomes intrinsically non-Hermitian. In such non-Hermitian waveguides, the standard coupled mode theory fails. We generalize the coupled mode theory with a properly defined inner product based on reaction conservation. We apply our theory to the non-Hermitian parity-time symmetric waveguides, and obtain excellent agreement with results obtained by finite element fullwave simulations. The theory presented here is typically formulated in space to study coupling between waveguides, which can be transformed into time domain by proper reformulation to study coupling between non-Hermitian resonators. Our theory has the strength of studying non-Hermitian optical systems with inclusion of the full vector fields, thus is useful to study and design non-Hermitian devices that support asymmetric and even nonreciprocal light propagations.

  15. Multimodal label-free microscopy

    Directory of Open Access Journals (Sweden)

    Nicolas Pavillon

    2014-09-01

    Full Text Available This paper reviews the different multimodal applications based on a large extent of label-free imaging modalities, ranging from linear to nonlinear optics, while also including spectroscopic measurements. We put specific emphasis on multimodal measurements going across the usual boundaries between imaging modalities, whereas most multimodal platforms combine techniques based on similar light interactions or similar hardware implementations. In this review, we limit the scope to focus on applications for biology such as live cells or tissues, since by their nature of being alive or fragile, we are often not free to take liberties with the image acquisition times and are forced to gather the maximum amount of information possible at one time. For such samples, imaging by a given label-free method usually presents a challenge in obtaining sufficient optical signal or is limited in terms of the types of observable targets. Multimodal imaging is then particularly attractive for these samples in order to maximize the amount of measured information. While multimodal imaging is always useful in the sense of acquiring additional information from additional modes, at times it is possible to attain information that could not be discovered using any single mode alone, which is the essence of the progress that is possible using a multimodal approach.

  16. Crosstalk analysis of silicon-on-insulator nanowire-arrayed waveguide grating

    International Nuclear Information System (INIS)

    Li Kai-Li; An Jun-Ming; Zhang Jia-Shun; Wang Yue; Wang Liang-Liang; Li Jian-Guang; Wu Yuan-Da; Yin Xiao-Jie; Hu Xiong-Wei

    2016-01-01

    The factors influencing the crosstalk of silicon-on-insulator (SOI) nanowire arrayed waveguide grating (AWG) are analyzed using the transfer function method. The analysis shows that wider and thicker arrayed waveguides, outsider fracture of arrayed waveguide, and larger channel space, could mitigate the deterioration of crosstalk. The SOI nanowire AWGs with different arrayed waveguide widths are fabricated by using deep ultraviolet lithography (DUV) and inductively coupled plasma etching (ICP) technology. The measurement results show that the crosstalk performance is improved by about 7 dB through adopting 800 nm arrayed waveguide width. (paper)

  17. Silicon-Based Technology for Integrated Waveguides and mm-Wave Systems

    DEFF Research Database (Denmark)

    Jovanovic, Vladimir; Gentile, Gennaro; Dekker, Ronald

    2015-01-01

    IC processing is used to develop technology for silicon-filled millimeter-wave-integrated waveguides. The front-end process defines critical waveguide sections and enables integration of dedicated components, such as RF capacitors and resistors. Wafer gluing is used to strengthen the mechanical...... support and deep reactive-ion etching forms the waveguide bulk with smooth and nearly vertical sidewalls. Aluminum metallization covers the etched sidewalls, fully enclosing the waveguides in metal from all sides. Waveguides are fabricated with a rectangular cross section of 560 μm x 280 μm. The measured...

  18. Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass

    Directory of Open Access Journals (Sweden)

    McMillen Ben

    2013-11-01

    Full Text Available We present work on the fabrication of Bragg waveguides in gallium-lanthanum-sulfide chalcogenide glass using an ultrafast laser. Waveguides were written with a single pass while modulating the writing beam. The spatial and temporal profile of the writing beam was ontrolled during waveguide fabrication in order to control the shape and size of the waveguide cross-section.

  19. Discontinuities during UV writing of waveguides

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Harpøth, Anders; Andersen, Marc

    2005-01-01

    UV writing of waveguides can be hampered by discontinuities where the index change process suddenly shuts down. We show that thermal effects may account for this behaviour.......UV writing of waveguides can be hampered by discontinuities where the index change process suddenly shuts down. We show that thermal effects may account for this behaviour....

  20. Focussed MeV ion beam implanted waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Von Bibra, M.L.; Roberts, A.; Nugent, K.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Single mode buried optical waveguides have been fabricated in fused silica by MeV proton implantation using a focussed hydrogen ion beam. The technique has the potential to direct write waveguide devices and produce multi-layered structures, without the need for intermediate steps such as mask fabrication or layered depositions. A micron resolution Confocal Raman Spectrometer has been used to map the distribution of atomic vacancies that forms the waveguiding region. The results are compared with theoretical calculations. Losses of 3 dB cm{sup -1} have been measured in unannealed samples, which decreases to less than 0.5 dB cm{sup -1} after annealing at 500 degrees Celsius. We describe methods for determining the refractive index distribution of single mode buried waveguides from their output intensity distributions via an inversion of the scalar wave equation. (authors). 5 figs.

  1. Focussed MeV ion beam implanted waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Von Bibra, M L; Roberts, A; Nugent, K; Jamieson, D N [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Single mode buried optical waveguides have been fabricated in fused silica by MeV proton implantation using a focussed hydrogen ion beam. The technique has the potential to direct write waveguide devices and produce multi-layered structures, without the need for intermediate steps such as mask fabrication or layered depositions. A micron resolution Confocal Raman Spectrometer has been used to map the distribution of atomic vacancies that forms the waveguiding region. The results are compared with theoretical calculations. Losses of 3 dB cm{sup -1} have been measured in unannealed samples, which decreases to less than 0.5 dB cm{sup -1} after annealing at 500 degrees Celsius. We describe methods for determining the refractive index distribution of single mode buried waveguides from their output intensity distributions via an inversion of the scalar wave equation. (authors). 5 figs.

  2. Photonic Choke-Joints for Dual-Polarization Waveguides

    Science.gov (United States)

    Wollack, Edward J.; U-yen, Kongpop; Chuss, David T.

    2010-01-01

    Photonic choke joint (PCJ) structures for dual-polarization waveguides have been investigated for use in device and component packaging. This interface enables the realization of a high performance non-contacting waveguide joint without degrading the in-band signal propagation properties. The choke properties of two tiling approaches, symmetric square Cartesian and octagonal quasi-crystal lattices of metallic posts, are explored and optimal PCJ design parameters are presented. For each of these schemes, the experimental results for structures with finite tilings demonstrate near ideal transmission and reflection performance over a full waveguide band.

  3. Reconfigurable optical manipulation by phase change material waveguides.

    Science.gov (United States)

    Zhang, Tianhang; Mei, Shengtao; Wang, Qian; Liu, Hong; Lim, Chwee Teck; Teng, Jinghua

    2017-05-25

    Optical manipulation by dielectric waveguides enables the transportation of particles and biomolecules beyond diffraction limits. However, traditional dielectric waveguides could only transport objects in the forward direction which does not fulfill the requirements of the next generation lab-on-chip system where the integrated manipulation system should be much more flexible and multifunctional. In this work, bidirectional transportation of objects on the nanoscale is demonstrated on a rectangular waveguide made of the phase change material Ge 2 Sb 2 Te 5 (GST) by numerical simulations. Either continuous pushing forces or pulling forces are generated on the trapped particles when the GST is in the amorphous or crystalline phase. With the technique of a femtosecond laser induced phase transition on the GST, we further proposed a reconfigurable optical trap array on the same waveguide. This work demonstrates GST waveguide's potential of achieving multifunctional manipulation of multiple objects on the nanoscale with plausible optical setups.

  4. Multimode laser emission from dye-doped hollow polymer optical fibre

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Dye-doped polymer optical fibre preforms were fabricated by the controlled polymeriza- tion of Rh B-doped methyl methacrylate (MMA). Hole in the preform can be achieved by placing a teflon rod on the centre of the glass tube during the polymerization. Final fibre structure with required diameter was ...

  5. 16 channel 200 GHz arrayed waveguide grating based on Si nanowire waveguides

    International Nuclear Information System (INIS)

    Zhao Lei; An Junming; Zhang Jiashun; Song Shijiao; Wu Yuanda; Hu Xiongwei

    2011-01-01

    A 16 channel arrayed waveguide grating demultiplexer with 200 GHz channel spacing based on Si nanowire waveguides is designed. The transmission spectra response simulated by transmission function method shows that the device has channel spacing of 1.6 nm and crosstalk of 31 dB. The device is fabricated by 193 nm deep UV lithography in silicon-on-substrate. The demultiplexing characteristics are observed with crosstalk of 5-8 dB, central channel's insertion loss of 2.2 dB, free spectral range of 24.7 nm and average channel spacing of 1.475 nm. The cause of the spectral distortion is analyzed specifically. (semiconductor devices)

  6. The Multimodal Possibilities of Online Instructions

    DEFF Research Database (Denmark)

    Kampf, Constance

    2006-01-01

    The WWW simplifies the process of delivering online instructions through multimodal channels because of the ease of use for voice, video, pictures, and text modes of communication built into it.  Given that instructions are being produced in multimodal format for the WWW, how do multi-modal analy......The WWW simplifies the process of delivering online instructions through multimodal channels because of the ease of use for voice, video, pictures, and text modes of communication built into it.  Given that instructions are being produced in multimodal format for the WWW, how do multi...

  7. Brillouin gain enhancement in nano-scale photonic waveguide

    Science.gov (United States)

    Nouri Jouybari, Soodabeh

    2018-05-01

    The enhancement of stimulated Brillouin scattering in nano-scale waveguides has a great contribution in the improvement of the photonic devices technology. The key factors in Brillouin gain are the electrostriction force and radiation pressure generated by optical waves in the waveguide. In this article, we have proposed a new scheme of nano-scale waveguide in which the Brillouin gain is considerably improved compared to the previously-reported schemes. The role of radiation pressure in the Brillouin gain was much higher than the role of the electrostriction force. The Brillouin gain strongly depends on the structural parameters of the waveguide and the maximum value of 12127 W-1 m-1 is obtained for the Brillouin gain.

  8. Analysis and synthesis of (SAR) waveguide phased array antennas

    Science.gov (United States)

    Visser, H. J.

    1994-02-01

    This report describes work performed due to ESA contract No. 101 34/93/NL/PB. Started is with a literature study on dual polarized waveguide radiators, resulting in the choice for the open ended square waveguide. After a thorough description of the mode matching infinite waveguide array analysis method - including finiteness effects - that forms the basis for all further described analysis and synthesis methods, the accuracy of the analysis software is validated by comparison with measurements on two realized antennas. These antennas have centered irises in the waveguide apertures and a dielectric wide angle impedance matching sheet in front of the antenna. A synthesis method, using simulated annealing and downhill simplex, is described next and different antenna designs, based on the analysis of a single element in an infinite array environment, are presented. Next, designs of subarrays are presented. Shown is the paramount importance of including the array environment in the design of a subarray. A microstrip patch waveguide exciter and subarray feeding network are discussed and the depth of the waveguide radiator is estimated. Chosen is a rectangular grid array with waveguides of 2.5 cm depth without irises and without dielectric sheet, grouped in linear 8 elements subarrays.

  9. Cavity-photon-switched coherent transient transport in a double quantum waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Nzar Rauf, E-mail: nra1@hi.is; Gudmundsson, Vidar, E-mail: vidar@raunvis.hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Tang, Chi-Shung [Department of Mechanical Engineering, National United University, 1, Lienda, 36003 Miaoli, Taiwan (China); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)

    2014-12-21

    We study a cavity-photon-switched coherent electron transport in a symmetric double quantum waveguide. The waveguide system is weakly connected to two electron reservoirs, but strongly coupled to a single quantized photon cavity mode. A coupling window is placed between the waveguides to allow electron interference or inter-waveguide transport. The transient electron transport in the system is investigated using a quantum master equation. We present a cavity-photon tunable semiconductor quantum waveguide implementation of an inverter quantum gate, in which the output of the waveguide system may be selected via the selection of an appropriate photon number or “photon frequency” of the cavity. In addition, the importance of the photon polarization in the cavity, that is, either parallel or perpendicular to the direction of electron propagation in the waveguide system is demonstrated.

  10. Optical spectroscopy and optical waveguide fabrication in Eu3+ and Eu3+/Tb3+ doped zinc–sodium–aluminosilicate glasses

    International Nuclear Information System (INIS)

    Caldiño, U.; Speghini, A.; Berneschi, S.; Bettinelli, M.; Brenci, M.; Pasquini, E.; Pelli, S.; Righini, G.C.

    2014-01-01

    Optical and spectroscopic properties of 2.0% Eu(PO 3 ) 3 singly doped and 5.0% Tb(PO 3 ) 3 –2.0% Eu(PO 3 ) 3 codoped zinc–sodium–aluminosilicate glasses were investigated. Reddish-orange light emission, with x=0.64 and y=0.36 CIE1931 chromaticity coordinates, is obtained in the europium singly doped glass excited at 393 nm. Such chromaticity coordinates are close to those (0.67,0.33) standard of the National Television System Committee for the red phosphor. When the sodium–zinc–aluminosilicate glass is co-doped with Tb 3+ and Eu 3+ , reddish-orange light emission, with (0.61,0.37) CIE1931 chromaticity coordinates, is obtained upon Tb 3+ excitation at 344 nm. This reddish-orange luminescence is generated mainly by 5 D 0 → 7 F 1 and 5 D 0 → 7 F 2 emissions of Eu 3+ , europium being sensitized by terbium through a non-radiative energy transfer. From an analysis of the Tb 3+ emission decay curves it is inferred that the Tb 3+ →Eu 3+ energy transfer might take place between Tb 3+ and Eu 3+ clusters through a short-range interaction mechanism, so that an electric dipole–quadrupole interaction appears to be the most probable transfer mechanism. The efficiency of this energy transfer is about 62% upon excitation at 344 nm. In the singly doped and codoped glasses multimode optical waveguides were successfully produced by Ag + –Na + ion exchange, and they could be characterized at various wavelengths. -- Highlights: • Reddish-orange light emission can be generated from Tb 3+ and Eu 3+ codoped zinc–sodium–aluminosilicate glasses excited at 344 nm. • The Eu 3+ is sensitized by Tb 3+ through a non-radiative energy transfer. • Highly multimode waveguides can be fabricated by diluted silver–sodium exchange. • This type of AlGaN LEDs pumped glass phosphors might be useful for generation of reddish-orange light

  11. Control of gain in conjugated polymers and perylene dyes

    International Nuclear Information System (INIS)

    Sheridan, A.

    2001-03-01

    This thesis presents an investigation into the factors which control the gain and amplification properties in conjugated materials. Conjugated polymers and perylene dyes are highly fluorescent, are easy to process into thin films, and exhibit strong amplification over a broad gain bandwidth making them ideal for use in lasers and amplifiers. The stimulated emission created when thin films of the red emitting polymer poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylenvinylene) (MEH-PPV) were photoexcited with high energy laser pulses was investigated. This was characterised by a dramatic narrowing of the emission spectrum which has been assigned to amplified spontaneous emission (ASE). The emission was found to have a gaussian profile and the gain coefficient was found to be 4 cm -1 . The temperature dependence of the absorption, photoluminescence and ASE of films of MEH-PPV was measured. The effect of film morphology on the photophysical properties was investigated by using films cast from two spinning solvents, chlorobenzene (CB) and tetrahydrofuran (THF). Film morphology was found to greatly affect the temperature dependence. A particularly important property is the spectral position of the ASE and the factors which affect it. By controlling the film thickness close to the cut-off thickness for waveguiding in the polymer film it was shown that the peak position of the ASE could be tuned by 31 nm. Modelling of the waveguide modes in the polymer films was used to explain this effect. The cut-off wavelength for each film was measured and good agreement with the theory was found. In order to investigate ways in which energy transfer could be used to control the emission, two perylene dyes were used as a donor-acceptor pair in a host matrix of poly methymethacralate (PMMA). The position of the ASE was found to depend on the acceptor concentration. Measurements of the photoluminescence quantum yield and time-resolved luminescence measurements showed that the energy transfer

  12. Vector pulsing soliton of self-induced transparency in waveguide

    International Nuclear Information System (INIS)

    Adamashvili, G.T.

    2015-01-01

    A theory of an optical resonance vector pulsing soliton in waveguide is developed. A thin transition layer containing semiconductor quantum dots forms the boundary between the waveguide and one of the connected media. Analytical and numerical solutions for the optical vector pulsing soliton in waveguide are obtained. The vector pulsing soliton in the presence of excitonic and bi-excitonic excitations is compared with the soliton for waveguide TM-modes with parameters that can be used in modern optical experiments. It is shown that these nonlinear waves have significantly different parameters and shapes. - Highlights: • An optical vector pulsing soliton in a planar waveguide is presented. • Explicit form of the optical vector pulsing soliton are obtained. • The vector pulsing soliton and the soliton have different parameters and profiles

  13. A Thermally Tunable 1 × 4 Channel Wavelength Demultiplexer Designed on a Low-Loss Si3N4 Waveguide Platform

    Directory of Open Access Journals (Sweden)

    Mohammed Shafiqul Hai

    2015-11-01

    Full Text Available A thermally tunable 1 × 4 channel optical demultiplexer was designed using an ultra low-loss Si3N4 (propagation loss ~3.1 dB/m waveguide. The demultiplexer has three 2 × 2 Mach-Zehnder interferometers (MZI, where each of the MZI contains two 2 × 2 general interference based multimode interference (MMI couplers. The MMI couplers exhibit −3.3 dB to −3.7 dB power division ratios over a 50 nm wavelength range from 1530 nm to 1580 nm. The chrome-based (Cr heaters placed on the delay arms of the MZI filters enable thermal tuning to control the optical phase shift in the MZI delay arms. This facilitates achieving moderately low crosstalk (14.5 dB between the adjacent channels. The optical insertion loss of the demultiplexer per channel is between 1.5 dB to 2.2 dB over the 1550 nm to 1565 nm wavelength range. Error free performance (BER of 10−12 is obtained for all four 40 Gb/s data rate channels. The optical demultiplexer is an important tool towards building photonic integrated circuits with complex optical signal processing functionalities in the low-loss Si3N4 waveguide platform.

  14. Multimodality imaging techniques.

    Science.gov (United States)

    Martí-Bonmatí, Luis; Sopena, Ramón; Bartumeus, Paula; Sopena, Pablo

    2010-01-01

    In multimodality imaging, the need to combine morphofunctional information can be approached by either acquiring images at different times (asynchronous), and fused them through digital image manipulation techniques or simultaneously acquiring images (synchronous) and merging them automatically. The asynchronous post-processing solution presents various constraints, mainly conditioned by the different positioning of the patient in the two scans acquired at different times in separated machines. The best solution to achieve consistency in time and space is obtained by the synchronous image acquisition. There are many multimodal technologies in molecular imaging. In this review we will focus on those multimodality image techniques more commonly used in the field of diagnostic imaging (SPECT-CT, PET-CT) and new developments (as PET-MR). The technological innovations and development of new tracers and smart probes are the main key points that will condition multimodality image and diagnostic imaging professionals' future. Although SPECT-CT and PET-CT are standard in most clinical scenarios, MR imaging has some advantages, providing excellent soft-tissue contrast and multidimensional functional, structural and morphological information. The next frontier is to develop efficient detectors and electronics systems capable of detecting two modality signals at the same time. Not only PET-MR but also MR-US or optic-PET will be introduced in clinical scenarios. Even more, MR diffusion-weighted, pharmacokinetic imaging, spectroscopy or functional BOLD imaging will merge with PET tracers to further increase molecular imaging as a relevant medical discipline. Multimodality imaging techniques will play a leading role in relevant clinical applications. The development of new diagnostic imaging research areas, mainly in the field of oncology, cardiology and neuropsychiatry, will impact the way medicine is performed today. Both clinical and experimental multimodality studies, in

  15. Multimodality Registration without a Dedicated Multimodality Scanner

    Directory of Open Access Journals (Sweden)

    Bradley J. Beattie

    2007-03-01

    Full Text Available Multimodality scanners that allow the acquisition of both functional and structural image sets on a single system have recently become available for animal research use. Although the resultant registered functional/structural image sets can greatly enhance the interpretability of the functional data, the cost of multimodality systems can be prohibitive, and they are often limited to two modalities, which generally do not include magnetic resonance imaging. Using a thin plastic wrap to immobilize and fix a mouse or other small animal atop a removable bed, we are able to calculate registrations between all combinations of four different small animal imaging scanners (positron emission tomography, single-photon emission computed tomography, magnetic resonance, and computed tomography [CT] at our disposal, effectively equivalent to a quadruple-modality scanner. A comparison of serially acquired CT images, with intervening acquisitions on other scanners, demonstrates the ability of the proposed procedures to maintain the rigidity of an anesthetized mouse during transport between scanners. Movement of the bony structures of the mouse was estimated to be 0.62 mm. Soft tissue movement was predominantly the result of the filling (or emptying of the urinary bladder and thus largely constrained to this region. Phantom studies estimate the registration errors for all registration types to be less than 0.5 mm. Functional images using tracers targeted to known structures verify the accuracy of the functional to structural registrations. The procedures are easy to perform and produce robust and accurate results that rival those of dedicated multimodality scanners, but with more flexible registration combinations and while avoiding the expense and redundancy of multimodality systems.

  16. Tunable inkjet-printed slotted waveguide antenna on a ferrite substrate

    KAUST Repository

    Nafe, Ahmed; Farooqui, Muhammad; Shamim, Atif

    2015-01-01

    In this work an inkjet-printed frequency-tunable slotted waveguide antenna on a ferrite substrate is reported. Unlike the typical substrate integrated waveguide approach with via holes, a true 3D rectangular waveguide is realized by inkjet-printing

  17. Excitation of waves in elastic waveguides by piezoelectric patch actuators

    CSIR Research Space (South Africa)

    Loveday, PW

    2006-01-01

    Full Text Available for waveguides excited by piezoelectric patch actuators. The waveguide is modelled using specially developed waveguide finite elements. These elements are formulated using a complex exponential to describe the wave propagation along the structure and finite...

  18. Coaxial waveguide mode reconstruction and analysis with THz digital holography.

    Science.gov (United States)

    Wang, Xinke; Xiong, Wei; Sun, Wenfeng; Zhang, Yan

    2012-03-26

    Terahertz (THz) digital holography is employed to investigate the properties of waveguides. By using a THz digital holographic imaging system, the propagation modes of a metallic coaxial waveguide are measured and the mode patterns are restored with the inverse Fresnel diffraction algorithm. The experimental results show that the THz propagation mode inside the waveguide is a combination of four modes TE₁₁, TE₁₂, TM₁₁, and TM₁₂, which are in good agreement with the simulation results. In this work, THz digital holography presents its strong potential as a platform for waveguide mode charactering. The experimental findings provide a valuable reference for the design of THz waveguides.

  19. Bends and splitters in graphene nanoribbon waveguides

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Mortensen, N. Asger

    2013-01-01

    We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory...

  20. Zero-Dispersion Slow Light with Wide Bandwidth in Photonic Crystal Coupled Waveguides

    International Nuclear Information System (INIS)

    Xiao-Yu, Mao; Geng-Yan, Zhang; Yi-Dong, Huang; Wei, Zhang; Jiang-De, Peng

    2008-01-01

    By introducing an adjustment waveguide besides the incident waveguide, zero-dispersion slow light with wide bandwidth can be realized due to anticrossing of the incident waveguide mode and the adjustment waveguide mode. The width of the adjustment waveguide (W 2 ) and the hole radii of the coupling region (r') will change the dispersion of incident waveguide mode. Theoretical investigation reveals that zero dispersion at various low group velocity ν g in incident waveguide can be achieved. In particular, proper W 2 and r' can lead to the lowest ν g of 0.0085c at 1550 nm with wide bandwidth of 202 GHz for zero dispersion

  1. Femtosecond laser inscribed cladding waveguide lasers in Nd:LiYF4 crystals

    Science.gov (United States)

    Li, Shi-Ling; Huang, Ze-Ping; Ye, Yong-Kai; Wang, Hai-Long

    2018-06-01

    Depressed circular cladding, buried waveguides were fabricated in Nd:LiYF4 crystals with an ultrafast Yb-doped fiber master-oscillator power amplifier laser. Waveguides were optimized by varying the laser writing conditions, such as pulse energy, focus depth, femtosecond laser polarization and scanning velocity. Under optical pump at 799 nm, cladding waveguides showed continuous-wave laser oscillation at 1047 nm. Single- and multi-transverse modes waveguide laser were realized by varying the waveguide diameter. The maximum output power in the 40 μm waveguide is ∼195 mW with a slope efficiency of 34.3%. The waveguide lasers with hexagonal and cubic cladding geometry were also realized.

  2. Nonlinear optical model for strip plasmonic waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016...... approaches. (C) 2016 Optical Society of America...

  3. Analysis of a Waveguide-Fed Metasurface Antenna

    Science.gov (United States)

    Smith, David R.; Yurduseven, Okan; Mancera, Laura Pulido; Bowen, Patrick; Kundtz, Nathan B.

    2017-11-01

    The metasurface concept has emerged as an advantageous reconfigurable antenna architecture for beam forming and wave-front shaping, with applications that include satellite and terrestrial communications, radar, imaging, and wireless power transfer. The metasurface antenna consists of an array of metamaterial elements distributed over an electrically large structure, each subwavelength in dimension and with subwavelength separation between elements. In the antenna configuration we consider, the metasurface is excited by the fields from an attached waveguide. Each metamaterial element can be modeled as a polarizable dipole that couples the waveguide mode to radiation modes. Distinct from the phased array and electronically-scanned-antenna architectures, a dynamic metasurface antenna does not require active phase shifters and amplifiers but rather achieves reconfigurability by shifting the resonance frequency of each individual metamaterial element. We derive the basic properties of a one-dimensional waveguide-fed metasurface antenna in the approximation in which the metamaterial elements do not perturb the waveguide mode and are noninteracting. We derive analytical approximations for the array factors of the one-dimensional antenna, including the effective polarizabilities needed for amplitude-only, phase-only, and binary constraints. Using full-wave numerical simulations, we confirm the analysis, modeling waveguides with slots or complementary metamaterial elements patterned into one of the surfaces.

  4. Tunable arrayed waveguide grating driven by surface acoustic waves

    Science.gov (United States)

    Crespo-Poveda, Antonio; Hernández-Mínguez, Alberto; Biermann, Klaus; Tahraoui, Abbes; Gargallo, Bernardo; Muñoz, Pascual; Santos, Paulo V.; Cantarero, Andrés.; de Lima, Maurício M.

    2016-03-01

    We present a design approach for compact reconfigurable phased-array wavelength-division multiplexing (WDM) devices with N access waveguides (WGs) based on multimode interference (MMI) couplers. The proposed devices comprise two MMI couplers which are employed as power splitters and combiners, respectively, linked by an array of N single-mode WGs. First, passive devices are explored. Taking advantage of the transfer phases between the access ports of the MMI couplers, we derive very simple phase relations between the arms that provide wavelength dispersion at the output plane of the devices. When the effective refractive index of the WGs is modulated with the proper relative optical phase difference, each wavelength component can switch paths between the preset output channel and the remaining output WGs. Moreover, very simple phase relations between the modulated WGs that enable the reconfiguration of the output channel distribution when the appropriated coupling lengths of the MMI couplers are chosen are also derived. In this way, a very compact expression to calculate the channel assignment of the devices as a function of the applied phase shift is derived for the general case of N access WGs. Finally, the experimental results corresponding to an acoustically driven phased-array WDM device with five access WGs fabricated on (Al,Ga)As are shown.

  5. The cross waveguide grating: proposal, theory and applications.

    Science.gov (United States)

    Muñoz, Pascual; Pastor, Daniel; Capmany, José

    2005-04-18

    In this paper a novel grating-like integrated optics device is proposed, the Cross Waveguide Grating (XWG). The device is based upon a modified configuration of a traditional Arrayed Waveguide Grating (AWG). The Arrayed Waveguides part is changed, as detailed along this document, giving the device both the ability of multi/demultiplexing and power splitting/coupling. Design examples and transfer function simulations show good agreement with the presented theory. Finally, some of the envisaged applications are outlined.

  6. Nano-optical conveyor belt with waveguide-coupled excitation.

    Science.gov (United States)

    Wang, Guanghui; Ying, Zhoufeng; Ho, Ho-pui; Huang, Ying; Zou, Ningmu; Zhang, Xuping

    2016-02-01

    We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration.

  7. Engineering spin-wave channels in submicrometer magnonic waveguides

    Directory of Open Access Journals (Sweden)

    XiangJun Xing

    2013-03-01

    Full Text Available Based on micromagnetic simulations and model calculations, we demonstrate that degenerate well and barrier magnon modes can exist concurrently in a single magnetic waveguide magnetized perpendicularly to the long axis in a broad frequency band, corresponding to copropagating edge and centre spin waves, respectively. The dispersion relations of these magnon modes clearly show that the edge and centre modes possess much different wave characteristics. By tailoring the antenna size, the edge mode can be selectively activated. If the antenna is sufficiently narrow, both the edge and centre modes are excited with considerable efficiency and propagate along the waveguide. By roughening the lateral boundary of the waveguide, the characteristics of the relevant channel can be easily engineered. Moreover, the coupling of the edge and centre modes can be conveniently controlled by scaling the width of the waveguide. For a wide waveguide with a narrow antenna, the edge and centre modes travel relatively independently in spatially-separate channels, whereas for a narrow strip, these modes strongly superpose in space. These discoveries might find potential applications in emerging magnonic devices.

  8. Planned waveguide electric field breakdown studies

    International Nuclear Information System (INIS)

    Wang Faya; Li Zenghai

    2012-01-01

    This paper presents an experimental setup for X-band rf breakdown studies. The setup is composed of a section of WR90 waveguide with a tapered pin located at the middle of the waveguide E-plane. Another pin is used to rf match the waveguide so it operates in a travelling wave mode. By adjusting the penetration depth of the tapered pin, different surface electric field enhancements can be obtained. The setup will be used to study the rf breakdown rate dependence on power flow in the waveguide for a constant maximum surface electric field on the pin. Two groups of pins have been designed. The Q of one group is different and very low. The other has a similar Q. With the test of the two groups of pins, we should be able to discern how the net power flow and Q affect the breakdown. Furthermore, we will apply an electron beam treatment to the pins to study its effect on breakdown. Overall, these experiments should be very helpful in understanding rf breakdown phenomena and could significantly benefit the design of high gradient accelerator structures.

  9. Multimodal fluorescence imaging spectroscopy

    NARCIS (Netherlands)

    Stopel, Martijn H W; Blum, Christian; Subramaniam, Vinod; Engelborghs, Yves; Visser, Anthonie J.W.G.

    2014-01-01

    Multimodal fluorescence imaging is a versatile method that has a wide application range from biological studies to materials science. Typical observables in multimodal fluorescence imaging are intensity, lifetime, excitation, and emission spectra which are recorded at chosen locations at the sample.

  10. Poling of UV-written Waveguides

    DEFF Research Database (Denmark)

    Arentoft, Jesper; Kristensen, Martin; Hübner, Jörg

    1999-01-01

    We report poling of UV-written silica waveguides. Thermal poling induces an electro-optic coefficient of 0.05 pm/V. We also demonstrate simultaneous UV-writing and UV-poling. No measurable decay in the induced electro-optic effect was detected after nine months......We report poling of UV-written silica waveguides. Thermal poling induces an electro-optic coefficient of 0.05 pm/V. We also demonstrate simultaneous UV-writing and UV-poling. No measurable decay in the induced electro-optic effect was detected after nine months...

  11. Multimodal Imaging Nanoparticles Derived from Hyaluronic Acid for Integrated Preoperative and Intraoperative Cancer Imaging

    Directory of Open Access Journals (Sweden)

    William M. Payne

    2017-01-01

    Full Text Available Surgical resection remains the most promising treatment strategy for many types of cancer. Residual malignant tissue after surgery, a consequence in part due to positive margins, contributes to high mortality and disease recurrence. In this study, multimodal contrast agents for integrated preoperative magnetic resonance imaging (MRI and intraoperative fluorescence image-guided surgery (FIGS are developed. Self-assembled multimodal imaging nanoparticles (SAMINs were developed as a mixed micelle formulation using amphiphilic HA polymers functionalized with either GdDTPA for T1 contrast-enhanced MRI or Cy7.5, a near infrared fluorophore. To evaluate the relationship between MR and fluorescence signal from SAMINs, we employed simulated surgical phantoms that are routinely used to evaluate the depth at which near infrared (NIR imaging agents can be detected by FIGS. Finally, imaging agent efficacy was evaluated in a human breast tumor xenograft model in nude mice, which demonstrated contrast in both fluorescence and magnetic resonance imaging.

  12. Reflection and Transmission Coefficient of Yttrium Iron Garnet Filled Polyvinylidene Fluoride Composite Using Rectangular Waveguide at Microwave Frequencies

    Science.gov (United States)

    Soleimani, Hassan; Abbas, Zulkifly; Yahya, Noorhana; Shameli, Kamyar; Soleimani, Hojjatollah; Shabanzadeh, Parvaneh

    2012-01-01

    The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer. PMID:22942718

  13. Compact Probe for Power Detection from the Narrow Side of the Waveguide

    International Nuclear Information System (INIS)

    Kung, C.C.; Bernabei, S.; Gumbas, J.; Greenough, N.; Fredd, E.; Wilson, J.R.; Hosea, J.

    2004-01-01

    Phased array antennas with high directivity have a variety of applications. One of their applications is in RF heating for magnetically confined plasma fusion research. Among these RF heating schemes, waveguide arrays with careful phase control on each waveguide can act as a phased array antenna to deliver megawatts of power for heating fusion plasmas in the lower-hybrid range of frequencies (1 GHz-10 GHz). In order to achieve compactness, it is common to stack reduced height waveguide together to form the waveguide array. As long as the delivered power does not cause arcing in the waveguide, the waveguide height can be quite small. Due to this confined space in a stack of reduced height waveguides, power detection of the incident and reflected wave in the reduced height waveguide is extremely difficult. A new compact probe, which employs current loops, to monitor the incident and reflected wave from the narrow side of the reduced height waveguide has been developed. Its theory and performance will be reported in this paper

  14. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits.

    Science.gov (United States)

    Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; Wang, Yaguo; Subbaraman, Harish; Chen, Ray T

    2016-05-05

    Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantly reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.

  15. Utilization of optical waveguides in dosimetry

    International Nuclear Information System (INIS)

    Darikova, A.; Vanickova, M.; Matejec, V.; Pospisilova, M.

    1994-01-01

    Some optical waveguides used for communication purposes are very sensitive to ionizing radiation.Ionizing radiation radiation affects the optical waveguides by creating color centers that are responsible for the transmission loss.This transmission loss is the function of wavelength of the passing light. The dose of ionizing radiation will manifest itself not only in the magnitude of the transmission loss value but even in changing the position of maximum of the transmission loss curve with respect to the wavelength. The position of the maximum is stable in time and temperature and independent of dose rate. The study of effects of ionizing radiation on the optical waveguides leads to the possibility of utilizing them not only as sensors of ionizing radiation but even as a dosimeters. 4 figs., 2 refs. (author)

  16. Nanofocusing in a tapered graphene plasmonic waveguide

    DEFF Research Database (Denmark)

    Dai, Yunyun; Zhu, Xiaolong; Mortensen, N. Asger

    2015-01-01

    Gated or doped graphene can support plasmons making it a promising plasmonic material in the terahertz regime. Here, we show numerically that in a tapered graphene plasmonic waveguide mid- and far-infrared light can be focused in nanometer scales, far beyond the diffraction limit. The underlying...... physics lies in that when propagating along the direction towards the tip both the group and phase velocities of the plasmons supported by the tapered graphene waveguide are reduced accordingly, eventually leading to nanofocusing at the tip with a huge enhancement of optical fields. The nanofocusing...... of optical fields in tapered graphene plasmonic waveguides could be potentially exploited in the enhancement of light–matter interactions....

  17. Copper nanorod array assisted silicon waveguide polarization beam splitter.

    Science.gov (United States)

    Kim, Sangsik; Qi, Minghao

    2014-04-21

    We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology.

  18. Experimental Verification of Guided-Wave Lumped Circuits Using Waveguide Metamaterials

    Science.gov (United States)

    Li, Yue; Zhang, Zhijun

    2018-04-01

    Through the construction and characterization in microwave frequencies, we experimentally demonstrate our recently developed theory of waveguide lumped circuits, i.e., waveguide metatronics [Sci. Adv. 2, e1501790 (2016), 10.1126/sciadv.1501790], as a method to design subwavelength-scaled analog circuits. In the paradigm of waveguide metatronics, numbers of lumped inductors and capacitors are easily integrated functionally inside the waveguide, which is an irreplaceable transmission line in millimeter-wave and terahertz systems with the advantages of low radiation loss and low crosstalk. An example of multiple-ordered metatronic filters with layered structures is fabricated utilizing the technique of substrate integrated waveguides, which can be easily constructed by the printed-circuit-board process. The materials used in the construction are also typical microwave materials with positive permittivity, low loss, and negligible dispersion, imitating the plasmonic materials with negative permittivity in the optical domain. The results verify the theory of waveguide metatronics, which provides an efficient platform of functional lumped circuit design for guided-wave processing.

  19. A unified approach for radiative losses and backscattering in optical waveguides

    International Nuclear Information System (INIS)

    Melati, D; Morichetti, F; Melloni, A

    2014-01-01

    Sidewall roughness in optical waveguides represents a severe impairment for the proper functionality of photonic integrated circuits. The interaction between the propagating mode and the roughness is responsible for both radiative losses and distributed backscattering. In this paper, a unified vision on these extrinsic loss phenomena is discussed, highlighting the fundamental role played by the sensitivity of the effective index n eff of the optical mode to waveguide width variations. The n w model presented applies to both 2D slab waveguides and 3D laterally confined waveguides and is in very good agreement with existing models that individually describe radiative loss or backscattering only. Experimental results are presented, demonstrating the validity of the n w model for arbitrary waveguide geometries and technologies. This approach enables an accurate description of realistic optical waveguides and provides simple design rules for optimization of the waveguide geometry in order to reduce the propagation losses generated by sidewall roughness. (paper)

  20. Near-coast tsunami waveguiding: phenomenon and simulations

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Adytia, D.; Adytia, D.; Andonowati, A.

    2008-01-01

    In this paper we show that shallow, elongated parts in a sloping bottom toward the coast will act as a waveguide and lead to large enhanced wave amplification for tsunami waves. Since this is even the case for narrow shallow regions, near-coast tsunami waveguiding may contribute to an explanation

  1. Multimodality in organization studies

    DEFF Research Database (Denmark)

    Van Leeuwen, Theo

    2017-01-01

    This afterword reviews the chapters in this volume and reflects on the synergies between organization and management studies and multimodality studies that emerge from the volume. These include the combination of strong sociological theorizing and detailed multimodal analysis, a focus on material...

  2. Devices Based on Parallel-Plate Waveguides for Terahertz Applications

    Science.gov (United States)

    Reichel, Kimberly S.

    The promise of terahertz (THz) frequencies for technological applications is wide, spanning from wireless communications for faster downloads to non-destructive imaging for security screening. Although the potential is high, there is a lack of the basic devices necessary to make these prospects a reality. One essential component for any electromagnetic wave technology is a waveguide, which as the name implies can guide light waves, like a hose would direct water from the source to the desired target location. Several waveguide types have been introduced for THz frequencies, one of the most promising of which is the parallel-plate waveguide (PPWG). The PPWG is attractive based on its superior waveguiding performance of efficient input coupling and low losses, but additionally it serves as an excellent platform for other purposes. The projects presented in this dissertation highlight a few new functionalities incorporated into, and enabled by, a PPWG for sensing, filtering, and splitting. First, we characterize a high quality factor resonator integrated into a PPWG used for microfluidic sensing. Typically, the characterization of the frequency-dependent electric field profile inside a narrowband resonator is challenging, either due to limited optical access or to the perturbative effects of invasive probes. In our situation however, the geometry of the PPWG allows for direct access to the resonant cavity via the open sides of the waveguide and a novel implementation of the air-biased coherent detection (ABCD) method permits non-invasive probing. Through both experiment and simulation, we see the narrowband frequencies trapped in the resonator and also discover an unexpected broadband asymmetric field distribution due to the resonator inside the waveguide, yielding new information that is not available in the far field. Second, we investigate a narrowband tunable filter based on extraordinary optical transmission (EOT) through a 1D array of subwavelength holes inside

  3. Waveguide-based optofluidics

    DEFF Research Database (Denmark)

    Karnutsch, Christian; Tomljenovic-Hanic, Snjezana; Monat, Christelle

    2010-01-01

    blocks in many applications, from microlasers and biomedical sensor systems to optical switches and integrated circuits. In this paper, we show that PhC microcavities can be formed by infusing a liquid into a selected section of a uniform PhC waveguide and that the optical properties of these cavities...... and highlight the benefits of an optofluidic approach, focusing on optofluidic cavities created in silicon photonic crystal (PhC) waveguide platforms. These cavities can be spatially and spectrally reconfigured, thus allowing a dynamic control of their optical characteristics. PhC cavities are major building...... can be tuned and adapted. By taking advantage of the negative thermo-optic coefficient of liquids, we describe a method which renders PhC cavities insensitive to temperature changes in the environment. This is only one example where the fluid-control of optical elements results in a functionality...

  4. Optimization of metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, N.; Horvath, R.; Pedersen, H.C.

    2005-01-01

    The present paper deals with the optimization of metal-clad waveguides for sensor applications to achieve high sensitivity for adlayer and refractive index measurements. By using the Fresnel reflection coefficients both the angular shift and the width of the resonances in the sensorgrams are taken...... into account. Our optimization shows that it is possible for metal-clad waveguides to achieve a sensitivity improvement of 600% compared to surface-plasmon-resonance sensors....

  5. Practical multimodal care for cancer cachexia.

    Science.gov (United States)

    Maddocks, Matthew; Hopkinson, Jane; Conibear, John; Reeves, Annie; Shaw, Clare; Fearon, Ken C H

    2016-12-01

    Cancer cachexia is common and reduces function, treatment tolerability and quality of life. Given its multifaceted pathophysiology a multimodal approach to cachexia management is advocated for, but can be difficult to realise in practice. We use a case-based approach to highlight practical approaches to the multimodal management of cachexia for patients across the cancer trajectory. Four cases with lung cancer spanning surgical resection, radical chemoradiotherapy, palliative chemotherapy and no anticancer treatment are presented. We propose multimodal care approaches that incorporate nutritional support, exercise, and anti-inflammatory agents, on a background of personalized oncology care and family-centred education. Collectively, the cases reveal that multimodal care is part of everyone's remit, often focuses on supported self-management, and demands buy-in from the patient and their family. Once operationalized, multimodal care approaches can be tested pragmatically, including alongside emerging pharmacological cachexia treatments. We demonstrate that multimodal care for cancer cachexia can be achieved using simple treatments and without a dedicated team of specialists. The sharing of advice between health professionals can help build collective confidence and expertise, moving towards a position in which every team member feels they can contribute towards multimodal care.

  6. An analog of photon-assisted tunneling in a periodically modulated waveguide array

    Science.gov (United States)

    Li, Liping; Luo, Xiaobing; Yang, Xiaoxue; Wang, Mei; Lü, Xinyou; Wu, Ying

    2016-01-01

    We theoretically report an analog of photon-assisted tunneling (PAT) originated from dark Floquet state in a periodically driven lattice array without a static biased potential by studying a three-channel waveguide system in a non-high-frequency regime. This analog of PAT can be achieved by only periodically modulating the top waveguide and adjusting the distance between the bottom and its adjacent waveguide. It is numerically shown that the PAT resonances also exist in the five-channel waveguide system and probably exist in the waveguide arrays with other odd numbers of waveguides, but they will become weak as the number of waveguides increases. With origin different from traditional PAT, this type of PAT found in our work is closely linked to the existence of the zero-energy (dark) Floquet states. It is readily observable under currently accessible experimental conditions and may be useful for controlling light propagation in waveguide arrays. PMID:27767189

  7. Waveguiding with surface plasmon polaritons

    DEFF Research Database (Denmark)

    Han, Zhanghua; Bozhevolnyi, Sergey I.

    2014-01-01

    the diffraction limit, i.e., on the nanoscale, while enhancing local field strengths by several orders of magnitude. This unique feature of SPP modes along with ever increasing demands for miniaturization of photonic components and circuits generates an exponentially growing interest to SPP-mediated radiation...... guiding and SPP-based waveguide components. Here we review the current status of this rapidly developing field, starting with a brief presentation of main planar SPP modes, and then describing in detail various SPP-based waveguide configurations that ensure two-dimensional mode confinement. Excitation...

  8. Novel photonics polymer and its application in IT

    Science.gov (United States)

    Koike, Yasuhiro

    2003-07-01

    In the field of LANs, transmission systems based on a multimode silica fiber network is heading towards capacities of Gb/s. We have proposed a low-loss, high-bandwidth and large-core graded-index plastic optical fiber (GI POF) in data-com. area. We sill show that GI POF enables to virtually eliminate the "modal noise" problem cased by the medium-core silica fibers. Therefore, stable high-speed data transmission is realized by GI POF rather than silica fibers. Furthermore, advent of perfluorinated (PF) polymer based GI POF network can support higher transmission than silica fibers network because of the small material dispersion of PF polymer compared with silica. In addition, we proposed a "highly scattering optical transmission (HSOT) polymer" and applied it to a light guide plate of a liquid crystal display (LCD) backlight. The advanced HSOT polymer backlight that was proposed using the HSOT designing simulation program demonstrated approximately three times higher luminance than the conventional flat-type HSOT backlight of 14.1-inch diagonal because of the microscopic prism structures at the bottom of the advanced HSOT light guide plate. The HSOT polymer containing the optimized heterogeneous structures produced homogeneous scattered light with forward directivity and sufficient color uniformity.

  9. Simulation of light propagation in the thin-film waveguide lens

    Science.gov (United States)

    Malykh, M. D.; Divakov, D. V.; Sevastianov, L. A.; Sevastianov, A. L.

    2018-04-01

    In this paper we investigate the solution of the problem of modeling the propagation of electromagnetic radiation in three-dimensional integrated optical structures, such as waveguide lenses. When propagating through three-dimensional waveguide structures the waveguide modes can be hybridized, so the mathematical model of their propagation must take into account the connection of TE- and TM-mode components. Therefore, an adequate consideration of hybridization of the waveguide modes is possible only in vector formulation of the problem. An example of three-dimensional structure that hybridizes waveguide modes is the Luneburg waveguide lens, which also has focusing properties. If the waveguide lens has a radius of the order of several tens of wavelengths, its variable thickness at distances of the order of several wavelengths is almost constant. Assuming in this case that the electromagnetic field also varies slowly in the direction perpendicular to the direction of propagation, one can introduce a small parameter characterizing this slow varying and decompose the solution in powers of the small parameter. In this approach, in the zeroth approximation, scalar diffraction problems are obtained, the solution of which is less resource-consuming than the solution of vector problems. The calculated first-order corrections of smallness describe the connection of TE- and TM-modes, so the solutions obtained are weakly-hybridized modes. The formulation of problems and methods for their numerical solution in this paper are based on the authors' research on waveguide diffraction on a lens in a scalar formulation.

  10. Hollow cylindrical plasma filament waveguide with discontinuous finite thickness cladding

    International Nuclear Information System (INIS)

    Alshershby, Mostafa; Hao Zuoqiang; Lin Jingquan

    2013-01-01

    We have explored here a hollow cylindrical laser plasma multifilament waveguide with discontinuous finite thickness cladding, in which the separation between individual filaments is in the range of several millimeters and the waveguide cladding thickness is in the order of the microwave penetration depth. Such parameters give a closer representation of a realistic laser filament waveguide sustained by a long stable propagation of femtosecond (fs) laser pulses. We report how the waveguide losses depend on structural parameters like normalized plasma filament spacing, filament to filament distance or pitch, normal spatial frequency, and radius of the plasma filament. We found that for typical plasma parameters, the proposed waveguide can support guided modes of microwaves in extremely high frequency even with a cladding consisting of only one ring of plasma filaments. The loss of the microwave radiation is mainly caused by tunneling through the discontinuous finite cladding, i.e., confinement loss, and is weakly dependent on the plasma absorption. In addition, the analysis indicates that the propagation loss is fairly large compared with the loss of a plasma waveguide with a continuous infinite thickness cladding, while they are comparable when using a cladding contains more than one ring. Compared to free space propagation, this waveguide still presents a superior microwave transmission to some distance in the order of the filamentation length; thus, the laser plasma filaments waveguide may be a potential channel for transporting pulsed-modulated microwaves if ensuring a long and stable propagation of fs laser pulses.

  11. Low loss hollow-core waveguide on a silicon substrate

    Science.gov (United States)

    Yang, Weijian; Ferrara, James; Grutter, Karen; Yeh, Anthony; Chase, Chris; Yue, Yang; Willner, Alan E.; Wu, Ming C.; Chang-Hasnain, Connie J.

    2012-07-01

    Optical-fiber-based, hollow-core waveguides (HCWs) have opened up many new applications in laser surgery, gas sensors, and non-linear optics. Chip-scale HCWs are desirable because they are compact, light-weight and can be integrated with other devices into systems-on-a-chip. However, their progress has been hindered by the lack of a low loss waveguide architecture. Here, a completely new waveguiding concept is demonstrated using two planar, parallel, silicon-on-insulator wafers with high-contrast subwavelength gratings to reflect light in-between. We report a record low optical loss of 0.37 dB/cm for a 9-μm waveguide, mode-matched to a single mode fiber. Two-dimensional light confinement is experimentally realized without sidewalls in the HCWs, which is promising for ultrafast sensing response with nearly instantaneous flow of gases or fluids. This unique waveguide geometry establishes an entirely new scheme for low-cost chip-scale sensor arrays and lab-on-a-chip applications.

  12. Silicon waveguided components for the long-wave infrared region

    Science.gov (United States)

    Soref, Richard A.; Emelett, Stephen J.; Buchwald, Walter R.

    2006-10-01

    We propose that the operational wavelength of waveguided Si-based photonic integrated circuits and optoelectronic integrated circuits can be extended beyond the 1.55 µm telecom range into the wide infrared from 1.55 to 100 µm. The Si rib-membrane waveguide offers low-loss transmission from 1.2 to 6 µm and from 24 to 100 µm. This waveguide, which is compatible with Si microelectronics manufacturing, is constructed from silicon-on-insulator by etching away the oxide locally beneath the rib. Alternatively, low-loss waveguiding from 1.9 to 14.7 µm is assured by employing a crystal Ge rib grown directly upon the Si substrate. The Si-based hollow-core waveguide is an excellent device that minimizes loss due to silicon's 6-24 µm multi-phonon absorption. Here the rectangular air-filled core is surrounded by SiGe/Si multi-layer anti-resonant or Bragg claddings. The hollow channel offers less than 1.7 dB cm-1 loss from 1.2 to 100 µm. .

  13. Waveguide-Integrated MEMS Concepts for Tunable Millimeter-Wave Systems

    OpenAIRE

    Baghchehsaraei, Zargham

    2014-01-01

    This thesis presents two families of novel waveguide-integrated components based on millimeter-wave microelectromechanical systems (MEMS) for reconfigurable systems. The first group comprises V-band (50–75 GHz) and W-band (75–110 GHz) waveguide switches and switchable irises, and their application as switchable cavity resonators, and tunable bandpass filters implemented by integration of novel MEMS-reconfigurable surfaces into a rectangular waveguide. The second category comprises MEMS-based ...

  14. Highly stable and low loss electro-optic polymer waveguides for high speed microring modulators using photodefinition

    NARCIS (Netherlands)

    Balakrishnan, M.; Diemeer, Mart; Driessen, A.; Faccini, M.; Verboom, Willem; Reinhoudt, David; Leinse, Arne; Sidorin, Y.; Waechter, C.A.

    2006-01-01

    Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature (Tg) and photodefinable properties. The polymers tested are polysulfone (PS) and SU8. The electro-optic chromophore, tricyanovinylidenediphenylaminobenzene (TCVDPA), which

  15. Fiber-Drawn Metamaterial for THz Waveguiding and Imaging

    DEFF Research Database (Denmark)

    Atakaramians, Shaghik; Stefani, Alessio; Li, Haisu

    2017-01-01

    and sub-diffraction imaging. We show the experimental demonstration of THz radiation guidance through hollow core waveguides with metamaterial cladding, where substantial improvements were realized compared to conventional hollow core waveguides, such as reduction of size, greater flexibility, increased...

  16. Multi-resolution waveguide image slicer for the PEPSI instrument

    Science.gov (United States)

    Beckert, Erik; Strassmeier, Klaus G.; Woche, Manfred; Harnisch, Gerd; Hornaff, Marcel; Weber, Michael; Barnes, Stuart

    2016-07-01

    A waveguide image slicer with resolutions up to 270.000 (planned: 300.000) for the fiber fed PEPSI echelle spectrograph at the LBT and single waveguide thicknesses of down to 70 μm has been manufactured and tested. The waveguides were macroscopically prepared, stacked up to an order of seven and thinned back to square stack cross sections. A high filling ratio was achieved by realizing homogenous adhesive gaps of 3.6 μm, using index matching adhesives for TIR within the waveguides. The image slicer stacks are used in immersion mode and are miniaturized to enable implementation in a set of 2x8. The overall efficiency is between 92 % and 96 %.

  17. Metallic and 3D-printed dielectric helical terahertz waveguides.

    Science.gov (United States)

    Vogt, Dominik Walter; Anthony, Jessienta; Leonhardt, Rainer

    2015-12-28

    We investigate guidance of Terahertz (THz) radiation in metallic and 3D-printed dielectric helical waveguides in the frequency range from 0.2 to 1 THz. Our experimental results obtained from THz time-domain spectroscopy (THz-TDS) measurements are in very good agreement with finite-difference time-domain (FDTD) simulations. We observe single-mode, low loss and low dispersive propagation of THz radiation in metallic helical waveguides over a broad bandwidth. The 3D-printed dielectric helical waveguides have substantially extended the bandwidth of a low loss dielectric tube waveguide as observed from the experimental and simulation results. The high flexibility of the helical design allows an easy incorporation into bench top THz devices.

  18. Waveguidance by the photonic bandgap effect in optical fibres

    DEFF Research Database (Denmark)

    Broeng, Jes; Søndergaard, Thomas; Barkou, Stig Eigil

    1999-01-01

    Photonic crystals form a new class of intriguing building blocks to be utilized in future optoelectronics and electromagnetics. One of the most exciting possiblilties offered by phtonic crystals is the realization of new types of electromagnetic waveguides. In the optical domain, the most mature...... technology for such photonic bandgap (PBG) waveguides is in optical fibre configurations. These new fibres can be classified in a fundamentally different way to all optical waveguides and possess radically different guiding properties due to PBG guidance, as opposed to guidance by total internal refelction....... In this paper we summarize and review our theoretical work demonstrating the underlying physical principles of PBG guiding optical fibres and discuss some of their unique waveguiding properties....

  19. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... with numerical simulations. Such a high coupling eciency implies that the system can be considered an articial 1D-atom, and we theoretically show that this system can generate strong photon-photon interaction, which is an essential functionality for deterministic optical quantum information processing. We...

  20. Slow light in quantum dot photonic crystal waveguides

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Lavrinenko, Andrei; Mørk, Jesper

    2009-01-01

    A theoretical analysis of pulse propagation in a semiconductor quantum dot photonic crystal waveguide in the regime of electromagnetically induced transparency is presented. The slow light mechanism considered here is based on both material and waveguide dispersion. The group index n...

  1. Attenuation Coefficient of Single-Mode Periodic Waveguides

    Science.gov (United States)

    Baron, A.; Mazoyer, S.; Smigaj, W.; Lalanne, P.

    2011-10-01

    It is widely accepted that, on ensemble average, the transmission T of guided modes decays exponentially with the waveguide length L due to small imperfections, leading to the important figure of merit defined as the attenuation-rate coefficient α=-⟨ln⁡(T)⟩/L. In this Letter, we evidence that the exponential-damping law is not valid in general for periodic monomode waveguides, especially as the group velocity decreases. This result, that contradicts common beliefs and experimental practices aiming at measuring α, is supported by a theoretical study of light transport in the limit of very small imperfections, and by numerical results obtained for two waveguide geometries that offer contrasted damping behaviors.

  2. Improving plasmonic waveguides coupling efficiency using nanoantennas

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Bouillard, Jean-Sebastien

    2012-01-01

    . The classical dipole antenna scheme can be improved by changing the nanoantenna geometry, adding constructive elements such as reflecting bars and mirrors and using arrays of antennas. The modelling designates that the coupling efficiency from a vertical fiber to a plasmonic waveguide can be improved more than......Plasmonic waveguides bear a lot of potential for photonic applications. However, one of the challenges for implementing them in devices is the low coupling efficiency to and from optical fibers. We report on our approach to facilitate the coupling efficiency with the use of metallic nanoantennas...... in 180 times in comparison with a direct fiber-waveguide coupling. Pros and cons of each configuration are discussed. Fabrication and characterisation results are reported....

  3. Sub-wavelength grating mode transformers in silicon slab waveguides.

    Science.gov (United States)

    Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J

    2009-10-12

    We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.

  4. Design and optimization of carbon-nanotube-material/dielectric hybrid nonlinear optical waveguides

    International Nuclear Information System (INIS)

    Zhao, Xin; Zheng, Zheng; Lu, Zhiting; Zhu, Jinsong; Zhou, Tao

    2011-01-01

    The nonlinear optical characteristics of highly nonlinear waveguides utilizing carbon nanotube composite materials are investigated theoretically. The extremely high nonlinearity and relatively high loss of the carbon nanotube materials are shown to greatly affect the performance of such waveguides for nonlinear optical applications, in contrast to waveguides using conventional nonlinear materials. Different configurations based on applying the carbon nanotube materials to the popular ridge and buried waveguides are thoroughly studied, and the optimal geometries are derived through simulations. It is shown that, though the nonlinear coefficient is often huge for these waveguides, the loss characteristics can significantly limit the maximum achievable accumulated nonlinearity, e.g. the maximum nonlinear phase shift. Our results suggest that SOI-based high-index-contrast, carbon nanotube cladding waveguides, rather than the currently demonstrated low-contrast waveguides, could hold the promise of achieving significantly higher accumulated nonlinearity

  5. Two mechanisms of disorder-induced localization in photonic-crystal waveguides

    Science.gov (United States)

    García, P. D.; KiršanskÄ--, G.; Javadi, A.; Stobbe, S.; Lodahl, P.

    2017-10-01

    Unintentional but unavoidable fabrication imperfections in state-of-the-art photonic-crystal waveguides lead to the spontaneous formation of Anderson-localized modes thereby limiting slow-light propagation and its potential applications. On the other hand, disorder-induced cavities offer an approach to cavity-quantum electrodynamics and random lasing at the nanoscale. The key statistical parameter governing the disorder effects is the localization length, which together with the waveguide length determines the statistical transport of light through the waveguide. In a disordered photonic-crystal waveguide, the localization length is highly dispersive, and therefore, by controlling the underlying lattice parameters, it is possible to tune the localization of the mode. In the present work, we study the localization length in a disordered photonic-crystal waveguide using numerical simulations. We demonstrate two different localization regimes in the dispersion diagram where the localization length is linked to the density of states and the photon effective mass, respectively. The two different localization regimes are identified in experiments by recording the photoluminescence from quantum dots embedded in photonic-crystal waveguides.

  6. Novel hard mask fabrication method for hybrid plasmonic waveguide and metasurfaces

    DEFF Research Database (Denmark)

    Choudhury, Sajid; Zenin, Vladimir A.; Saha, Soham

    2017-01-01

    A hybrid plasmonic waveguide fabrication technique has been developed and waveguides fabricated using this technique have been demonstrated experimentally. The developed technique can be utilized for creating similar hybrid waveguide structures and metasurfaces with an array of material platforms...

  7. A Learning Algorithm for Multimodal Grammar Inference.

    Science.gov (United States)

    D'Ulizia, A; Ferri, F; Grifoni, P

    2011-12-01

    The high costs of development and maintenance of multimodal grammars in integrating and understanding input in multimodal interfaces lead to the investigation of novel algorithmic solutions in automating grammar generation and in updating processes. Many algorithms for context-free grammar inference have been developed in the natural language processing literature. An extension of these algorithms toward the inference of multimodal grammars is necessary for multimodal input processing. In this paper, we propose a novel grammar inference mechanism that allows us to learn a multimodal grammar from its positive samples of multimodal sentences. The algorithm first generates the multimodal grammar that is able to parse the positive samples of sentences and, afterward, makes use of two learning operators and the minimum description length metrics in improving the grammar description and in avoiding the over-generalization problem. The experimental results highlight the acceptable performances of the algorithm proposed in this paper since it has a very high probability of parsing valid sentences.

  8. Induced transparencies in metamaterial waveguides doped with quantum dots

    International Nuclear Information System (INIS)

    Singh, Mahi R; Brzozowski, Marek; Racknor, Chris

    2015-01-01

    The light-mater interaction in quantum dots doped artificial electromagnetic materials such as metamaterial waveguides has been studied. The effect of surface plasmon polaritons (SPPs) on the absorption coefficient of quantum dots in metamaterial waveguides is investigated. The waveguides are made by sandwiching a metamaterial slab between two dielectric material layers. An ensemble of quantum dots are deposited near the waveguide interfaces. The transfer matrix method is used to calculate the SSPs in the waveguide and the density matrix method and Schrödinger equation method are used to calculate the absorption spectrum. It is found that when the thickness of the metamaterial slab is greater than the SPP wavelength the SPP energy is degenerate. However when the thickness of the slab is smaller than that of the SPP wavelength the degeneracy of SPP state splits into odd and even SPP modes due the surface mode interaction (SMI) of the waveguide. We also found that the absorption spectrum has a minima (transparent state) which is due to strong coupling between excitons in quantum dots and SPPs in the waveguide. This transparent state is called the SPP induced transparency. However when the thickness of the slab is smaller than that of the SPP wavelength one transparent state in the absorption spectrum split into two transparent states due to the surface mode interaction. This type of transparency is called the SMI induced transparency. Transparent states can be achieved by applying pulse stress field or an intense laser pulse field. Hence present findings can be used to fabricate the metamaterial optical sensors and switches. (paper)

  9. Long-range hybrid ridge and trench plasmonic waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yusheng [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gong, Qihuang, E-mail: qhgong@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-06-23

    We report a class of long-range hybrid plasmon polariton waveguides capable of simultaneously achieving low propagation loss and tight field localization at telecommunication wavelength. The symmetric (quasi-symmetric) hybrid configurations featuring high-refractive-index-contrast near the non-uniform metallic nanostructures enable significantly improved optical performance over conventional hybrid waveguides, exhibiting considerably longer propagation distances and dramatically enhanced figure of merits for similar degrees of confinement. Compared to their traditional long-range plasmonic counterparts, the proposed hybrid waveguides put much less stringent requirements on index-matching conditions, demonstrating nice performance under a wide range of physical dimensions and robust characteristics against certain fabrication imperfections. Studies concerning crosstalk between adjacent identical waveguides further reveal their potential for photonic integrations. In addition, alternative configurations with comparable guiding properties to the structures in our case studies are also proposed, which can potentially serve as attractive prototypes for numerous high-performance nanophotonic components.

  10. Adapting an optical nanoantenna for high E-field probing applications to a waveguided optical waveguide (WOW)

    Science.gov (United States)

    Rindorf, Lars; Glückstad, Jesper

    2013-03-01

    In the current work we intend to use the optical nano-antenna to include various functionalities for the recently demonstrated waveguided optical waveguide (WOW) by Palima et al. (Optics Express 2012). Specifically, we intend to study a WOW with an optical nano-antenna which can block the guiding light wavelength while admitting other wavelengths of light which address certain functionalities, e.g. drug release, in the WOW. In particular, we study a bow-tie optical nano-antenna to circular dielectric waveguides in aqueous environments. It is shown with finite element computer simulations that the nanoantenna can be made to operate in a bandstop mode around its resonant wavelength where there is a very high evanescent strong electrical probing field close to the antennas, and additionally the fluorescence or Raman excitations will be be unpolluted by stray light from the WOW due to the band-stop characteristic. We give geometrical parameters necessary for realizing functioning nanoantennas.

  11. Long-range propagation of plasmon and phonon polaritons in hyperbolic-metamaterial waveguides

    Science.gov (United States)

    Babicheva, Viktoriia E.

    2017-12-01

    We study photonic multilayer waveguides that include layers of materials and metamaterials with a hyperbolic dispersion (HMM). We consider the long-range propagation of plasmon and phonon polaritons at the dielectric-HMM interface in different waveguide geometries (single boundary or different layers of symmetric cladding). In contrast to the traditional analysis of geometrical parameters, we make an emphasis on the optical properties of constituent materials: solving dispersion equations, we analyze how dielectric and HMM permittivities affect propagation length and mode size of waveguide eigenmodes. We derive figures of merit that should be used for each waveguide in a broad range of permittivity values as well as compare them with plasmonic waveguides. We show that the conventional plasmonic quality factor, which is the ratio of real to imaginary parts of permittivity, is not applicable to the case of waveguides with complex structure. Both telecommunication wavelengths and mid-infrared spectral ranges are of interest considering recent advances in van der Waals materials, such as hexagonal boron nitride. We evaluate the performance of the waveguides with hexagonal boron nitride in the range where it possesses hyperbolic dispersion (wavelength 6.3-7.3 μm), and we show that these waveguides with natural hyperbolic properties have higher propagation lengths than metal-based HMM waveguides.

  12. Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia E.; Kulkova, Irina V.; Malureanu, Radu

    2012-01-01

    . The modulation is achieved by changing the gain of the core that results in different transmittance through the waveguides. A MSM waveguide enables high field localization and therefore high modulation speed. Bulk semiconductor, quantum wells and quantum dots, arranged in either horizontal or vertical layout......, are considered as the core of the MSM waveguide. Dependences on the waveguide core size and gain values of various active materials are studied. The designs consider also practical aspects like n- and p-doped layers and barriers in order to obtain results as close to reality. The effective propagation constants...

  13. ICRF waveguide coupler research. Progress report, July 1983-July 1984

    International Nuclear Information System (INIS)

    Scharer, J.E.

    1984-01-01

    This report highlights results we have obtained on our ICRF (Ion Cyclotron Range of Frequencies) waveguide launcher research during the past year. We have completed an analysis of waveguide aperture launching of waves into a hot plasma with any prescribed edge density and temperature profile. The model Fourier analyzes the waveguide aperture fields and calculates the incident and reflected fast magnetosonic wave fields in the plasma edge region utilizing a stratified slab model. The requirement that the total wave fields at the waveguide-plasma interface match provides the boundary conditions which allow the solution for the plasma input impedance and reflection coefficient

  14. Single Mode SU8 Polymer Based Mach-Zehnder Interferometer for Bio-Sensing Application

    Science.gov (United States)

    Boiragi, Indrajit; Kundu, Sushanta; Makkar, Roshan; Chalapathi, Krishnamurthy

    2011-10-01

    This paper explains the influence of different parameters to the sensitivity of an optical waveguide Mach-Zehnder Interferometer (MZI) for real time detection of biomolecules. The sensing principle is based on the interaction of evanescence field with the biomolecules that get immobilized on sensing arm. The sensitivity has been calculated by varying the sensing window length, wavelength and concentration of bio-analyte. The maximum attainable sensitivity for the preferred design is the order of 10-8 RIU at 840 nm wavelength with a sensing window length of 1cm. All the simulation work has been carried out with Opti-BPMCAD for the optimization of MZI device parameters. The SU8 polymers are used as a core and clad material to fabricate the waveguide. The refractive index of cladding layer is optimized by varying the curing temperature for a fixed time period and the achieved index difference between core and clad is Δn = 0.0151. The fabricated MZI device has been characterized with LASER beam profiler at 840 nm wavelength. This study demonstrates the effectiveness of the different parameter to the sensitivity of a single mode optical waveguide Mach-Zehnder Interferometer for bio-sensing application.

  15. Launching transverse-electric Localized Waves from a circular waveguide

    KAUST Repository

    Salem, Mohamed

    2011-07-01

    Axially symmetric transverse electric (TE) modes of a circular waveguide section are used to synthesize the vector TE Localized Wave (LW) field at the open end of the waveguide section. The necessary excitation coefficients of these modes are obtained by the method of matching, taking advantage of the modal power orthogonality relations. The necessary excitation of modes provided by a number of coaxial loop antennas inserted inside the waveguide section. The antennas currents are computed from the solution of the waveguide excitation inverse problem. The accuracy of the synthesized wave field (compared to the mathematical model) and the power efficiency of the generation technique are evaluated in order to practically realize a launcher for LWs in the microwave regime. © 2011 IEEE.

  16. C-Scan Performance Test of Under-Sodium ultrasonic Waveguide Sensor in Sodium

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2011-01-01

    Reactor core and in-vessel structures of a sodium-cooled fast (SFR) are submerged in opaque liquid sodium in the reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors have developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In previous studies, the ultrasonic waveguide sensor module was designed and manufactured, and the feasibility study of the ultrasonic waveguide sensor was performed. To improve the performance of the ultrasonic waveguide sensor in the under-sodium application, a new concept of ultrasonic waveguide sensors with a Be coated SS304 plate is suggested for the effective generation of a leaky wave in liquid sodium and the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor. In this study, the C-scan performance of the under-sodium ultrasonic waveguide sensor in sodium has been investigated by the experimental test in sodium. The under-sodium ultrasonic waveguide sensor and the sodium test facility with a glove box system and a sodium tank are designed and manufactured to carry out the performance test of under-sodium ultrasonic waveguide sensor in sodium environment condition

  17. COMPACT ATHERMAL OPTICAL WAVEGUIDE USING THERMAL EXPANSION AMPLIFICATION

    DEFF Research Database (Denmark)

    2001-01-01

    A method of temperature stabilising optical waveguides having positive thermal optical path length expansion, in particular fiber Bragg gratings or optical fiber DFB lasers or optical fiber DBR lasers, comprising affixing the optical waveguide to at least two points of a negative expanding fixture...

  18. Planar optical waveguides for civil and military applications

    International Nuclear Information System (INIS)

    Lavers, C R

    2009-01-01

    There is significant military and civil interest in being able to detect chemical species adsorbed from air or present in aqueous solutions. Planar optical waveguide transmission properties are sensitive to changes in parameters such as refractive index or absorption and to light-emitting processes such as fluorescence. These changes modulate light travelling in optical waveguides, and so may be used as sensors for detecting biological and chemical agents, non-ionizing and ionizing electromagnetic radiation. Several waveguide systems have been studied theoretically and experimentally, and their responses to basic influences such as alcohol and UV radiation, and gamma rays determined.

  19. Index-antiguided planar waveguide lasers with large mode area

    Science.gov (United States)

    Liu, Yuanye

    The on-going research and application interests with high power large-mode-area (LMA) waveguide lasers, especially in fiber geometry, at the beginning of this century drive the development of many novel waveguide designs. Index antiguiding, proposed by Siegman in 2003, is among one of them. The goal for index antiguiding is to introduce transversal modal loss with the relative simple waveguide design while maintain single transverse mode operation for good beam quality. The idea which is selectively support of fundamental mode is facilitated by involving certain level of signal regeneration inside the waveguide core. Since the modal loss is closed associated with waveguide design parameters such as core size and refractive index, the amount of gain inside the core provides active control of transverse modes inside index-antiguiding waveguide. For example, fundamental transverse mode inside such waveguide can be excited and propagate lossless when sufficient optical gain is provided. This often requires doped waveguide core and optical pumping at corresponding absorption band. However, the involvement of optical pumping also has its consequences. Phenomena such as thermal-optic effect and gain spatial hole-burning which are commonly found in bulk lasers request attention when scaling up output power with LMA index-antiguided waveguide amplifiers and resonators. In response, three key challenges of index-antiguided planar waveguide lasers, namely, guiding mechanism, power efficiency and transverse mode discrimination, are analyzed theoretically and experimentally in this dissertation. Experiments are based on two index-antiguided planar waveguide chips, whose core thickness are 220 microm and 400 microm respectively. The material of waveguide core is 1% Neodymium-doped Yttrium Aluminium garnet, or Nd:YAG while the cladding is made from Terbium Gallium garnet, or TGG. Due to the face pumping and limited pump power, it is found, with 220 microm-thick-core chip, that

  20. Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ashim Dhakal

    2017-02-01

    Full Text Available Recent studies have shown that evanescent Raman spectroscopy using a silicon nitride (SiN nanophotonic waveguide platform has higher signal enhancement when compared to free-space systems. However, signal-to-noise ratio from the waveguide at a low analyte concentration is constrained by the shot-noise from the background light originating from the waveguide itself. Hence, understanding the origin and properties of this waveguide background luminescence (WGBL is essential to developing mitigation strategies. Here, we identify the dominating component of the WGBL spectrum composed of a broad Raman scattering due to momentum selection-rule breaking in amorphous materials, and several peaks specific to molecules embedded in the core. We determine the maximum of the Raman scattering efficiency of the WGBL at room temperature for 785 nm excitation to be 4.5 ± 1 × 10−9 cm−1·sr−1, at a Stokes shift of 200 cm−1. This efficiency decreases monotonically for higher Stokes shifts. Additionally, we also demonstrate the use of slotted waveguides and quasi-transverse magnetic polarization as some mitigation strategies.

  1. Polarization effects in silicon-clad optical waveguides

    Science.gov (United States)

    Carson, R. F.; Batchman, T. E.

    1984-01-01

    By changing the thickness of a semiconductor cladding layer deposited on a planar dielectric waveguide, the TE or TM propagating modes may be selectively attenuated. This polarization effect is due to the periodic coupling between the lossless propagating modes of the dielectric slab waveguide and the lossy modes of the cladding layer. Experimental tests involving silicon claddings show high selectivity for either polarization.

  2. Experimental demonstration of a four-port photonic crystal cross-waveguide structure

    DEFF Research Database (Denmark)

    Yu, Yi; Heuck, Mikkel; Ek, Sara

    2012-01-01

    We report the design and fabrication of a four-port InP photonic crystal cavity-waveguide structure in which two crossing waveguides intersect in a cavity. Transmission measurements show that by exploiting mode-gap effects, high cross-talk suppression between the two waveguides can be obtained. I....... In addition, the waveguides couple to two distinct cavity resonances with different quality-factors as well as small mode volumes. This structure is promising for realizing ultra-fast, low-energy optical switches or memories....

  3. A hybrid plasmonic waveguide terahertz quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Degl' Innocenti, Riccardo, E-mail: rd448@cam.ac.uk; Shah, Yash D.; Wallis, Robert; Klimont, Adam; Ren, Yuan; Jessop, David S.; Beere, Harvey E.; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-02-23

    We present the realization of a quantum cascade laser emitting at around 2.85 THz, based on a hybrid plasmonic waveguide with a low refractive index dielectric cladding. This hybrid waveguide design allows the performance of a double-metal waveguide to be retained, while improving the emission far-field. A set of lasers based on the same active region material were fabricated with different metal layer thicknesses. A detailed characterization of the performance of these lasers revealed that there is an optimal trade-off that yields the best far-field emission and the maximum temperature of operation. By exploiting the pure plasmonic mode of these waveguides, the standard operation conditions of a double-metal quantum cascade laser were retrieved, such that the maximum operating temperature of these devices is not affected by the process. These results pave the way to realizing a class of integrated devices working in the terahertz range which could be further exploited to fabricate terahertz on-chip circuitry.

  4. Wave-guide type photo reactor for water purification

    International Nuclear Information System (INIS)

    Nobuaki, Negishi; Feng, He; Sadao, Matsuzawa; Koji, Takeuchi; Kayo, Ohno

    2006-01-01

    A wave-guide type photo-catalytic rod that is consisting of a glass tube with transparent TiO 2 (outside) and an optical wave-guide rod (inside) was designed and examined its performance. A model of polluted water, which contains 100 ppm of toluene or phenol, was taken in a 500 ml of beaker and the performance of this unit was evaluated by the removal rate of pollutants in water under photo-irradiation. Acrylic rod with 6-mm diameter was used as the wave-guide of light. One end of acrylic rod 50 mm had a frosted part or a screw thread for increasing seep out of the light. For the glass tube with transparent TiO 2 , four kinds with different film thickness were prepared by the dip-coating method. The wave-guide type photo-catalytic rods effectively eliminated toluene and phenol and the total amount of intermediates formation was low. (authors)

  5. Amplifier Module for 260-GHz Band Using Quartz Waveguide Transitions

    Science.gov (United States)

    Padmanabhan, Sharmila; Fung, King Man; Kangaslahti, Pekka P.; Peralta, Alejandro; Soria, Mary M.; Pukala, David M.; Sin, Seth; Samoska, Lorene A.; Sarkozy, Stephen; Lai, Richard

    2012-01-01

    Packaging of MMIC LNA (monolithic microwave integrated circuit low-noise amplifier) chips at frequencies over 200 GHz has always been problematic due to the high loss in the transition between the MMIC chip and the waveguide medium in which the chip will typically be used. In addition, above 200 GHz, wire-bond inductance between the LNA and the waveguide can severely limit the RF matching and bandwidth of the final waveguide amplifier module. This work resulted in the development of a low-loss quartz waveguide transition that includes a capacitive transmission line between the MMIC and the waveguide probe element. This capacitive transmission line tunes out the wirebond inductance (where the wire-bond is required to bond between the MMIC and the probe element). This inductance can severely limit the RF matching and bandwidth of the final waveguide amplifier module. The amplifier module consists of a quartz E-plane waveguide probe transition, a short capacitive tuning element, a short wire-bond to the MMIC, and the MMIC LNA. The output structure is similar, with a short wire-bond at the output of the MMIC, a quartz E-plane waveguide probe transition, and the output waveguide. The quartz probe element is made of 3-mil quartz, which is the thinnest commercially available material. The waveguide band used is WR4, from 170 to 260 GHz. This new transition and block design is an improvement over prior art because it provides for better RF matching, and will likely yield lower loss and better noise figure. The development of high-performance, low-noise amplifiers in the 180-to- 700-GHz range has applications for future earth science and planetary instruments with low power and volume, and astrophysics array instruments for molecular spectroscopy. This frequency band, while suitable for homeland security and commercial applications (such as millimeter-wave imaging, hidden weapons detection, crowd scanning, airport security, and communications), also has applications to

  6. Break up of bound-N-spatial-soliton in a ramp waveguide

    NARCIS (Netherlands)

    Suryanto, A.; van Groesen, Embrecht W.C.

    2002-01-01

    We present an analytical and numerical investigation of the propagation of spatial solitons in a nonlinear waveguide with ramp linear refractive index profile (ramp waveguide). For the propagation of a single soliton beam in a ramp waveguide, the particle theory shows that the soliton beam follows a

  7. 3D-Printed Broadband Dielectric Tube Terahertz Waveguide with Anti-Reflection Structure

    Science.gov (United States)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2016-11-01

    We demonstrate broadband, low loss, and close-to-zero dispersion guidance of terahertz (THz) radiation in a dielectric tube with an anti-reflection structure (AR-tube waveguide) in the frequency range from 0.2 to 1.0 THz. The anti-reflection structure (ARS) consists of close-packed cones in a hexagonal lattice arranged on the outer surface of the tube cladding. The feature size of the ARS is in the order of the wavelength between 0.2 and 1.0 THz. The waveguides are fabricated with the versatile and cost efficient 3D-printing method. Terahertz time-domain spectroscopy (THz-TDS) measurements as well as 3D finite-difference time-domain simulations (FDTD) are performed to extensively characterize the AR-tube waveguides. Spectrograms, attenuation spectra, effective phase refractive indices, and the group-velocity dispersion parameters β 2 of the AR-tube waveguides are presented. Both the experimental and numerical results confirm the extended bandwidth and smaller group-velocity dispersion of the AR-tube waveguide compared to a low loss plain dielectric tube THz waveguide. The AR-tube waveguide prototypes show an attenuation spectrum close to the theoretical limit given by the infinite cladding tube waveguide.

  8. Multimodal Aspects of Corporate Social Responsibility Communication

    Directory of Open Access Journals (Sweden)

    Carmen Daniela Maier

    2014-12-01

    Full Text Available This article addresses how the multimodal persuasive strategies of corporate social responsibility communication can highlight a company’s commitment to gender empowerment and environmental protection while advertising simultaneously its products. Drawing on an interdisciplinary methodological framework related to CSR communication, multimodal discourse analysis and gender theory, the article proposes a multimodal analysis model through which it is possible to map and explain the multimodal persuasive strategies employed by Coca-Cola company in their community-related films. By examining the semiotic modes’ interconnectivity and functional differentiation, this analytical endeavour expands the existing research work as the usual textual focus is extended to a multimodal one.

  9. Multimodal sequence learning.

    Science.gov (United States)

    Kemény, Ferenc; Meier, Beat

    2016-02-01

    While sequence learning research models complex phenomena, previous studies have mostly focused on unimodal sequences. The goal of the current experiment is to put implicit sequence learning into a multimodal context: to test whether it can operate across different modalities. We used the Task Sequence Learning paradigm to test whether sequence learning varies across modalities, and whether participants are able to learn multimodal sequences. Our results show that implicit sequence learning is very similar regardless of the source modality. However, the presence of correlated task and response sequences was required for learning to take place. The experiment provides new evidence for implicit sequence learning of abstract conceptual representations. In general, the results suggest that correlated sequences are necessary for implicit sequence learning to occur. Moreover, they show that elements from different modalities can be automatically integrated into one unitary multimodal sequence. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Femtosecond laser written waveguides deep inside silicon.

    Science.gov (United States)

    Pavlov, I; Tokel, O; Pavlova, S; Kadan, V; Makey, G; Turnali, A; Yavuz, Ö; Ilday, F Ö

    2017-08-01

    Photonic devices that can guide, transfer, or modulate light are highly desired in electronics and integrated silicon (Si) photonics. Here, we demonstrate for the first time, to the best of our knowledge, the creation of optical waveguides deep inside Si using femtosecond pulses at a central wavelength of 1.5 μm. To this end, we use 350 fs long, 2 μJ pulses with a repetition rate of 250 kHz from an Er-doped fiber laser, which we focused inside Si to create permanent modifications of the crystal. The position of the beam is accurately controlled with pump-probe imaging during fabrication. Waveguides that were 5.5 mm in length and 20 μm in diameter were created by scanning the focal position along the beam propagation axis. The fabricated waveguides were characterized with a continuous-wave laser operating at 1.5 μm. The refractive index change inside the waveguide was measured with optical shadowgraphy, yielding a value of 6×10 -4 , and by direct light coupling and far-field imaging, yielding a value of 3.5×10 -4 . The formation mechanism of the modification is discussed.

  11. Sub-micron silicon nitride waveguide fabrication using conventional optical lithography.

    Science.gov (United States)

    Huang, Yuewang; Zhao, Qiancheng; Kamyab, Lobna; Rostami, Ali; Capolino, Filippo; Boyraz, Ozdal

    2015-03-09

    We demonstrate a novel technique to fabricate sub-micron silicon nitride waveguides using conventional contact lithography with MEMS-grade photomasks. Potassium hydroxide anisotropic etching of silicon facilitates line reduction and roughness smoothing and is key to the technique. The fabricated waveguides is measured to have a propagation loss of 0.8dB/cm and nonlinear coefficient of γ = 0.3/W/m. A low anomalous dispersion of <100ps/nm/km is also predicted. This type of waveguide is highly suitable for nonlinear optics. The channels naturally formed on top of the waveguide also make it promising for plasmonics and quantum efficiency enhancement in sensing applications.

  12. Analytical study of optimal design and gain parameters of double-slot plasmonic waveguides

    International Nuclear Information System (INIS)

    Handapangoda, Dayan; Rukhlenko, Ivan D; Premaratne, Malin

    2013-01-01

    We theoretically analyze guided modes in optically active and passive double-slot plasmonic waveguides. We show that for one of the two different mode symmetries supported by the waveguide, a most productive guiding condition can be realized by adjusting the thicknesses of the layers to optimal values. We also derive approximate analytic expressions to calculate the optimal geometrical parameters of the waveguide. Interestingly, our analysis shows that the propagation losses associated with the inverse mode symmetry of the double-slot waveguide are comparatively low, regardless of the dimensions of the waveguide. We further show that the propagation losses become the smallest in the limiting case of a single-slot (metal–dielectric–metal (MDM)) waveguide. For both double- and single-slot waveguides, we show that the gain required to overcome the losses can be reduced by choosing a dielectric with a low refractive index. We also derive accurate analytical expressions to readily estimate the critical gain and modal gain of the waveguides. (paper)

  13. Optical waveguides in lithium niobate: Recent developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Bazzan, Marco, E-mail: marco.bazzan@unipd.it; Sada, Cinzia, E-mail: cinzia.sada@unipd.it [Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2015-12-15

    The state of the art of optical waveguide fabrication in lithium niobate is reviewed, with particular emphasis on new technologies and recent applications. The attention is mainly devoted to recently developed fabrication methods, such as femtosecond laser writing, ion implantation, and smart cut waveguides as well as to the realization of waveguides with tailored functionalities, such as photorefractive or domain engineered structures. More exotic systems, such as reconfigurable and photorefractive soliton waveguides, are also considered. Classical techniques, such as Ti in-diffusion and proton exchange, are cited and briefly reviewed as a reference standpoint to highlight the recent developments. In all cases, the application-oriented point of view is preferred, in order to provide the reader with an up-to date panorama of the vast possibilities offered by lithium niobate to integrated photonics.

  14. Efficient waveguide coupler based on metal materials

    Science.gov (United States)

    Wu, Wenjun; Yang, Junbo; Chang, Shengli; Zhang, Jingjing; Lu, Huanyu

    2015-10-01

    Because of the diffraction limit of light, the scale of optical element stays in the order of wavelength, which makes the interface optics and nano-electronic components cannot be directly matched, thus the development of photonics technology encounters a bottleneck. In order to solve the problem that coupling of light into the subwavelength waveguide, this paper proposes a model of coupler based on metal materials. By using Surface Plasmon Polaritons (SPPs) wave, incident light can be efficiently coupled into waveguide of diameter less than 100 nm. This paper mainly aims at near infrared wave band, and tests a variety of the combination of metal materials, and by changing the structural parameters to get the maximum coupling efficiency. This structure splits the plane incident light with wavelength of 864 nm, the width of 600 nm into two uniform beams, and separately coupled into the waveguide layer whose width is only about 80 nm, and the highest coupling efficiency can reach above 95%. Using SPPs structure will be an effective method to break through the diffraction limit and implement photonics device high-performance miniaturization. We can further compress the light into small scale fiber or waveguide by using the metal coupler, and to save the space to hold more fiber or waveguide layer, so that we can greatly improve the capacity of optical communication. In addition, high-performance miniaturization of the optical transmission medium can improve the integration of optical devices, also provide a feasible solution for the photon computer research and development in the future.

  15. Planar waveguides and other confined geometries theory, technology, production, and novel applications

    CERN Document Server

    2015-01-01

    This book provides a comprehensive overview of the theoretical concepts and experimental applications of planar waveguides and other confined geometries, such as optical fibres. Covering a broad array of advanced topics, it begins with a sophisticated discussion of planar waveguide theory, and covers subjects including efficient production of planar waveguides, materials selection, nonlinear effects, and applications including species analytics down to single-molecule identification, and thermo-optical switching using planar waveguides. Written by specialists in the techniques and applications covered, this book will be a useful resource for advanced graduate students and researchers studying planar waveguides and optical fibers.

  16. Multiple temperature sensors embedded in an ultrasonic “spiral-like” waveguide

    Directory of Open Access Journals (Sweden)

    Suresh Periyannan

    2017-03-01

    Full Text Available This paper studies the propagation of ultrasound in spiral waveguides, towards distributed temperature measurements on a plane. Finite Element (FE approach was used for understanding the velocity behaviour and consequently designing the spiral waveguide. Temperature measurements were experimentally carried out on planar surface inside a hot chamber. Transduction was performed using a piezo-electric crystal that is attached to one end of the waveguide. Lower order axisymmetric guided ultrasonic modes L(0,1 and T(0,1 were employed. Notches were introduced along the waveguide to obtain ultrasonic wave reflections. Time of fight (TOF differences between the pre-defined reflectors (notches located on the waveguides were used to infer local temperatures. The ultrasonic temperature measurements were compared with commercially available thermocouples.

  17. Multimodal Processes Rescheduling

    DEFF Research Database (Denmark)

    Bocewicz, Grzegorz; Banaszak, Zbigniew A.; Nielsen, Peter

    2013-01-01

    Cyclic scheduling problems concerning multimodal processes are usually observed in FMSs producing multi-type parts where the Automated Guided Vehicles System (AGVS) plays a role of a material handling system. Schedulability analysis of concurrently flowing cyclic processes (SCCP) exe-cuted in the......Cyclic scheduling problems concerning multimodal processes are usually observed in FMSs producing multi-type parts where the Automated Guided Vehicles System (AGVS) plays a role of a material handling system. Schedulability analysis of concurrently flowing cyclic processes (SCCP) exe...

  18. Launching transverse-electric Localized Waves from a circular waveguide

    KAUST Repository

    Salem, Mohamed; Niver, Edip

    2011-01-01

    Axially symmetric transverse electric (TE) modes of a circular waveguide section are used to synthesize the vector TE Localized Wave (LW) field at the open end of the waveguide section. The necessary excitation coefficients of these modes

  19. Planar waveguide nanolaser configured by dye-doped hybrid nanofilm on substrate

    Science.gov (United States)

    Tikhonov, E. A.; Yashchuk, V. P.; Telbiz, G. M.

    2018-04-01

    Dye-doped hybrid silicate/titanium nanofilms on the glass substrate structures of asymmetrical waveguides were studied by way of laser systems. The threshold, spatial and spectral features of the laser oscillation of genuine and hollow waveguides were determined. The pattern of stimulated radiation included two concurrent processes: single-mode waveguide lasing and lateral small divergence emission. Comparison of the open angle of the lateral beams and grazing angles of the waveguide lasing mode provides an insight into the effect of leaky mode emission followed by Lummer-Gehrcke interference.

  20. Optical waveguides with memory effect using photochromic material for neural network

    Science.gov (United States)

    Tanimoto, Keisuke; Amemiya, Yoshiteru; Yokoyama, Shin

    2018-04-01

    An optical neural network using a waveguide with a memory effect, a photodiode, CMOS circuits and LEDs was proposed. To realize the neural network, optical waveguides with a memory effect were fabricated using a cladding layer containing the photochromic material “diarylethene”. The transmittance of green light was decreased by UV light irradiation and recovered by the passage of green light through the waveguide. It was confirmed that the transmittance versus total energy of the green light that passed through the waveguide well fit the universal exponential curve.

  1. Multimodal Resources in Transnational Adoption

    DEFF Research Database (Denmark)

    Raudaskoski, Pirkko Liisa

    The paper discusses an empirical analysis which highlights the multimodal nature of identity construction. A documentary on transnational adoption provides real life incidents as research material. The incidents involve (or from them emerge) various kinds of multimodal resources and participants...

  2. General technique for the integration of MIC/MMIC'S with waveguides

    Science.gov (United States)

    Geller, Bernard D. (Inventor); Zaghloul, Amir I. (Inventor)

    1987-01-01

    A technique for packaging and integrating of a microwave integrated circuit (MIC) or monolithic microwave integrated circuit (MMIC) with a waveguide uses a printed conductive circuit pattern on a dielectric substrate to transform impedance and mode of propagation between the MIC/MMIC and the waveguide. The virtually coplanar circuit pattern lies on an equipotential surface within the waveguide and therefore makes possible single or dual polarized mode structures.

  3. Enhancement of single mode operation in coaxial optical waveguide using DB boundary conditions

    Science.gov (United States)

    Lohia, Pooja; Prajapati, Y.; Saini, J. P.; Rai, B. S.

    2014-11-01

    In this study, a competent numerical strategy to compute the dispersion of optical waveguides is presented and propagation of electromagnetic waves in a coaxial optical waveguide with DB boundary conditions is instigated. For this intend, cylindrical coordinates are here being used to derive the DB boundary conditions and to obtain field components for the modes. The propagation constant for the waveguide to be studied is determined by solving the Bessel and the modified Bessel functions. The cutoff frequencies for various lower order modes have been calculated and their dispersion characteristics are plotted correspondingly. The behavior of the coaxial optical waveguide under DB boundary conditions is shown to be significantly different from that of coaxial optical waveguide and conventional optical waveguide under traditional or tangential boundary conditions. Finally, the effect of waveguide dimensions on the mode cutoff frequencies and fabrication issues are also addressed.

  4. Solid state microcavity dye lasers fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Nielsen, Theodor; Kristensen, Anders

    2004-01-01

    propagating TE–TM modes. The laser cavity has the lateral shape of a trapezoid, supporting lasing modes by reflection on the vertical cavity walls. The solid polymer dye lasers emit laterally through one of the vertical cavity walls, when pumped optically through the top surface by means of a frequency...... doubled, pulsed Nd:YAG laser. Lasing in the wavelength region from 560 to 570 nm is observed from a laser with a side-length of 50 µm. In this proof of concept, the lasers are multimode with a mode wavelength separation of approximately 1.6 nm, as determined by the waveguide propagation constant......We present a solid state polymer microcavity dye laser, fabricated by thermal nanoimprint lithography (NIL) in a dye-doped thermoplast. The thermoplast poly-methylmethacrylate (PMMA) is used due to its high transparency in the visible range and its robustness to laser radiation. The laser dye...

  5. Field of view of limitations in see-through HMD using geometric waveguides.

    Science.gov (United States)

    DeHoog, Edward; Holmstedt, Jason; Aye, Tin

    2016-08-01

    Geometric waveguides are being integrated into head-mounted display (HMD) systems, where having see-through capability in a compact, lightweight form factor is required. We developed methods for determining the field of view (FOV) of such waveguide HMD systems and have analytically derived the FOV for waveguides using planar and curved geometries. By using real ray-tracing methods, we are able to show how the geometry and index of refraction of the waveguide, as well as the properties of the coupling optics, impact the FOV. Use of this analysis allows one to determine the maximum theoretical FOV of a planar or curved waveguide-based system.

  6. Accurate modeling of UV written waveguide components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....

  7. Accurate modelling of UV written waveguide components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....

  8. Transmission of infrared radiation through cylindrical waveguides

    International Nuclear Information System (INIS)

    Nucara, A.; Dore, P.; Calvani, P.; Cannavo', D.; Marcelli, A.

    1998-01-01

    Measurement of the transmittance of infrared radiation (v -1 ) through cylindrical waveguides are presented and discussed. The experimental results are compared with numerical simulations, obtained through conventional ray tracing programs. Finally, it' estimated the transmittance of a waveguide in the case of an infrared synchrotron radiation source. Are applied the results to the case of the DAΦNE collider, where a synchrotron radiation beamline for the far infrared is under construction

  9. Near-infrared lasers and self-frequency-doubling in Nd:YCOB cladding waveguides.

    Science.gov (United States)

    Ren, Yingying; Chen, Feng; Vázquez de Aldana, Javier R

    2013-05-06

    A design of cladding waveguides in Nd:YCOB nonlinear crystals is demonstrated in this work. Compact Fabry-Perot oscillation cavities are employed for waveguide laser generation at 1062 nm and self-frequency-doubling at 531 nm, under optical pump at 810 nm. The waveguide laser shows slope efficiency as high as 55% at 1062 nm. The SFD green waveguide laser emits at 531 nm with a maximum power of 100 μW.

  10. Evolution of Eigenmodes of the Mhd-Waveguide in the Outer Magnetosphere

    Science.gov (United States)

    Chuiko, Daniil

    EVOLUTION OF EIGENMODES OF THE MHD-WAVEGUIDE IN THE OUTER MAGNETOSPHERE Mazur V.A., Chuiko D.A. Institute of Solar-Terrestrial Physics, Irkutsk, Russia. Geomagnetic field and plasma inhomogeneties in the outer equatorial part of the magnetosphere al-lows for existence of a channel with low Alfven speeds, which spans from the nose to the far flanks of the magnetosphere, in the morning as well as in the evening sectors. This channel plays a role of a waveguide for fast magnetosonic waves. When an eigenmode travels along the waveguide (i.e. in the azimuthal direction) it undergoes certain evolution. The parameters of the waveguide are changing along the way of wave’s propagation and the eigenmode “adapts” to these parameters. Conditions of the Kelvin-Helmholtz instability are changing due to the increment in the solar wind speed along the magnetopause. The conditions of the solar wind hydromagnetic waves penetration to the magnetosphere are changing due to the same increment. As such, the process of the penetration turns to overreflection regime, which abruptly increases the pump level of the magnetospheric waveguide. There is an Alfven resonance deep within the magnetosphere, which corresponds to the propagation of the fast mode along the waveguide. Oscillation energy dissipation takes place in the vicinity of the Alfven resonance. Alfven resonance is a standing Alfven wave along the magnetic field lines, so it reaches the ionosphere and the Earth surface, when the fast modes of the waveguide, localized in the low Alfven speed channel cannot be observed on Earth. The evolution of the waveguide oscillation propagating from the nose to the far tail is theoretically investigated in this work with consideration of all aforementioned effects. The spatial structure var-iation character, spectral composition and amplitude along the waveguide are found.

  11. Multimodal Diversity of Postmodernist Fiction Text

    Directory of Open Access Journals (Sweden)

    U. I. Tykha

    2016-12-01

    Full Text Available The article is devoted to the analysis of structural and functional manifestations of multimodal diversity in postmodernist fiction texts. Multimodality is defined as the coexistence of more than one semiotic mode within a certain context. Multimodal texts feature a diversity of semiotic modes in the communication and development of their narrative. Such experimental texts subvert conventional patterns by introducing various semiotic resources – verbal or non-verbal.

  12. Experiments in Multimodal Information Presentation

    NARCIS (Netherlands)

    van Hooijdonk, Charlotte; Bosma, W.E.; Krahmer, Emiel; Maes, Alfons; Theune, Mariet; van den Bosch, Antal; Bouma, Gosse

    In this chapter we describe three experiments investigating multimodal information presentation in the context of a medical QA system. In Experiment 1, we wanted to know how non-experts design (multimodal) answers to medical questions, distinguishing between what questions and how questions. In

  13. Modeling multimodal human-computer interaction

    NARCIS (Netherlands)

    Obrenovic, Z.; Starcevic, D.

    2004-01-01

    Incorporating the well-known Unified Modeling Language into a generic modeling framework makes research on multimodal human-computer interaction accessible to a wide range off software engineers. Multimodal interaction is part of everyday human discourse: We speak, move, gesture, and shift our gaze

  14. Plasmon enhanced light amplification in metal–insulator–metal waveguides with gain

    International Nuclear Information System (INIS)

    Zhong, Xiao-Lan; Li, Zhi-Yuan

    2012-01-01

    In this paper we study the loss compensation and light amplification properties of metal–insulator–metal (MIM) waveguides that are doped with gain material in the dielectric core. An analytical approach based on Maxwell’s equations is developed to evaluate quantitatively the influence of the gain coefficient on the loss compensation and light amplification efficiencies of the waveguide under different values of the waveguide width and working wavelengths. The analytical results agree excellently with all-numerical calculations that directly solve Maxwell’s equations. The results show that the light amplification efficiency obeys a strict linear relationship with the gain coefficient, and MIM waveguides with narrower widths and under shorter wavelengths have better efficiencies. In addition, the MIM waveguides have higher light amplification efficiencies than usual dielectric waveguides, which suggests a very positive role of the plasmonic structure in enhancing the light amplification when gain is introduced. These loss and gain behaviors can be well explained by looking at the modal profile of each transport mode and the corresponding light energy confinement effect and slow light effect. (paper)

  15. Optical waveguide loop for planar trapping of blood cells and microspheres

    Science.gov (United States)

    Ahluwalia, Balpreet S.; Hellesø, Olav G.

    2013-09-01

    The evanescent field from a waveguide can be used to trap and propel a particle. An optical waveguide loop with an intentional gap at the center is used for planar transport and stable trapping of particles. The waveguide acts as a conveyor belt to trap and deliver spheres towards the gap. At the gap, the counter-diverging light fields hold the sphere at a fixed position. Numerical simulation based on the finite element method was performed in three dimensions using a computer cluster. The field distribution and optical forces for rib and strip waveguide designs are compared and discussed. The optical force on a single particle was computed for various positions of the particle in the gap. Simulation predicted stable trapping of particles in the gap. Depending on the gap separation (2-50 μm) a single or multiple spheres and red blood cells were trapped at the gap. Waveguides were made of tantalum pentaoxide material. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip.

  16. ytterbium- & erbium-doped silica for planar waveguide lasers & amplifiers

    DEFF Research Database (Denmark)

    Dyndgaard, Morten Glarborg

    2001-01-01

    The purpose of this work was to demonstrate ytterbium doped planar components and investigate the possibilities of making erbium/ytterbium codoped planar waveguides in germano-silica glass. Furthermore, tools for modelling lasers and erbium/ytterbium doped amplifiers. The planar waveguides were...

  17. Multimodal Discourse Analysis of the Movie "Argo"

    Science.gov (United States)

    Bo, Xu

    2018-01-01

    Based on multimodal discourse theory, this paper makes a multimodal discourse analysis of some shots in the movie "Argo" from the perspective of context of culture, context of situation and meaning of image. Results show that this movie constructs multimodal discourse through particular context, language and image, and successfully…

  18. Proton beam writing of passive waveguides in PMMA

    International Nuclear Information System (INIS)

    Sum, T.C.; Bettiol, A.A.; Seng, H.L.; Rajta, I.; Kan, J.A. van; Watt, F.

    2003-01-01

    Symmetric y-branch buried channel waveguides in poly-methylmethacrylate (PMMA) were fabricated by proton beam writing using a focused sub-micron beam of 1.5 and 2.0 MeV protons with a dose ranging from 25 to 160 nC/mm 2 (i.e. ∼1.6 x 10 13 to 1.0 x 10 14 particles/cm 2 ) and beam currents of approximately 5-10 pA. The proton beam modifies the PMMA (i.e. changes the refractive index), forming buried channel waveguides near the end of range. The buried channel waveguides were end-coupled with monochromatic light (633 nm) and the transmitted intensity profiles were measured, indicating an intensity distribution of 0.45/0.55 from each branch. The surface compaction of the PMMA as a result of the irradiation for doses up to 160 nC/mm 2 was also investigated. From these investigations, the optimal fabrication conditions for proton beam writing of PMMA were established. Waveguides of arbitrary design can be easily fabricated using proton beam writing, making the technique ideal for the rapid prototyping of optical circuits

  19. Nanoparticle sorting in silicon waveguide arrays

    Science.gov (United States)

    Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.

    2017-08-01

    This paper presents the optical fractionation of nanoparticles in silicon waveguide arrays. The optical lattice is generated by evanescent coupling in silicon waveguide arrays. The hotspot size is tunable by changing the refractive index of surrounding liquids. In the experiment, 0.2-μm and 0.5-μm particles are separated with a recovery rate of 95.76%. This near-field approach is a promising candidate for manipulating nanoscale biomolecules and is anticipated to benefit the biomedical applications such as exosome purification, DNA optical mapping, cell-cell interaction, etc.

  20. Experimental investigations on channelized coplanar waveguide

    Science.gov (United States)

    Simons, Rainee N.; Ponchak, George E.; Martzaklis, Konstantinas S.; Romanofsky, Robert R.

    1990-01-01

    A new variant of coplanar waveguide (CPW) which was termed channelized coplanar waveguide (CCPW) is presented. Measured propagation characteristics for CCPW such as epsilon(eff) and unloaded Q as a function of geometrical parameters and frequency are presented. The measured and modeled epsilon(eff) are also compared. Equivalent circuit model element values are presented for a CCPW open circuit and a CCPW right angle bend. A CCPW matched T-junction, matched 1:3 junction, and a novel coax-to-CCPW in-phase, N-way, radial power divider are also demonstrated.

  1. Chalcogenide Glass Optical Waveguides for Infrared Biosensing

    Directory of Open Access Journals (Sweden)

    Bruno Bureau

    2009-09-01

    Full Text Available Due to the remarkable properties of chalcogenide (Chg glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 μm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (biosensors.

  2. Incorporating an optical waveguide into a neural interface

    Energy Technology Data Exchange (ETDEWEB)

    Tolosa, Vanessa; Delima, Terri L.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tooker, Angela C.

    2016-11-08

    An optical waveguide integrated into a multielectrode array (MEA) neural interface includes a device body, at least one electrode in the device body, at least one electrically conducting lead coupled to the at least one electrode, at least one optical channel in the device body, and waveguide material in the at least one optical channel. The fabrication of a neural interface device includes the steps of providing a device body, providing at least one electrode in the device body, providing at least one electrically conducting lead coupled to the at least one electrode, providing at least one optical channel in the device body, and providing a waveguide material in the at least one optical channel.

  3. Low-loss multimode interference couplers for terahertz waves

    Science.gov (United States)

    Themistos, Christos; Kalli, Kyriacos; Komodromos, Michael; Markides, Christos; Quadir, Anita; Rahman, B. M. Azizur; Grattan, Kenneth T. V.

    2012-04-01

    The terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, metal-clad plasmonic waveguides and specifically hollow core structures, coated with insulating material are the most promising low-loss waveguides used in both active and passive devices. Optical power splitters are important components in the design of optoelectronic systems and optical communication networks such as Mach-Zehnder Interferometric switches, polarization splitter and polarization scramblers. Several designs for the implementation of the 3dB power splitters have been proposed in the past, such as the directional coupler-based approach, the Y-junction-based devices and the MMI-based approach. In the present paper a novel MMI-based 3dB THz wave splitter is implemented using Gold/polystyrene (PS) coated hollow glass rectangular waveguides. The H-field FEM based full-vector formulation is used here to calculate the complex propagation characteristics of the waveguide structure and the finite element beam propagation method (FE-BPM) and finite difference time domain (FDTD) approach to demonstrate the performance of the proposed 3dB splitter.

  4. Comparison of OOK- and PAM-4 modulation for 10 Gbit/s transmission over up to 300 m polymer optical fiber

    NARCIS (Netherlands)

    Breyer, F.; Lee, S.C.J.; Randel, S.; Hanik, N.

    2008-01-01

    10 Gbit/s Transmission over up to 300 m of multimode 62.5 µm core-diameter perfluorinated graded-index polymer optical fiber is compared using on-off-keying (OOK) or 4-level pulse amplitude modulation (PAM-4) and feed-forward or decision-feedback equalization.

  5. Optical propagation of the HE11 mode and Gaussian beams in hollow circular waveguides

    International Nuclear Information System (INIS)

    Crenn, J.P.

    1993-05-01

    The propagation of the HE 11 mode and Gaussian beams in hollow oversized circular waveguides is analyzed using optical theories. Different types of waveguides are considered: hollow dielectric or conducting waveguides, dielectric-lined waveguides, corrugated waveguides. General formulas are derived which give the power transmission through these different guides. The best wall materials and structures are determined from a comparison of the waveguide transmissions, at the infrared and millimeter wavelengths. The question of the coupling between the HE 11 mode and Gaussian beams is discussed and from a review of coupling coefficients derived before, an optimum value is pointed out. The problem of matching a Gaussian beam into circular waveguides in order to achieve the maximum power transmission is analyzed

  6. Multimodal exemplification: The expansion of meaning in electronic ...

    African Journals Online (AJOL)

    Functional Multimodal Discourse Analysis (SF-MDA) and argues for improving their exemplifica-tion multimodally. Multimodal devices, if well coordinated, can help optimize e-dictionary exam-ples in informativity, diversity, dynamicity and ...

  7. Multimoded rf delay line distribution system for the Next Linear Collider

    Directory of Open Access Journals (Sweden)

    S. G. Tantawi

    2002-03-01

    Full Text Available The delay line distribution system is an alternative to conventional pulse compression, which enhances the peak power of rf sources while matching the long pulse of those sources to the shorter filling time of accelerator structures. We present an implementation of this scheme that combines pairs of parallel delay lines of the system into single lines. The power of several sources is combined into a single waveguide delay line using a multimode launcher. The output mode of the launcher is determined by the phase coding of the input signals. The combined power is extracted from the delay line using mode-selective extractors, each of which extracts a single mode. Hence, the phase coding of the sources controls the output port of the combined power. The power is then fed to the local accelerator structures. We present a detailed design of such a system, including several implementation methods for the launchers, extractors, and ancillary high power rf components. The system is designed so that it can handle the 600 MW peak power required by the Next Linear Collider design while maintaining high efficiency.

  8. Compact beam splitters in coupled waveguides using shortcuts to adiabaticity

    Science.gov (United States)

    Chen, Xi; Wen, Rui-Dan; Shi, Jie-Long; Tseng, Shuo-Yen

    2018-04-01

    There are various works on adiabatic (three) waveguide coupler devices but most are focused on the quantum optical analogies and the physics itself. We successfully apply shortcuts to adiabaticity techniques to the coupled waveguide system with a suitable length for integrated optics devices. Especially, the counter-diabatic driving protocol followed by unitary transformation overcomes the previously unrealistic implemention, and is used to design feasible and robust 1 × 2 and 1 × 3 beam splitters for symmetric and asymmetric three waveguide couplers. Numerical simulations with the beam propagation method demonstrate that these shortcut designs for beam splitters are shorter than the adiabatic ones, and also have a better tolerance than parallel waveguides resonant beam splitters with respect to spacing errors and wavelength variation.

  9. Metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, Nina

    This work concerns planar optical waveguide sensors for biosensing applications, with the focus on deep-probe sensing for micron-scale biological objects like bacteria and whole cells. In the last two decades planar metal-clad waveguides have been brieflyintroduced in the literature applied...... for various biosensing applications, however a thorough study of the sensor configurations has not been presented, but is the main subject of this thesis. Optical sensors are generally well suited for bio-sensing asthey show high sensitivity and give an immediate response for minute changes in the refractive...... index of a sample, due to the high sensitivity of optical bio-sensors detection of non-labeled biological objects can be performed. The majority of opticalsensors presented in the literature and commercially available optical sensors are based on evanescent wave sensing, however most of these sensors...

  10. Nonclassical statistics of intracavity coupled chi((2)) waveguides: The quantum optical dimer

    DEFF Research Database (Denmark)

    Bache, Morten; Gaididei, Yuri Borisovich; Christiansen, Peter Leth

    2003-01-01

    A model is proposed where two chi((2)) nonlinear waveguides are contained in a cavity suited for second-harmonic generation. The evanescent wave coupling between the waveguides is considered as weak, and the interplay between this coupling and the nonlinear interaction within the waveguides gives...

  11. A green-color portable waveguide eyewear display system

    Science.gov (United States)

    Xia, Lingbo; Xu, Ke; Wu, Zhengming; Hu, Yingtian; Li, Zhenzhen; Wang, Yongtian; Liu, Juan

    2013-08-01

    Waveguide display systems are widely used in various display fields, especially in head mounted display. Comparing with the traditional head mounted display system, this device dramatically reduce the size and mass. However, there are still several fatal problems such as high scatting, the cumbersome design and chromatic aberration that should be solved. We designed and fabricated a monochromatic portable eyewear display system consist of a comfortable eyewear device and waveguide system with two holographic gratings located on the substrate symmetrically. We record the gratings on the photopolymer medium with high efficiency and wavelength sensitivity. The light emitting from the micro-display is diffracted by the grating and trapped in the glass substrate by total internal reflection. The relationship between the diffraction efficiency and exposure value is studied and analyzed, and we fabricated the gratings with appropriate diffraction efficiency in a optimization condition. To avoid the disturbance of the stray light, we optimize the waveguide system numerically and perform the optical experiments. With this system, people can both see through the waveguide to obtain the information outside and catch the information from the micro display. After considering the human body engineering and industrial production, we design the structure in a compact and portable way. It has the advantage of small-type configuration and economic acceptable. It is believe that this kind of planar waveguide system is a potentially replaceable choice for the portable devices in future mobile communications.

  12. Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy.

    Science.gov (United States)

    Jiang, Yuyan; Cui, Dong; Fang, Yuan; Zhen, Xu; Upputuri, Paul Kumar; Pramanik, Manojit; Ding, Dan; Pu, Kanyi

    2017-11-01

    Chemo-photothermal nanotheranostics has the advantage of synergistic therapeutic effect, providing opportunities for optimized cancer therapy. However, current chemo-photothermal nanotheranostic systems generally comprise more than three components, encountering the potential issues of unstable nanostructures and unexpected conflicts in optical and biophysical properties among different components. We herein synthesize an amphiphilic semiconducting polymer (PEG-PCB) and utilize it as a multifunctional nanocarrier to simplify chemo-photothermal nanotheranostics. PEG-PCB has a semiconducting backbone that not only serves as the diagnostic component for near-infrared (NIR) fluorescence and photoacoustic (PA) imaging, but also acts as the therapeutic agent for photothermal therapy. In addition, the hydrophobic backbone of PEG-PCB provides strong hydrophobic and π-π interactions with the aromatic anticancer drug such as doxorubicin for drug encapsulation and delivery. Such a trifunctionality of PEG-PCB eventually results in a greatly simplified nanotheranostic system with only two components but multimodal imaging and therapeutic capacities, permitting effective NIR fluorescence/PA imaging guided chemo-photothermal therapy of cancer in living mice. Our study thus provides a molecular engineering approach to integrate essential properties into one polymer for multimodal nanotheranostics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Ion beam energy attenuation for fabrication of buried, variable-depth, optical waveguides

    International Nuclear Information System (INIS)

    Bibra, M.L. von; Roberts, A.; Dods, S.D.

    2000-01-01

    Buried waveguides with graded depths have been fabricated using a focussed ion beam, direct-write process in fused silica by irradiation with 3 MeV protons through a tapered film varying in thickness from 5 to 40 μm. The resulting waveguides ramp uniformly from 25 to 80 μm below the substrate surface. The waveguides are also uniform in cross-section along their lengths. This demonstrates the potential for this fabrication technique to direct-write three-dimensional waveguide devices within a substrate

  14. Waveguide superconducting single-photon autocorrelators for quantum photonic applications

    NARCIS (Netherlands)

    Sahin, D.; Gaggero, A.; Frucci, G.; Jahanmirinejad, S.; Sprengers, J.P.; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Fiore, A.; Hasan, Z.U.; Hemmer, P.R.; Lee, H.; Santori, C.M.

    2013-01-01

    We report a novel component for integrated quantum photonic applications, a waveguide single-photon autocorrelator. It is based on two superconducting nanowire detectors patterned onto the same GaAs ridge waveguide. Combining the electrical output of the two detectors in a correlation card enables

  15. Fluorescence based fiber optic and planar waveguide biosensors. A review

    International Nuclear Information System (INIS)

    Benito-Peña, Elena; Valdés, Mayra Granda; Glahn-Martínez, Bettina; Moreno-Bondi, Maria C.

    2016-01-01

    The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science. - Highlights: • Principles, configurations and fluorescence techniques using fiber optic and planar waveguide biosensors are discussed. • The biorecognition elements and sensing schemes used in fiber optic and planar waveguide platforms are reviewed. • Some major and recent applications of fiber optic and planar waveguide biosensors are introduced.

  16. Fluorescence based fiber optic and planar waveguide biosensors. A review

    Energy Technology Data Exchange (ETDEWEB)

    Benito-Peña, Elena [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain); Valdés, Mayra Granda [Department of Analytical Chemistry, Faculty of Chemistry, University of La Habana, 10400 La Habana (Cuba); Glahn-Martínez, Bettina [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain); Moreno-Bondi, Maria C., E-mail: mcmbondi@quim.ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain)

    2016-11-02

    The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science. - Highlights: • Principles, configurations and fluorescence techniques using fiber optic and planar waveguide biosensors are discussed. • The biorecognition elements and sensing schemes used in fiber optic and planar waveguide platforms are reviewed. • Some major and recent applications of fiber optic and planar waveguide biosensors are introduced.

  17. Investigation for connecting waveguide in off-planar integrated circuits.

    Science.gov (United States)

    Lin, Jie; Feng, Zhifang

    2017-09-01

    The transmission properties of a vertical waveguide connected by different devices in off-planar integrated circuits are designed, investigated, and analyzed in detail by the finite-difference time-domain method. The results show that both guide bandwidth and transmission efficiency can be adjusted effectively by shifting the vertical waveguide continuously. Surprisingly, the wide guide band (0.385[c/a]∼0.407[c/a]) and well transmission (-6  dB) are observed simultaneously in several directions when the vertical waveguide is located at a specific location. The results are very important for all-optical integrated circuits, especially in compact integration.

  18. Direct-Dispense Polymeric Waveguides Platform for Optical Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Mohamad Hajj-Hassan

    2008-12-01

    Full Text Available We describe an automated robotic technique called direct-dispense to fabricate a polymeric platform that supports optical sensor arrays. Direct-dispense, which is a type of the emerging direct-write microfabrication techniques, uses fugitive organic inks in combination with cross-linkable polymers to create microfluidic channels and other microstructures. Specifically, we describe an application of direct-dispensing to develop optical biochemical sensors by fabricating planar ridge waveguides that support sol-gelderived xerogel-based thin films. The xerogel-based sensor materials act as host media to house luminophore biochemical recognition elements. As a prototype implementation, we demonstrate gaseous oxygen (O2 responsive optical sensors that operate on the basis of monitoring luminescence intensity signals. The optical sensor employs a Light Emitting Diode (LED excitation source and a standard silicon photodiode as the detector. The sensor operates over the full scale (0%-100% of O2 concentrations with a response time of less than 1 second. This work has implications for the development of miniaturized multisensor platforms that can be cost-effectively and reliably mass-produced.

  19. Molecularly Imprinted Polymer Waveguides for Direct Optical Detection of Low-Molecular-Weight Analytes

    Czech Academy of Sciences Publication Activity Database

    Sharma, N.; Petri, C.; Jonas, U.; Bach, M.; Tovar, G.; Mrkvová, Kateřina; Vala, Milan; Homola, Jiří; Knoll, W.; Dostálek, J.

    2014-01-01

    Roč. 215, č. 23 (2014), s. 2295-2304 ISSN 1022-1352 R&D Projects: GA ČR GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Label-free biosensors * Molecularly imprinted polymers * Hydrogels Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.616, year: 2014

  20. Cutoff-mesa isolated rib optical waveguide for III-V heterostructure photonic integrated circuits

    Science.gov (United States)

    Vawter, G.A.; Smith, R.E.

    1998-04-28

    A cutoff mesa rib waveguide provides single-mode performance regardless of any deep etches that might be used for electrical isolation between integrated electrooptic devices. Utilizing a principle of a cutoff slab waveguide with an asymmetrical refractive index profile, single mode operation is achievable with a wide range of rib widths and does not require demanding etch depth tolerances. This new waveguide design eliminates reflection effects, or self-interference, commonly seen when conventional rib waveguides are combined with deep isolation etches and thereby reduces high order mode propagation and crosstalk compared to the conventional rib waveguides. 7 figs.

  1. Propagation of a laser beam in a time-varying waveguide

    International Nuclear Information System (INIS)

    Chapman, J.M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is examined. First, an extended paraxial procedure is developed for the case of an axially uniform waveguide. It is shown that the essential feature of an alternate focusing and defocusing beam is retained, but that the intensity distribution is cumulatively modified at the foci and at the outer portions of the beam as compared to that of the paraxial case. Second, some general features of paraxial beam propagation are examined for the case of axially varying waveguides. Finally, laser plasma coupling is examined for the case when laser heating generates a density distribution that is radially parabolic near the axis and when the energy absorbed over a focal length of a plasma lens is small. It is shown that stable or unstable beam propagation depends upon the relative magnitude of the density fluctuations which exist in the axial variation of the waveguides as a result of laser heating. When the fluctuations are small, the propagation is stable, and a simple algebraic expression is obtained which relates the beam diameter to the axially slow averaged variation in the waveguide. When the fluctuations are large, the propagation stability can be determined only by consistently combining plasma dynamics and beam propagation to interrelate the axial variation of the beam to that of the waveguide. In this case of beam propagation in a time-varying waveguide, it is shown that the global stability of the propagation depends upon the initial fluctuation growth rate compared to the initial time rate of change in the radial curvature of the waveguide

  2. Fabrication of planar waveguide in KNSBN crystal by swift heavy ion beam irradiation

    International Nuclear Information System (INIS)

    Guan, Jing; Wang, Lei; Qin, Xifeng

    2013-01-01

    We report on the fabrication of the planar waveguides in the KNSBN crystal by using 17 MeV C 5+ ions at a fluence of 2 × 10 14 ions/cm 2 . After implantation, near surface regions of the crystal, there has a positive extraordinary refractive index (n e ) change and the light inside the waveguides can propagate in a non-leaky manner. The two-dimensional modal profiles of the planar waveguides, measured by using the end-coupling arrangement, are in good agreement with the reconstructed modal distributions. The propagation loss for C 5+ irradiated waveguide is ∼0.8 dB/cm at 633 nm and ∼0.72 dB/cm at 1064 nm. The waveguide gives good confinement of waveguide modes, which exhibits acceptable guiding qualities for potential applications in integrated optics

  3. Fabrication of planar waveguide in KNSBN crystal by swift heavy ion beam irradiation

    Science.gov (United States)

    Guan, Jing; Wang, Lei; Qin, Xifeng

    2013-11-01

    We report on the fabrication of the planar waveguides in the KNSBN crystal by using 17 MeV C5+ ions at a fluence of 2 × 1014 ions/cm2. After implantation, near surface regions of the crystal, there has a positive extraordinary refractive index (ne) change and the light inside the waveguides can propagate in a non-leaky manner. The two-dimensional modal profiles of the planar waveguides, measured by using the end-coupling arrangement, are in good agreement with the reconstructed modal distributions. The propagation loss for C5+ irradiated waveguide is ∼0.8 dB/cm at 633 nm and ∼0.72 dB/cm at 1064 nm. The waveguide gives good confinement of waveguide modes, which exhibits acceptable guiding qualities for potential applications in integrated optics.

  4. Hybrid numerical calculation method for bend waveguides

    OpenAIRE

    Garnier , Lucas; Saavedra , C.; Castro-Beltran , Rigoberto; Lucio , José Luis; Bêche , Bruno

    2017-01-01

    National audience; The knowledge of how the light will behave in a waveguide with a radius of curvature becomes more and more important because of the development of integrated photonics, which include ring micro-resonators, phasars, and other devices with a radius of curvature. This work presents a numerical calculation method to determine the eigenvalues and eigenvectors of curved waveguides. This method is a hybrid method which uses at first conform transformation of the complex plane gene...

  5. PROSPECTS FOR APPLICATION OF FLEXIBLE ULTRASONIC WAVEGUIDE SYSTEMS IN MEDICINE AND ENGINEERING

    Directory of Open Access Journals (Sweden)

    V. T. Minchenya

    2010-01-01

    Full Text Available The article presents comprehensive review of current and possible future applications of flexible ultrasonic waveguides in medicine and engineering. Issues of design, modelling and manufacturing of flexible waveguides are considered. The article also presents some results of the authors in this field, particularly modelling techniques developed for the design of flexible waveguides and ultrasonic technologies and equipment for ultrasonic thromboectomy, heating of frozen fuel and ultrasonic drilling of brittle materials. Novel technology for manufacturing flexible waveguides based on electrolytic-plasma machining is also described

  6. Writing single-mode waveguides in lithium niobate by ultra-low intensity solitons

    International Nuclear Information System (INIS)

    Fazio, E.; Ramadan, W.; Petris, A.; Chauvet, M.; Bosco, A.; Vlad, V.I.; Bertolotti, M.

    2005-01-01

    Optical waveguides can be conveniently written in photorefractive materials by using spatial solitons. We have generated bright spatial solitons inside lithium niobate which allow single-mode light propagation. Efficient waveguides have been generated with CW light powers as high as few microwatts. According to the soliton formation, waveguides can be formed with different shapes. Due to the slow response time of the lithium niobate, both for soliton formation and relaxation, the soliton waveguide remains memorised for a long time, of the order of months

  7. A holographic waveguide based eye tracker

    Science.gov (United States)

    Liu, Changgeng; Pazzucconi, Beatrice; Liu, Juan; Liu, Lei; Yao, Xincheng

    2018-02-01

    We demonstrated the feasibility of using holographic waveguide for eye tracking. A custom-built holographic waveguide, a 20 mm x 60 mm x 3 mm flat glass substrate with integrated in- and out-couplers, was used for the prototype development. The in- and out-couplers, photopolymer films with holographic fringes, induced total internal reflection in the glass substrate. Diffractive optical elements were integrated into the in-coupler to serve as an optical collimator. The waveguide captured images of the anterior segment of the eye right in front of it and guided the images to a processing unit distant from the eye. The vector connecting the pupil center (PC) and the corneal reflex (CR) of the eye was used to compute eye position in the socket. An eye model, made of a high quality prosthetic eye, was used prototype validation. The benchtop prototype demonstrated a linear relationship between the angular eye position and the PC/CR vector over a range of 60 horizontal degrees and 30 vertical degrees at a resolution of 0.64-0.69 degrees/pixel by simple pixel count. The uncertainties of the measurements at different angular positions were within 1.2 pixels, which indicated that the prototype exhibited a high level of repeatability. These results confirmed that the holographic waveguide technology could be a feasible platform for developing a wearable eye tracker. Further development can lead to a compact, see-through eye tracker, which allows continuous monitoring of eye movement during real life tasks, and thus benefits diagnosis of oculomotor disorders.

  8. Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides

    DEFF Research Database (Denmark)

    Han, Zhanghua; García Ortíz, César Eduardo; Radko, Ilya P.

    2013-01-01

    We report on the experimental demonstration of detuned-resonator induced transparency in the near-infrared (∼800  nm) using two detuned racetrack resonators side-coupled to a bus waveguide. Both resonators and the bus waveguide are in the form of dielectric-loaded surface plasmon polariton...

  9. Full Ka Band Waveguide-to-Microstrip Inline Transition Design

    Science.gov (United States)

    Li, Jianxing; Li, Lei; Qiao, Yu; Chen, Juan; Chen, Jianzhong; Zhang, Anxue

    2018-05-01

    In this paper, a compact and broadband inline waveguide-to-microstrip transition is proposed to cover the full Ka band. The transition can be segmented from the electric point of view into three building blocks, comprising a microstrip line to rectangular coaxial line, a wedged rectangular coaxial line to ridged waveguide, and a final tapered ridged waveguide impedance transformer to standard waveguide. Both good electrical performance and simple modular assembly without any soldering have been simultaneously obtained. The validation of the design concept has been conducted by numerical simulations and experimental measurements. The experimental results of a fabricated back-to-back transition prototype coincide with the simulated results. It shows that the proposed transition achieves good return loss of lower than 15.5 dB and low insertion loss with a fluctuation between 0.23 to 0.60 dB across the entire Ka band. Details of design considerations and operation mechanism as well as simulation and measurement results are presented.

  10. Periodically modulated single-photon transport in one-dimensional waveguide

    Science.gov (United States)

    Li, Xingmin; Wei, L. F.

    2018-03-01

    Single-photon transport along a one-dimension waveguide interacting with a quantum system (e.g., two-level atom) is a very useful and meaningful simplified model of the waveguide-based optical quantum devices. Thus, how to modulate the transport of the photons in the waveguide structures by adjusting certain external parameters should be particularly important. In this paper, we discuss how such a modulation could be implemented by periodically driving the energy splitting of the interacting atom and the atom-photon coupling strength. By generalizing the well developed time-independent full quantum mechanical theory in real space to the time-dependent one, we show that various sideband-transmission phenomena could be observed. This means that, with these modulations the photon has certain probabilities to transmit through the scattering atom in the other energy sidebands. Inversely, by controlling the sideband transmission the periodic modulations of the single photon waveguide devices could be designed for the future optical quantum information processing applications.

  11. An experimental study of the fabrication of polycarbonate optical waveguides

    Science.gov (United States)

    Chen, Jianguo; Zhang, Xiao-yang; Zhang, Tong; Zhu, Jing-song; Wu, Peng-qin; Zhou, Jing-lun; Fan, Jiang-feng; Yan, Hao-feng

    2008-12-01

    A novel polycarbonate (PC) was introduced to apply in the optical waveguide devices. PC has following distinct merits than common polycarbonate: good processability, high thermal stability up to 293 C° and high optical transparency. Optical properties of absorption behavior and propagation loss were investigated in slab waveguides, and low propagation losses of 0.335 dB/cm (@1550nm) and 0.197 dB/cm @632.8nm) have been achieved by using prismcoupler. Additionally, straight optical waveguide and MMI coupler of ring resonator were fabricated using ultraviolet (UV) cured resin Norland optical adhesive 61 (NOA61) as under or upper cladding layer and polycarbonate as waveguide core-layer material through conventional methods such as spin coating, photolithography and reactive ion etching (RIE). The process was studied in detail and the experimental results were given.

  12. Hybrid finite element/waveguide mode analysis of passive RF devices

    Science.gov (United States)

    McGrath, Daniel T.

    1993-07-01

    A numerical solution for time-harmonic electromagnetic fields in two-port passive radio frequency (RF) devices has been developed, implemented in a computer code, and validated. Vector finite elements are used to represent the fields in the device interior, and field continuity across waveguide apertures is enforced by matching the interior solution to a sum of waveguide modes. Consequently, the mesh may end at the aperture instead of extending into the waveguide. The report discusses the variational formulation and its reduction to a linear system using Galerkin's method. It describes the computer code, including its interface to commercial CAD software used for geometry generation. It presents validation results for waveguide discontinuities, coaxial transitions, and microstrip circuits. They demonstrate that the method is an effective and versatile tool for predicting the performance of passive RF devices.

  13. Hollow core waveguide as mid-infrared laser modal beam filter

    Energy Technology Data Exchange (ETDEWEB)

    Patimisco, P.; Giglio, M.; Spagnolo, V. [Dipartimento Interateneo di Fisica, Università e Politecnico di Bari, CNR-IFN UOS BARI, Via Amendola 173, 70126 Bari (Italy); Sampaolo, A. [Dipartimento Interateneo di Fisica, Università e Politecnico di Bari, CNR-IFN UOS BARI, Via Amendola 173, 70126 Bari (Italy); Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005 (United States); Kriesel, J. M. [Opto-Knowledge Systems, Inc. (OKSI), 19805 Hamilton Ave., Torrance, California 90502-1341 (United States); Tittel, F. K. [Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005 (United States)

    2015-09-21

    A novel method for mid-IR laser beam mode cleaning employing hollow core waveguide as a modal filter element is reported. The influence of the input laser beam quality on fiber optical losses and output beam profile using a hollow core waveguide with 200 μm-bore size was investigated. Our results demonstrate that even when using a laser with a poor spatial profile, there will exist a minimum fiber length that allows transmission of only the Gaussian-like fundamental waveguide mode from the fiber, filtering out all the higher order modes. This essentially single mode output is preserved also when the waveguide is bent to a radius of curvature of 7.5 cm, which demonstrates that laser mode filtering can be realized even if a curved light path is required.

  14. Quasi-phase matching and quantum control of high harmonic generation in waveguides using counterpropagating beams

    Science.gov (United States)

    Zhang, Xiaoshi; Lytle, Amy L.; Cohen, Oren; Kapteyn, Henry C.; Murnane, Margaret M.

    2010-11-09

    All-optical quasi-phase matching (QPM) uses a train of counterpropagating pulses to enhance high-order harmonic generation (HHG) in a hollow waveguide. A pump pulse enters one end of the waveguide, and causes HHG in the waveguide. The counterpropagation pulses enter the other end of the waveguide and interact with the pump pulses to cause QPM within the waveguide, enhancing the HHG.

  15. Wave-guided Optical Waveguides tracked and coupled using dynamic diffractive optics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Villangca, Mark Jayson; Bañas, Andrew Rafael

    With light’s miniscule momentum, shrinking robotics down to the micro- and nano-scale regime creates opportunities for exploiting optical forces and near-field light delivery in advanced actuation and control atthe smallest physical dimensions. Advancing light-driven nano- or micro-actuation requ......With light’s miniscule momentum, shrinking robotics down to the micro- and nano-scale regime creates opportunities for exploiting optical forces and near-field light delivery in advanced actuation and control atthe smallest physical dimensions. Advancing light-driven nano- or micro...... waveguides (WOWs) [2]. As the WOWs are optically trapped and maneuvered in 3D-space, it is important to maintain efficient light-coupling through these free-standing waveguides within their operating volume [3]. We propose the use ofdynamic diffractive techniques to create focal spots that will track...... and couple to the WOWs during full volume operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested for a single WOW and we have experimentally demonstrated dynamic tracking...

  16. Chaotic behavior of a quantum waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Aguilar, H., E-mail: hiperezag@yahoo.com [Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N 58030, Morelia, Michoacán (Mexico); Mendoza-Suárez, A.; Tututi, E.S. [Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N 58030, Morelia, Michoacán (Mexico); Herrera-González, I.F. [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla (Mexico)

    2013-02-15

    In this work we consider an infinite quantum waveguide composed of two periodic, hard walls, one-dimensional rippled surfaces. We find that, under certain conditions, the proposed system presents some traces of quantum chaos, when the corresponding classical limit has chaotic behavior. Thus, it is possible to obtain disordered probability densities in a system with smooth surfaces. When the system has chaotic behavior we show numerically that the correlation length of the autocorrelation function of the probability density goes to zero. To corroborate some properties obtained for infinite waveguide that are physically admissible, we study the corresponding finite version of this system.

  17. Chaotic behavior of a quantum waveguide

    International Nuclear Information System (INIS)

    Pérez-Aguilar, H.; Mendoza-Suárez, A.; Tututi, E.S.; Herrera-González, I.F.

    2013-01-01

    In this work we consider an infinite quantum waveguide composed of two periodic, hard walls, one-dimensional rippled surfaces. We find that, under certain conditions, the proposed system presents some traces of quantum chaos, when the corresponding classical limit has chaotic behavior. Thus, it is possible to obtain disordered probability densities in a system with smooth surfaces. When the system has chaotic behavior we show numerically that the correlation length of the autocorrelation function of the probability density goes to zero. To corroborate some properties obtained for infinite waveguide that are physically admissible, we study the corresponding finite version of this system

  18. Direct mapping of light propagation in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Volkov, V.S.; Arentoft, J.

    2002-01-01

    Using near-field optical microscopy, we directly map the propagation of light in the wavelength range of 1510-1560 nm along bent photonic crystal waveguides formed by removing a single row of holes in the triangular 400-nm-period lattice and connected to access ridge waveguides, the structure being...

  19. A Waveguide Transverse Broad Wall Slot Radiating Between Baffles

    DEFF Research Database (Denmark)

    Dich, Mikael; Rengarajan, S.R.

    1997-01-01

    An analysis of the self impedance of waveguide-fed transverse slots radiating between baffles is presented. The region exterior to the slot is treated as a parallel plate (PP) waveguide which radiates into half space through an aperture in an infinite ground plane. The slot problem is analyzed...

  20. Design and Measurement of Metallic Post-Wall Waveguide Components

    NARCIS (Netherlands)

    Coenen, T.J.; Bekers, D.J.; Tauritz, J.L.; Vliet, F.E. van

    2009-01-01

    Abstract—In this paper we discuss the design and measurement of a set of metallic post-wall waveguide components for antenna feed structures. The components are manufactured on a single layer printed circuit board and excited by a grounded coplanar waveguide. For a straight transmission line, a 90°