WorldWideScience

Sample records for multilayered polyelectrolyte assemblies

  1. Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems

    Science.gov (United States)

    Jiang, Bingbing; Barnett, John B; Li, Bingyun

    2009-01-01

    There has been considerable interest in polyelectrolyte multilayer nanofilms, which have a variety of applications ranging from optical and electrochemical materials to biomedical devices. Polyelectrolyte multilayer nanofilms are constructed from aqueous solutions using electrostatic layer-by-layer self-assembly of oppositely-charged polyelectrolytes on a solid substrate. Multifunctional polyelectrolyte multilayer nanofilms have been studied using charged dyes, metal and inorganic nanoparticles, DNA, proteins, and viruses. In the past few years, there has been increasing attention to developing polyelectrolyte multilayer nanofilms as drug delivery vehicles. In this mini-review, we present recent developments in polyelectrolyte multilayer nanofilms with tunable drug delivery properties, with particular emphasis on the strategies in tuning the loading and release of drugs in polyelectrolyte multilayer nanofilms as well as their applications. PMID:24198464

  2. An electrochemical aptasensor for chiral peptide detection using layer-by-layer assembly of polyelectrolyte-methylene blue/polyelectrolyte-graphene multilayer

    International Nuclear Information System (INIS)

    Qin Haixia; Liu Jiyang; Chen Chaogui; Wang Jiahi; Wang Erkang

    2012-01-01

    Highlights: ► An electrochemical aptasensor for selective detection of peptide is constructed. ► This aptasensor is based on grapheme multilayer via layer-by-layer assembly. ► Such multilayer facilitates electron transfer and provides more adsorption sites. - Abstract: Here we demonstrate for the first time that by physically adsorbing aptamer onto conductive film assembled via alternate adsorption of graphene/polyelectrolyte and methylene blue/polyelectrolyte, a label-free electrochemical aptasensor with high sensitivity and selectivity for peptide detection is constructed. Graphene multilayer derived from layer-by-layer assembly has played significant roles in this sensing strategy: allowing accumulation of methylene blue, facilitating electron transfer and providing much more adsorption site. As compared to previous electrochemical aptasensors, the current sensor based on graphene multilayer alternated with electroactive molecule layer offers extremely high capability for sensitive detection of target without interference of environmental surrounding. This electroactive probe-confined graphene multilayer confers great flexibility to combine with differential pulse voltammetry (DPV) together. In the presence of target D entiomer of arginine vasopressin (D-VP), the binding of peptide to aptamer block the electron transfer process of MB, leading to decreased current peak of DPV. By this way, this electrochemical aptasensor based on electroactive molecule-intercalated graphene multilayer provide highly sensitive and specific detection of D-VP with the lowest detectable concentration of 1 ng mL −1 and a wide detection range from 1 to 265 ng mL −1 .

  3. Impact of the self-assembly of multilayer polyelectrolyte functionalized gold nanorods and its application to biosensing

    International Nuclear Information System (INIS)

    Li Xin; Qian Jun; He Sailing

    2008-01-01

    Multilayered polyelectrolyte functionalized gold nanorods (GNRs) are reported for the conjugation of and sensitive detection of bio-molecules. Multilayered polyelectrolyte functionalized GNRs can significantly improve the biocompatibility of cetyltrimethylammonium bromide (CTAB) coated GNRs in a bio-environment and can diminish the toxicity induced by CTAB. Biotin, bovine serum albumin (BSA)-biotin and streptavidin are conjugated to polyelectrolyte functionalized GNRs, and the conjugates can serve as a platform for many biotin-streptavidin-based biological applications. Through the robust self-assembly effect of GNRs, biotin-conjugated GNRs are also utilized as a very sensitive probe for the detection of a small amount of streptavidin

  4. Electrostatics and charge regulation in polyelectrolyte multilayered assembly.

    Science.gov (United States)

    Cherstvy, Andrey G

    2014-05-01

    We examine the implications of electrostatic interactions on formation of polyelectrolyte multilayers, in application to field-effect based biosensors for label-free detection of charged macromolecules. We present a quantitative model to describe the experimental potentiometric observations and discuss its possibilities and limitations for detection of polyelectrolyte adsorption. We examine the influence of the ionic strength and pH on the sensor response upon polyelectrolyte layer-by-layer formation. The magnitude of potential oscillations on the sensor-electrolyte interface predicted upon repetitive adsorption charge-alternating polymers agrees satisfactorily with experimental results. The model accounts for different screening by mobile ions in electrolyte and inside tightly interdigitated multilayered structure. In particular, we show that sensors' potential oscillations are larger and more persistent at lower salt conditions, while they decay faster with the number of layers at higher salt conditions, in agreement with experiments. The effects of polyelectrolyte layer thickness, substrate potential, and charge regulation on the sensor surface triggered by layer-by-layer deposition are also analyzed.

  5. Self-assembled graphene/azo polyelectrolyte multilayer film and its application in electrochemical energy storage device.

    Science.gov (United States)

    Wang, Dongrui; Wang, Xiaogong

    2011-03-01

    Graphene/azo polyelectrolyte multilayer films were fabricated through electrostatic layer-by-layer (LbL) self-assembly, and their performance as electrochemical capacitor electrode was investigated. Cationic azo polyelectrolyte (QP4VP-co-PCN) was synthesized through radical polymerization, postpolymerization azo coupling reaction, and quaternization. Negatively charged graphene nanosheets were prepared by a chemically modified method. The LbL films were obtained by alternately dipping a piece of the pretreated substrates in the QP4VP-co-PCN and nanosheet solutions. The processes were repeated until the films with required numbers of bilayers were obtained. The self-assembly and multilayer surface morphology were characterized by UV-vis spectroscopy, AFM, SEM, and TEM. The performance of the LbL films as electrochemical capacitor electrode was estimated using cyclic voltammetry. Results show that the graphene nanosheets are densely packed in the multilayers and form random graphene network. The azo polyelectrolyte cohesively interacts with the nanosheets in the multilayer structure, which prevents agglomeration of graphene nanosheets. The sheet resistance of the LbL films decreases with the increase of the layer numbers and reaches the stationary value of 1.0 × 10(6) Ω/square for the film with 15 bilayers. At a scanning rate of 50 mV/s, the LbL film with 9 bilayers shows a gravimetric specific capacitance of 49 F/g in 1.0 M Na(2)SO(4) solution. The LbL films developed in this work could be a promising type of the electrode materials for electric energy storage devices.

  6. Multilayer films of cationic graphene-polyelectrolytes and anionic graphene-polyelectrolytes fabricated using layer-by-layer self-assembly

    International Nuclear Information System (INIS)

    Rani, Adila; Oh, Kyoung Ah; Koo, Hyeyoung; Lee, Hyung jung; Park, Min

    2011-01-01

    Extremely thin sheets of carbon atoms called graphene have been predicted to possess excellent thermal properties, electrical conductivity, and mechanical stiffness. To harness such properties in composite materials for multifunctional applications, one would require the incorporation of graphene. In this study, new thin film composites were created using layer-by-layer (LBL) assembly of polymer-coated graphitic nanoplatelets. The positive and negative polyelectrolytes used to cover graphene sheets were poly allylamine hydrochloride (PAH) and poly sodium 4-styrenesulfonate (PSS). The synthesized poly allylamine hydrochloride-graphene (PAH-G) and poly sodium 4-styrenesulfonate-gaphene (PSS-G) were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and thermo gravimetric analysis (TGA). The multilayer films created by spontaneous sequential adsorption of PAH-G and PSS-G were characterized by ultra violet spectroscopy (UV-vis), scanning electron microscopy (SEM), and AFM. The electrical conductivity of the graphene/polyelectrolyte multilayer film composites measured by the four-point probe method was 0.2 S cm -1 , which was sufficient for the construction of advanced electro-optical devices and sensors.

  7. Layer-by-Layer Assembly of Polyelectrolyte Multilayer onto PET Fabric for Highly Tunable Dyeing with Water Soluble Dyestuffs

    Directory of Open Access Journals (Sweden)

    Shili Xiao

    2017-12-01

    Full Text Available Poly(ethyleneterephthalate (PET is a multi-purpose and widely used synthetic polymer in many industrial fields because of its remarkable advantages such as low cost, light weight, high toughness and resistance to chemicals, and high abrasion resistance. However, PET suffers from poor dyeability due to its non-polar nature, benzene ring structure as well as high crystallinity. In this study, PET fabrics were firstly treated with an alkaline solution to produce carboxylic acid functional groups on the surface of the PET fabric, and then was modified by polyelectrolyte polymer through the electrostatic layer-by-layer self-assembly technology. The polyelectrolyte multilayer-deposited PET fabric was characterized using scanning electron microscopy SEM, contact angle, Fourier transform infrared (FTIR and X-ray photoelectron spectroscopy (XPS. The dyeability of PET fabrics before and after surface modification was systematically investigated. It showed that the dye-uptake of the polyelectrolyte multilayer-deposited PET fabric has been enhanced compared to that of the pristine PET fabric. In addition, its dyeability is strongly dependent on the surface property of the polyelectrolyte multilayer-deposited PET fabric and the properties of dyestuffs.

  8. Diffusion of Sites versus Polymers in Polyelectrolyte Complexes and Multilayers.

    Science.gov (United States)

    Fares, Hadi M; Schlenoff, Joseph B

    2017-10-18

    It has long been assumed that the spontaneous formation of materials such as complexes and multilayers from charged polymers depends on (inter)diffusion of these polyelectrolytes. Here, we separately examine the mass transport of polymer molecules and extrinsic sites-charged polyelectrolyte repeat units balanced by counterions-within thin films of polyelectrolyte complex, PEC, using sensitive isotopic labeling techniques. The apparent diffusion coefficients of these sites within PEC films of poly(diallyldimethylammonium), PDADMA, and poly(styrenesulfonate), PSS, are at least 2 orders of magnitude faster than the diffusion of polyelectrolytes themselves. This is because site diffusion requires only local rearrangements of polyelectrolyte repeat units, placing far fewer kinetic limitations on the assembly of polyelectrolyte complexes in all of their forms. Site diffusion strongly depends on the salt concentration (ionic strength) of the environment, and diffusion of PDADMA sites is faster than that of PSS sites, accounting for the asymmetric nature of multilayer growth. Site diffusion is responsible for multilayer growth in the linear and into the exponential regimes, which explains how PDADMA can mysteriously "pass through" layers of PSS. Using quantitative relationships between site diffusion coefficient and salt concentration, conditions were identified that allowed the diffusion length to always exceed the film thickness, leading to full exponential growth over 3 orders of magnitude thickness. Both site and polymer diffusion were independent of molecular weight, suggesting that ion pairing density is a limiting factor. Polyelectrolyte complexes are examples of a broader class of dynamic bulk polymeric materials that (self-) assemble via the transport of cross-links or defects rather than actual molecules.

  9. Preparation and tribological behavior of Cu-nanoparticle polyelectrolyte multilayers obtained by spin-assisted layer-by-layer assembly

    International Nuclear Information System (INIS)

    Yang Guangbin; Geng Zhengang; Ma Hongxia; Wu Zhishen; Zhang Pingyu

    2009-01-01

    Polyelectrolyte multilayers (PEMs) fabricated by spin-assisted layer-by-layer assembly technique were used as nanoreactors for in-situ synthesis Cu nanoparticles. Chemical reaction within the PEMs was initiated by a reaction cycle in which Cu 2+ was absorbed into the polymer-coated substrate and then reduced in NaBH 4 solutions. Repeating the above process resulted in an increase in density of the nanoparticles and further growth in the dimension of the particles initially formed. So, different Cu-nanoparticle polyelectrolyte multilayers were formed in the process. The friction and wear properties of Cu-nanoparticle PEMs formed by different reaction cycles were investigated on a microtribometer against a stainless steel ball. The PEMs reinforced with Cu nanoparticles, prepared under the best preparation conditions, possess good tribological behavior, because of the weakened adhesion between the PEMs and the substrate and decreased mobility of the polymeric chains in the presence of excessive Cu nanoparticles generated at larger reaction cycles

  10. Architecture, Assembly, and Emerging Applications of Branched Functional Polyelectrolytes and Poly(ionic liquid)s.

    Science.gov (United States)

    Xu, Weinan; Ledin, Petr A; Shevchenko, Valery V; Tsukruk, Vladimir V

    2015-06-17

    Branched polyelectrolytes with cylindrical brush, dendritic, hyperbranched, grafted, and star architectures bearing ionizable functional groups possess complex and unique assembly behavior in solution at surfaces and interfaces as compared to their linear counterparts. This review summarizes the recent developments in the introduction of various architectures and understanding of the assembly behavior of branched polyelectrolytes with a focus on functional polyelectrolytes and poly(ionic liquid)s with responsive properties. The branched polyelectrolytes and poly(ionic liquid)s interact electrostatically with small molecules, linear polyelectrolytes, or other branched polyelectrolytes to form assemblies of hybrid nanoparticles, multilayer thin films, responsive microcapsules, and ion-conductive membranes. The branched structures lead to unconventional assemblies and complex hierarchical structures with responsive properties as summarized in this review. Finally, we discuss prospectives for emerging applications of branched polyelectrolytes and poly(ionic liquid)s for energy harvesting and storage, controlled delivery, chemical microreactors, adaptive surfaces, and ion-exchange membranes.

  11. Polyelectrolyte multilayer assembly as a function of pH and ionic strength using the polysaccharides chitosan and heparin.

    Science.gov (United States)

    Boddohi, Soheil; Killingsworth, Christopher E; Kipper, Matt J

    2008-07-01

    The goal of this work is to explore the effects of solution ionic strength and pH on polyelectrolyte multilayer (PEM) assembly, using biologically derived polysaccharides as the polyelectrolytes. We used the layer-by-layer (LBL) technique to assemble PEM of the polysaccharides heparin (a strong polyanion) and chitosan (a weak polycation) and characterized the sensitivity of the PEM composition and layer thickness to changes in processing parameters. Fourier-transform surface plasmon resonance (FT-SPR) and spectroscopic ellipsometry provided in situ and ex situ measurements of the PEM thickness, respectively. Vibrational spectroscopy and X-ray photoelectron spectroscopy (XPS) provided details of the chemistry (i.e., composition, electrostatic interactions) of the PEM. We found that when PEM were assembled from 0.2 M buffer, the PEM thickness could be increased from less than 2 nm per bilayer to greater than 4 nm per bilayer by changing the solution pH; higher and lower ionic strength buffer solutions resulted in narrower ranges of accessible thickness. Molar composition of the PEM was not very sensitive to solution pH or ionic strength, but pH did affect the interactions between the sulfonates in heparin and amines in chitosan when PEM were assembled from 0.2 M buffer. Changes in the PEM thickness with pH and ionic strength can be interpreted through descriptions of the charge density and conformation of the polyelectrolyte chains in solution.

  12. Guided wave sensing of polyelectrolyte multilayers

    DEFF Research Database (Denmark)

    Horvath, R.; Pedersen, H.C.; Cuisinier, F.J.G.

    2006-01-01

    A planar optical waveguide configuration is proposed to monitor the buildup of thick polyelectrolyte multilayers on the surface of the waveguide in aqueous solutions. Instead of detecting the layer by the electromagnetic evanescent field the polyelectrolyte layer acts as an additional waveguiding...

  13. Preparation and electrochemical properties of gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films

    International Nuclear Information System (INIS)

    Yu Aimin; Zhang Xing; Zhang Haili; Han, Deyan; Knight, Allan R.

    2011-01-01

    Highlights: → Gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films were prepared via layer-by-layer self-assembly technique. → The electron transfer behaviour of the hybrid thin films were investigated using an electrochemical probe. → The resulting thin films exhibited an electrocatalytic activity towards the oxidation of nitric oxide. - Abstract: Multi-walled carbon nanotubes (MWCNT)/polyelectrolyte (PE) hybrid thin films were fabricated by alternatively depositing negatively charged MWCNT and positively charged (diallyldimethylammonium chloride) (PDDA) via layer-by-layer (LbL) assembly technique. The stepwise growth of the multilayer films of MWCNT and PDDA was characterized by UV-vis spectroscopy. Scanning electron microscopy (SEM) images indicated that the MWCNT were uniformly embedded in the film to form a network and the coverage density of MWCNT increased with layer number. Au nanoparticles (NPs) could be further adsorbed onto the film to form PE/MWCNT/Au NPs composite films. The electron transfer behaviour of multilayer films with different compositions were studied by cyclic voltammetry using [Fe(CN) 6 ] 3-/4- as an electrochemical probe. The results indicated that the incorporation of MWCNT and Au NPs not only greatly improved the electronic conductivity of pure polyelectrolyte films, but also provided excellent electrocatalytic activity towards the oxidation of nitric oxide (NO).

  14. Preparation and characterization of layer-by-layer self-assembled polyelectrolyte multilayer films doped with surface-capped SiO2 nanoparticles.

    Science.gov (United States)

    Yang, Guangbin; Ma, Hongxia; Yu, Laigui; Zhang, Pingyu

    2009-05-15

    SiO(2) nanoparticles capped with gamma-aminopropyltrimethoxysilane were doped into polyelectrolyte (poly(allylamine hydrochloride), PAH, and poly(acrylic acid), PAA) multilayer films via spin-assisted layer-by-layer self-assembly. The resulting as-prepared multilayer films were heated at a proper temperature to generate cross-linked composite films with increased adhesion to substrates. The tribological behavior of the multilayer films was evaluated on a microtribometer. It was found that SiO(2)-doped composite films had better wear resistance than pure polyelectrolyte multilayers, possibly because doped SiO(2) nanoparticles were capable of enhancing load-carrying capacity and had "miniature ball bearings" effect. Moreover, heat-treatment had significant effect on the morphology of the composite films. Namely, heat-treated (SiO(2)/PAA)(9) film had a larger roughness than the as-prepared one, due to heat-treatment-induced agglomeration of SiO(2) nanoparticles and initiation of defects. However, heat-treated (PAH/PAA)(3)/(SiO(2)/PAA)(3)(PAH/PAA)(3) film had greatly reduced roughness than the as-prepared one, and it showed considerably improved wear resistance as well. This could be closely related to the "sandwich-like" structure of the composite multilayer film. Namely, the outermost strata of composite multilayer film were able to eliminate defects associated with the middle strata, allowing nanoparticles therein to maintain strength and robustness while keeping soft and fluid-like exposed surface. And the inner strata were well anchored to substrate and acted as an initial "bed" for SiO(2) nanoparticles to be inhabited, resulting in good antiwear ability.

  15. Tuning cell adhesion and growth on biomimetic polyelectrolyte multilayers by variation of pH during layer-by-layer assembly.

    Science.gov (United States)

    Aggarwal, Neha; Altgärde, Noomi; Svedhem, Sofia; Michanetzis, Georgios; Missirlis, Yannis; Groth, Thomas

    2013-10-01

    Polyelectrolyte multilayers of chitosan and heparin are assembled on glass where heparin is applied at pH = 4, 9 and 4 during the formation of the first layers followed by pH = 9 at the last steps (denoted pH 4 + 9). Measurements of wetting properties, layer mass, and topography show that multilayers formed at pH = 4 are thicker, contain more water and have a smoother surface compared to those prepared at pH = 9 while the pH = 4 + 9 multilayers expressed intermediate properties. pH = 9 multilayers are more cell adhesive and support growth of C2C12 cells better than pH = 4 ones. However, pH 4 + 9 conditions improve the bioactivity to a similar level of pH = 9 layers. Multilayers prepared using pH 4 + 9 conditions form thick enough layers that may allow efficient loading of bioactive molecules. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery.

    Science.gov (United States)

    Wang, Chaoyang; He, Chengyi; Tong, Zhen; Liu, Xinxing; Ren, Biye; Zeng, Fang

    2006-02-03

    Combination of adsorption by porous CaCO(3) microparticles and encapsulation by polyelectrolyte multilayers via the layer-by-layer (LbL) self-assembly was proposed for sustained drug release. Firstly, porous calcium carbonate microparticles with an average diameter of 5 microm were prepared for loading a model drug, ibuprofen (IBU). Adsorption of IBU into the pores was characterized by ultraviolet (UV), infrared (IR), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) experiment and X-ray diffraction (XRD). The adsorbed IBU amount Gamma was 45.1mg/g for one-time adsorption and increased with increasing adsorption times. Finally, multilayer films of protamine sulfate (PRO) and sodium poly(styrene sulfonate) (PSS) were formed on the IBU-loaded CaCO(3) microparticles by the layer-by-layer self-assembly. Amorphous IBU loaded in the pores of the CaCO(3) microparticles had a rapider release in the gastric fluid and a slower release in the intestinal fluid, compared with the bare IBU crystals. Polyelectrolyte multilayers assembled on the drug-loaded particles by the LbL reduced the release rate in both fluids. In this work, polymer/inorganic hybrid core-shell microcapsules were fabricated for controlled release of poorly water-soluble drugs. The porous inorganic particles are useful to load drugs in amorphous state and the polyelectrolyte multilayer films coated on the particle assuage the initial burst release.

  17. Resistance of poly(ethylene oxide)-silane monolayers to the growth of polyelectrolyte multilayers.

    Science.gov (United States)

    Buron, Cédric C; Callegari, Vincent; Nysten, Bernard; Jonas, Alain M

    2007-09-11

    The ability of poly(ethylene oxide)-silane (PEO-silane) monolayers grafted onto silicon surfaces to resist the growth of polyelectrolyte multilayers under various pH conditions is assessed for different pairs of polyelectrolytes of varying molar mass. For acidic conditions (pH 3), the PEO-silane monolayers exhibit good polyelectrolyte repellency provided the polyelectrolytes bear no moieties that are able to form hydrogen bonds with the ether groups of the PEO chains. At basic pH, PEO-silane monolayers undergo substantial hydrolysis leading to the formation of negatively charged defects in the monolayers, which then play the role of adsorption sites for the polycation. Once the polycation is adsorbed, multilayer growth ensues. Because this is defect-driven growth, the multilayer is not continuous and is made of blobs or an open network of adsorbed strands. For such conditions, the molar mass of the polyelectrolyte plays a key role, with polyelectrolyte chains of larger molar mass adsorbing on a larger number of defects, resulting in stronger anchoring of the polyelectrolyte complex on the surfaces and faster subsequent growth of the multilayer. For polyelectrolytes of sufficiently low molar mass at pH 9, the growth of the multilayer can nevertheless be prevented for as much as five cycles of deposition.

  18. Organic and Inorganic Dyes in Polyelectrolyte Multilayer Films

    Science.gov (United States)

    Ball, Vincent

    2012-01-01

    Polyelectrolyte multilayer films are a versatile functionalization method of surfaces and rely on the alternated adsorption of oppositely charged species. Among such species, charged dyes can also be alternated with oppositely charged polymers, which is challenging from a fundamental point of view, because polyelectrolytes require a minimal number of charges, whereas even monovalent dyes can be incorporated during the alternated adsorption process. We will not only focus on organic dyes but also on their inorganic counterparts and on metal complexes. Such films offer plenty of possible applications in dye sensitized solar cells. In addition, dyes are massively used in the textile industry and in histology to stain textile fibers or tissues. However, the excess of non bound dyes poses serious environmental problems. It is hence of the highest interest to design materials able to adsorb such dyes in an almost irreversible manner. Polyelectrolyte multilayer films, owing to their ion exchange behavior can be useful for such a task allowing for impressive overconcentration of dyes with respect to the dye in solution. The actual state of knowledge of the interactions between charged dyes and adsorbed polyelectrolytes is the focus of this review article.

  19. The influence of polyanion molecular weight on polyelectrolyte multilayers at surfaces: elasticity and susceptibility to saloplasticity of strongly dissociated synthetic polymers at fluid-fluid interfaces.

    Science.gov (United States)

    Cramer, Ashley D; Dong, Wen-Fei; Benbow, Natalie L; Webber, Jessie L; Krasowska, Marta; Beattie, David A; Ferri, James K

    2017-09-13

    We studied the interfacial mechanical properties of polyelectrolyte multilayer assemblies of poly(diallylamine hydrochloride) (PAH) and poly(4-styrenesulfonate)sodium salt (PSS) at the air-water interface using axisymmetric drop shape analysis (ADSA) during hydrostatic inflation as a function of aqueous salt concentration and two different polyanion molecular weights (M w ∼ 13 and 70 kDa). Surface elastic moduli (G s ) ranged from 50 to 300 mN m -1 . Using the measured film thickness, the bulk moduli (G) ranged from 10 to 90 MPa consistent with elastomeric solids. This solid-like interface was evidenced by a systematic departure of the inflated shape from the Young-Laplace equation, which assumes a liquid-like interface. Surface elastic moduli increased and bulk elastic moduli decreased with increasing nanomembrane transverse dimension, and multilayers with the lower molecular weight anion were more transversely compact than those of higher molecular weight and displayed a larger elastic modulus. The bulk moduli of both types of multilayer assemblies asymptotically approach a constant value for films with more than two bilayers of polyelectrolyte, consistent with the observed transition from a 'glassy' to 'rubbery' state. Both types of multilayer assemblies displayed plasticization with increasing sodium chloride concentration in the adjoining aqueous phase, i.e. saloplasticity, and exhibited a transition from elastic to plastic response to deformation. The restored mobility of the polyelectrolyte resulting from the shift from intrinsic to extrinsic charge complexation, restores fluidity to the interface and is evidenced by experimental observation of a liquid-like interface when loaded. The higher molecular weight polyanion multilayers plasticized at lower salt concentrations suggesting that the lower melting point of the higher molecular weight polyanion assembly is attributable to a lesser extent of electrostatic cross-linking underscoring the unconventional

  20. Polyelectrolyte Layer-by-Layer Assembly on Organic Electrochemical Transistors

    KAUST Repository

    Pappa, Anna-Maria

    2017-03-06

    Oppositely charged polyelectrolyte multilayers (PEMs) were built up in a layer-by-layer (LbL) assembly on top of the conducting polymer channel of an organic electrochemical transistor (OECT), aiming to combine the advantages of well-established PEMs with a high performance electronic transducer. The multilayered film is a model system to investigate the impact of biofunctionalization on the operation of OECTs comprising a poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) film as the electrically active layer. Understanding the mechanism of ion injection into the channel that is in direct contact with charged polymer films provides useful insights for novel biosensing applications such as nucleic acid sensing. Moreover, LbL is demonstrated to be a versatile electrode modification tool enabling tailored surface features in terms of thickness, softness, roughness, and charge. LbL assemblies built up on top of conducting polymers will aid the design of new bioelectronic platforms for drug delivery, tissue engineering, and medical diagnostics.

  1. Polyelectrolyte Layer-by-Layer Assembly on Organic Electrochemical Transistors

    KAUST Repository

    Pappa, Anna-Maria; Inal, Sahika; Roy, Kirsty; Zhang, Yi; Pitsalidis, Charalampos; Hama, Adel; Pas, Jolien; Malliaras, George G.; Owens, Roisin M.

    2017-01-01

    Oppositely charged polyelectrolyte multilayers (PEMs) were built up in a layer-by-layer (LbL) assembly on top of the conducting polymer channel of an organic electrochemical transistor (OECT), aiming to combine the advantages of well-established PEMs with a high performance electronic transducer. The multilayered film is a model system to investigate the impact of biofunctionalization on the operation of OECTs comprising a poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) film as the electrically active layer. Understanding the mechanism of ion injection into the channel that is in direct contact with charged polymer films provides useful insights for novel biosensing applications such as nucleic acid sensing. Moreover, LbL is demonstrated to be a versatile electrode modification tool enabling tailored surface features in terms of thickness, softness, roughness, and charge. LbL assemblies built up on top of conducting polymers will aid the design of new bioelectronic platforms for drug delivery, tissue engineering, and medical diagnostics.

  2. Tuning smart microgel swelling and responsive behavior through strong and weak polyelectrolyte pair assembly.

    Science.gov (United States)

    Costa, Eunice; Lloyd, Margaret M; Chopko, Caroline; Aguiar-Ricardo, Ana; Hammond, Paula T

    2012-07-03

    The layer-by-layer (LbL) assembly of polyelectrolyte pairs on temperature and pH-sensitive cross-linked poly(N-isopropylacrylamide)-co-(methacrylic acid), poly(NIPAAm-co-MAA), microgels enabled a fine-tuning of the gel swelling and responsive behavior according to the mobility of the assembled polyelectrolyte (PE) pair and the composition of the outermost layer. Microbeads with well-defined morphology were initially prepared by synthesis in supercritical carbon dioxide. Upon LbL assembly of polyelectrolytes, interactions between the multilayers and the soft porous microgel led to differences in swelling and thermoresponsive behavior. For the weak PE pairs, namely poly(L-lysine)/poly(L-glutamic acid) and poly(allylamine hydrochloride)/poly(acrylic acid), polycation-terminated microgels were less swollen and more thermoresponsive than native microgel, whereas polyanion-terminated microgels were more swollen and not significantly responsive to temperature, in a quasi-reversible process with consecutive PE assembly. For the strong PE pair, poly(diallyldimethylammonium chloride)/poly(sodium styrene sulfonate), the differences among polycation and polyanion-terminated microgels are not sustained after the first PE bilayer due to extensive ionic cross-linking between the polyelectrolytes. The tendencies across the explored systems became less noteworthy in solutions with larger ionic strength due to overall charge shielding of the polyelectrolytes and microgel. ATR FT-IR studies correlated the swelling and responsive behavior after LbL assembly on the microgels with the extent of H-bonding and alternating charge distribution within the gel. Thus, the proposed LbL strategy may be a simple and flexible way to engineer smart microgels in terms of size, surface chemistry, overall charge and permeability.

  3. Design of polyelectrolyte multilayer membranes for ion rejection and wastewater effluent treatment

    Science.gov (United States)

    Sanyal, Oishi

    Polyelectrolyte multilayer (PEM) membranes present a special class of nanostructured membranes which have potential applications in a variety of water treatment operations. These membranes are fabricated by the layer-by-layer (LbL) assembly of alternately charged polyelectrolytes on commercial membrane surfaces. A large variety of polyelectrolytes and their varied deposition conditions (pH, number of bilayers etc.) allow very fine tuning of the membrane performance in terms of permeability and rejection. The first part of this thesis is about the application of PEM membranes to the removal of perchlorate ion from water. Being a monovalent ion, it is most effectively removed by a reverse osmosis (RO) membrane. However, these membranes inherently have very low fluxes which lead to high pressure requirements. In our work, we modified the surface of a nanofiltration (NF) membrane by the LbL assembly of oppositely charged polyelectrolytes. The appropriate tuning of the LbL conditions led to the development of a membrane with significantly higher flux than RO membranes but with equivalent perchlorate rejection. This was one of the best trade-offs offered by PEM membranes for monovalent ion rejection as has been reported in literature so far. While PEM membranes have mostly shown great potential in ion-rejection studies, they have seldom been tested for real wastewater effluents. The second part of this thesis, therefore, deals with evaluating the applicability of PEM membranes to treating an electrocoagulation (EC)-treated high strength wastewater. Two types of very commonly used polyelectrolyte combinations were tried out -- one of which was an ionically crosslinked system and the other one was covalently crosslinked. Both the types of PEM membranes showed a high level of COD reduction from the feed stream with higher fluxes than commercial RO membranes. One major challenge in using membranes for wastewater treatment is their fouling propensity. Like many other

  4. Polyelectrolyte multi-layers assembly of SiCHA nanopowders and collagen type I on aminolysed PLA films to enhance cell-material interactions.

    Science.gov (United States)

    Baba Ismail, Yanny Marliana; Ferreira, Ana Marina; Bretcanu, Oana; Dalgarno, Kenneth; El Haj, Alicia J

    2017-11-01

    This paper presents a new approach in assembling bone extracellular matrix components onto PLA films, and investigates the most favourable environment which can be created using the technique for cell-material interactions. Poly (lactic acid) (PLA) films were chemically modified by covalently binding the poly(ethylene imine) (PEI) as to prepare the substrate for immobilization of polyelectrolyte multilayers (PEMs) coating. Negatively charged polyelectrolyte consists of well-dispersed silicon-carbonated hydroxyapatite (SiCHA) nanopowders in hyaluronic acid (Hya) was deposited onto the modified PLA films followed by SiCHA in collagen type I as the positively charged polyelectrolyte. The outermost layer was finally cross-linked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrocholoride and N-hydroxysulfosuccinimide sodium salt (EDC/NHS) solutions. The physicochemical features of the coated PLA films were monitored via X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscope (AFM). The amounts of calcium and collagen deposited on the surface were qualitatively and quantitatively determined. The surface characterizations suggested that 5-BL has the optimum surface roughness and highest amounts of calcium and collagen depositions among tested films. In vitro human mesenchymal stem cells (hMSCs) cultured on the coated PLA films confirmed that the coating materials greatly improved cell attachment and survival compared to unmodified PLA films. The cell viability, cell proliferation and Alkaline Phosphatase (ALP) expression on 5-BL were found to be the most favourable of the tested films. Hence, this newly developed coating materials assembly could contribute to the improvement of the bioactivity of polymeric materials and structures aimed to bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. ENCAPSULATION OF ANTITUBERCULAR DRUGS BY BIOPOLYMERS AND POLYELECTROLYTE MULTILAYERS

    Directory of Open Access Journals (Sweden)

    B. H. Mussabayeva

    2017-01-01

    Full Text Available The problem of drug-resistant tuberculosis treatment is complex and urgent: the standardof treatment includes the oral administration of six names of antibiotics, i.e. up totwenty tablets a day by the patient. This causes severe side effects, including those appeareddue to the formation of toxic products of drug interactions in the body. Therefore, itis important that some drugs dissolve in a stomach, and others – in the intestine, which willlead to increased bioavailability, reduced dosage and toxicity. The development of targeteddelivery systems for drugs with controlled release, targeted delivery and minimization ofside effects are of interest. One of the promising methods is polyelectrolytic multilayersand the technology of creating such layers by a step-by-step adsorption of heterogeneouslycharged polyelectrolytes.The aim of this article is the microencapsulation of anti-tuberculousdrugs into biopolymers coated with polyelectrolytic multilayers, and the solubilitystudy of microcapsules at pH values simulating various parts of the gastrointestinal tract.Materials and methods. Drugs as isoniazide, pyrazinamide, moxifloxacin, and biopolymers:gellan, pectin and sodium alginate, chitosan and dextran sulfate, as well as EudragitS are used to prepare microcapsules. The obtained microcapsules are studied by a methodof scanning electron microscopy. Quantitative determination of the effectiveness of the inclusionof drugs in microcapsules was carried out using pharmacopoeial methods.Results and discussion. The inclusion efficiency rises with an increase of biopolymer concentration. The inclusion efficiency increases in the row isoniazide polyelectrolytic multilayers is shown.At pH = 7.4, the degree of release of the drugs from microcapsules without applied multilayersfor 12 hours was

  6. Functional polyelectrolyte multilayer membranes for water purification applications

    International Nuclear Information System (INIS)

    Tripathi, Bijay P.; Dubey, Nidhi C.; Stamm, M.

    2013-01-01

    Highlights: ► LBL film on the surface and in to the pores was prepared via flow through method. ► The membranes showed high rejection of Congo Red with sufficiently high flux. ► High antifouling ability in terms of both organic and bio fouling was observed. -- Abstract: A diverse set of supported multilayer assemblies with controllable surface charge, hydrophilicity, and permeability to water and solute was fabricated by pressure driven permeation of poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDDA) solution through poly(ethylene terephthalate) (PET) track-etched membranes. The polyelectrolyte multilayer fabrication was confirmed by means of FTIR, SEM, AFM, ellipsometry, zetapotential, and contact angle characterization. The prepared membranes were characterized in terms of their pure water permeability, flux recovery, and resistance to organic and biofouling properties. The antifouling behavior of the membranes was assessed in terms of protein adsorption and antibacterial behavior. Finally, the membranes were tested for rejection of selected water soluble dyes to establish their usefulness for organic contaminant removal from water. The membranes were highly selective and capable of nearly complete rejection of congo red with sufficiently high fluxes. The feasibility of regenerating the prepared membranes fouled by protein was also demonstrated and good flux recovery was obtained. In summary, the multilayer approach to surface and pore modification was shown to enable the design of membranes with the unique combination of desirable separation characteristics, regenerability of the separation layer, and antifouling behavior

  7. Functional polyelectrolyte multilayer membranes for water purification applications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Bijay P., E-mail: bijayptripathi@yahoo.com [Department of Nanostructured Materials, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany); Dubey, Nidhi C. [Department of Nanostructured Materials, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany); Technische Universität Dresden, Department of Chemistry, 01069 Dresden (Germany); Stamm, M., E-mail: stamm@ipfdd.de [Department of Nanostructured Materials, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany); Technische Universität Dresden, Department of Chemistry, 01069 Dresden (Germany)

    2013-05-15

    Highlights: ► LBL film on the surface and in to the pores was prepared via flow through method. ► The membranes showed high rejection of Congo Red with sufficiently high flux. ► High antifouling ability in terms of both organic and bio fouling was observed. -- Abstract: A diverse set of supported multilayer assemblies with controllable surface charge, hydrophilicity, and permeability to water and solute was fabricated by pressure driven permeation of poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDDA) solution through poly(ethylene terephthalate) (PET) track-etched membranes. The polyelectrolyte multilayer fabrication was confirmed by means of FTIR, SEM, AFM, ellipsometry, zetapotential, and contact angle characterization. The prepared membranes were characterized in terms of their pure water permeability, flux recovery, and resistance to organic and biofouling properties. The antifouling behavior of the membranes was assessed in terms of protein adsorption and antibacterial behavior. Finally, the membranes were tested for rejection of selected water soluble dyes to establish their usefulness for organic contaminant removal from water. The membranes were highly selective and capable of nearly complete rejection of congo red with sufficiently high fluxes. The feasibility of regenerating the prepared membranes fouled by protein was also demonstrated and good flux recovery was obtained. In summary, the multilayer approach to surface and pore modification was shown to enable the design of membranes with the unique combination of desirable separation characteristics, regenerability of the separation layer, and antifouling behavior.

  8. Building a road map for tailoring multilayer polyelectrolyte films

    International Nuclear Information System (INIS)

    Ankner, John Francis; Bardoel, Agatha A.; Sukishvili, Svetlana

    2012-01-01

    Researchers are moving a step closer to a definite road map for building layer-by-layer (LbL) assembled polyelectrolyte films, with the assistance of the Liquids Reflectometer at Oak Ridge National Laboratory's Spallation Neutron Source, in Oak Ridge, Tennessee. Scientists using the liquids reflectometer have successfully taken snapshots in close to real time of these multilayered structures for different applications when they modify the structure and function parameters. Polyelecrolytes are polymers that carry charge in aqueous solutions. They contain chemical groups that dissociate in water, making such polymers charged. Most polyelectrolytes are water soluble. They are important components in foods, soaps, shampoos, and cosmetics products. They show promise for such environmental work as oil recovery and water treatment. Polyelectrolytes are compelling because researchers can chemically modify how they interact with water for multiple applications. When two types of polyelectrolytes of opposite charge are assembled at a surface in a sequential way using the LbL assembly technique, 'the result is the forming of surface films, useful for coatings, biomedical implants and devices, controlling adhesion of biological molecules, and controlling delivery of therapeutic molecules from surfaces,' said Svetlana Sukhishvili of the Stevens Institute of Technology in New Jersey, the lead chemist on the collaboration. 'Medical doctors often prefer to deliver multiple therapeutic compounds from the coatings in a time-resolved manner,' Sukhishvili said. 'To assist them, material scientists need to learn how to build coatings in which polymer layering will not be compromised when exposed to normal physiological conditions.' 'Being able to control these properties, understanding how what you do to the materials affects their properties, this allows you to apply them to situations where interacting with an environment is very helpful, whether in a biological context or any other

  9. From nanodroplets to continuous films: how the morphology of polyelectrolyte multilayers depends on the dielectric permittivity and the surface charge of the supporting substrate

    NARCIS (Netherlands)

    Guillaume-Gentil, Orane; Zahn, Raphael; Lindhoud, Saskia; Graf, Norma; Voros, Janos; Zambelli, Tomaso

    2011-01-01

    Using atomic force microscopy, we investigated how the morphology of layer-by-layer deposited polyelectrolyte multilayers is influenced by the physical properties of the supporting substrate. The surface coverage of the assembly and its topography were found to be dependent on the dielectric

  10. Long term physical and chemical stability of polyelectrolyte multilayer membranes

    NARCIS (Netherlands)

    de Grooth, Joris; Haakmeester, Brian; Wever, Carlos; Potreck, Jens; de Vos, Wiebe Matthijs; Nijmeijer, Dorothea C.

    2015-01-01

    This work presents a detailed investigation into the long term stability of polyelectrolyte multilayer (PEM) modified membranes, a key factor for the application of these membranes in water purification processes. Although PEM modified membranes have been frequently investigated, their long term

  11. The effect of guanidinium functionalization on the structural properties and anion affinity of polyelectrolyte multilayers

    NARCIS (Netherlands)

    Cao, Zheng; Gordiichuk, Pavlo; Loos, Katja; Sudhölter, Ernst Jan Robert; Smet, Louis

    2015-01-01

    Poly(allylamine hydrochloride) (PAH) is chemically functionalized with guanidinium (Gu) moieties in water at room temperature. The resulting PAH-Gu is used to prepare polyelectrolyte multilayers (PEMs) with poly(sodium 4-styrene sulfonate) (PSS) via layer-by-layer deposition. The polyelectrolyte

  12. Red blood cells and polyelectrolyte multilayer capsules: natural carriers versus polymer-based drug delivery vehicles.

    Science.gov (United States)

    Kolesnikova, Tatiana A; Skirtach, Andre G; Möhwald, Helmuth

    2013-01-01

    Red blood cells (RBCs) and lipid-based carriers on the one hand and polymeric capsules on the other hand represent two of the most widely used carriers in drug delivery. Each class of these carriers has its own set of properties, specificity and advantages. Thorough comparative studies of such systems are reported here for the first time. In this review, RBCs are described in comparison with synthetic polymeric drug delivery vehicles using polyelectrolyte multilayer capsules as an example. Lipid-based composition of the shell in the former case is particularly attractive due to their inherent biocompatibility and flexibility of the carriers. On the other hand, synthetic approaches to fabrication of polyelectrolyte multilayer capsules permit manipulation of the permeability of their shell as well as tuning their composition, mechanical properties, release methods and targeting. In conclusion, properties of RBCs and polyelectrolyte multilayer capsules are reported here highlighting similarities and differences in their preparation and applications. In addition, their advantages and disadvantages are discussed.

  13. In Vivo Expansion of Melanoma-Specific T Cells Using Microneedle Arrays Coated with Immune-Polyelectrolyte Multilayers.

    Science.gov (United States)

    Zeng, Qin; Gammon, Joshua M; Tostanoski, Lisa H; Chiu, Yu-Chieh; Jewell, Christopher M

    2017-02-13

    Microneedles (MNs) are micron-scale polymeric or metallic structures that offer distinct advantages for vaccines by efficiently targeting skin-resident immune cells, eliminating injection-associated pain, and improving patient compliance. These advantages, along with recent studies showing therapeutic benefits achieved using traditional intradermal injections in human cancer patients, suggest MN delivery might enhance cancer vaccines and immunotherapies. We recently developed a new class of polyelectrolyte multilayers based on the self-assembly of model peptide antigens and molecular toll-like receptor agonists (TLRa) into ultrathin, conformal coatings. Here, we reasoned that these immune polyelectrolyte multilayers (iPEMs) might be a useful platform for assembling cancer vaccine components on MN arrays for intradermal delivery from these substrates. Using conserved human melanoma antigens and a potent TLRa vaccine adjuvant, CpG, we show that iPEMs can be assembled on MNs in an automated fashion. These films, prepared with up to 128 layers, are approximately 200 nm thick but provide cancer vaccine cargo loading >225 μg/cm 2 . In cell culture, iPEM cargo released from MNs is internalized by primary dendritic cells, promotes activation of these cells, and expands T cells during coculture. In mice, application of iPEM-coated MNs results in the codelivery of tumor antigen and CpG through the skin, expanding tumor-specific T cells during initial MN applications and resulting in larger memory recall responses during a subsequent booster MN application. This study support MNs coated with PEMs built from tumor vaccine components as a well-defined, modular system for generating tumor-specific immune responses, enabling new approaches that can be explored in combination with checkpoint blockade or other combination cancer therapies.

  14. Surface analysis monitoring of polyelectrolyte deposition on Ba0.5Sr0.5TiO3 thin films

    International Nuclear Information System (INIS)

    Morales-Cruz, Angel L.; Fachini, Estevao R.; Miranda, Felix A.; Cabrera, Carlos R.

    2007-01-01

    Thin films are currently gaining interest in many areas such as integrated optics, sensors, friction, reducing coatings, surface orientation layers, and general industrial applications. Recently, molecular self-assembling techniques have been applied for thin film deposition of electrically conducting polymers, conjugated polymers for light-emitting devices, nanoparticles, and noncentrosymmetric-ordered second order nonlinear optical (NOL) devices. Polyelectrolytes self-assemblies have been used to prepare thin films. The alternate immersion of a charged surface in polyannion and a polycation solution leads usually to the formation of films known as polyelectrolyte multilayers. These polyanion and polycation structures are not neutral. However, charge compensation appears on the surface. This constitutes the building driving force of the polyelectrolyte multilayer films. The present approach consists of two parts: (a) the chemisorption of 11-mercaptoundecylamine (MUA) to construct a self-assembled monolayer with the consequent protonation of the amine, and (b) the deposition of opposite charged polyelectrolytes in a sandwich fashion. The approach has the advantage that ionic attraction between opposite charges is the driving force for the multilayer buildup. For our purposes, the multilayer of polyelectrolytes depends on the quality of the surface needed for the application. In many cases, this approach will be used in a way that the roughness factor defects will be diminished. The polyelectrolytes selected for the study were: polystyrene sulfonate sodium salt (PSS), poly vinylsulfate potassium salt (PVS), and polyallylamine hydrochloride (PAH), as shown in . The deposition of polyelectrolytes was carried out by a dipping procedure with the corresponding polyelectrolyte. Monitoring of the alternate deposition of polyelectrolyte bilayers was done by surface analysis techniques such as X-ray photoelectron spectroscopy (XPS), specular reflectance infrared (IR), and

  15. Cell surface engineering with polyelectrolyte multilayer thin films.

    Science.gov (United States)

    Wilson, John T; Cui, Wanxing; Kozlovskaya, Veronika; Kharlampieva, Eugenia; Pan, Di; Qu, Zheng; Krishnamurthy, Venkata R; Mets, Joseph; Kumar, Vivek; Wen, Jing; Song, Yuhua; Tsukruk, Vladimir V; Chaikof, Elliot L

    2011-05-11

    Layer-by-layer assembly of polyelectrolyte multilayer (PEM) films represents a bottom-up approach for re-engineering the molecular landscape of cell surfaces with spatially continuous and molecularly uniform ultrathin films. However, fabricating PEMs on viable cells has proven challenging owing to the high cytotoxicity of polycations. Here, we report the rational engineering of a new class of PEMs with modular biological functionality and tunable physicochemical properties which have been engineered to abrogate cytotoxicity. Specifically, we have discovered a subset of cationic copolymers that undergoes a conformational change, which mitigates membrane disruption and facilitates the deposition of PEMs on cell surfaces that are tailorable in composition, reactivity, thickness, and mechanical properties. Furthermore, we demonstrate the first successful in vivo application of PEM-engineered cells, which maintained viability and function upon transplantation and were used as carriers for in vivo delivery of PEMs containing biomolecular payloads. This new class of polymeric film and the design strategies developed herein establish an enabling technology for cell transplantation and other therapies based on engineered cells. © 2011 American Chemical Society

  16. Encapsulation of Phase Change Materials Using Layer-by-Layer Assembled Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Qiangying Yi

    2015-01-01

    Full Text Available Phase change materials absorb the thermal energy when changing their phases (e.g., solid-to-liquid at constant temperatures to achieve the latent heat storage. The major drawbacks such as limited thermal conductivity and leakage prevent the PCMs from wide application in desired areas. In this work, an environmentally friendly and low cost approach, layer-by-layer (LbL assembly technique, was applied to build up ultrathin shells to encapsulate the PCMs and therefore to regulate their changes in volume when the phase change occurs. Generally, the oppositely charged strong polyelectrolytes Poly(diallyldimethylammonium chloride (PDADMAC and Poly(4-styrenesulfonic acid sodium salt (PSS were employed to fabricate multilayer shells on emulsified octadecane droplets using either bovine serum albumin (BSA or sodium dodecyl sulfate (SDS as surfactant. Specifically, using BSA as the surfactant, polyelectrolyte encapsulated octadecane spheres in size of ∼500 nm were obtained, with good shell integrity, high octadecane content (91.3% by mass, and good thermal stability after cycles of thermal treatments.

  17. Mechanical properties of polyelectrolyte multilayer self-assembled films

    International Nuclear Information System (INIS)

    Dai Xinhua; Zhang Yongjun; Guan Ying; Yang Shuguang; Xu Jian

    2005-01-01

    The mechanical properties of electrostatic self-assembled multilayer films from polyacrylic acid (PAA) and C 60 -ethylenediamine adduct (C 60 -EDA) or poly(allylamine hydrochloride) (PAH) were evaluated by atomic force microscopy (AFM) wear experiments. Because of the higher molecular weight of PAH, the wear resistance of the (PAH/PAA) 10 film is higher than that of the (PAH/PAA) 2 (C 60 -EDA/PAA) 8 film; that is, the former is mechanically more stable than the latter. The mechanical stability of both films can be improved significantly by heat treatment, which changes the nature of the linkage from ionic to covalent. The AFM measurement also reveals that the (PAH/PAA) 2 (C 60 -EDA/PAA) 8 film is softer than the (PAH/PAA) 10 film. The friction properties of the heated films were measured. These films can be developed as potential lubrication coatings for microelectromechanical systems

  18. POLYELECTROLYTE MULTILAYER STAMPING IN AQUEOUS PHASE AND NON-CONTACT MODE

    Science.gov (United States)

    Mehrotra, Sumit; Lee, Ilsoon; Liu, Chun; Chan, Christina

    2011-01-01

    Polyelectrolyte multilayer (PEM) transfer printing has been previously achieved by stamping under dry conditions. Here, we show for the first time, that PEM can be transferred from a stamp to the base substrate under aqueous conditions whereby the two surfaces are in a non-contact mode. Degradable multilayers of (PAA/PEG)10.5 followed by non-degradable multilayers of (PDAC/SPS)80.5 were fabricated under acidic pH conditions on either PDMS or glass (stamp), and subsequently transferred over top of another multilayer prepared on a different substrate (base substrate), with a spacing of ~ 200 μm between the stamping surface and the base substrate. This multilayer transfer was performed under physiological pH conditions. This process is referred to herein as non-contact, aqueous-phase multilayer (NAM) transfer. NAM transfer can be useful for applications such as fabricating three-dimensional (3-D) cellular scaffolds. We attempted to create a 3-D cellular scaffold using NAM transfer, and characterized the scaffolds with conventional and fluorescence microscopy. PMID:21860540

  19. Colloidal micro- and nano-particles as templates for polyelectrolyte multilayer capsules.

    Science.gov (United States)

    Parakhonskiy, Bogdan V; Yashchenok, Alexey M; Konrad, Manfred; Skirtach, Andre G

    2014-05-01

    Colloidal particles play an important role in various areas of material and pharmaceutical sciences, biotechnology, and biomedicine. In this overview we describe micro- and nano-particles used for the preparation of polyelectrolyte multilayer capsules and as drug delivery vehicles. An essential feature of polyelectrolyte multilayer capsule preparations is the ability to adsorb polymeric layers onto colloidal particles or templates followed by dissolution of these templates. The choice of the template is determined by various physico-chemical conditions: solvent needed for dissolution, porosity, aggregation tendency, as well as release of materials from capsules. Historically, the first templates were based on melamine formaldehyde, later evolving towards more elaborate materials such as silica and calcium carbonate. Their advantages and disadvantages are discussed here in comparison to non-particulate templates such as red blood cells. Further steps in this area include development of anisotropic particles, which themselves can serve as delivery carriers. We provide insights into application of particles as drug delivery carriers in comparison to microcapsules templated on them. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Monitoring layer-by-layer assembly of polyelectrolyte multi-layers using high-order cladding mode in long-period fiber gratings

    Czech Academy of Sciences Publication Activity Database

    Tian, F.; Kaňka, Jiří; Li, X.; Du, H.

    -, č. 196 (2014), s. 475-479 ISSN 0925-4005 R&D Projects: GA MŠk(CZ) LH11038 Institutional support: RVO:67985882 Keywords : Layer-by-layer assembly * Polyelectrolyte * Cladding mode Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 4.097, year: 2014

  1. Nanostructured natural-based polyelectrolyte multilayers to agglomerate chitosan particles into scaffolds for tissue engineering.

    Science.gov (United States)

    Miranda, Emanuel Sá; Silva, Tiago H; Reis, Rui L; Mano, João F

    2011-11-01

    The layer-by-layer (LbL) deposition technique is a self-assembly process that allows the coating of material's surface with nanostructured layers of polyelectrolytes, allowing to control several surface properties. This technique presents some advantages when compared with other thin film assembly techniques, like having the possibility to coat surfaces with complex geometries in mild conditions or to incorporate active compounds. Tissue engineering (TE) involves typically the use of porous biodegradable scaffolds for the temporary support of cells. Such structures can be produced by agglomeration of microspheres that needs to be fixed into a three-dimensional (3D) structure. In this work we suggest the use of LbL to promote such mechanical fixation in free-formed microspheres assemblies and simultaneously to control the properties of its surface. For the proof of concept the biological performance of chitosan/alginate multilayers is first investigated in two-dimensional (2D) models in which the attachment and proliferation of L929 and ATDC5 cells are studied in function of the number of layers and the nature of the final layer. Scaffolds prepared by agglomeration of chitosan particles using the same multilayered system were processed and characterized; it was found that they could support the attachment and proliferation of ATDC5 cells. This study suggests that LbL can be used as a versatile methodology to prepare scaffolds by particle agglomeration that could be suitable for TE applications.

  2. Poly(l-glutamic acid)-g-poly(ethylene glycol) external layer in polyelectrolyte multilayer films: Characterization and resistance to serum protein adsorption.

    Science.gov (United States)

    Szczepanowicz, Krzysztof; Kruk, Tomasz; Świątek, Wiktoria; Bouzga, Aud M; Simon, Christian R; Warszyński, Piotr

    2018-06-01

    Formation of protein-resistant surfaces is a major challenge in the design of novel biomaterials and an important strategy to prevent protein adsorption is the formation of protein-resistant coatings. It can be achieved by proper modification of surfaces, e.g., by immobilization of hydrophilic polymers such as poly(ethylene glycol) (PEG). An appropriate method to immobilize PEG at charged surfaces is the adsorption of copolymers with PEG chains grafted onto polyelectrolyte backbone. The growing interest in the use of polyelectrolyte multilayer coatings in biomedical applications to improve biocompatibility and/or to prepare coating with antiadhesive properties has been the main reason for these studies. Therefore the aim was to produce protein resistant polyelectrolyte multilayer films. They were formed via the layer-by-layer approach, while their pegylation by the deposition of pegylated polyanion, PGA-g-PEG, as an external layer. The influence of PEG chain length and grafting density of PGA-g-PEG copolymers on the protein antiadhesive properties of pegylated polyelectrolyte multilayer films was investigated. To monitor the formation of pegylated and non-pegylated multilayer films, adsorption of the following proteins: HSA, Fibrinogen, and FBS were measured by quartz crystal microbalance (QCM - D). We found that protein adsorption onto all pegylated polyelectrolyte multilayers was significantly reduced in comparison to non-pegylated ones. Long-term performance tests confirmed the stability and the durability of the protein resistant properties of the pegylated multilayers. Antiadhesive properties of tested surfaces pegylated by PGA-g-PEG were compared to the available data for pegylated polycation PLL-g-PEG. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Porphyrin Diacid-Polyelectrolyte Assemblies: Effective Photocatalysts in Solution

    Directory of Open Access Journals (Sweden)

    Sabine Frühbeißer

    2016-05-01

    Full Text Available Developing effective and versatile photocatalytic systems is of great potential in solar energy conversion. Here we investigate the formation of supramolecular catalysts by electrostatic self-assembly in aqueous solution: Combining positively charged porphyrins with negatively charged polyelectrolytes leads to nanoscale assemblies where, next to electrostatic interactions, π–π interactions also play an important role. Porphyrin diacid-polyelectrolyte assemblies exhibit a substantially enhanced catalytic activity for the light-driven oxidation of iodide. Aggregates with the hexavalent cationic porphyrin diacids show up to 22 times higher catalytic activity than the corresponding aggregates under neutral conditions. The catalytic activity can be increased by increasing the valency of the porphyrin and by choice of the loading ratio. The structural investigation of the supramolecular catalysts took place via atomic force microscopy and small angle neutron scattering. Hence, a new facile concept for the design of efficient and tunable self-assembled photocatalysts is presented.

  4. Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel

    DEFF Research Database (Denmark)

    Jain, Sanyog; Kumar, Dinesh; Swarnakar, Nitin K

    2012-01-01

    Paclitaxel (PTX) loaded layersome formulations were prepared using layer-by-layer assembly of the polyelectrolytes over liposomes. Stearyl amine was utilized to provide positive charge to the liposomes, which were subsequently coated with anionic polymer polyacrylic acid (PAA) followed by coating...

  5. Salt Effects on Surface Structures of Polyelectrolyte Multilayers (PEMs) Investigated by Vibrational Sum Frequency Generation (SFG) Spectroscopy.

    Science.gov (United States)

    Ge, Aimin; Matsusaki, Michiya; Qiao, Lin; Akashi, Mitsuru; Ye, Shen

    2016-04-26

    Sum frequency generation (SFG) vibrational spectroscopy was employed to investigate the surface structures of polyelectrolyte multilayers (PEMs) constructed by sequentially alternating adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS). It was found that the surface structures and surface charge density of the as-deposited PEMs of PDDA/PSS significantly depend on the concentration of sodium chloride (NaCl) present in the polyelectrolyte solutions. Furthermore, it was found that the surface structure of the as-deposited PEMs is in a metastable state and will reach the equilibrium state by diffusion of the polyelectrolyte chain after an aging process, resulting in a polyelectrolyte mixture on the PEM surfaces.

  6. Polyelectrolyte multilayer film-assisted formation of zero-valent iron nanoparticles onto polymer nanofibrous mats

    International Nuclear Information System (INIS)

    Xiao Shili; Shi Xiangyang; Wu Siqi; Shen Mingwu; Guo Rui; Wang Shanyuan

    2009-01-01

    A facile approach that combines the electrospinning technique and layer-by-layer (LbL) assembly method has been developed to synthesize and immobilize zero-valent iron nanoparticles (ZVI NPs) onto the surface of nanofibers for potential environmental applications. In this approach, negatively charged cellulose acetate (CA) nanofibers fabricated by electrospinning CA solution were modified with bilayers composed of positively charged poly(diallyl-dimethyl-ammoniumchloride) (PDADMAC) and negatively charged poly(acrylic acid) (PAA) through electrostatic LbL assembly approach to form composite nanofibrous mats. The composite nanofibrous mats were immersed into the ferrous iron solution to allow Fe(II) ions to complex with the free carboxyl groups of PAA, and then ZVI NPs were immobilized onto the composite nanofibrous mats instantly by reducing the ferrous cations. Combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and thermogravimetry analysis demonstrated that the ZVI NPs are successfully synthesized and uniformly distributed into the polyelectrolyte (PE) multilayer films assembled onto the CA nanofibers. The present approach to synthesis ZVI NPs opens a new avenue to fabricating various materials with high surface area for environmental, catalytic, and sensing applications.

  7. Fibrillar films obtained from sodium soap fibers and polyelectrolyte multilayers.

    Science.gov (United States)

    Zawko, Scott A; Schmidt, Christine E

    2011-08-01

    An objective of tissue engineering is to create synthetic polymer scaffolds with a fibrillar microstructure similar to the extracellular matrix. Here, we present a novel method for creating polymer fibers using the layer-by-layer method and sacrificial templates composed of sodium soap fibers. Soap fibers were prepared from neutralized fatty acids using a sodium chloride crystal dissolution method. Polyelectrolyte multilayers (PEMs) of polystyrene sulfonate and polyallylamine hydrochloride were deposited onto the soap fibers, crosslinked with glutaraldehyde, and then the soap fibers were leached with warm water and ethanol. The morphology of the resulting PEM structures was a dense network of fibers surrounded by a nonfibrillar matrix. Microscopy revealed that the PEM fibers were solid structures, presumably composed of polyelectrolytes complexed with residual fatty acids. These fibrillar PEM films were found to support the attachment of human dermal fibroblasts. Copyright © 2011 Wiley Periodicals, Inc.

  8. A Method for Suppression of Active Metal Leaching during the Direct Synthesis of H{sub 2}O{sub 2} by Using Polyelectrolyte Multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young-Min [Kunsan National University, Kunsan (Korea, Republic of)

    2015-04-15

    In this study, two types of catalysts were prepared via conventional metal supporting method and encapsulation of metal nanoparticles in the polyelectrolyte multilayers constructed on support. The resulting catalysts were applied to the direct synthesis of hydrogen peroxide, and the effect of catalyst preparation method on the catalyst life as well as hydrogen peroxide productivity was investigated. The catalytic activity was strongly dependent upon the acid strength of support regardless of the catalyst preparation methods and HBEA (SAR=25) with strong acidity was superior to other supports to promote the reaction. In the case of metal supported catalyst, while hydrogen peroxide productivity was higher than that of polyelectrolyte multilayered counterpart, the reaction performance was sharply decreased during catalyst recycling due to the metal leaching. On the other hand, construction of polyelectrolyte multilayers on support weakened the influence of acid support on the reaction medium and therefore resulted in the decrease of catalytic activity and the increase of hydrogen peroxide decomposition as well. It is noted, however, that the catalytic activity was maintained after 5 recycles, which suggests that the introduction of polyelectrolyte multilayers on the support is very effective to suppress the unfavorable metal leaching phenomenon during a reaction.

  9. Formation and dielectric properties of polyelectrolyte multilayers studied by a silicon-on-insulator based thin film resistor.

    Science.gov (United States)

    Neff, Petra A; Wunderlich, Bernhard K; Klitzing, Regine V; Bausch, Andreas R

    2007-03-27

    The formation of polyelectrolyte multilayers (PEMs) is investigated using a silicon-on-insulator based thin film resistor which is sensitive to variations of the surface potential. The buildup of the PEMs at the silicon oxide surface of the device can be observed in real time as defined potential shifts. The influence of polymer charge density is studied using the strong polyanion poly(styrene sulfonate), PSS, combined with the statistical copolymer poly(diallyl-dimethyl-ammoniumchloride-stat-N-methyl-N-vinylacetamide), P(DADMAC-stat-NMVA), at various degrees of charge (DC). The multilayer formation stops after a few deposition steps for a DC below 75%. We show that the threshold of surface charge compensation corresponds to the threshold of multilayer formation. However, no reversion of the preceding surface charge was observed. Screening of polyelectrolyte charges by mobile ions within the polymer film leads to a decrease of the potential shifts with the number of layers deposited. This decrease is much slower for PEMs consisting of P(DADMAC-stat-NMVA) and PSS as compared to PEMs consisting of poly(allylamine-hydrochloride), PAH, and PSS. From this, significant differences in the dielectric constants of the polyelectrolyte films and in the concentration of mobile ions within the films can be derived.

  10. Application of original assemblies of polyelectrolytes, urease and electrodeposited polyaniline as sensitive films of potentiometric urea biosensors

    International Nuclear Information System (INIS)

    Buron, Cédric C.; Quinart, Mélanie; Vrlinic, Tjasa; Yunus, Sami; Glinel, Karine; Jonas, Alain M.; Lakard, Boris

    2014-01-01

    Highlights: • Elaboration of original polymer materials using self-assembly and electrochemistry. • In situ monitoring of the growth of the polymer materials. • Development of urea electrochemical sensors using a home-made mini-potentiostat. - Abstract: Original assemblies were prepared for use as sensitive films of potentiometric enzyme urea sensors, and compared to identify the more efficient structure with respect to stability. These films included electrodeposited polyaniline, used as transducer, urease, used as catalyst, and biocompatible polyelectrolytes, used as a matrix to preserve the integrity of the enzyme in the sensitive film. Two kinds of assemblies were done: the first one consisted in the adsorption of urease onto a polyaniline film followed by the adsorption of a chitosan-carboxymethylpullulan multilayer film, while the second one consisted in the adsorption of a urease-chitosan multilayer film onto an electrodeposited polyaniline film. The morphological features and growth of these assemblies were characterized by scanning electron microscopy and quartz crystal microbalance, respectively. This allowed us to demonstrate that the assemblies are successfully formed onto the electrodes of the sensors. The potentiometric responses of both assemblies were then measured as a function of urea concentration using a home-made portable potentiostat. The electrochemical response of resulting sensors was fast and sensitive for both types of assemblies, but the stability in time was much better for the films obtained from alternative adsorption of urease and chitosan onto a layer of urease adsorbed over electrodeposited polyaniline

  11. Tunable swelling of polyelectrolyte multilayers in cell culture media for modulating NIH-3T3 cells adhesion.

    Science.gov (United States)

    Qi, Wei; Cai, Peng; Yuan, Wenjing; Wang, Hua

    2014-11-01

    For polyelectrolyte multilayers (PEMs) assembled by the layer-by-layer (LbL) assembly technique, their nanostructure and properties can be governed by many parameters during the building process. Here, it was demonstrated that the swelling of the PEMs containing poly(diallyldimethylammonium chloride) (PDDA) and poly(sodium 4-styrenesulfonate) (PSS) in cell culture media could be tuned with changing supporting salt solutions during the assembly process. Importantly, the influence of the PEMs assembled in different salt solutions on NIH-3T3 cell adhesion was observable. Specifically, the cells could possess a higher affinity for the films assembled in low salt concentration (i.e. 0.15M NaCl) or no salt, the poorly swelling films in cell culture media, which was manifested by the large cell spreading area and focal adhesions. In contrast, those were assembled in higher salt concentration, highly swelling films in cell culture media, were less attractive for the fibroblasts. As a result, the cell adhesion behaviors may be manipulated by tailoring the physicochemical properties of the films, which could be performed by changing the assembly conditions such as supporting salt concentration. Such a finding might promise a great potential in designing desired biomaterials for tissue engineering and regenerative medicine. © 2014 Wiley Periodicals, Inc.

  12. Healable, Transparent, Room-Temperature Electronic Sensors Based on Carbon Nanotube Network-Coated Polyelectrolyte Multilayers.

    Science.gov (United States)

    Bai, Shouli; Sun, Chaozheng; Yan, Hong; Sun, Xiaoming; Zhang, Han; Luo, Liang; Lei, Xiaodong; Wan, Pengbo; Chen, Xiaodong

    2015-11-18

    Transparent and conductive film based electronics have attracted substantial research interest in various wearable and integrated display devices in recent years. The breakdown of transparent electronics prompts the development of transparent electronics integrated with healability. A healable transparent chemical gas sensor device is assembled from layer-by-layer-assembled transparent healable polyelectrolyte multilayer films by developing effective methods to cast transparent carbon nanotube (CNT) networks on healable substrates. The healable CNT network-containing film with transparency and superior network structures on self-healing substrate is obtained by the lateral movement of the underlying self-healing layer to bring the separated areas of the CNT layer back into contact. The as-prepared healable transparent film is assembled into healable transparent chemical gas sensor device for flexible, healable gas sensing at room temperature, due to the 1D confined network structure, relatively high carrier mobility, and large surface-to-volume ratio. The healable transparent chemical gas sensor demonstrates excellent sensing performance, robust healability, reliable flexibility, and good transparency, providing promising opportunities for developing flexible, healable transparent optoelectronic devices with the reduced raw material consumption, decreased maintenance costs, improved lifetime, and robust functional reliability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Renewable urea sensor based on a self-assembled polyelectrolyte layer.

    Science.gov (United States)

    Wu, Zhaoyang; Guan, Lirui; Shen, Guoli; Yu, Ruqin

    2002-03-01

    A renewable urea sensor based on a carboxylic poly(vinyl chloride) (PVC-COOH) matrix pH-sensitive membrane has been proposed, in which a positively charged polyelectrolyte layer is first constructed by using a self-assembly technique on the surface of a PVC-COOH membrane, and urease, with negative charges, is then immobilized through electrostatic adsorption onto the PVC-COOH membrane, by controlling the pH of the urease solution below its isoelectric point. The response characteristics of the PVC-COOH pH-sensitive membrane and the effects of experimental conditions have been investigated in detail. Compared with conventional covalent immobilization, the urea sensor made with this self-assembly immobilization shows significant advantage in terms of sensitivity and ease of regeneration. The potential responses of the urea sensor with self-assembly immobilization increase with the urea concentration over the concentration range 10(-5) - 10(-1) mol l(-1), and the detection limit is 0.028 mmol(-1). Moreover, this type of urea sensor can be repeatedly regenerated by using a simple washing treatment with 0.01 mol l(-1) NaOH (containing 0.5 mol l(-1) NaCl) and 0.01 mol l(-1) HCl. The urease layers and the polyelectrolyte layers on the PVC-COOH membrane are removed, the potential response of the sensor to urea solutions of different concentrations returns nearly to zero, and another assembly cycle of urease and polyelectrolyte can then be carried out.

  14. Preparation and analysis of multilayer composites based on polyelectrolyte complexes

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, V. A. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Orekhov, A. S. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Chernyakov, D. D. [St. Petersburg State Chemical Pharmaceutical Academy (Russian Federation); Baklagina, Yu. G. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Romanov, D. P. [Russian Academy of Sciences, Grebenshchikov Institute of Silicate Chemistry (Russian Federation); Kononova, S. V. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Volod’ko, A. V.; Ermak, I. M. [Russian Academy of Sciences, Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch (Russian Federation); Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Skorik, Yu. A., E-mail: yury-skorik@mail.ru [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation)

    2016-11-15

    A method for preparing multilayer film composites based on chitosan has been developed by the example of polymer pairs: chitosan–hyaluronic acid, chitosan–alginic acid, and chitosan–carrageenan. The structure of the composite films is characterized by X-ray diffractometry and scanning electron microscopy. It is shown that the deposition of a solution of hyaluronic acid, alginic acid, or carrageenan on a chitosan gel film leads to the formation of a polyelectrolyte complex layer at the interface, which is accompanied by the ordering of chitosan chains in the surface region; the microstructure of this layer depends on the nature of contacting polymer pairs.

  15. Layer-by-Layer Assembled Nanotubes as Biomimetic Nanoreactors for Calcium Carbonate Deposition.

    Science.gov (United States)

    He, Qiang; Möhwald, Helmuth; Li, Junbai

    2009-09-17

    Enzyme-loaded magnetic polyelectrolyte multilayer nanotubes prepared by layer-by-layer assembly combined with the porous template could be used as biomimetic nanoreactors. It is demonstrated that calcium carbonate can be biomimetically synthesized inside the cavities of the polyelectrolyte nanotubes by the catalysis of urease, and the size of the calcium carbonate precipitates was controlled by the cavity dimensions. The metastable structure of the calcium carbonate precipitates inside the nanotubes was protected by the outer shell of the polyelectrolyte multilayers. These features may allow polyelectrolyte nanotubes to be applied in the fields of nanomaterials synthesis, controlled release, and drug delivery. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. In vitro evaluation of chondrosarcoma cells and canine chondrocytes on layer-by-layer (LbL) self-assembled multilayer nanofilms

    International Nuclear Information System (INIS)

    Shaik, J; Mohammed, J Shaikh; McShane, M J; Mills, D K

    2013-01-01

    Short-term cell–substrate interactions of two secondary chondrocyte cell lines (human chondrosarcoma cells, canine chondrocytes) with layer-by-layer self-assembled multilayer nanofilms were investigated for a better understanding of cellular-behaviour dependence on a number of nanofilm layers. Cell–substrate interactions were studied on polyelectrolyte multilayer nanofilms (PMNs) of eleven different biomaterials. Surface characterization of PMNs performed using AFM showed increasing surface roughness with increasing number of layers for most of the biomaterials. LDH-L and MTT assays were performed on chondrosarcoma cells and canine chondrocytes, respectively. A major observation was that 10-bilayer nanofilms exhibited lesser cytotoxicity towards human chondrosarcoma cells than their 5-bilayer counterparts. In the case of canine chondrocytes, BSA enhanced cell metabolic activity with increasing number of layers, underscoring the importance of the multilayer nanofilm architecture on cellular behaviour. (paper)

  17. Resistive switching memory properties of layer-by-layer assembled enzyme multilayers

    International Nuclear Information System (INIS)

    Baek, Hyunhee; Cho, Jinhan; Lee, Chanwoo; Lim, Kwang-il

    2012-01-01

    The properties of enzymes, which can cause reversible changes in currents through redox reactions in solution, are of fundamental and practical importance in bio-electrochemical applications. These redox properties of enzymes are often associated with their charge-trap sites. Here, we demonstrate that reversible changes in resistance in dried lysozyme (LYS) films can be generated by an externally applied voltage as a result of charge trap/release. Based on such changes, LYS can be used as resistive switching active material for nonvolatile memory devices. In this study, cationic LYS and anionic poly(styrene sulfonate) (PSS) layers were alternately deposited onto Pt-coated silicon substrates using a layer-by-layer assembly method. Then, top electrodes were deposited onto the top of LYS/PSS multilayers to complete the fabrication of the memory-like device. The LYS/PSS multilayer devices exhibited typical resistive switching characteristics with an ON/OFF current ratio above 10 2 , a fast switching speed of 100 ns and stable performance. Furthermore, the insertion of insulating polyelectrolytes (PEs) between the respective LYS layers significantly enhanced the memory performance of the devices showing a high ON/OFF current ratio of ∼10 6 and low levels of power consumption. (paper)

  18. Cellular immobilization within microfluidic microenvironments: dielectrophoresis with polyelectrolyte multilayers.

    Science.gov (United States)

    Forry, Samuel P; Reyes, Darwin R; Gaitan, Michael; Locascio, Laurie E

    2006-10-25

    The development of biomimetic microenvironments will improve cell culture techniques by enabling in vitro cell cultures that mimic in vivo behavior; however, experimental control over attachment, cellular position, or intercellular distances within such microenvironments remains challenging. We report here the rapid and controllable immobilization of suspended mammalian cells within microfabricated environments using a combination of electronic (dielectrophoresis, DEP) and chemical (polyelectrolyte multilayers, PEMS) forces. While cellular position within the microsystem is rapidly patterned via intermittent DEP trapping, persistent adhesion after removal of electronic forces is enabled by surface treatment with PEMS that are amenable to cellular attachment. In contrast to DEP trapping alone, persistent adhesion enables the soluble microenvironment to be systematically varied, facilitating the use of soluble probes of cell state and enabling cellular characterization in response to various soluble stimuli.

  19. Self-assembled morphologies of an amphiphilic Y-shaped weak polyelectrolyte in a thin film.

    Science.gov (United States)

    Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu

    2017-11-29

    Different from the self-assembly of neutral polymers, polyelectrolytes self-assemble into smaller aggregates with a more loosely assembled structure, which results from the repulsive forces acting between similar electrical compositions with the introduction of ions. The Y-shaped weak polyelectrolytes self-assemble into a core-shell type cylindrical structure with a hexagonal arrangement in a thin film, whose thickness is smaller than the gyration radius of the polymer chain. The corresponding formation mechanism consists of enrichment of the same components, adjustment of the shape of the aggregate, and the subsequent separation into individual aggregates. With the increase in the thickness of the thin film until it exceeds the gyration radius of the polymer chain, combined with the greater freedom of movement along the direction of thin film thickness, the self-assembled structure changes into a micellar structure. Under confinement, the repulsive force to the polymeric components is weakened by the repulsive forces among polyelectrolyte components with like charges, and this helps in generating aggregates with more uniform size and density distribution. In particular, when the repulsive force between the walls and the core forming components is greater than that between the walls and the shell forming components, such asymmetric confinement produces a crossed-cylindrical structure with nearly perpendicular arrangement of two cylinder arrays. Similarly, a novel three-crossed cylinder morphology is self-assembled upon removal of confinement.

  20. Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors.

    Science.gov (United States)

    Xiang, Yan; Lu, Shanfu; Jiang, San Ping

    2012-11-07

    As one of the most effective synthesis tools, layer-by-layer (LbL) self-assembly technology can provide a strong non-covalent integration and accurate assembly between homo- or hetero-phase compounds or oppositely charged polyelectrolytes, resulting in highly-ordered nanoscale structures or patterns with excellent functionalities and activities. It has been widely used in the developments of novel materials and nanostructures or patterns from nanotechnologies to medical fields. However, the application of LbL self-assembly in the development of highly efficient electrocatalysts, specific functionalized membranes for proton exchange membrane fuel cells (PEMFCs) and electrode materials for supercapacitors is a relatively new phenomenon. In this review, the application of LbL self-assembly in the development and synthesis of key materials of PEMFCs including polyelectrolyte multilayered proton-exchange membranes, methanol-blocking Nafion membranes, highly uniform and efficient Pt-based electrocatalysts, self-assembled polyelectrolyte functionalized carbon nanotubes (CNTs) and graphenes will be reviewed. The application of LbL self-assembly for the development of multilayer nanostructured materials for use in electrochemical supercapacitors will also be reviewed and discussed (250 references).

  1. Assessment of polyelectrolyte coating stability under dynamic buffer conditions in CE.

    Science.gov (United States)

    Swords, Kyleen E; Bartline, Peter B; Roguski, Katherine M; Bashaw, Sarah A; Frederick, Kimberley A

    2011-09-01

    Dynamic buffer conditions are present in many electrophoretically driven separations. Polyelectrolyte multilayer coatings have been employed in CE because of their chemical and physical stability as well as their ease of application. The goal of this study is to measure the effect of dynamic changes in buffer pH on flow using a real-time method for measuring EOF. Polyelectrolyte multilayers (PEMs) were composed of pairs of strong or completely ionized polyelectrolytes including poly(diallyldimethylammonium) chloride and poly(styrene sulfonate) and weak or ionizable polyelectrolytes including poly(allylamine) and poly(methacrylic acid). Polyelectrolyte multilayers of varying thicknesses (3, 4, 7, 8, 15, or 16 layers) were also studied. While the magnitude of the EOF was monitored every 2 s, the buffer pH was exchanged from a relatively basic pH (7.1) to increasingly acidic pHs (6.6, 6.1, 5.5, and 5.1). Strong polyelectrolytes responded minimally to changes in buffer pH (10%) and sometimes irreversible changes were measured with weak polyelectrolytes. Thicker coatings resulted in a similar magnitude of response but were more likely to degrade in response to buffer pH changes. The most stable coatings were formed from thinner layers of strong polyelectrolytes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Engineering polyelectrolyte multilayer structure at the nanometer length scale by tuning polymer solution conformation.

    Science.gov (United States)

    Boddohi, Soheil; Killingsworth, Christopher; Kipper, Matt

    2008-03-01

    Chitosan (a weak polycation) and heparin (a strong polyanion) are used to make polyelectrolyte multilayers (PEM). PEM thickness and composition are determined as a function of solution pH (4.6 to 5.8) and ionic strength (0.1 to 0.5 M). Over this range, increasing pH increases the PEM thickness; however, the sensitivity to changes in pH is a strong function of ionic strength. The PEM thickness data are correlated to the polymer conformation in solution. Polyelectrolyte conformation in solution is characterized by gel permeation chromatography (GPC). The highest sensitivity of PEM structure to pH is obtained at intermediate ionic strength. Different interactions govern the conformation and adsorption phenomena at low and high ionic strength, leading to reduced sensitivity to solution pH at extreme ionic strengths. The correspondence between PEM thickness and polymer solution conformation offers opportunities to tune polymer thin film structure at the nanometer length scale by controlling simple, reproducible processing conditions.

  3. Self-Assembled Polyelectrolyte Nanoparticles as Fluorophore-Free Contrast Agents for Multicolor Optical Imaging

    Directory of Open Access Journals (Sweden)

    Da Hye Shin

    2015-03-01

    Full Text Available In this work, we describe the fabrication of self-assembled polyelectrolyte nanoparticles that provide a multicolor optical imaging modality. Poly(γ-glutamic acid(γ-PGA formed self-assembled nanoparticles through electrostatic interactions with two different cationic polymers: poly(L-lysine(PLL and chitosan. The self-assembled γ-PGA/PLL and γ-PGA/chitosan nanoparticles were crosslinked by glutaraldehyde. Crosslinking of the ionic self-assembled nanoparticles with glutaraldehyde not only stabilized the nanoparticles but also generated a strong autofluorescence signal. Fluorescent Schiff base bonds (C=N and double bonds (C=C were generated simultaneously by crosslinking of the amine moiety of the cationic polyelectrolytes with monomeric glutaraldehyde or with polymeric glutaraldehyde. The unique optical properties of the nanoparticles that resulted from the crosslinking by glutaraldehyde were analyzed using UV/Vis and fluorescence spectroscopy. We observed that the fluorescence intensity of the nanoparticles could be regulated by adjusting the crosslinker concentration and the reaction time. The nanoparticles also exhibited high performance in the labeling and monitoring of therapeutic immune cells (macrophages and dendritic cells. These self-assembled nanoparticles are expected to be a promising multicolor optical imaging contrast agent for the labeling, detection, and monitoring of cells.

  4. Molecular Dynamics Simulation of Salt Diffusion in Polyelectrolyte Assemblies.

    Science.gov (United States)

    Zhang, Ran; Duan, Xiaozheng; Ding, Mingming; Shi, Tongfei

    2018-06-05

    The diffusion of salt ions and charged probe molecules in polyelectrolyte assemblies is often assumed to follow a theoretical hopping model, in which the diffusing ion is hopping between charged sites of chains based on electroneutrality. However, experimental verification of diffusing pathway at such microscales is difficult, and the corresponding molecular mechanisms remain elusive. In this study, we perform all-atom molecular dynamics (MD) simulations of salt diffusion in polyelectrolyte (PE) assembly of poly (sodium 4-styrenesulfonate) (PSS) and poly (diallyldimethylammonium chloride) (PDAC). Besides the ion hopping mode, the diffusing trajectories are found presenting common features of a jump process, i.e., subjecting to PE relaxation, water pockets in the structure open and close, thus the ion can move from one pocket to another. Anomalous subdiffusion of ions and water is observed due to the trapping scenarios in these water pockets. The jump events are much rarer compared with ion hopping but significantly increases salt diffusion with increasing temperature. Our result strongly indicates that salt diffusion in hydrated PDAC/PSS is a combined process of ion hopping and jump motion. This provides new molecular explanation for the coupling of salt motion with chain motion and the nonlinear increase of salt diffusion at glass transition temperature.

  5. Protein adsorption and biomimetic mineralization behaviors of PLL-DNA multilayered films assembled onto titanium

    Energy Technology Data Exchange (ETDEWEB)

    Gao Wenli [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Feng Bo, E-mail: fengbo@swjtu.edu.cn [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Ni Yuxiang [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Yang Yongli [College of Material Science and Engineering, Sichuan University, Chengdu 610054 (China); Lu Xiong; Weng Jie [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2010-11-01

    Titanium and its alloys are frequently used as surgical implants in load bearing situations, such as hip prostheses and dental implants, owing to their biocompatibility, mechanical and physical properties. In this paper, a layer-by-layer (LBL) self-assembly technique, based on the polyelectrolyte-mediated electrostatic adsorption of poly-L-lysine (PLL) and DNA, was used to the formation of multilayer on titanium surfaces. Then bovine serum albumin (BSA) adsorption and biomimetic mineralization of modified surfaces were studied. The chemical composition and wettability of assembled substrates were investigated by X-ray photoelectron spectroscopy (XPS), fluorescence microscopy and water contact angle measurement, respectively. The XPS analysis indicated that the layers were assembled successfully through electrostatic attractions. The measurement with ultraviolet (UV) spectrophotometer revealed that the LBL films enhanced ability of BSA adsorption onto titanium. The adsorption quantity of BSA on the surface terminated with PLL was higher than that of the surface terminated with DNA, and the samples of TiOH/P/D/P absorbed BSA most. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that samples of assembled PLL or/and DNA had better bioactivity in inducing HA formation. Thus the assembling of PLL and DNA onto the surface of titanium in turn via a layer-by-layer self-assembly technology can improve the bioactivity of titanium.

  6. Fabrication of dopamine-modified hyaluronic acid/chitosan multilayers on titanium alloy by layer-by-layer self-assembly for promoting osteoblast growth

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinming, E-mail: xmzhang@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Li, Zhaoyang, E-mail: zyli@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Yuan, Xubo [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Cui, Zhenduo; Yang, Xianjin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2013-11-01

    The bare inert surface of titanium (Ti) alloy typically causes early failures in implants. Layer-by-layer self-assembly is one of the simple methods for fabricating bioactive multilayer coatings on titanium implants. In this study, a dopamine-modified hyaluronic acid/chitosan (DHA/CHI) bioactive multilayer was built on the surface of Ti–24Nb–2Zr (TNZ) alloy. Zeta potential oscillated between −2 and 17 mV for DHA- and CHI-ending layers during the assembly process, respectively. The DHA/CHI multilayer considerably decreased the contact angle and dramatically improved the wettability of TNZ alloy. Atomic force microscopy results revealed a rough surface on the original TNZ alloy, while the surface became smoother and more homogeneous after the deposition of approximately 5 bilayers (TNZ/(DHA/CHI){sub 5}). X-ray photoelectron spectroscopy analysis indicated that the TNZ/(DHA/CHI){sub 5} sample was completely covered by polyelectrolytes. Pre-osteoblast MC3T3-E1 cells were cultured on the original TNZ alloy and TNZ/(DHA/CHI){sub 5} to evaluate the effects of DHA/CHI multilayer on osteoblast proliferation in vitro. The proliferation of osteoblasts on TNZ/(DHA/CHI){sub 5} was significantly higher than that on the original TNZ alloy. The results of this study indicate that the proposed technique improves the biocompatibility of TNZ alloy and can serve as a potential modification method in orthopedic applications.

  7. Fabrication of dopamine-modified hyaluronic acid/chitosan multilayers on titanium alloy by layer-by-layer self-assembly for promoting osteoblast growth

    International Nuclear Information System (INIS)

    Zhang, Xinming; Li, Zhaoyang; Yuan, Xubo; Cui, Zhenduo; Yang, Xianjin

    2013-01-01

    The bare inert surface of titanium (Ti) alloy typically causes early failures in implants. Layer-by-layer self-assembly is one of the simple methods for fabricating bioactive multilayer coatings on titanium implants. In this study, a dopamine-modified hyaluronic acid/chitosan (DHA/CHI) bioactive multilayer was built on the surface of Ti–24Nb–2Zr (TNZ) alloy. Zeta potential oscillated between −2 and 17 mV for DHA- and CHI-ending layers during the assembly process, respectively. The DHA/CHI multilayer considerably decreased the contact angle and dramatically improved the wettability of TNZ alloy. Atomic force microscopy results revealed a rough surface on the original TNZ alloy, while the surface became smoother and more homogeneous after the deposition of approximately 5 bilayers (TNZ/(DHA/CHI) 5 ). X-ray photoelectron spectroscopy analysis indicated that the TNZ/(DHA/CHI) 5 sample was completely covered by polyelectrolytes. Pre-osteoblast MC3T3-E1 cells were cultured on the original TNZ alloy and TNZ/(DHA/CHI) 5 to evaluate the effects of DHA/CHI multilayer on osteoblast proliferation in vitro. The proliferation of osteoblasts on TNZ/(DHA/CHI) 5 was significantly higher than that on the original TNZ alloy. The results of this study indicate that the proposed technique improves the biocompatibility of TNZ alloy and can serve as a potential modification method in orthopedic applications.

  8. Electrically driven ion separations and nanofiltration through membranes coated with polyelectrolyte multilayers

    Science.gov (United States)

    White, Nicholas

    Polyelectrolyte multilayer (PEM) films deposited using the layer-by-layer (LBL) method are attractive for their simple deposition, tailorable nature, scalability, and charge or size-based selectivity for solutes. This dissertation explores ion separations in electrodialysis (ED) and solute removal through nanofiltration with PEMs deposited on polymer membranes. ED membranes typically exhibit modest selectivities between monovalent and divalent ions. In contrast, this work shows that K+/Mg 2+ ED selectivities reach values >1000 when using Nafion 115 cation-exchange membranes coated with multilayer poly(4-styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) films. For comparison, the corresponding K+ /Mg2+ selectivity of bare Nafion 115 is salt concentrations, the K+ transference number approaches unity and the K+/Mg2+ selectivity is >20,000, presumably because the applied current is below the limiting value for K+ and H+ transport is negligible at this high K+ concentration. The high selectivities of these membranes may enable electrodialysis applications such as purification of salts that contain divalent or trivalent ions. The high ED selectivities of (PAH/PSS)5PAH-coated Nafion membranes translate to separations with Li+/Co2+ and K +/La3+. Even with adsorption of only 3 polyelectrolyte layers, Nafion membranes exhibit a Li+/Co2+ selectivity >23. However, the resistance to monovalent-ion passage does not decrease significantly with fewer polyelectrolyte layers. At overlimiting currents, hydroxides from water splitting form insoluble metal hydroxides to foul the membrane. With 0.1 M source-phase salt concentrations, transference numbers for monovalent cations approach unity and selectivities are >5000 because the diffusion-limited K+ or Li+ currents exceed the applied current. However, ED selectivities gradually decline with time. Thus, future research should aim to increase membrane stability and limiting currents to fully exploit the remarkable selectivity

  9. Tribological behavior of in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films

    International Nuclear Information System (INIS)

    Guo Yanbao; Wang Deguo; Liu Shuhai

    2010-01-01

    Multilayer polyelectrolyte films containing silver ions were obtained by molecular deposition method on a glass plate or a quartz substrate. The in situ Ag nanoparticles were synthesized in the multilayer polyelectrolyte films which were put into fresh NaBH 4 aqueous solution. The structure and surface morphology of composite molecular deposition films were observed by UV-vis spectrophotometer, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Tribological characteristic was investigated by AFM and micro-tribometer. It was found that the in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films have lower coefficient of friction and higher anti-wear life than pure polyelectrolyte molecular deposition films.

  10. Tailored adhesion behavior of polyelectrolyte thin films deposited on plasma-treated poly(dimethylsiloxane) for functionalized membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bassil, Joelle, E-mail: joelle.bassil@univ-lorraine.fr [Institut Jean Lamour (IJL), UMR CNRS 7198, Université de Lorraine, Parc de Saurupt CS50840, 54011 Nancy (France); Alem, Halima, E-mail: halima.alem@univ-lorraine.fr [Institut Jean Lamour (IJL), UMR CNRS 7198, Université de Lorraine, Parc de Saurupt CS50840, 54011 Nancy (France); Henrion, Gérard, E-mail: gerard.henrion@univ-lorraine.fr [Institut Jean Lamour (IJL), UMR CNRS 7198, Université de Lorraine, Parc de Saurupt CS50840, 54011 Nancy (France); Roizard, Denis, E-mail: denis.roizard@univ-lorraine.fr [Laboratoire Réactions et Génie des Procédés (LRGP), UMR CNRS 7274, ENSIC, Université de Lorraine, 1 rue Grandville, 54011 Nancy (France)

    2016-04-30

    Graphical abstract: - Highlights: • The surface of PDMS membrane was first modified by Ar/O{sub 2} plasma to increase its surface energy. • Subsequently, a homogeneous multilayer of the well-known couple of polyelectrolyte PDADMAC/PSS was deposited on the plasma treated PDMS. • The relation between the parameters of the modification processes and the morphology, wettability, structure and adhesion of the polyelectrolytes layers based PDMS membranes is investigated and enlightened. - Abstract: Completely homogenous films formed via the layer-by-layer assembly of poly(diallyldimethylammonium chloride) (PDADMAC) and the poly(styrene sulfonate) were successfully obtained on plasma-treated poly(dimethylsiloxane) (PDMS) substrates. To modify the hydrophobicity of the PDMS surface, a cold plasma treatment was previously applied to the membrane, which led to the creation of hydrophilic groups on the surface of the membrane. PDMS wettability and surface morphology were successfully correlated with the plasma parameters. A combination of contact angle measurements, scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis was used to demonstrate that homogeneous and hydrophilic surfaces could be achieved on PDMS cold-plasma-treated membranes. The stability of the assembled PEL layer on the PDMS was evaluated using a combination of pull-off testing and X-ray photoelectron spectroscopy (XPS), which confirmed the relevance of a plasma pre-treatment as the adhesion of the polyelectrolyte multilayers was greatly enhanced when the deposition was completed on an activated PDMS surface at 80 W for 5 min.

  11. Consecutively spin-assembled layered nanoarchitectures of poly(sodium 4-styrene sulfonate) and poly(allylamine hydrochloride)

    International Nuclear Information System (INIS)

    An, Minshi; Hong, Jong-Dal

    2006-01-01

    The recently established spin-coating electrostatic self-assembly (SCESA) technique has been shown to facilitate not only the rapid fabrication of polyelectrolyte multilayer assemblies, but also allow each layer to be easily controlled on a monomolecular scale by minimizing the film thickness across a substrate surface. In this paper, the influence of polyelectrolyte concentration on the amount and thickness of spin-deposited polymer films has been examined for a multilayer system of poly(allyamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS), when the washing steps employed for removing weakly bound polyelectrolytes on a resultant film on a substrate are excluded from the standard fabrication procedure of the SCESA method. The thickness of the spin-deposited PAH/PSS bilayer increased linearly for the PSS concentrations in the range from 1 to 10 mM with PAH constant at 1 mM, which demonstrates the uniform deposition of each layer material onto the thin film. The thickness of PAH/PSS bilayers increased from 1.43 ± 0.06 to 3.37 ± 0.08 nm as the PSS concentration increased from 1 to 10 mM, while the PAH concentration was kept constant at 1 mM. The multilayer films were found to be stable in a good solvent (H 2 O) for at least 30 h, without any noticeable loss of the adsorbed layer component of the polyelectrolyte. This improvement to the SCESA method (exclusion of washing steps) provides a convenient way to create multilayer heterostructures with the thickness of each layer being easily adjusted

  12. Linear and Star Poly(ionic liquid) Assemblies: Surface Monolayers and Multilayers.

    Science.gov (United States)

    Erwin, Andrew J; Xu, Weinan; He, Hongkun; Matyjaszewski, Krzysztof; Tsukruk, Vladimir V

    2017-04-04

    The surface morphology and organization of poly(ionic liquid)s (PILs), poly[1-(4-vinylbenzyl)-3-butylimidazolium bis(trifluoromethylsulfonyl)imide] are explored in conjunction with their molecular architecture, adsorption conditions, and postassembly treatments. The formation of stable PIL Langmuir and Langmuir-Blodgett (LB) monolayers at the air-water and air-solid interfaces is demonstrated. The hydrophobic bis(trifluoromethylsulfonyl)imide (Tf 2 N - ) is shown to be a critical agent governing the assembly morphology, as observed in the reversible condensation of LB monolayers into dense nanodroplets. The PIL is then incorporated as an unconventional polyelectrolyte component in the layer-by-layer (LbL) films of hydrophobic character. We demonstrate that the interplay of capillary forces, macromolecular mobility, and structural relaxation of the polymer chains influence the dewetting mechanisms in the PIL multilayers, thereby enabling access to a diverse set of highly textured, porous, and interconnected network morphologies for PIL LbL films that would otherwise be absent in conventional LbL films. Their compartmentalized internal structure is relevant to molecular separation membranes, ultrathin hydrophobic coatings, targeted cargo delivery, and highly conductive films.

  13. Supramolecular Langmuir monolayers and multilayered vesicles of self-assembling DNA–lipid surface structures and their further implications in polyelectrolyte-based cell transfections

    Energy Technology Data Exchange (ETDEWEB)

    Demirsoy, Fatma Funda Kaya [Ankara University, The Central Laboratory of The Institute of Biotechnology (Turkey); Eruygur, Nuraniye [Gazi University, Department of Pharmacognosy, Faculty of Pharmacy (Turkey); Süleymanoğlu, Erhan, E-mail: erhans@mail.ru [Gazi University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Turkey)

    2015-01-15

    The basic interfacial characteristics of DNA–lipid recognitions have been studied. The complex structures of individual unbound DNA molecules and their binary and ternary complexes with zwitterionic lipids and divalent cations were followed by employing lipid monolayers at the air–liquid interfaces, as well as by performing various microscopic, spectroscopic, and thermodynamic measurements with multilayered vesicles. The pressure-area isotherms depicted that Mg{sup 2+}-ions increase the surface pressure of lipid films and thus give rise to electrostatic and hydrophobic lipid–DNA interactions in terms of DNA adsorption, adhesion, and compaction. These features were further approached by using multilamellar vesicles with a mean diameter of 850 nm, where a metal ion-directed nucleic acid compaction and condensation effects were shown. The data obtained show the effectiveness of Langmuir monolayers and lipid multilayers in studying nucleic acid–lipid recognitions. The data provide with further details and support previous reports on mainly structural features of these recognitions. Biomolecular surface recognition events were presented in direct link with spectral and thermodynamic features of lipid vesicle–polynucleotide complex formations. The results serve to build a theoretical model considering the use of neutral lipids in lipoplex designs as a polyelectrolyte alternatives to the currently employed cytotoxic cationic liposomes. The supramolecular structures formed and their possible roles in interfacial electrostatic and hydrophobic mechanisms of endosomal escape in relevant cell transfection assays are particularly emphasized.

  14. Supramolecular Langmuir monolayers and multilayered vesicles of self-assembling DNA–lipid surface structures and their further implications in polyelectrolyte-based cell transfections

    International Nuclear Information System (INIS)

    Demirsoy, Fatma Funda Kaya; Eruygur, Nuraniye; Süleymanoğlu, Erhan

    2015-01-01

    The basic interfacial characteristics of DNA–lipid recognitions have been studied. The complex structures of individual unbound DNA molecules and their binary and ternary complexes with zwitterionic lipids and divalent cations were followed by employing lipid monolayers at the air–liquid interfaces, as well as by performing various microscopic, spectroscopic, and thermodynamic measurements with multilayered vesicles. The pressure-area isotherms depicted that Mg 2+ -ions increase the surface pressure of lipid films and thus give rise to electrostatic and hydrophobic lipid–DNA interactions in terms of DNA adsorption, adhesion, and compaction. These features were further approached by using multilamellar vesicles with a mean diameter of 850 nm, where a metal ion-directed nucleic acid compaction and condensation effects were shown. The data obtained show the effectiveness of Langmuir monolayers and lipid multilayers in studying nucleic acid–lipid recognitions. The data provide with further details and support previous reports on mainly structural features of these recognitions. Biomolecular surface recognition events were presented in direct link with spectral and thermodynamic features of lipid vesicle–polynucleotide complex formations. The results serve to build a theoretical model considering the use of neutral lipids in lipoplex designs as a polyelectrolyte alternatives to the currently employed cytotoxic cationic liposomes. The supramolecular structures formed and their possible roles in interfacial electrostatic and hydrophobic mechanisms of endosomal escape in relevant cell transfection assays are particularly emphasized

  15. Electrostatic self-assembly in polyelectrolyte-neutral block copolymers and oppositely charged surfactant solutions

    International Nuclear Information System (INIS)

    Berret, J.-F.Jean-Francois; Oberdisse, Julian

    2004-01-01

    We report on small-angle neutron scattering (SANS) of colloidal complexes resulting from the electrostatic self-assembly of polyelectrolyte-neutral copolymers and oppositely charged surfactants. The polymers are double hydrophilic block copolymers of low molecular weight (between 5000 and 50 000 g/mol). One block is a polyelectrolyte chain, which can be either positively or negatively charged, whereas the second block is neutral and in good solvent conditions. In aqueous solutions, surfactants with an opposite charge to that of the polyelectrolyte interact strongly with these copolymers. The two species associate into stable 100 nm-colloidal complexes which exhibit a core-shell microstructure. For different polymer/surfactant couples, we have shown that the core is constituted from densely packed surfactant micelles connected by the polyelectrolyte chains. The outer part of the complex is a corona formed by the neutral soluble chains. Using a model of aggregation based on a Monte-Carlo algorithm, we have simulated the internal structure of the aggregates. The model assumes spherical cages containing one to several hundreds of micelles in a closely packed state. The agreement between the model and the data is remarkable

  16. Selective transport and incorporation of highly charged metal and metal complex ions in self-assembled polyelectrolyte multilayer membranes

    International Nuclear Information System (INIS)

    Toutianoush, Ali; Tieke, Bernd

    2002-01-01

    The transport of aqueous salts containing mono-, di- and trivalent metal and tetravalent metal complex ions across ultrathin polyvinylammonium/polyvinylsulphate (PVA/PVS) membranes is described. The membranes were prepared by electrostatic layer-by-layer (LBL) assembly of the two polyelectrolytes. Using spectroscopic measurements and permeability studies, it is demonstrated that the transport of copper(II) chloride, lanthanum(III) chloride, barium chloride and potassium hexacyanoferrate(II) is accompanied by the permanent incorporation of the metal and metal complex ions in the membrane. Upon the uptake of copper, lanthanum and hexacyanoferrate ions, the membranes become cross-linked so that the permeation rates of other salts not taken up by the membrane, e.g. sodium chloride, potassium chloride and magnesium chloride, are decreased. The uptake of barium ions leads to a decrease of the cross-linking density of the membrane so that the permeation rate of NaCl is increased. Possible mechanisms for the ion uptake are discussed

  17. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

    OpenAIRE

    Elena Dellacasa; Li Zhao; Gesheng Yang; Laura Pastorino; Gleb B. Sukhorukov

    2016-01-01

    The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). N...

  18. Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications.

    Science.gov (United States)

    Piccinini, Esteban; Bliem, Christina; Reiner-Rozman, Ciril; Battaglini, Fernando; Azzaroni, Omar; Knoll, Wolfgang

    2017-06-15

    We present the construction of layer-by-layer (LbL) assemblies of polyethylenimine and urease onto reduced-graphene-oxide based field-effect transistors (rGO FETs) for the detection of urea. This versatile biosensor platform simultaneously exploits the pH dependency of liquid-gated graphene-based transistors and the change in the local pH produced by the catalyzed hydrolysis of urea. The use of an interdigitated microchannel resulted in transistors displaying low noise, high pH sensitivity (20.3µA/pH) and transconductance values up to 800 µS. The modification of rGO FETs with a weak polyelectrolyte improved the pH response because of its transducing properties by electrostatic gating effects. In the presence of urea, the urease-modified rGO FETs showed a shift in the Dirac point due to the change in the local pH close to the graphene surface. Markedly, these devices operated at very low voltages (less than 500mV) and were able to monitor urea in the range of 1-1000µm, with a limit of detection (LOD) down to 1µm, fast response and good long-term stability. The urea-response of the transistors was enhanced by increasing the number of bilayers due to the increment of the enzyme surface coverage onto the channel. Moreover, quantification of the heavy metal Cu 2+ (with a LOD down to 10nM) was performed in aqueous solution by taking advantage of the urease specific inhibition. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Primary Neuron/Astrocyte Co-Culture on Polyelectrolyte Multilayer Films: A Template for Studying Astrocyte-Mediated Oxidative Stress in Neurons**

    OpenAIRE

    Kidambi, Srivatsan; Lee, Ilsoon; Chan, Christina

    2008-01-01

    We engineered patterned co-cultures of primary neurons and astrocytes on polyelectrolyte multilayer (PEM) films without the aid of adhesive proteins/ligands to study the oxidative stress mediated by astrocytes on neuronal cells. A number of studies have explored engineering co-culture of neurons and astrocytes predominantly using cell lines rather than primary cells owing to the difficulties involved in attaching primary cells onto synthetic surfaces. To our knowledge this is the first demons...

  20. Cucurbit[8]uril-Containing Multilayer Films for the Photocontrolled Binding and Release of a Guest Molecule.

    Science.gov (United States)

    Nicolas, Henning; Yuan, Bin; Zhang, Xi; Schönhoff, Monika

    2016-03-15

    The powerful host-guest chemistry of cucurbit[8]uril (CB[8]) was employed to obtain photoresponsive polyelectrolyte multilayer films for the reversible and photocontrolled binding and release of an organic guest molecule. For this purpose, we designed and synthesized a polyelectrolyte with azobenzene side groups. Then, CB[8] was associated with the azo side group to obtain a supramolecular host-guest complex that was further used as building block in order to prepare photoresponsive and CB[8]-containing polyelectrolyte multilayer films. Ultraviolet spectroscopy and a dissipative quartz crystal microbalance are employed to monitor the formation of the host-guest complex and the layer-by-layer self-assembly of the multilayer films, respectively. We demonstrate that the photoresponsive properties of the azo side groups are maintained before and after host-guest complexation with CB[8] in solution and within the multilayer films, respectively. A guest molecule was then specifically included as second binding partner into the CB[8]-containing multilayer films. Subsequently, the release of the guest was performed by UV light irradiation due to the trans-cis isomerization of the adjacent azo side groups. Re-isomerization of the azo side groups was achieved by VIS light irradiation and enabled the rebinding of the guest into CB[8]. Finally, we demonstrate that the photocontrolled binding and release within CB[8]-containing multilayer films can reliably and reversibly be performed over a period of more than 2 weeks with constant binding efficiency. Therefore, we expect such novel type of photosensitive films to have promising future applications in the field of stimuli-responsive nanomaterials.

  1. Osseointegration of layer-by-layer polyelectrolyte multilayers loaded with IGF1 and coated on titanium implant under osteoporotic condition

    Directory of Open Access Journals (Sweden)

    Xing H

    2017-10-01

    Full Text Available Helin Xing,1,* Xing Wang,2,* Saisong Xiao,3,* Guilan Zhang,1 Meng Li,1 Peihuan Wang,1 Quan Shi,1 Pengyan Qiao,1 Lingling E,1 Hongchen Liu1 1Institute of Stomatology, Chinese PLA General Hospital, Beijing, 2Hospital of Stomatology, Shanxi Medical University, Taiyuan, 3Department of Anesthesia, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China *These authors contributed equally to this work Purpose: Titanium implant is a widely used method for dental prosthesis restoration. Nevertheless, in patients with systemic diseases, including osteoporosis, diabetes, and cancer, the success rate of the implant is greatly reduced. This study investigates a new implant material loaded with insulin-like growth factor 1 (IGF1, which could potentially improve the implant success rate, accelerate the occurrence of osseointegration, and provide a new strategy for implant treatment in osteoporotic patients. Materials and methods: Biofunctionalized polyelectrolyte multilayers (PEMs with polyethylenimine as the excitation layer and gelatin/chitosan loaded with IGF1 were prepared on the surface of titanium implant by layer-by-layer self-assembly technique. The physical and chemical properties of the biofunctionalized PEMs, the biological characteristics of bone marrow mesenchymal stem cells (BMMSCs, and bone implant contact correlation test indexes were detected and analyzed in vitro and in vivo using osteoporosis rat model. Results: PEMs coatings loaded with IGF1 (TNS-PEM-IGF1-100 implant promoted the early stage of BMMSCs adhesion. Under the action of body fluids, the active coating showed sustained release of growth factors, which in turn promoted the proliferation and differentiation of BMMSCs and the extracellular matrix. At 8 weeks from implant surgery, the new bone around the implants was examined using micro-CT and acid fuchsin/methylene blue staining. The new bone formation increased with time in each group, while the TNS-PEM-IGF1

  2. Dynamic force spectroscopy of oppositely charged polyelectrolyte brushes

    NARCIS (Netherlands)

    Spruijt, E.; Cohen Stuart, M.A.; Gucht, van der J.

    2010-01-01

    Ion pairing is the main driving force in the formation of polyelectrolyte complexes, which find widespread use in micellar assemblies, drug carriers, and coatings. In this paper we examine the actual ion pairing forces in a polyelectrolyte complex between two oppositely charged polyelectrolyte

  3. Capacitive electrolyte-insulator-semiconductor structures functionalised with a polyelectrolyte/enzyme multilayer: New strategy for enhanced field-effect biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Abouzar, Maryam H.; Poghossian, Arshak; Schoening, Michael J. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich GmbH, Juelich (Germany); Siqueira, Jose R. Jr.; Oliveira, Osvaldo N. Jr. [Physics Institute of Sao Carlos, University of Sao Paulo, Sao Carlos (Brazil); Moritz, Werner [Institute of Chemistry, Humboldt University Berlin (Germany)

    2010-04-15

    A novel strategy for enhanced field-effect biosensing using capacitive electrolyte-insulator-semiconductor (EIS) structures functionalised with pH-responsive weak polyelectrolyte/enzyme or dendrimer/enzyme multilayers is presented. The feasibility of the proposed approach is exemplarily demonstrated by realising a penicillin biosensor based on a capacitive p-Si-SiO{sub 2} EIS structure functionalised with a poly(allylamine hydrochloride) (PAH)/penicillinase and a poly(amidoamine) dendrimer/penicillinase multilayer. The developed sensors response to changes in both the local pH value near the gate surface and the charge of macromolecules induced via enzymatic reaction, resulting in a higher sensitivity. For comparison, an EIS penicillin biosensor with adsorptively immobilised penicillinase has been also studied. The highest penicillin sensitivity of 100 mV/dec has been observed for the EIS sensor functionalised with the PAH/penicillinase multilayer. The lower and upper detection limit was around 20 {mu}M and 10 mM, respectively. In addition, an incorporation of enzymes in a multilayer prepared by layer-by-layer technique provides a larger amount of immobilised enzymes per sensor area, reduces enzyme leaching effects and thus, enhances the biosensor lifetime (the loss of penicillin sensitivity after 2 months was 10-12%). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. Release of DNA from polyelectrolyte multilayers fabricated using 'charge-shifting' cationic polymers: tunable temporal control and sequential, multi-agent release.

    Science.gov (United States)

    Sun, Bin; Lynn, David M

    2010-11-20

    We report an approach to the design of multilayered polyelectrolyte thin films (or 'polyelectrolyte multilayers', PEMs) that can be used to provide tunable control over the release of plasmid DNA (or multiple different DNA constructs) from film-coated surfaces. Our approach is based upon methods for the layer-by-layer assembly of DNA-containing thin films, and exploits the properties of a new class of cationic 'charge-shifting' polymers (amine functionalized polymers that undergo gradual changes in net charge upon side chain ester hydrolysis) to provide control over the rates at which these films erode and release DNA. We synthesized two 'charge-shifting' polymers (polymers 1 and 2) containing different side chain structures by ring-opening reactions of poly(2-alkenyl azlactone)s with two different tertiary amine functionalized alcohols (3-dimethylamino-1-propanol and 2-dimethylaminoethanol, respectively). Subsequent characterization revealed large changes in the rates of side chain ester hydrolysis for these two polymers; whereas the half-life for the hydrolysis of the esters in polymer 1 was ~200 days, the half-life for polymer 2 was ~6 days. We demonstrate that these large differences in side chain hydrolysis make possible the design of PEMs that erode and promote the surface-mediated release of DNA either rapidly (e.g., over ~3 days for films fabricated using polymer 2) or slowly (e.g., over ~1 month for films fabricated using polymer 1). We demonstrate further that it is possible to design films with release profiles that are intermediate to these two extremes by fabricating films using solutions containing different mixtures of these two polymers. This approach can thus expand the usefulness of these two polymers and achieve a broader range of DNA release profiles without the need to synthesize polymers with new structures or properties. Finally, we demonstrate that polymers 1 and 2 can be used to fabricate multilayered films with hierarchical structures that

  5. Surface grafted chitosan gels. Part I. Molecular insight into the formation of chitosan and poly(acrylic acid) multilayers

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    Composite polyelectrolyte multilayers of chitosan and low molecular weight poly(acrylic acid) (PAA) have been assembled by sequential adsorption as a first step toward building a surface anchored chitosan gel. Silane chemistry was used to graft the first chitosan layer to prevent film detachment...... and decomposition. The assembly process is characterized by nonlinear growth behavior, with different adsorption kinetics for chitosan and PAA. In situ analysis of the multilayer by means of surface sensitive total internal reflection Raman (TIRR) spectroscopy, combined with target factor analysis of the spectra...... molecular weight chitosan shows a similar behavior, although to a much lower extent. Our data demonstrate that the charged monomeric units of chitosan are mainly compensated by carboxylate ions from PAA. Furthermore, the morphology and mechanical properties of the multilayers were investigated in situ using...

  6. Multilayer Films and Capsules of Sodium Carboxymethylcellulose and Polyhexamethylenguanidine Hydrochloride

    Science.gov (United States)

    Guzenko, Nataliia; Gabchak, Oleksandra; Pakhlov, Evgenij

    The complexation of polyhexamethylenguanidine hydrochloride (PHMG) and sodium carboxymethylcellulose (CMC) was investigated for different conditions. Mixing of equiconcentrated aqueous solutions of the polyelectrolytes was found to result in the formation of an insoluble interpolyelectrolyte complex with an overweight of carboxymethylcellulose. A step-by-step formation of stable, irreversibly adsorbed multilayer film of the polymers was demonstrated using the quartz crystal microbalance method. Unusually thick polymer shells with a large number of loops and tails of the polyanion were formed by the method of layer-by-layer self-assembly of PHMG and CMC on spherical CaCO3 particles. Hollow multilayer capsules stable in neutral media were obtained by dissolution of the inorganic matrix in EDTA solution.

  7. Polyelectrolyte layer-by-layer deposition in cylindrical nanopores.

    Science.gov (United States)

    Lazzara, Thomas D; Lau, K H Aaron; Abou-Kandil, Ahmed I; Caminade, Anne-Marie; Majoral, Jean-Pierre; Knoll, Wolfgang

    2010-07-27

    Layer-by-layer (LbL) deposition of polyelectrolytes within nanopores in terms of the pore size and the ionic strength was experimentally studied. Anodic aluminum oxide (AAO) membranes, which have aligned, cylindrical, nonintersecting pores, were used as a model nanoporous system. Furthermore, the AAO membranes were also employed as planar optical waveguides to enable in situ monitoring of the LbL process within the nanopores by optical waveguide spectroscopy (OWS). Structurally well-defined N,N-disubstituted hydrazine phosphorus-containing dendrimers of the fourth generation, with peripherally charged groups and diameters of approximately 7 nm, were used as the model polyelectrolytes. The pore diameter of the AAO was varied between 30-116 nm and the ionic strength was varied over 3 orders of magnitude. The dependence of the deposited layer thickness on ionic strength within the nanopores is found to be significantly stronger than LbL deposition on a planar surface. Furthermore, deposition within the nanopores can become inhibited even if the pore diameter is much larger than the diameter of the G4-polyelectrolyte, or if the screening length is insignificant relative to the dendrimer diameter at high ionic strengths. Our results will aid in the template preparation of polyelectrolyte multilayer nanotubes, and our experimental approach may be useful for investigating theories regarding the partitioning of nano-objects within nanopores where electrostatic interactions are dominant. Furthermore, we show that the enhanced ionic strength dependence of polyelectrolyte transport within the nanopores can be used to selectively deposit a LbL multilayer atop a nanoporous substrate.

  8. Temperature-induced changes in polyelectrolyte films at the solid-liquid interface

    International Nuclear Information System (INIS)

    Steitz, R.; Leiner, V.; Tauer, K.; Khrenov, V.; Klitzing, R. v.

    2002-01-01

    Polyelectrolyte multilayers (film thickness 30-60 nm) were built on top of silicon substrates by layer-by-layer deposition of oppositely charged polyelectrolytes from aqueous solutions. Three kinds of films were investigated: (A) films of a homo-polyelectrolyte and a diblock copolymer with a thermosensitive poly(N-isopropyl-acrylamide) block and (B) and (C) two reference systems built solely from homo-polyelectrolytes of opposite charges. Thermal behavior and subsequent structural changes of the functionalized films against D 2 O were investigated by neutron reflectometry. All films showed irreversible annealing effects upon heating. In addition, the thermosensitive films showed a decrease in thickness at elevated temperature (>30 C) while the reference samples, composed of thermo-insensitive polyelectrolytes only, did not. (orig.)

  9. Human mesenchymal stem cell osteoblast differentiation, ECM deposition, and biomineralization on PAH/PAA polyelectrolyte multilayers.

    Science.gov (United States)

    Pattabhi, Sudhakara Rao; Lehaf, Ali M; Schlenoff, Joseph B; Keller, Thomas C S

    2015-05-01

    Polyelectrolyte multilayer (PEMU) coatings built layer by layer with alternating pairs of polyelectrolytes can be tuned to improve cell interactions with surfaces and may be useful as biocompatible coatings to improve fixation between implants and tissues. Here, we show that human mesenchymal stromal cells (hMSCs) induced with bone differentiation medium (BDM) to become osteoblasts biomineralize crosslinked PEMUs built with the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(acrylic acid) (PAA). Degrees of hMSC osteoblast differentiation and surface biomineralization on the smooth PAH-terminated PEMUs (PAH-PEMUs) and microstructured PAA-terminated PEMUs (PAA-PEMUs) reflect differences in cell-deposited extracellular matrix (ECM). BDM-induced hMSCs expressed higher levels of the early osteoblast differentiation marker alkaline phosphatase and collagen 1 (COL1) sooner on PAA-PEMUs than on PAH-PEMUs. Cells on both types of PEMUs proceeded to express the later stage osteoblast differentiation marker bone sialoprotein (BSP), but the BDM-induced cells organized a more amorphous Collagen I and denser BSP localization on PAA-PEMUs than on PAH-PEMUs. These ECM properties correlated with greater biomineralization on the PAA-PEMUs than on PAH-PEMUs. Together, these results confirm the suitability of PAH/PAA PEMUs as a substrate for hMSC osteogenesis and highlight the importance of substrate effects on ECM organization and BSP presentation on biomineralization. © 2014 Wiley Periodicals, Inc.

  10. Spectroscopic properties of triangular silver nanoplates immobilized on polyelectrolyte multilayer-modified glass substrates

    Science.gov (United States)

    Rabor, Janice B.; Kawamura, Koki; Muko, Daiki; Kurawaki, Junichi; Niidome, Yasuro

    2017-07-01

    Fabrication of surface-immobilized silver nanostructures with reproducible plasmonic properties by dip-coating technique is difficult due to shape alteration. To address this challenge, we used a polyelectrolyte multilayer to promote immobilization of as-received triangular silver nanoplates (TSNP) on a glass substrate through electrostatic interaction. The substrate-immobilized TSNP were characterized by absorption spectrophotometry and scanning electron microscopy. The bandwidth and peak position of localized surface plasmon resonance (LSPR) bands can be tuned by simply varying the concentration of the colloidal solution and immersion time. TSNP immobilized from a higher concentration of colloidal solution with longer immersion time produced broadened LSPR bands in the near-IR region, while a lower concentration with shorter immersion time produced narrower bands in the visible region. The shape of the nanoplates was retained even at long immersion time. Analysis of peak positions and bandwidths also revealed the point at which the main species of the immobilization had been changed from isolates to aggregates.

  11. Fabrication of surfaces with extremely high contact angle hysteresis from polyelectrolyte multilayer.

    Science.gov (United States)

    Wang, Liming; Wei, Jingjing; Su, Zhaohui

    2011-12-20

    High contact angle hysteresis on polyelectrolyte multilayers (PEMs) ion-paired with hydrophobic perfluorooctanoate anions is reported. Both the bilayer number of PEMs and the ionic strength of deposition solutions have significant influence on contact angle hysteresis: higher ionic strength and greater bilayer number cause increased contact angle hysteresis values. The hysteresis values of ~100° were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis. Surface roughness can be used to further tune the contact angle hysteresis on the PEMs. A surface with extremely high contact angle hysteresis of 156° was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres. It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate. The same substrate hydrophobized by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane exhibits high advancing contact angle and low hysteresis. © 2011 American Chemical Society

  12. Acoustically Triggered Disassembly of Multilayered Polyelectrolyte Thin Films through Gigahertz Resonators for Controlled Drug Release Applications

    Directory of Open Access Journals (Sweden)

    Zhixin Zhang

    2016-11-01

    Full Text Available Controlled drug release has a high priority for the development of modern medicine and biochemistry. To develop a versatile method for controlled release, a miniaturized acoustic gigahertz (GHz resonator is designed and fabricated which can transfer electric supply to mechanical vibrations. By contacting with liquid, the GHz resonator directly excites streaming flows and induces physical shear stress to tear the multilayered polyelectrolyte (PET thin films. Due to the ultra-high working frequency, the shear stress is greatly intensified, which results in a controlled disassembling of the PET thin films. This technique is demonstrated as an effective method to trigger and control the drug release. Both theory analysis and controlled release experiments prove the thin film destruction and the drug release.

  13. Biocolloids with ordered urease multilayer shells as enzymatic reactors.

    Science.gov (United States)

    Lvov, Y; Caruso, F

    2001-09-01

    The preparation of biocolloids with organized enzyme-containing multilayer shells for exploitation as colloidal enzymatic nanoreactors is described. Urease multilayers were assembled onto submicrometer-sized polystyrene spheres by the sequential adsorption of urease and polyelectrolyte, in a predetermined order, utilizing electrostatic interactions for layer growth. The catalytic activity of the biocolloids increased proportionally with the number of urease layers deposited on the particles, demonstrating that biocolloid particles with tailored enzymatic activities can be produced. It was further found that precoating the latex spheres with nanoparticles (40-nm silica or 12-nm magnetite) enhanced both the stability (with respect to adsorption) and enzymatic activity of the urease multilayers. The presence of the magnetite nanoparticle coating also provided a magnetic function that allowed the biocolloids to be easily and rapidly separated with a permanent magnet. The fabrication of such colloids opens new avenues for the application of bioparticles and represents a promising route for the creation of complex catalytic particles.

  14. Molecular interactions in self-assembled nano-structures of chitosan-sodium alginate based polyelectrolyte complexes.

    Science.gov (United States)

    Wasupalli, Geeta Kumari; Verma, Devendra

    2018-03-16

    We report here the self-assembled structures of polyelectrolyte complexes (PECs) of polyanionic sodium alginate with the polycationic chitosan at room temperature. The PECs prepared at different pH values exhibited two distinct morphologies. The chitosan-alginate PECs self-assembled into the fibrous structure in a low pH range of pH3 to 7. The PECs obtained at high pH series around pH8 and above resulted in the formation of colloidal nanoparticles in the range of 120±9.48nm to 46.02±16.66nm. The zeta potential measurement showed that PECs prepared at lower pH (pHPECs prepared at higher pH than 6 exhibited highly negative surface charge. The molecular interactions in nano-colloids and fibers were evaluated using FTIR analysis. The results attest that the ionic state of the chitosan and alginate plays an important role controlling the morphologies of the PECS. The present study has identified the enormous potential of the polyelectrolytes complexes to exploit shape by the alteration of ionic strength. These findings might be useful in the development of novel biomaterial. The produced fibers and nanocolloids could be applied as a biomaterial for tissue engineering and drug delivery. Copyright © 2017. Published by Elsevier B.V.

  15. Molecular lego for the assembly of biosensing layers.

    Science.gov (United States)

    Mano, N; Kuhn, A

    2005-03-31

    We propose a procedure to assemble monolayers of redox mediator, coenzyme, enzyme and stabilizing polyelectrolyte on an electrode surface using essentially electrostatic and complexing interactions. In a first step a monolayer of redox mediator, substituted nitrofluorenones, is adsorbed. In a second step, a layer of calcium cations is immobilized at the interface. It establishes a bridge between the redox mediator and the subsequently adsorbed coenzyme NAD(+). In the next step we use the intrinsic affinity of the NAD(+) monolayer for dehydrogenases to build up a multilayer composed of mediator/Ca(2+)/NAD(+)/dehydrogenase. The so obtained modified electrode can be used as a biosensor. Quartz crystal microbalance measurements allowed us to better understand the different parameters responsible for the adsorption. A more detailed investigation of the system made it possible to finally stabilize the assembly sufficiently by the adsorption of a polyelectrolyte layer in order to perform rotating disk electrode measurements with the whole supramolecular architecture on the electrode surface.

  16. Layer-by-layer polyelectrolyte films for contact electric energy harvesting

    International Nuclear Information System (INIS)

    Guo, X D; Helseth, L E

    2015-01-01

    We report how self-assembly of polyelectrolyte thin films alters the contact electrification of polyimide polymer films used in contact based triboelectric energy harvesting systems. Polyimide films of the same size do produce a very small current when brought into contact. However, by covering one of the polyimide films with a polyelectrolyte thin film terminated by positively charged poly(allylamine hydrochloride) (PAH), the current is reversed and a much larger current and voltage are generated upon contact with the other polyimide film. A similar increase in contact current is not seen for polyelectrolyte thin films terminated by the negatively charged poly(sodium 4-styrenesulfonate). The PAH-terminated Kapton films are used to create an energy harvesting system providing a voltage of about 60 V and a current of 10 μA. At an average power of 11 μW for a load resistance of 100 MΩ, the energy harvester is able to power several light emitting diodes. Further studies on the contact electrification of the polyelectrolyte demonstrate that nanostructuring of the polymer surface using reactive ion etching does not give rise to polarity reversal. This is explained as hidden pockets of charge not accessible to PAH molecules, but which become accessible when the polymer is put under stress. Although the current originating for a PAH-terminated multilayer film does initially have the opposite sign to that of bare polyimide, it is found that the polarity will switch after subjecting it to a periodical mechanical force. Characteristic changes in current signatures associated with the switch are found, and are interpreted as mechanical interpenetration of the charged layers. (paper)

  17. The Effect of Temperature Treatment on the Structure of Polyelectrolyte Multilayers

    Directory of Open Access Journals (Sweden)

    Maximilian Zerball

    2016-04-01

    Full Text Available The study addresses the effect of thermal treatment on the internal structure of polyelectrolyte multilayers (PEMs. In order to get insight into the internal structure of PEMs, Neutron Reflectometry (NR was used. PEMs with a deuterated inner block towards the substrate and a non-deuterated outer block were prepared and measured in 1% RH and in D2O before and after a thermal treatment. Complementarily, PEMs with the same number of layers but completely non-deuterated were investigated by ellipsometry. The analysis for the overall thickness (d, the average scattering length density (SLD and the refractive index (n indicate a degradation of the PEM. The loss in material is independent of the number of layers, i.e., only a constant part of the PEM is affected by degradation. The analysis of the internal structure revealed a more complex influence of thermal treatment on PEM structure. Only the outermost part of the PEM degenerates, while the inner part becomes denser during the thermal treatment. In addition, the swelling behavior of PEMs is influenced by the thermal treatment. The untreated PEM shows a well pronounced odd—even effect, i.e., PDADMAC-terminated PEMs take up more water than PSS-terminated PEMs. After the thermal treatment, the odd-even effect becomes much weaker.

  18. Imatinib-loaded polyelectrolyte microcapsules for sustained targeting of BCR-ABL+ leukemia stem cells.

    Science.gov (United States)

    Palamà, Ilaria E; Leporatti, Stefano; de Luca, Emanuela; Di Renzo, Nicola; Maffia, Michele; Gambacorti-Passerini, Carlo; Rinaldi, Ross; Gigli, Giuseppe; Cingolani, Roberto; Coluccia, Addolorata M L

    2010-04-01

    The lack of sensitivity of chronic myeloid leukemia (CML) stem cells to imatinib mesylate (IM) commonly leads to drug dose escalation or early disease relapses when therapy is stopped. Here, we report that packaging of IM into a biodegradable carrier based on polyelectrolyte microcapsules increases drug retention and antitumor activity in CML stem cells, also improving the ex vivo purging of malignant progenitors from patient autografts. Microparticles/capsules were obtained by layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolyte multilayers on removable calcium carbonate (CaCO(3)) templates and loaded with or without IM. A leukemic cell line (KU812) and CD34(+) cells freshly isolated from healthy donors or CML patients were tested. Polyelectrolyte microcapsules (PMCs) with an average diameter of 3 microm, fluorescently labelled multilayers sensitive to the action of intracellular proteases and 95-99% encapsulation efficiency of IM, were prepared. Cell uptake efficiency of such biodegradable carriers was quantified in KU812, leukemic and normal CD34(+) stem cells (range: 70-85%), and empty PMCs did not impact cell viability. IM-loaded PMCs selectively targeted CML cells, by promoting apoptosis at doses that exert only cytostatic effects by IM alone. More importantly, residual CML cells from patient leukapheresis products were reduced or eliminated more efficiently by using IM-loaded PMCs compared with freely soluble IM, with a purging efficiency of several logs. No adverse effects on normal CD34(+) stem-cell survival and their clonogenic potential was noticed in long-term cultures of hematopoietic progenitors in vitro. This pilot study provides the proof-of-principle for the clinical application of biodegradable IM-loaded PMC as feasible, safe and effective ex vivo purging agents to target CML stem cells, in order to improve transplant outcome of resistant/relapsed patients or reduce IM dose escalation.

  19. Layer-by-layer strippable Ag multilayer films fabricated by modular assembly.

    Science.gov (United States)

    Li, Yan; Chen, Xiaoyan; Li, Qianqian; Song, Kai; Wang, Shihui; Chen, Xiaoyan; Zhang, Kai; Fu, Yu; Jiao, Yong-Hua; Sun, Ting; Liu, Fu-Chun; Han, En-Hou

    2014-01-21

    We have developed a new method to fabricate multilayer films, which uses prepared thin films as modular blocks and transfer as operation mode to build up multilayer structures. In order to distinguish it from the in situ fabrication manner, this method is called modular assembly in this study. On the basis of such concept, we have fabricated a multilayer film using the silver mirror film as the modular block and poly(lactic acid) as the transfer tool. Due to the special double-layer structure of the silver mirror film, the resulting multilayer film had a well-defined stratified architecture with alternate porous/compact layers. As a consequence of the distinct structure, the interaction between the adjacent layers was so weak that the multilayer film could be layer-by-layer stripped. In addition, the top layer in the film could provide an effective protection on the morphology and surface property of the underlying layers. This suggests that if the surface of the film was deteriorated, the top layer could be peeled off and the freshly exposed surface would still maintain the original function. The successful preparation of the layer-by-layer strippable silver multilayer demonstrates that modular assembly is a feasible and effective method to build up multilayer films capable of creating novel and attractive micro/nanostructures, having great potential in the fabrication of nanodevices and coatings.

  20. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid/poly(L-lactic acid and self-assembly of polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Elena Dellacasa

    2016-01-01

    Full Text Available The enantiomers poly(D-lactic acid (PDLA and poly(L-lactic acid (PLLA were alternately adsorbed directly on calcium carbonate (CaCO3 templates and on poly(styrene sulfonate (PSS and poly(allylamine hydrochloride (PAH multilayer precursors in order to fabricate a novel layer-by-layer (LBL assembly. A single layer of poly(L-lysine (PLL was used as a linker between the (PDLA/PLLAn stereocomplex and the cores with and without the polymeric (PSS/PAHn/PLL multilayer precursor (PEM. Nuclear magnetic resonance (NMR and gel permeation chromatography (GPC were used to characterize the chemical composition and molecular weight of poly(lactic acid polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC and wide X-ray diffraction (WXRD analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM and transmission electron microscopy (TEM measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release.

  1. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

    Science.gov (United States)

    Yang, Gesheng; Pastorino, Laura

    2016-01-01

    Summary The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release. PMID:26925356

  2. Self-assembled systems of water soluble metal 8-hydroxyquinolates with surfactants and conjugated polyelectrolytes

    DEFF Research Database (Denmark)

    Burrows, Hugh D.; Costa, Telma; Luisa Ramos, M.

    2016-01-01

    We have studied the interaction of 8-hydroxyquinoline-5-sulfonate (8-HQS) with the metal ions Al(III) and Zn(II) in aqueous solution in the presence of tetraalkylammonium surfactants using UV/vis absorption, fluorescence, NMR spectroscopy and electrical conductivity measurements, complemented by ...... assembly between the conjugated polyelectrolyte and the metal/8-HQS complex, as demonstrated by electronic energy transfer. The potential of these systems in sensing, light harvesting, and electron injection/transport layers in organic semiconductor devices is discussed....

  3. Self-assembled metal nano-multilayered film prepared by co-sputtering method

    Science.gov (United States)

    Xie, Tianle; Fu, Licai; Qin, Wen; Zhu, Jiajun; Yang, Wulin; Li, Deyi; Zhou, Lingping

    2018-03-01

    Nano-multilayered film is usually prepared by the arrangement deposition of different materials. In this paper, a self-assembled nano-multilayered film was deposited by simultaneous sputtering of Cu and W. The Cu/W nano-multilayered film was accumulated by W-rich layer and Cu-rich layer. Smooth interfaces with consecutive composition variation and semi-coherent even coherent relationship were identified, indicating that a spinodal-like structure with a modulation wavelength of about 20 nm formed during co-deposition process. The participation of diffusion barrier element, such as W, is believed the essential to obtain the nano-multilayered structure besides the technological parameters.

  4. Static and ultrafast optical properties of nanolayered composites. Gold nanoparticles embedded in polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, Mareike

    2012-08-16

    In the course of this thesis gold nanoparticle/polyelectrolyte multilayer structures were prepared, characterized, and investigated according to their static and ultrafast optical properties. Using the dip-coating or spin-coating layer-by-layer deposition method, gold-nanoparticle layers were embedded in a polyelectrolyte environment with high structural perfection. Typical structures exhibit four repetition units, each consisting of one gold-particle layer and ten double layers of polyelectrolyte (cationic+anionic polyelectrolyte). The structures were characterized by X-ray reflectivity measurements, which reveal Bragg peaks up to the seventh order, evidencing the high stratification of the particle layers. In the same measurements pronounced Kiessig fringes were observed, which indicate a low global roughness of the samples. Atomic force microscopy (AFM) images verified this low roughness, which results from the high smoothing capabilities of polyelectrolyte layers. This smoothing effect facilitates the fabrication of stratified nanoparticle/polyelectrolyte multilayer structures, which were nicely illustrated in a transmission electron microscopy image. The samples' optical properties were investigated by static spectroscopic measurements in the visible and UV range. The measurements revealed a frequency shift of the reflectance and of the plasmon absorption band, depending on the thickness of the polyelectrolyte layers that cover a nanoparticle layer. When the covering layer becomes thicker than the particle interaction range, the absorption spectrum becomes independent of the polymer thickness. However, the reflectance spectrum continues shifting to lower frequencies (even for large thicknesses). The range of plasmon interaction was determined to be in the order of the particle diameter for 10 nm, 20 nm, and 150 nm particles. The transient broadband complex dielectric function of a multilayer structure was determined experimentally by ultrafast pump

  5. Chemosensors and biosensors based on polyelectrolyte microcapsules containing fluorescent dyes and enzymes.

    Science.gov (United States)

    Kazakova, Lyubov I; Shabarchina, Lyudmila I; Anastasova, Salzitsa; Pavlov, Anton M; Vadgama, Pankaj; Skirtach, Andre G; Sukhorukov, Gleb B

    2013-02-01

    The concept of enzyme-assisted substrate sensing based on use of fluorescent markers to detect the products of enzymatic reaction has been investigated by fabrication of micron-scale polyelectrolyte capsules containing enzymes and dyes in one entity. Microcapsules approximately 5 μm in size entrap glucose oxidase or lactate oxidase, with peroxidase, together with the corresponding markers Tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) dichloride (Ru(dpp)) complex and dihydrorhodamine 123 (DHR123), which are sensitive to oxygen and hydrogen peroxide, respectively. These capsules are produced by co-precipitation of calcium carbonate particles with the enzyme followed by layer-by-layer assembly of polyelectrolytes over the surface of the particles and incorporation of the dye in the capsule interior or in the multilayer shell. After dissolution of the calcium carbonate the enzymes and dyes remain in the multilayer capsules. In this study we produced enzyme-containing microcapsules sensitive to glucose and lactate. Calibration curves based on fluorescence intensity of Ru(dpp) and DHR123 were linearly dependent on substrate concentration, enabling reliable sensing in the millimolar range. The main advantages of using these capsules with optical recording is the possibility of building single capsule-based sensors. The response from individual capsules was observed by confocal microscopy as increasing fluorescence intensity of the capsule on addition of lactate at millimolar concentrations. Because internalization of the micron-sized multi-component capsules was feasible, they could be further optimized for in-situ intracellular sensing and metabolite monitoring on the basis of fluorescence reporting.

  6. Covalently attached multilayer assemblies of diazo-resins and binuclear cobalt phthalocyanines

    International Nuclear Information System (INIS)

    Li Xiaofang; Zhao Shuang; Yang Min; Sun Changqing; Guo, Liping

    2005-01-01

    By using the ionic self-assembly technique, ordered multilayer thin films composed of diazo-resin (DAR) as polycation and water-soluble binuclear cobalt phthalocyaninehexasulfonate (Bi-CoPc) as polyanion were alternately fabricated on quartz, CaF 2 and glassy carbon electrodes (GCEs). Upon ultraviolet irradiation, the adjacent interface of the multilayer films reacted to form a covalently cross-linking structure. The obtained thin films were characterized by ultraviolet (UV)-vis, Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), atomic force microscope (AFM), surface photovoltage spectra (SPS), and cyclic voltammetry. The results show that the uniform, highly stable and ordered multilayer thin films were formed. The linkage nature between the adjacent interface of the multilayer films converts from ionic to covalent, and, as a result, the stability of the multilayer thin films dramatically improved. The multilayer thin films on GCEs also exhibited excellent electrochemical behavior

  7. Covalently attached multilayer assemblies of diazo-resins and binuclear cobalt phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaofang [Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023 (China); Zhao Shuang [Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023 (China); Yang Min [Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023 (China); Sun Changqing [Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023 (China)]. E-mail: sunchq@mail.jlu.edu.cn; Guo, Liping [Department of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2005-05-01

    By using the ionic self-assembly technique, ordered multilayer thin films composed of diazo-resin (DAR) as polycation and water-soluble binuclear cobalt phthalocyaninehexasulfonate (Bi-CoPc) as polyanion were alternately fabricated on quartz, CaF{sub 2} and glassy carbon electrodes (GCEs). Upon ultraviolet irradiation, the adjacent interface of the multilayer films reacted to form a covalently cross-linking structure. The obtained thin films were characterized by ultraviolet (UV)-vis, Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), atomic force microscope (AFM), surface photovoltage spectra (SPS), and cyclic voltammetry. The results show that the uniform, highly stable and ordered multilayer thin films were formed. The linkage nature between the adjacent interface of the multilayer films converts from ionic to covalent, and, as a result, the stability of the multilayer thin films dramatically improved. The multilayer thin films on GCEs also exhibited excellent electrochemical behavior.

  8. Covalently attached metalloporphyrins in LBL self-assembled redox polyelectrolyte thin films

    International Nuclear Information System (INIS)

    Carballo, R.R.; Campodall' Orto, V.; Hurst, J.A.; Spiaggi, A.; Bonazzola, C.; Rezzano, I.N.

    2008-01-01

    A formylporphyrin has been covalently bound to Poly (Allylamine Hydrochloride) (PAH) and electrostatically self-assembled polyelectrolyte films, containing the attached metalloporphyrin, have been constructed. The UV-vis absorption band at 390 nm has been followed as core porphyrin marker. The reflection-absorption IR spectra of the gold films modified with layer-by-layer (LBL) polyelectrolytes were recorded after 6 and 12 layers. Characteristic infrared absorbance bands of porphyrin, PAH and PVS became more evident on increasing the number of bilayers. The absorption bands at 750, 1214 and 2960 cm -1 , attributed at ν(S-O), ν s (SO 3 - ) and ν(=NH 2 + ), respectively, showed a linear growth (R 2 > 0.99) with the number of adsorbed layers. A lower correlation coefficient was observed for the band at 1585 cm -1 attributed to Fe-protoporphyrin. In order to evaluate the electron transfer (ET) rate, the ΔE p of the [Fe(CN) 6 ] 4- /[Fe(CN) 6 ] 3- couple in solution was measured after covering the electrode. A proportional increase of the ΔE p with the number of layers is observed up to the 4th layer. After the second bilayer, the magnitude of the peak separation is highly related to the charge of the topmost layer. The method allowed controlling the film thickness via the number of deposited layers (LBL). The electrode described, resulted in a good catalyst for O 2 reduction and sulfite oxidation

  9. Resonant Raman spectroscopy of PAH-Os self-assembled multilayers

    International Nuclear Information System (INIS)

    Tognalli, N.; Fainstein, A.; Bonazzola, C.; Calvo, E.

    2004-01-01

    We present a resonant Raman scattering study of (PAH-Os/PVS) n and (PAH-Os/GOx) m self-assembled multilayers (n=1-11 and m=1-3). These Os polymer multilayers can be used in electrodes as efficient molecular wires for biomolecular recognition. The Raman intensity dependence on the number of self-assembly cycles provides information on the deposition process. The spectra are identical to that observed for PAH-Os in aqueous solution, indicating that the PAH-Os metal complex structure is conserved in the multilayers. We observe at ∼500 nm incoming and outgoing Raman resonances of osmium and bipyridine vibrational modes. These resonances are associated to the metal-to-ligand charge transfer (MLCT) transition. We study the evolution of these Raman modes as a function of the Os oxidation state during in situ electrochemistry. During the oxidation process, Os(II)→Os(III), the Raman resonance related to the MLCT disappears and the bipyridine related modes harden by ∼10 cm-1. These results are correlated with optical transmission measurements which show the disappearance of the visible region absorption when the Os complex is oxidized. We also find partial quenching of the Raman mode intensity after in situ voltamperometric cycles which demonstrates the existence of photo-electro-chemical processes

  10. Biological and Biomimetic Comb Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Aristeidis Papagiannopoulos

    2010-05-01

    Full Text Available Some new phenomena involved in the physical properties of comb polyelectrolyte solutions are reviewed. Special emphasis is given to synthetic biomimetic materials, and the structures formed by these molecules are compared with those of naturally occurring glycoprotein and proteoglycan solutions. Developments in the determination of the structure and dynamics (viscoelasticity of comb polymers in solution are also covered. Specifically the appearance of multi-globular structures, helical instabilities, liquid crystalline phases, and the self-assembly of the materials to produce hierarchical comb morphologies is examined. Comb polyelectrolytes are surface active and a short review is made of some recent experiments in this area that relate to their morphology when suspended in solution. We hope to emphasize the wide variety of phenomena demonstrated by the vast range of naturally occurring comb polyelectrolytes and the challenges presented to synthetic chemists designing biomimetic materials.

  11. Bioresorbable polyelectrolytes for smuggling drugs into cells.

    Science.gov (United States)

    Jaganathan, Sripriya

    2016-06-01

    There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems.

  12. Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging

    Science.gov (United States)

    McGrath, Andrew J.; Dolan, Ciaran; Cheong, Soshan; Herman, David A. J.; Naysmith, Briar; Zong, Fangrong; Galvosas, Petrik; Farrand, Kathryn J.; Hermans, Ian F.; Brimble, Margaret; Williams, David E.; Jin, Jianyong; Tilley, Richard D.

    2017-10-01

    Iron nanoparticles are highly-effective magnetic nanoparticles for T2 magnetic resonance imaging (MRI). However, the stability of their magnetic properties is dependent on good protection of the iron core from oxidation in aqueous media. Here we report the synthesis of custom-synthesized phosphonate-grafted polyelectrolytes (PolyM3) of various chain lengths, for efficient coating of iron nanoparticles with a native iron oxide shell. The size of the nanoparticle-polyelectrolyte assemblies was investigated by transmission electron microscopy and dynamic light scattering, while surface attachment was confirmed by Fourier transform infrared spectroscopy. Low cytotoxicity was observed for each of the nanoparticle-polyelectrolyte ("Fe-PolyM3") assemblies, with good cell viability (>80%) remaining up to 100 μg mL-1 Fe in HeLa cells. When applied in T2-weighted MRI, corresponding T2 relaxivities (r2) of the Fe-PolyM3 assemblies were found to be dependent on the chain length of the polyelectrolyte. A significant increase in contrast was observed when polyelectrolyte chain length was increased from 6 to 65 repeating units, implying a critical chain length required for stabilization of the α-Fe nanoparticle core.

  13. Anti-Oxidative and Antibacterial Self-Healing Edible Polyelectrolyte Multilayer Film in Fresh-Cut Fruits.

    Science.gov (United States)

    Liu, Xuefan; Han, Wei; Zhu, Yanxi; Xuan, Hongyun; Ren, Jiaoyu; Zhang, Jianhao; Ge, Liqin

    2018-04-01

    The consumption of fresh-cut fruits is limited because of the oxidation browning and pathogenic bacteria's growth on the fruit surface. Besides, crack of the fresh-keeping film may shorten the preservation time of fruit. In this work, polyelectrolyte multilayer (PEM) film was fabricated by layer-by-layer (LBL) electrostatic deposition method. The film was made by carboxy methylcellulose sodium (CMC) and chitosan (CS). The as-prepared PEM film had good anti-oxidative and antibacterial capability. It inhibited the growth of Gram-negative bacteria and the antibacterial rate was more than 95%. The stratified structure and linear increase of the absorbance in the film verified a linear increase of film thickness. The slight scratched film could self-heal rapidly after the stimulation of water whatever the layer number was. Moreover, the film could heal cracks whose width was far bigger than the thickness. The application of PEM film on fresh-cut apples showed that PEM film had good browning, weight loss and metabolic activity inhibition ability. These results showed that the PEM film is a good candidate as edible film in fresh-cut fruits applications.

  14. Layer-by-layer assembled multilayers using catalase-encapsulated gold nanoparticles

    International Nuclear Information System (INIS)

    Kim, Sungwoo; Park, Jeongju; Cho, Jinhan

    2010-01-01

    We introduce a novel and versatile approach for the preparation of multilayers, based on catalase-encapsulated gold nanoparticles (CAT-Au NP ), allowing electrostatic charge reversal and structural transformation through pH adjustment. CAT-Au NP , which are synthesized directly from CAT stabilizer, can be electrostatically assembled with anionic and cationic PEs as a result of the charge reversal of the catalase stabilizers through pH control. In particular, at pH 5.2, near the pI of catalase, dispersed CAT-Au NP are structurally transformed into colloidal or network CAT-Au NP nanocomposites. Furthermore, we demonstrate that the layer-by-layer assembled multilayers composed of PEs and CAT-Au NP induce an effective electron transfer between CAT and the electrode as well as a high loading of CAT and Au NP , and resultantly exhibit a highly catalytic activity toward H 2 O 2 .

  15. Multiscale patterning of nanocomposite polyelectrolyte/nanoparticle films using inkjet printing and AFM scratching

    International Nuclear Information System (INIS)

    Leigh, S J; Bowen, J; Preece, J A

    2015-01-01

    The fabrication of structured polymer/nanoparticle composite films through a combination of additive, subtractive and self-assembly methodologies is investigated. Consumer grade inkjet printing hardware is employed to deposit cationic polyelectrolytes on (i) hydrophilic and (ii) hydrophobised glass substrates. The hydrophobisation process controls the spreading of the droplets and hence the lateral size of printed features. The printed cationic polyelectrolyte regions are used as a template to direct the self-assembly of negatively charged gold nanoparticles onto the surface. Micro-scale features are created in the polyelectrolyte/nanoparticle films using AFM scratching to selectively displace material. The effect of substrate wettability on film morphology is discussed. (paper)

  16. Effect of enzyme location on activity and stability of trypsin and urease immobilized on porous membranes by using layer-by-layer self-assembly of polyelectrolyte

    OpenAIRE

    Guedidi, Sadika; Yürekli, Yılmaz; Deratani, André; Déjardin, Philippe; Innocent, Christophe; Altınkaya, Sacide; Roudesli, Sadok; Yemenicioğlu, Ahmet

    2010-01-01

    The layer-by-layer (LbL) self-assembly of polyelectrolyte is one of the simplest ways to immobilize enzyme on membrane. In this paper, the immobilization of trypsin (TRY) and urease (URE) on polyacrylonitrile based membranes using the LbL assembly technique was presented. The studied systems consisted in bilayered assemblies with the enzyme layer as the outer layer and trilayered assemblies with the enzyme layer as the inner sandwiched layer. The membrane pore size was chosen so that the smal...

  17. Layer-by-layer assembled multilayers using catalase-encapsulated gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungwoo; Park, Jeongju [School of Advanced Materials Engineering, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea, Republic of); Cho, Jinhan, E-mail: jinhan71@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)

    2010-09-17

    We introduce a novel and versatile approach for the preparation of multilayers, based on catalase-encapsulated gold nanoparticles (CAT-Au{sub NP}), allowing electrostatic charge reversal and structural transformation through pH adjustment. CAT-Au{sub NP}, which are synthesized directly from CAT stabilizer, can be electrostatically assembled with anionic and cationic PEs as a result of the charge reversal of the catalase stabilizers through pH control. In particular, at pH 5.2, near the pI of catalase, dispersed CAT-Au{sub NP} are structurally transformed into colloidal or network CAT-Au{sub NP} nanocomposites. Furthermore, we demonstrate that the layer-by-layer assembled multilayers composed of PEs and CAT-Au{sub NP} induce an effective electron transfer between CAT and the electrode as well as a high loading of CAT and Au{sub NP}, and resultantly exhibit a highly catalytic activity toward H{sub 2}O{sub 2}.

  18. Properties of POPC/POPE supported lipid bilayers modified with hydrophobic quantum dots on polyelectrolyte cushions.

    Science.gov (United States)

    Kolasinska-Sojka, Marta; Wlodek, Magdalena; Szuwarzynski, Michal; Kereiche, Sami; Kovacik, Lubomir; Warszynski, Piotr

    2017-10-01

    The formation and properties of supported lipid bilayers (SLB) containing hydrophobic nanoparticles (NP) was studied in relation to underlying cushion obtained from selected polyelectrolyte multilayers. Lipid vesicles were formed from zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in phosphate buffer (PBS). As hydrophobic nanoparticles - quantum dots (QD) with size of 3.8nm (emission wavelength of 420nm) were used. Polyelectrolyte multilayers (PEM) were constructed by the sequential, i.e., layer-by-layer (LbL) adsorption of alternately charged polyelectrolytes from their solutions. Liposomes and Liposome-QDs complexes were studied with Transmission Cryo-Electron Microscopy (Cryo-TEM) to verify the quality of vesicles and the position of QD within lipid bilayer. Deposition of liposomes and liposomes with quantum dots on polyelectrolyte films was studied in situ using quartz crystal microbalance with dissipation (QCM-D) technique. The fluorescence emission spectra were analyzed for both: suspension of liposomes with nanoparticles and for supported lipid bilayers containing QD on PEM. It was demonstrated that quantum dots are located in the hydrophobic part of lipid bilayer. Moreover, we proved that such QD-modified liposomes formed supported lipid bilayers and their final structure depended on the type of underlying cushion. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Layer-by-Layer Assembly of Fluorine-Free Polyelectrolyte-Surfactant Complexes for the Fabrication of Self-Healing Superhydrophobic Films.

    Science.gov (United States)

    Wu, Mengchun; An, Ni; Li, Yang; Sun, Junqi

    2016-11-29

    Fluorine-free self-healing superhydrophobic films are of significance for practical applications because of their extended service life and cost-effective and eco-friendly preparation process. In this study, we report the fabrication of fluorine-free self-healing superhydrophobic films by layer-by-layer (LbL) assembly of poly(sodium 4-styrenesulfonate) (PSS)-1-octadecylamine (ODA) complexes (PSS-ODA) and poly(allylamine hydrochloride) (PAH)-sodium dodecyl sulfonate (SDS) (PAH-SDS) complexes. The wettability of the LbL-assembled PSS-ODA/PAH-SDS films depends on the film structure and can be tailored by changing the NaCl concentration in aqueous dispersions of PSS-ODA complexes and the number of film deposition cycles. The freshly prepared PSS-ODA/PAH-SDS film with micro- and nanoscaled hierarchical structures is hydrophilic and gradually changes to superhydrophobic in air because the polyelectrolyte-complexed ODA and SDS surfactants tend to migrate to the film surface to cover the film with hydrophobic alkyl chains to lower its surface energy. The large amount of ODA and SDS surfactants loaded in the superhydrophobic PSS-ODA/PAH-SDS films and the autonomic migration of these surfactants to the film surface endow the resultant superhydrophobic films with an excellent self-healing ability to restore the damaged superhydrophobicity. The self-healing superhydrophobic PSS-ODA/PAH-SDS films are mechanically robust and can be deposited on various flat and nonflat substrates. The LbL assembly of oppositely charged polyelectrolyte-surfactant complexes provides a new way for the fabrication of fluorine-free self-healing superhydrophobic films with satisfactory mechanical stability, enhanced reliability, and extended service life.

  20. Construction of Zn-incorporated multilayer films to promote osteoblasts growth and reduce bacterial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng, E-mail: liupeng79@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Zhao, Yongchun; Yuan, Zhang [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Ding, Hongyan [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu Province 223003 (China); Hu, Yan; Yang, Weihu [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Cai, Kaiyong, E-mail: kaiyong_cai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2017-06-01

    To improve the biological performance of titanium substrates, a bioactive multilayered structure of chitosan/gelatin pair, containing zinc ions, was constructed via a layer-by-layer self-assembly technique. The successful preparation of zinc ions incorporated multilayer films was demonstrated by scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle measurements, respectively. The biological behaviors of osteoblasts adhered to modified Ti substrates were investigated in vitro via cytoskeleton observation, cell viability measurement, and alkaline phosphatase activity assay. The cytocompatibility evaluation verified that the present system was capable of promoting the growth of osteoblasts. In addition, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria were used to evaluate antibacterial property of modified Ti substrates. Bacterial adhesion and viability assay confirmed that Zn-loaded multilayer films were able to inhibit the adhesion and growth of bacteria. The approach presented here affords an alternative to reduce bacterial infection and promote osteoblast growth for titanium-based implants. - Highlights: • Polyelectrolyte multilayer films containing Zn ions were fabricated on Ti substrate. • Modified Ti substrate stimulated the biological responses of osteoblast. • Antibacterial property of Ti substrate was significantly improved. • The resulting material thus has potential application in orthopedic field.

  1. The charge transfer structure and effective energy transfer in multiplayer assembly film

    International Nuclear Information System (INIS)

    Li Mingqiang; Jian Xigao

    2005-01-01

    Charge transfer multiplayer films have been prepared by layer-by-layer self-assembly technique. The films incorporate the rare-earth-containing polyoxometalate K 11 [Eu{PW 11 O 39 } 2 ].nH 2 O and the rich electron polyelectrolyte poly(3-viny-1-methyl-pyridine) quaternary ammonium and display a linear increase in the absorption and film thickness with the number of deposition cycles. Ultraviolet and visible absorption spectra, atomic force micrographs, small-angle X-ray reflectivity measurements, and photoluminescence spectra were used to determine the structure of films. Linear and regular multilayer growth was observed. We can observe the formation of charge transfer complex compound in multiplayer by layer-by-layer assembly method. Most importantly, the luminescence spectra show the charge transfer band in assembly films, which suggest that energy could be effectively transferred to rare earth ions in assembly multiplayer films

  2. Layer-by-layer assembled multilayers and polymeric nanoparticles for drug delivery in tissue engineering applications

    Science.gov (United States)

    Mehrotra, Sumit

    axonal growth and nerve repair. Therefore, another possible method to promote axonal growth is to silence the genes to inhibit the production of such growth factors. Small interfering RNA (siRNA) is a powerful therapeutic tool which knocks-down the gene function. Gene therapy approaches to knock-down a gene in mammalian cells, requires optimal selection of a transfection carrier for the siRNA. In this study, 25 kDa linear polyethylenimine (LPEI) was shown as a promising transfection carrier for siRNA delivery in-vitro. LPEI-siRNA complex nanoparticles were optimized for efficient siRNA delivery. Further, effort was made to fabricate LPEI particles of novel shapes, as particle shapes potentially have an impact on gene delivery efficiency. Finally, LbL assembled polyelectrolyte multilayers (PEMs) were engineered to tune surface properties to modulate the cell adhesion on a surface, to stamp and fabricate self-standing thin PEMs to create 3-D cellular constructs.

  3. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jessica S. [Department of Biological Science, Florida State University, Tallahassee, FL 32306 (United States); Schlenoff, Joseph B. [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Keller, Thomas C.S., E-mail: tkeller@bio.fsu.edu [Department of Biological Science, Florida State University, Tallahassee, FL 32306 (United States)

    2016-08-01

    Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion and migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as ‘leader’ cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as ‘follower’ cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all

  4. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance

    International Nuclear Information System (INIS)

    Martinez, Jessica S.; Schlenoff, Joseph B.; Keller, Thomas C.S.

    2016-01-01

    Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion and migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as ‘leader’ cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as ‘follower’ cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all

  5. Fabrication of hybrid graphene oxide/polyelectrolyte capsules by means of layer-by-layer assembly on erythrocyte cell templates

    Directory of Open Access Journals (Sweden)

    Joseba Irigoyen

    2015-12-01

    Full Text Available A novel and facile method was developed to produce hybrid graphene oxide (GO–polyelectrolyte (PE capsules using erythrocyte cells as templates. The capsules are easily produced through the layer-by-layer technique using alternating polyelectrolyte layers and GO sheets. The amount of GO and therefore its coverage in the resulting capsules can be tuned by adjusting the concentration of the GO dispersion during the assembly. The capsules retain the approximate shape and size of the erythrocyte template after the latter is totally removed by oxidation with NaOCl in water. The PE/GO capsules maintain their integrity and can be placed or located on other surfaces such as in a device. When the capsules are dried in air, they collapse to form a film that is approximately twice the thickness of the capsule membrane. AFM images in the present study suggest a film thickness of approx. 30 nm for the capsules in the collapsed state implying a thickness of approx. 15 nm for the layers in the collapsed capsule membrane. The polyelectrolytes used in the present study were polyallylamine hydrochloride (PAH and polystyrenesulfonate sodium salt (PSS. Capsules where characterized by transmission electron microscopy (TEM, atomic force microscopy (AFM, dynamic light scattering (DLS and Raman microscopy, the constituent layers by zeta potential and GO by TEM, XRD, and Raman and FTIR spectroscopies.

  6. Assessment of a polyelectrolyte multilayer film coating loaded with BMP-2 on titanium and PEEK implants in the rabbit femoral condyle

    Science.gov (United States)

    Guillot, R.; Pignot-Paintrand, I.; Lavaud, J.; Decambron, A.; Bourgeois, E.; Josserand, V.; Logeart-Avramoglou, D.; Viguier, E.; Picart, C.

    2016-01-01

    The aim of this study was to evaluate the osseointegration of titanium implants (Ti-6Al-4V, noted here TA6V) and poly(etheretherketone) PEEK implants induced by a BMP-2-delivering surface coating made of polyelectrolyte multilayer films. The in vitro bioactivity of the polyelectrolyte film-coated implants was assessed using the alkaline phosphatase assay. BMP-2-coated TA6V and PEEK implants with a total dose of 9.3 µg of BMP-2 were inserted into the femoral condyles of New Zealand white rabbits and compared to uncoated implants. Rabbits were sacrificed 4 and 8 weeks after implantation. Histomorphometric analyses on TA6V and PEEK implants and microcomputed tomography on PEEK implants revealed that the bone-to-implant contact and bone area around the implants were significantly lower for the BMP-2-coated implants than for the bare implants. This was confirmed by scanning electron microscopy imaging. This difference was more pronounced at 4 weeks in comparison to the 8-week time point. However, bone growth inside the hexagonal upper hollow cavity of the screws was higher in the case of the BMP-2 coated implants. Overall, this study shows that a high dose of BMP-2 leads to localized and temporary bone impairment, and that the dose of BMP-2 delivered at the surface of an implant needs to be carefully optimized. PMID:26965394

  7. Fiber Optic pH Sensor with Self-Assembled Polymer Multilayer Nanocoatings

    OpenAIRE

    Shao, Li-Yang; Yin, Ming-Jie; Tam, Hwa-Yaw; Albert, Jacques

    2013-01-01

    A fiber-optic pH sensor based on a tilted fiber Bragg grating (TFBG) with electrostatic self-assembly multilayer sensing film is presented. The pH sensitive polymeric film, poly(diallyldimethylammonium chloride) (PDDA) and poly(acrylic acid) (PAA) was deposited on the circumference of the TFBG with the layer-by-layer (LbL) electrostatic self-assembly technique. The PDDA/PAA film exhibits a reduction in refractive index by swelling in different pH solutions. This effect results in wavelength s...

  8. Enhanced antiadhesive properties of chitosan/hyaluronic acid polyelectrolyte multilayers driven by thermal annealing: Low adherence for mammalian cells and selective decrease in adhesion for Gram-positive bacteria.

    Science.gov (United States)

    Muzzio, Nicolás E; Pasquale, Miguel A; Diamanti, Eleftheria; Gregurec, Danijela; Moro, Marta Martinez; Azzaroni, Omar; Moya, Sergio E

    2017-11-01

    The development of antifouling coatings with restricted cell and bacteria adherence is fundamental for many biomedical applications. A strategy for the fabrication of antifouling coatings based on the layer-by-layer assembly and thermal annealing is presented. Polyelectrolyte multilayers (PEMs) assembled from chitosan and hyaluronic acid were thermally annealed in an oven at 37°C for 72h. The effect of annealing on the PEM properties and topography was studied by atomic force microscopy, ζ-potential, circular dichroism and contact angle measurements. Cell adherence on PEMs before and after annealing was evaluated by measuring the cell spreading area and aspect ratio for the A549 epithelial, BHK kidney fibroblast, C2C12 myoblast and MC-3T3-E1 osteoblast cell lines. Chitosan/hyaluronic acid PEMs show a low cell adherence that decreases with the thermal annealing, as observed from the reduction in the average cell spreading area and more rounded cell morphology. The adhesion of S. aureus (Gram-positive) and E. coli (Gram-negative) bacteria strains was quantified by optical microscopy, counting the number of colony-forming units and measuring the light scattering of bacteria suspension after detachment from the PEM surface. A 20% decrease in bacteria adhesion was selectively observed in the S. aureus strain after annealing. The changes in mammalian cell and bacteria adhesion correlate with the changes in topography of the chitosan/hyaluronic PEMs from a rough fibrillar 3D structure to a smoother and planar surface after thermal annealing. Copyright © 2017. Published by Elsevier B.V.

  9. The Effectiveness of the Controlled Release of Gentamicin from Polyelectrolyte Multilayers in the Treatment of Staphylococcus aureus Infection in a Rabbit Bone Model

    Science.gov (United States)

    Moskowitz, Joshua; Blaisse, Michael; Samuel, Raymond; Hsu, Hu-Ping; Harris, Mitchel; Martin, Scott; Lee, Jean; Spector, Myron; Hammond, Paula

    2010-01-01

    While the infection rate of orthopedic implants is low, the required treatment, which can involve six weeks of antibiotic therapy and two additional surgical operations, is life threatening and expensive, and thus motivates the development of a one-stage re-implantation procedure. Polyelectrolyte multilayers incorporating gentamicin were fabricated using the layer-by-layer deposition process for use as a device coating to deal with an existing bone infection in a direct implant exchange operation. The films eluted about 70% of their payload in vitro during the first three days and subsequently continued to release drug for more than four additional weeks, reaching a total average release of over 550 μg/cm2. The coatings were demonstrated to be bactericidal against Staphylococcus aureus, and degradation products were generally nontoxic towards MC3T3-E1 murine preosteoblasts. Film-coated titanium implants were compared to uncoated implants in an in vivo S. aureus bone infection model. After a direct exchange procedure, the antimicrobial-coated devices yielded bone homogenates with a significantly lower degree of infection than uncoated devices at both day four (p < 0.004) and day seven (p < 0.03). This study has demonstrated that a self-assembled ultrathin film coating is capable of effectively treating an experimental bone infection in vivo and lays the foundation for development of a multi-therapeutic film for optimized, synergistic treatment of pain, infection, and osteomyelitis. PMID:20488534

  10. Coulombic interactions on the deposition and rotational mobility distributions of dyes in polyelectrolyte multilayer thin films.

    Science.gov (United States)

    Li, Ye; Yip, Wai Tak

    2004-12-07

    We employed negatively charged fluorescein (FL), positively charged rhodamine 6G (R6G), and neutral Nile Red (NR) as molecular probes to investigate the influence of Coulombic interaction on their deposition into and rotational mobility inside polyelectrolyte multilayer (PEM) films. The entrapment efficiency of the dyes reveals that while Coulombic repulsion has little effect on dye deposition, Coulombic attraction can dramatically enhance the loading efficiency of dyes into a PEM film. By monitoring the emission polarization of single dye molecules in polyethylenimine (PEI) films, the percentages of mobile R6G, NR, and FL were determined to be 87 +/- 4%, 76 +/- 5%, and 68 +/- 3%, respectively. These mobility distributions suggest that cationic R6G enjoys the highest degree of rotational freedom, whereas anionic FL shows the least mobility because of Coulombic attraction toward cationic PEI. Regardless of charges, this high percentage of mobile molecules is in stark contrast to the 5-40% probe mobility reported from spun-cast polymer films, indicating that our PEI films contain more free volume and display richer polymer dynamics. These observations demonstrate the potential of using isolated fluorescent probes to interrogate the internal structure of a PEM film at a microscopic level.

  11. Brominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption VUV Postionization and Secondary Ion Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    University of Illinois at Chicago; Blaze, Melvin M. T.; Takahashi, Lynelle; Zhou, Jia; Ahmed, Musahid; Gasper, Gerald; Pleticha, F. Douglas; Hanley, Luke

    2011-03-14

    The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMs when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment.

  12. A multilayered supramolecular self-assembled structure from soybean oil by in situ polymerization and its applications.

    Science.gov (United States)

    Kavitha, Varadharajan; Gnanamani, Arumugam

    2013-05-01

    The present study emphasizes in situ transformation of soybean oil to self-assembled supramolecular multilayered biopolymer material. The said polymer material was characterized and the entrapment efficacy of both hydrophilic and hydrophobic moieties was studied. In brief, soybean oil at varying concentration was mixed with mineral medium and incubated under agitation (200 rpm) at 37 degrees C for 240 h. Physical observations were made till 240 h and the transformed biopolymer was separated and subjected to physical, chemical and functional characterization. The maximum size of the polymer material was measured as 2 cm in diameter and the cross sectional view displayed the multilayered onion rings like structures. SEM analysis illustrated the presence of multilayered honeycomb channeled structures. Thermal analysis demonstrated the thermal stability (200 degrees C) and high heat enthalpy (1999 J/g). Further, this multilayered assembly was able to entrap both hydrophilic and hydrophobic components simultaneously, suggesting the potential industrial application of this material.

  13. Super Oxygen and Improved Water Vapor Barrier of Polypropylene Film with Polyelectrolyte Multilayer Nanocoatings.

    Science.gov (United States)

    Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C

    2016-06-01

    Biaxially oriented polypropylene (BOPP) is widely used in packaging. Although its orientation increases mechanical strength and clarity, BOPP suffers from a high oxygen transmission rate (OTR). Multilayer thin films are deposited from water using layer-by-layer (LbL) assembly. Polyethylenimine (PEI) is combined with either poly(acrylic acid) (PAA) or vermiculite (VMT) clay to impart high oxygen barrier. A 30-bilayer PEI/VMT nanocoating (226 nm thick) improves the OTR of 17.8 μm thick BOPP by more than 30X, rivaling most inorganic coatings. PEI/PAA multilayers achieve comparable barrier with only 12 bilayers due to greater thickness, but these films exhibit increased oxygen permeability at high humidity. The PEI/VMT coatings actually exhibit improved oxygen barrier at high humidity (and also improve moisture barrier by more than 40%). This high barrier BOPP meets the criteria for sensitive food and some electronics packaging applications. Additionally, this water-based coating technology is cost effective and provides an opportunity to produce high barrier polypropylene film on an industrial scale. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Construction of photoelectrochemical thrombin aptasensor via assembling multilayer of graphene-CdS nanocomposites.

    Science.gov (United States)

    Shangguan, Li; Zhu, Wei; Xue, Yanchun; Liu, Songqin

    2015-02-15

    A photoelectrochemical (PEC) aptasensor for highly sensitive and specific detection of thrombin was developed by using graphene–CdS nanocomposites multilayer as photoactive species and electroactive mediator hexaammineruthenium(III) chloride (Ru(NH(3))(6)(3+)) as signal enhancer. Graphene–CdS nanocomposites (G–CdS) were synthesized by one-pot reduction of oxide graphene and CdCl2 with thioacetamide. The photoactive multilayer was prepared by alternative assembly of the negatively charged 3-mercaptopropionic acid modified graphene–CdS nanocomposites (MPA-G–CdS) and the positively charged polyethylenimine (PEI) on ITO electrode. This layer-by-layer assembly method enhanced the stability and homogeneity of the photocurrent readout of G–CdS. Thrombin aptamer was covalently bound to the multilayer by using glutaraldehyde as cross-linking. Electroactive mediator (Ru(NH(3))(6)(3+)) could interact with the DNA phosphate backbone and thus facilitated the electron transfer between G–CdS multilayer and electrode and enhanced the photocurrent. Hybridizing of a long complementary DNA with thrombin aptamer could increase the adsorption amount of (Ru(NH(3))(6)(3+)), which in turn boosted the signal readout. In the presence of target thrombin, the affinity interaction between thrombin and its aptamer resulted in the long complementary DNA releasing from the G–CdS multilayer and decreasing of photocurrent signal. On the basis of G–CdS multilayer as the photoactive species, (Ru (NH(3))(6)(3+)) as an electroactive mediator, and aptamer as a recognition module, a high sensitive PEC aptasensor for thrombin detection was proposed. The thrombin aptasensor displayed a linear range from 2.0 pM to 600.0 pM and a detection limit of 1.0 pM. The present strategy provided a promising ideology for the future development of PEC biosensor. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Highly ductile multilayered films by layer-by-layer assembly of oppositely charged polyurethanes for biomedical applications.

    Science.gov (United States)

    Podsiadlo, Paul; Qin, Ming; Cuddihy, Meghan; Zhu, Jian; Critchley, Kevin; Kheng, Eugene; Kaushik, Amit K; Qi, Ying; Kim, Hyoung-Sug; Noh, Si-Tae; Arruda, Ellen M; Waas, Anthony M; Kotov, Nicholas A

    2009-12-15

    Multilayered thin films prepared with the layer-by-layer (LBL) assembly technique are typically "brittle" composites, while many applications such as flexible electronics or biomedical devices would greatly benefit from ductile, and tough nanostructured coatings. Here we present the preparation of highly ductile multilayered films via LBL assembly of oppositely charged polyurethanes. Free-standing films were found to be robust, strong, and tough with ultimate strains as high as 680% and toughness of approximately 30 MJ/m(3). These results are at least 2 orders of magnitude greater than most LBL materials presented until today. In addition to enhanced ductility, the films showed first-order biocompatibility with animal and human cells. Multilayered structures incorporating polyurethanes open up a new research avenue into the preparation of multifunctional nanostructured films with great potential in biomedical applications.

  16. Utilizing ultrathin DNA/poly-lysine multilayer films to create liquid/liquid interfaces: spectroscopic characterization, interfacial reactions and nanoparticle adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hye Jin; Wark, Alastair W; Corn, Robert M [Department of Chemistry, University of California-Irvine, Irvine, CA 92697 (United States)

    2007-09-19

    Alternating electrostatic multilayer adsorption of poly-L-lysine (pLys) and DNA is used to create well-defined biopolymer multilayers for use as an ultrathin aqueous phase in liquid-liquid interfacial measurements. The molecular structure and thickness of the polyelectrolyte multilayers are determined using a combination of polarization modulation FT-IR reflection-absorption spectroscopy (PM-FTIRRAS) and FT-surface plasmon resonance (FT-SPR) thickness measurements. Electroactive species such as ferri/ferrocyanide ions can be incorporated into the DNA/pLys polyelectrolyte multilayers. The ion transport activity of these electroactive films when in contact with 1,2-dichoroethane is verified by electrochemical measurements. Micron-sized patterns of these multilayers are created by either photopatterning, vapour-deposited spot patterning or microfluidic stencil processing, and are used in conjunction with fluorescence and surface plasmon resonance imaging (SPRI) to monitor (i) the intercalation of dye molecules into DNA/pLys ultrathin films, (ii) the electrostatic adsorption of gold nanoparticles onto DNA/pLys multilayers and (iii) the spatially controlled incorporation and reaction of enzymes into patterned biopolymer multilayers.

  17. Ordering of Polystyrene Nanoparticles on Substrates Pre-Coated with Different Polyelectrolyte Architectures

    Directory of Open Access Journals (Sweden)

    Matthias Karg

    2013-06-01

    Full Text Available Adjusting the inter-particle distances in ordered nanoparticle arrays can create new nano-devices and is of increasing importance to a number of applications such as nanoelectronics and optical devices. The assembly of negatively charged polystyrene (PS nanoparticles (NPs on Poly(2-(dimethylaminoethyl methacrylate (PDMAEMA brushes, quaternized PDMAEMA brushes and Si/PEI/(PSS/PAH2, was studied using dip- and spin-coating techniques. By dip-coating, two dimensional (2-D, randomly distributed non-close packed particle arrays were assembled on Si/PEI/(PSS/PAH2 and PDMAEMA brushes. The inter-particle repulsion leads to lateral mobility of the particles on these surfaces. The 200 nm diameter PS NPs tended to an inter-particle distance of 350 to 400 nm (center to center. On quaternized PDMAEMA brushes, the strong attractive interaction between the NPs and the brush dominated, leading to clustering of the particles on the brush surface. Particle deposition using spin-coating at low spin rates resulted in hexagonal close-packed multilayer structures on Si/PEI/(PSS/PAH2. Close-packed assemblies with more pronounced defects are also observed on PDMAEMA brushes and QPDMAEMA brushes. In contrast, randomly distributed monolayer NP arrays were achieved at higher spin rates on all polyelectrolyte architectures. The area fraction of the particles decreased with increasing spin rate.

  18. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    International Nuclear Information System (INIS)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing; Liu, Xiaoya

    2014-01-01

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10 −4 to 1.2×10 −3 M with the detect limit of 5×10 −6 M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept electroactivity in

  19. CONJUGATED POLYMERS AND POLYELECTROLYTES IN SOLAR PHOTOCONVERSION, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Schanze, Kirk S [University of Florida

    2014-08-05

    This DOE-supported program investigated the fundamental properties of conjugated polyelectrolytes, with emphasis placed on studies of excited state energy transport, self-assembly into conjugated polyelectroyte (CPE) based films and colloids, and exciton transport and charge injection in CPE films constructed atop wide bandgap semiconductors. In the most recent grant period we have also extended efforts to examine the properties of low-bandgap donor-acceptor conjugated polyelectrolytes that feature strong visible light absorption and the ability to adsorb to metal-oxide interfaces.

  20. Poly-electrolytes for fuel cells: tools and methods for characterization; Polyelectrolytes pour piles a combustible: outils et methodes de caracterisation

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, M

    2004-12-15

    The research works reported in the manuscript are a contribution to the study of poly-electrolytes for Proton Exchange Membrane Fuel Cells (PEMFC). They are supported by two investigation tools, i.e. the study of model molecules and accurate conductivity measurements. With regard to the material science domain, the optimization of poly-sulfone sulfonation procedure allows chain breaking to be reduced and even eliminated while obtaining reproducible sulfonation degrees. It is thus possible to improve the mechanical properties of the dense membrane elaborated with these poly-electrolytes before performing the tests on the MEA (Membrane Electrode Assembly). In parallel, the functionalization of microporous silicon made it possible to prepare poly-electrolytes reinforced by the mechanical strength of the silicon separator. With regard to the physicochemical and electrochemical characterizations, the model molecules, with the same functions and groups than for associated polymers, make it possible to amplify the electrochemical or thermal phenomena vs. the corresponding polymers. Thus, they simulate an accelerated ageing of the poly-electrolytes. The development of a new conductivity measurement set allows conductivity to be obtained with a great accuracy, in a wide range of temperature and relative humidity. (author)

  1. Layer-by-Layer Self-Assembled Graphene Multilayer Films via Covalent Bonds for Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Xianbin Liu

    2015-05-01

    Full Text Available To maximize the utilization of its single-atom thin nature, a facile scheme to fabricate graphene multilayer films via a layer-by-layer self-assembled process was presented. The structure of multilayer films was constructed by covalently bonding graphene oxide (GO using p-phenylenediamine (PPD as a covalent cross-linking agent. The assembly process was confirmed to be repeatable and the structure was stable. With the π-π conjugated structure and a large number of spaces in the framework, the graphene multi‐ layer films exhibited excellent electrochemical perform‐ ance. The uniform ultrathin electrode exhibited a capacitance of 41.71 μF/cm2 at a discharge current of 0.1 μA/cm2, and displayed excellent stability of 88.9 % after 1000 charge-discharge cycles.

  2. Thickness and morphology of polyelectrolyte coatings on silica surfaces before and after protein exposure studied by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haselberg, Rob, E-mail: r.haselberg@vu.nl [Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); AIMMS Division of BioMolecular Analysis, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Flesch, Frits M. [Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); Boerke, Arjan [Department of Biochemistry and Cell Biology, Utrecht University, Yalelaan 2, 3508 TD Utrecht (Netherlands); Somsen, Govert W. [Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); AIMMS Division of BioMolecular Analysis, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2013-05-24

    Graphical abstract: -- Highlights: •Atomic force microscopy is used to characterize polyelectrolyte coatings. •Coating procedure leads to nm-thick layers on a silica surface. •Polyelectrolyte coatings effectively prevent protein adsorption. •AFM provides the high resolution to investigate these thin films. •AFM results support earlier findings obtained with capillary electrophoresis. -- Abstract: Analyte–wall interaction is a significant problem in capillary electrophoresis (CE) as it may compromise separation efficiencies and migration time repeatability. In CE, self-assembled polyelectrolyte multilayer films of Polybrene (PB) and dextran sulfate (DS) or poly(vinylsulfonic acid) (PVS) have been used to coat the capillary inner wall and thereby prevent analyte adsorption. In this study, atomic force microscopy (AFM) was employed to investigate the layer thickness and surface morphology of monolayer (PB), bilayer, (PB-DS and PB-PVS), and trilayer (PB-DS-PB and PB-PVS-PB) coatings on glass surfaces. AFM nanoshaving experiments providing height distributions demonstrated that the coating procedures led to average layer thicknesses between 1 nm (PB) and 5 nm (PB-DS-PB), suggesting the individual polyelectrolytes adhere flat on the silica surface. Investigation of the surface morphology of the different coatings by AFM revealed that the PB coating does not completely cover the silica surface, whereas full coverage was observed for the trilayer coatings. The DS-containing coatings appeared on average 1 nm thicker than the corresponding PVS-containing coatings, which could be attributed to the molecular structure of the anionic polymers applied. Upon exposure to the basic protein cytochrome c, AFM measurements showed an increase of the layer thickness for bare (3.1 nm) and PB-DS-coated (4.6 nm) silica, indicating substantial protein adsorption. In contrast, a very small or no increase of the layer thickness was observed for the PB and PB-DS-PB coatings

  3. Carbon and nitrogen co-doping self-assembled MoS{sub 2} multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoqin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Xu, Jiao; Chai, Liqiang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); He, Tengfei [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Yu, Fucheng [School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Wang, Peng, E-mail: pengwang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-01

    Highlights: • Mo–S–C–N composite films were synthesized by using reactive magnetron sputtering. • A self-assembled multilayer structure with periodicity in the nanometer scale was formed in the composite film. • The hardness of Mo–S–C–N film deposited at optimized parameter reaches up to 9.76 GPa. • The wear rate of deposited Mo–S–C–N film both in vacuum and ambient atmosphere decreases dramatically. - Abstract: Mo–S–C–N composite films were prepared using reactive magnetron sputtering of graphite and MoS{sub 2} targets in argon and nitrogen atmospheres. The effects of carbon/nitrogen co-doping and carbon concentration on the composition, microstructure, mechanical and tribological properties of deposited films have been investigated by various characterization techniques. The results show that the deposited films comprise MoS{sub 2} nanocrystalline and amorphous carbon, and the incorporating nitrogen forms Mo-N and C–N chemical bonds. Increasing carbon concentration leads to the increase of sp{sup 2} carbon fraction in the films. Furthermore, the high-resolution transmission electron microscopy reveals that a self-assembled multilayer structure with periodicity in the nanometer scale is formed in the Mo–S–C–N film. Benefiting from the composite and self-assembled multilayer structures, the hardness of Mo–S–C–N film deposited at optimized parameter reaches up to 9.76 GPa, and corresponding friction experiment indicates that this composite films display low friction coefficient and high wear resistance both in vacuum and ambient air conditions.

  4. Fiber optic pH sensor with self-assembled polymer multilayer nanocoatings.

    Science.gov (United States)

    Shao, Li-Yang; Yin, Ming-Jie; Tam, Hwa-Yaw; Albert, Jacques

    2013-01-24

    A fiber-optic pH sensor based on a tilted fiber Bragg grating (TFBG) with electrostatic self-assembly multilayer sensing film is presented. The pH sensitive polymeric film, poly(diallyldimethylammonium chloride) (PDDA) and poly(acrylic acid) (PAA) was deposited on the circumference of the TFBG with the layer-by-layer (LbL) electrostatic self-assembly technique. The PDDA/PAA film exhibits a reduction in refractive index by swelling in different pH solutions. This effect results in wavelength shifts and transmission changes in the spectrum of the TFBG. The peak amplitude of the dominant spectral fringes over a certain window of the transmission spectrum, obtained by FFT analysis, has a near-linear pH sensitivity of 117 arbitrary unit (a.u.)/pH unit and an accuracy of ±1 a.u. (in the range of pH 4.66 to pH 6.02). The thickness and surface morphology of the sensing multilayer film were characterized to investigate their effects on the sensor's performance. The dynamic response of the sensor also has been studied (10 s rise time and 18 s fall time for a sensor with six bilayers of PDDA/PAA).

  5. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing, E-mail: jingluo19801007@126.com; Liu, Xiaoya

    2014-10-15

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10{sup −4} to 1.2×10{sup −3} M with the detect limit of 5×10{sup −6} M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept

  6. Coarse-grained simulations of polyelectrolyte complexes: MARTINI models for poly(styrene sulfonate) and poly(diallyldimethylammonium)

    Energy Technology Data Exchange (ETDEWEB)

    Vögele, Martin [Institute for Computational Physics, University of Stuttgart, Stuttgart (Germany); Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt a. M. (Germany); Holm, Christian; Smiatek, Jens, E-mail: smiatek@icp.uni-stuttgart.de [Institute for Computational Physics, University of Stuttgart, Stuttgart (Germany)

    2015-12-28

    We present simulations of aqueous polyelectrolyte complexes with new MARTINI models for the charged polymers poly(styrene sulfonate) and poly(diallyldimethylammonium). Our coarse-grained polyelectrolyte models allow us to study large length and long time scales with regard to chemical details and thermodynamic properties. The results are compared to the outcomes of previous atomistic molecular dynamics simulations and verify that electrostatic properties are reproduced by our MARTINI coarse-grained approach with reasonable accuracy. Structural similarity between the atomistic and the coarse-grained results is indicated by a comparison between the pair radial distribution functions and the cumulative number of surrounding particles. Our coarse-grained models are able to quantitatively reproduce previous findings like the correct charge compensation mechanism and a reduced dielectric constant of water. These results can be interpreted as the underlying reason for the stability of polyelectrolyte multilayers and complexes and validate the robustness of the proposed models.

  7. Coarse-grained simulations of polyelectrolyte complexes: MARTINI models for poly(styrene sulfonate) and poly(diallyldimethylammonium)

    International Nuclear Information System (INIS)

    Vögele, Martin; Holm, Christian; Smiatek, Jens

    2015-01-01

    We present simulations of aqueous polyelectrolyte complexes with new MARTINI models for the charged polymers poly(styrene sulfonate) and poly(diallyldimethylammonium). Our coarse-grained polyelectrolyte models allow us to study large length and long time scales with regard to chemical details and thermodynamic properties. The results are compared to the outcomes of previous atomistic molecular dynamics simulations and verify that electrostatic properties are reproduced by our MARTINI coarse-grained approach with reasonable accuracy. Structural similarity between the atomistic and the coarse-grained results is indicated by a comparison between the pair radial distribution functions and the cumulative number of surrounding particles. Our coarse-grained models are able to quantitatively reproduce previous findings like the correct charge compensation mechanism and a reduced dielectric constant of water. These results can be interpreted as the underlying reason for the stability of polyelectrolyte multilayers and complexes and validate the robustness of the proposed models

  8. Layer-by-layer assembled biopolymer microcapsule with separate layer cavities generated by gas-liquid microfluidic approach.

    Science.gov (United States)

    Wang, Yifeng; Zhou, Jing; Guo, Xuecheng; Hu, Qian; Qin, Chaoran; Liu, Hui; Dong, Meng; Chen, Yanjun

    2017-12-01

    In this work, a layer-by-layer (LbL) assembled biopolymer microcapsule with separate layer cavities is generated by a novel and convenient gas-liquid microfluidic approach. This approach exhibits combined advantages of microfluidic approach and LbL assembly method, and it can straightforwardly build LbL-assembled capsules in mild aqueous environments at room temperature. In particular, using this approach we can build the polyelectrolyte multilayer capsule with favorable cavities in each layer, and without the need for organic solvent, emulsifying agent, or sacrificial template. Various components (e.g., drugs, proteins, fluorescent dyes, and nanoparticles) can be respectively encapsulated in the separate layer cavities of the LbL-assembled capsules. Moreover, the encapsulated capsules present the ability as colorimetric sensors, and they also exhibit the interesting release behavior. Therefore, the LbL-assembled biopolymer capsule is a promising candidate for biomedical applications in targeted delivery, controlled release, and bio-detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.

    Science.gov (United States)

    Sarker, Ashis K; Hong, Jong-Dal

    2012-08-28

    Multilayer assemblies of uniform ultrathin film electrodes with good electrical conductivity and very large surface areas were prepared for use as electrochemical capacitors. A layer-by-layer self-assembly approach was employed in an effort to improve the processability of highly conducting polyaniline (PANi) and chemically modified graphene. The electrochemical properties of the multilayer film (MF-) electrodes, including the sheet resistance, volumetric capacitance, and charge/discharge ratio, were determined by the morphological modification and the method used to reduce the graphene oxide (GO) to reduced graphene oxide (RGO) in the multilayer films. The PANi and GO concentrations could be modulated to control the morphology of the GO monolayer film in the multilayer assemblies. Optical ellipsometry was used to determine the thickness of the GO film in a single layer (1.32 nm), which agreed well with the literature value (~1.3 nm). Hydroiodic acid (HI), hydrazine, or pyrolysis were tested for the reduction of GO to RGO. HI was found to be the most efficient technique for reducing the GO to RGO in the multilayer assemblies while minimizing damage to the virgin state of the acid-doped PANi. Ultimately, the MF-electrode, which could be optimized by fine-tuning the nanostructure and selecting a suitable reduction method, exhibited an excellent volumetric capacitance, good cycling stability, and a rapid charge/discharge rate, which are required for supercapacitors. A MF-electrode composed of 15 PANi/RGO bilayers yielded a volumetric capacitance of 584 F/cm(3) at a current density of 3.0 A/cm(3). Although this value decreased exponentially as the current density increased, approaching a value of 170 F/cm(3) at 100 A/cm(3), this volumetric capacitance is one of the best yet reported for the other carbon-based materials. The intriguing features of the MF-electrodes composed of PANi/RGO multilayer films offer a new microdimensional design for high energy storage devices

  10. [Preparation of polyelectrolyte microcapsules containing ferrosoferric oxide nanoparticles].

    Science.gov (United States)

    Liu, Xiao-Qing; Zheng, Chun-Li; Zhu, Jia-Bi

    2011-01-01

    In this study, polyelectrolyte microcapsules have been fabricated by biocompatible ferrosoferric oxide nanoparticles (Fe3O4 NPs) and poly allyamine hydrochloride (PAH) using layer by layer assembly technique. The Fe3O4 NPs were prepared by chemical co-precipitation, and characterized by transmission electron microscopy (TEM) and infrared spectrum (IR). Quartz cell also was used as a substrate for building multilayer films to evaluate the capability of forming planar film. The result showed that Fe3O4 NPs were selectively deposited on the surface of quartz cell. Microcapsules containing Fe3O4 NPs were fabricated by Fe3O4 NPs and PAH alternately self-assembly on calcium carbonate microparticles firstly, then 0.2 molL(-1) EDTA was used to remove the calcium carbonate. Scanning electron microscopy (SEM), Zetasizer and vibrating sample magnetometer (VSM) were used to characterize the microcapsule's morphology, size and magnetic properties. The result revealed that Fe3O4 NPs and PAH were successfully deposited on the surface of CaCO3 microparticles, the microcapsule manifested superparamagnetism, size and saturation magnetization were 4.9 +/- 1.2 microm and 8.94 emu x g(-1), respectively. As a model drug, Rhodamin B isothiocyanate labeled bovine serum albumin (RBITC-BSA) was encapsulated in microcapsule depended on pH sensitive of the microcapsule film. When pH 5.0, drug add in was 2 mg, the encapsulation efficiency was (86.08 +/- 3.36) % and the drug loading was 8.01 +/- 0.30 mg x m(L-1).

  11. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers

    Directory of Open Access Journals (Sweden)

    Feifel Sven C

    2011-12-01

    Full Text Available Abstract Background For bioanalytical systems sensitivity and biomolecule activity are critical issues. The immobilization of proteins into multilayer systems by the layer-by-layer deposition has become one of the favorite methods with this respect. Moreover, the combination of nanoparticles with biomolecules on electrodes is a matter of particular interest since several examples with high activities and direct electron transfer have been found. Our study describes the investigation on silica nanoparticles and the redox protein cytochrome c for the construction of electro-active multilayer architectures, and the electron transfer within such systems. The novelty of this work is the construction of such artificial architectures with a non-conducting building block. Furthermore a detailed study of the size influence of silica nanoparticles is performed with regard to formation and electrochemical behavior of these systems. Results We report on interprotein electron transfer (IET reaction cascades of cytochrome c (cyt c immobilized by the use of modified silica nanoparticles (SiNPs to act as an artificial matrix. The layer-by-layer deposition technique has been used for the formation of silica particles/cytochrome c multilayer assemblies on electrodes. The silica particles are characterized by dynamic light scattering (DLS, Fourier transformed infrared spectroscopy (FT-IR, Zeta-potential and transmission electron microscopy (TEM. The modified particles have been studied with respect to act as an artificial network for cytochrome c and to allow efficient interprotein electron transfer reactions. We demonstrate that it is possible to form electro-active assemblies with these non-conducting particles. The electrochemical response is increasing linearly with the number of layers deposited, reaching a cyt c surface concentration of about 80 pmol/cm2 with a 5 layer architecture. The interprotein electron transfer through the layer system and the

  12. Layer-by-layer assembled TiO2 films with high ultraviolet light-shielding property

    International Nuclear Information System (INIS)

    Li, Xiaozhou; Wang, Lin; Pei, Yuxin; Jiang, Jinqiang

    2014-01-01

    Ultraviolet (UV) B is hazardous to human, plants and animals. With the rapid growth of ozone holes over the earth, the exploration of optical materials that can cut off harmful UV radiation is important. In this work, fusiform TiO 2 nanoparticles were synthesized by a hydrothermal synthesis method. The thin films assembled with TiO 2 nanoparticles and oppositely charged polyelectrolytes were fabricated via a layer-by-layer assembly method. The fabrication of poly(ethylene imine) (PEI)/TiO 2 multilayer films was verified by ultraviolet–visible spectra measurements, scanning electron microscopy and atomic force microscopy. The as-prepared PEI/TiO 2 multilayer films can effectively absorb harmful UVB light and filter off visible light. Most importantly, the PEI/TiO 2 films can be deposited directly on various kinds of hydrophilic substrates such as quartz, glass, silicon and hydrophobic substrates such as polystyrene, polypropylene, polyethylene and polymethyl methacrylate when the hydrophilic substrates were modified to obtain a hydrophilic surface. - Highlights: • PEI/TiO 2 films were fabricated via a layer-by-layer self-assembly method. • The films could effectively absorb harmful UVB light and filter off visible light. • The films could deposit directly on either hydrophilic or hydrophobic substrates

  13. In-situ fabrication of hybrid polyoxometalate nanoparticles composite films

    International Nuclear Information System (INIS)

    Lan Yang; Mao Baodong; Wang Enbo; Song Yonghai; Kang Zhenhui; Wang Chunlei; Tian Chungui; Zhang Chao; Xu Lin; Li Zhuang

    2007-01-01

    Inorganic-organic hybrid nanoparticles multilayer films were fabricated by extending the method of nucleation and growth of particles in polymer assemblies. The polyelectrolyte matrix was constructed by layer-by-layer self-assembly method. Synthesis of polyoxometalate nanoparticles was achieved by alternately dipping the precursor polyelectrolyte matrix into AgNO 3 and H 4 SiW 12 O 40 aqueous solutions. Repeating the above synthesis process, Ag 4 SiW 12 O 40 nanoparticles with controllable diameters of 20 to 77 nm were synthesized in the multilayer films in-situ. UV-vis absorption spectra indicate that the nanoparticles grew gradually in the synthesis process. Transmission electron microscopy was used to observe the size and morphology of the nanoparticles

  14. Influence of assembling pH on the stability of poly(L-glutamic acid) and poly(L-lysine) multilayers against urea treatment.

    Science.gov (United States)

    Zhou, Jie; Wang, Bo; Tong, Weijun; Maltseva, Elena; Zhang, Gang; Krastev, Rumen; Gao, Changyou; Möhwald, Helmuth; Shen, Jiacong

    2008-04-01

    Polyelectrolyte multilayers of poly(L-glutamic acid) (PGA) and poly(L-lysine) (PLL) were built up using the layer-by-layer (LbL) technique in low pH (3.6, PM3.6) and in neutral pH (7.4, PM7.4) solutions. The multilayers were then treated with a concentrated urea (one kind of denaturant for proteins and polypeptides) solution (8M) and rinsed with corresponding buffer. The buildup and treatment processes were investigated by ultraviolet visible spectroscopy and ellipsometry. The surface morphology was observed by scanning force microscopy (SFM). The inner structures were determined by X-ray reflectometry and circular dichroism spectroscopy (CD). An exponential growth of the optical mass and the layer thickness was observed for both PM3.6 and PM7.4. After urea treatment, a significant mass loss for PM3.6 was found, while no mass change was recorded for PM7.4. The dominant driving force for PM7.4 is electrostatic interaction, resulting in multilayers with an abundant beta-sheet structure, which has higher stability against urea treatment. By contrast, the dominant driving force for PM3.6 is hydrogen bonding and hydrophobic interaction, which are sensitive to the urea treatment. The mechanism is substantiated by molecular mechanics calculation. This has offered a convenient pathway to mediate the multilayer properties, which is of great importance for potential applications.

  15. Cross-linked polyelectrolyte multilayers for marine antifouling applications

    NARCIS (Netherlands)

    Zhu, X.; Janczewski, D.; Lee, S.S.C.; Teo, S.L-M.; Vancso, Gyula J.

    2013-01-01

    A polyionic multilayer film was fabricated by layer-by-layer (LbL) sequential deposition followed by cross-linking under mild conditions on a substrate surface to inhibit marine fouling. A novel polyanion, featuring methyl ester groups for an easy cross-linking was used as a generic solution for

  16. Development of polyelectrolyte multilayer thin film composite membrane for water desalination application

    KAUST Repository

    Fadhillah, F.; Zaidi, S.M.J.; Khan, Z.; Khaled, M.M.; Rahman, F.; Hammond, P.T.

    2013-01-01

    Thin film composite membranes were fabricated via spin assisted layer by layer (SA-LbL) assembly by depositing alternate layers of poly(allyl amine hydrochloride) (PAH) and poly(acrylic acid) (PAA) on a polysulfone (PSF) ultrafiltration membrane as support. The suitability of these membranes for potential water purification applications was explored by testing the stability of the deposited thin films and their permeation characteristic using cross-flow permeation cell. Permeation test conducted at a pressure of 40bar, temperature of 25°C, pH of 6 and feed water concentration of 2000ppm NaCl demonstrated that the PAH/PAA multilayer film deposited on polysulfone support remained stable and intact under long-term test conditions. The 120 bilayers of PAH/PAA membrane tested at the above condition showed flux of 15L/m2.h and salt rejection of 65%. The membrane performance evaluation also revealed that SA-LbL PAH/PAA membrane follows the characteristics of the solution diffusion membrane. © 2013 Elsevier B.V.

  17. Development of polyelectrolyte multilayer thin film composite membrane for water desalination application

    KAUST Repository

    Fadhillah, F.

    2013-06-01

    Thin film composite membranes were fabricated via spin assisted layer by layer (SA-LbL) assembly by depositing alternate layers of poly(allyl amine hydrochloride) (PAH) and poly(acrylic acid) (PAA) on a polysulfone (PSF) ultrafiltration membrane as support. The suitability of these membranes for potential water purification applications was explored by testing the stability of the deposited thin films and their permeation characteristic using cross-flow permeation cell. Permeation test conducted at a pressure of 40bar, temperature of 25°C, pH of 6 and feed water concentration of 2000ppm NaCl demonstrated that the PAH/PAA multilayer film deposited on polysulfone support remained stable and intact under long-term test conditions. The 120 bilayers of PAH/PAA membrane tested at the above condition showed flux of 15L/m2.h and salt rejection of 65%. The membrane performance evaluation also revealed that SA-LbL PAH/PAA membrane follows the characteristics of the solution diffusion membrane. © 2013 Elsevier B.V.

  18. Microneedle arrays coated with charge reversal pH-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses.

    Science.gov (United States)

    Duong, Huu Thuy Trang; Kim, Nak Won; Thambi, Thavasyappan; Giang Phan, V H; Lee, Min Sang; Yin, Yue; Jeong, Ji Hoon; Lee, Doo Sung

    2018-01-10

    Successful delivery of a DNA vaccine to antigen-presenting cells and their subsequent stimulation of CD4 + and CD8 + T cell immunity remains an inefficient process. In general, the delivery of prophylactic vaccines is mainly mired by low transfection efficacy, poor immunogenicity, and safety issues from the materials employed. Currently, several strategies have been exploited to improve immunogenicity, but an effective strategy for safe and pain-free delivery of DNA vaccines is complicated. Herein, we report the rapid delivery of polyplex-based DNA vaccines using microneedle arrays coated with a polyelectrolyte multilayer assembly of charge reversal pH-responsive copolymer and heparin. The charge reversal pH-responsive copolymer, composed of oligo(sulfamethazine)-b-poly(ethylene glycol)-b-poly(amino urethane) (OSM-b-PEG-b-PAEU), was used as a triggering layer in the polyelectrolyte multilayer assembly on microneedles. Charge reversal characteristics of this copolymer, that is, the OSM-b-PEG-b-PAEU copolymer exhibit, positive charge at low pH (pH4.03) and becoming negative charge when exposed to physiological pH conditions (pH7.4), allowing the facile assembly and disassembly of polyelectrolyte multilayers. The electrostatic repulsion between heparin and OSM-b-PEG-b-PAEU charge reversal copolymer triggered the release of DNA vaccines. DNA vaccines laden on microneedles are effectively transfected into RAW 264.7 macrophage cells in vitro. Vaccination of BALB/c mice by DNA vaccine-loaded microneedle arrays coated with a polyelectrolyte multilayer generated antigen-specific robust immune responses. These findings provide potential strategy of charge reversal pH-responsive copolymers coated microneedles for DNA vaccine delivery. Copyright © 2017. Published by Elsevier B.V.

  19. Layer-by-layer assembled TiO{sub 2} films with high ultraviolet light-shielding property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaozhou [College of Science, Northwest A and F University, Yangling, Shaanxi 712100 (China); Wang, Lin, E-mail: wanglin0317@nwsuaf.edu.cn [College of Science, Northwest A and F University, Yangling, Shaanxi 712100 (China); Pei, Yuxin [College of Science, Northwest A and F University, Yangling, Shaanxi 712100 (China); Jiang, Jinqiang [State Key Lab of Applied Surface and Colloid Chemistry, College of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China)

    2014-11-28

    Ultraviolet (UV) B is hazardous to human, plants and animals. With the rapid growth of ozone holes over the earth, the exploration of optical materials that can cut off harmful UV radiation is important. In this work, fusiform TiO{sub 2} nanoparticles were synthesized by a hydrothermal synthesis method. The thin films assembled with TiO{sub 2} nanoparticles and oppositely charged polyelectrolytes were fabricated via a layer-by-layer assembly method. The fabrication of poly(ethylene imine) (PEI)/TiO{sub 2} multilayer films was verified by ultraviolet–visible spectra measurements, scanning electron microscopy and atomic force microscopy. The as-prepared PEI/TiO{sub 2} multilayer films can effectively absorb harmful UVB light and filter off visible light. Most importantly, the PEI/TiO{sub 2} films can be deposited directly on various kinds of hydrophilic substrates such as quartz, glass, silicon and hydrophobic substrates such as polystyrene, polypropylene, polyethylene and polymethyl methacrylate when the hydrophilic substrates were modified to obtain a hydrophilic surface. - Highlights: • PEI/TiO{sub 2} films were fabricated via a layer-by-layer self-assembly method. • The films could effectively absorb harmful UVB light and filter off visible light. • The films could deposit directly on either hydrophilic or hydrophobic substrates.

  20. Surface Modification of Titanium with Heparin-Chitosan Multilayers via Layer-by-Layer Self-Assembly Technique

    International Nuclear Information System (INIS)

    Shu, Y.; Zou, J.; Ou, G.; Wang, L.; Li, Q.

    2011-01-01

    Extracellular matrix (ECM), like biomimetic surface modification of titanium implants, is a promising method for improving its biocompatibility. In this paper chitosan (Chi) and heparin (Hep) multilayer was coated on pure titanium using a layer-by-layer (LbL) self-assembly technique. The Hep-Chi multilayer growth was carried out by first depositing a single layer of positively charged poly-L-lysine (PLL) on the NaOH-treated titanium substrate (negatively charged surface), followed by alternate deposition of negatively charged Hep and positively charged Chi, and terminated by an outermost layer of Chi. The multilayer was characterized by DR-FTIR, SEM, and AFM, and osteoblasts were cocultured with the modified titanium and untreated titanium surfaces, respectively, to evaluate their cytocompatibility in vitro. The results confirmed that Hep-Chi multilayer was fabricated gradually on the titanium surface. The Hep-Chi multilayer-coated titanium improved the adhesion, proliferation and differentiation of osteoblasts. Thus, the approach described here may provide a basis for the preparation of modified titanium surfaces for use in dental or orthopedic implants

  1. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)

    2011-03-12

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  2. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    International Nuclear Information System (INIS)

    Anandhakumar, S.; Debapriya, M.; Nagaraja, V.; Raichur, Ashok M.

    2011-01-01

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO 3 particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  3. Ion distribution in dry polyelectrolyte multilayers: a neutron reflectometry study.

    Science.gov (United States)

    Ghoussoub, Yara E; Zerball, Maximilian; Fares, Hadi M; Ankner, John F; von Klitzing, Regine; Schlenoff, Joseph B

    2018-02-28

    Ultrathin films of complexed polycation poly(diallyldimethylammonium), PDADMA, and polyanion poly(styrenesulfonate), PSS, were prepared on silicon wafers using the layer-by-layer adsorption technique. When terminated with PDADMA, all films had excess PDADMA, which was balanced by counterions. Neutron reflectivity of these as-made multilayers was compared with measurements on multilayers which had been further processed to ensure 1 : 1 stoichiometry of PDADMA and PSS. The compositions of all films, including polymers and counterions, were determined experimentally rather than by fitting, reducing the number of fit parameters required to model the reflectivity. For each sample, acetate, either protiated, CH 3 COO - , or deuterated, CD 3 COO - , served as the counterion. All films were maintained dry under vacuum. Scattering length density profiles were constrained to fit reflectivity data from samples having either counterion. The best fits were obtained with uniform counterion concentrations, even for stoichiometric samples that had been exposed to PDADMA for ca. 5 minutes, showing that surprisingly fast and complete transport of excess cationic charge occurs throughout the multilayer during its construction.

  4. Comparison of Different Assembling Techniques Regarding Cost, Durability, and Ecology - A Survey of Multi-layer Wooden Panel Assembly Load-Bearing Construction Elements

    Directory of Open Access Journals (Sweden)

    Dietrich Buck

    2015-10-01

    Full Text Available Wood is a pure, sustainable, renewable material. The increasing use of wood for construction can improve its sustainability. There are various techniques to assemble multi-layer wooden panels into prefabricated, load-bearing construction elements. However, comparative market and economy studies are still scarce. In this study, the following assembling techniques were compared: laminating, nailing, stapling, screwing, stress laminating, doweling, dovetailing, and wood welding. The production costs, durability, and ecological considerations were presented. This study was based on reviews of published works and information gathered from 27 leading wood product manufacturing companies in six European countries. The study shows that the various techniques of assembling multi-layer wooden construction panel elements are very different. Cross laminated timber (CLT exhibited the best results in terms of cost and durability. With regard to ecological concerns, dovetailing is the best. Taking into account both durability and ecological considerations, wooden screw-doweling is the best. These alternatives give manufacturers some freedom of choice regarding the visibility of surfaces and the efficient use of lower-quality timber. CLT is the most cost-effective, is not patented, and is a well-established option on the market today.

  5. Layer-by-Layer Self-Assembled Ferrite Multilayer Nanofilms for Microwave Absorption

    Directory of Open Access Journals (Sweden)

    Jiwoong Heo

    2015-01-01

    Full Text Available We demonstrate a simple method for fabricating multilayer thin films containing ferrite (Co0.5Zn0.5Fe2O4 nanoparticles, using layer-by-layer (LbL self-assembly. These films have microwave absorbing properties for possible radar absorbing and stealth applications. To demonstrate incorporation of inorganic ferrite nanoparticles into an electrostatic-interaction-based LbL self-assembly, we fabricated two types of films: (1 a blended three-component LbL film consisting of a sequential poly(acrylic acid/oleic acid-ferrite blend layer and a poly(allylamine hydrochloride layer and (2 a tetralayer LbL film consisting of sequential poly(diallyldimethylammonium chloride, poly(sodium-4-sulfonate, bPEI-ferrite, and poly(sodium-4-sulfonate layers. We compared surface morphologies, thicknesses, and packing density of the two types of ferrite multilayer film. Ferrite nanoparticles (Co0.5Zn0.5Fe2O4 were prepared via a coprecipitation method from an aqueous precursor solution. The structure and composition of the ferrite nanoparticles were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. X-ray diffraction patterns of ferrite nanoparticles indicated a cubic spinel structure, and energy dispersive X-ray spectroscopy revealed their composition. Thickness growth and surface morphology were measured using a profilometer, atomic force microscope, and scanning electron microscope.

  6. Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering

    NARCIS (Netherlands)

    Silva, J.M.; Georgi, Nicole; Costa, R.; Sher, P.; Reis, R L; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes; Mano, J.F.

    2013-01-01

    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and

  7. Layer-by-Layer Assembly of Biopolyelectrolytes onto Thermo/pH-Responsive Micro/Nano-Gels

    Directory of Open Access Journals (Sweden)

    Ana M. Díez-Pascual

    2014-11-01

    Full Text Available This review deals with the layer-by-layer (LbL assembly of polyelectrolyte multilayers of biopolymers, polypeptides (i.e., poly-l-lysine/poly-l-glutamic acid and polysaccharides (i.e., chitosan/dextran sulphate/sodium alginate, onto thermo- and/or pH-responsive micro- and nano-gels such as those based on synthetic poly(N-isopropylacrylamide (PNIPAM and poly(acrylic acid (PAA or biodegradable hyaluronic acid (HA and dextran-hydroxyethyl methacrylate (DEX-HEMA. The synthesis of the ensembles and their characterization by way of various techniques is described. The morphology, hydrodynamic size, surface charge density, bilayer thickness, stability over time and mechanical properties of the systems are discussed. Further, the mechanisms of interaction between biopolymers and gels are analysed. Results demonstrate that the structure and properties of biocompatible multilayer films can be finely tuned by confinement onto stimuli-responsive gels, which thus provides new perspectives for biomedical applications, particularly in the controlled release of biomolecules, bio-sensors, gene delivery, tissue engineering and storage.

  8. Fabrication and properties of light-emitting diodes based on self-assembled multilayers of poly(phenylene vinylene)

    Science.gov (United States)

    Fou, A. C.; Onitsuka, O.; Ferreira, M.; Rubner, M. F.; Hsieh, B. R.

    1996-05-01

    Light-emitting diodes have been fabricated from self-assembled multilayers of poly(p-phenylene vinylene) (PPV) and two different polyanions; polystyrene sulfonic acid (SPS) and polymethacrylic acid (PMA). The type of polyanion used to assemble the multilayer thin films was found to dramatically influence the behavior and performance of devices fabricated with indium tin oxide and aluminum electrodes. Light-emitting devices fabricated from PMA/PPV multilayers were found to exhibit luminance levels in the range of 20-60 cd/m2, a thickness dependent turn-on voltage and classical rectifying behavior with rectification ratios greater than 105. In sharp contrast, the devices based on SPS/PPV exhibited near symmetric current-voltage curves, thickness independent turn-on voltages and much lower luminance levels. The significant difference in device behavior observed between these two systems is primarily due to a doping effect induced either chemically or electrochemically by the sulfonic acid groups of SPS. It was also found that the performance of these devices depends on the type of layer that is in contact with the Al top electrode thereby making it possible to manipulate device efficiency at the molecular level.

  9. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation.

    Science.gov (United States)

    Lv, Hongbin; Chen, Zhen; Yang, Xiaoping; Cen, Lian; Zhang, Xu; Gao, Ping

    2014-11-01

    Bacteria adhesion and subsequent biofilm formation are primary causes of implant associated infection. The biofilm makes the bacteria highly resistant to the host defense and antimicrobial treatment. Antibacterial coatings on the surface of titanium implant can prevent biofilm formation effectively, but it is still a challenge to accomplish relatively long lasting antibacterial effects before wound healing or formation of biological seal. The purpose of our work was to construct antibacterial multilayer coatings loaded with minocycline on surface of Ti substrates using chitosan and alginate based on layer-by-layer (LbL) self-assembly technique. In this study, the surfaces of Ti substrates were first hydroxylated and then treated with 3-aminopropyltriethoxysilane (ATPES) to obtain amino-functionalized Ti substrates. Next, the precursor layer of chitosan was covalently conjugated to amino-functionalized Ti substrates. The following alternately coating alginate loaded with minocycline and chitosan onto the precursor layer of chitosan was carried out via LbL self-assembly technique to construct the multilayer coatings on Ti substrates. The multilayer coatings loaded more minocycline and improved sustainability of minocycline release to kill planktonic and adherent bacteria. Moreover, surface charge and hydrophilicity of the coatings and antibacterial ability of chitosan itself also played roles in the antibacterial performance, which can keep the antibacterial ability of the multilayer coatings after minocycline release ceases. In conclusion, LbL self-assembly method provides a promising strategy to fabricate long-term antibacterial surfaces, which is especially effective in preventing implant associated infections in the early stage. Loading minocycline on the surface of implants based on LbL self-assembly strategy can endow implants with sustained antibacterial property. This can inhabit the immediate colonization of bacteria onto the surface of implants in the

  10. All-Organic High-Performance Piezoelectric Nanogenerator with Multilayer Assembled Electrospun Nanofiber Mats for Self-Powered Multifunctional Sensors.

    Science.gov (United States)

    Maity, Kuntal; Mandal, Dipankar

    2018-05-30

    Rapid development of wearable electronics, piezoelectric nanogenerator (PNG), has been paid a special attention because of its sustainable and accessible energy generation. In this context, we present a simple yet highly efficient design strategy to enhance the output performance of an all-organic PNG (OPNG) based on multilayer assembled electrospun poly(vinylidene fluoride) (PVDF) nanofiber (NF) mats where vapor-phase polymerized poly(3,4-ethylenedioxythiophene)-coated PVDF NFs are assembled as electrodes and neat PVDF NFs are utilized as an active component. In addition to the multilayer assembly, electrode compatibility and durability remain a challenging task to mitigate the primary requirements of wearable electronics. A multilayer networked three-dimensional structure integrated with a compatible electrode thereby provides enhanced output voltage and current (e.g., open-circuit voltage, V oc ≈ 48 V, and short-circuit current, I sc ≈ 6 μA, upon 8.3 kPa of the applied stress amplitude) with superior piezoelectric energy conversion efficiency of 66% compared to the single-mat device. Besides, OPNG also shows ultrasensitivity toward human movements such as foot strikes and walking. The weight measurement mapping is critically explored by principal component analysis that may have enormous applications in medical diagnosis to smart packaging industries. More importantly, fatigue test under continuous mechanical impact (over 6 months) shows great promise as a robust wearable mechanical energy harvester.

  11. The effect of polymer charge density and charge distribution on the formation of multilayers

    CERN Document Server

    Voigt, U; Tauer, K; Hahn, M; Jäger, W; Klitzing, K V

    2003-01-01

    Polyelectrolyte multilayers which are built up by alternating adsorption of polyanions and polycations from aqueous solutions at a solid interface are investigated by reflectometry and ellipsometry. Below a degree of charge of about 70% the adsorption stops after a certain number of dipping cycles and no multilayer formation occurs. This indicates an electrostatically driven adsorption process. Below a charge density of 70% an adsorption can take place if the charged segments are combined as a block of the polymer.

  12. Ion Diffusion-Directed Assembly Approach to Ultrafast Coating of Graphene Oxide Thick Multilayers.

    Science.gov (United States)

    Zhao, Xiaoli; Gao, Weiwei; Yao, Weiquan; Jiang, Yanqiu; Xu, Zhen; Gao, Chao

    2017-10-24

    The layer-by-layer (LbL) assembly approach has been widely used to fabricate multilayer coatings on substrates with multiple cycles, whereas it is hard to access thick films efficiently. Here, we developed an ion diffusion-directed assembly (IDDA) strategy to rapidly make multilayer thick coatings in one step on arbitrary substrates. To achieve multifunctional coatings, graphene oxide (GO) and metallic ions were selected as the typical building blocks and diffusion director in IDDA, respectively. With diffusion of metallic ions from substrate to negatively charged GO dispersion spontaneously (i.e., from high-concentration region to low-concentration region), GO was assembled onto the substrate sheet-by-sheet via sol-gel transformation. Because metallic ions with size of subnanometers can diffuse directionally and freely in the aqueous dispersion, GO was coated on the substrate efficiently, giving rise to films with desired thickness up to 10 μm per cycle. The IDDA approach shows three main merits: (1) high efficiency with a μm-scale coating rate; (2) controllability over thickness and evenness; and (3) generality for substrates of plastics, metals and ceramics with any shapes and morphologies. With these merits, IDDA strategy was utilized in the efficient fabrication of functional graphene coatings that exhibit outstanding performance as supercapacitors, electromagnetic interference shielding textiles, and anticorrosion coatings. This IDDA approach can be extended to other building blocks including polymers and colloidal nanoparticles, promising for the scalable production and application of multifunctional coatings.

  13. Scaling Theory of Polyelectrolyte Nanogels

    International Nuclear Information System (INIS)

    Qu Li-Jian

    2017-01-01

    The present paper develops the scaling theory of polyelectrolyte nanogels in dilute and semidilute solutions. The dependencies of the nanogel dimension on branching topology, charge fraction, subchain length, segment number, solution concentration are obtained. For a single polyelectrolyte nanogel in salt free solution, the nanogel may be swelled by the Coulombic repulsion (the so-called polyelectrolyte regime) or the osmotic counterion pressure (the so-called osmotic regime). Characteristics and boundaries between different regimes of a single polyelectrolyte nanogel are summarized. In dilute solution, the nanogels in polyelectrolyte regime will distribute orderly with the increase of concentration. While the nanogels in osmotic regime will always distribute randomly. Different concentration dependencies of the size of a nanogel in polyelectrolyte regime and in osmotic regime are also explored. (paper)

  14. Polyelectrolyte-induced aggregation of liposomes: a new cluster phase with interesting applications

    International Nuclear Information System (INIS)

    Bordi, F; Sennato, S; Truzzolillo, D

    2009-01-01

    Different charged colloidal particles have been shown to be able to self-assemble, when mixed in an aqueous solvent with oppositely charged linear polyelectrolytes, forming long-lived finite-size mesoscopic aggregates. On increasing the polyelectrolyte content, with the progressive reduction of the net charge of the primary polyelectrolyte-decorated particles, larger and larger clusters are observed. Close to the isoelectric point, where the charge of the adsorbed polyelectrolytes neutralizes the original charge of the particles' surface, the aggregates reach their maximum size, while beyond this point any further increase of the polyelectrolyte-particle charge ratio causes the formation of aggregates whose size is progressively reduced. This re-entrant condensation behavior is accompanied by a significant overcharging. Overcharging, or charge inversion, occurs when more polyelectrolyte chains adsorb on a particle than are needed to neutralize its original charge so that, eventually, the sign of the net charge of the polymer-decorated particle is inverted. The stability of the finite-size long-lived clusters that this aggregation process yields results from a fine balance between long-range repulsive and short-range attractive interactions, both of electrostatic nature. For the latter, besides the ubiquitous dispersion forces, whose supply becomes relevant only at high ionic strength, the main contribution appears due to the non-uniform correlated distribution of the charge on the surface of the polyelectrolyte-decorated particles ('charge-patch' attraction). The interesting phenomenology shown by these system has a high potential for biotechnological applications, particularly when the primary colloidal particles are bio-compatible lipid vesicles. Possible applications of these systems as multi-compartment vectors for the simultaneous intra-cellular delivery of different pharmacologically active substances will be briefly discussed. (topical review)

  15. Ionically Paired Layer-by-Layer Hydrogels: Water and Polyelectrolyte Uptake Controlled by Deposition Time

    Directory of Open Access Journals (Sweden)

    Victor Selin

    2018-01-01

    Full Text Available Despite intense recent interest in weakly bound nonlinear (“exponential” multilayers, the underlying structure-property relationships of these films are still poorly understood. This study explores the effect of time used for deposition of individual layers of nonlinearly growing layer-by-layer (LbL films composed of poly(methacrylic acid (PMAA and quaternized poly-2-(dimethylaminoethyl methacrylate (QPC on film internal structure, swelling, and stability in salt solution, as well as the rate of penetration of invading polyelectrolyte chains. Thicknesses of dry and swollen films were measured by spectroscopic ellipsometry, film internal structure—by neutron reflectometry (NR, and degree of PMAA ionization—by Fourier-transform infrared spectroscopy (FTIR. The results suggest that longer deposition times resulted in thicker films with higher degrees of swelling (up to swelling ratio as high as 4 compared to dry film thickness and stronger film intermixing. The stronger intermixed films were more swollen in water, exhibited lower stability in salt solutions, and supported a faster penetration rate of invading polyelectrolyte chains. These results can be useful in designing polyelectrolyte nanoassemblies for biomedical applications, such as drug delivery coatings for medical implants or tissue engineering matrices.

  16. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    Science.gov (United States)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing; Liu, Xiaoya

    2014-10-01

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet-visible absorption spectrum (UV-vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10-4 to 1.2×10-3 M with the detect limit of 5×10-6 M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor.

  17. Layer-by-layer self-assembly of polyimide precursor/layered double hydroxide ultrathin films

    International Nuclear Information System (INIS)

    Chen Dan; Huang Shu; Zhang Chao; Wang Weizhi; Liu Tianxi

    2010-01-01

    The layer-by-layer (LBL) self-assembly has been extensively used as a simple and effective method for the preparation of polyelectrolyte multilayer films. In this work, we utilized this unique method to prepare polyimide precursor/layered double hydroxide (LDH) ultrathin films. Well-crystallized Co-Al-CO 3 LDH and subsequent anion exchanged Co-Al-NO 3 LDH were prepared and characterized by scanning electron microscopy and X-ray diffraction (XRD). By vigorous shaking of the as-prepared Co-Al-NO 3 LDH, positively charged and exfoliated LDH nanosheets were obtained. Atomic force microscopy and XRD investigations indicated the delamination of LDH nanosheets. The precursor of polyimide, poly(amic acid) tertiary amine salt (PAS) was prepared by the polycondensation of dianhydride and diamine, and subsequent amine salt formation. By using the LBL method, heterogeneous ultrathin films of PAS and LDH were prepared. The formation of the ordered nanostructured assemblies was confirmed by the progressive enhancement of UV absorbance and the XRD results.

  18. Scaling Theory of Polyelectrolyte Nanogels

    Science.gov (United States)

    Qu, Li-Jian

    2017-08-01

    The present paper develops the scaling theory of polyelectrolyte nanogels in dilute and semidilute solutions. The dependencies of the nanogel dimension on branching topology, charge fraction, subchain length, segment number, solution concentration are obtained. For a single polyelectrolyte nanogel in salt free solution, the nanogel may be swelled by the Coulombic repulsion (the so-called polyelectrolyte regime) or the osmotic counterion pressure (the so-called osmotic regime). Characteristics and boundaries between different regimes of a single polyelectrolyte nanogel are summarized. In dilute solution, the nanogels in polyelectrolyte regime will distribute orderly with the increase of concentration. While the nanogels in osmotic regime will always distribute randomly. Different concentration dependencies of the size of a nanogel in polyelectrolyte regime and in osmotic regime are also explored. Supported by China Earthquake Administration under Grant No. 20150112 and National Natural Science Foundation of China under Grant No. 21504014

  19. Heparin-mimicking multilayer coating on polymeric membrane via LbL assembly of cyclodextrin-based supramolecules.

    Science.gov (United States)

    Deng, Jie; Liu, Xinyue; Ma, Lang; Cheng, Chong; Shi, Wenbin; Nie, Chuanxiong; Zhao, Changsheng

    2014-12-10

    In this study, multifunctional and heparin-mimicking star-shaped supramolecules-deposited 3D porous multilayer films with improved biocompatibility were fabricated via a layer-by-layer (LbL) self-assembly method on polymeric membrane substrates. Star-shaped heparin-mimicking polyanions (including poly(styrenesulfonate-co-sodium acrylate; Star-PSS-AANa) and poly(styrenesulfonate-co-poly(ethylene glycol)methyl ether methacrylate; Star-PSS-EGMA)) and polycations (poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate; Star-PMeDMA) were first synthesized by atom transfer radical polymerization (ATRP) from β-cyclodextrin (β-CD) based cores. Then assembly of 3D porous multilayers onto polymeric membrane surfaces was carried out by alternating deposition of the polyanions and polycations via electrostatic interaction. The surface morphology and composition, water contact angle, blood activation, and thrombotic potential as well as cell viability for the coated heparin-mimicking films were systematically investigated. The results of surface ATR-FTIR spectra and XPS spectra verified successful deposition of the star-shaped supramolecules onto the biomedical membrane surfaces; scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations revealed that the modified substrate had 3D porous surface morphology, which might have a great biological influence on the biointerface. Furthermore, systematic in vitro investigation of protein adsorption, platelet adhesion, human platelet factor 4 (PF4, indicates platelet activation), activate partial thromboplastin time (APTT), thrombin time (TT), coagulation activation (thrombin-antithrombin III complex (TAT, indicates blood coagulant)), and blood-related complement activation (C3a and C5a, indicates inflammation potential) confirmed that the heparin-mimicking multilayer coated membranes exhibited ultralow blood component activations and excellent hemocompatibility. Meanwhile, after surface coating

  20. Fabrication of Localized Surface Plasmon Resonance Fiber Probes Using Ionic Self-Assembled Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Miao Wan

    2010-07-01

    Full Text Available An nm-thickness composite gold thin film consisting of gold nanoparticles and polyelectrolytes is fabricated through ionic self-assembled multilayers (ISAM technique and is deposited on end-faces of optical fibers to construct localized surface plasmon resonance (LSPR fiber probes. We demonstrate that the LSPR spectrum induced by ISAM gold films can be fine-tuned through the ISAM procedure. We investigate variations of reflection spectra of the probe with respect to the layer-by-layer adsorption of ISAMs onto end-faces of fibers, and study the spectral variation mechanism. Finally, we demonstrated using this fiber probe to detect the biotin-streptavidin bioconjugate pair. ISAM adsorbed on optical fibers potentially provides a simple, fast, robust, and low-cost, platform for LSPR biosensing applications.

  1. Immobilization of Superoxide Dismutase on Polyelectrolyte-Functionalized Titania Nanosheets.

    Science.gov (United States)

    Rouster, Paul; Pavlovic, Marko; Szilagyi, Istvan

    2018-02-16

    The superoxide dismutase (SOD) enzyme was successfully immobilized on titania nanosheets (TNS) functionalized with the poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte. The TNS-PDADMAC solid support was prepared by hydrothermal synthesis followed by self-assembled polyelectrolyte layer formation. It was found that SOD strongly adsorbed onto oppositely charged TNS-PDADMAC through electrostatic and hydrophobic interactions. The TNS-PDADMAC-SOD material was characterized by light scattering and microscopy techniques. Colloidal stability studies revealed that the obtained nanocomposites possessed good resistance against salt-induced aggregation in aqueous suspensions. The enzyme kept its functional integrity upon immobilization; therefore, TNS-PDADMAC-SOD showed excellent superoxide radical anion scavenging activity. The developed system is a promising candidate for applications in which suspensions of antioxidant activity are required in the manufacturing processes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electrochemical determination of the glass transition temperature of thin polyelectrolyte brushes at solid-liquid interfaces by impedance spectroscopy.

    Science.gov (United States)

    Alonso-García, Teodoro; Rodríguez-Presa, María José; Gervasi, Claudio; Moya, Sergio; Azzaroni, Omar

    2013-07-16

    Devising strategies to assess the glass transition temperature (Tg) of polyelectrolyte assemblies at solid-electrolyte interfaces is very important to understand and rationalize the temperature-dependent behavior of polyelectrolyte films in a wide range of settings. Despite the evolving perception of the importance of measuring Tg under aqueous conditions in thin film configurations, its straightforward measurement poses a challenging situation that still remains elusive in polymer and materials science. Here, we describe a new method based on electrochemical impedance spectroscopy (EIS) to estimate the glass transition temperature of planar polyelectrolyte brushes at solid-liquid interfaces. To measure Tg, the charge transfer resistance (Rct) of a redox probe diffusing through the polyelectrolyte brush was measured, and the temperature corresponding to the discontinuous change in Rct was identified as Tg. Furthermore, we demonstrate that impedance measurements not only facilitate the estimation of Tg but also enable a reliable evaluation of the transport properties of the polymeric interface, i.e., determination of diffusion coefficients, close to the thermal transition. We consider that this approach bridges the gap between electrochemistry and the traditional tools used in polymer science and offers new opportunities to characterize the thermal behavior of complex polymeric interfaces and macromolecular assemblies.

  3. Polyelectrolytes thermodynamics and rheology

    CERN Document Server

    P M, Visakh; Picó, Guillermo Alfredo

    2014-01-01

    This book discusses current development of theoretical models and experimental findings on the thermodynamics of polyelectrolytes. Particular emphasis is placed on the rheological description of polyelectrolyte solutions and hydrogels.

  4. Stable Aqueous Suspension and Self-Assembly of Graphite Nanoplatelets Coated with Various Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Jue Lu

    2010-01-01

    Full Text Available Exfoliated graphite nanoplatelets (xGnPs with an average thickness of 1–10 nm present an inexpensive alternative to carbon nanotubes in many applications. In this paper, stable aqueous suspension of xGnP was achieved by noncovalent functionalization of xGnP with polyelectrolytes. The surfactants and polyelectrolytes were compared with respect to their ability to suspend graphite nanoplatelets. The surface charge of the nanoplatelets was characterized with zeta potential measurements, and the bonding strength of the polymer chains to the surface of xGnP was characterized with Raman spectroscopy. This robust method opens up the possibility of using this inexpensive nanomaterial in many applications, including electrochemical devices, and leads to simple processing techniques such as layer-by-layer deposition. Therefore, the formation of xGnP conductive coatings using layer-by-layer deposition was also demonstrated.

  5. Self-assembled nanoparticles based on PEGylated conjugated polyelectrolyte and drug molecules for image-guided drug delivery and photodynamic therapy.

    Science.gov (United States)

    Yuan, Youyong; Liu, Bin

    2014-09-10

    A drug delivery system based on poly(ethylene glycol) (PEG) grafted conjugated polyelectrolyte (CPE) has been developed to serve as a polymeric photosensitizer and drug carrier for combined photodynamic and chemotherapy. The amphiphilic brush copolymer can self-assemble into micellar nanopaticles (NPs) in aqueous media with hydrophobic conjugated polyelectrolyte backbone as the core and hydrophilic PEG as the shell. The NPs have an average diameter of about 100 nm, with the absorption and emission maxima at 502 and 598 nm, respectively, making them suitable for bioimaging applications. Moreover, the CPE itself can serve as a photosensitizer, which makes the NPs not only a carrier for drug but also a photosensitizing unit for photodynamic therapy, resulting in the combination of chemo- and photodynamic therapy for cancer. The half-maximal inhibitory concentration (IC50) value for the combination therapy to U87-MG cells is 12.7 μg mL(-1), which is much lower than that for the solely photodynamic therapy (25.5 μg mL(-1)) or chemotherapy (132.8 μg mL(-1)). To improve the tumor specificity of the system, cyclic arginine-glycine-aspartic acid (cRGD) tripeptide as the receptor to integrin αvβ3 overexpressed cancer cells was further incorporated to the surface of the NPs. The delivery system based on PEGylated CPE is easy to fabricate, which integrates the merits of targeted cancer cell image, chemotherapeutic drug delivery, and photodynamic therapy, making it promising for cancer treatment.

  6. Sustained, Controlled and Stimuli-Responsive Drug Release Systems Based on Nanoporous Anodic Alumina with Layer-by-Layer Polyelectrolyte

    Science.gov (United States)

    Porta-i-Batalla, Maria; Eckstein, Chris; Xifré-Pérez, Elisabet; Formentín, Pilar; Ferré-Borrull, J.; Marsal, Lluis F.

    2016-08-01

    Controlled drug delivery systems are an encouraging solution to some drug disadvantages such as reduced solubility, deprived biodistribution, tissue damage, fast breakdown of the drug, cytotoxicity, or side effects. Self-ordered nanoporous anodic alumina is an auspicious material for drug delivery due to its biocompatibility, stability, and controllable pore geometry. Its use in drug delivery applications has been explored in several fields, including therapeutic devices for bone and dental tissue engineering, coronary stent implants, and carriers for transplanted cells. In this work, we have created and analyzed a stimuli-responsive drug delivery system based on layer-by-layer pH-responsive polyelectrolyte and nanoporous anodic alumina. The results demonstrate that it is possible to control the drug release using a polyelectrolyte multilayer coating that will act as a gate.

  7. Layer-by-layer self-assembled multilayers on PEEK implants improve osseointegration in an osteoporosis rabbit model.

    Science.gov (United States)

    Liu, Xilin; Han, Fei; Zhao, Peng; Lin, Chao; Wen, Xuejun; Ye, Xiaojian

    2017-05-01

    This study aims to fabricate and deposit nanoscale multilayers on polyetheretherketone (PEEK) to improve cell adhesion and osseointegration. Bio-activated PEEK constructs were designed with prepared surface of different layers of polystyrene sulfonate (PSS) and polyallylamine hydrochloride (PAH) multilayers. Irregular morphology was found on the 5 and 10-layer PEEK surfaces, while "island-like" clusters were observed for 20-layer (20 L) multilayers. Besides, the 20 L PEEK showed more hydrophilic feature than native PEEK, and the surface contact angle reduced from 39.7° to 21.7° as layers increased from 5 to 20. In vitro, modified PEEK allowed excellent adhesion and proliferation of bone marrow stromal cells, and induced higher cell growth rate and alkaline phosphatase level. In vivo, this bio-active PEEK exhibited significantly enhanced integration with bone tissue in an osteoporosis rabbit model. This work highlights layer-by-layer self-assembly as a practical method to construct bio-active PEEK implants for enhanced osseointegration. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly.

    Science.gov (United States)

    Zhong, Xue; Song, Yunjia; Yang, Peng; Wang, Yao; Jiang, Shaoyun; Zhang, Xu; Li, Changyi

    2016-01-01

    The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti) surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL), on which multilayer coatings can incorporate silver nanoparticles (AgNP) using chitosan (CS) and hyaluronic acid (HA) via a layer-by-layer (LbL) self-assembly technique. In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethyl)phosphine (TCEP) to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates. The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration. The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections in the

  9. Examination of biogenic selenium-containing nanosystems based on polyelectrolyte complexes by atomic force, Kelvin probe force and electron microscopy methods

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanova, T. E., E-mail: tat-sukhanova@mail.ru; Vylegzhanina, M. E.; Valueva, S. V.; Volkov, A. Ya.; Kutin, A. A. [Institute of Macromolecular Compounds RAS, 199004 Bolshoy Pr., 31, St.-Petersburg (Russian Federation); Temiryazeva, M. P.; Temiryazev, A. G. [Kotel’nikov Institute of Radio Engineering and Electronics (Fryazino Branch) Russian Academy of Sciences, Fryazino, Moscow region, 141190 (Russian Federation)

    2016-06-17

    The morphology and electrical properties of biogenic selenium-containing nanosystems based on polyelectrolyte complexes (PECs) were examined using AFM, Kelvin Probe Force and electron microscopy methods. It has been found, that prepared nanostructures significantly differed in their morphological types and parameters. In particular, multilayers capsules can be produced via varying synthesis conditions, especially, the selenium–PEC mass ratio ν. At the “special point” (ν = 0.1), filled and hollow nano- and microcapsules are formed in the system. The multilayer character of the capsules walls is visible in the phase images. Kelvin Probe Force images showed the inhomogeneity of potential distribution in capsules and outside them.

  10. Reusable fluorescent sensor for captopril based on energy transfer from photoluminescent graphene oxide self-assembly multilayers to silver nanoparticles.

    Science.gov (United States)

    Sun, Xiangying; Liu, Bin; Li, Shuchun; Li, Fang

    2016-05-15

    In this work we designed a self-assembly multilayers, in which photoluminescent graphene oxide was employed as a fluorescence probe. This multilayers film can effectively recognize captopril by resonance energy transfer from graphite oxide to silver nanoparticles. A new interfacial sensing method for captopril with high signal to noise ratio was established, by means of that multilayers was quenched by silver nanoparticles and subsequently recovered by adding captopril. The linear relation between intensity and captopril concentration was good, and the detection limit was found to be 0.1578 μM. Also, this novel detection platform demonstrated intriguing reusable properties, and the sensor could be repeated more than ten times without obviously losing its sensing performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Crystalline mono- and multilayer self-assemblies of oligothiophenes at the air-water interface

    DEFF Research Database (Denmark)

    Isz, S.; Weissbuch, I.; Kjær, K.

    1997-01-01

    The formation of Langmuir monolayers at the air-water interface has long been believed to be limited to amphiphilic molecules containing a hydrophobic chain and a hydrophilic headgroup. Here we report the formation of crystalline mono- and multilayer self-assemblies of oligothiophenes, a class...... of aromatic nonamphiphilic molecules, self-aggregated at the air-water interface. As model systems we have examined the deposition of quaterthiophene (S-4), quinquethiophene (S-5). and sexithiophene (S-6) from chloroform solutions on the water surface. The structures of the films were determined by surface...... surface. S-5 self-ageregates at the water surface to form mixtures of monolayers and bilayers of the beta polymorph; S-6 forms primarily crystalline monolayers of both alpha and beta forms. The crystalline assemblies preserve their integrity during transfer from the water surface onto solid supports...

  12. (3-Aminopropyl)-4-methylpiperazine End-capped Poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based Multilayer Films for Gene Delivery

    Science.gov (United States)

    Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E.; Green, Jordan J

    2013-01-01

    Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized due to its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 hours, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4′-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface. PMID:23755861

  13. (3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayer films for gene delivery.

    Science.gov (United States)

    Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E; Green, Jordan J

    2013-07-10

    Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized because of its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 h, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4'-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface.

  14. Characterization of Rhodamine Self-Assembled Films Using Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Shi, Ruixia; Na, Na; Jiang, Fubin; Ouyang, Jin

    2013-06-01

    Growth process information and molecular structure identification are very important for characterization of self-assembled films. Here, we explore the possible application of desorption electrospray ionization mass spectrometry (DESI-MS) that provides the assembled information of rhodamine B (Rh B) and rhodamine 123 (Rh 123) films. With the help of lab-made DESI source, two characteristic ions [Rh B]+ and [Rh 123]+ are observed directly in the open environment. To evaluate the reliability of this technique, a comparative study of ultraviolet-visible (UV-vis) spectroscopy and our method is carried out, and the result shows good correlation. According to the signal intensity of characteristic ions, the layer-by-layer adsorption process of dyes can be monitored, and the thicknesses of multilayer films can also be comparatively determined. Combining the high sensitivity, selectivity, and speed of mass spectrometry, the selective adsorption of similar structure molecules under different pH is recognized easily from extracted ion chronograms. The variation trend of dyes signalling intensity with concentration of polyelectrolyte is studied as well, which reflects the effect of surface charge on dyes deposition. Additionally, the desorption area, surface morphology, and thicknesses of multilayer films are investigated using fluorescence microscope, scanning electron microscope (SEM), and atomic force microscopy (AFM), respectively. Because the desorption area was approximately as small as 2 mm2, the distribution situation of organic dyes in an arbitrary position could be gained rapidly, which means DESI-MS has advantages on in situ analysis.

  15. Formation and Properties of Multilayer Films Based on Polyethyleneimine and Bovine Serum Albumin

    Science.gov (United States)

    Kulikouskaya, V. I.; Lazouskaya, M. E.; Kraskouski, A. N.; Agabekov, V. E.

    2018-01-01

    (Polyethyleneimine/bovine serum albumin) n ((PEI/BSA) n) multilayer films ( n = 1-10) are produced via the layer-by-later deposition of polyelectrolytes. It is shown that thickness and morphology of the formed coatings can be controlled by varying the solution's ionic strength during alternating adsorption of the components. (PEI/BSA)10 multilayer systems that contain up to 0.6 mg of antiseptic miramistin per 1 cm2 of film were created. It is established that the kinetics of miramistin release from (PEI/BSA)10 films in phosphate buffers and physiological solutions obey the Korsmeyer-Peppas equation with a high degree of accuracy ( R 2 > 0.95).

  16. Macromolecular shape and interactions in layer-by-layer assemblies within cylindrical nanopores.

    Science.gov (United States)

    Lazzara, Thomas D; Lau, K H Aaron; Knoll, Wolfgang; Janshoff, Andreas; Steinem, Claudia

    2012-01-01

    Layer-by-layer (LbL) deposition of polyelectrolytes and proteins within the cylindrical nanopores of anodic aluminum oxide (AAO) membranes was studied by optical waveguide spectroscopy (OWS). AAO has aligned cylindrical, nonintersecting pores with a defined pore diameter d(0) and functions as a planar optical waveguide so as to monitor, in situ, the LbL process by OWS. The LbL deposition of globular proteins, i.e., avidin and biotinylated bovine serum albumin was compared with that of linear polyelectrolytes (linear-PEs), both species being of similar molecular weight. LbL deposition within the cylindrical AAO geometry for different pore diameters (d(0) = 25-80 nm) for the various macromolecular species, showed that the multilayer film growth was inhibited at different maximum numbers of LbL steps (n(max)). The value of n(max) was greatest for linear-PEs, while proteins had a lower value. The cylindrical pore geometry imposes a physical limit to LbL growth such that n(max) is strongly dependent on the overall internal structure of the LbL film. For all macromolecular species, deposition was inhibited in native AAO, having pores of d(0) = 25-30 nm. Both, OWS and scanning electron microscopy showed that LbL growth in larger AAO pores (d(0) > 25-30 nm) became inhibited when approaching a pore diameter of d(eff,n_max) = 25-35 nm, a similar size to that of native AAO pores, with d(0) = 25-30 nm. For a reasonable estimation of d(eff,n_max), the actual volume occupied by a macromolecular assembly must be taken into consideration. The results clearly show that electrostatic LbL allowed for compact macromolecular layers, whereas proteins formed loosely packed multilayers.

  17. Multilayer thin films: sequential assembly of nanocomposite materials

    National Research Council Canada - National Science Library

    Decher, Gero; Schlenoff, Joseph B

    2003-01-01

    ... polymeric or nanoparticulate building blocks, understanding the polymer physical chemistry of multilayers, or characterizing their optical, electrical or biological activities. The reasons for the intense interest in the field are also clearly evident: multilayers bridge the gap between monolayers and spun-on or dip-coated films, ...

  18. Layer-by-layer buildup of polysaccharide-containing films: Physico-chemical properties and mesenchymal stem cells adhesion.

    Science.gov (United States)

    Kulikouskaya, Viktoryia I; Pinchuk, Sergei V; Hileuskaya, Kseniya S; Kraskouski, Aliaksandr N; Vasilevich, Irina B; Matievski, Kirill A; Agabekov, Vladimir E; Volotovski, Igor D

    2018-03-22

    Layer-by-Layer assembled polyelectrolyte films offer the opportunity to control cell attachment and behavior on solid surfaces. In the present study, multilayer films based on negatively charged biopolymers (pectin, dextran sulfate, carboxymethylcellulose) and positively charged polysaccharide chitosan or synthetic polyelectrolyte polyethyleneimine has been prepared and evaluated. Physico-chemical properties of the formed multilayer films, including their growth, morphology, wettability, stability, and mechanical properties, have been studied. We demonstrated that chitosan-containing films are characterized by the linear growth, the defect-free surface, and predominantly viscoelastic properties. When chitosan is substituted for the polyethyleneimine in the multilayer system, the properties of the formed films are significantly altered: the rigidity and surface roughness increases, the film growth acquires the exponential character. The multilayer films were subsequently used for culturing mesenchymal stem cells. It has been determined that stem cells effectively adhered to chitosan-containing films and formed on them the monolayer culture of fibroblast-like cells with high viability. Our results show that cell attachment is a complex process which is not only governed by the surface functionality because one of the key parameter effects on cell adhesion is the stiffness of polyelectrolyte multilayer films. We therefore propose our Layer-by-Layer films for applications in tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  19. Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly.

    Directory of Open Access Journals (Sweden)

    Xue Zhong

    Full Text Available The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL, on which multilayer coatings can incorporate silver nanoparticles (AgNP using chitosan (CS and hyaluronic acid (HA via a layer-by-layer (LbL self-assembly technique.In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethylphosphine (TCEP to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates.The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration.The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections

  20. Polymer multilayer tattooing for enhanced DNA vaccination

    Science.gov (United States)

    Demuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.

    2013-04-01

    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These ‘multilayer tattoo’ DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination.

  1. Polymer multilayer tattooing for enhanced DNA vaccination

    Science.gov (United States)

    DeMuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.

    2014-01-01

    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These “multilayer tattoo” DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination. PMID:23353628

  2. Establishing Antibacterial Multilayer Films on the Surface of Direct Metal Laser Sintered Titanium Primed with Phase-Transited Lysozyme

    Science.gov (United States)

    Guan, Binbin; Wang, Haorong; Xu, Ruiqing; Zheng, Guoying; Yang, Jie; Liu, Zihao; Cao, Man; Wu, Mingyao; Song, Jinhua; Li, Neng; Li, Ting; Cai, Qing; Yang, Xiaoping; Li, Yanqiu; Zhang, Xu

    2016-11-01

    Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants.

  3. Establishing Antibacterial Multilayer Films on the Surface of Direct Metal Laser Sintered Titanium Primed with Phase-Transited Lysozyme.

    Science.gov (United States)

    Guan, Binbin; Wang, Haorong; Xu, Ruiqing; Zheng, Guoying; Yang, Jie; Liu, Zihao; Cao, Man; Wu, Mingyao; Song, Jinhua; Li, Neng; Li, Ting; Cai, Qing; Yang, Xiaoping; Li, Yanqiu; Zhang, Xu

    2016-11-08

    Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants.

  4. Doxorubicin-loaded poly (lactic-co-glycolic acid) nanoparticles coated with chitosan/alginate by layer by layer technology for antitumor applications.

    Science.gov (United States)

    Chai, Fujuan; Sun, Linlin; He, Xinyi; Li, Jieli; Liu, Yuanfen; Xiong, Fei; Ge, Liang; Webster, Thomas J; Zheng, Chunli

    2017-01-01

    Natural polyelectrolyte multilayers of chitosan (CHI) and alginate (ALG) were alternately deposited on doxorubicin (DOX)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) with layer by layer self-assembly to control drug release for antitumor activity. Numerous factors which influenced the multilayer growth on nano-colloidal particles were studied: polyelectrolyte concentration, NaCl concentration and temperature. Then the growth regime of the CHI/ALG multilayers was elucidated. The coated NPs were characterized by transmission electron microscopy, atomic force microscopy, X-ray diffraction and a zeta potential analyzer. In vitro studies demonstrated an undesirable initial burst release of DOX-loaded PLGA NPs (DOX-PLGA NPs), which was relieved from 55.12% to 5.78% through the use of the layer by layer technique. The release of DOX increased more than 40% as the pH of media decreased from 7.4 to 5.0. More importantly, DOX-PLGA (CHI/ALG) 3 NPs had superior in vivo tumor inhibition rates at 83.17% and decreased toxicity, compared with DOX-PLGA NPs and DOX in solution. Thus, the presently formulated PLGA-polyelectrolyte NPs have strong potential applications for numerous controlled anticancer drug release applications.

  5. Ionic Conductivity of Polyelectrolyte Hydrogels.

    Science.gov (United States)

    Lee, Chen-Jung; Wu, Haiyan; Hu, Yang; Young, Megan; Wang, Huifeng; Lynch, Dylan; Xu, Fujian; Cong, Hongbo; Cheng, Gang

    2018-02-14

    Polyelectrolytes have many important functions in both living organisms and man-made applications. One key property of polyelectrolytes is the ionic conductivity due to their porous networks that allow the transport of water and small molecular solutes. Among polyelectrolytes, zwitterionic polymers have attracted huge attention for applications that involve ion transport in a polyelectrolyte matrix; however, it is still unclear how the functional groups of zwitterionic polymer side chains affect their ion transport and swelling properties. In this study, zwitterionic poly(carboxybetaine acrylamide), poly(2-methacryloyloxyethyl phosphorylcholine), and poly(sulfobetaine methacrylate) hydrogels were synthesized and their ionic conductivity was studied and compared to cationic, anionic, and nonionic hydrogels. The change of the ionic conductivity of zwitterionic and nonionic hydrogels in different saline solutions was investigated in detail. Zwitterionic hydrogels showed much higher ionic conductivity than that of the widely used nonionic poly(ethylene glycol) methyl ether methacrylate hydrogel in all tested solutions. For both cationic and anionic hydrogels, the presence of mobile counterions led to high ionic conductivity in low salt solutions; however, the ionic conductivity of zwitterionic hydrogels surpassed that of cationic and ionic hydrogels in high salt solutions. Cationic and anionic hydrogels showed much higher water content than that of zwitterionic hydrogels in deionized water; however, the cationic hydrogels shrank significantly with increasing saline concentration. This work provides insight into the effects of polyelectrolyte side chains on ion transport. This can guide us in choosing better polyelectrolytes for a broad spectrum of applications, including bioelectronics, neural implants, battery, and so on.

  6. Self-assembled iron oxide nanoparticle multilayer: x-ray and polarized neutron reflectivity

    International Nuclear Information System (INIS)

    Mishra, D; Benitez, M J; Petracic, O; Badini Confalonieri, G A; Szary, P; Brüssing, F; Devishvili, A; Toperverg, B P; Zabel, H; Theis-Bröhl, K; Vorobiev, A; Konovalov, O; Paulus, M; Sternemann, C

    2012-01-01

    We have investigated the structure and magnetism of self-assembled, 20 nm diameter iron oxide nanoparticles covered by an oleic acid shell for scrutinizing their structural and magnetic correlations. The nanoparticles were spin-coated on an Si substrate as a single monolayer and as a stack of 5 ML forming a multilayer. X-ray scattering (reflectivity and grazing incidence small-angle scattering) confirms high in-plane hexagonal correlation and a good layering property of the nanoparticles. Using polarized neutron reflectivity we have also determined the long range magnetic correlations parallel and perpendicular to the layers in addition to the structural ones. In a field of 5 kOe we determine a magnetization value of about 80% of the saturation value. At remanence the global magnetization is close to zero. However, polarized neutron reflectivity reveals the existence of regions in which magnetic moments of nanoparticles are well aligned, while losing order over longer distances. These findings confirm that in the nanoparticle assembly the magnetic dipole–dipole interaction is rather strong, dominating the collective magnetic properties at room temperature. (paper)

  7. Assembly of multilayer microcapsules on CacO3 particles from biocompatible polysaccharides.

    Science.gov (United States)

    Zhao, Qinghe; Mao, Zhengwei; Gao, Changyou; Shen, Jiacong

    2006-01-01

    Multilayer microcapsules were fabricated by layer-by-layer (LbL) assembly of natural polysaccharides onto CaCO3 particles, following with core removal. The micron-sized CaCO3 particles were synthesized by reaction between Ca(NO3)2 and Na2CO3 solutions in the existence of carboxylmethyl cellulose (CMC). The incorporated amount of CMC in the CaCO3 particles was found to be 5.3 wt% by thermogravimetric analysis. Two biocompatible polysaccharides, chitosan and sodium alginate were alternately deposited onto the CaCO3(CMC) templates to obtain hollow microcapsules. Regular oscillation of surface charge as detected by zeta potential demonstrated that the assembly proceeded surely in a LbL manner. The stability of the microcapsules was effectively improved by cross-linking of chitosan with glutaraldehyde. The chemical reaction was verified by infrared spectroscopy. The microcapsules thus fabricated could be spontaneously filled with positively charged low molecular weight substances such as rhodamine 6G and showed good biocompatibility, as detected by in vitro cell culture.

  8. Self-assembled iron oxide nanoparticle multilayer: x-ray and polarized neutron reflectivity.

    Science.gov (United States)

    Mishra, D; Benitez, M J; Petracic, O; Badini Confalonieri, G A; Szary, P; Brüssing, F; Theis-Bröhl, K; Devishvili, A; Vorobiev, A; Konovalov, O; Paulus, M; Sternemann, C; Toperverg, B P; Zabel, H

    2012-02-10

    We have investigated the structure and magnetism of self-assembled, 20 nm diameter iron oxide nanoparticles covered by an oleic acid shell for scrutinizing their structural and magnetic correlations. The nanoparticles were spin-coated on an Si substrate as a single monolayer and as a stack of 5 ML forming a multilayer. X-ray scattering (reflectivity and grazing incidence small-angle scattering) confirms high in-plane hexagonal correlation and a good layering property of the nanoparticles. Using polarized neutron reflectivity we have also determined the long range magnetic correlations parallel and perpendicular to the layers in addition to the structural ones. In a field of 5 kOe we determine a magnetization value of about 80% of the saturation value. At remanence the global magnetization is close to zero. However, polarized neutron reflectivity reveals the existence of regions in which magnetic moments of nanoparticles are well aligned, while losing order over longer distances. These findings confirm that in the nanoparticle assembly the magnetic dipole-dipole interaction is rather strong, dominating the collective magnetic properties at room temperature.

  9. Surface modification of upconverting nanoparticles by layer-by-layer assembled polyelectrolytes and metal ions.

    Science.gov (United States)

    Palo, Emilia; Salomäki, Mikko; Lastusaari, Mika

    2017-12-15

    Modificating and protecting the upconversion luminescence nanoparticles is important for their potential in various applications. In this work we demonstrate successful coating of the nanoparticles by a simple layer-by-layer method using negatively charged polyelectrolytes and neodymium ions. The layer fabrication conditions such as number of the bilayers, solution concentrations and selected polyelectrolytes were studied to find the most suitable conditions for the process. The bilayers were characterized and the presence of the desired components was studied and confirmed by various methods. In addition, the upconversion luminescence of the bilayered nanoparticles was studied to see the effect of the surface modification on the overall intensity. It was observed that with selected deposition concentrations the bilayer successfully shielded the particle resulting in stronger upconversion luminescence. The layer-by-layer method offers multiple possibilities to control the bilayer growth even further and thus gives promises that the use of upconverting nanoparticles in applications could become even easier with less modification steps in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Elasticity, biodegradability and cell adhesive properties of chitosan/hyaluronan multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Aurore; Richert, Ludovic; Francius, Gregory; Voegel, Jean-Claude; Picart, Catherine [Present address: Universite de Montpellier II, CNRS-UMR 5539, cc107, Place Eugene Bataillon, 34 095 Montpellier Cedex 5 (France)

    2007-03-01

    In the bioengineering field, a recent and promising approach to modifying biomaterial surfaces is the layer-by-layer (LbL) technique used to build thin polyelectrolyte multilayer films. In this work, we focused on polyelectrolyte multilayer films made of two polysaccharides, chitosan (CHI) and hyaluronan (HA), and on the control of their physico-chemical and cell adhesive properties by chemical cross-linking. CHI/HA films were cross-linked using a water soluble carbodiimide and observed by confocal laser scanning microscopy (CLSM) with a fluorescently labeled CHI. Film thicknesses were similar for native and cross-linked films. The film nanometer roughness was measured by atomic force microscopy and was found to be higher for cross-linked films. Cross-linking the films also leads to a drastic change in film stiffness. The elastic modulus of the films (Young's modulus) as measured by AFM nano-indentation was about tenfold increased for cross-linked films as compared to native ones. From a biological point of view, cross-liked films are more resistant to enzymatic degradation by hyaluronidase. Furthermore, the increase in film stiffness has a favorable effect on the adhesion and spreading of chondrosarcoma cells. Thus, the CHI/HA cross-linked films could be used for various applications due to their adhesive properties and to their mechanical properties (including stability in enzymatic media)

  11. Polyelectrolyte brushes at the air/water interface

    International Nuclear Information System (INIS)

    Matsuoka, Hideki

    2005-01-01

    The nanostructure of amphiphilic diblock copolymer monolayer on water surface was investigated by in situ X-ray and neutron reflectivity. The diblock copolymers used have a long hydrophobic chain and a polyelectrolyte chain as a hydrophilic block. The monolayer was found not to have a simple double layer structure (hydrophobic layer / hydrophilic (carpet) layer) but to have a three layer structure consisting of hydrophobic layer, hydrophilic dense carpet layer, and polyelectrolyte brush layer when the polyelectrolyte block is long enough and the surface pressure (i.e. brush density) is high enough. The transition from carpet only to carpet/brush double layer structure in hydrophilic layer was observed as a function of polyelectrolyte chain length, the surface pressure. When the hydrophilic chain is a weak polyelectrolyte, the monolayer first expanded and then shrunk with increasing salt concentration in the subphase. For the strongly ionic polyelectrolyte, the monolayer structure was not affected by salt addition up to ∼0.2 M. These observations can be explained by a balance of the charged state of the brush chain, an electrostatic repulsion between brush chains and salt concentration in the brush layer

  12. Simultaneous determination of dopamine and uric acid using layer-by-layer graphene and chitosan assembled multilayer films.

    Science.gov (United States)

    Weng, Xuexiang; Cao, Qingxue; Liang, Lixin; Chen, Jianrong; You, Chunping; Ruan, Yongmin; Lin, Hongjun; Wu, Lanju

    2013-12-15

    Multilayer films containing graphene (Gr) and chitosan (CS) were prepared on glassy carbon electrodes with layer-by-layer (LBL) assembly technique. After being characterized with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM), the electrochemical sensor based on the resulted films was developed to simultaneously determine dopamine (DA) and uric acid (UA). The LBL assembled electrode showed excellent electrocatalytic activity towards the oxidation of DA and UA. In addition, the self-assembly electrode possessed an excellent sensing performance for detection of DA and UA with a linear range from 0.1 μM to 140 µM and from 1.0 µM to 125 µM with the detection limit as low as 0.05 µM and 0.1 µM based on S/N=3, respectively. © 2013 Elsevier B.V. All rights reserved.

  13. A theory for viral capsid assembly around electrostatic cores

    Science.gov (United States)

    Hagan, Michael F.

    2009-03-01

    We develop equilibrium and kinetic theories that describe the assembly of viral capsid proteins on a charged central core, as seen in recent experiments in which brome mosaic virus capsids assemble around nanoparticles functionalized with polyelectrolyte. We model interactions between capsid proteins and nanoparticle surfaces as the interaction of polyelectrolyte brushes with opposite charge using the nonlinear Poisson Boltzmann equation. The models predict that there is a threshold density of functionalized charge, above which capsids efficiently assemble around nanoparticles, and that light scatter intensity increases rapidly at early times without the lag phase characteristic of empty capsid assembly. These predictions are consistent with and enable interpretation of preliminary experimental data. However, the models predict a stronger dependence of nanoparticle incorporation efficiency on functionalized charge density than measured in experiments and do not completely capture a logarithmic growth phase seen in experimental light scatter. These discrepancies may suggest the presence of metastable disordered states in the experimental system. In addition to discussing future experiments for nanoparticle-capsid systems, we discuss broader implications for understanding assembly around charged cores such as nucleic acids.

  14. Single- and Multilayered Nanostructures via Laser-Induced Block Copolymer Self-Assembly

    Science.gov (United States)

    Majewski, Pawel; Yager, Kevin; Rahman, Atikur; Black, Charles

    We present a novel method of accelerated self-assembly of block copolymer thin films utilizing laser light, called Laser Zone Annealing (LZA). In our approach, steep temperature transients are induced in block copolymer films by rastering narrowly focused laser line over the light-absorbing substrate. Extremely steep temperature gradients accelerate the process of self-assembly by several orders-of-magnitude compared to conventional oven annealing, and, when coupled to photo-thermal shearing, lead to global alignment of block copolymer domains assessed by GISXAS diffraction studies and real-space SEM imaging. We demonstrate monolithic alignment of various block-copolymer thin films including PS-b-PMMA, PS-b-PEO, PS-b-P2VP, PS-b-PI and observe different responsiveness to the shearing rate depending on the characteristic relaxation timescale of the particular material. Subsequently, we use the aligned polymeric films as templates for synthesis of single- and multi-layered arrays of inorganic, metallic or semiconducting nanowires and nanomeshes and investigate their anisotropic electro-optical properties. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

  15. Multilayered Films Produced by Layer-by-Layer Assembly of Chitosan and Alginate as a Potential Platform for the Formation of Human Adipose-Derived Stem Cell aggregates

    Directory of Open Access Journals (Sweden)

    Javad Hatami

    2017-09-01

    Full Text Available The construction of multilayered films with tunable properties could offer new routes to produce biomaterials as a platform for 3D cell cultivation. In this study, multilayered films produced with five bilayers of chitosan and alginate (CHT/ALG were built using water-soluble modified mesyl and tosyl–CHT via layer-by-layer (LbL self-assembly. NMR results demonstrated the presences of mesyl (2.83 ppm and tosyl groups (2.39, 7.37 and 7.70 ppm in the chemical structure of modified chitosans. The buildup of multilayered films was monitored by quartz-crystal-microbalance (QCM-D and film thickness was estimated using the Voigt-based viscoelastic model. QCM-D results demonstrated that CHT/ALG films constructed using mesyl or tosyl modifications (mCHT/ALG were significantly thinner in comparison to the CHT/ALG films constructed with unmodified chitosan (p < 0.05. Adhesion analysis demonstrated that human adipose stem cells (hASCs did not adhere to the mCHT/ALG multilayered films and formed aggregates with sizes between ca. 100–200 µm. In vitro studies on cell metabolic activity and live/dead staining suggested that mCHT/ALG multilayered films are nontoxic toward hACSs. Multilayered films produced via LbL assembly of ALG and off-the-shelf, water-soluble modified chitosans could be used as a scaffold for the 3D aggregates formation of hASCs in vitro.

  16. Annealed star-branched polyelectrolytes in solution

    NARCIS (Netherlands)

    Klein Wolterink, J.; Male, van J.; Cohen Stuart, M.A.; Koopal, L.K.; Zhulina, E.B.; Borisov, O.V.

    2002-01-01

    Equilibrium conformations of annealed star-branched polyelectrolytes (polyacids) are calculated with a numerical self-consistent-field (SCF) model. From the calculations we obtain also the size and charge of annealed polyelectrolyte stars as a function of the number of arms, pH, and the ionic

  17. Electrospinning polyelectrolyte complexes: pH-responsive fibers.

    Science.gov (United States)

    Boas, Mor; Gradys, Arkadiusz; Vasilyev, Gleb; Burman, Michael; Zussman, Eyal

    2015-03-07

    Fibers were electrospun from a solution comprised of oppositely charged polyelectrolytes, in efforts to achieve highly confined macromolecular packaging. A stoichiometric ratio of poly(allylamine hydrochloride) and poly(acrylic acid) solution was mixed in an ethanol-water co-solvent. Differential scanning calorimetry (DSC) analysis of electrospun fibers demonstrated no indication of glass transition, Tg. Infrared spectroscopy (FTIR) analysis of the fibers as a function of temperature, demonstrated an amidation process at lower temperature compared to cast film. Polarized FTIR indicated a preference of the functional groups to be perpendicular to the fiber axis. These results imply formation of mixed phase fibers with enhanced conditions for intermolecular interactions, due to the highly aligned and confined assembly of the macromolecules. The tunable intermolecular interactions between the functional groups of the polyelectrolytes, impact pH-driven, reversible swelling-deswelling of the fibers. The degree of ionization of PAA at pH 5.5 and pH 1.8 varied from 85% to 18%, correspondingly, causing transformation of ionic interactions to hydrogen bonding between the functional groups. The chemical change led to a massive water diffusion of 500% by weight and to a marked increase of 400% in fiber diameter, at a rate of 0.50 μm s(-1). These results allow for manipulation and tailoring of key fiber properties for tissue engineering, membranes, and artificial muscle applications.

  18. Self-Assembly of Nanoclusters into Mono-, Few-, and Multilayered Sheets via Dipole-Induced Asymmetric van der Waals Attraction.

    Science.gov (United States)

    Wu, Zhennan; Liu, Jiale; Li, Yanchun; Cheng, Ziyi; Li, Tingting; Zhang, Hao; Lu, Zhongyuan; Yang, Bai

    2015-06-23

    Two-dimensional (2D) nanomaterials possessing regular layered structures and versatile chemical composition are highly expected in many applications. Despite the importance of van der Waals (vdW) attraction in constructing and maintaining layered structures, the origin of 2D anisotropy is not fully understood, yet. Here, we report the 2D self-assembly of ligand-capped Au15 nanoclusters into mono-, few-, and multilayered sheets in colloidal solution. Both the experimental results and computer simulation reveal that the 2D self-assembly is initiated by 1D dipolar attraction common in nanometer-sized objects. The dense 1D attachment of Au15 leads to a redistribution of the surface ligands, thus generating asymmetric vdW attraction. The deliberate control of the coordination of dipolar and vdW attraction further allows to manipulate the thickness and morphologies of 2D self-assembly architectures.

  19. Influence of the Hydrophobicity of Polyelectrolytes on Polyelectrolyte Complex Formation and Complex Particle Structure and Shape

    Directory of Open Access Journals (Sweden)

    Gudrun Petzold

    2011-08-01

    Full Text Available Polyelectrolyte complexes (PECs were prepared by structural uniform and strongly charged cationic and anionic modified alternating maleic anhydride copolymers. The hydrophobicity of the polyelectrolytes was changed by the comonomers (ethylene, isobutylene and styrene. Additionally, the n−/n+ ratio of the molar charges of the polyelectrolytes and the procedure of formation were varied. The colloidal stability of the systems and the size, shape, and structure of the PEC particles were investigated by turbidimetry, dynamic light scattering (DLS and atomic force microscopy (AFM. Dynamic light scattering indicates that beside large PEC particle aggregates distinct smaller particles were formed by the copolymers which have the highest hydrophobicity (styrene. These findings could be proved by AFM. Fractal dimension (D, root mean square (RMS roughness and the surface profiles of the PEC particles adsorbed on mica allow the following conclusions: the higher the hydrophobicity of the polyelectrolytes, the broader is the particle size distribution and the minor is the swelling of the PEC particles. Hence, the most compact particles are formed with the very hydrophobic copolymer.

  20. Enhanced Piezoelectricity in a Robust and Harmonious Multilayer Assembly of Electrospun Nanofiber Mats and Microbead-Based Electrodes.

    Science.gov (United States)

    Kim, Young Won; Lee, Han Bit; Yeon, Si Mo; Park, Jeanho; Lee, Hye Jin; Yoon, Jonghun; Park, Suk Hee

    2018-02-14

    Here, we present a simple yet highly efficient method to enhance the output performance of a piezoelectric device containing electrospun nanofiber mats. Multiple nanofiber mats were assembled together to harness larger piezoelectric sources in the as-spun fibers, thereby providing enhanced voltage and current outputs compared to those of a single-mat device. In addition to the multilayer assembly, microbead-based electrodes were integrated with the nanofiber mats to deliver a complexed compression and tension force excitation to the piezoelectric layers. A vacuum-packing process was performed to attain a tight and well-organized assembly of the device components even though the total thickness was several millimeters. The integrated piezoelectric device exhibited a maximum voltage and current of 10.4 V and 2.3 μA, respectively. Furthermore, the robust integrity of the device components could provide high-precision sensitivity to perceive small pressures down to approximately 100 Pa while retaining a linear input-output relationship.

  1. Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties.

    Science.gov (United States)

    Aulin, Christian; Karabulut, Erdem; Tran, Amy; Wågberg, Lars; Lindström, Tom

    2013-08-14

    The layer-by-layer (LbL) deposition method was used for the build-up of alternating layers of nanofibrillated cellulose (NFC) or carboxymethyl cellulose (CMC) with a branched, cationic polyelectrolyte, polyethyleneimine (PEI) on flexible poly (lactic acid) (PLA) substrates. With this procedure, optically transparent nanocellulosic films with tunable gas barrier properties were formed. 50 layer pairs of PEI/NFC and PEI/CMC deposited on PLA have oxygen permeabilities of 0.34 and 0.71 cm(3)·μm/m(2)·day·kPa at 23 °C and 50% relative humidity, respectively, which is in the same range as polyvinyl alcohol and ethylene vinyl alcohol. The oxygen permeability of these multilayer nanocomposites outperforms those of pure NFC films prepared by solvent-casting. The nanocellulosic LbL assemblies on PLA substrates was in detailed characterized using a quartz crystal microbalance with dissipation (QCM-D). Atomic force microscopy (AFM) reveals large structural differences between the PEI/NFC and the PEI/CMC assemblies, with the PEI/NFC assembly showing a highly entangled network of nanofibrils, whereas the PEI/CMC surfaces lacked structural features. Scanning electron microscopy images showed a nearly perfect uniformity of the nanocellulosic coatings on PLA, and light transmittance results revealed remarkable transparency of the LbL-coated PLA films. The present work demonstrates the first ever LbL films based on high aspect ratio, water-dispersible nanofibrillated cellulose, and water-soluble carboxymethyl cellulose polymers that can be used as multifunctional films and coatings with tailorable properties, such as gas barriers and transparency. Owing to its flexibility, transparency and high-performance gas barrier properties, these thin film assemblies are promising candidates for several large-scale applications, including flexible electronics and renewable packaging.

  2. Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing.

    Science.gov (United States)

    Regatos, David; Sepúlveda, Borja; Fariña, David; Carrascosa, Laura G; Lechuga, Laura M

    2011-04-25

    We present a theoretical and experimental study on the biosensing sensitivity of Au/Co/Au multilayers as transducers of the magneto-optic surface-plasmon-resonance (MOSPR) sensor. We demonstrate that the sensing response of these magneto-plasmonic (MP) transducers is a trade-off between the optical absorption and the magneto-optical activity, observing that the MP multilayer with larger MO effect does not provide the best sensing response. We show that it is possible to design highly-sensitive MP transducers able to largely surpass the limit of detection of the conventional surface-plasmon-resonance (SPR) sensor. This was proved comparing the biosensing performance of both sensors for the label-free detection of short DNA chains hybridization. For this purpose, we used and tested a novel label-free biofunctionalization protocol based on polyelectrolytes, which increases the resistance of MP transducers in aqueous environments.

  3. Layer-by-layer polyelectrolyte-polyester hybrid microcapsules for encapsulation and delivery of hydrophobic drugs.

    Science.gov (United States)

    Luo, Rongcong; Venkatraman, Subbu S; Neu, Björn

    2013-07-08

    A two-step process is developed to form layer-by-layer (LbL) polyelectrolyte microcapsules, which are able to encapsulate and deliver hydrophobic drugs. Spherical porous calcium carbonate (CaCO3) microparticles were used as templates and coated with a poly(lactic acid-co-glycolic acid) (PLGA) layer containing hydrophobic compounds via an in situ precipitation gelling process. PLGA layers that precipitated from N-methyl-2-pyrrolidone (NMP) had a lower loading and smoother surface than those precipitated from acetone. The difference may be due to different viscosities and solvent exchange dynamics. In the second step, the successful coating of multilayer polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) onto the PLGA coated CaCO3 microparticles was confirmed with AFM and ζ-potential studies. The release of a model hydrophobic drug, ibuprofen, from these hybrid microcapsules with different numbers of PAH/PSS layers was investigated. It was found that the release of ibuprofen decreases with increasing layer numbers demonstrating the possibility to control the release of ibuprofen with these novel hybrid microcapsules. Besides loading of hydrophobic drugs, the interior of these microcapsules can also be loaded with hydrophilic compounds and functional nanoparticles as demonstrated by loading with Fe3O4 nanoparticles, forming magnetically responsive dual drug releasing carriers.

  4. Desktop aligner for fabrication of multilayer microfluidic devices.

    Science.gov (United States)

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-07-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.

  5. Polyelectrolyte Bundles: Finite size at thermodynamic equilibrium?

    Science.gov (United States)

    Sayar, Mehmet

    2005-03-01

    Experimental observation of finite size aggregates formed by polyelectrolytes such as DNA and F-actin, as well as synthetic polymers like poly(p-phenylene), has created a lot of attention in recent years. Here, bundle formation in rigid rod-like polyelectrolytes is studied via computer simulations. For the case of hydrophobically modified polyelectrolytes finite size bundles are observed even in the presence of only monovalent counterions. Furthermore, in the absence of a hydrophobic backbone, we have also observed formation of finite size aggregates via multivalent counterion condensation. The size distribution of such aggregates and the stability is analyzed in this study.

  6. Functionalized conjugated polyelectrolytes design and biomedical applications

    CERN Document Server

    Wang, Shu

    2014-01-01

    Functionalized Conjugated Polyelectrolytes presents a comprehensive review of these polyelectrolytes and their biomedical applications. Basic aspects like molecular design and optoelectronic properties are covered in the first chapter. Emphasis is placed on the various applications including sensing (chemical and biological), disease diagnosis, cell imaging, drug/gene delivery and disease treatment. This book explores a multi-disciplinary topic of interest to researchers working in the fields of chemistry, materials, biology and medicine. It also offers an integrated perspective on both basic research and application issues. Functionalized conjugated polyelectrolyte materials, which have already drawn considerable interest, will become a major new direction for biomedicine development.

  7. Modeling the formation of ordered nano-assemblies comprised by dendrimers and linear polyelectrolytes: The role of Coulombic interactions

    Science.gov (United States)

    Eleftheriou, E.; Karatasos, K.

    2012-10-01

    Models of mixtures of peripherally charged dendrimers with oppositely charged linear polyelectrolytes in the presence of explicit solvent are studied by means of molecular dynamics simulations. Under the influence of varying strength of electrostatic interactions, these systems appear to form dynamically arrested film-like interconnected structures in the polymer-rich phase. Acting like a pseudo-thermodynamic inverse temperature, the increase of the strength of the Coulombic interactions drive the polymeric constituents of the mixture to a gradual dynamic freezing-in. The timescale of the average density fluctuations of the formed complexes initially increases in the weak electrostatic regime reaching a finite limit as the strength of electrostatic interactions grow. Although the models are overall electrically neutral, during this process the dendrimer/linear complexes develop a polar character with an excess charge mainly close to the periphery of the dendrimers. The morphological characteristics of the resulted pattern are found to depend on the size of the polymer chains on account of the distinct conformational features assumed by the complexed linear polyelectrolytes of different length. In addition, the length of the polymer chain appears to affect the dynamics of the counterions, thus affecting the ionic transport properties of the system. It appears, therefore, that the strength of electrostatic interactions together with the length of the linear polyelectrolytes are parameters to which these systems are particularly responsive, offering thus the possibility for a better control of the resulted structure and the electric properties of these soft-colloidal systems.

  8. Amperometric sensing of nitrite using a glassy carbon electrode modified with a multilayer consisting of carboxylated nanocrystalline cellulose and poly(diallyldimethyl ammonium) ions in a PEDOT host

    International Nuclear Information System (INIS)

    Xu, Guiyun; Liang, Shaoping; Sheng, Ge; Luo, Xiliang; Fan, Jinshi

    2016-01-01

    Negatively charged carboxylated nanocrystalline cellulose (CNCC) and positively charged poly(diallyldimethyl ammonium chloride) (PDDA) were alternatingly assembled on the surface of a glassy carbon electrode to form a relatively uniform polyelectrolyte multilayer nanocomposite (CNCC/PDDA)n. It was then incorporated into a matrix of conducting poly(3,4-ethylenedioxythiophene) (PEDOT) electrodeposited on the surface of the electrode. The nanocomposites were prepared in various ratios of PEDOT and (CNCC/PDDA), and then characterized by transmission electron microscopy, scanning electron microscopy, electrochemical impedance spectroscopy, cyclic voltammetry, and differential pulse voltammetry. The PEDOT/(CNCC/PDDA)4 nanocomposite showed the lowest electrochemical impedance and best electrocatalytic activity towards the oxidation of nitrite. Based on these findings, an amperometric sensor was developed which, if operated at 0.80 V (vs. SCE), can detect nitrite in the 0.2 μM to 1.73 mM concentration range with a 57 nM detection limit. (author)

  9. Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets.

    Science.gov (United States)

    Priolo, Morgan A; Holder, Kevin M; Guin, Tyler; Grunlan, Jaime C

    2015-05-01

    Layer-by-layer (LbL) assembly has emerged as the leading non-vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide-based barrier films. This Feature Article is a mini-review of LbL-based multilayer thin films with a 'nanobrick wall' microstructure comprising polymeric mortar and nano-platelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water-based thin films exhibit oxygen transmission rates below 5 × 10(-3) cm(3) m(-2) day(-1) atm(-1) and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake-filled polymers are briefly reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. New method for fabrication of loaded micro- and nanocontainers: emulsion encapsulation by polyelectrolyte layer-by-layer deposition on the liquid core.

    Science.gov (United States)

    Grigoriev, D O; Bukreeva, T; Möhwald, H; Shchukin, D G

    2008-02-05

    A novel approach to the emulsion encapsulation was developed by combining the advantages of direct encapsulation of a liquid colloidal core with the accuracy and multifunctionality of layer-by-layer polyelectrolyte deposition. Experimental data obtained for the model oil-in-water emulsion confirm unambiguously the alternating PE assembly in the capsule shell as well as the maintenance of the liquid colloidal core. Two different mechanisms of capsule destruction upon interaction with the solid substrate were observed and qualitatively explained. The proposed method can be easily generalized to the preparation of oil-filled capsules in various oil/water/polyelectrolyte systems important in the field of pharmacy, medicine, and food industry.

  11. Influence of Hydrophobicity on Polyelectrolyte Complexation

    Energy Technology Data Exchange (ETDEWEB)

    Sadman, Kazi [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States; Wang, Qifeng [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States; Chen, Yaoyao [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States; Keshavarz, Bavand [Department; Jiang, Zhang [X-ray; Shull, Kenneth R. [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States

    2017-11-16

    Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP) with methyl, ethyl and propyl substituents– thereby increasing the hydrophobicity with increasing side chain length– and complexing them with a common anionic polyelectrolyte, poly(styrene sulfonate). The mechanical 1 ACS Paragon Plus Environment behavior of these complexes is compared to the more hydrophilic system of poly(styrene sulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling-modulus master curves that are quantified in this work. The rheological behavior of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.

  12. Characterization for Soil Fixation by Polyelectrolyte Complex

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Suk; Kwon, Sang Woon; Yang, Heeman; Lee, Kune Woo; Seo, Bumkyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    According to report, the radioactivity bulk (approx. 95%) is localized within topsoil. Therefore soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils with Cs-137 by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been also used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and make into the polyelectrolyte complex (PEC) due to electrostatic interaction of polyanion and polycation in an aqueous solution. It can be avoids using the chemical cross-linking agents, and reducing the possible toxicity and other undesirable effects of the reagents. PEC can fix soil particles by flocculation and formation of crust between soil. The method can also prevent a spread of radioactive material by floating on a soil surface. Recently, PEC used for the solidification of soil near the Fukushima nuclear power plant in Japan. The decontamination efficiency of the surface soils reached 90%, and dust release was effectively suppressed during the removal of surface soils. In this study, it was investigated the fixation of the soil by PEC to avoid the spread of the contamination in addition to the separation of soil and PEC. The physicochemical properties of polyelectrolyte complex solution and the stability of fixed soil by PEC were investigated. The mode of the addition is important to prepare the polyelectrolytes complex without PAA agglomerate. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation.

  13. Characterization for Soil Fixation by Polyelectrolyte Complex

    International Nuclear Information System (INIS)

    Choi, Yong Suk; Kwon, Sang Woon; Yang, Heeman; Lee, Kune Woo; Seo, Bumkyoung; Moon, Jei Kwon

    2014-01-01

    According to report, the radioactivity bulk (approx. 95%) is localized within topsoil. Therefore soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils with Cs-137 by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been also used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and make into the polyelectrolyte complex (PEC) due to electrostatic interaction of polyanion and polycation in an aqueous solution. It can be avoids using the chemical cross-linking agents, and reducing the possible toxicity and other undesirable effects of the reagents. PEC can fix soil particles by flocculation and formation of crust between soil. The method can also prevent a spread of radioactive material by floating on a soil surface. Recently, PEC used for the solidification of soil near the Fukushima nuclear power plant in Japan. The decontamination efficiency of the surface soils reached 90%, and dust release was effectively suppressed during the removal of surface soils. In this study, it was investigated the fixation of the soil by PEC to avoid the spread of the contamination in addition to the separation of soil and PEC. The physicochemical properties of polyelectrolyte complex solution and the stability of fixed soil by PEC were investigated. The mode of the addition is important to prepare the polyelectrolytes complex without PAA agglomerate. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation

  14. Transfer-Free Growth of Multilayer Graphene Using Self-Assembled Monolayers.

    Science.gov (United States)

    Yang, Gwangseok; Kim, Hong-Yeol; Jang, Soohwan; Kim, Jihyun

    2016-10-12

    Large-area graphene needs to be directly synthesized on the desired substrates without using a transfer process so that it can easily be used in industrial applications. However, the development of a direct method for graphene growth on an arbitrary substrate remains challenging. Here, we demonstrate a bottom-up and transfer-free growth method for preparing multilayer graphene using a self-assembled monolayer (trimethoxy phenylsilane) as the carbon source. Graphene was directly grown on various substrates such as SiO 2 /Si, quartz, GaN, and textured Si by a simple thermal annealing process employing catalytic metal encapsulation. To determine the optimal growth conditions, experimental parameters such as the choice of catalytic metal, growth temperatures, and gas flow rate were investigated. The optical transmittance at 550 nm and the sheet resistance of the prepared transfer-free graphene are 84.3% and 3500 Ω/□, respectively. The synthesized graphene samples were fabricated into chemical sensors. High and fast responses to both NO 2 and NH 3 gas molecules were observed. The transfer-free graphene growth method proposed in this study is highly compatible with previously established fabrication systems, thereby opening up new possibilities for using graphene in versatile applications.

  15. Polyelectrolyte functionalized gold nanoparticles-reduced graphene oxide nanohybrid for electrochemical determination of aminophenol isomers

    International Nuclear Information System (INIS)

    Li, Xinchun; Zhong, Anni; Wei, Shanshan; Luo, Xiaoli; Liang, Yanjin; Zhu, Qiao

    2015-01-01

    A green chemical method for preparation of gold nanoparticles-reduced graphene oxide nanocomposite is described. This can be readily accomplished through a two-step chemical reduction scheme by using poly(diallyldimethylammonium chloride), a cationic polyelectrolyte as a common reducer. Polyelectrolyte here also serves to stabilize gold nanoparticles and is beneficial to electrical communication, leading to the formation of well-characteristic nanohybrid. The prepared nanomaterial showed remarkable electrocatalytic ability as a result of the rational conjunction of graphene and gold nanoparticles, which was demonstrated by direct electrochemical determination of three aminophenol isomers on a modified glassy carbon electrode. Effective peak separation of three isomers was achieved due to the favorable electron-transfer network perfectly assembled on the electrode surface, thus enabling the simultaneous assay of multiple components featuring analogous chemical structure without chromatographic separation. The modified electrode was further used to detect para-aminophenol in paracetamol tablets. The present method is simple, eco-friendly and holds potential for electroanalytical and biosensing applications

  16. Recent progress in the applications of layer-by-layer assembly to the preparation of nanostructured ion-rejecting water purification membranes.

    Science.gov (United States)

    Sanyal, Oishi; Lee, Ilsoon

    2014-03-01

    Reverse osmosis (RO) and nanofiltration (NF) are the two dominant membrane separation processes responsible for ion rejection. While RO is highly efficient in removal of ions it needs a high operating pressure and offers very low selectivity between ions. Nanofiltration on the other hand has a comparatively low operating pressure and most commercial membranes offer selectivity in terms of ion rejection. However in many nanofiltration operations rejection of monovalent ions is not appreciable. Therefore a high flux high rejection membrane is needed that can be applied to water purification systems. One such alternative is the usage of polyelectrolyte multilayer membranes that are prepared by the deposition of alternately charged polyelectrolytes via layer-by-layer (LbL) assembly method. LbL is one of the most common self-assembly techniques and finds application in various areas. It has a number of tunable parameters like deposition conditions, number of bilayers deposited etc. which can be manipulated as per the type of application. This technique can be applied to make a nanothin membrane skin which gives high rejection and at the same time allow a high water flux across it. Several research groups have applied this highly versatile technique to prepare membranes that can be employed for water purification. Some of these membranes have shown better performance than the commercial nanofiltration and reverse osmosis membranes. These membranes have the potential to be applied to various different aspects of water treatment like water softening, desalination and recovery of certain ions. Besides the conventional method of LbL technique other alternative methods have also been suggested that can make the technique fast, more efficient and thereby make it more commercially acceptable.

  17. N-halamine biocidal coatings via a layer-by-layer assembly technique.

    Science.gov (United States)

    Cerkez, Idris; Kocer, Hasan B; Worley, S D; Broughton, R M; Huang, T S

    2011-04-05

    Two N-halamine copolymer precursors, poly(2,2,6,6-tetramethyl-4-piperidyl methacrylate-co-acrylic acid potassium salt) and poly(2,2,6,6-tetramethyl-4-piperidyl methacrylate-co-trimethyl-2-methacryloxyethylammonium chloride) have been synthesized and successfully coated onto cotton fabric via a layer-by-layer (LbL) assembly technique. A multilayer thin film was deposited onto the fiber surfaces by alternative exposure to polyelectrolyte solutions. The coating was rendered biocidal by a dilute household bleach treatment. The biocidal efficacies of tested swatches composed of treated fibers were evaluated against Staphylococcus aureus and Escherichia coli. It was determined that chlorinated samples inactivated both S. aureus and E. coli O157:H7 within 15 min of contact time, whereas the unchlorinated control samples did not exhibit significant biocidal activities. Stabilities of the coatings toward washing and ultraviolet light exposure have also been studied. It was found that the stability toward washing was superior, whereas the UVA light stability was moderate compared to previously studied N-halamine moieties. The layer-by-layer assembly technique can be used to attach N-halamine precursor polymers onto cellulose surfaces without using covalently bonding tethering groups which limit the structure designs. In addition, ionic precursors are very soluble in water, thus promising for biocidal coatings without the use of organic solvents.

  18. Finite-size polyelectrolyte bundles at thermodynamic equilibrium

    Science.gov (United States)

    Sayar, M.; Holm, C.

    2007-01-01

    We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite-size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite-size aggregates.

  19. [Inclusion of proteins into polyelectrolyte microcapsules by coprecipitation and adsorption].

    Science.gov (United States)

    Kochetkova, O Iu; Kazakova, L I; Moshkov, D A; Vinokurov, M G; Shabarchina, L I

    2013-01-01

    In present study microcapsules composed of synthetic (PSS and PAA) and biodegradable (DS and PAr) polyelectrolytes on calcium carbonate microparticles were obtained. The ultrastructural organization of biodegradable microcapsules was studied using transmission electron microscopy. The envelope of such capsules consisting of six polyelectrolyte layers is already well-formed, having the average thickness of 44 ± 3.0 nm, and their internal polyelectrolyte matrix is sparser compared to the synthetic microcapsules. Spectroscopy was employed to evaluate the efficiency of incorporation of FITC-labeled BSA into synthetic microcapsules by adsorption, depending on the number of polyelectrolyte layers. It was shown that the maximal amount of protein incorporated into the capsules with 6 or 7 polyelectrolyte layers (4 and 2 pg/capsule, correspondingly). As a result we conclude that, in comparison with co-precipitation, the use of adsorption allows to completely avoid the loss of protein upon encapsulation.

  20. Formation and enzymatic degradation of poly-l-arginine/fucoidan multilayer films.

    Science.gov (United States)

    Webber, Jessie L; Benbow, Natalie L; Krasowska, Marta; Beattie, David A

    2017-11-01

    A polyelectrolyte multilayer (PEM) system based on biopolymers has been constructed and studied in its formation and enzymatic breakdown. The multilayer is composed of fucoidan (a proven antimicrobial/anti-inflammatory seaweed-based polysaccharide) and poly-l-arginine (a polypeptide that can be readily degraded with trypsin to yield arginine, a known NO donor), thus making the multilayer a potential dual action surface treatment for wound dressings. Studies on the formation of the multilayer revealed that the film built-up in the expected stepwise manner with consistent reversal of the zeta potential upon the adsorption of each subsequent polyion. The completed film (8 bilayers) was seen to have low hydration (30% water), as determined by H 2 O/D 2 O solvent replacement studies using the quartz crystal microbalance, with an adsorbed mass (without hydration water) of approx. 4.8μgcm -2 , as determined by quantitative attenuated total reflectance Fourier transform infrared (ATR FTIR) spectroscopy. The enzymatic breakdown of the film in response to exposure to trypsin was also investigated, and the film was seen to release both polymers over time, with a projected complete film removal period of approximately 24h. Critically, this information was determined using ATR FTIR spectroscopy experiments, which allowed unambiguous deconvolution of the removal rates of the two polyions, which is information that cannot be obtained from other methodologies used to study enzymatic breakdown of surface films. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies.

    Science.gov (United States)

    Yoon, Jongseung; Jo, Sungjin; Chun, Ik Su; Jung, Inhwa; Kim, Hoon-Sik; Meitl, Matthew; Menard, Etienne; Li, Xiuling; Coleman, James J; Paik, Ungyu; Rogers, John A

    2010-05-20

    Compound semiconductors like gallium arsenide (GaAs) provide advantages over silicon for many applications, owing to their direct bandgaps and high electron mobilities. Examples range from efficient photovoltaic devices to radio-frequency electronics and most forms of optoelectronics. However, growing large, high quality wafers of these materials, and intimately integrating them on silicon or amorphous substrates (such as glass or plastic) is expensive, which restricts their use. Here we describe materials and fabrication concepts that address many of these challenges, through the use of films of GaAs or AlGaAs grown in thick, multilayer epitaxial assemblies, then separated from each other and distributed on foreign substrates by printing. This method yields large quantities of high quality semiconductor material capable of device integration in large area formats, in a manner that also allows the wafer to be reused for additional growths. We demonstrate some capabilities of this approach with three different applications: GaAs-based metal semiconductor field effect transistors and logic gates on plates of glass, near-infrared imaging devices on wafers of silicon, and photovoltaic modules on sheets of plastic. These results illustrate the implementation of compound semiconductors such as GaAs in applications whose cost structures, formats, area coverages or modes of use are incompatible with conventional growth or integration strategies.

  2. Construction of multilayers of bare and Pd modified gold nanoclusters and their electrocatalytic properties for oxygen reduction

    Directory of Open Access Journals (Sweden)

    Motoko Harada, Hidenori Noguchi, Nikolas Zanetakis, Satoru Takakusagi, Wenbo Song and Kohei Uosaki

    2011-01-01

    Full Text Available Multilayers of gold nanoclusters (GNCs coated with a thin Pd layer were constructed using GNCs modified with self-assembled monolayers (SAMs of mercaptoundecanoic acid and a polyallylamine hydrochloride (PAH multilayer assembly, which has been reported to act as a three-dimensional electrode. SAMs were removed from GNCs by electrochemical anodic decomposition and then a small amount of Pd was electrochemically deposited on the GNCs. The kinetics of the oxygen reduction reaction (ORR on the Pd modified GNC/PAH multilayer assembly was studied using a rotating disk electrode, and a significant increase in the ORR rate was observed after Pd deposition. Electrocatalytic activities in alkaline and acidic solutions were compared both for the GNC multilayer electrode and Pd modified GNC electrode.

  3. Imprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling

    NARCIS (Netherlands)

    Puniredd, S.R.; Janczewski, D.; Go, D.P.; Zhu, X.; Guo, S.; Teo, S.L-M.; Lee, S.S.C.; Vancso, Gyula J.

    2015-01-01

    Polymeric films constructed using the layer-by-layer (LbL) fabrication process were employed as a platform for metal ion immobilization and applied as a marine antifouling coating. The novel Cu2+ ion imprinting process described is based on the use of metal ion templates and LbL multilayer covalent

  4. Colloid stabilization by polyelectrolytes. Application to decontamination processes of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, E.; Torok, J.

    1988-01-01

    Sodium salts of the following anionic polyelectrolytes were evaluated as particle stabilizers: polyacrylic acid, polymethacrylic acid, poly (methyl vinyl ethermaleic anhydride), sulfonated polymers. A cationic polyelectrolyte, a polyamine, was also evaluated. An active and an inactive oxidized carbon steel sample were treated in the same experimental set-up with the decontaminating reagent and with or without the polyelectrolyte. Activity pick-up by the inactive sample was measured. When no polyelectrolyte was added, 15% of the Co-60 activity was redeposited. With polyelectrolyte addition in the 5-450 mg kg/sup -1/ range, the Co60 activity redeposition ranged from 8.5 down to 0.8%. Polyacrylic acid was the most effective reagent. The transfer of the magnetite outer oxide crystals from the active to the inactive surfaces was identified on SEM micrographs.

  5. (3-Aminopropyl)-4-methylpiperazine End-capped Poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based Multilayer Films for Gene Delivery

    OpenAIRE

    Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E.; Green, Jordan J

    2013-01-01

    Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized due to its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed ...

  6. Distribution of PEG-coated hollow polyelectrolyte microcapsules after introduction into the circulatory system and muscles of zebrafish

    Directory of Open Access Journals (Sweden)

    Ekaterina Borvinskaya

    2018-01-01

    Full Text Available The use of polyelectrolyte multilayer microcapsules as carriers for fluorescent molecular probes is a prospective technique for monitoring the physiological characteristics of animal vasculature and interstitial environment in vivo. Polyelectrolyte microcapsules have many features that favor their use as implantable carriers of optical sensors, but little information is available on their interactions with complex living tissues, distribution or residence time following different routes of administration in the body of vertebrates. Using the common fish model, the zebrafish Danio rerio, we studied in vivo the distribution of non-biodegradable microcapsules covered with polyethylene glycol (PEG over time in the adults and evaluated potential side effects of their delivery into the fish bloodstream and muscles. Fluorescent microcapsules administered into the bloodstream and interstitially (in concentrations that were sufficient for visualization and spectral signal recording both showed negligible acute toxicity to the fishes during three weeks of observation. The distribution pattern of microcapsules delivered into the bloodstream was stable for at least one week, with microcapsules prevalent in capillaries-rich organs. However, after intramuscular injection, the phagocytosis of the microcapsules by immune cells was manifested, indicating considerable immunogenicity of the microcapsules despite PEG coverage. The long-term negative effects of chronic inflammation were also investigated in fish muscles by histological analysis.

  7. Hydrophobically modified polyelectrolytes : synthesis, properties and interactions with surfactants

    NARCIS (Netherlands)

    Nieuwkerk, A.C.

    1998-01-01

    Hydrophobically modified polyelectrolytes can form micelle-like aggregates, so-called microdomains, in aqueous solution. The hydrophobic side chains constitute the apolar inner part of these microdomains and the hydrophilic groups on the polyelectrolyte backbone are at the surface of the

  8. Complexation Behavior of Polyelectrolytes and Polyampholytes

    KAUST Repository

    Nair, Arun Kumar Narayanan; Jimenez, Arturo Martinez; Sun, Shuyu

    2017-01-01

    We perform grand canonical Monte Carlo simulations to study the pH titrations of isolated polyampholytes and polyelectrolyte-polyampholyte complexes in dilute solutions. Our simulations indicate that the electrostatic interactions promote the coexistence of opposite charges along the polyampholyte chain during titration. The repulsion between excess charges typically dominates the electrostatic interaction and leads to polymer stretching. Salt ions can screen the repulsion between excess charges as well as the fluctuation-induced attraction between opposite charges, and therefore make the variation between titration curves of polyampholytes and the ideal (no electrostatic interactions) curves less significant. We observe that this screening of charge repulsion decreases the chain size. The presence of pearl-necklace configuration of polyampholytes is diminished by the addition of salt. Similar simulations for the polyelectrolyte-polyampholyte system show that the resulting complexes are generally stable in the low pH region. In comparison to ideal case, electrostatic interactions strongly influence the acid-base properties of polyampholyte chains in the adsorbed state by reducing the presence of the coexistence domain of both positive and negative charges in the titration curves. We attribute the complex formation between polyelectrolyte and polyampholyte chains in the high pH region to, e.g., the high salt content. The pH variation leads to abrupt transition between adsorbed and desorbed states. Independent of charge sequence, a polyampholyte chain in a complex is usually located at one of the ends of the polyelectrolyte chain.

  9. Complexation Behavior of Polyelectrolytes and Polyampholytes

    KAUST Repository

    Nair, Arun Kumar Narayanan

    2017-07-25

    We perform grand canonical Monte Carlo simulations to study the pH titrations of isolated polyampholytes and polyelectrolyte-polyampholyte complexes in dilute solutions. Our simulations indicate that the electrostatic interactions promote the coexistence of opposite charges along the polyampholyte chain during titration. The repulsion between excess charges typically dominates the electrostatic interaction and leads to polymer stretching. Salt ions can screen the repulsion between excess charges as well as the fluctuation-induced attraction between opposite charges, and therefore make the variation between titration curves of polyampholytes and the ideal (no electrostatic interactions) curves less significant. We observe that this screening of charge repulsion decreases the chain size. The presence of pearl-necklace configuration of polyampholytes is diminished by the addition of salt. Similar simulations for the polyelectrolyte-polyampholyte system show that the resulting complexes are generally stable in the low pH region. In comparison to ideal case, electrostatic interactions strongly influence the acid-base properties of polyampholyte chains in the adsorbed state by reducing the presence of the coexistence domain of both positive and negative charges in the titration curves. We attribute the complex formation between polyelectrolyte and polyampholyte chains in the high pH region to, e.g., the high salt content. The pH variation leads to abrupt transition between adsorbed and desorbed states. Independent of charge sequence, a polyampholyte chain in a complex is usually located at one of the ends of the polyelectrolyte chain.

  10. DNA hydrogel-based supercapacitors operating in physiological fluids

    OpenAIRE

    Hur, Jaehyun; Im, Kyuhyun; Hwang, Sekyu; Choi, ByoungLyong; Kim, Sungjee; Hwang, Sungwoo; Park, Nokyoung; Kim, Kinam

    2013-01-01

    DNA nanostructures have been attractive due to their structural properties resulting in many important breakthroughs especially in controlled assemblies and many biological applications. Here, we report a unique energy storage device which is a supercapacitor that uses nanostructured DNA hydrogel (Dgel) as a template and layer-by-layer (LBL)-deposited polyelectrolyte multilayers (PEMs) as conductors. Our device, named as PEM-Dgel supercapacitor, showed excellent performance in direct contact ...

  11. Superhydrophilic Polyelectrolyte Brush Layers with Imparted Anti-Icing Properties

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Järn, Mikael; Shimizu, Kyoko

    2014-01-01

    . In general, superhydrophilic polyelectrolyte brushes exhibit better anti-icing property at -10 °C compared to partially hydrophobic brushes such as poly(methyl methacrylate) and surfactant exchanged polyelectrolyte brushes. The data are interpreted using the concept of a quasi liquid layer (QLL...

  12. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    International Nuclear Information System (INIS)

    Voisin, David

    2002-01-01

    Oppositely charged surfactant and polyelectrolyte are present in hair shampoos and conditioners, together with particles (e.g. anti-dandruff agents for scalp) and droplets (e.g. silicone oil for the hair). These are normally formulated at high surfactant concentrations, beyond the flocculation region for the polyelectrolyte concentration used. However, on dilution with water, during application, flocs are formed which carry the particles and droplets to the scalp and hair. The addition of an anionic surfactant to an aqueous solution of cationic polyelectrolyte, at a given concentration, can lead to the formation of polyelectrolyte-surfactant 'particles', in which the surfactant 'binds' to the polyelectrolyte. This occurs from the critical association concentration (CAC), up to the surfactant concentration corresponding to maximum binding. Within this range of surfactant concentrations, the surfactant bound to the polyelectrolyte is thought to associate to form what might be termed 'internal micelles'. Each polyelectrolyte-surfactant particle in the region of the CAC, and just beyond, contains many polyelectrolyte chains, held together essentially by micelle bridges. These particles, however, remain net positively charged, and therefore stable. At the other end of the binding range of the surfactant, so many internal micelles are present that the polymer-surfactant particles are now net negatively charged. Indeed binding stops since no further micelles can be accommodated. Again, the particles are stable. However, there exists a range of surfactant concentrations, lying within the range referred to above, where the net charge is reduced sufficiently that the polymer-surfactant particles will flocculate to form much larger structures. The onset of this second range might be termed the 'critical flocculation concentration' (CFC), and the end, the 'critical stabilisation concentration' (CSC). In this work, the CFC and the CSC have been determined for mixtures of

  13. A surface-mediated siRNA delivery system developed with chitosan/hyaluronic acid-siRNA multilayer films through layer-by-layer self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lijuan [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Wu, Changlin, E-mail: Ph.Dclwu1314@sina.cn [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Liu, Guangwan [Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Liao, Nannan [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Zhao, Fang; Yang, Xuxia; Qu, Hongyuan [Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Peng, Bo [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Chen, Li [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Yang, Guang [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China)

    2016-12-15

    Highlights: • We prepared Chitosan/Hyaluronic acid-siRNA multilayer as carrier to effectively load and protect siRNAs. • The stability and integrity of the siRNA was verified in the siRNA-loaded films. • The siRNA-loaded films showed good cells adhesion and gene silencing effect in eGFP-HEK 293T cells. • This is a new type of surface-mediated non-viral multilayer films. - Abstract: siRNA delivery remains highly challenging because of its hydrophilic and anionic nature and its sensitivity to nuclease degradation. Effective siRNA loading and improved transfection efficiency into cells represents a key problem. In our study, we prepared Chitosan/Hyaluronic acid-siRNA multilayer films through layer-by-layer self-assembly, in which siRNAs can be effectively loaded and protected. The construction process was characterized by FTIR, {sup 13}C NMR (CP/MAS), UV–vis spectroscopy, and atomic force microscopy (AFM). We presented the controlled-release performance of the films during incubation in 1 M NaCl solution for several days through UV–vis spectroscopy and polyacrylamide gel electrophoresis (PAGE). Additionally, we verified the stability and integrity of the siRNA loaded on multilayer films. Finally, the biological efficacy of the siRNA delivery system was evaluated via cells adhesion and gene silencing analyses in eGFP-HEK 293T cells. This new type of surface-mediated non-viral multilayer films may have considerable potential in the localized and controlled-release delivery of siRNA in mucosal tissues, and tissue engineering application.

  14. Recruitment and Consolidation of Cell Assemblies for Words by Way of Hebbian Learning and Competition in a Multi-Layer Neural Network.

    Science.gov (United States)

    Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann

    2009-06-01

    Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly's halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support.

  15. Photoluminescence and photostability of YVO{sub 4}:Eu{sup 3+} nanoparticle/layered double hydroxide multilayer films prepared via layer-by-layer assembly

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Wataru; Takeshita, Satoru, E-mail: takeshita@applc.keio.ac.jp; Iso, Yoshiki; Isobe, Tetsuhiko, E-mail: isobe@applc.keio.ac.jp

    2016-07-15

    Layered double hydroxides (LDHs) consist of positively charged brucite-like layers with interlayer anions for charge compensation. Delaminated cationic LDH nanosheets can be used as building blocks to fabricate functional nanocomposites. In this study, we fabricated photoluminescent multilayer films containing positively charged LDH nanosheets and negatively charged YVO{sub 4}:Eu{sup 3+} nanoparticles on quartz glass substrates through a layer-by-layer assembly technique. The absorbance and photoluminescence (PL) intensity of the YVO{sub 4}:Eu{sup 3+} nanoparticles in the multilayer films were proportional to the number of deposition cycles. These linear relationships indicate that constant amounts of LDH nanosheets and YVO{sub 4}:Eu{sup 3+} nanoparticles were alternately deposited on the substrate. The change in intensity of the 620 nm emission of the YVO{sub 4}:Eu{sup 3+} nanoparticle powder and the multilayer film (LDH/YVO{sub 4}:Eu{sup 3+}){sub 10} under continuous 270 nm excitation was measured to compare both photostabilities. The PL intensity of the YVO{sub 4}:Eu{sup 3+} nanoparticle powder decreased to 7% of the initial intensity and then gradually recovered to 19%. In contrast, the PL intensity of the multilayer film (LDH/YVO{sub 4}:Eu{sup 3+}){sub 10} decreased to 36% of the initial intensity and then recovered to 139%. The photo-degradation and recovery are discussed.

  16. Construction of pegylated multilayer architectures via (strept)avidin/biotin interactions

    International Nuclear Information System (INIS)

    Dai Zhifei; Wilson, John T.; Chaikof, Elliot L.

    2007-01-01

    Pegylated multilayer architectures were fabricated as films on planar substrates, as shells on colloidal particles, or as free-standing hollow capsules using layer-by-layer (LbL) self-assembly of biotinylated poly-L-lysine (PLL) and (strept)avidin. Poly(ethylene glycol) (PEG) was incorporated into the multilayer architectures by assembly with biotin-derivatized poly(L-lysine)-g-poly(ethylene glycol)(PPB). Stepwise growth of multilayers was followed by UV-vis spectroscopy and the formation of core-shells and hollow capsules characterized by means of confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). Both absorbance and TEM data suggest that approximately two layers of FITC-avidin were adsorbed with each surface deposition. In contrast, use of unmodified PLL did not lead to formation of multilayer coatings, confirming that (strept)avidin-biotin interactions were responsible for film growth even in the presence of electrostatic repulsive forces between PLL and avidin and the steric hindrance of associated PEG chains. This technique provides new opportunities for the generation of robust films with tailored interfacial binding and transport properties

  17. Quantifying quality in DNA self-assembly

    Science.gov (United States)

    Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik

    2014-01-01

    Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids. PMID:24751596

  18. Layer-by-layer assembled highly absorbing hundred-layer films containing a phthalocyanine dye: Fabrication and photosensibilization by thermal treatment

    International Nuclear Information System (INIS)

    Sergeeva, Alena S.; Volkova, Elena K.; Bratashov, Daniil N.; Shishkin, Mikhail I.; Atkin, Vsevolod S.; Markin, Aleksey V.; Skaptsov, Aleksandr A.; Volodkin, Dmitry V.; Gorin, Dmitry A.

    2015-01-01

    Highly absorbing hundred-layer films based on poly(diallyldimethylammonium chloride) (PDADMAC) of various molecular weights and on sulfonated copper phthalocyanine (CuPcTs) were prepared using layer-by-layer assembly. The multilayer films grew linearly up to 54 bilayers, indicating that the same amount of CuPcTs was adsorbed at each deposition step. This amount, however, was dependent on the molecular weight of PDADMAC in the range 100-500 kDa: the higher the molecular weight, the more CuPcTs molecules were adsorbed. This can be explained by the larger surface charge number density specific to longer polymer chains. Domains of pure PDADMAC and of the PDADMAC/CuPcTs complex were formed in the films during the assembly. Uniform distribution of CuPcTs over the films could be achieved by thermal treatment, leading to an α → β phase transition in phthalocyanine at 300 °C. Annealing caused changes in the film absorbance spectra, resulting in a 30-nm red shift of the peak maxima and in a strong (up to 62%) decrease in optical density. Thermogravimetric analysis revealed thermodegradation of PDADMAC during annealing above 270 °C, giving rise to micrometer-sized cracks within the films, as evidenced by scanning electron microscopy. - Highlights: • The films exhibit the linear dependence of the adsorption on the bilayer number varied from 2 until 54. • Polyelectrolyte of the highest MW shows the maximal adsorption of copper phthalocyanine molecules. • Annealing of the films causes a red-shift of the maxima in the absorbance spectra. • Cracks and micropores emerged in the multilayer films during the annealing

  19. Layer-by-Layer Self-Assembled Metal-Ion- (Ag-, Co-, Ni-, and Pd- Doped TiO2 Nanoparticles: Synthesis, Characterisation, and Visible Light Degradation of Rhodamine B

    Directory of Open Access Journals (Sweden)

    Mphilisi M. Mahlambi

    2012-01-01

    Full Text Available Metal-ion- (Ag, Co, Ni and Pd doped titania nanocatalysts were successfully deposited on glass slides by layer-by-layer (LbL self-assembly technique using a poly(styrene sulfonate sodium salt (PSS and poly(allylamine hydrochloride (PAH polyelectrolyte system. Solid diffuse reflectance (SDR studies showed a linear increase in absorbance at 416 nm with increase in the number of m-TiO2 thin films. The LbL assembled thin films were tested for their photocatalytic activity through the degradation of Rhodamine B under visible-light illumination. From the scanning electron microscope (SEM, the thin films had a porous morphology and the atomic force microscope (AFM studies showed “rough” surfaces. The porous and rough surface morphology resulted in high surface areas hence the high photocatalytic degradation (up to 97% over a 6.5 h irradiation period using visible-light observed. Increasing the number of multilayers deposited on the glass slides resulted in increased film thickness and an increased rate of photodegradation due to increase in the availability of more nanocatalysts (more sites for photodegradation. The LbL assembled thin films had strong adhesion properties which made them highly stable thus displaying the same efficiencies after five (5 reusability cycles.

  20. Polyelectrolyte coatings prevent interferences from charged nanoparticles in SPME speciation analysis

    International Nuclear Information System (INIS)

    Zielińska, Katarzyna; Leeuwen, Herman P. van

    2014-01-01

    Highlights: • For the first time SPME fiber is coated with polyelectrolyte layer. • Sorption of nanoparticles on the solid phase surface is prevented. • Polyelectrolyte-modified fiber enables extraction of free analyte in presence of sorbing nanoparticles. - Abstract: In this work we present a new approach for protection of the fiber in solid phase microextraction (SPME) from interfering charged particles present in the sample medium. It involves coating of commercial poly(dimethylsiloxane) extraction phase with polyelectrolyte layer composed of poly(diallyldimethylammonium chloride), and poly(sodium 4-styrenesulfonate). The modified fiber provides reproducible, convenient and fast extraction capabilities toward the model analyte, triclosan (TCS). A negatively charged polyelectrolyte coating prevents sorbing oxidic nanoparticles from both partitioning into the PDMS phase and aggregation at its surface. The results for the TCS/nanoparticle sample show that the polyelectrolyte layer-modified solid phase extracts just the free form of the organic compound and enables dynamic speciation analysis of the nanoparticulate target analyte complex

  1. Assembly of cell-laden hydrogel fiber into non-liquefied and liquefied 3D spiral constructs by perfusion-based layer-by-layer technique

    International Nuclear Information System (INIS)

    Sher, Praveen; Oliveira, Sara M; Borges, João; Mano, João F

    2015-01-01

    In this work, three-dimensional (3D) self-sustaining, spiral-shaped constructs were produced through a combination of ionotropic gelation, to form cell-encapsulated alginate fibers, and a perfusion-based layer-by-layer (LbL) technique. Single fibers were assembled over cylindrical molds by reeling to form spiral shapes, both having different geometries and sizes. An uninterrupted nanometric multilayer coating produced by a perfusion-based LbL technique, using alginate and chitosan, generated stable 3D spiral-shaped macrostructures by gripping and affixing the threads together without using any crosslinking/binding agent. The chelation process altered the internal microenvironment of the 3D construct from the solid to the liquefied state while preserving the external geometry. L929 cell viability by MTS and dsDNA quantification favor liquefied 3D constructs more than non-liquefied ones. The proposed technique setup helps us to generate complex polyelectrolyte-based 3D constructs for tissue engineering applications and organ printing. (note)

  2. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, David

    2002-07-01

    Oppositely charged surfactant and polyelectrolyte are present in hair shampoos and conditioners, together with particles (e.g. anti-dandruff agents for scalp) and droplets (e.g. silicone oil for the hair). These are normally formulated at high surfactant concentrations, beyond the flocculation region for the polyelectrolyte concentration used. However, on dilution with water, during application, flocs are formed which carry the particles and droplets to the scalp and hair. The addition of an anionic surfactant to an aqueous solution of cationic polyelectrolyte, at a given concentration, can lead to the formation of polyelectrolyte-surfactant 'particles', in which the surfactant 'binds' to the polyelectrolyte. This occurs from the critical association concentration (CAC), up to the surfactant concentration corresponding to maximum binding. Within this range of surfactant concentrations, the surfactant bound to the polyelectrolyte is thought to associate to form what might be termed 'internal micelles'. Each polyelectrolyte-surfactant particle in the region of the CAC, and just beyond, contains many polyelectrolyte chains, held together essentially by micelle bridges. These particles, however, remain net positively charged, and therefore stable. At the other end of the binding range of the surfactant, so many internal micelles are present that the polymer-surfactant particles are now net negatively charged. Indeed binding stops since no further micelles can be accommodated. Again, the particles are stable. However, there exists a range of surfactant concentrations, lying within the range referred to above, where the net charge is reduced sufficiently that the polymer-surfactant particles will flocculate to form much larger structures. The onset of this second range might be termed the 'critical flocculation concentration' (CFC), and the end, the 'critical stabilisation concentration' (CSC). In this work, the CFC and

  3. Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study

    Directory of Open Access Journals (Sweden)

    Jan-Michael Y. Carrillo

    2014-07-01

    Full Text Available Abstract: We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion exchange between simulation box containing salt ions (salt reservoir and simulation box with polyelectrolyte chains, counterions and salt ions (polyelectrolyte solution. This allowed us to model Donnan equilibrium and partitioning of salt and counterions across membrane impermeable to polyelectrolyte chains. Our simulations have shown that the main contribution to the system osmotic pressure is due to salt ions and osmotically active counterions. The fraction of the condensed (osmotically inactive counterions first increases with decreases in the solution ionic strength then it saturates. The reduced value of the system osmotic coefficient is a universal function of the ratio of the concentration of osmotically active counterions and salt concentration in salt reservoir. Simulation results are in a very good agreement with osmotic pressure measurements in sodium polystyrene sulfonate, DNA, polyacrylic acid, sodium polyanetholesulfonic acid, polyvinylbenzoic acid, and polydiallyldimethylammonium chloride solutions.

  4. Surface and permeability properties of membranes from polyelectrolyte complexes and polyelectrolyte surfactant complexes

    Czech Academy of Sciences Publication Activity Database

    Schwarz, H. H.; Lukáš, Jaromír; Richau, K.

    2003-01-01

    Roč. 218, 1-2 (2003), s. 1-9 ISSN 0376-7388 R&D Projects: GA AV ČR KSK4050111 Keywords : polyelectrolyte complex membranes * pervaporation * dehydration of organics Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.081, year: 2003

  5. Fuel assembly storage pool

    International Nuclear Information System (INIS)

    Hiranuma, Hiroshi.

    1976-01-01

    Object: To remove limitation of the number of storage of fuel assemblies to increase the number of storage thereof so as to relatively reduce the water depth required for shielding radioactive rays. Structure: Fuel assembly storage rack containers for receiving a plurality of spent fuel assembly racks are stacked in multi-layer fashion within a storage pool filled with water for shielding radioactive rays and removing heat. (Furukawa, Y.)

  6. Polyelectrolyte-complex nanostructured fibrous scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Verma, Devendra; Katti, Kalpana S.; Katti, Dinesh R.

    2009-01-01

    In the current work, polyelectrolyte complex (PEC) fibrous scaffolds for tissue engineering have been synthesized and a mechanism of their formation has been investigated. The scaffolds are synthesized using polygalacturonic acid and chitosan using the freeze drying methodology. Highly interconnected pores of sizes in the range of 5-20 μm are observed in the scaffolds. The thickness of the fibers was found to be in the range of 1-2 μm. Individual fibers have a nanogranular structure as observed using AFM imaging. In these scaffolds, PEC nanoparticles assemble together at the interface of ice crystals during freeze drying process. Further investigation shows that the freezing temperature and concentration have a remarkable effect on structure of scaffolds. Biocompatibility studies show that scaffold containing chitosan, polygalacturonic acid and hydroxyapatite promotes cell adhesion and proliferation. On the other hand, cells on scaffolds fabricated without hydroxyapatite nanoparticles showed poor adhesion.

  7. Tunable drug loading and release from polypeptide multilayer nanofilms

    Science.gov (United States)

    Jiang, Bingbing; Li, Bingyun

    2009-01-01

    Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibioticloaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients. PMID:19421369

  8. BINDING OF IONIC SURFACTANTS ON OPPOSITELY CHARGED POLYELECTROLYTES OBSERVED BY FLUORESCENCE METHODS

    Institute of Scientific and Technical Information of China (English)

    Zhen Tong; Chao-yang Wang; Bi-ye Ren; Xin-xing Liu; Fang Zeng

    2003-01-01

    Our recent studies concerning the binding of ionic surfactants on oppositely charged polyelectrolytes observed with fluorescence techniques are reviewed. The cationic surfactants cetyltrimethylammonium bromide (CTAB),dodecyltrimethylammonium chloride (DTAC), and nonionic surfactant octaethylene glycol monododecyl ether (C12E8) were allowed to bind on anionic poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) and its pyrene and/or naphthalene labeled copolymers. The relative excimer emission intensity IE/IM of a cationic probe 1-pyrenemethylamine hydrochloride were chosen to monitor the binding process and the conformation change of surfactant-bound polyelectrolytes. The 1:1aggregation of polyelectrolyte-CTAB with respect to the charge was found as long as the CTAB concentration was slightly higher than its critical aggregation concentration (CAC). The intermolecular NRET indicated that the CTAB-bound polyelectrolytes aggregated together through the hydrophobic interaction between the CTAB tails. However, neither 1:1polyelectrolyte-DTAC aggregation nor intermolecular aggregation of DTAC-bound polyelectrolyte was observed owing to its weaker hydrophobicity of 12 carbon atoms in the tail, which is shorter than that of CTAB. As known from the fluorescence results, nonionic surfactant C12E8 did not bind on the anionic polyelectrolytes, but the presence of PAMPS promoted the micelle formation for C12E8 at the CAC slightly below its critical micelle concentration (CMC). The solid complex of dansyl labeled AMPS copolymer-surfactant exhibited a decrease in local polarity with increasing charge density of the polyelectrolyte or with alkane tail length of the surfactant. SAXS suggested a lamella structure for the AMPS copolymersurfactant solid complexes with a long period of 3.87 nm for CTAB and 3.04 nm for DTAC, respectively.

  9. Matrix polyelectrolyte capsules based on polysaccharide/MnCO₃ hybrid microparticle templates.

    Science.gov (United States)

    Wei, Qingrong; Ai, Hua; Gu, Zhongwei

    2011-06-15

    An efficient strategy for biomacromolecule encapsulation based on spontaneous deposition into polysaccharide matrix-containing capsules is introduced in this study. First, hybrid microparticles composed of manganese carbonate and ionic polysaccharides including sodium hyaluronate (HA), sodium alginate (SA) and dextran sulfate sodium (DS) with narrow size distribution were synthesized to provide monodisperse templates. Incorporation of polysaccharide into the hybrid templates was successful as verified by thermogravimetric analysis (TGA) and confocal laser scanning microscopy (CLSM). Matrix polyelectrolyte microcapsules were fabricated through layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolytes (PEs) onto the hybrid particles, followed by removal of the inorganic part of the cores, leaving polysaccharide matrix inside the capsules. The loading and release properties of the matrix microcapsules were investigated using myoglobin as a model biomacromolecule. Compared to matrix-free capsules, the matrix capsules had a much higher loading capacity up to four times; the driving force is mostly due to electrostatic interactions between myoglobin and the polysaccharide matrix. From our observations, for the same kind of polysaccharide, a higher amount of polysaccharide inside the capsules usually led to better loading capacity. The release behavior of the loaded myoglobin could be readily controlled by altering the environmental pH. These matrix microcapsules may be used as efficient delivery systems for various charged water-soluble macromolecules with applications in biomedical fields. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Solution dynamics of synthetic and natural polyelectrolytes

    Science.gov (United States)

    Krause, Wendy E.

    Polyelectrolytes are abundant in nature and essential to life, and used extensively in industry. This work discussed two polyelectrolytes: sodium poly(2-acrylamido-2-methylpropanesulfonate) (NaPAMS), synthetic polyelectrolyte, and sodium hyaluronate (NaHA), a glycosaminoglycan. Rheological data of NaPAMS solutions of variable chain length and concentration were reported. A strong dependence of viscosity eta on chain length: eta ˜ M2.4 was found. The comparison of the rheological data with two proposed scaling theories (Dobrynin 1995, Witten 1987) forces the conclusion that neither theory is correct. A possible interpretation of the viscosity data falling between the predictions of the two scaling theories is that some chain rigidity may persist beyond the correlation length. A sample model for the conductivity of semidilute polyelectrolytes with no added salt was presented. The model correctly describes the logarithmic decrease of specific conductance observed for many polyelectrolytes at low concentration (below ca. 10-2M), and is in good agreement with data from NaPAMS solutions. NaHA in phosphate buffered saline behaves as a typical polyelectrolyte in the high-salt limit, as Newtonian viscosities are observed over a wide range of shear rates. There is no evidence of intermolecular hydrogen bonding causing gel formation in NaHA solutions without protein present. The viscosity of 3 mg/mL NaHA was measured in the presence of the selected anti-inflammatory agents. Of the seven additives investigated only (D)-penicillamine significantly altered the rheology of HA. (D)-Penicillamine dramatically reduced the viscosity of HA, probably by disrupting intramolecular hydrogen bonding. The plasma proteins albumin and gamma-globulins bind to HA in solution to form a weak reversible gel. The rheology and osmotic pressure of the simple model for synovial fluid, consisting of 3mg/mL NaHA, 11 mg/mL albumin, and 7 mg/mL gamma-globulins in phosphate buffered saline, were studied

  11. Screening effects in a polyelectrolyte brush: self-consistent-field theory

    NARCIS (Netherlands)

    Zhulina, E.B.; Klein Wolterink, J.; Borisov, O.V.

    2000-01-01

    We have developed an analytical self-consistent-field (SCF) theory describing conformations of weakly charged polyelectrolyte chains tethered to the solid-liquid interface and immersed in a solution of low molecular weight salt. Depending on the density of grafting of the polyelectrolytes to the

  12. Polyelectrolyte-modified cowpea mosaic virus for the synthesis of gold nanoparticles.

    Science.gov (United States)

    Aljabali, Alaa A A; Evans, David J

    2014-01-01

    Polyelectrolyte surface-modified cowpea mosaic virus (CPMV) can be used for the templated synthesis of narrowly dispersed gold nanoparticles. Cationic polyelectrolyte, poly(allylamine) hydrochloride, is electrostatically bound to the external surface of the virus capsid. The polyelectrolyte-coated CPMV promotes adsorption of aqueous gold hydroxide anionic species, prepared from gold(III) chloride and potassium carbonate, that are easily reduced to form CPMV-templated gold nanoparticles. The process is simple and environmentally benign using only water as solvent at ambient temperature.

  13. Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(γ-glutamic acid) polyelectrolyte complexes.

    Science.gov (United States)

    Gonçalves, Raquel M; Antunes, Joana C; Barbosa, Mário A

    2012-04-10

    Human mesenchymal stem cells (hMSCs) have an enormous potential for tissue engineering and cell-based therapies. With a potential of differentiation into multiple lineages and immune-suppression, these cells play a key role in tissue remodelling and regeneration. Here a method of hMSC recruitment is described, based on the incorporation of a chemokine in Chitosan (Ch)/Poly(γ-glutamic acid) (γ-PGA) complexes. Ch is a non-toxic, cationic polysaccharide widely investigated. γ-PGA is a hydrophilic, non-toxic, biodegradable and negatively charged poly-amino acid. Ch and γ-PGA, being oppositely charged, can be combined through electrostatic interactions. These biocompatible structures can be used as carriers for active substances and can be easily modulated in order to control the delivery of drugs, proteins, DNA, etc. Using the layer-by-layer method, Ch and γ-PGA were assembled into polyelectrolyte multilayers films (PEMs) with thickness of 120 nm. The chemokine stromal-derived factor-1 (SDF-1) was incorporated in these complexes and was continuously released during 120 h. The method of SDF-1 incorporation is of crucial importance for polymers assembly into PEMs and for the release kinetics of this chemokine. The Ch/γ-PGA PEMs with SDF-1 were able to recruit hMSCs, increasing the cell migration up to 6 fold to a maximum of 16.2 ± 4.9 cells/mm2. The controlled release of SDF-1 would be of great therapeutic value in the process of hMSC homing to injured tissues. This is the first study suggesting Ch/γ-PGA PEMs as SDF-1 reservoirs to recruit hMSCs, describing an efficient method of chemokine incorporation that allows a sustained released up to 5 days and that can be easily scaled-up.

  14. Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(γ-glutamic acid polyelectrolyte complexes

    Directory of Open Access Journals (Sweden)

    RM Gonçalves

    2012-04-01

    Full Text Available Human mesenchymal stem cells (hMSCs have an enormous potential for tissue engineering and cell-based therapies. With a potential of differentiation into multiple lineages and immune-suppression, these cells play a key role in tissue remodelling and regeneration. Here a method of hMSC recruitment is described, based on the incorporation of a chemokine in Chitosan (Ch/Poly(γ-glutamic acid (γ-PGA complexes. Ch is a non-toxic, cationic polysaccharide widely investigated. γ-PGA is a hydrophilic, non-toxic, biodegradable and negatively charged poly-amino acid. Ch and γ-PGA, being oppositely charged, can be combined through electrostatic interactions. These biocompatible structures can be used as carriers for active substances and can be easily modulated in order to control the delivery of drugs, proteins, DNA, etc. Using the layer-by-layer method, Ch and γ-PGA were assembled into polyelectrolyte multilayers films (PEMs with thickness of 120 nm. The chemokine stromal-derived factor-1 (SDF-1 was incorporated in these complexes and was continuously released during 120 h. The method of SDF-1 incorporation is of crucial importance for polymers assembly into PEMs and for the release kinetics of this chemokine. The Ch/γ-PGA PEMs with SDF-1 were able to recruit hMSCs, increasing the cell migration up to 6 fold to a maximum of 16.2 ± 4.9 cells/mm2. The controlled release of SDF-1 would be of great therapeutic value in the process of hMSC homing to injured tissues. This is the first study suggesting Ch/γ-PGA PEMs as SDF-1 reservoirs to recruit hMSCs, describing an efficient method of chemokine incorporation that allows a sustained released up to 5 days and that can be easily scaled-up.

  15. Debundling of single-walled carbon nanotubes by using natural polyelectrolytes

    International Nuclear Information System (INIS)

    Liu Yangqiao; Gao Lian; Zheng Shan; Wang Yan; Sun Jing; Kajiura, Hisashi; Li Yongming; Noda, Kazuhiro

    2007-01-01

    Natural polyelectrolytes (NPs), including sodium lignosulfonate, humic acid and so forth, are reported for the first time to solubilize single-walled carbon nanotubes (SWNTs) in water through a noncovalent interaction. A variety of methods, including transmission electron microscopy (TEM), visible-near-infrared (vis-NIR) spectra, Raman spectra and zeta potential measurements, were used to characterize the NP-dispersed SWNT solutions. It is found that the SWNTs can be exfoliated into thin bundles or individual tubes, even at NP concentrations as low as 0.15 mg ml -1 . Their high performance is attributed to the abundance of aromatic groups and ionized groups in the NP molecules. This method of solubilization opens the way for exploiting new natural materials as SWNT solubilizers and may find applications in nanocomposites, self-assembly, and so forth

  16. Debundling of single-walled carbon nanotubes by using natural polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yangqiao [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Gao Lian [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zheng Shan [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Wang Yan [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Sun Jing [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Kajiura, Hisashi [Materials Laboratories, Sony Corporation, Atsugi Tec. No. 2, 4-16-1 Okata Atsugi, Kanagawa 243-0021 (Japan); Li Yongming [Materials Laboratories, Sony Corporation, Atsugi Tec. No. 2, 4-16-1 Okata Atsugi, Kanagawa 243-0021 (Japan); Noda, Kazuhiro [Materials Laboratories, Sony Corporation, Atsugi Tec. No. 2, 4-16-1 Okata Atsugi, Kanagawa 243-0021 (Japan)

    2007-09-12

    Natural polyelectrolytes (NPs), including sodium lignosulfonate, humic acid and so forth, are reported for the first time to solubilize single-walled carbon nanotubes (SWNTs) in water through a noncovalent interaction. A variety of methods, including transmission electron microscopy (TEM), visible-near-infrared (vis-NIR) spectra, Raman spectra and zeta potential measurements, were used to characterize the NP-dispersed SWNT solutions. It is found that the SWNTs can be exfoliated into thin bundles or individual tubes, even at NP concentrations as low as 0.15 mg ml{sup -1}. Their high performance is attributed to the abundance of aromatic groups and ionized groups in the NP molecules. This method of solubilization opens the way for exploiting new natural materials as SWNT solubilizers and may find applications in nanocomposites, self-assembly, and so forth.

  17. Borax mediated layer-by-layer self-assembly of neutral poly(vinyl alcohol) and chitosan.

    Science.gov (United States)

    Manna, Uttam; Patil, Satish

    2009-07-09

    We report a multilayer film of poly(vinyl alcohol) (PVA)-borate complex and chitosan by using a layer-by-layer approach. PVA is an uncharged polymer, but hydroxyl functional groups of PVA can be cross-linked by using borax as a cross-linking agent. As a result electrostatic charges and intra- and interchain cross-links are introduced in the PVA chain and provide physically cross-linked networks. The PVA-borate was then deposited on a flat substrate as well as on colloidal particles with chitosan as an oppositely charged polyelectrolyte. Quartz crystal microbalance, scanning electron microscopy, and atomic force microscopy were used to follow the growth of thin film on flat substrate. Analogous experiments were performed on melamine formaldehyde colloidal particles (3-3.5 microm) to quantify the process for the preparation of hollow microcapsules. Removal of the core in 0.1 N HCl results in hollow microcapsules. Characterization of microcapsules by transmission electron microscopy revealed formation of stable microcapsules. Further, self-assembly of PVA-borate/chitosan was loaded with the anticancer drug doxorubicin, and release rates were determined at different pH values to highlight the drug delivery potential of this system.

  18. Ordered photonic microstructures

    Science.gov (United States)

    Chen, Kevin Ming

    2001-09-01

    polystyrene latex colloidal particles into 2D crystals is presented. The colloidal assemblies offer a relatively easy processing route for fabrication of photonic bandgap structures. Large (>1 mm diameter) single crystal grains of colloids were formed using controlled evaporation and fluid flow techniques. A novel solution enabling post-processing of the fragile ordered assemblies is presented in which polyelectrolyte multilayers serve as adsorption platforms that anchor the colloidal assemblies. Tailorability of the polyelectrolyte surface properties (charge density, morphology) enables tuning of the colloid adsorption behavior. The polyelectrolyte surface affects colloid adsorption by influencing its surface diffusion. Observations of colloid surface diffusion were made using optical microscopy. Use of polyelectrolytes patterned via microcontact printing enables fabrication of colloid assemblies containing predesigned point and line defects. The patterned polyelectrolyte adsorption template allows placement of colloids in specific geometric arrangement, making possible the realization of sensors or functional photonic bandgap devices such as waveguides or photon traps. Three mechanisms were used to control adsorption: (1)pH of the colloid suspension, which determines the ionization of the uppermost surface of the polyelectrolyte multilayer; (2)ionic strength of the suspension, which determines the extent of charge screening about the colloid and polyelectrolyte; and (3)concentration of added surfactant, which causes charge screening and introduces hydrophobic interactions between the surfactant and polyelectrolyte. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)

  19. Imprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling

    OpenAIRE

    Puniredd, S.R.; Janczewski, D.; Go, D.P.; Zhu, X.; Guo, S.; Teo, S.L-M.; Lee, S.S.C.; Vancso, Gyula J.

    2015-01-01

    Polymeric films constructed using the layer-by-layer (LbL) fabrication process were employed as a platform for metal ion immobilization and applied as a marine antifouling coating. The novel Cu2+ ion imprinting process described is based on the use of metal ion templates and LbL multilayer covalent cross-linking. Custom synthesized, peptide mimicking polycations composed of histidine grafted poly(allylamine) (PAH) to bind metal ions, and methyl ester containing polyanions for convenient cross...

  20. Preparation and ion sensing property of the self-assembled microgels by QCM

    Directory of Open Access Journals (Sweden)

    Cao Zheng

    2018-03-01

    Full Text Available The polyanion polystyrene sulfonate (PSS, the polycation poly (allylamine hydrochloride (PAH, and the anionic poly (N-isopropylacrylamide-co-acrylic acid [P(NIPAM-co-AA] microgels were self-assembled onto the polyethylene imine (PEI adsorbed gold surfaces of quartz crystal microbalance (QCM because of the electrostatic attractions. The interactions of various metal particles including Ca2+, Bi3+, Cu2+, Zn2+, Ni2+, Sn2+, Co2+, and Cd2+ with the obtained PEI/PSS/PAH/microgel layer in aqueous solutions were evaluated by QCM. The PEI/PSS/PAH/Microgel covered QCM sensor demonstrates the lowest detection limit of 0.1 ppm in aqueous solutions and the obviously linear connection between the frequency response and Ni2+ concentration from 0.1 to 20 ppm, which is due to the complexation of Ni2+ with the carboxyl groups of microgels. Atomic force microscopy (AFM was used to reveal the morphology and stability of the self-assembled polyelectrolyte/microgel layer before and after adsorbing heavy metal ions. These self-assembled materials of polyelectrolyte/microgel layer will be helpful for manufacturing ion-selective materials for separation and identification purposes.

  1. Motion-based, high-yielding, and fast separation of different charged organics in water.

    Science.gov (United States)

    Xuan, Mingjun; Lin, Xiankun; Shao, Jingxin; Dai, Luru; He, Qiang

    2015-01-12

    We report a self-propelled Janus silica micromotor as a motion-based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self-propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s(-1) . Biotin-functionalized Janus micromotors can specifically capture and rapidly transport streptavidin-modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self-propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab-on-chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect of chitosan-nanosilica self-assembly layers chitosan- on cotton linter fibers and the paper properties

    Directory of Open Access Journals (Sweden)

    Sabrineh M.Tavakoli

    2014-11-01

    Full Text Available Surface properties of cellulosic fibers can be modified by Layer-by-Layer (LbL technique. Cotton fibers are one of important non-wood and industrial cellulosic resources in the world. Cotton linters is produced as a by-product accompany with cotton fibers which is used as a significant cellulosic sources in paper industry for producing durable paper. In this research, the influence of alternate adsorption of cationic chitosan and anionic Nanosilica on modification of fiber surface of cotton linter was investigated. The adsorption of materials on cellulosic fibers was analyzed via electrolyte titration. Experiments were conducted at pH≈3-4 for formation of cationic layer and pH≈9-10 for formation of anionic layer applying stirring rate of about 750rpm, for15 minute deposition time to construct 1 to 3 layers. Hand sheets of about 60 g/ m2 basis weight were made form modified pulp fibers prepared by multilayering of chitosan and nanosilica, then their structural properties and bonding ability were evaluated. Bonding ability of fibers was improved by polyelectrolyte multilayering (PEM on the surface of cotton linter fibers which was visualized by Field Emission Scanning Electron Microscopy (FESEM.The results showed that apparent density and also bonding ability was improved in the treated fibers because of the increased electrostatic attraction between polycation and anion sites existed on the fiber surface. Apparant density of paper was improved remarkably compared to the untreated fibers. Tensile index of the sheet was increased about 16% with consecutive adsorption onto the cotton linter fibers compared to untreated fibers. Formation index of paper was slightly deteriorated after polyelectrolytes multilayering.

  3. Layer-by-layer assembled PVA/Laponite multilayer free-standing films and their mechanical and thermal properties

    International Nuclear Information System (INIS)

    Patro, T Umasankar; Wagner, H Daniel

    2011-01-01

    Structural arrangements of nanoplatelets in a polymer matrix play an important role in determining their properties. In the present study, multilayered composite films of poly(vinyl alcohol) (PVA) with Laponite clay are assembled by layer-by-layer (LBL) deposition. The LBL films are found to be hydrated, flexible and transparent. A facile and solvent-free method—by depositing self-assembled monolayers (SMA) of a functional silane on substrates—is demonstrated for preparing free-standing LBL films. Evolution of nanostructures in LBL films is correlated with thermal and mechanical properties. A well-dispersed solvent-cast PVA/Laponite composite film is also studied for comparison. We found that structurally ordered LBL films with an intercalated nanoclay system exhibits tensile strength, modulus and toughness, which are significantly higher than that of the conventional nanocomposites with well-dispersed clay particles and that of pure PVA. This indicates that clay platelets are oriented in the applied stress direction, leading to efficient interfacial stress transfer. In addition, various grades of composite LBL films are prepared by chemical crosslinking and their mechanical properties are assessed. On account of these excellent properties, the LBL films may find potential use as optical and structural elements, and as humidity sensors.

  4. Layer-by-layer assembled PVA/Laponite multilayer free-standing films and their mechanical and thermal properties.

    Science.gov (United States)

    Patro, T Umasankar; Wagner, H Daniel

    2011-11-11

    Structural arrangements of nanoplatelets in a polymer matrix play an important role in determining their properties. In the present study, multilayered composite films of poly(vinyl alcohol) (PVA) with Laponite clay are assembled by layer-by-layer (LBL) deposition. The LBL films are found to be hydrated, flexible and transparent. A facile and solvent-free method-by depositing self-assembled monolayers (SMA) of a functional silane on substrates-is demonstrated for preparing free-standing LBL films. Evolution of nanostructures in LBL films is correlated with thermal and mechanical properties. A well-dispersed solvent-cast PVA/Laponite composite film is also studied for comparison. We found that structurally ordered LBL films with an intercalated nanoclay system exhibits tensile strength, modulus and toughness, which are significantly higher than that of the conventional nanocomposites with well-dispersed clay particles and that of pure PVA. This indicates that clay platelets are oriented in the applied stress direction, leading to efficient interfacial stress transfer. In addition, various grades of composite LBL films are prepared by chemical crosslinking and their mechanical properties are assessed. On account of these excellent properties, the LBL films may find potential use as optical and structural elements, and as humidity sensors.

  5. LASERS, ACTIVE MEDIA: The aqueous-polyelectrolyte dye solution as an active laser medium

    Science.gov (United States)

    Akimov, A. I.; Saletskii, A. M.

    2000-11-01

    The spectral, luminescent, and lasing properties of aqueous solutions of a cationic dye rhodamine 6G with additions of anion polyelectrolytes — polyacrylic and polymethacrylic acids — are studied. It is found that the energy and spectral properties of lasing of these solutions depend on the ratio of concentrations of polyelectrolyte and molecules. It is also found that the lasing parameters of aqueous-polyelectrolyte dye solutions can be controlled by changing the structure of the molecular system. The variation in the structure of aqueous-polyelectrolyte dye solutions of rhodamine 6G resulted in an almost five-fold increase in the lasing efficiency compared to that in aqueous dye solutions.

  6. Nanostructured 3D constructs based on chitosan and chondroitin sulphate multilayers for cartilage tissue engineering.

    Directory of Open Access Journals (Sweden)

    Joana M Silva

    Full Text Available Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT and chondroitin sulphate (CS on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH. The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs.

  7. Nanostructured 3D constructs based on chitosan and chondroitin sulphate multilayers for cartilage tissue engineering.

    Science.gov (United States)

    Silva, Joana M; Georgi, Nicole; Costa, Rui; Sher, Praveen; Reis, Rui L; Van Blitterswijk, Clemens A; Karperien, Marcel; Mano, João F

    2013-01-01

    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs.

  8. Polyelectrolyte brushes in mixed ionic medium studied via intermolecular forces

    Science.gov (United States)

    Farina, Robert; Laugel, Nicolas; Pincus, Philip; Tirrell, Matthew

    2011-03-01

    The vast uses and applications of polyelectrolyte brushes make them an attractive field of research especially with the growing interest in responsive materials. Polymers which respond via changes in temperature, pH, and ionic strength are increasingly being used for applications in drug delivery, chemical gating, etc. When polyelectrolyte brushes are found in either nature (e.g., surfaces of cartilage and mammalian lung interiors) or commercially (e.g., skin care products, shampoo, and surfaces of medical devices) they are always surrounded by mixed ionic medium. This makes the study of these brushes in varying ionic environments extremely relevant for both current and future potential applications. The polyelectrolyte brushes in this work are diblock co-polymers of poly-styrene sulfonate (N=420) and poly-t-butyl styrene (N=20) which tethers to a hydrophobic surface allowing for a purely thermodynamic study of the polyelectrolyte chains. Intermolecular forces between two brushes are measured using the SFA. As multi-valent concentrations are increased, the brushes collapse internally and form strong adhesion between one another after contact (properties not seen in a purely mono-valent environment).

  9. Layer-by-layer-assembled quantum dot multilayer sensitizers: how the number of layers affects the photovoltaic properties of one-dimensional ZnO nanowire electrodes.

    Science.gov (United States)

    Jin, Ho; Choi, Sukyung; Lim, Sang-Hoon; Rhee, Shi-Woo; Lee, Hyo Joong; Kim, Sungjee

    2014-01-13

    Layer cake: Multilayered CdSe quantum dot (QD) sensitizers are layer-by-layer assembled onto ZnO nanowires by making use of electrostatic interactions to study the effect of the layer number on the photovoltaic properties. The photovoltaic performance of QD-sensitized solar cells critically depends on this number as a result of the balance between light-harvesting efficiency and carrier-recombination probability. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Conformational effect on small angle neutron scattering behavior of interacting polyelectrolyte solutions: a perspective of integral equation theory.

    Science.gov (United States)

    Shew, Chwen-Yang; Do, Changwoo; Hong, Kunlun; Liu, Yun; Porcar, Lionel; Smith, Gregory S; Chen, Wei-Ren

    2012-07-14

    We present small angle neutron scattering (SANS) measurements of deuterium oxide (D(2)O) solutions of linear and star sodium poly(styrene sulfonate) (NaPSS) as a function of polyelectrolyte concentration. Emphasis is on understanding the dependence of their SANS coherent scattering cross section I(Q) on the molecular architecture of single polyelectrolyte. The key finding is that for a given concentration, star polyelectrolytes exhibit more pronounced characteristic peaks in I(Q), and the position of the first peak occurs at a smaller Q compared to their linear counterparts. Based on a model of integral equation theory, we first compare the SANS experimental I(Q) of salt-free polyelectrolyte solutions with that predicted theoretically. Having seen their satisfactory qualitative agreement, the dependence of counterion association behavior on polyelectrolyte geometry and concentration is further explored. Our predictions reveal that the ionic environment of polyelectrolyte exhibits a strong dependence on polyelectrolyte geometry at lower polyelectrolyte concentration. However, when both linear and star polyelectrolytes exceed their overlap concentrations, the spatial distribution of counterion is found to be essentially insensitive to polyelectrolyte geometry due to the steric effect.

  11. The Self-Assembly of Nanogold for Optical Metamaterials

    Science.gov (United States)

    Nidetz, Robert A.

    2011-12-01

    Optical metamaterials are an emerging field that enables manipulation of light like never before. Producing optical metamaterials requires sub-wavelength building blocks. The focus here was to develop methods to produce building blocks for metamaterials from nanogold. Electron-beam lithography was used to define an aminosilane patterned chemical template in order to electrostatically self-assemble citrate-capped gold nanoparticles. Equilibrium self-assembly was achieved in 20 minutes by immersing chemical templates into gold nanoparticle solutions. The number of nanoparticles that self-assembled on an aminosilane dot was controlled by manipulating the diameters of the dots and nanoparticles. Adding salt to the nanoparticle solution enabled the nanoparticles to self-assemble in greater numbers on the same sized dot. However, the preparation of the nanoparticle solution containing salt was sensitive to spikes in the salt concentration which led to aggregation of the nanoparticles and non-specific deposition. Gold nanorods were also electrostatically self-assembled. Polyelectrolyte-coated gold nanorods were patterned with limited success. A polyelectrolyte chemical template also patterned gold nanorods, but the gold nanorods preferred to pattern on the edges of the pattern. Ligand-exchanged gold nanorods displayed the best self-assembly, but suffered from slow kinetics. Self-assembled gold nanoparticles were cross-linked with poly(diallyldimethylammonium chloride). The poly(diallyldimethylammonium chloride) allowed additional nanoparticles to pattern on top of the already patterned nanoparticles. Cross-linked nanoparticles were lifted-off of the substrate by sonication in a sodium hydroxide solution. The presence of van der Waals forces and/or amine bonding prevent the nanogold from lifting-off without sonication. A good-solvent evaporation process was used to self-assemble poly(styrene) coated gold nanoparticles into spherical microbead assemblies. The use of larger

  12. Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release.

    Science.gov (United States)

    Du, Pengcheng; Zeng, Jin; Mu, Bin; Liu, Peng

    2013-05-06

    Well-defined biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres have been accomplished via the layer-by-layer (LbL) self-assembly technique. The hybrid shell was fabricated by the electrostatic interaction between the polyelectrolyte cation, chitosan (CS), and the hybrid anion, citrate modified ferroferric oxide nanoparticles (Fe3O4-CA), onto the uniform polystyrene sulfonate microsphere templates. Then the magnetic hybrid core/shell composite particles were modified with a linear, functional poly(ethylene glycol) (PEG) monoterminated with a biotargeting molecule (folic acid (FA)). Afterward the dual targeting hybrid hollow microspheres were obtained after etching the templates by dialysis. The dual targeting hybrid hollow microspheres exhibit exciting pH response and stability in high salt-concentration media. Their pH-dependent controlled release of the drug molecule (anticancer drug, doxorubicin (DOX)) was also investigated in different human body fluids. As expected, the cell viability of the HepG2 cells which decreased more rapidly was treated by the FA modified hybrid hollow microspheres rather than the unmodified one in the in vitro study. The dual-targeting hybrid hollow microspheres demonstrate selective killing of the tumor cells. The precise magnetic and molecular targeting properties and pH-dependent controlled release offers promise for cancer treatment.

  13. Study of polyelectrolytes for Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    Labonne, N.

    1994-11-01

    To assess the safety of a potential radioactive waste repository, analysis of the fluid solution containing low levels of activity need to be performed. In some cases, the radioactivity would be so weak (3--30 pCi/L) that the solution must be concentrated for measurement. For this purpose, Los Alamos National Laboratory scientists are synthesizing some water soluble polyelectrolytes, which, because they are strong complexing agents for inorganic cations, can concentrate the radioelements in solution. To assist in characterization of these polyelectrolytes, the author has performed experiments to determine physico-chemical constants, such as pKa values and stability constants. The complexation constants between both polyelectrolytes and europium were determined by two methods: solvent extraction and ion exchange. Results are presented

  14. Adsorption of dispersing polyelectrolytes: stabilization of drilling fluids; Adsorption de polyelectrolytes dispersants: stabilisation des fluides de forage

    Energy Technology Data Exchange (ETDEWEB)

    Balastre, M.

    1999-11-10

    Instabilities of concentrated colloidal suspensions are a source of many industrial problems, as in drilling fluid formulations where aggregation and severe settling phenomena can occur. Low molecular weight polyelectrolyte dispersants are used to solve these problems, but their optimal use requires a better understanding of the phenomena that are involved. After materials characterization, adsorption mechanisms of two anionic polyelectrolytes (PANa, PSSNa) on a soluble substrate model, barium sulfate powder are studied. Barium sulfate is the principal additive used to adapt the density of drilling fluids. A simple model allows us to propose a distribution of the microscopic species at the interface. Presence of divalent ions induces the formation of a strong complex with the polyelectrolyte. Adsorption and electro-kinetic data are presented and exchange equilibrium are examined in relation with the surface uptake. The binding mechanism and the surface speciation of the polymer groups are deduced from the ion exchange analysis. The macroscopic behavior of suspensions on different conditions (volume fraction, ionic strength, dispersant concentration) is studied by settling and rheological measurements. The macroscopic properties are connected to structural aspects, and we show that dispersing effects are mostly related to electro-steric repulsion. The dispersion state depends on two principal factors adsorbed amounts and adsorbed layer properties, especially the excess charge, and the molecules conformation. (author)

  15. Novel Luminescent Multilayer Films Containing π-Conjugated Anionic Polymer with Electronic Microenvironment

    Directory of Open Access Journals (Sweden)

    Tianlei Wang

    2016-09-01

    Full Text Available Layered double hydroxides (LDHs, luminescent π-conjugated anionic polymer and montmorillonite (MMT were orderly assembled into luminescent multilayer films via layer-by-layer self-assembly method. The electronic microenvironment (EME, the structure of which is like a traditional capacitor, can be constructed by exfoliated LDHs or MMT nanosheets. In addition, the rigid inorganic laminated configuration can offer stable surroundings between the interlayers. As a result, we conclude that EME can extend the luminescent lifespans of multilayer films substantially, due to affecting relaxation times of π-conjugated anionic polymer. Consequently, because of the remarkable impact on better photoemission behaviors of luminescent π-conjugated anionic polymer, EME assembled by LDHs or MMT nanosheets have had high hopes attached to them. They are expected to have the potential for designing, constructing, and investigating novel light-emitting thin films.

  16. Enhancing proliferation and osteogenic differentiation of HMSCs on casein/chitosan multilayer films.

    Science.gov (United States)

    Li, Yan; Zheng, Zebin; Cao, Zhinan; Zhuang, Liangting; Xu, Yong; Liu, Xiaozhen; Xu, Yue; Gong, Yihong

    2016-05-01

    Creating a bioactive surface is important in tissue engineering. Inspired by the natural calcium binding property of casein (CA), multilayer films ((CA/CS)n) with chitosan (CS) as polycation were fabricated to enhance biomineralization, cell adhesion and differentiation. LBL self-assembly technique was used and the assembly process was intensively studied based on changes of UV absorbance, zeta potential and water contact angle. The increasing content of chitosan and casein with bilayers was further confirmed with XPS and TOF-SIMS analysis. To improve the biocompatibility, gelatin was surface grafted. In vitro mineralization test demonstrated that multilayer films had more hydroxyapatite crystal deposition. Human mesenchymal stem cells (HMSCs) were seeded onto these films. According to fluorescein diacetate (FDA) and cell cytoskeleton staining, MTT assay, expression of osteogenic marker genes, ALP activity, and calcium deposition quantification, it was found that these multilayer films significantly promoted HMSCs attachment, proliferation and osteogenic differentiation than TCPS control. Copyright © 2016. Published by Elsevier B.V.

  17. Adsorption of polyelectrolytes at liquid-liquid interfaces and its effect on emulsification

    NARCIS (Netherlands)

    Böhm, J.T.C.

    1974-01-01

    In this study we have investigated the adsorption behaviour of a number of synthetic polyelectrolytes at the paraffin oil-water interface and the properties of paraffin oil-in-water emulsions stabilized by these polyelectrolytes.

    Polyacrylic acid (PAA), polymethacrylic acid (PMA)

  18. Polyelectrolyte determination in drinking water

    African Journals Online (AJOL)

    try as there are no readily available methods for the determination of residual polyelectrolyte concentration. This study aims at ... quate, making the need to quantify them more critical (Fielding,. 1999). ... decisions and actions are sometimes required in the environ- ... were conducted on both distilled and real water systems.

  19. Obtaining and characterization of thin films polyelectrolyte with gold nanoparticles

    International Nuclear Information System (INIS)

    Popiolski, Tatiane M.; Crespo, Janaina S.; Silva, Renato B.

    2011-01-01

    Thin films of polyelectrolytes are manufactured via sequential adsorption of weak polyelectrolytes from aqueous solutions based on electrostatic interaction of oppositely charged polymers. Metal containing polymeric compounds are of particular interest to the production of materials with electrical interface and optical properties. In this sense, the objective of this study was to obtain thin films of weak polyelectrolytes and analyze the distribution of gold nanoparticles stabilized by sodium citrate and by poly (vinylpyrrolidone). The characterization was performed using UV-visible, X-ray diffraction and atomic force microscopy. The techniques of UV-visible and X-ray diffraction was confirmed the presence of gold in the films, the atomic force microscopy images were used to analyze the morphology of the films and check the behavior of the diffusion of gold nanoparticles. (author)

  20. Polyelectrolytes-promoted Forward Osmosis Processes

    KAUST Repository

    Ge, Q.C.; Ling, M.M.; Amy, Gary L.; Chung, T.S.

    2012-01-01

    The development of the forward osmosis (FO) process has been constrained by the slow development of appropriate draw solutions. Two significant concerns related to draw solutions are the draw solute leakage and intensive-energy requirement in recycling draw solutes after the FO process. FO would be much attractive if there is no draw solute leakage and the recycle of draw solutes is easy and economic.In this study, polyelectrolytes of a series of polyacrylic acid sodium salts (PAA-Na), were explored as draw solutes in the FO process. The characteristics of high solubility in water and flexibility in structural configuration ensure the suitability of PAA-Na as draw solutes and their relative ease in recycle through pressure-driven ultrafiltration (UF) membrane processes. The high water flux with insignificant salt leakage in the FO process and the high salt rejection in UF recycle processes reveal the superiority of PAA-Na to conventional ionic salts, such as NaCl, when comparing their FO performance via the same membranes. The repeatable performance of PAA-Na after recycle indicates the absence of any aggregation problems. The overall performance demonstrates that polyelectrolytes of PAA-Na series are promising as draw solutes, and the new concept of using polyelectrolytes as draw solutes in FO processes is applicable. The magnetic nanoparticle draw solutes can generate reasonably high osmotic pressure in FO system due to the functional groups on the nanoparticles surface and they can be regenerated through magnetic field and reused as draw solutes. Thermo-responsive magnetic nanoparticles are able to be regenerated with high efficiency as the thermo-responsive property can assist the regeneration in a low-strength magnetic field.

  1. Polyelectrolytes-promoted Forward Osmosis Processes

    KAUST Repository

    Ge, Q.C.

    2012-11-07

    The development of the forward osmosis (FO) process has been constrained by the slow development of appropriate draw solutions. Two significant concerns related to draw solutions are the draw solute leakage and intensive-energy requirement in recycling draw solutes after the FO process. FO would be much attractive if there is no draw solute leakage and the recycle of draw solutes is easy and economic.In this study, polyelectrolytes of a series of polyacrylic acid sodium salts (PAA-Na), were explored as draw solutes in the FO process. The characteristics of high solubility in water and flexibility in structural configuration ensure the suitability of PAA-Na as draw solutes and their relative ease in recycle through pressure-driven ultrafiltration (UF) membrane processes. The high water flux with insignificant salt leakage in the FO process and the high salt rejection in UF recycle processes reveal the superiority of PAA-Na to conventional ionic salts, such as NaCl, when comparing their FO performance via the same membranes. The repeatable performance of PAA-Na after recycle indicates the absence of any aggregation problems. The overall performance demonstrates that polyelectrolytes of PAA-Na series are promising as draw solutes, and the new concept of using polyelectrolytes as draw solutes in FO processes is applicable. The magnetic nanoparticle draw solutes can generate reasonably high osmotic pressure in FO system due to the functional groups on the nanoparticles surface and they can be regenerated through magnetic field and reused as draw solutes. Thermo-responsive magnetic nanoparticles are able to be regenerated with high efficiency as the thermo-responsive property can assist the regeneration in a low-strength magnetic field.

  2. Material properties of novel polymeric films

    Science.gov (United States)

    Kim, Gene

    This dissertation will study the material properties of two types of novel polymer films (polyelectrolyte multilayer films and photolithographic polymer films). The formation of polylelectrolyte multilayer films onto functionalized aluminum oxide surfaces and functionalized poly(ethylene terephthaltate) (PET) were studied. Functionalization of the aluminum oxide surfaces was achieved via silane coupling. Functionalization of PET surfaces was achieved via hydrolysis and amidation. Surface characterization techniques such as X-ray photoelectron spectroscopy (XPS) and dynamic contact angle measurements were used to monitor the polyelectrolyte multilayer formation. Mechanical properties of the aluminum oxide supported polyelectrolyte multilayer films were tested using a simplified peel test. XPS was used to analyze the surfaces before and after peel. Single lap shear joint specimens were constructed to test the adhesive shear strength of the PET-supported polyelectrolyte multilayer film samples with the aid of a cyanoacrylate adhesive. The adhesive shear strength and its relation with the type of functionalization, number of polyelectrolyte layers, and the effect of polyelectrolyte conformation using added salt were explored. Also, characterization on the single lap joints after adhesive failure was carried out to determine the locus of failure within the multilayers by using XPS and SEM. Two types of photolithographic polymers were formulated and tested. These two polymers (photocrosslinkable polyacrylate (PUA), and a photocrosslinkable polyimide (HRP)) were used to investigate factors that would affect the structural integrity of these particular polymers under environmental variables such as processing (time, UV cure, pressure, and temperature) and ink exposure. Thermomechanical characterization was carried out to see the behavior of these two polymers under these environmental variables. Microscopic techniques were employed to study the morphological behavior of

  3. Engineering functional nanothin multilayers on food packaging: ice-nucleating polyethylene films.

    Science.gov (United States)

    Gezgin, Zafer; Lee, Tung-Ching; Huang, Qingrong

    2013-05-29

    Polyethylene is the most prevalent plastic and is commonly used as a packaging material. Despite its common use, there are not many studies on imparting functionalities to those films which can make them more desirable for frozen food packaging. Here, commercial low-density polyethylene (LDPE) films were oxidized by UV-ozone (UVO) treatment to obtain a negatively charged hydrophilic surface to allow fabrication of functional multilayers. An increase in hydrophilicity was observed when films were exposed to UVO for 4 min and longer. Thin multilayers were formed by dipping the UVO-treated films into biopolymer solutions, and extracellular ice nucleators (ECINs) were immobilized onto the film surface to form a functional top layer. Polyelectrolyte adsorption was studied and confirmed on silicon wafers by measuring the water contact angles of the layers and investigating the surface morphology via atomic force microscopy. An up to 4-5 °C increase in ice nucleation temperatures and an up to 10 min decrease in freezing times were observed with high-purity deionized water samples frozen in ECIN-coated LDPE films. Films retained their ice nucleation activity up to 50 freeze-thaw cycles. Our results demonstrate the potential of using ECIN-coated polymer films for frozen food application.

  4. Salt-induced aggregation of stiff polyelectrolytes

    International Nuclear Information System (INIS)

    Fazli, Hossein; Mohammadinejad, Sarah; Golestanian, Ramin

    2009-01-01

    Molecular dynamics simulation techniques are used to study the process of aggregation of highly charged stiff polyelectrolytes due to the presence of multivalent salt. The dominant kinetic mode of aggregation is found to be the case of one end of one polyelectrolyte meeting others at right angles, and the kinetic pathway to bundle formation is found to be similar to that of flocculation dynamics of colloids as described by Smoluchowski. The aggregation process is found to favor the formation of finite bundles of 10-11 filaments at long times. Comparing the distribution of the cluster sizes with the Smoluchowski formula suggests that the energy barrier for the aggregation process is negligible. Also, the formation of long-lived metastable structures with similarities to the raft-like structures of actin filaments is observed within a range of salt concentration.

  5. Ionochromic 4,4 '-azobispyridinium salt-incorporated polymer: synthesis and optical properties

    Science.gov (United States)

    Lee, Taek Seung; Ahn, Heungki; Lee, Jin Kyun; Park, Won Ho

    2003-01-01

    Azobispyridinium-bearing polyelectrolyte linked with flexible alkyl chain was synthesized and characterized. The polymer showed absorption changes upon addition of hydroxide anion with an isobestic point in UV-visible spectrum. It is presumed that conformational change of the azo group in the main chain is responsible for the point. Transduction of physical information (hydroxide concentration) into an optical signal from azo group was related to the ionochromic effect. Electrostatic self-assembled multilayer of the polymer with appropriate polyanion was carried out via layer-by-layer deposition.

  6. Limiting law excess sum rule for polyelectrolytes.

    Science.gov (United States)

    Landy, Jonathan; Lee, YongJin; Jho, YongSeok

    2013-11-01

    We revisit the mean-field limiting law screening excess sum rule that holds for rodlike polyelectrolytes. We present an efficient derivation of this law that clarifies its region of applicability: The law holds in the limit of small polymer radius, measured relative to the Debye screening length. From the limiting law, we determine the individual ion excess values for single-salt electrolytes. We also consider the mean-field excess sum away from the limiting region, and we relate this quantity to the osmotic pressure of a dilute polyelectrolyte solution. Finally, we consider numerical simulations of many-body polymer-electrolyte solutions. We conclude that the limiting law often accurately describes the screening of physical charged polymers of interest, such as extended DNA.

  7. Charge correlation effects on ionization of weak polyelectrolytes

    International Nuclear Information System (INIS)

    Panagiotopoulos, A Z

    2009-01-01

    Ionization curves of weak polyelectrolytes were obtained as a function of the charge coupling strength from Monte Carlo simulations. In contrast to many earlier studies, the present work treats counterions explicitly, thus allowing the investigation of charge correlation effects at strong couplings. For conditions representing typical weak polyelectrolytes in water near room temperature, ionization is suppressed because of interactions between nearby dissociated groups, as also seen in prior work. A novel finding here is that, for stronger couplings, relevant for non-aqueous environments in the absence of added salt, the opposite behavior is observed-ionization is enhanced relative to the behavior of the isolated groups due to ion-counterion correlation effects. The fraction of dissociated groups as a function of position along the chain also behaves non-monotonically. Dissociation is highest near the ends of the chains for aqueous polyelectrolytes and highest at the chain middle segments for non-aqueous environments. At intermediate coupling strengths, dissociable groups appear to behave in a nearly ideal fashion, even though chain dimensions still show strong expansion effects due to ionization. These findings provide physical insights on the impact of competition between acid/base chemical equilibrium and electrostatic attractions in ionizable systems.

  8. Modification of Bacterial Cellulose Biofilms with Xylan Polyelectrolytes.

    Science.gov (United States)

    Santos, Sara M; Carbajo, José M; Gómez, Nuria; Ladero, Miguel; Villar, Juan C

    2017-11-28

    The effect of the addition of two [4-butyltrimethylammonium]-xylan chloride polyelectrolytes (BTMAXs) on bacterial cellulose (BC) was evaluated. The first strategy was to add the polyelectrolytes to the culture medium together with a cell suspension of the bacterium. After one week of cultivation, the films were collected and purified. The second approach consisted of obtaining a purified and homogenized BC, to which the polyelectrolytes were added subsequently. The films were characterized in terms of tear and burst indexes, optical properties, surface free energy, static contact angle, Gurley porosity, SEM, X-ray diffraction and AFM. Although there are small differences in mechanical and optical properties between the nanocomposites and control films, the films obtained by BC synthesis in the presence of BTMAXs were remarkably less opaque, rougher, and had a much lower specular gloss. The surface free energy depends on the BTMAXs addition method. The crystallinity of the composites is lower than that of the control material, with a higher reduction of this parameter in the composites obtained by adding the BTMAXs to the culture medium. In view of these results, it can be concluded that BC-BTMAX composites are a promising new material, for example, for paper restoration.

  9. Functional polymers as nanoscopic building blocks

    International Nuclear Information System (INIS)

    Hernandez-Lopez, J.L.; Bauer, R.E.; Chang, W.-S.; Glasser, G.; Grebel-Koehler, D.; Klapper, M.; Kreiter, M.; Leclaire, J.; Majoral, J.-P.; Mittler, S.; Muellen, K.; Vasilev, K.; Weil, T.; Wu, J.; Zhu, T.; Knoll, W.

    2003-01-01

    Polyphenylene dendrimers are introduced as polymeric building blocks--with a strictly monodisperse particle size distribution within the nanometer range--for the construction of nanostructured materials and devices. The possibility for the introduction of different functionalities in the core, the scaffold or the periphery of the dendrimers offer their use as interesting modules for photonic, electronic or bioactive structures and supramolecular functional assemblies. Thus, dendrimers complement the available set of nanoscopic building blocks made from metals, e.g., Au nanoclusters and semiconductors, e.g., luminescent quantum dots. In a first set of experiments, we describe the fabrication of multilayer architectures using dendrimers with chargeable groups at the surface. This way, the polyelectrolyte deposition technique can be applied for the construction of hybrid layered assemblies with a control of the internal supramolecular structure at the nanometer level. Surface plasmon field-enhanced fluorescence spectroscopy is used to monitor the luminescent properties of dendrimers with a phthalocyanine core integrated into such a multilayer assembly. AFM and SEM micrographs demonstrate the use of surface-functionalized dendrimers (exposing sulfur groups at the periphery) in combination with Au nanoparticles for the controlled assembly of hybrid aggregates as nanoscopic functional devices

  10. Glucose Oxidase Adsorption on Sequential Adsorbed Polyelectrolyte Films Studied by Spectroscopic Techniques

    Science.gov (United States)

    Tristán, Ferdinando; Solís, Araceli; Palestino, Gabriela; Gergely, Csilla; Cuisinier, Frédéric; Pérez, Elías

    2005-04-01

    The adsorption of Glucose Oxidase (GOX) on layers of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) deposited on Sequentially Adsorbed Polyelectrolyte Films (SAPFs) were studied by three different spectroscopic techniques. These techniques are: Optical Wave Light Spectroscopy (OWLS) to measure surface density; Fluorescence Resonance Energy Transfer (FRET) to verify the adsorption of GOX on the surface; and Fourier Transform Infrared Spectroscopy in Attenuated Total Reflection mode (FTIR-HATR) to inspect local structure of polyelectrolytes and GOX. Two positive and two negative polyelectrolytes are used: Cationic poly(ethyleneimine) (PEI) and poly(allylamine hydrochloride) (PAH) and anionic poly(sodium 4-styrene sulfonate) (PSS) and poly(acrylic acid) (PAA). These spectroscopic techniques do not require any labeling for GOX or SAPFs, specifically GOX and PSS are naturally fluorescent and are used as a couple donor-acceptor for the FRET technique. The SAPFs are formed by a (PEI)-(PSS/PAH)2 film followed by (PAA/PAH)n bilayers. GOX is finally deposited on top of SAPFs at different values of n (n=1..5). Our results show that GOX is adsorbed on positive ended SAPFs forming a monolayer. Contrary, GOX adsorption is not observed on negative ended film polyelectrolyte. GOX stability was tested adding a positive and a negative polyelectrolyte after GOX adsorption. Protein is partially removed by PAH and PAA, with lesser force by PAA.

  11. [Method of multilayer assembly as alternative to antibacterial coverings of medicobiological implants].

    Science.gov (United States)

    Ospanova, A K; Omarova, R A; Abdurazakov, U A; Zhartybaev, R N; Iskakova, M K; Savdenbekova, B E; Amkhadova, M A

    2016-01-01

    Department of Traumatology and Orthopedics Almaty Kazakh Medical University of Continuing Education; 4. Moscow Regional Research Clinical Institute, Russia Resume: in this report we present the results on the use of the method of layer-by-layer (LbL) for obtaining antimicrobial coatings for biomedical implants. As the substrates were used silicon titanium implants and silicon plate. For the obtaining multilayer coatings on the surfaces of the samples were used as the polycation--chitosan and polyanion--carboxymethylcellulose sodium. On the surface multilayer were deposited antibacterial preparations: Triclosan-2,4,4'trichloro-2' hydroxyphenyl ether, silver ions and iodine. Microbiological studies were conducted on the museum strains: E. coli, Candida and Staf. Preliminary antibacterial studies on these microorganisms showed high activity multilayer coating containing triclosan.

  12. Mechanisms of polyelectrolyte enhanced surfactant adsorption at the air-water interface.

    Science.gov (United States)

    Stenger, Patrick C; Palazoglu, Omer A; Zasadzinski, Joseph A

    2009-05-01

    Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids.

  13. Nanopatterning of Co/Pt-multilayers via self-assembled block-copolymer micelles; Magnetische Nanostrukturen basierend auf Co/Pt-Multilagen, hergestellt mittels selbstorganisierter Masken aus Blockcopolymer-Micellen

    Energy Technology Data Exchange (ETDEWEB)

    Stillrich, H.

    2007-07-01

    The production and characterization of magnetic nanostructures based on Co/Ptmultilayers are described in this thesis. Nanostructure arrays of Co/Pt multilayer films are generated utilizing the self-assembly of block copolymer micelles with a few 10nm diameter. For an understanding of the magnetic properties of nanostructures the properties of Co/Pt-multilayer films are examined first. The films are grown via different sputter techniques. The structural and magnetic properties are investigated depending on the deposition technique. The sources of magnetic anisotropy are discussed based on these investigations. One major topic concerning Co/Pt-multilayers is the reorientation of the easy axis of magnetization from perpendicular to in-plane as a function of the cobalt and platinum layer thicknesses. Combining averaging magnetization measurements and high resolution magnetic imaging, the canting of magnetization within the reorientation transition and a canted domain structure were found. The basis for magnetic nanostructures are Co/Pt-multilayers that were optimized for strong magnetic anisotropy. Magnetic antidot and dot arrays are generated from Co/Pt-multilayers via novel methods utilizing block copolymer micelle masks and ion milling. The generation of nanostructure arrays is proven by the morphologic and topographic properties, combined with the evolution of magneto-optic signals. Two different approaches for the generation of antidot arrays are shown. The magnetic properties of antidot arrays with perpendicular and in-plane easy magnetization are investigated. Magnetic dot arrays are produced utilizing the cores of SiO{sub 2} filled block copolymer micelles. The dot arrays consist of single domain particles. The switching field distribution of the dot arrays is analysed and described using the size distribution of the magnetic particles. Magnetic nanostructures in the region of the superparamagnetic limit are investigated. (orig.)

  14. Polyelectrolyte Properties in Mono and Multi-Valent Ionic Media: Brushes and Complex Coacervates

    Science.gov (United States)

    Farina, Robert M.

    Materials composed of polyelectrolytes have unique and interesting physical properties resulting primarily from their charged monomer segments. Polyelectrolytes, which exist in many different biological and industrial forms, have also been shown to be highly responsive to external environmental changes. Here, two specific polyelectrolyte systems, brushes and complex coacervates, are discussed in regards to how their properties can be tailored by adjusting the surrounding ionic environment with mono and multi-valent ions. End-tethered polyelectrolyte brushes, which constitute an interesting and substantial portion of polyelectrolyte applications, are well known for their ability to provide excellent lubrication and low friction when coated onto surfaces (e.g. articular cartilage and medical devices), as well as for their ability to stabilize colloidal particles in solution (e.g. paint and cosmetic materials). These properties have been extensively studied with brushes in pure mono-valent ionic media. However, polyelectrolyte brush interactions with multi-valent ions in solution are much less understood, although highly relevant considering mono and multi-valent counterions are present in most applications. Even at very low concentrations of multi-valent ions in solution, dramatic polyelectrolyte brush physical property changes can occur, resulting in collapsed chains which also adhere to one another via multi-valent bridging. Here, the strong polyelectrolyte poly(sodium styrene sulfonate) was studied using the Surface Forces Apparatus (SFA) and electrochemistry in order to investigate brush height and intermolecular interactions between two brushes as a function of multi-valent counterion population inside a brush. Complex coacervates are formed when polyanions and polycations are mixed together in proper conditions of an aqueous solution. This mixing results in a phase separation of a polymer-rich, coacervate phase composed of a chain network held together via

  15. Influence of network topology on the swelling of polyelectrolyte nanogels

    OpenAIRE

    Rizzi, Leandro G.; Levin, Yan

    2016-01-01

    It is well-known that the swelling behavior of ionic nanogels depends on their cross-link density, however it is unclear how different topologies should affect the response of the polyelectrolyte network. Here we perform Monte Carlo simulations to obtain the equilibrium properties of ionic nanogels as a function of salt concentration $C_s$ and the fraction $f$ of ionizable groups in a polyelectrolyte network formed by cross-links of functionality $z$. Our results indicate that the network wit...

  16. Polymeric ionic liquid based on magnetic materials fabricated through layer-by-layer assembly as adsorbents for extraction of pesticides.

    Science.gov (United States)

    He, Lijun; Cui, Wenhang; Wang, Yali; Zhao, Wenjie; Xiang, Guoqiang; Jiang, Xiuming; Mao, Pu; He, Juan; Zhang, Shusheng

    2017-11-03

    In this study, layer-by-layer assembly of polyelectrolyte multilayer films on magnetic silica provided a convenient and controllable way to prepare polymeric ionic liquid-based magnetic adsorbents. The resulting particles were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and magnetic measurements. The data showed that the magnetic particles had more homogeneous spherical shapes with higher saturation magnetization when compared to those obtained by free radical polymerization method. This facilitated the convenient collection of magnetic particles, with higher extraction repeatability. The extraction performance of the multilayer polymeric ionic liquid-based adsorbents was evaluated by magnetic solid-phase extraction of four pesticides including quinalphos, fenthion, phoxim, and chlorpropham. The data suggested that the extraction efficiency depended on the number of layers in the film. The parameters affecting the extraction efficiency were optimized, and good linearity ranging from 2 to 250μgL -1 was obtained with correlation coefficients of 0.9994-0.9998. Moreover, the proposed method presented low limit of detection (0.5μgL -1 , S/N=3) and limit of quantification (1.5μgL -1 , S/N=10), and good repeatability expressed by the relative standard deviation (2.0%-4.6%, n=5). The extraction recoveries of four pesticides were found to range from 58.9% to 85.8%. The reliability of the proposed method was demonstrated by analyzing environmental water samples, and the results revealed satisfactory spiked recovery, relative standard deviation, and selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Fracture mechanisms in multilayer phosphorene assemblies: from brittle to ductile.

    Science.gov (United States)

    Liu, Ning; Hong, Jiawang; Zeng, Xiaowei; Pidaparti, Ramana; Wang, Xianqiao

    2017-05-24

    The outstanding mechanical performance of nacre has stimulated numerous studies on the design of artificial nacres. Phosphorene, a new two-dimensional (2D) material, has a crystalline in-plane structure and non-bonded interaction between adjacent flakes. Therefore, multi-layer phosphorene assemblies (MLPs), in which phosphorene flakes are piled up in a staggered manner, may exhibit outstanding mechanical performance, especially exceptional toughness. Therefore, molecular dynamics simulations are performed to study the dependence of the mechanical properties on the overlap distance between adjacent phosphorene layers and the number of phosphorene flakes per layer. The results indicate that when the flake number is equal to 1, a transition of fracture patterns is observed by increasing the overlap distance, from a ductile failure controlled by interfacial friction to a brittle failure dominated by the breakage of covalent bonds inside phosphorene flakes. Moreover, the failure pattern can be tuned by changing the number of flakes in each phosphorene layer. The results imply that the ultimate strength follows a power law with the exponent -0.5 in terms of the flake number, which is in good agreement with our analytical model. Furthermore, the flake number in each phosphorene layer is optimized as 2 when the temperature is 1 K in order to potentially achieve both high toughness and strength. Moreover, our results regarding the relations between mechanical performance and overlap distance can be explained well using a shear-lag model. However, it should be pointed out that increasing the temperature of MLPs could cause the transition of fracture patterns from ductile to brittle. Therefore, the optimal flake number depends heavily on temperature to achieve both its outstanding strength and toughness. Overall, our findings unveil the fundamental mechanism at the nanoscale for MLPs as well as provide a method to design phosphorene-based structures with targeted properties

  18. Uptake of pH-Sensitive Gold Nanoparticles in Strong Polyelectrolyte Brushes

    Directory of Open Access Journals (Sweden)

    Dikran Kesal

    2016-04-01

    Full Text Available The impact of electrostatic attraction on the uptake of gold nanoparticles (AuNPs into positively charged strong poly-[2-(Methacryloyloxy ethyl] trimethylammonium chloride (PMETAC polyelectrolyte brushes was investigated. In this work, PMETAC brushes were synthesized via surface-initiated atom transfer radical polymerization (Si-ATRP. PMETAC/AuNP composite materials were prepared by incubation of the polymer brush coated samples into 3-mercaptopropionic acid-capped AuNP (5 nm in diameter suspension. The electrostatic interactions were tuned by changing the surface charge of the AuNPs through variations in pH value, while the charge of the PMETAC brush was not affected. Atomic-force microscopy (AFM, ellipsometry, UV/Vis spectroscopy, gravimetric analysis and transmission electron microscopy (TEM were employed to study the loading and penetration into the polymer brush. The results show that the number density of attached AuNPs depends on the pH value and increases with increasing pH value. There is also strong evidence that the particle assembly is dependent on the pH value of the AuNP suspension. Incubation of PMETAC brushes in AuNP suspension at pH 4 led to the formation of a surface layer on top of the brush (2D assembly due to sterical hindrance of the clustered AuNPs, while incubation in AuNP suspension at pH 8 led to deeper particle penetration into the brush (3D assembly. The straightforward control of particle uptake and assembly by tuning the charge density of the nanoparticle surface is a valuable tool for the development of materials for colorimetric sensor applications.

  19. Electrochromic properties of self-assembled nanoparticle multilayer films

    International Nuclear Information System (INIS)

    Xue Bo; Li Hong; Zhang Lanlan; Peng Jun

    2010-01-01

    Hexagonal tungsten bronze (HTB) nanocrystal and TiO 2 nanoparticles were assembled into thin films by layer-by-layer self-assembly method. HTB nanocrystals were synthesized by hydrothermal route at 155 o C. UV-Vis spectra showed that the HTB/TiO 2 films exhibit a linear increase in film thickness with assembly exposure steps. The electrochromic property of the film was carefully investigated. Cyclic voltammetry indicated that the redox peak was around -0.5 V. The electrochromic contrast, coloration efficiency, switching speed, stability and optical memory were carefully investigated. The films vary from white to blue and finally dark brown. The electrochromic contrast is 63.9% at 633 nm. The coloration efficiency of the films is relatively high. The response time is less than 3 s.

  20. Design guidelines for advanced LSI microcircuit packaging using thick film multilayer technology

    Science.gov (United States)

    Peckinpaugh, C. J.

    1974-01-01

    Ceramic multilayer circuitry results from the sequential build-up of two or more layers of pre-determined conductive interconnections separated by dielectric layers and fired at an elevated temperature to form a solidly fused structure. The resultant ceramic interconnect matrix is used as a base to mount active and passive devices and provide the necessary electrical interconnection to accomplish the desired electrical circuit. Many methods are known for developing multilevel conductor mechanisms such as multilayer printed circuits, welded wire matrices, flexible copper tape conductors, and thin and thick-film ceramic multilayers. Each method can be considered as a specialized field with each possessing its own particular set of benefits and problems. This design guide restricts itself to the art of design, fabrication and assembly of ceramic multilayer circuitry and the reliability of the end product.

  1. The Effect of Salt on the Complex Coacervation of Vinyl Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Sarah L. Perry

    2014-06-01

    Full Text Available Complex coacervation is an electrostatically-driven phase separation phenomenon that is utilized in a wide range of everyday applications and is of great interest for the creation of self-assembled materials. Here, we utilized turbidity to characterize the effect of salt type on coacervate formation using two vinyl polyelectrolytes, poly(acrylic acid sodium salt (pAA and poly(allylamine hydrochloride (pAH, as simple models for industrial and biological coacervates. We confirmed the dominant role of salt valence on the extent of coacervate formation, while demonstrating the presence of significant secondary effects, which can be described by Hofmeister-like behavior. These results revealed the importance of ion-specific interactions, which are crucial for the informed design of coacervate-based materials for use in complex ionic environments, and can enable more detailed theoretical investigations on the role of subtle electrostatic and thermodynamic effects in complex coacervation.

  2. The Effect of Salt on the Complex Coacervation of Vinyl Polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Sarah; Li, Yue; Priftis, Dimitrios; Leon, Lorraine; Tirrell, Matthew

    2014-06-01

    Complex coacervation is an electrostatically-driven phase separation phenomenon that is utilized in a wide range of everyday applications and is of great interest for the creation of self-assembled materials. Here, we utilized turbidity to characterize the effect of salt type on coacervate formation using two vinyl polyelectrolytes, poly(acrylic acid sodium salt) (pAA) and poly(allylamine hydrochloride) (pAH), as simple models for industrial and biological coacervates. We confirmed the dominant role of salt valence on the extent of coacervate formation, while demonstrating the presence of significant secondary effects, which can be described by Hofmeister-like behavior. These results revealed the importance of ion-specific interactions, which are crucial for the informed design of coacervate-based materials for use in complex ionic environments, and can enable more detailed theoretical investigations on the role of subtle electrostatic and thermodynamic effects in complex coacervation.

  3. Coarse-Grained Modeling of Polyelectrolyte Solutions

    Science.gov (United States)

    Denton, Alan R.; May, Sylvio

    2014-03-01

    Ionic mixtures, such as electrolyte and polyelectrolyte solutions, have attracted much attention recently for their rich and challenging combination of electrostatic and non-electrostatic interparticle forces and their practical importance, from battery technologies to biological systems. Hydration of ions in aqueous solutions is known to entail ion-specific effects, including variable solubility of organic molecules, as manifested in the classic Hofmeister series for salting-in and salting-out of proteins. The physical mechanism by which the solvent (water) mediates effective interactions between ions, however, is still poorly understood. Starting from a microscopic model of a polyelectrolyte solution, we apply a perturbation theory to derive a coarse-grained model of ions interacting through both long-range electrostatic and short-range solvent-induced pair potentials. Taking these effective interactions as input to molecular dynamics simulations, we calculate structural and thermodynamic properties of aqueous ionic solutions. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  4. Filmes poliméricos ultrafinos produzidos pela técnica de automontagem: preparação, propriedades e aplicações

    Directory of Open Access Journals (Sweden)

    Paterno Leonardo Giordano

    2001-01-01

    Full Text Available The self-assembly technique is a powerful tool to fabricate ultrathin films from organic compounds aiming at technological applications in molecular electronics. This relatively new approach allows molecularly flat films to be obtained on a simple and cheap fashion from various types of material, including polyelectrolytes, conducting polymers, dyes and proteins. The resulting multilayer films may be fabricated according to specific requirements since their structural and physical properties may be controlled at the molecular level. In this review we shall comment upon the evolution of preparation methods for ultrathin films, the process of adsorption and their main properties, as well as some examples of technological applications of layer-by-layer or self-assembled films.

  5. Modeling Macroscopic Shape Distortions during Sintering of Multi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye

    as to help achieve defect free multi-layer components. The initial thickness ratio between the layers making the multi-layer has also significant effect on the extent of camber evolution depending on the material systems. During sintering of tubular bi-layer structures, tangential (hoop) stresses are very...... large compared to radial stresses. The maximum value of hoop stress, which can generate processing defects such as cracks and coating peel-offs, occurs at the beginning of the sintering cycle. Unlike most of the models defining material properties based on porosity and grain size only, the multi...... (firing). However, unintended features like shape instabilities of samples, cracks or delamination of layers may arise during sintering of multi-layer composites. Among these defects, macroscopic shape distortions in the samples can cause problems in the assembly or performance of the final component...

  6. Cationic membranes complexed with oppositely charged microtubules: hierarchical self-assembly leading to bio-nanotubes

    International Nuclear Information System (INIS)

    Raviv, Uri; Needleman, Daniel J; Safinya, Cyrus R

    2006-01-01

    The self-assembly of microtubules and charged membranes has been studied, using x-ray diffraction and electron microscopy. Polyelectrolyte lipid complexes usually form structures templated by the lipid phase, when the polyelectrolyte curvature is much larger than the membrane spontaneous curvature. When the polyelectrolyte curvature approaches the membrane spontaneous curvature, as in microtubules, two types of new structures emerge. Depending on the conditions, vesicles either adsorb onto the microtubule, forming a 'beads on a rod' structure, or coat the microtubule, which now forms the template. Tubulin oligomers then coat the external lipid layer, forming a lipid protein nanotube. The tubulin oligomer coverage at the external layer is determined by the membrane charge density. The energy barrier between the beads on a rod and the lipid-protein nanotube states depends on the membrane bending rigidity and membrane charge density. By controlling the lipid/tubulin stoichiometry we can switch between lipid-protein nanotubes with open ends to lipid-protein nanotubes with closed end with lipid cups. This forms the basis for controlled drug encapsulation and release

  7. Aggregation of flexible polyelectrolytes: Phase diagram and dynamics.

    Science.gov (United States)

    Tom, Anvy Moly; Rajesh, R; Vemparala, Satyavani

    2017-10-14

    Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.

  8. Modification of Bacterial Cellulose Biofilms with Xylan Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Sara M. Santos

    2017-11-01

    Full Text Available The effect of the addition of two [4-butyltrimethylammonium]-xylan chloride polyelectrolytes (BTMAXs on bacterial cellulose (BC was evaluated. The first strategy was to add the polyelectrolytes to the culture medium together with a cell suspension of the bacterium. After one week of cultivation, the films were collected and purified. The second approach consisted of obtaining a purified and homogenized BC, to which the polyelectrolytes were added subsequently. The films were characterized in terms of tear and burst indexes, optical properties, surface free energy, static contact angle, Gurley porosity, SEM, X-ray diffraction and AFM. Although there are small differences in mechanical and optical properties between the nanocomposites and control films, the films obtained by BC synthesis in the presence of BTMAXs were remarkably less opaque, rougher, and had a much lower specular gloss. The surface free energy depends on the BTMAXs addition method. The crystallinity of the composites is lower than that of the control material, with a higher reduction of this parameter in the composites obtained by adding the BTMAXs to the culture medium. In view of these results, it can be concluded that BC–BTMAX composites are a promising new material, for example, for paper restoration.

  9. Structure of ordered polyelectrolyte films from atomic-force microscopy and X-ray reflectivity data

    International Nuclear Information System (INIS)

    Belyaev, V.V.; Tolstikhina, A.L.; Stepina, N.D.; Kayushina, R.L.

    1998-01-01

    The possible application of atomic-force microscopy and X-ray reflectometry methods to structural studies of polyelectrolyte films obtained due to alternating adsorption of oppositely charged polyanion [sodium polysterenesulfonate (PSS)] and polycation [poly(allylamine) hydrochloride (PAA)] layers on solid substrates has been considered. The atomic-force microscopy study has revealed the characteristic features of the surface topography of samples consisting of different numbers of polyelectrolyte layers deposited from solutions characterized by different ionic strength values. It is shown that the shape of the reflectivity curves obtained from thin polyelectrolyte films depends on their surface structure

  10. Study and Optimization of Self-Assembled Polymeric Multilayer Structures with Neutral Red for pH Sensing Applications

    Directory of Open Access Journals (Sweden)

    Javier Goicoechea

    2008-01-01

    Full Text Available The characterization of nanostructured thin films is critical in the design and fabrication of optical sensors. Particularly, this work is a detailed study of the properties of layer-by-layer electrostatic self-assembled multilayer (LbL structures fabricated using poly(allylamine hydrochloride (PAH and Neutral Red (NR as cations, and poly(acrylic acid (PAA as polyanion. These LbL films, due to the colorimetric properties of the NR, are suitable for sensor applications such as pH sensing in the physiological range. In the (PAH+NR/PAA LbL structure, it has been observed a very important influence of the pH of the solutions in the properties of the resultant films. Different techniques such as spectroscopy and atomic force microscopy (AFM are combined to characterize the films, and the results are analyzed showing coherence with previous works. The LbL structure is finally optimized and dramatically improved nanostructured films were fabricated, showing good sensing properties, short response times, and good stability.

  11. Selective Gas Permeation in Graphene Oxide-Polymer Self-Assembled Multilayers.

    Science.gov (United States)

    Pierleoni, Davide; Minelli, Matteo; Ligi, Simone; Christian, Meganne; Funke, Sebastian; Reineking, Niklas; Morandi, Vittorio; Doghieri, Ferruccio; Palermo, Vincenzo

    2018-04-04

    The performance of polymer-based membranes for gas separation is currently limited by the Robeson limit, stating that it is impossible to have high gas permeability and high gas selectivity at the same time. We describe the production of membranes based on the ability of graphene oxide (GO) and poly(ethyleneimine) (PEI) multilayers to overcome such a limit. The PEI chains act as molecular spacers in between the GO sheets, yielding a highly reproducible, periodic multilayered structure with a constant spacing of 3.7 nm, giving a record combination of gas permeability and selectivity. The membranes feature a remarkable gas selectivity (up to 500 for He/CO 2 ), allowing to overcome the Robeson limit. The permeability of these membranes to different gases depends exponentially on the diameter of the gas molecule, with a sieving mechanism never obtained in pure GO membranes, in which a size cutoff and a complex dependence on the chemical nature of the permeant is typically observed. The tunable permeability, the high selectivity, and the possibility to produce coatings on a wide range of polymers represent a new approach to produce gas separation membranes for large-scale applications.

  12. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction

    Science.gov (United States)

    Shah, Nisarg J.; Hyder, Md. Nasim; Quadir, Mohiuddin A.; Dorval Courchesne, Noémie-Manuelle; Seeherman, Howard J.; Nevins, Myron; Spector, Myron; Hammond, Paula T.

    2014-01-01

    Traumatic wounds and congenital defects that require large-scale bone tissue repair have few successful clinical therapies, particularly for craniomaxillofacial defects. Although bioactive materials have demonstrated alternative approaches to tissue repair, an optimized materials system for reproducible, safe, and targeted repair remains elusive. We hypothesized that controlled, rapid bone formation in large, critical-size defects could be induced by simultaneously delivering multiple biological growth factors to the site of the wound. Here, we report an approach for bone repair using a polyelectrolye multilayer coating carrying as little as 200 ng of bone morphogenetic protein-2 and platelet-derived growth factor-BB that were eluted over readily adapted time scales to induce rapid bone repair. Based on electrostatic interactions between the polymer multilayers and growth factors alone, we sustained mitogenic and osteogenic signals with these growth factors in an easily tunable and controlled manner to direct endogenous cell function. To prove the role of this adaptive release system, we applied the polyelectrolyte coating on a well-studied biodegradable poly(lactic-co-glycolic acid) support membrane. The released growth factors directed cellular processes to induce bone repair in a critical-size rat calvaria model. The released growth factors promoted local bone formation that bridged a critical-size defect in the calvaria as early as 2 wk after implantation. Mature, mechanically competent bone regenerated the native calvaria form. Such an approach could be clinically useful and has significant benefits as a synthetic, off-the-shelf, cell-free option for bone tissue repair and restoration. PMID:25136093

  13. Investigation of polyelectrolytes by total reflection x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Varga, I.; Nagy, M.

    2000-01-01

    Water soluble polyelectrolyte samples containing mono-, bi- and trivalent metal ions were investigated without any pretreatment. Acid digestion of linear polymers may lead to a product insoluble in water so the digestion has to be avoided. The aim of this paper was the determination of analytical characteristics and limitations of the total reflection x-ray fluorescence (TXRF) analysis for poly (vinylalcohol-vinylsulphate) salts and poly (acrylic acid, acrylamide) copolymers containing the following cations: K + , Cs + , Ba 2+ , Cu 2+ and La 3+ . On the basis of our results efficiency of ion-exchange during preparation of polyelectrolytes and stoichiometry of the end-product were determined. TXRF results were compared with data gained by inductively coupled plasma atomic emission spectrometry (ICP-AES) measurements except in the case of Cs + which has poor sensitivity in ICP-AES. Good agreement was found between the results of the two techniques and calculations from titrimetric data. Concentration of Li + and Mg 2+ in polymer samples was measured by ICP-AES. In majority of cases film-like dry residues of aqueous solutions of polyelectrolytes can be characterized by homogeneous spatial distribution of metal ions within the organic matrix. This is because the migration of the ions is hindered during drying process. Determination of metals in polyelectrolyte films by TXRF is quite ideal as model for analysis of plant, animal or human tissues which is a frequent task in environmental and inorganic biomedical analytical chemistry. (author)

  14. Layer-by-layer assembled multilayer of graphene/Prussian blue toward simultaneous electrochemical and SPR detection of H2O2

    DEFF Research Database (Denmark)

    Mao, Yan; Bao, Yu; Wang, Wei

    2011-01-01

    A new type of chemically converted graphene sheets, cationic polyelectrolyte-functionalized ionic liquid decorated graphene sheets (PFIL–GS) composite, was synthesized and characterized by Ultraviolet–visible (UV–vis) absorption, Fourier transform infrared, and Raman spectroscopy. It was found th...

  15. Responsive polyelectrolyte hydrogels and soft matter micromanipulation

    NARCIS (Netherlands)

    Glazer, P.J.

    2013-01-01

    This dissertation describes experimental studies on the mechanisms underlying the dynamic response of polyelectrolyte hydrogels when submitted to an external electric potential. In addition, we explore the possibilities of miniaturization and manipulation of responsive gels and other soft matter

  16. Magnetic resonance of rubidium atoms passing through a multi-layered transmission magnetic grating

    International Nuclear Information System (INIS)

    Nagata, Y; Kurokawa, S; Hatakeyama, A

    2017-01-01

    We measured the magnetic resonance of rubidium atoms passing through periodic magnetic fields generated by two types of multi-layered transmission magnetic grating. One of the gratings reported here was assembled by stacking four layers of magnetic films so that the direction of magnetization alternated at each level. The other grating was assembled so that the magnetization at each level was aligned. For both types of grating, the experimental results were in good agreement with our calculations. We studied the feasibility of extending the frequency band of the grating and narrowing its resonance linewidth by performing calculations. For magnetic resonance precision spectroscopy, we conclude that the multi-layered transmission magnetic grating can generate periodic fields with narrower linewidths at higher frequencies when a larger number of layers are assembled at a shorter period length. Moreover, the frequency band of this type of grating can potentially achieve frequencies of up to hundreds of PHz. (paper)

  17. QM/MM-MD simulations of conjugated polyelectrolytes

    DEFF Research Database (Denmark)

    Sjöqvist, Jonas; Linares, Mathieu; Mikkelsen, Kurt Valentin

    2014-01-01

    A methodological development is reported for the study of luminescence properties of conjugated polyelectrolytes, encompassing systems in which dihedral rotational barriers are easily overcome at room temperature. The components of the model include (i) a molecular mechanics (MM) force field desc...

  18. Swelling characteristics of acrylic acid polyelectrolyte hydrogel in a dc electric field

    Science.gov (United States)

    Jabbari, Esmaiel; Tavakoli, Javad; Sarvestani, Alireza S.

    2007-10-01

    A novel application of environmentally sensitive polyelectrolytes is in the fabrication of BioMEMS devices as sensors and actuators. Poly(acrylic acid) (PAA) gels are anionic polyelectrolyte networks that exhibit volume expansion in aqueous physiological environments. When an electric field is applied to PAA polyelectrolyte gels, the fixed anionic polyelectrolyte charges and the requirement of electro-neutrality in the network generate an osmotic pressure, above that in the absence of the electric field, to expand the network. The objective of this research was to investigate the effect of an externally applied dc electric field on the volume expansion of the PAA polyelectrolyte gel in a simulated physiological solution of phosphate buffer saline (PBS). For swelling studies in the electric field, two platinum-coated plates, as electrodes, were wrapped in a polyethylene sheet to protect the plates from corrosion and placed vertically in a vessel filled with PBS. The plates were placed on a rail such that the distance between the two plates could be adjusted. The PAA gel was synthesized by free radical crosslinking of acrylic acid monomer with ethylene glycol dimethacrylate (EGDMA) crosslinker. Our results demonstrate that volume expansion depends on the intensity of the electric field, the PAA network density, network homogeneity, and the position of the gel in the field relative to positive/negative electrodes. Our model predictions for PAA volume expansion, based on the dilute electrolyte concentration in the gel network, is in excellent agreement with the experimental findings in the high-electric-field regime (250-300 Newton/Coulomb).

  19. Polyelectrolyte bundles

    Energy Technology Data Exchange (ETDEWEB)

    Limbach, H J; Sayar, M; Holm, C [Max-Planck-Institut fuer Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany)

    2004-06-09

    Using extensive molecular dynamics simulations we study the behaviour of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction and the bundle size. We show that for the parameter range relevant for sulfonated poly(para-phenylenes) (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting at the possibility that the size of DNA aggregates is, under certain circumstances, thermodynamically limited.

  20. Polyelectrolyte bundles

    International Nuclear Information System (INIS)

    Limbach, H J; Sayar, M; Holm, C

    2004-01-01

    Using extensive molecular dynamics simulations we study the behaviour of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction and the bundle size. We show that for the parameter range relevant for sulfonated poly(para-phenylenes) (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting at the possibility that the size of DNA aggregates is, under certain circumstances, thermodynamically limited

  1. Polyelectrolyte bundles

    Science.gov (United States)

    Limbach, H. J.; Sayar, M.; Holm, C.

    2004-06-01

    Using extensive Molecular Dynamics simulations we study the behavior of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction, and the bundle size. We show that for the parameter range relevant for sulfonated poly-para-phenylenes (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting to the possibility that the size of DNA aggregates is under certain circumstances thermodynamically limited.

  2. Metal–organic coordinated multilayer film formation: Quantitative analysis of composition and structure

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Alexandra S.; Elinski, Meagan B.; Ohnsorg, Monica L.; Beaudoin, Christopher K.; Alexander, Kyle A.; Peaslee, Graham F.; DeYoung, Paul A.; Anderson, Mary E., E-mail: meanderson@hope.edu

    2015-09-01

    Metal–organic coordinated multilayers are self-assembled thin films fabricated by alternating solution–phase deposition of bifunctional organic molecules and metal ions. The multilayer film composed of α,ω-mercaptoalkanoic acid and Cu (II) has been the focus of fundamental and applied research with its robust reproducibility and seemingly simple hierarchical architecture. However, internal structure and composition have not been unambiguously established. The composition of films up to thirty layers thick was investigated using Rutherford backscattering spectrometry and particle induced X-ray emission. Findings show these films are copper enriched, elucidating a 2:1 ratio for the ion to molecule complexation at the metal–organic interface. Results also reveal that these films have an average layer density similar to literature values established for a self-assembled monolayer, indicating a robust and stable structure. The surface structures of multilayer films have been characterized by contact angle goniometry, ellipsometry, and scanning probe microscopy. A morphological transition is observed as film thickness increases from the first few foundational layers to films containing five or more layers. Surface roughness analysis quantifies this evolution as the film initially increases in roughness before obtaining a lower roughness comparable to the underlying gold substrate. Quantitative analysis of topographical structure and internal composition for metal–organic coordinated multilayers as a function of number of deposited layers has implications for their incorporation in the fields of photonics and nanolithography. - Highlights: • Layer-by-layer deposition is examined by scanning probe microscopy and ion beam analysis. • Film growth undergoes morphological evolution during foundational layer deposition. • Image analysis quantified surface features such as roughness, grain size, and coverage. • Molecular density of each film layer is found to

  3. Hetero-Colloidal Metal Particle Multilayer Films Grown Using Electrostatic Interactions at the Air-water Interface

    International Nuclear Information System (INIS)

    Sastry, Murali; Mayya, K.S.

    2000-01-01

    The formation of nanoparticle multilayer films by electrostatic immobilization of surface-modified colloidal particles at the air-water interface has been recently demonstrated by us. In this paper, we extend our study to show that multilayer assemblies consisting of metal particles of different chemical nature (hetero-colloidal particle superlattices) and size can be deposited by the versatile Langmuir-Blodgett technique. Multilayer films consisting of a different number of bilayers of gold and silver colloidal particles have been deposited and characterized using quartz crystal microgravimetry and UV-visible spectroscopy measurements. It is observed that while layer-by-layer deposition of the different colloidal particle assemblies is possible by this technique without a detectable variation in the cluster density in the different layers, a degree of post-deposition reorganization of the clusters occurs in the film. In addition to this aging behavior, the effect of different organic solvents on the reorganization process has also been studied

  4. Fabrication and Characterization of Electrospun Semiconductor Nanoparticle—Polyelectrolyte Ultra-Fine Fiber Composites for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Caroline L. Schauer

    2011-10-01

    Full Text Available Fluorescent composite fibrous assembles of nanoparticle-polyelectrolyte fibers are useful multifunctional materials, utilized in filtration, sensing and tissue engineering applications, with the added benefits of improved mechanical, electrical or structural characteristics over the individual components. Composite fibrous mats were prepared by electrospinning aqueous solutions of 6 wt% poly(acrylic acid (PAA loaded with 0.15 and 0.20% v/v, carboxyl functionalized CdSe/ZnS nanoparticles (SNPs. The resulting fluorescent composite fibrous mats exhibits recoverable quenching when exposed to high humidity. The sensor response is sensitive to water concentration and is attributed to the change in the local charges around the SNPs due to deprotonation of the carboxylic acids on the SNPs and the surrounding polymer matrix.

  5. Salt dependence of compression normal forces of quenched polyelectrolyte brushes

    Science.gov (United States)

    Hernandez-Zapata, Ernesto; Tamashiro, Mario N.; Pincus, Philip A.

    2001-03-01

    We obtained mean-field expressions for the compression normal forces between two identical opposing quenched polyelectrolyte brushes in the presence of monovalent salt. The brush elasticity is modeled using the entropy of ideal Gaussian chains, while the entropy of the microions and the electrostatic contribution to the grand potential is obtained by solving the non-linear Poisson-Boltzmann equation for the system in contact with a salt reservoir. For the polyelectrolyte brush we considered both a uniformly charged slab as well as an inhomogeneous charge profile obtained using a self-consistent field theory. Using the Derjaguin approximation, we related the planar-geometry results to the realistic two-crossed cylinders experimental set up. Theoretical predictions are compared to experimental measurements(Marc Balastre's abstract, APS March 2001 Meeting.) of the salt dependence of the compression normal forces between two quenched polyelectrolyte brushes formed by the adsorption of diblock copolymers poly(tert-butyl styrene)-sodium poly(styrene sulfonate) [PtBs/NaPSS] onto an octadecyltriethoxysilane (OTE) hydrophobically modified mica, as well as onto bare mica.

  6. A molecular-thermodynamic model for polyelectrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J.; Liu, H.; Hu, Y. [Thermodynamics Research Laboratory, East China University of Science and Technology, Shanghai 200237 (China); Prausnitz, J.M. [Department of Chemical Engineering, University of California, Berkeley, and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States)

    1998-01-01

    Polyelectrolyte solutions are modeled as freely tangent-jointed, charged hard-sphere chains and corresponding counterions in a continuum medium with permitivity {var_epsilon}. By adopting the sticky-point model, the Helmholtz function for polyelectrolyte solutions is derived through the r-particle cavity-correlation function (CCF) for chains of sticky, charged hard spheres. The r-CCF is approximated by a product of effective nearest-neighbor two-particle CCFs; these are determined from the hypernetted-chain and mean-spherical closures (HNC/MSA) inside and outside the hard core, respectively, for the integral equation theory for electrolytes. The colligative properties are given as explicit functions of a scaling parameter {Gamma} that can be estimated by a simple iteration procedure. Osmotic pressures, osmotic coefficients, and activity coefficients are calculated for model solutions with various chain lengths. They are in good agreement with molecular simulation and experimental results. {copyright} {ital 1998 American Institute of Physics.}

  7. Multilayer Thin Films Sequential Assembly of Nanocomposite Materials

    CERN Document Server

    Decher, Gero

    2012-01-01

    This second, comprehensive edition of the pioneering book in this field has been completely revised and extended, now stretching to two volumes. The result is a comprehensive summary of layer-by-layer assembled, truly hybrid nanomaterials and thin films, covering organic, inorganic, colloidal, macromolecular and biological components, plus the assembly of nanoscale films derived from them on surfaces. Praise for the first edition: "... highly recommended to anyone interested in the field... and to scientists and researchers active in materials development..." –Polymer News With contri

  8. Lipophilic polyelectrolyte gel derived from phosphonium borate can absorb a wide range of organic solvents.

    Science.gov (United States)

    Sunaga, Sokuro; Kokado, Kenta; Sada, Kazuki

    2018-01-24

    Herein, we demonstrate a polyelectrolyte gel which can absorb a wide range of organic solvents from dimethylsulfoxide (DMSO, permittivity: ε = 47.0) to tetrahydrofuran (ε = 5.6). The gel consists of polystyrene chains with small amounts (∼5 mol%) of lipophilic electrolytes derived from triphenylphosphonium tetraaryl borate. The swelling ability of the polyelectrolyte gel was higher than that of the alkyl ammonium tetraaryl borate previously reported by us, and this is attributed to the higher compatibility with organic solvents, as well as the higher dissociating ability, of the triphenyl phosphonium salt. The role of the ionic moieties was additionally confirmed by post modification of the polyelectrolyte gel via a conventional Wittig reaction, resulting in a nonionic gel. Our findings introduced here will lead to a clear-cut molecular design for polyelectrolyte gels which absorb all solvents.

  9. Polyelectrolyte-mediated bridging interactions: columnar macromolecular phases

    International Nuclear Information System (INIS)

    Licer, Matjaz; Podgornik, Rudolf

    2010-01-01

    We present a mean-field theory for charged polymer chains in an external electrostatic field in the weak and strong coupling limits. We apply the theory to describe the statistical mechanics of flexible polyelectrolyte chains in a hexagonal columnar lattice of stiff cylindrical macroions, such as DNA, in a bathing solution of a uni-univalent salt (e.g. NaCl). The salt effects are first described in the Debye-Hueckel framework. This yields the macroion electrostatic field in the screened Coulomb form, which we take to represent the mean field into which the chains are immersed. We introduce the Green's function for the polyelectrolyte chains and derive the corresponding Edwards equation which we solve numerically in the Wigner-Seitz cylindrical cell using the ground state dominance ansatz. The solutions indicate the presence of polyelectrolyte bridging, which results in a like-charge attraction between stiff macroions. Then we reformulate the Edwards theory for the strong coupling case and use the standard Poisson-Boltzmann picture to describe the salt solution. We begin with the free energy which we minimize to obtain the Euler-Lagrange equations. The solutions yield self-consistently determined monomer density and electrostatic fields. We furthermore calculate the free energy density as well as the total osmotic pressure in the system. We again show that bridging implicates like-charge attractions of entropic origin between stiff cylindrical macroions. By analyzing the osmotic pressure we demonstrate that, in certain parts of the parameter space, a phase transition occurs between two phases of the same hexagonal symmetry.

  10. Template-controlled piezoactivity of ZnO thin films grown via a bioinspired approach

    Directory of Open Access Journals (Sweden)

    Nina J. Blumenstein

    2017-01-01

    Full Text Available Biomaterials are used as model systems for the deposition of functional inorganic materials under mild reaction conditions where organic templates direct the deposition process. In this study, this principle was adapted for the formation of piezoelectric ZnO thin films. The influence of two different organic templates (namely, a carboxylate-terminated self-assembled monolayer and a sulfonate-terminated polyelectrolyte multilayer on the deposition and therefore on the piezoelectric performance was investigated. While the low negative charge of the COOH-SAM is not able to support oriented attachment of the particles, the strongly negatively charged sulfonated polyelectrolyte leads to texturing of the ZnO film. This texture enables a piezoelectric performance of the material which was measured by piezoresponse force microscopy. This study shows that it is possible to tune the piezoelectric properties of ZnO by applying templates with different functionalities.

  11. Physical deposition behavior of stiff amphiphilic polyelectrolytes in an external electric field

    Science.gov (United States)

    Hu, Dongmei; Zuo, Chuncheng; Cao, Qianqian; Chen, Hongli

    2017-08-01

    Coarse-grained molecular dynamics simulations are conducted to study the physical deposition behavior of stiff amphiphilic polyelectrolytes (APEs) in an external electric field. The effects of chain stiffness, the charge distribution of a hydrophilic block, and electric field strength are investigated. Amphiphilic multilayers, which consist of a monolayer of adsorbed hydrophilic monomers (HLMs), a hydrophobic layer, and another hydrophilic layer, are formed in a selective solvent. All cases exhibit locally ordered hydrophilic monolayers. Two kinds of hydrophobic micelles are distinguished based on local structures. Stripe and network hydrophobic patterns are formed in individual cases. Increasing the chain stiffness decreases the thickness of the deposited layer, the lateral size of the hydrophobic micelles, and the amount of deposition. Increasing the number of positively charged HLMs in a single chain has the same effect as increasing chain stiffness. Moreover, when applied normally to the substrate, the electric field compresses the deposited structures and increases the amount of deposition by pulling more PEs toward the substrate. A stronger electric field also facilitates the formation of a thinner and more ordered hydrophilic adsorption layer. These estimates help us explore how to tailor patterned nano-surfaces, nano-interfaces, or amphiphilic nanostructures by physically depositing semi-flexible APEs which is of crucial importance in physical sciences, life sciences and nanotechnology.

  12. Influence of anionic and cationic polyelectrolytes on the conductivity and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films

    Energy Technology Data Exchange (ETDEWEB)

    Valtakari, Dimitar, E-mail: dimitar.valtakari@abo.fi [Abo Akademi University, Laboratory of Paper Coating and Converting, Center for Functional Materials at Biological Interfaces (FUNMAT), Porthansgatan 3, FI-20500 Åbo/Turku (Finland); Bollström, Roger [Omya International AG, CH 4665 Oftringen (Switzerland); Toivakka, Martti; Saarinen, Jarkko J. [Abo Akademi University, Laboratory of Paper Coating and Converting, Center for Functional Materials at Biological Interfaces (FUNMAT), Porthansgatan 3, FI-20500 Åbo/Turku (Finland)

    2015-09-01

    Conductivity of the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) strongly depends on the film morphology, which can be altered by the presence of polyelectrolytes. Aqueous dispersion of PEDOT:PSS was studied with anionic sodium polyacrylate (PA) and cationic poly(dimethyldiallylammonium chloride) (pDADMAC) polyelectrolytes that are typically used in papermaking as retention aids and dispersing agents in the paper pigment coating formulations. Spin-coated PEDOT:PSS films on a PA coated glass formed non-uniform layers with lowered conductivity compared to the reference PEDOT:PSS films on a clean glass substrate. On contrary, spin-coated PEDOT:PSS on a pDADMAC coated glass formed uniform layers with good conductivity. These results point out the importance of surface chemistry when using renewable and recyclable paper-based substrates with the PEDOT:PSS films. - Highlights: • PEDOT:PSS polymer was studied in the presence of polyelectrolytes. • Uniform layers of PEDOT:PSS and polyelectrolytes were spin-coated on glass. • Cationic polyelectrolyte was found to be more susceptible to humidity. • Cationic polyelectrolyte improves the conductivity of PEDOT:PSS. • PEDOT:PSS forms non-uniform layers on anionic polyelectrolyte coated glass.

  13. Influence of anionic and cationic polyelectrolytes on the conductivity and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films

    International Nuclear Information System (INIS)

    Valtakari, Dimitar; Bollström, Roger; Toivakka, Martti; Saarinen, Jarkko J.

    2015-01-01

    Conductivity of the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) strongly depends on the film morphology, which can be altered by the presence of polyelectrolytes. Aqueous dispersion of PEDOT:PSS was studied with anionic sodium polyacrylate (PA) and cationic poly(dimethyldiallylammonium chloride) (pDADMAC) polyelectrolytes that are typically used in papermaking as retention aids and dispersing agents in the paper pigment coating formulations. Spin-coated PEDOT:PSS films on a PA coated glass formed non-uniform layers with lowered conductivity compared to the reference PEDOT:PSS films on a clean glass substrate. On contrary, spin-coated PEDOT:PSS on a pDADMAC coated glass formed uniform layers with good conductivity. These results point out the importance of surface chemistry when using renewable and recyclable paper-based substrates with the PEDOT:PSS films. - Highlights: • PEDOT:PSS polymer was studied in the presence of polyelectrolytes. • Uniform layers of PEDOT:PSS and polyelectrolytes were spin-coated on glass. • Cationic polyelectrolyte was found to be more susceptible to humidity. • Cationic polyelectrolyte improves the conductivity of PEDOT:PSS. • PEDOT:PSS forms non-uniform layers on anionic polyelectrolyte coated glass

  14. Recent Progress and Perspectives in the Electrokinetic Characterization of Polyelectrolyte Films

    Directory of Open Access Journals (Sweden)

    Ralf Zimmermann

    2015-12-01

    Full Text Available The analysis of the charge, structure and molecular interactions of/within polymeric substrates defines an important analytical challenge in materials science. Accordingly, advanced electrokinetic methods and theories have been developed to investigate the charging mechanisms and structure of soft material coatings. In particular, there has been significant progress in the quantitative interpretation of streaming current and surface conductivity data of polymeric films from the application of recent theories developed for the electrohydrodynamics of diffuse soft planar interfaces. Here, we review the theory and experimental strategies to analyze the interrelations of the charge and structure of polyelectrolyte layers supported by planar carriers under electrokinetic conditions. To illustrate the options arising from these developments, we discuss experimental and simulation data for plasma-immobilized poly(acrylic acid films and for a polyelectrolyte bilayer consisting of poly(ethylene imine and poly(acrylic acid. Finally, we briefly outline potential future developments in the field of the electrokinetics of polyelectrolyte layers.

  15. Construction of covalently attached enzyme multilayer films based on the photoreaction of diazo-resins and glucose oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Suxia [Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 119 Jie Fang Road, Changchun 130023 (China); Niu Yaming [Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 119 Jie Fang Road, Changchun 130023 (China); Sun Changqing [Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 119 Jie Fang Road, Changchun 130023 (China)]. E-mail: sunchq@mail.jlu.edu.cn

    2004-10-15

    A novel and facile approach to construct multilayered glucose oxidase (GOx) films on the surface of quartz or CaF{sub 2} slides as well as gold electrodes for use as biosensing interfaces is described. Diazo-resins (DAR) as polycation and glucose oxidase as polyanion were alternately deposited into a multilayer structure using layer-by-layer self-assembly technique based on electrostatic interaction as driving force. Upon near UV irradiation, the adjacent interfaces of the multilayer reacted to form a crosslinking structure which greatly improved the stability of the enzyme films. These changes was monitored and confirmed by UV-vis and IR spectroscopy. Ellipsometric measurements reveal that the enzymes formed sub-molecule layers, and the thickness of the film shows a linear relationship with the number of assembled layers, demonstrating a spatially well-ordered manner in multilayer structure. The covalently attached enzyme multilayer film has a highly permeable structure, and can be used as biosensing interface. Electrochemical and analytical behavior of the enzyme electrodes was studied by cyclic voltammetry (CV) in the presence or absence of glucose. The sensitivity of the enzyme-modified electrodes was estimated through the analysis of voltammetric signals, which can be fine turned to the desired level by adjusting the number of attached bilayers.

  16. Construction of covalently attached enzyme multilayer films based on the photoreaction of diazo-resins and glucose oxidase

    International Nuclear Information System (INIS)

    Zhang Suxia; Niu Yaming; Sun Changqing

    2004-01-01

    A novel and facile approach to construct multilayered glucose oxidase (GOx) films on the surface of quartz or CaF 2 slides as well as gold electrodes for use as biosensing interfaces is described. Diazo-resins (DAR) as polycation and glucose oxidase as polyanion were alternately deposited into a multilayer structure using layer-by-layer self-assembly technique based on electrostatic interaction as driving force. Upon near UV irradiation, the adjacent interfaces of the multilayer reacted to form a crosslinking structure which greatly improved the stability of the enzyme films. These changes was monitored and confirmed by UV-vis and IR spectroscopy. Ellipsometric measurements reveal that the enzymes formed sub-molecule layers, and the thickness of the film shows a linear relationship with the number of assembled layers, demonstrating a spatially well-ordered manner in multilayer structure. The covalently attached enzyme multilayer film has a highly permeable structure, and can be used as biosensing interface. Electrochemical and analytical behavior of the enzyme electrodes was studied by cyclic voltammetry (CV) in the presence or absence of glucose. The sensitivity of the enzyme-modified electrodes was estimated through the analysis of voltammetric signals, which can be fine turned to the desired level by adjusting the number of attached bilayers

  17. Influence of network topology on the swelling of polyelectrolyte nanogels.

    Science.gov (United States)

    Rizzi, L G; Levin, Y

    2016-03-21

    It is well-known that the swelling behavior of ionic nanogels depends on their cross-link density; however, it is unclear how different topologies should affect the response of the polyelectrolyte network. Here we perform Monte Carlo simulations to obtain the equilibrium properties of ionic nanogels as a function of salt concentration Cs and the fraction f of ionizable groups in a polyelectrolyte network formed by cross-links of functionality z. Our results indicate that the network with cross-links of low connectivity result in nanogel particles with higher swelling ratios. We also confirm a de-swelling effect of salt on nanogel particles.

  18. Electrophoretic build-up of alternately multilayered films and micropatterns based on graphene sheets and nanoparticles and their applications in flexible supercapacitors.

    Science.gov (United States)

    Niu, Zhiqiang; Du, Jianjun; Cao, Xuebo; Sun, Yinghui; Zhou, Weiya; Hng, Huey Hoon; Ma, Jan; Chen, Xiaodong; Xie, Sishen

    2012-10-22

    Graphene nanosheets and metal nanoparticles (NPs) have been used as nano-building-blocks for assembly into macroscale hybrid structures with promising performance in electrical devices. However, in most graphene and metal NP hybrid structures, the graphene sheets and metal NPs (e.g., AuNPs) do not enable control of the reaction process, orientation of building blocks, and organization at the nanoscale. Here, an electrophoretic layer-by-layer assembly for constructing multilayered reduced graphene oxide (RGO)/AuNP films and lateral micropatterns is presented. This assembly method allows easy control of the nano-architecture of building blocks along the normal direction of the film, including the number and thickness of RGO and AuNP layers, in addition to control of the lateral orientation of the resultant multilayered structures. Conductivity of multilayered RGO/AuNP hybrid nano-architecture shows great improvement caused by a bridging effect of the AuNPs along the out-of-plane direction between the upper and lower RGO layers. The results clearly show the potential of electrophoretic build-up in the fabrication of graphene-based alternately multilayered films and patterns. Finally, flexible supercapacitors based on multilayered RGO/AuNP hybrid films are fabricated, and excellent performance, such as high energy and power densities, are achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Development and production of hard X-ray multilayer optics for HEFT

    DEFF Research Database (Denmark)

    Koglin, J.E; Christensen, Finn Erland; Chonko, J.

    2002-01-01

    approximation Wolter-I design. The segmented mirrors that form these layers are made of thermally formed glass substrates coated with depth-graded multilayer films for enhanced reflectivity. The mirrors are assembled using an over-constraint method that forces the overall shape of the nominally cylindrical...

  20. Porous PLGA microspheres tailored for dual delivery of biomolecules via layer-by-layer assembly.

    Science.gov (United States)

    Go, Dewi P; Palmer, Jason A; Mitchell, Geraldine M; Gras, Sally L; O'Connor, Andrea J

    2015-05-01

    Tissue engineering is a complex and dynamic process that requires varied biomolecular cues to promote optimal tissue growth. Consequently, the development of delivery systems capable of sequestering more than one biomolecule with controllable release profiles is a key step in the advancement of this field. This study develops multilayered polyelectrolyte films incorporating alpha-melanocyte stimulating hormone (α-MSH), an anti-inflammatory molecule, and basic fibroblast growth factor (bFGF). The layers were successfully formed on macroporous poly lactic-co-glycolic acid microspheres produced using a combined inkjet and thermally induced phase separation technique. Release profiles could be varied by altering layer properties including the number of layers and concentrations of layering molecules. α-MSH and bFGF were released in a sustained manner and the bioactivity of α-MSH was shown to be preserved using an activated macrophage cell assay in vitro. The system performance was also tested in vivo subcutaneously in rats. The multilayered microspheres reduced the inflammatory response induced by a carrageenan stimulus 6 weeks after implantation compared to the non-layered microspheres without the anti-inflammatory and growth factors, demonstrating the potential of such multilayered constructs for the controlled delivery of bioactive molecules. © 2014 Wiley Periodicals, Inc.

  1. Layer-by-layer modification of high surface curvature nanoparticles with weak polyelectrolytes using a multiphase solvent precipitation process.

    Science.gov (United States)

    Nagaraja, Ashvin T; You, Yil-Hwan; Choi, Jeong-Wan; Hwang, Jin-Ha; Meissner, Kenith E; McShane, Michael J

    2016-03-15

    The layer-by-layer modification of ≈5 nm mercaptocarboxylic acid stabilized gold nanoparticles was studied in an effort to illustrate effective means to overcome practical issues in handling and performing surface modification of such extremely small materials. To accomplish this, each layer deposition cycle was separated into a multi-step process wherein solution pH was controlled in two distinct phases of polyelectrolyte adsorption and centrifugation. Additionally, a solvent precipitation step was introduced to make processing more amenable by concentrating the sample and exchanging solution pH before ultracentrifugation. The pH-dependent assembly on gold nanoparticles was assessed after each layer deposition cycle by monitoring the plasmon peak absorbance location, surface charge, and the percentage of nanoparticles recovered. The selection of solution pH during the adsorption phase was found to be a critical parameter to enhance particle recovery and maximize surface charge when coating with weak polyelectrolytes. One bilayer was deposited with a high yield and the modified particles exhibited enhanced colloidal stability across a broad pH range and increased ionic strength. These findings support the adoption of this multi-step processing approach as an effective and generalizable approach to improve stability of high surface curvature particles. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Architecture and assembly of the Bacillus subtilis spore coat.

    Science.gov (United States)

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of "nanodot" particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization

  3. Architecture and Assembly of the Bacillus subtilis Spore Coat

    Science.gov (United States)

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J.

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization

  4. Modeling competitive substitution in a polyelectrolyte complex

    International Nuclear Information System (INIS)

    Peng, B.; Muthukumar, M.

    2015-01-01

    We have simulated the invasion of a polyelectrolyte complex made of a polycation chain and a polyanion chain, by another longer polyanion chain, using the coarse-grained united atom model for the chains and the Langevin dynamics methodology. Our simulations reveal many intricate details of the substitution reaction in terms of conformational changes of the chains and competition between the invading chain and the chain being displaced for the common complementary chain. We show that the invading chain is required to be sufficiently longer than the chain being displaced for effecting the substitution. Yet, having the invading chain to be longer than a certain threshold value does not reduce the substitution time much further. While most of the simulations were carried out in salt-free conditions, we show that presence of salt facilitates the substitution reaction and reduces the substitution time. Analysis of our data shows that the dominant driving force for the substitution process involving polyelectrolytes lies in the release of counterions during the substitution

  5. Structural and magnetic properties of granular CoPd multilayers

    Science.gov (United States)

    Vivas, L. G.; Figueroa, A. I.; Bartolomé, F.; Rubín, J.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Brookes, N. B.; Wilhelm, F.; Rogalev, A.; Bartolomé, J.

    2016-02-01

    Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk.

  6. Antimicrobial coatings on polyethylene terephthalate based on curcumin/cyclodextrin complex embedded in a multilayer polyelectrolyte architecture.

    Science.gov (United States)

    Shlar, Ilya; Droby, Samir; Rodov, Victor

    2018-04-01

    Bacterial contamination is a growing concern worldwide. The aim of this work was to develop an antimicrobial coating based on curcumin-cyclodextrin inclusion complex and using polyethylene terephthalate (PET) film as a support matrix. After a pre-treatment aimed to provide sufficient electric charge to the PET surface, it was electrostatically coated with repeated multilayers comprising alternately deposited positively-charged poly-l-lysine (PLL) and negatively-charged poly-l-glutamic acid (PLGA) and carboxymethyl-β-cyclodextrin (CMBCD). The coatings had an architecture (PLL-PLGA) 6 -(PLL-PLGA-PLL-CMBCD) n , with the number of repeated multilayers n varying from 5 to 20. The CMBCD molecules were either covalently cross-linked using carbodiimide crosslinker chemistry or left unbound. The surface morphology, structure and elemental composition of the coatings were analysed by scanning electron microscopy and energy dispersive x-ray spectroscopy. To impart antimicrobial properties to the coatings they were loaded with a natural phenolic compound curcumin forming inclusion complexes with β-cyclodextrin. The non-cross-linked coatings showed bactericidal activity towards Escherichia coli in the dark, and this activity was further enhanced upon illumination with white light. Curcumin was released from the non-cross-linked coatings into an aqueous medium in the form of cyclodextrin inclusion complex. After the cross-linking, the coating lost its dark antimicrobial activity but retained the photodynamic properties. Stabilized cross-linked curcumin-loaded coatings can serve a basis for developing photoactivated antimicrobial surfaces controlling bacterial contamination and spread. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Multilayered sulphonated polysulfone/silica composite membranes for fuel cell applications

    International Nuclear Information System (INIS)

    Padmavathi, Rajangam; Karthikumar, Rajendhiran; Sangeetha, Dharmalingam

    2012-01-01

    Highlights: ► Multilayered membranes were fabricated with SPSu. ► Aminated polysulfone and silica were used as the layers in order to prevent the crossover of methanol. ► The methanol permeability and selectivity ratio proved a strong influence on DMFC application. ► The suitability of the multilayered membranes was studied in the lab made set-ups of PEMFC and DMFC. - Abstract: Polymer electrolyte membranes used in proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) suffer from low dimensional stability. Hence multilayered membranes using sulfonated polysulfone (SPSu) and silica (SiO 2 ) were fabricated to alter such properties. The introduction of an SiO 2 layer between two layers of SPSu to form the multilayered composite membrane enhanced its dimensional stability, but slightly lowered its proton conductivity when compared to the conventional SPSu/SiO 2 composite membrane. Additionally, higher water absorption, lower methanol permeability and higher flame retardancy were also observed in this newly fabricated multilayered membrane. The performance evaluation of the 2 wt% SiO 2 loaded multilayered membrane in DMFC showed a maximum power density of 86.25 mW cm −2 , which was higher than that obtained for Nafion 117 membrane (52.8 mW cm −2 ) in the same single cell test assembly. Hence, due to the enhanced dimensional stability, reduced methanol permeability and higher maximum power density, the SPSu/SiO 2 /SPSu multilayered membrane can be a viable and a promising candidate for use as an electrolyte membrane in DMFC applications, when compared to Nafion.

  8. Conformations and solution properties of star-branched polyelectrolytes

    NARCIS (Netherlands)

    Borisov, O.V.; Zhulina, E.B.; Leermakers, F.A.M.; Ballauff, M.; Muller, A.H.E.

    2011-01-01

    Aqueous solutions of star-like polyelectrolytes (PEs) exhibit distinctive features that originate from the topological complexity of branched macromolecules. In a salt-free solution of branched PEs, mobile counterions preferentially localize in the intramolecular volume of branched macroions.

  9. Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization

    Science.gov (United States)

    Sen, Swati; Kundagrami, Arindam

    2015-12-01

    The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.

  10. Ultramicroelectrode studies of oxygen reduction in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    A study on the oxygen reduction reaction in a solid state electrochemical cell was presented. The oxygen reduction reaction is a rate limiting reaction in the operation of solid polymer electrolyte fuel cells which use H{sub 2} and O{sub 2}. Interest in the oxygen reduction reaction of platinum electrodes in contact with Nafion electrolytes stems from its role in fuel cell technology. The kinetics of the oxygen reduction reaction in different polyelectrolyte membranes, such as Nafion and non-Nafion membranes, were compared. The electrode kinetics and mass transport parameters of the oxygen reduction reaction in polyelectrolyte membranes were measured by ultramicroelectrode techniques. The major difference found between these two classes of membrane was the percentage of water, which is suggestive of superior electrochemical mass transport properties of the non-Nafion membranes. 2 refs. 1 fig.

  11. Weak polyelectrolyte complexation driven by associative charging

    Science.gov (United States)

    Rathee, Vikramjit S.; Zervoudakis, Aristotle J.; Sidky, Hythem; Sikora, Benjamin J.; Whitmer, Jonathan K.

    2018-03-01

    Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.

  12. Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.

    Science.gov (United States)

    Ubbink, Job; Khokhlov, Alexei R

    2004-03-15

    A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.

  13. Polyelectrolyte Multilayer Film Coated Silver Nanorods: An Effective Carrier System for Externally Activated Drug Delivery

    Science.gov (United States)

    Paramasivam, Gokul; Sharma, Varsha; Sundaramurthy, Anandhakumar

    2017-08-01

    Nanoparticle anisotropy offers unique functions and features in comparison with spherical nanoparticles (NPs) and makes anisotropic nanoparticles (ANPs) promising candidates in applications like drug delivery, imaging, biosensing and theranostics. Presence of surface active groups (e.g. amine, and carboxylate groups) on their surface provides binding sites for ligands or other biomolecules, and hence, this could be targeted for specific part or cells in our body. In the quest of such surface modification, functionalization of ANPs along Layer-by-Layer (LbL) coating of oppositely charged polyelectrolytes (PE) reduces cellular toxicity and promotes easy encapsulation of drugs. In this work, we report the silver nanorods (AgNRs) synthesis by adsorbate directed synthetic approach using cetyltrimethyl ammonium bromide (CTAB). The formed ANPs is investigated by scanning electron microscopy (SEM) and UV-Visible (UV-Vis) spectroscopy revealing the shaping of AgNRs of 3-16 nm aspect ratio with some presence of triangles. These NRs were further coated with bio polymers of chitosan (CH) and dextran sulphate (DS) through LbL approach and used for encapsulation of water soluble anti-bacterial drugs like ciprofloxacin hydrochloride (CFH). The encapsulation of drugs and profiles of drug release were investigated and compared to that of spherical silver nanoparticles (AgNPs). The added advantages of the proposed drug delivery system (DDS) can be externally activated to release the loaded drug and used as contrast agents for biological imaging under exposure to NIR light. Such system shows unique and attractive characteristics required for drug delivery and bioimaging thus offering the scope for further development as theranostic material.

  14. Carrier-inside-carrier: polyelectrolyte microcapsules as reservoir for drug-loaded liposomes.

    Science.gov (United States)

    Maniti, Ofelia; Rebaud, Samuel; Sarkis, Joe; Jia, Yi; Zhao, Jie; Marcillat, Olivier; Granjon, Thierry; Blum, Loïc; Li, Junbai; Girard-Egrot, Agnès

    2015-01-01

    Conventional liposomes have a short life-time in blood, unless they are protected by a polymer envelope, most often polyethylene glycol. However, these stabilizing polymers frequently interfere with cellular uptake, impede liposome-membrane fusion and inhibit escape of liposome content from endosomes. To overcome such drawbacks, polymer-based systems as carriers for liposomes are currently developed. Conforming to this approach, we propose a new and convenient method for embedding small size liposomes, 30-100 nm, inside porous calcium carbonate microparticles. These microparticles served as templates for deposition of various polyelectrolytes to form a protective shell. The carbonate particles were then dissolved to yield hollow polyelectrolyte microcapsules. The main advantage of using this method for liposome encapsulation is that carbonate particles can serve as a sacrificial template for deposition of virtually any polyelectrolyte. By carefully choosing the shell composition, bioavailability of the liposomes and of the encapsulated drug can be modulated to respond to biological requirements and to improve drug delivery to the cytoplasm and avoid endosomal escape.

  15. Direct optical imaging of nanoscale internal organization of polymer films

    Science.gov (United States)

    Suran, Swathi; Varma, Manoj

    2018-02-01

    Owing to its sensitivity and precise control at the nanoscale, polyelectrolytes have been immensely used to modify surfaces. Polyelectrolyte multilayers are generally water made and are easy to fabricate on any surface by the layer-by-layer (LbL) self-assembly process due to electrostatic interactions. Polyelectrolyte multilayers or PEMs can be assembled to form ultrathin membranes which can have potential applications in water filtration and desalination [1-3]. Hydration in PEMs is a consequence of both the bulk and surface phenomenon [4-7]. Bulk behavior of polymer membranes are well understood. Several techniques including reflectivity and contact angle measurements were used to measure the hydration in the bulk of polymer membranes [4, 8]. On the other hand their internal organization at the molecular level which can have a profound contribution in the transport mechanism, are not understood well. Previously, we engineered a technique, which we refer to as Bright-field Nanoscopy, which allows nanoscale optical imaging using local heterogeneities in a water-soluble germanium (Ge) thin film ( 25 nm thick) deposited on gold [8]. We use this technique to study the water transport in PEMs. It is understood that the surface charge and outer layers of the PEMs play a significant role in water transport through polymers [9-11]. This well-known `odd-even' effect arising on having different surface termination of the PEMs was optically observed with a spatial resolution unlike any other reported previously [12]. In this communication, we report that on increasing the etchant's concentration, one can control the lateral etching of the Ge film. This allowed the visualization of the nanoscale internal organization in the PEMs. Knowledge of the internal structure would allow one to engineer polymer membranes specific to applications such as drug delivering capsules, ion transport membranes and barriers etc. We also demonstrate a mathematical model involving a surface

  16. Polyelectrolyte hydrogels and methods of their preparation

    International Nuclear Information System (INIS)

    Ward, J.A.

    1981-01-01

    This invention relates to polyelectrolyte polymers which are water insoluble but water swellable, and methods for producing them. More particularly, it relates to cross-linked, random copolymers comprised of an acrylate salt and acrylamide and methods of producing them by means of a controlled dose and controlled intensity of ionizing radiation. (author)

  17. Drug Loading and Release Behavior Depending on the Induced Porosity of Chitosan/Cellulose Multilayer Nanofilms.

    Science.gov (United States)

    Park, Sohyeon; Choi, Daheui; Jeong, Hyejoong; Heo, Jiwoong; Hong, Jinkee

    2017-10-02

    The ability to control drug loading and release is the most important feature in the development of medical devices. In this research, we prepared a functional nanocoating technology to incorporate a drug-release layer onto a desired substrate. The multilayer films were prepared using chitosan (CHI) and carboxymethyl cellulose (CMC) polysaccharides by the layer-by-layer (LbL) method. By using chemical cross-linking to change the inner structure of the assembled multilayer, we could control the extent of drug loading and release. The cross-linked multilayer film had a porous structure and enhanced water wettability. Interestingly, more of the small-molecule drug was loaded into and released from the non-cross-linked multilayer film, whereas more of the macromolecular drug was loaded into and released from the cross-linked multilayer film. These results indicate that drug loading and release can be easily controlled according to the molecular weight of the desired drug by changing the structure of the film.

  18. Exploration of polyelectrolytes as draw solutes in forward osmosis processes

    KAUST Repository

    Ge, Qingchun

    2012-03-01

    The development of the forward osmosis (FO) process has been constrained by the slow development of appropriate draw solutions. Two significant concerns related to draw solutions are the draw solute leakage and intensiveenergy requirement in recycling draw solutes after the FO process. FO would be much attractive if there is no draw solute leakage and the recycle of draw solutes is easy and economic. In this study, polyelectrolytes of a series of polyacrylic acid sodium salts (PAA-Na), were explored as draw solutes in the FO process. The characteristics of high solubility in water and flexibility in structural configuration ensure the suitability of PAA-Na as draw solutes and their relative ease in recycle through pressure-driven membrane processes. The high water flux with insignificant salt leakage in the FO process and the high salt rejection in recycle processes reveal the superiority of PAA-Na to conventional ionic salts, such as NaCl, when comparing their FO performance via the same membranes. The repeatable performance of PAA-Na after recycle indicates the absence of any aggregation problems. The overall performance demonstrates that polyelectrolytes of PAA-Na series are promising as draw solutes, and the new concept of using polyelectrolytes as draw solutes in FO processes is applicable. © 2011 Elsevier Ltd.

  19. Hydrazine-mediated construction of nanocrystal self-assembly materials.

    Science.gov (United States)

    Zhou, Ding; Liu, Min; Lin, Min; Bu, Xinyuan; Luo, Xintao; Zhang, Hao; Yang, Bai

    2014-10-28

    Self-assembly is the basic feature of supramolecular chemistry, which permits to integrate and enhance the functionalities of nano-objects. However, the conversion of self-assembled structures to practical materials is still laborious. In this work, on the basis of studying one-pot synthesis, spontaneous assembly, and in situ polymerization of aqueous semiconductor nanocrystals (NCs), NC self-assembly materials are produced and applied to design high performance white light-emitting diode (WLED). In producing self-assembly materials, the additive hydrazine (N2H4) is curial, which acts as the promoter to achieve room-temperature synthesis of aqueous NCs by favoring a reaction-controlled growth, as the polyelectrolyte to weaken inter-NC electrostatic repulsion and therewith facilitate the one-dimensional self-assembly, and in particular as the bifunctional monomers to polymerize with mercapto carboxylic acid-modified NCs via in situ amidation reaction. This strategy is versatile for mercapto carboxylic acid-modified aqueous NCs, for example CdS, CdSe, CdTe, CdSe(x)Te(1-x), and Cd(y)Hg(1-y)Te. Because of the multisite modification with carboxyl, the NCs act as macromonomers, thus producing cross-linked self-assembly materials with excellent thermal, solvent, and photostability. The assembled NCs preserve strong luminescence and avoid unpredictable fluorescent resonance energy transfer, the main problem in design WLED from multiple NC components. These advantages allow the fabrication of NC-based WLED with high color rendering index (86), high luminous efficacy (41 lm/W), and controllable color temperature.

  20. Partial molar volume of anionic polyelectrolytes in aqueous solution.

    Science.gov (United States)

    Salamanca, Constain; Contreras, Martín; Gamboa, Consuelo

    2007-05-15

    In this work the partial molar volumes (V) of different anionic polyelectrolytes and hydrophobically modified polyelectrolytes (PHM) were measured. Polymers like polymaleic acid-co-styrene, polymaleic acid-co-1-olefin, polymaleic acid-co-vinyl-2-pyrrolidone, and polyacrylic acid (abbreviated as MAS-n, PA-n-K2, AMVP, and PAA, respectively) were employed. These materials were investigated by density measurements in highly dilute aqueous solutions. The molar volume results allow us to discuss the effect of the carboxylic groups and the contributions from the comonomeric principal chain. The PAA presents the smaller V, while the largest V value was for AMVP. The V of PHM shows a linear relationship with the number of methylene groups in the lateral chain. It is found that the magnitude of the contribution per methylene group decreases as the hydrophobic character of the environment increases.

  1. Interaction between two parallel plates covered with a polyelectrolyte brush layer in an electrolyte solution.

    Science.gov (United States)

    Ohshima, Hiroyuki

    An approximate analytic expression is derived for the interaction energy between two parallel plates covered with a polyelectrolyte brush layer in an electrolyte solution. The interaction energy has three components: electrostatic interaction energy between two brush layers before and after their contact, steric interaction energy between two brush layers after their contact, and the van der Waals interaction energy between the cores of the plates. It is shown that these three components are of the same order of magnitude and contribute equally to the total interaction energy between two polyelectrolyte-coated plates in an electrolyte solution. On the basis of Derjaguin's approximation, an approximate expression for the interaction energy between two spherical particles covered with polyelectrolyte brush layers is also derived.

  2. High Thermoelectric Power Factor Organic Thin Films through Combination of Nanotube Multilayer Assembly and Electrochemical Polymerization.

    Science.gov (United States)

    Culebras, Mario; Cho, Chungyeon; Krecker, Michelle; Smith, Ryan; Song, Yixuan; Gómez, Clara M; Cantarero, Andrés; Grunlan, Jaime C

    2017-02-22

    In an effort to produce effective thermoelectric nanocomposites with multiwalled carbon nanotubes (MWCNT), layer-by-layer assembly was combined with electrochemical polymerization to create synergy that would produce a high power factor. Nanolayers of MWCNT stabilized with poly(diallyldimethylammonium chloride) or sodium deoxycholate were alternately deposited from water. Poly(3,4-ethylene dioxythiophene) [PEDOT] was then synthesized electrochemically by using this MWCNT-based multilayer thin film as the working electrode. Microscopic images show a homogeneous distribution of PEDOT around the MWCNT. The electrical resistance, conductivity (σ) and Seebeck coefficient (S) were measured before and after the PEDOT polymerization. A 30 bilayer MWCNT film (<1 μm thick) infused with PEDOT is shown to achieve a power factor (PF = S 2 σ) of 155 μW/m K 2 , which is the highest value ever reported for a completely organic MWCNT-based material and competitive with lead telluride at room temperature. The ability of this MWCNT-PEDOT film to generate power was demonstrated with a cylindrical thermoelectric generator that produced 5.5 μW with a 30 K temperature differential. This unique nanocomposite, prepared from water with relatively inexpensive ingredients, should open up new opportunities to recycle waste heat in portable/wearable electronics and other applications where low weight and mechanical flexibility are needed.

  3. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    Directory of Open Access Journals (Sweden)

    Qing-Xi Wu

    2014-12-01

    Full Text Available Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.

  4. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes.

    Science.gov (United States)

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-12-19

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.

  5. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    Science.gov (United States)

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-01-01

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail. PMID:25532565

  6. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    OpenAIRE

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-01-01

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have...

  7. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Liang [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Sun, Hongrui [English Teaching Department, School of Basic Courses, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016 (China); Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China)

    2015-02-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  8. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    International Nuclear Information System (INIS)

    Hu, Liang; Sun, Hongrui; Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying; Wang, Siling

    2015-01-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  9. Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric.

    Science.gov (United States)

    Li, Yu-Chin; Schulz, Jessica; Mannen, Sarah; Delhom, Chris; Condon, Brian; Chang, Sechin; Zammarano, Mauro; Grunlan, Jaime C

    2010-06-22

    Cotton fabric was treated with flame-retardant coatings composed of branched polyethylenimine (BPEI) and sodium montmorillonite (MMT) clay, prepared via layer-by-layer (LbL) assembly. Four coating recipes were created by exposing fabric to aqueous solutions of BPEI (pH 7 or 10) and MMT (0.2 or 1 wt %). BPEI pH 10 produces the thickest films, while 1 wt % MMT gives the highest clay loading. Each coating recipe was evaluated at 5 and 20 bilayers. Thermogravimetric analysis showed that coated fabrics left as much as 13% char after heating to 500 degrees C, nearly 2 orders of magnitude more than uncoated fabric, with less than 4 wt % coming from the coating itself. These coatings also reduced afterglow time in vertical flame tests. Postburn residues of coated fabrics were examined with SEM and revealed that the weave structure and fiber shape in all coated fabrics were preserved. The BPEI pH 7/1 wt % MMT recipe was most effective. Microcombustion calorimeter testing showed that all coated fabrics reduced the total heat release and heat release capacity of the fabric. Fiber count and strength of uncoated and coated fabric are similar. These results demonstrate that LbL assembly is a relatively simple method for imparting flame-retardant behavior to cotton fabric. This work lays the foundation for using these types of thin film assemblies to make a variety of complex substrates (foam, fabrics, etc.) flame resistant.

  10. Reversibility and Relaxation Behavior of Polyelectrolyte Complex Micelle Formation

    NARCIS (Netherlands)

    Lindhoud, Saskia; Norde, Willem; Stuart, Martien A. Cohen

    2009-01-01

    In this study, the formation and disintegration of polyelectrolyte complex micelles is studied by dynamic light scattering titrations with the aim to assess the extent to which these complexes equilibrate. Also, the time evolution of samples at fixed (electroneutral) composition was followed to

  11. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    International Nuclear Information System (INIS)

    Zhao, Mingtian; Li, Baohui; Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai

    2015-01-01

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG) 5 /(KGKG) 5 , (EEGG) 5 /(KKGG) 5 , and (EEGG) 5 /(KGKG) 5 , in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight

  12. Magnetic multilayer structure

    Science.gov (United States)

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  13. Multilayer checkpoints for microRNA authenticity during RISC assembly.

    Science.gov (United States)

    Kawamata, Tomoko; Yoda, Mayuko; Tomari, Yukihide

    2011-09-01

    MicroRNAs (miRNAs) function through the RNA-induced silencing complex (RISC), which contains an Argonaute (Ago) protein at the core. RISC assembly follows a two-step pathway: miRNA/miRNA* duplex loading into Ago, and separation of the two strands within Ago. Here we show that the 5' phosphate of the miRNA strand is essential for duplex loading into Ago, whereas the preferred 5' nucleotide of the miRNA strand and the base-pairing status in the seed region and the middle of the 3' region function as additive anchors to Ago. Consequently, the miRNA authenticity is inspected at multiple steps during RISC assembly.

  14. Photoresponsive layer-by-layer ultrathin films prepared from a hyperbranched azobenzene-containing polymeric diazonium salt

    International Nuclear Information System (INIS)

    Li Xinyang; Fan Pengwei; Tuo Xinlin; He Yaning; Wang Xiaogong

    2009-01-01

    In this work, a hyperbranched diazonium salt (HB-DAS), prepared through azo-coupling reaction of an AB 2 monomer (N, N-bis[2-(4-aminobenzoyloxy)ethyl]aniline), was used to prepare self-assembled multilayers and ultrathin films. Multilayer films were fabricated by dipping substrates in HB-DAS and other polyelectrolyte solutions alternately in a layer-by-layer (LBL) manner. It was somewhat surprising to observe that HB-DAS forms multilayer films with either a polyanion (poly(styrenesulfonate sodium salt), PSS) or a polycation (poly(diallyldimethylammonium chloride), PDAC) through alternate deposition in the solutions. Ultrathin films were formed in a sequential growth manner by dipping the substrates in the HB-DAS solution, washing with deionized water and drying repeatedly. In all the processes, the absorbance and thickness of the thin films linearly increase as the number of the dipping cycle increases. HB-DAS/PSS multilayer possesses an obviously larger bilayer thickness and lower density compared with the other two counterparts. The drying step after each deposition is necessary for the HB-DAS ultrathin film growth through the repeated dip-coating of HB-DAS. The multilayer and ultrathin films prepared by the above methods all show high resistance to erosion by organic solvents. The multilayers and ultrathin films exhibit photoinduced dichroism upon the irradiation of a polarized Ar + laser beam

  15. Photoresponsive layer-by-layer ultrathin films prepared from a hyperbranched azobenzene-containing polymeric diazonium salt

    Energy Technology Data Exchange (ETDEWEB)

    Li Xinyang; Fan Pengwei; Tuo Xinlin; He Yaning [Department of Chemical Engineering, Laboratory for Advanced Materials, Tsinghua University, Beijing, 100084 (China); Wang Xiaogong [Department of Chemical Engineering, Laboratory for Advanced Materials, Tsinghua University, Beijing, 100084 (China)], E-mail: wxg-dce@mail.tsinghua.edu.cn

    2009-01-30

    In this work, a hyperbranched diazonium salt (HB-DAS), prepared through azo-coupling reaction of an AB{sub 2} monomer (N, N-bis[2-(4-aminobenzoyloxy)ethyl]aniline), was used to prepare self-assembled multilayers and ultrathin films. Multilayer films were fabricated by dipping substrates in HB-DAS and other polyelectrolyte solutions alternately in a layer-by-layer (LBL) manner. It was somewhat surprising to observe that HB-DAS forms multilayer films with either a polyanion (poly(styrenesulfonate sodium salt), PSS) or a polycation (poly(diallyldimethylammonium chloride), PDAC) through alternate deposition in the solutions. Ultrathin films were formed in a sequential growth manner by dipping the substrates in the HB-DAS solution, washing with deionized water and drying repeatedly. In all the processes, the absorbance and thickness of the thin films linearly increase as the number of the dipping cycle increases. HB-DAS/PSS multilayer possesses an obviously larger bilayer thickness and lower density compared with the other two counterparts. The drying step after each deposition is necessary for the HB-DAS ultrathin film growth through the repeated dip-coating of HB-DAS. The multilayer and ultrathin films prepared by the above methods all show high resistance to erosion by organic solvents. The multilayers and ultrathin films exhibit photoinduced dichroism upon the irradiation of a polarized Ar{sup +} laser beam.

  16. Supramolecular self-assembly of graphene oxide and metal nanoparticles into stacked multilayers by means of a multitasking protein ring.

    Science.gov (United States)

    Ardini, Matteo; Golia, Giordana; Passaretti, Paolo; Cimini, Annamaria; Pitari, Giuseppina; Giansanti, Francesco; Di Leandro, Luana; Ottaviano, Luca; Perrozzi, Francesco; Santucci, Sandro; Morandi, Vittorio; Ortolani, Luca; Christian, Meganne; Treossi, Emanuele; Palermo, Vincenzo; Angelucci, Francesco; Ippoliti, Rodolfo

    2016-03-28

    Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the "double-faced" Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml(-1). Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and "green" routes to 3D reduced GO-metal composite materials.

  17. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors

    Science.gov (United States)

    Wan, Caichao; Jiao, Yue; Li, Jian

    2017-09-01

    An easily-operated and inexpensive strategy (pencil-drawing-electrodeposition-electro-oxidation) is proposed to synthesize a novel class of multilayer core-shell structured composite paper electrode, which consists of copper, cuprous oxide and graphite assembled on cellulose fibers. This interesting electrode structure plays a pivotal role in providing more active sites for electrochemical reactions, facilitating ion and electron transport and shorting their diffusion pathways. This electrode demonstrates excellent electrochemical properties with a high specific capacitance of 601 F g-1 at 2 A g-1 and retains 83% of this capacitance when operated at an ultrahigh current density of 100 A g-1. In addition, a high energy density of 13.4 W h kg-1 at the power density of 0.40 kW kg-1 and a favorable cycling stability (95.3%, 8000 cycles) were achieved for this electrode. When this electrode was assembled into an asymmetric supercapacitor with carbon paper as negative electrode, the device displays remarkable electrochemical performances with a large areal capacitances (122 mF cm-2 at 1 mA cm-2), high areal energy density (10.8 μW h cm-2 at 402.5 μW cm-2) and outstanding cycling stability (91.5%, 5000 cycles). These results unveil the potential of this composite electrode as a high-performance electrode material for supercapacitors.

  18. Covalentely Attached Multilayer Films Comprising Phthalocyanine and Their Photoelectron Conversion Properties

    Institute of Scientific and Technical Information of China (English)

    ZANG Mao-feng; YAO Qiao-hong; YANG Zhao-hui; HUANG Chun-hui; CAO Wei-xiao

    2004-01-01

    The photosensitive multilayer films from sulfonated metal-free, sulfonated copper-, and sulfonated nickel-phthalocyanines were fabricated with diazoresin layer by layer on a substrate via electrostatic interaction by the self-assembly technique. Under UV irradiation, the linkage nature between the layers of the film is converted from the electrostatic bonding to covalent bonding. The covalently attached multilayer films are very stable towards polar solvents and salt aqueous solutions. The photovoltaic properties of the covalently attached film can be determined by means of a traditional three-electrode photoelectrochemical cell in aqueous solutions with KCl as the supporting electrolyte. The photocurrent determination has shown that the sulfonated copper-containing phthalocyanine films possess a higher photocurrent value than sulfonated metalfree and sulfonated nickel-containing phthalocyanine films.

  19. Low Molecular Weight Chitosan–Insulin Polyelectrolyte Complex: Characterization and Stability Studies

    Directory of Open Access Journals (Sweden)

    Zakieh I. Al-Kurdi

    2015-03-01

    Full Text Available The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC in a reverse micelle (RM system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity.

  20. Multilayered films of cobalt oxyhydroxide nanowires/manganese oxide nanosheets for electrochemical capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Huajun [State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014 (China); ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering and AIBN, The University of Queensland, St Lucia, Brisbane, QLD 4072 (Australia); Tang, Fengqiu; Mukherji, Aniruddh; Yan, Xiaoxia; Wang, Lianzhou (Max) Lu, Gao Qing [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering and AIBN, The University of Queensland, St Lucia, Brisbane, QLD 4072 (Australia); Lim, Melvin [Division of Environmental and Water Resources Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore)

    2010-01-15

    Multilayered films of cobalt oxyhydroxide nanowires (CoOOHNW) and exfoliated manganese oxide nanosheet (MONS) are fabricated by potentiostatic deposition and electrostatic self-assembly on indium-tin oxide coated glass substrates. The morphology and chemical composition of these films are characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectra (XPS) and the potential application as electrochemical supercapacitors are investigated using cyclic voltammetry and charge-discharge measurements. These ITO/CoOOHNW/MONS multilayered film electrodes exhibit excellent electrochemical capacitance properties, including high specific capacitance (507 F g{sup -1}) and long cycling durability (less 2% capacity loss after 5000 charge/discharge cycles). These characteristics indicate that these newly developed films may find important application for electrochemical capacitors. (author)

  1. Multilayer Brain Networks

    Science.gov (United States)

    Vaiana, Michael; Muldoon, Sarah Feldt

    2018-01-01

    The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently, multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure-function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems.

  2. Driving Forces of the Self-Assembly of Supramolecular Systems: Partially Ordered Mesophases

    Science.gov (United States)

    Shcherbina, M. A.; Chvalun, S. N.

    2018-06-01

    The main aspects are considered of the self-organization of a new class of liquid crystalline compounds, rigid sector-shaped and cone-shaped dendrons. Theoretical approaches to the self-assembly of different amphiphilic compounds (lipids, bolaamphiphiles, block copolymers, and polyelectrolytes) are described. Particular attention is given to the mesophase structures that emerge during the self-organization of mesophases characterized by intermediate degrees of ordering, e.g., plastic crystals, the rotation-crystalline phase in polymers, ordered and disordered two-dimensional columnar phases, and bicontinuous cubic phases of different symmetry.

  3. Spin-Assisted Layer-by-Layer Assembly: Variation of Stratification as Studied with Neutron Reflectivity

    International Nuclear Information System (INIS)

    Kharlampieva, Eugenia; Kozlovskaya, Veronika; Chan, Jennifer; Ankner, John Francis; Tsukruk, Vladimir V.

    2009-01-01

    We apply neutron reflectivity to probe the internal structure of spin-assisted layer-by-layer (LbL) films composed of electrostatically assembled polyelectrolytes. We find that the level of stratification and the degree of layer intermixing can be controlled by varying the type and concentration of salt during LbL assembly. We observe well-defined layer structure in spin-assisted LbL films when deposited from salt-free solutions. These films feature 2-nm-thick bilayers, which are ∼3-fold thicker than those in dipped LbL films assembled under similar conditions. Addition of a 10mM phosphate buffer promotes progressive layer inter-diffusion with increasing distance from the substrate. However, adding 0.1M NaCl to the phosphate buffer solution restores the layer stratification. We also find that spin-assisted LbL films obtained from buffer solutions are more highly stratified as compared to the highly intermixed layers seen in dipped LbL films assembled from buffer. Our results yield new insight into the mechanism of spin-assisted LbL assembly that should prove useful for biotechnological applications.

  4. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery

    Directory of Open Access Journals (Sweden)

    Javier Pérez Quiñones

    2018-02-01

    Full Text Available Chitosan is a cationic polysaccharide that is usually obtained by alkaline deacetylation of chitin poly(N-acetylglucosamine. It is biocompatible, biodegradable, mucoadhesive, and non-toxic. These excellent biological properties make chitosan a good candidate for a platform in developing drug delivery systems having improved biodistribution, increased specificity and sensitivity, and reduced pharmacological toxicity. In particular, chitosan nanoparticles are found to be appropriate for non-invasive routes of drug administration: oral, nasal, pulmonary and ocular routes. These applications are facilitated by the absorption-enhancing effect of chitosan. Many procedures for obtaining chitosan nanoparticles have been proposed. Particularly, the introduction of hydrophobic moieties into chitosan molecules by grafting to generate a hydrophobic-hydrophilic balance promoting self-assembly is a current and appealing approach. The grafting agent can be a hydrophobic moiety forming micelles that can entrap lipophilic drugs or it can be the drug itself. Another suitable way to generate self-assembled chitosan nanoparticles is through the formation of polyelectrolyte complexes with polyanions. This paper reviews the main approaches for preparing chitosan nanoparticles by self-assembly through both procedures, and illustrates the state of the art of their application in drug delivery.

  5. Structural and magnetic properties of granular CoPd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Vivas, L.G.; Figueroa, A.I.; Bartolomé, F. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Dept. de Física de la Materia Condensada, E-50009 Zaragoza (Spain); Rubín, J. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Dept. de Ciencia y Tecnología de Materiales y Fluidos, E-50018 Zaragoza (Spain); García, L.M. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Dept. de Física de la Materia Condensada, E-50009 Zaragoza (Spain); Deranlot, C.; Petroff, F. [Unité Mixte de Physique CNRS/Thales, F-91767 Palaiseau Cedex, France and Université Paris-Sud, F-191405 Orsay Cedex (France); Ruiz, L.; González-Calbet, J.M [Dept. de Química Inorgánica, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Brookes, N.B.; Wilhelm, F.; Rogalev, A. [European Synchrotron Radiation Facility (ESRF), CS40220, F-38043 Grenoble Cedex 9 (France); Bartolomé, J. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Dept. de Física de la Materia Condensada, E-50009 Zaragoza (Spain)

    2016-02-15

    Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk. - Highlights: • CoPd granular nanolayers show perpendicular magnetic anisotropy. • Three magnetic phases are detected: hard-ferro, soft-ferro and superparamagnetism. • The nanoparticles have Co-core and CoPd alloy shell morphology.

  6. Structural and magnetic properties of granular CoPd multilayers

    International Nuclear Information System (INIS)

    Vivas, L.G.; Figueroa, A.I.; Bartolomé, F.; Rubín, J.; García, L.M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J.M; Brookes, N.B.; Wilhelm, F.; Rogalev, A.; Bartolomé, J.

    2016-01-01

    Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk. - Highlights: • CoPd granular nanolayers show perpendicular magnetic anisotropy. • Three magnetic phases are detected: hard-ferro, soft-ferro and superparamagnetism. • The nanoparticles have Co-core and CoPd alloy shell morphology.

  7. Studies of Electrolytic Conductivity of Some Polyelectrolyte Solutions: Importance of the Dielectric Friction Effect at High Dilution

    Directory of Open Access Journals (Sweden)

    Anis Ghazouani

    2013-01-01

    Full Text Available We present a general description of conductivity behavior of highly charged strong polyelectrolytes in dilute aqueous solutions taking into account the translational dielectric friction on the moving polyions modeled as chains of charged spheres successively bounded and surrounded by solvent molecules. A general formal limiting expression of the equivalent conductivity of these polyelectrolytes is presented in order to distinguish between two concentration regimes and to evaluate the relative interdependence between the ionic condensation effect and the dielectric friction effect, in the range of very dilute solutions for which the stretched conformation is favored. This approach is illustrated by the limiting behaviors of three polyelectrolytes (sodium heparinate, sodium chondroitin sulfate, and sodium polystyrene sulphonate characterized by different chain lengths and by different discontinuous charge distributions.

  8. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katrina A. Rieger

    2016-04-01

    Full Text Available Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid (PAA, chitosan (CS, and polydiallyldimethylammonium chloride (pDADMAC. The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%. Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process.

  9. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli

    Science.gov (United States)

    Rieger, Katrina A.; Porter, Michael; Schiffman, Jessica D.

    2016-01-01

    Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid) (PAA), chitosan (CS), and polydiallyldimethylammonium chloride (pDADMAC). The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm) of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS) and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%). Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process. PMID:28773422

  10. A bead-spring chain as a one-dimensional polyelectrolyte gel.

    Science.gov (United States)

    Manning, Gerald S

    2018-05-23

    The physical principles underlying expansion of a single-chain polyelectrolyte coil caused by Coulomb repulsions among its ionized groups, and the expansion of a cross-linked polyelectrolyte gel, are probably the same. In this paper, we analyze a "one-dimensional" version of a gel, namely, a linear chain of charged beads connected by Hooke's law springs. In the Debye-Hückel range of relatively weak Coulomb strength, where counterion condensation does not occur, the springs are realistically stretched on a nanolength scale by the repulsive interactions among the beads, if we use a spring constant normalized by the inverse square of the solvent Bjerrum length. The persistence length and radius of gyration counter-intuitively decrease when Coulomb strength is increased, if analyzed in the framework of an OSF-type theory; however, a buckling theory generates the increase that is consistent with bead-spring simulations.

  11. Selective Etching via Soft Lithography of Conductive Multilayered Gold Films with Analysis of Electrolyte Solutions

    Science.gov (United States)

    Gerber, Ralph W.; Oliver-Hoyo, Maria T.

    2008-01-01

    This experiment is designed to expose undergraduate students to the process of selective etching by using soft lithography and the resulting electrical properties of multilayered films fabricated via self-assembly of gold nanoparticles. Students fabricate a conductive film of gold on glass, apply a patterned resist using a polydimethylsiloxane…

  12. Thermal performance measurement and application of a multilayer insulator for emergency architecture

    International Nuclear Information System (INIS)

    Salvalai, Graziano; Imperadori, Marco; Scaccabarozzi, Diego; Pusceddu, Cristina

    2015-01-01

    Lightness coupled with a quick assembly method is crucial for emergency architecture in post-disaster area where accessibility and action time play a huge barer to rescue people. In this prospective, the following work analyses the potentiality (technological and thermal performances) of multilayer insulator for a new shelter envelope able to provide superior thermal comfort for the users. The thermal characteristics are derived experimentally by means of a guard ring apparatus under different working temperatures. Tests are performed on the multilayer insulator itself and on a composite structure, made of the multilayer insulator and two air gaps wrapped by a polyester cover, which is the core of a new lightweight emergency architecture. Experimental results show good agreement with literature data, providing a thermal conductivity and transmittance of about 0.04 W/(m °C) and 1.6 W/(m 2  °C) for the tested multilayer. The composite structure called Thermo Reflective Multilayer System (TRMS) shows better insulation performances, providing a thermal transmittance set to 0.85 W/(m 2  °C). A thermal model of an emergency tent based on the new insulating structure (TRMS) has been developed and its thermal performances have been compared with those of a UNHCR traditional emergency shelter. The shelter model was simulated (Trnsys v.17 environment) in the winter season considering the climate of Belgrade and using only the casual gains from occupant and solar radiation through opaque wall. Numerical simulations evidenced that the new insulating composite envelope reduces required heating load of about two and four times with respect to the traditional insulation. The study sets a starting point to develop a lightweight emergency architecture made with a combination between multilayer, air, polyester and vulcanized rubber. - Highlights: • Multilayer insulator tested by means of a guard ring apparatus. • Thermo reflective multilayer system (TRMS) development

  13. Color and texture morphing with colloids on multilayered surfaces.

    Science.gov (United States)

    Chen, Ziguang; Li, Shumin; Arkebauer, Andrew; Gogos, George; Tan, Li

    2015-05-20

    Dynamic morphing of marine species to match with environment changes in color and texture is an advanced means for surviving, self-defense, and reproduction. Here we use colloids that are placed inside a multilayered structure to demonstrate color and texture morphing. The multilayer is composed of a thermal insulating base layer, a light absorbing mid layer, and a liquid top layer. When external light of moderate intensity (∼0.2 W cm(-2)) strikes the structure, colloids inside the liquid layer will be assembled to locations with an optimal absorption. When this system is exposed to continuous laser pulses, more than 18,000 times of reversible responses are recorded, where the system requests 20 ms to start the response and another 160 ms to complete. The flexibility of our concept further allows the system to be built on a variety of light-absorbing substrates, including dyed paper, gold thin film, and amorphous silicon, with the top layer even a solid.

  14. Cellulose fiber-enzyme composites fabricated through layer-by-layer nanoassembly.

    Science.gov (United States)

    Xing, Qi; Eadula, Sandeep R; Lvov, Yuri M

    2007-06-01

    Cellulose microfibers were coated with enzymes, laccase and urease, through layer-by-layer assembly by alternate adsorption with oppositely charged polycations. The formation of organized polyelectrolyte and enzyme multilayer films of 15-20 nm thickness was demonstrated by quartz crystal microbalance, zeta-potential analysis, and confocal laser scanning microscopy. These biocomposites retained enzymatic catalytic activity, which was proportional to the number of coated enzyme layers. For laccase-fiber composites, around 50% of its initial activity was retained after 2 weeks of storage at 4 degrees C. The synthesis of calcium carbonate microparticles on urease-fiber composites confirmed urease functionality and demonstrated its possible applications. This strategy could be employed to fabricate fiber-based composites with novel biological functions.

  15. Evaluation of polyethylenimine/carrageenan multi-layer for antibacterial activity of pathogenic bacteria

    International Nuclear Information System (INIS)

    Briones, Annabelle V.; Bigol, Urcila G.; Sato, Toshinori

    2012-01-01

    The purpose of this study is to investigate the antibacterial activity of multi-layer of polyethylenimine (PEI) and carrageenan (κ,ι, λ) for potential use as coating on biomaterial surface. The multi-layer of PEI/carrageenan was formed using the layer-by-layer assembly absorption technique and was monitored by atomic force microscopy (AFM) and bio molecular interaction analysis. All samples were prepared in phosphate buffer solution and applied to mica disk alternately. The micrographs showed the formation of bi-layer of polyethylenimine and carrageenan (κ, ι, λ) as observed in the change of height of the layer and surface morphology. The bimolecular binding of carrageenan with polyethylenimine was also investigated using a biosensor. The sensorgram showed that PEI interacted molecularly with carrageenan. Results were: 1,916.08 pg/nm 2 for kappa type; 1,844.1 pg/nm 2 for iota type and 6,074.24 pg/nm 2 for lambda type. The multi-layer showed antibacterial activity against Enterobacter cloaceae, Staphylococcus aureus and Enterococcal strains (Enterococcus faecalis (EF) 29212 and 29505). (author)

  16. Self-assembled Li3V2(PO4)3/reduced graphene oxide multilayer composite prepared by sequential adsorption

    Science.gov (United States)

    Kim, Myeong-Seong; Bak, Seong-Min; Lee, Suk-Woo; Cho, Byung-Won; Roh, Kwang Chul; Kim, Kwang-Bum

    2017-11-01

    Herein, we report on Li3V2(PO4)3 (LVP)/reduced graphene oxide (rGO) multilayer composites prepared via a sequential adsorption method and subsequent heat treatment, and their use as cathodes for high-rate lithium-ion batteries. The sequential adsorption process includes adsorbing oppositely charged components of anionic inorganic species and cationic head of a surfactant adsorbed to graphite oxide sheets, which is a key step in the fabrication of the LVP/rGO multilayer composites. The multilayer structure has open channels between the highly conductive rGO layers while achieving a relatively high tap density, which could effectively improve the rate capability. Consequently, the LVP/rGO multilayer composites exhibit a high tap density (0.6 g cm-3) and good electrochemical properties. Specifically, in the voltage range of 3.0-4.3 V, the composite exhibits a specific capacity of 131 mAh g-1 at 0.1C, a good rate capabilities (88% capacity retention at 60C), and long cycling performance (97% capacity retention after 500 cycles at 10C). Moreover, in the extended voltage range of 3.0-4.8 V, it exhibits a high specific capacity of 185 mAh g-1 at 0.2C, a good rate capability (66% capacity retention at 30C), and stable cycling performance (96% capacity retention after 500 cycles at 10C).

  17. Development of a robust pH-sensitive polyelectrolyte ionomer complex for anticancer nanocarriers

    Directory of Open Access Journals (Sweden)

    Lim CM

    2016-02-01

    Full Text Available Chaemin Lim,1,* Yu Seok Youn,2,* Kyung Soo Lee,1 Ngoc Ha Hoang,1 Taehoon Sim,1 Eun Seong Lee,3 Kyung Taek Oh1 1Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, Seoul, 2Department of Pharmaceutical Sciences, School of Pharmacy, Sungkyunkwan University, Suwon, 3Division of Biotechnology, The Catholic University of Korea, Gyeonggi-do, South Korea *These authors contributed equally to this work Abstract: A polyelectrolyte ionomer complex (PIC composed of cationic and anionic polymers was developed for nanomedical applications. Here, a poly(ethylene glycol–poly(lactic acid–poly(ethylene imine triblock copolymer (PEG–PLA–PEI and a poly(aspartic acid (P[Asp] homopolymer were synthesized. These polyelectrolytes formed stable aggregates through electrostatic interactions between the cationic PEI and the anionic P(Asp blocks. In particular, the addition of a hydrophobic PLA and a hydrophilic PEG to triblock copolyelectrolytes provided colloidal aggregation stability by forming a tight hydrophobic core and steric hindrance on the surface of PIC, respectively. The PIC showed different particle sizes and zeta potentials depending on the ratio of cationic PEI and anionic P(Asp blocks (C/A ratio. The doxorubicin (dox-loaded PIC, prepared with a C/A ratio of 8, demonstrated pH-dependent behavior by the deprotonation/protonation of polyelectrolyte blocks. The drug release and the cytotoxicity of the dox-loaded PIC (C/A ratio: 8 increased under acidic conditions compared with physiological pH, due to the destabilization of the formation of the electrostatic core. In vivo animal imaging revealed that the prepared PIC accumulated at the targeted tumor site for 24 hours. Therefore, the prepared pH-sensitive PIC could have considerable potential as a nanomedicinal platform for anticancer therapy. Keywords: polyelectrolyte ionomer complex, PEG–PLA–PEI, nanomedicine, pH-sensitive, animal imaging

  18. Self-consistent-field calculations of proteinlike incorporations in polyelectrolyte complex micelles

    NARCIS (Netherlands)

    Lindhoud, S.; Cohen Stuart, M.A.; Norde, W.; Leermakers, F.A.M.

    2009-01-01

    Self-consistent field theory is applied to model the structure and stability of polyelectrolyte complex micelles with incorporated protein (molten globule) molecules in the core. The electrostatic interactions that drive the micelle formation are mimicked by nearest-neighbor interactions using

  19. Influence of water-soluble conjugated/non-conjugated polyelectrolytes on electrodeposition of nanostructured MnO{sub 2} film for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Kyung; Shrestha, Nabeen K. [Department of Chemistry, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Wonjoo [Department of Chemistry, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Defense Ammunitions, Daeduk College, Daejeon 305-715 (Korea, Republic of); Cai, Gangri, E-mail: caigangri@naver.com [Department of Applied Chemistry, TianJin University of Technology, Tianjin 300384 (China); Department of Chemistry, Hanyang University, Seoul 133-791 (Korea, Republic of); Han, Sung-Hwan, E-mail: shhan@hanyang.ac.kr [Department of Chemistry, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-01

    Manganese dioxide (MnO{sub 2}) thin films are deposited electrochemically on an indium–tin-oxide (ITO) electrode using aqueous bath in presence of conjugated water soluble sulfonated polyaniline (SPAN) or a non-conjugated polyacrylic acid (PAA) polyelectrolyte surfactant. The surface morphology and nature of the electrodeposited MnO{sub 2} films are found to be influenced strongly by the amount and type of polyelectrolyte in the deposition bath. Increasing the SPAN concentration, a porous structure resulting from the reduction of voids between the MnO{sub 2} nano-flakes is obtained. In contrast, by increasing the PAA concentration, dense and spherical MnO{sub 2} nanostructures have been deposited. These results may be caused by initiation of different kinetics and orientation of nucleation of MnO{sub 2} deposits on ITO surface in presence of different types of polyelectrolytes. Cyclic voltammetry study of these films shows the supercapacitor behavior. The porous MnO{sub 2} films grown from the SPAN containing electrolyte demonstrates a specific capacitance of 368.53 F/g at scan rate of 10 mV/s, which is approximately 10 times higher (i.e., 30.29 F/g) than that of the spherical MnO{sub 2} dense films grown from PAA containing electrolyte. - Highlights: • Conjugated/non-conjugated polyelectrolytes were used in deposition of MnO{sub 2}. • The two kinds of MnO{sub 2} film showed entirely different morphology. • Conjugated polyelectrolyte worked as template and also affected the growth rate. • Non-conducting polyelectrolyte could work as template but hindered MnO{sub 2} growth. • The specific capacitance of MnO{sub 2}–S was 10 times higher than MnO{sub 2}–P.

  20. Single-chain-in-mean-field simulations of weak polyelectrolyte brushes

    Science.gov (United States)

    Léonforte, F.; Welling, U.; Müller, M.

    2016-12-01

    Structural properties of brushes which are composed of weak acidic and basic polyelectrolytes are studied in the framework of a particle-based approach that implicitly accounts for the solvent quality. Using a semi-grandcanonical partition function in the framework of the Single-Chain-in-Mean-Field (SCMF) algorithm, the weak polyelectrolyte is conceived as a supramolecular mixture of polymers in different dissociation states, which are explicitly treated in the partition function and sampled by the SCMF procedure. One obtains a local expression for the equilibrium acid-base reaction responsible for the regulation of the charged groups that is also incorporated to the SCMF sampling. Coupled to a simultaneous treatment of the electrostatics, the approach is shown to capture the main features of weak polyelectrolyte brushes as a function of the bulk pH in the solution, the salt concentration, and the grafting density. Results are compared to experimental and theoretical works from the literature using coarse-grained representations of poly(acrylic acid) (PAA) and poly(2-vinyl pyridine) (P2VP) polymer-based brushes. As the Born self-energy of ions can be straightforwardly included in the numerical approach, we also study its effect on the local charge regulation mechanism of the brush. We find that its effect becomes significant when the brush is dense and exposed to high salt concentrations. The numerical methodology is then applied (1) to the study of the kinetics of collapse/swelling of a P2VP brush and (2) to the ability of an applied voltage to induce collapse/swelling of a PAA brush in a pH range close to the pKa value of the polymer.

  1. Assembling and properties of the polymer-particle nanostructured materials

    Science.gov (United States)

    Sheparovych, Roman

    Complementary properties of the soft and hard matter explain its common encounter in many natural and manmade applications. A combination of flexible organic macromolecules and hard mineral clusters results in new materials far advantageous than its constituents alone. In this work we study assembling of colloidal nanocrystals and polymers into complex nanostructures. Magnetism, surface wettability and adhesion comprise properties of interest for the obtained nanocomposites. Applying a magnetic field induces a reversible 1D ordering of the magnetically susceptible particles. This property was employed in the fabrication of the permanent chains of magnetite nanocrystals (d=15nm). In the assembling process the aligned particles were bound together using polyelectrolyte macromolecules. The basics of the binding process involved an electrostatic interaction between the positively charged polyelectrolyte and the negative surface of the particles (aqueous environment). Adsorption of the polymer molecules onto several adjacent particles in the aligned 1D aggregate results in the formation of the permanent particulate chains. Positive charges of the adsorbed polyelectrolyte molecules stabilize the dispersion of the obtained nanostructures in water. Magnetization measurements revealed that superparamagnetic nanoparticles, being assembled into 1D ordered structures, attain magnetic coercivity. This effect originates from the magnetostatic interaction between the neighboring magnetite nanocrystals. The preferable dipole alignment of the assembled nanoparticles is directed along the chain axis. Another system studied in this project includes polymer-particle responsive surface coatings. Tethered polymer chains and particles bearing different functionalities change surface properties upon restructuring of the composite layer. When the environment favors polymer swelling (good solvent), the polymer chains segregate to the surface and cover the particles. In the opposite case

  2. Alcohol--Induced Polyelectrolyte-Surfactant Complex Coacervate Systems: Characterization and Applications in Enzyme and Protein Extraction

    Science.gov (United States)

    Nejati Moshtaghin, Mahboubeh

    The focus of this thesis is to achieve a better understanding of the newly discovered surfactant-polyelectrolyte complex coacervate (SPCC) systems induced by fluoroalcohol/acid as well as short chain aliphatic alcohol; and to elucidate their applications in extraction and enrichment of proteins and enzyme. We have discovered that fluoroalcohols and --acids induce complex coacervation and phase separation in the aqueous mixtures of oppositely charged anionic polyelectrolytes; specifically, sodium salts of polyacrylic acid and polymethacrylic acid and cationic surfactant (cetyltrimethylammonium bromide, CTAB) over a broad range of concentrations of mole fractions of the oppositely charged amphiphiles. Accordingly, these new classes of coacervators will significantly broaden the scope and facilitate engineering of new coacervate phases. Toward these goals, we have inspected the formation of surfactant-polyelectrolyte complex coacervates in the presence of fluoroalcohols namely hexafluoroisopropanol (HFIP) and Trifluoroethanol (TFE). Furthermore, the extent of coacervation as a function of concentrations the system components, and charge ratios of the oppositely charged amphiphiles has been investigated. Polyelectrolytes are considered to be milder reagents, as compared to surfactants, regarding proteins denaturation. This highlights the importance of a detailed investigation of the efficiency of our coacervate systems for extraction and preconcentration of proteins and enzymes, especially, when the biological activity of the extracted proteins needs to be maintained based on the objectives mentioned above, the results of the investigations have been organized in four chapters. In Chapter II, the phase behavior of the FA-SPCC will be investigated. The objective is to examine the phase behavior and phase properties with respect to the extent of coacervation in different solution conditions. In particular, the effects of different solution variables such as concentration

  3. Larger red-shift in optical emissions obtained from the thin films of globular proteins (BSA, lysozyme) – polyelectrolyte (PAA) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, Hrishikesh [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam (India); Kundu, Sarathi, E-mail: sarathi.kundu@gmail.com [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam (India); Basu, Saibal [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2016-09-30

    Graphical abstract: Thin films of protein-polyelectrolyte complexes show larger red-shift in optical emission. - Highlights: • Globular proteins (lysozyme and BSA) and polyelectrolyte (sodium polyacrylic acid) are used to form protein-polyelectrolyte complexes (PPC). • Larger red-shift in optical emission is obtained from the thin films of PPC. • Red-shift is not obtained from the solution of PPC and pure protein thin films. • Larger red-shift from PPC films is due to the energy dissipation as non-radiative form through interactions with nearby atoms. • Red-shift in optical emission is independent on the thickness of the PPC film. - Abstract: Globular proteins (lysozyme and BSA) and polyelectrolyte (sodium polyacrylic acid) are used to form protein-polyelectrolyte complexes (PPC). Out-of-plane structures of ≈30–60 nm thick PPC films and their surface morphologies have been studied by using X-ray reflectivity and atomic force microscopy, whereas optical behaviors of PPC and protein conformations have been studied by using UV–vis, photoluminescence and FTIR spectroscopy respectively. Our study reveals that thin films of PPC show a larger red-shift of 23 and 16 nm in the optical emissions in comparison to that of pure protein whereas bulk PPC show a small blue-shift of ≈3 nm. A small amount of peak-shift is found to occur due to the heat treatment or concentration variation of the polyelectrolyte/protein in bulk solution but cannot produce such film thickness independent larger red-shift. Position of the emission peak remains nearly unchanged with the film thickness. Mechanism for such larger red-shift has been proposed.

  4. Multilayered nano-architecture of variable sized graphene nanosheets for enhanced supercapacitor electrode performance.

    Science.gov (United States)

    Biswas, Sanjib; Drzal, Lawrence T

    2010-08-01

    The diverse physical and chemical aspects of graphene nanosheets such as particle size surface area and edge chemistry were combined to fabricate a new supercapacitor electrode architecture consisting of a highly aligned network of large-sized nanosheets as a series of current collectors within a multilayer configuration of bulk electrode. Capillary driven self-assembly of monolayers of graphene nanosheets was employed to create a flexible, multilayer, free-standing film of highly hydrophobic nanosheets over large macroscopic areas. This nanoarchitecture exhibits a high-frequency capacitative response and a nearly rectangular cyclic voltammogram at 1000 mV/s scanning rate and possesses a rapid current response, small equivalent series resistance (ESR), and fast ionic diffusion for high-power electrical double-layer capacitor (EDLC) application.

  5. Chain stiffness, salt valency, and concentration influences on titration curves of polyelectrolytes: Monte Carlo simulations

    Science.gov (United States)

    Carnal, Fabrice; Stoll, Serge

    2011-01-01

    Monte Carlo simulations have been used to study two different models of a weak linear polyelectrolyte surrounded by explicit counterions and salt particles: (i) a rigid rod and (ii) a flexible chain. We focused on the influence of the pH, chain stiffness, salt concentration, and valency on the polyelectrolyte titration process and conformational properties. It is shown that chain acid-base properties and conformational properties are strongly modified when multivalent salt concentration variation ranges below the charge equivalence. Increasing chain stiffness allows to minimize intramolecular electrostatic monomer interactions hence improving the deprotonation process. The presence of di and trivalent salt cations clearly promotes the chain degree of ionization but has only a limited effect at very low salt concentration ranges. Moreover, folded structures of fully charged chains are only observed when multivalent salt at a concentration equal or above charge equivalence is considered. Long-range electrostatic potential is found to influence the distribution of charges along and around the polyelectrolyte backbones hence resulting in a higher degree of ionization and a lower attraction of counterions and salt particles at the chain extremities.

  6. The effect of temperature and pressure on the oxygen reduction reactions in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    The effect of temperature and pressure on the oxygen reduction reaction in polyelectrolyte membranes was described. Polyelectrolytes chosen for the experiment differed in composition, weight and flexibility of the polymer chains. The study was conducted in a solid state electrochemical cell at temperatures between 30 and 95 degrees C and in the pressure range of 1 to 5 atm. The solubility of oxygen in these membranes was found to follow Henry`s Law, while the diffusion coefficient decreased with pressure. The effect of temperature on the solubility of oxygen and the diffusion coefficient of oxygen in the membranes was similar to that observed in solution electrolytes. 2 refs., 3 figs.

  7. Nanomechanics of layer-by-layer polyelectrolyte complexes: a manifestation of ionic cross-links and fixed charges.

    Science.gov (United States)

    Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin

    2016-01-28

    This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further

  8. From single Debye-Hückel chains to polyelectrolyte solutions: Simulation results

    Science.gov (United States)

    Kremer, Kurt

    1996-03-01

    This lecture will present results from simulations of single weakly charged flexible chains, where the electrostatic part of the interaction is modeled by a Debye-Hückel potential,( with U. Micka, IFF, Forschungszentrum Jülich, 52425 Jülich, Germany) as well as simulations of polyelectrolyte solutions, where the counterions are explicitly taken into account( with M. J. Stevens, Sandia Nat. Lab., Albuquerque, NM 87185-1111) ( M. J. Stevens, K. Kremer, JCP 103), 1669 (1995). The first set of the simulations is meant to clear a recent contoversy on the dependency of the persistence length LP on the screening length Γ. While the analytic theories give Lp ~ Γ^x with either x=1 or x=2, the simulations find for all experimentally accessible chain lengths a varying exponent, which is significantly smaller than 1. This causes serious doubts on the applicability of this model for weakly charged polyelectrolytes in general. The second part deals with strongly charged flexible polyelectrolytes in salt free solution. These simulations are performed for multichain systems. The full Coulomb interactions of the monomers and counterions are treated explicitly. Experimental measurements of the osmotic pressure and the structure factor are reproduced and extended. The simulations reveal a new picture of the chain structure based on calculations of the structure factor, persistence length, end-to-end distance, etc. Even at very low density, the chains show significant bending. Furthermore, the chains contract significantly before they start to overlap. We also show that counterion condensation dramatically alters the chain structure, even for a good solvent backbone.

  9. THE BASIC PRINCIPLES OF THE INTEGRATED MANAGEMENT OF THE PROCESS OF ASSEMBLY AND THREADING

    Directory of Open Access Journals (Sweden)

    Anton Skorkin

    2017-11-01

    Full Text Available The subject matter of this article is the issues related to the integrated management of assembling operations of fastening and threading elements at all stages of their implementation. The goal is to develop the generalized structure of the data management system of the process of assembly and threading. The objectives are: to justify the principles of managing the assembly and threading process at each stage of the assembly to improve the efficiency of these operations, to study the power, accuracy and performance characteristics of the connections and to draw the conclusion that suggested the theory of assembly management is efficient. The following results are obtained. The article presents the analytical dependencies of the force indexes of threading in the course of the package and sheet assembly, including the tightening force while joining; the assembly of a multilayered package of dissimilar sheet materials was analyzed. On the basis of the theoretical analysis, the dependences of the power indices of threading during the package and sheet assembly were determined. The assembly of the package of sheet materials was investigated, including a multilayered package of dissimilar materials of a “metal-plastic” type. Conclusions. The process of assembling threaded joints with the use of management principles was used; these principles enable increasing the efficiency of the assembly process, reducing the complexity of the basic operations, and improving the quality of the joints obtained. The use adaptive control of the screwing speed on the main threading transitions is suggested for reducing the torque.  The technology of making threaded joints with given properties is developed, the main ways of increasing the efficiency of assembly and threading processes are determined on the basis of the integrated control system for the assembly process.

  10. Flame Retardant Multilayered Coatings on Acrylic Fabrics Prepared by One-Step Deposition of Chitosan/Montmorillonite Complexes

    Directory of Open Access Journals (Sweden)

    Federico Carosio

    2018-06-01

    Full Text Available Multilayered coatings deposited using the layer-by-layer (LbL assembly technique have attracted great interest in recent years as a sustainable and efficient solution for conferring flame retardant properties to fabrics. The unique structure and interaction established upon the coating assembly are the key factors for successful flame retardant properties. In this study we aimed at the deposition of multilayered coatings comprising chitosan and montmorillonite with a LbL-like structure and interactions by the simple processing of compacted chitosan/montmorillonite complexes obtained by the direct mixing of an oppositely charged solution/suspension. Upon drying, the prepared complex yielded a continuous coating characterized by a brick-and-mortar multi-layered structure, in which oriented clay nanoplatelets were held together by a continuous chitosan matrix. When deposited on acrylic fabrics these coatings were able to suppress the melt-dripping phenomenon, and at 10 and 20% add-ons achieved self-extinguishing behavior within a few seconds after ignition. Cone calorimetry testing revealed an increase in time to ignition (up to +46% and considerable reductions of the rates at which heat is released (up to −62 and −49% for peak of heat release rate and total heat release, respectively. A reduction in the total smoke release (up to −49% was also observed.

  11. Responsive block copolymer photonics triggered by protein-polyelectrolyte coacervation.

    Science.gov (United States)

    Fan, Yin; Tang, Shengchang; Thomas, Edwin L; Olsen, Bradley D

    2014-11-25

    Ionic interactions between proteins and polyelectrolytes are demonstrated as a method to trigger responsive transitions in block copolymer (BCP) photonic gels containing one neutral hydrophobic block and one cationic hydrophilic block. Poly(2-vinylpyridine) (P2VP) blocks in lamellar poly(styrene-b-2-vinylpyridine) block copolymer thin films are quaternized with primary bromides to yield swollen gels that show strong reflectivity peaks in the visible range; exposure to aqueous solutions of various proteins alters the swelling ratios of the quaternized P2VP (QP2VP) gel layers in the PS-QP2VP materials due to the ionic interactions between proteins and the polyelectrolyte. Parameters such as charge density, hydrophobicity, and cross-link density of the QP2VP gel layers as well as the charge and size of the proteins play significant roles on the photonic responses of the BCP gels. Differences in the size and pH-dependent charge of proteins provide a basis for fingerprinting proteins based on their temporal and equilibrium photonic response. The results demonstrate that the BCP gels and their photonic effect provide a robust and visually interpretable method to differentiate different proteins.

  12. Preparation of Acrylamide-based Anionic Polyelectrolytes for Soil Establishment

    Directory of Open Access Journals (Sweden)

    Ahmad Rabiee

    2012-12-01

    Full Text Available Synthetic water soluble acrylamide-based polymers have wide range of ap-plications  in  the  feld  of  soil  establishment  and  non-desertifcation.  In  this research, the acrylamide-based anionic polyelectrolytes were prepared by  solution polymerization. The polymerization was carried out using AIBN as a radical initiator and at different degrees of anionic charges ranging between 10% and 30% using sodium hydroxide as hydrolyzing agents. The chemical structure of the  synthetic polymers was studied and confrmed by FTIR technique. The charge density on polymer backbone was determined by titration method. The rheological behavior of polymer solutions was evaluated by Brookfeld viscometer. The results show that the viscosity decreases with increasing the shear rate of solutions. Molecular weights of samples were measured by laser light scattering analyzer. The morphology of the polymer was studied by SEM and the EDX was used for elemental analysis determination. The anionic polymers with 10-30% negative charges were mixed with clay in order to evaluate the soil establishment. The results show that an anionic polyelectro-lyte can make soil particles more cohesive and improve soil physical properties.

  13. Enhanced corrosion protective PANI-PAA/PEI multilayer composite coatings for 316SS by spin coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Syed, Junaid Ali; Lu, Hongbin; Tang, Shaochun; Meng, Xiangkang, E-mail: mengxk@nju.edu.cn

    2015-01-15

    Highlights: • PANI-PAA/PEI multilayers with controllable thickness were fabricated by spin assembly. • PAA matrix results in the homogeneous dispersion of PANI in the composite coatings. • Spin coating combined with heating assures the linear increase in thickness with n. • The corrosion protection property of PANI-PAA/PEI coatings were optimized at n = 20. • Enhanced protection owing to multilayer structure that lengthens the diffusion pathway of ions. - Abstract: In the present study, polyaniline-polyacrylic acid/polyethyleneimine (PANI-PAA/PEI) composite coatings with a multilayer structure for corrosion protection of 316 stainless steels (316SS) were prepared by an alternate deposition. Spin coating combined with heating assists removal of residual water that result in a linear increase in thickness with layer number (n). The combination of PANI-PAA composite with PEI and their multilayer structure provides a synergistic enhancement of corrosion resistance properties as determined by electrochemical measurements in 3.5% NaCl solution. Importantly, the PANI-PAA/PEI coating with an optimized layer number of n = 20 shows improved corrosion protection. The superior performance was attributed to the formation of an interfacial oxide layer as well as the multilayer structure that extend the diffusion pathway of corrosive ions.

  14. Cooperative self-construction and enhanced optical absorption of nanoplates-assembled hierarchical Bi2WO6 flowers

    International Nuclear Information System (INIS)

    Liu Shengwei; Yu Jiaguo

    2008-01-01

    Bi 2 WO 6 hierarchical multilayered flower-like assemblies are fabricated on a large scale by a simple hydrothermal method in the presence of polymeric poly(sodium 4-styrenesulfonate). Such 3D Bi 2 WO 6 assemblies are constructed from orderly arranged 2D layers, which are further composed of a large number of interconnected nanoplates with a mean side length of ca. 50 nm. The bimodal mesopores associated with such hierarchical assembly exhibit peak mesopore size of ca. 4 nm for the voids within a layer, and peak mesopore size of ca. 40 nm corresponding to the interspaces between stacked layers, respectively. The formation process is discussed on the basis of the results of time-dependent experiments, which support a novel 'coupled cooperative assembly and localized ripening' formation mechanism. More interestingly, we have noticed that the collective effect related to such hierarchical assembly induces a significantly enhanced optical absorbance in the UV-visible region. This work may shed some light on the design of complex architectures and exploitation of their potential applications. - Graphical abstract: Bi 2 WO 6 hierarchical multilayered flower-like assemblies are fabricated on a large scale by a simple hydrothermal method in the presence of polymeric poly(sodium 4-styrenesulfonate)

  15. Smooth model surfaces from lignin derivatives. II. Adsorption of polyelectrolytes and PECs monitored by QCM-D.

    Science.gov (United States)

    Norgren, Magnus; Gärdlund, Linda; Notley, Shannon M; Htun, Myat; Wågberg, Lars

    2007-03-27

    For the first time to the knowledge of the authors, well-defined and stable lignin model surfaces have been utilized as substrates in polyelectrolyte adsorption studies. The adsorption of polyallylamine (PAH), poly(acrylic acid) (PAA), and polyelectrolyte complexes (PECs) was monitored using quartz crystal microgravimetry with dissipation (QCM-D). The PECs were prepared by mixing PAH and PAA at different ratios and sequences, creating both cationic and anionic PECs with different charge levels. The adsorption experiments were performed in 1 and 10 mM sodium chloride solutions at pH 5 and 7.5. The highest adsorption of PAH and cationic PECs was found at pH 7.5, where the slightly negatively charged nature of the lignin substrate is more pronounced, governing electrostatic attraction of oppositely charged polymeric substances. An increase in the adsorption was further found when the electrolyte concentration was increased. In comparison, both PAA and the anionic PEC showed remarkably high adsorption to the lignin model film. The adsorption of PAA was further studied on silica and was found to be relatively low even at high electrolyte concentrations. This indicated that the high PAA adsorption on the lignin films was not induced by a decreased solubility of the anionic polyelectrolyte. The high levels of adsorption on lignin model surfaces found both for PAA and the anionic PAA-PAH polyelectrolyte complex points to the presence of strong nonionic interactions in these systems.

  16. Release of polyanions from polyelectrolyte complexes by selective degradation of the polycation

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Boustta, M.; Leclercq, L.; Vert, M.

    2006-01-01

    Roč. 21, č. 2 (2006), s. 89-105 ISSN 0883-9115 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyelectrolyte complex * enzymatic degradation * hydrolytic degradation Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.925, year: 2006

  17. Kinetics of electrically and chemically induced swelling in polyelectrolyte gels

    Science.gov (United States)

    Grimshaw, P. E.; Nussbaum, J. H.; Grodzinsky, A. J.; Yarmush, M. L.

    1990-09-01

    Controlled swelling and shrinking of polyelectrolyte gels is useful for regulating the transport of solutes into, out of, and through these materials. A macroscopic continuum model is presented to predict the kinetics of swelling in polyelectrolyte gel membranes induced by augmentation of electrostatic swelling forces arising from membrane fixed charge groups. The model accounts for ionic transport within the membrane, electrodiffusion phenomena, dissociation of membrane charge groups, intramembrane fluid flow, and mechanical deformation of the membrane matrix. Model predictions are compared with measurements of chemically and electrically induced swelling and shrinking in crosslinked polymethacrylic acid (PMAA) membranes. Large, reversible changes in PMAA membrane hydration were observed after changing the bath pH or by applying an electric field to modify the intramembrane ionic environment and fixed charge density. A relatively slow swelling process and more rapid shrinking for both chemical and electrical modulation of the intramembrane pH are observed. The model indicates that retardation of membrane swelling is dominated by diffusion-limited reaction of H+ ions with membrane charge groups, and that the more rapid shrinking is limited primarily by mechanical processes.

  18. Electrostatic Swelling and Conformational Variation Observed in High-Generation Polyelectrolyte Dendrimers

    International Nuclear Information System (INIS)

    Butler, Paul D.; Chen, Wei-Ren; Herwig, Kenneth W.; Hong, Kunlun; Liu, Yun; Porcar, L.; Shew, Chwen-Yang; Smith, Gregory Scott; Chen, Hsin-Lung; Chen, Chun-Yu; Li, Xin; Liu, Emily

    2010-01-01

    A coordinated study combining small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) measurements was conducted to investigate the structural characteristics of aqueous (D2O) generation 7 and 8 (G7 and G8) PAMAM dendrimer solutions as a function of molecular protonation at room temperature. The change in intra-molecular conformation was clearly exhibited in the data analysis by separating the variation in the inter-molecular correlation. Our results unambiguously demonstrate an increased molecular size and evolved intra-molecular density profile upon increasing the molecular protonation. This is contrary to the existing understanding that in higher generation polyelectrolyte dendrimers, steric crowding stiffens the local motion of dendrimer segments exploring additional available intra-dendrimer volume and therefore inhibits the electrostatic swelling. Our observation is relevant to elucidation of the general microscopic picture of polyelectrolyte dendrimer structure, as well as the development of dendrimer-based packages with based on the stimuli-responsive principle.

  19. Fabrication of multilayer nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jasveer, E-mail: kaurjasveer89@gmail.com; Singh, Avtar; Kumar, Davinder [Department of Physics, Punjabi University Patiala, 147002, Punjab (India); Thakur, Anup; Kaur, Raminder, E-mail: raminder-k-saini@yahoo.com [Department of Basic and Applied Sciences, Punjabi University Patiala, 147002, Punjab (India)

    2016-05-06

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  20. Fabrication of multilayer nanowires

    International Nuclear Information System (INIS)

    Kaur, Jasveer; Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2016-01-01

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  1. Improving multilayer films endurance by photoinduced interaction between Dawson-type polyoxometalate and diazo resin

    International Nuclear Information System (INIS)

    Zhang Jishuang; Xu Lin; Cui Yang; Cao Weixiao; Li Zhuang

    2005-01-01

    A composite multilayer film constructed of Dawson anion [P 2 Mo 18 O 62 ] 6- and diazo resin (DR) was prepared by the electrostatic layer-by-layer (LbL) self-assembly method. The film could be stabilized by the photoinduced interaction between Dawson anion and diazo resin. IR spectra and X-ray photoelectron spectra revealed the possible occurrence of partial transformation from electrostatic interaction to covalent interaction between layers of the film after irradiation by UV light. Such transformation evidently increases the endurance of the film, which was demonstrated by AFM images and etching experiments with organic solvent. This study provides a new route to stabilze the polyoxometalate-based multilayer film by virtue of the photoinduced reaction with photosensitive polymer

  2. Improving multilayer films endurance by photoinduced interaction between Dawson-type polyoxometalate and diazo resin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jishuang [Department of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun 130024 (China); Xu Lin [Department of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun 130024 (China)]. E-mail: linxu@nenu.edu.cn; Cui Yang [Department of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun 130024 (China); Cao Weixiao [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Li Zhuang [Changchun Institute of Applied Chemistry, Academia Sinica, Changchun 130022 (China)

    2005-03-15

    A composite multilayer film constructed of Dawson anion [P{sub 2}Mo{sub 18}O{sub 62}]{sup 6-} and diazo resin (DR) was prepared by the electrostatic layer-by-layer (LbL) self-assembly method. The film could be stabilized by the photoinduced interaction between Dawson anion and diazo resin. IR spectra and X-ray photoelectron spectra revealed the possible occurrence of partial transformation from electrostatic interaction to covalent interaction between layers of the film after irradiation by UV light. Such transformation evidently increases the endurance of the film, which was demonstrated by AFM images and etching experiments with organic solvent. This study provides a new route to stabilze the polyoxometalate-based multilayer film by virtue of the photoinduced reaction with photosensitive polymer.

  3. Dynamics of complexation of a charged dendrimer by linear polyelectrolyte: Computer modelling

    NARCIS (Netherlands)

    Lyulin, S.V.; Darinskii, A.A.; Lyulin, A.V.

    2007-01-01

    Brownian-dynamics simulations have been performed for complexes formed by a charged dendrimer and a long oppositely charged linear polyelectrolyte when overcharging phenomenon is always observed. After a complex formation the orientational mobility of the individual dendrimer bonds, the fluctuations

  4. Protein-tannic acid multilayer films: A multifunctional material for microencapsulation of food-derived bioactives.

    Science.gov (United States)

    Lau, Hooi Hong; Murney, Regan; Yakovlev, Nikolai L; Novoselova, Marina V; Lim, Su Hui; Roy, Nicole; Singh, Harjinder; Sukhorukov, Gleb B; Haigh, Brendan; Kiryukhin, Maxim V

    2017-11-01

    The benefits of various functional foods are often negated by stomach digestion and poor targeting to the lower gastrointestinal tract. Layer-by-Layer assembled protein-tannic acid (TA) films are suggested as a prospective material for microencapsulation of food-derived bioactive compounds. Bovine serum albumin (BSA)-TA and pepsin-TA films demonstrate linear growth of 2.8±0.1 and 4.2±0.1nm per bi-layer, correspondingly, as shown by ellipsometry. Both multilayer films are stable in simulated gastric fluid but degrade in simulated intestinal fluid. Their corresponding degradation constants are 0.026±0.006 and 0.347±0.005nm -1 min -1 . Milk proteins possessing enhanced adhesion to human intestinal surface, Immunoglobulin G (IgG) and β-Lactoglobulin (BLG), are explored to tailor targeting function to BSA-TA multilayer film. BLG does not adsorb onto the multilayer while IgG is successfully incorporated. Microcapsules prepared from the multilayer demonstrate 2.7 and 6.3 times higher adhesion to Caco-2 cells when IgG is introduced as an intermediate and the terminal layer, correspondingly. This developed material has a great potential for oral delivery of numerous active food-derived ingredients. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A magnetic relaxation study on anisotropic reorientation in aqueous polyelectrolyte solutions

    International Nuclear Information System (INIS)

    Mulder, C.W.R.

    1984-01-01

    The present thesis proposes a study on anisotropic reorientation of aqueous polyelectrolyte solutions. In particular, it is directed to the question to what extent information may be obtained on anisotropic reorientation by nuclear magnetic relaxation experiments. The polymethacrylic acid/water system has been chosen as probe system. (Auth.)

  6. Recovery and redispersion of gold nanoparticles using the self-assembly of a pH sensitive zwitterionic amphiphile.

    Science.gov (United States)

    Morita-Imura, Clara; Imura, Yoshiro; Kawai, Takeshi; Shindo, Hitoshi

    2014-11-04

    The pH-responsive self-assembly of zwitterionic amphiphile C16CA was expanded to the recovery of gold (Au) nanoparticles for environmentally friendly chemistry applications. Multilayered lamellae at pH ∼ 4 were successfully incorporated into nanoparticles by dispersion. Redispersion of nanoparticles was achieved under basic conditions by the transition of self-assembly.

  7. Simulation of weak polyelectrolytes: a comparison between the constant pH and the reaction ensemble method

    Science.gov (United States)

    Landsgesell, Jonas; Holm, Christian; Smiatek, Jens

    2017-03-01

    The reaction ensemble and the constant pH method are well-known chemical equilibrium approaches to simulate protonation and deprotonation reactions in classical molecular dynamics and Monte Carlo simulations. In this article, we demonstrate the similarity between both methods under certain conditions. We perform molecular dynamics simulations of a weak polyelectrolyte in order to compare the titration curves obtained by both approaches. Our findings reveal a good agreement between the methods when the reaction ensemble is used to sweep the reaction constant. Pronounced differences between the reaction ensemble and the constant pH method can be observed for stronger acids and bases in terms of adaptive pH values. These deviations are due to the presence of explicit protons in the reaction ensemble method which induce a screening of electrostatic interactions between the charged titrable groups of the polyelectrolyte. The outcomes of our simulation hint to a better applicability of the reaction ensemble method for systems in confined geometries and titrable groups in polyelectrolytes with different pKa values.

  8. Water-resistive humidity sensor prepared by printing process using polyelectrolyte ink derived from new monomer.

    Science.gov (United States)

    Kim, Min-Ji; Gong, Myoung-Seon

    2012-03-21

    A simple strategy was developed based on a new monomer containing both photocurable function and ammonium salt, N-(2-cinnamoyloxy)ethyl-N-(2-(methacryloyloxy)ethyl)-N,N-dimethyl ammonium bromide (CMDAB) to obtain photocurable polyelectrolyte ink and stable humidity-sensitive membranes by printing process. Humidity-sensitive membranes are photocrosslinked polyelectrolytes obtained from copolymers of [2-(methacryloyloxy)ethyl] dimethyl propyl ammonium bromide (MEPAB), CMDAB and MMA. A flexible gold electrode/polyimide was pretreated with 2-(mercaptoethyl) cinnamamide (MEC) containing a thiol-coupling agent for the purpose of anchoring the humidity-sensitive polyelectrolyte to the gold electrode. The sensors using screen printing methods reduced the deflection of sensor characteristics showing humidity precision ±1%RH. The photocured copolymer MEPAB/CMDAB/MMA = 63/7/30 show good sensitivity (0.0586 logΩ/%RH) changing resistance approximately four orders of magnitude with relative humidity varying from 20% to 95% and fast response and recovery time. The resultant sensors showed acceptable linearity (Y = -0.04X + 7.0, R(2) = -0.9900) and small hysteresis. The reliability including water resistance and a long-term stability were estimated for the application of the flexible humidity sensor prepared by screen printing process.

  9. Electrochemical metal speciation in natural and model polyelectrolyte systems

    OpenAIRE

    Hoop, van den, M.A.G.T.

    1994-01-01

    The purpose of the research described in this thesis was to examine the applicability of electro-analytical techniques in obtaining information on the speciation of metals, i.e. their distribution over different physico-chemical forms, in aquatic systems containing charged macromolecules. In chapter 1 a general introduction is given to (i) metal speciation in aquatic systems, (ii) (bio)polyelectrolytes and their counterion distributions and (iii) electrochemical ...

  10. Ring-opening polymerization of 19-electron [2]cobaltocenophanes: a route to high-molecular-weight, water-soluble polycobaltocenium polyelectrolytes.

    Science.gov (United States)

    Mayer, Ulrich F J; Gilroy, Joe B; O'Hare, Dermot; Manners, Ian

    2009-08-05

    Water-soluble, high-molecular-weight polycobaltocenium polyelectrolytes have been prepared by ring-opening polymerization (ROP) techniques. Anionic polymerization of a strained 19-electron dicarba[2]cobaltocenophane followed by oxidation in the presence of ammonium chloride resulted in the formation of oligomers with up to nine repeat units. Thermal ROP of dicarba[2]cobaltocenophane followed by oxidation in the presence of ammonium nitrate resulted in the formation of high-molecular-weight polycobaltocenium nitrate, a redox-active cobalt-containing polyelectrolyte.

  11. Polythiophene-based conjugated polyelectrolyte: Optical properties and association behavior in solution

    Czech Academy of Sciences Publication Activity Database

    Urbánek, P.; di Martino, A.; Gladyš, S.; Kuřitka, I.; Minařík, A.; Pavlova, Ewa; Bondarev, D.

    2015-01-01

    Roč. 202, April (2015), s. 16-24 ISSN 0379-6779 R&D Projects: GA TA ČR(CZ) TE01020118; GA ČR GAP108/12/1143 Institutional support: RVO:61389013 Keywords : polyelectrolyte * conjugated polymer * UV–vis spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.299, year: 2015

  12. Casein Aggregates Built Step-by-Step on Charged Polyelectrolyte Film Surfaces Are Calcium Phosphate-cemented*

    Science.gov (United States)

    Nagy, Krisztina; Pilbat, Ana-Maria; Groma, Géza; Szalontai, Balázs; Cuisinier, Frédéric J. G.

    2010-01-01

    The possible mechanism of casein aggregation and micelle buildup was studied in a new approach by letting α-casein adsorb from low concentration (0.1 mg·ml−1) solutions onto the charged surfaces of polyelectrolyte films. It was found that α-casein could adsorb onto both positively and negatively charged surfaces. However, only when its negative phosphoseryl clusters remained free, i.e. when it adsorbed onto a negative surface, could calcium phosphate (CaP) nanoclusters bind to the casein molecules. Once the CaP clusters were in place, step-by-step building of multilayered casein architectures became possible. The presence of CaP was essential; neither Ca2+ nor phosphate could alone facilitate casein aggregation. Thus, it seems that CaP is the organizing motive in the casein micelle formation. Atomic force microscopy revealed that even a single adsorbed casein layer was composed of very small (in the range of tens of nanometers) spherical forms. The stiffness of the adsorbed casein layer largely increased in the presence of CaP. On this basis, we can imagine that casein micelles emerge according to the following scheme. The amphipathic casein monomers aggregate into oligomers via hydrophobic interactions even in the absence of CaP. Full scale, CaP-carrying micelles could materialize by interlocking these casein oligomers with CaP nanoclusters. Such a mechanism would not contradict former experimental results and could offer a synthesis between the submicelle and the block copolymer models of casein micelles. PMID:20921229

  13. Catalytic Micromotors Moving Near Polyelectrolyte-Modified Substrates: The Roles of Surface Charges, Morphology, and Released Ions.

    Science.gov (United States)

    Wei, Mengshi; Zhou, Chao; Tang, Jinyao; Wang, Wei

    2018-01-24

    Synthetic microswimmers, or micromotors, are finding potential uses in a wide range of applications, most of which involve boundaries. However, subtle yet important effects beyond physical confinement on the motor dynamics remain less understood. In this letter, glass substrates were functionalized with positively and negatively charged polyelectrolytes, and the dynamics of micromotors moving close to the modified surfaces was examined. Using acoustic levitation and numerical simulation, we reveal how the speed of a chemically propelled micromotor slows down significantly near a polyelectrolyte-modified surface by the combined effects of surface charges, surface morphology, and ions released from the films.

  14. Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer Films by Layer-by-Layer Deposition Method

    Directory of Open Access Journals (Sweden)

    Sarıışık Merih

    2010-01-01

    Full Text Available Abstract ZnO nanoparticle–based multilayer nanocomposite films were fabricated on cationized woven cotton fabrics via layer-by-layer molecular self-assembly technique. For cationic surface charge, cotton fabrics were pretreated with 2,3-epoxypropyltrimethylammonium chloride (EP3MAC by pad-batch method. XPS and SEM were used to examine the deposited nano-ZnO multilayer films on the cotton fabrics. The nano-ZnO films deposited on cotton fabrics exhibited excellent antimicrobial activity against Staphylococcus aureus bacteria. The results also showed that the coated fabrics with nano-ZnO multilayer films enhanced the protection of cotton fabrics from UV radiation. Physical tests (tensile strength of weft and warp yarns, air permeability and whiteness values were performed on the fabrics before and after the treatment with ZnO nanoparticles to evaluate the effect of layer-by-layer (LbL process on cotton fabrics properties.

  15. Hydrogen bond network relaxation in aqueous polyelectrolyte solutions: the effect of temperature

    International Nuclear Information System (INIS)

    Sarti, S; Bordi, F; Truzzolillo, D

    2012-01-01

    Dielectric spectroscopy data over the range 100 MHz-40 GHz allow for a reliable analysis of two of the major relaxation phenomena for polyelectrolytes (PE) in water. Within this range, the dielectric relaxation of pure water is dominated by a near-Debye process at ν = 18.5 GHz corresponding to a relaxation time of τ = 8.4 ps at 25 °C. This mode is commonly attributed to the cooperative relaxation specific to liquids forming a hydrogen bond network (HBN) and arising from long range H-bond-mediated dipole-dipole interactions. The presence of charged polymers in water partially modifies the dielectric characteristics of the orientational water molecule relaxation due to a change of the dielectric constant of water surrounding the charges on the polyion chain. We report experimental results on the effect of the presence of a standard flexible polyelectrolyte (sodium polyacrylate) on the HBN relaxation in water for different temperatures, showing that the HBN relaxation time does not change by increasing the polyelectrolyte density in water, even if relatively high concentrations are reached (0.02 monomol l -1 ≤ C ≤ 0.4 monomol l -1 ). We also find that the effect of PE addition on the HBN relaxation is not even a broadening of its distribution, rather a decrease of the spectral weight that goes beyond the pure volume fraction effect. This extra decrease is larger at low T and less evident at high T, supporting the idea that the correlation length of the water is less affected by the presence of charged flexible chains at high temperatures. (paper)

  16. Investigation of polyelectrolyte desorption by single molecule force spectroscopy

    International Nuclear Information System (INIS)

    Friedsam, C; Seitz, M; Gaub, H E

    2004-01-01

    Single molecule force spectroscopy has evolved into a powerful method for the investigation of intra- and intermolecular interactions at the level of individual molecules. Many examples, including the investigation of the dynamic properties of complex biological systems as well as the properties of covalent bonds or intermolecular transitions within individual polymers, are reported in the literature. The technique has recently been extended to the systematic investigation of desorption processes of individual polyelectrolyte molecules adsorbed on generic surfaces. The stable covalent attachment of polyelectrolyte molecules to the AFM-tip provides the possibility of performing long-term measurements with the same set of molecules and therefore allows the in situ observation of the impact of environmental changes on the adsorption behaviour of individual molecules. Different types of interactions, e.g. electrostatic or hydrophobic interactions, that determine the adsorption process could be identified and characterized. The experiments provided valuable details that help to understand the nature and the properties of non-covalent interactions, which is helpful with regard to biological systems as well as for technical applications. Apart from this, desorption experiments can be utilized to characterize the properties of surfaces or polymer coatings. Therefore they represent a versatile tool that can be further developed in terms of various aspects

  17. Modeling and Finite Element Analysis of Load-Carrying Performance of a Wind Turbine Considering the Influence of Assembly Factors

    Directory of Open Access Journals (Sweden)

    Jianmei Wang

    2017-03-01

    Full Text Available In this work, a wind turbine shrink disk is used as the research object to investigate load-carrying performance of a multi-layer interference fit, and the theoretical model and finite element model are constructed. According to those models, a MW-level turbine shrink disk is designed, and a test device is developed to apply torque to this turbine shrink disk by hydraulic jack. Then, the circumferential slip between the contact surfaces is monitored and the slip of all contact surfaces is zero. This conclusion verifies the reasonability of the proposed models. The effect of the key influencing factors, such as machining deviation, assembly clearance and propel stroke, were analyzed. The contact pressure and load torque of the mating surfaces were obtained by building typical models with different parameters using finite element analysis (FEA. The results show that the minimum assembly clearance and the machining deviation within the machining range have little influence on load-carrying performance of multi-layer interference fit, while having a greater influence on the maximum assembly clearance and the propel stroke. The results also show that the load-carrying performance of a multiple-layer interference fit can be ensured only if the key factors are set within a reasonable design range. To avoid the abnormal operation of equipment caused by insufficient load torque, the propel stroke during practical assembly should be at least 0.95 times the designed propel stroke, which is significant in guiding the design and assembly of the multi-layer interference fit.

  18. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solids

    Energy Technology Data Exchange (ETDEWEB)

    Greene, J. E. [University of Illinois, Urbana, Illinois 61801 (United States); Linköping University, 581 83 Linköping (Sweden); National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2015-03-15

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (∼1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ∼78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese “floating-ink” art (suminagashi) developed ∼1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO{sub 2} and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including

  19. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solids

    International Nuclear Information System (INIS)

    Greene, J. E.

    2015-01-01

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (∼1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ∼78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese “floating-ink” art (suminagashi) developed ∼1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO 2 and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including

  20. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation

    International Nuclear Information System (INIS)

    Phenrat, Tanapon; Saleh, Navid; Sirk, Kevin; Kim, Hye-Jin; Tilton, Robert D.; Lowry, Gregory V.

    2008-01-01

    Nanoscale zerovalent iron (NZVI) particles are 5-40 nm sized Fe 0 /Fe-oxide particles that rapidly transform many environmental contaminants to benign products and are a promising in situ remediation agent. Rapid aggregation and limited mobility in water-saturated porous media limits the ability to deliver NZVI dispersions in the subsurface. This study prepares stable NZVI dispersions through physisorption of commercially available anionic polyelectrolytes, characterizes the adsorbed polymer layer, and correlates the polymer coating properties with the ability to prevent rapid aggregation and sedimentation of NZVI dispersions. Poly(styrene sulfonate) with molecular weights of 70 k and 1,000 k g/mol (PSS70K and PSS1M), carboxymethyl cellulose with molecular weights of 90 k and 700 k g/mol (CMC90K and CMC700K), and polyaspartate with molecular weights of 2.5 k and 10 k g/mol (PAP2.5K and 10K) were compared. Particle size distributions were determined by dynamic light scattering during aggregation. The order of effectiveness to prevent rapid aggregation and stabilize the dispersions was PSS70K(83%) > ∼PAP10K(82%) > PAP2.5K(72%) > CMC700K(52%), where stability is defined operationally as the volume percent of particles that do not aggregate after 1 h. CMC90K and PSS1M could not stabilize RNIP relative to bare RNIP. A similar trend was observed for their ability to prevent sedimentation, with 40, 34, 32, 20, and 5 wt%, of the PSS70K, PAP10K, PAP2.5K, CMC700K, and CMC90K modified NZVI remaining suspended after 7 h of quiescent settling, respectively. The stable fractions with respect to both aggregation and sedimentation correlate well with the adsorbed polyelectrolyte mass and thickness of the adsorbed polyelectrolyte layers as determined by Oshima's soft particle theory. A fraction of the particles cannot be stabilized by any modifier and rapidly agglomerates to micron sized aggregates, as is also observed for unmodified NZVI. This non-dispersible fraction is

  1. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    International Nuclear Information System (INIS)

    Purdy Drew, Kirstin R.; Sanders, Lori K.; Culumber, Zachary W.; Zribi, Olena; Wong, Gerard C.L.

    2009-01-01

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers.

  2. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    International Nuclear Information System (INIS)

    Drew, K.R.Purdy; Sanders, L.K.; Culumber, Z.W.; Zribi, O.; Wong, G.C.L.

    2009-01-01

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers

  3. Stability of embossed PEI-(PSS-PDADMAC) 20 multilayer films versus storage time and versus a change in ionic strength

    Science.gov (United States)

    Ladhari, Nadia; Hemmerlé, Joseph; Haikel, Youssef; Voegel, Jean-Claude; Schaaf, Pierre; Ball, Vincent

    2008-12-01

    The use of microstructured films increased markedly in many areas of science and technology, notably in the design of microfluidic channels and in the design of parallel biosensing arrays. The concept of imprinting polyelectrolyte multilayer films (PEMs) has been introduced recently [C. Gao, B. Wang, J. Feng, J. Shen, Macromolecules 37 (2004) 8836]. These irreversibly imprinted films, obtained by plastic deformation, have to keep their size and shape after contact with fluids having physicochemical properties comparable to those of biological fluids in order to be used as microfluidic channels. We demonstrate herein that PEI-(PSS-PDADMAC) 20 PEMs built-up by the spray deposition from NaCl 1 M solutions and subsequently imprinted with polydimethylsiloxane stamps keep their morphology over time (up to 9 months) when stored in the dry state. In addition the depth of the imprinted channels does not change over this time duration. When the embossed films are immersed in NaCl 0.15 M solutions, mimicking biological fluids, the depth of the imprinted channels also does not significantly change. But, when the imprinted films prepared in the presence of 1 M NaCl are subsequently dipped in a 4 M NaCl solution, partial film loss and subsequent disappearance of the imprinted channels are observed. An explanation for these findings is furnished by means of FTIR spectroscopy in the attenuated total reflection mode (ATR-FTIR). These observations should offer large opportunities for the use of the imprinted multilayer films as microfluidic channels.

  4. Characterization of self-assembled redox polymer and antibody molecules on thiolated gold electrodes.

    Science.gov (United States)

    Calvo, E J; Danilowicz, C; Lagier, C M; Manrique, J; Otero, M

    2004-05-15

    Multilayer immobilization of antibody and redox polymer molecules on a gold electrode was achieved, as a strategy for the potential development of an amperometric immunosensor. The step-by-step assembly of antibiotin IgG on Os(bpy)(2)ClPyCH(2)NH poly(allylamine) redox polymer (PAH-Os) adsorbed on thiolated gold electrodes was proved by quartz crystal microbalance (QCM) and atomic force microscopy (AFM) experiments, confirming the electrochemical evidence. The increase of redox charge during the layer-by-layer deposition demonstrated that charge propagation within the layers is feasible. The multilayer structure proved to be effective for the molecular recognition of horseradish peroxidase-biotin conjugate (HRP-biotin), as confirmed by the QCM measurements and the electrocatalytic reduction current obtained upon H(2)O(2) addition. The catalytic current resulting from PAH-Os mediation was shown to increase with the number of assembled layers. Furthermore, the inventory of IgG molecules on the supramolecular self-assembled structure and the specific and non-specific binding of HRP-biotin conjugate were confirmed by the QCM transient studies, giving information on the kinetics of IgG deposition and HRP-biotin conjugate binding to the IgG.

  5. Small angle neutron scattering study of polyelectrolyte brushes grafted to well-defined gold nanoparticle interfaces.

    Science.gov (United States)

    Jia, Haidong; Grillo, Isabelle; Titmuss, Simon

    2010-05-18

    Small angle neutron scattering (SANS) has been used to study the conformations, and response to added salt, of a polyelectrolyte layer grafted to the interfaces of well-defined gold nanoparticles. The polyelectrolyte layer is prepared at a constant coverage by grafting thiol-functionalized polystyrene (M(w) = 53k) to gold nanoparticles of well-defined interfacial curvature (R(c) = 26.5 nm) followed by a soft-sulfonation of 38% of the segments to sodium polystyrene sulfonate (NaPSS). The SANS profiles can be fit by Fermi-Dirac distributions that are consistent with a Gaussian distribution but are better described by a parabolic distribution plus an exponential tail, particularly in the high salt regime. These distributions are consistent with the predictions and measurements for osmotic and salted brushes at interfaces of low curvature. When the concentration of added salt exceeds the concentration of counterions inside the brush, there is a salt-induced deswelling, but even at the highest salt concentration the brush remains significantly swollen due to a short-ranged excluded volume interaction. This is responsible for the observed resistance to aggregation of these comparatively high concentration polyelectrolyte stabilized gold nanoparticle dispersions even in the presence of a high concentration of added salt.

  6. Nanoparticulate hollow TiO2 fibers as light scatterers in dye-sensitized solar cells: layer-by-layer self-assembly parameters and mechanism.

    Science.gov (United States)

    Rahman, Masoud; Tajabadi, Fariba; Shooshtari, Leyla; Taghavinia, Nima

    2011-04-04

    Hollow structures show both light scattering and light trapping, which makes them promising for dye-sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO(2) fibers are prepared by layer-by-layer (LbL) self-assembly deposition of TiO(2) nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO(2) dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO(2) nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25-fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50% in conversion efficiency. By employing the intensity-modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light-harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ordered conducting polymer multilayer films and its application for hole injection layers in organic light-emitting devices

    International Nuclear Information System (INIS)

    Xu Jianhua; Yang Yajie; Yu Junsheng; Jiang Yadong

    2009-01-01

    We reported a controlled architecture growth of layer-ordered multilayer film of poly(3,4-ethylene dioxythiophene) (PEDOT) via a modified Langmuir-Blodgett (LB) method. An in situ polymerization of 3,4-ethylene dioxythiophene (EDOT) monomer in multilayer LB film occurred for the formation of ordered conducting polymer embedded multilayer film. The well-distribution of conducting polymer particles was characterized by secondary-ion mass spectrometry (SIMS). The conducting film consisting of ordered PEDOT ultrathin layers was investigated as a hole injection layer for organic light-emitting diodes (OLEDs). The results showed that, compared to conventional spin-coating PEDOT film and electrostatic self-assembly (ESA) film, the improved performance of OLEDs was obtained after using ordered PEDOT LB film as hole injection layer. It also indicated that well-ordered structure of hole injection layer was attributed to the improvement of OLED performance, leading to the increase of charged carrier mobility in hole injection layer and the recombination rate of electrons and holes in the electroluminescent layer.

  8. The cell engineering construction and function evaluation of multi-layer biochip dialyzer.

    Science.gov (United States)

    Zhu, Wen; Li, Jiwei; Liu, Jianfeng

    2013-10-01

    We report the fabrication and function evaluation of multi-layer biochip dialyzer. Such device may potentially be applied to the wearable hemodialysis systems. By merging the advantages of microfluidic chip technology with cell engineering, both functions of glomerular filtration and renal tubule physiological activity are integrated in the same device. This device is designed into a laminated structure, in which the chip number of the superimposed layer can be arbitrarily tailored in accordance with the requirements of dialysis capacity. We propose that such structure can overcome the obstacles of large size and detached structure of the traditional hollow fiber dialyzer. To construct this multilayer biochips dialyzer, two types of dialyzer device with two-layered and six-layered chips are assembled, respectively. Cell adhesion and proliferation on three different dialysis membrane materials under static and dynamic conditions are investigated and compared. The filtration capability, re-absorption function and excrete ammonia function of the resulting multi-layer biochip dialyzer are evaluated. The results reveal that the constructed device can perform higher filtration efficiency and also play a role of renal tubule. This methodology may be useful in developing "scaling down" artificial kidneys that can act as wearable or even implantable hemodialysis systems.

  9. Optimization of sound absorbing performance for gradient multi-layer-assembled sintered fibrous absorbers

    Science.gov (United States)

    Zhang, Bo; Zhang, Weiyong; Zhu, Jian

    2012-04-01

    The transfer matrix method, based on plane wave theory, of multi-layer equivalent fluid is employed to evaluate the sound absorbing properties of two-layer-assembled and three-layer-assembled sintered fibrous sheets (generally regarded as a kind of compound absorber or structures). Two objective functions which are more suitable for the optimization of sound absorption properties of multi-layer absorbers within the wider frequency ranges are developed and the optimized results of using two objective functions are also compared with each other. It is found that using the two objective functions, especially the second one, may be more helpful to exert the sound absorbing properties of absorbers at lower frequencies to the best of their abilities. Then the calculation and optimization of sound absorption properties of multi-layer-assembled structures are performed by developing a simulated annealing genetic arithmetic program and using above-mentioned objective functions. Finally, based on the optimization in this work the thoughts of the gradient design over the acoustic parameters- the porosity, the tortuosity, the viscous and thermal characteristic lengths and the thickness of each samples- of porous metals are put forth and thereby some useful design criteria upon the acoustic parameters of each layer of porous fibrous metals are given while applying the multi-layer-assembled compound absorbers in noise control engineering.

  10. Characterization of multilayer self-organized InAs quantum dot embedded waveguides at 1.3 and 1.5 μm

    NARCIS (Netherlands)

    Akca, I.B.; Dana, A.; Aydinli, A.; Rossetti, M.; Li, L.; Fiore, A.; Dagli, N.

    2007-01-01

    In this paper, we characterized the electro-optic coefficient and loss of multilayer InAs quantum dot laser structures at 1309 and 1515 nm. Quantum dot waveguides were grown by molecular beam epitaxy, where the active region is formed by three or five layers of self-assembled InAs QDs. Loss

  11. Self-consistent field theory of protein adsorption in a non-Gaussian polyelectrolyte brush

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Leermakers, F.A.M.; Stuart, M.A.C.

    2006-01-01

    To describe adsorption of globular protein molecules in a polyelectrolyte brush we use the strong-stretching approximation of the Edwards self-consistent field equation, combined with corrections for a non-Gaussian brush. To describe chemical potentials in this mixture of (globular) species of

  12. All-nanoparticle self-assembly ZnO/TiO₂ heterojunction thin films with remarkably enhanced photoelectrochemical activity.

    Science.gov (United States)

    Yuan, Sujun; Mu, Jiuke; Mao, Ruiyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2014-04-23

    The multilaminated ZnO/TiO2 heterojunction films were successfully deposited on conductive substrates including fluorine-doped tin oxide (FTO) glass and flexible indium tin oxide coated poly(ethylene terephthalate) via the layer-by-layer (LBL) self assembly method from the oxide colloids without using any polyelectrolytes. The positively charged ZnO nanoparticles and the negatively charged TiO2 nanoparticles were directly used as the components in the consecutive deposition process to prepare the heterojunction thin films by varying the thicknesses. Moreover, the crystal growth of both oxides could be efficiently inhibited by the good connection between ZnO and TiO2 nanoparticles even after calcination at 500 °C, especially for ZnO which was able to keep the crystallite size under 25 nm. The as-prepared films were used as the working electrodes in the three-electrode photoelectrochemical cells. Because the well-contacted nanoscale heterojunctions were formed during the LBL self-assembling process, the ZnO/TiO2 all-nanoparticle films deposited on both substrates showed remarkably enhanced photoelectrochemical properties compared to that of the well-established TiO2 LBL thin films with similar thicknesses. The photocurrent response collected from the ZnO/TiO2 electrode on the FTO glass substrate was about five times higher than that collected from the TiO2 electrode. Owing to the absence of the insulating layer of dried polyelectrolytes, the ZnO/TiO2 all-nanoparticle heterojunction films were expected to be used in the photoelectrochemical device before calcination.

  13. New developments in Ni/Ti multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I; Hoghoj, P [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    It is now 20 years since super-mirrors were first used as a neutron optical element. Since then the field of multilayer neutron-optics has matured with multilayers finding their way to application in many neutron scattering instruments. However, there is still room for progress in terms of multilayer quality, performance and application. Along with work on multilayers for neutron polarisation Ni/Ti super-mirrors have been optimised. The state-of-the-art Ni/Ti super-mirror performance and the results obtained in two neutron-optics applications of Ni/Ti multilayers are presented. (author).

  14. Unobstructed electron transfer on porous polyelectrolyte nanostructures and its characterization by electrochemical surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bryce W.; Linman, Matthew J.; Linley, Kamara S.; Hare, Christopher D. [Department of Chemistry, University of California, Riverside, CA 92521 (United States); Cheng Quan, E-mail: quan.cheng@ucr.ed [Department of Chemistry, University of California, Riverside, CA 92521 (United States)

    2010-06-01

    Thin organic films with desirable redox properties have long been sought in biosensor research. We report here the development of a polymer thin film interface with well-defined hierarchical nanostructure and electrochemical behavior, and its characterization by electrochemical surface plasmon resonance (ESPR) spectroscopy. The nano-architecture build-up is monitored in real time with SPR, while the redox response is characterized by cyclic voltammetry in the same flow cell. The multilayer assembly is built on a self-assembled monolayer (SAM) of 1:1 (molar ratio) 11-ferrocenyl-1-undecanethiolate (FUT) and mercaptoundecanoic acid (MUA), and constructed using a layer-by-layer deposition of cationic poly(allylamine hydrochloride) (PAH) and anionic poly(sodium 4-styrenesulfonate) (PSS). Electron transfer (ET) on the mixed surface and the effect of the layer structures on ET are systematically studied. Under careful control, multiple layers can be deposited onto the 1:1 FUT/MUA SAM that presents unobstructed redox chemistry, indicating a highly ordered, extensively porous structure obtained under this condition. The use of SPR to trace the minute change during the electrochemical process offers neat characterization of local environment at the interface, in particular double layer region, allowing for better control over the redox functionality of the multilayers. The 1:1 SAM has a surface coverage of 4.1 +- 0.3 x 10{sup -10} mol cm{sup -2} for ferrocene molecules and demonstrates unperturbed electrochemistry activity even in the presence of a 13 nm polymer film adhered to the electrode surface. This thin layer possesses some desirable properties similar to those on a SAM while presenting approx15 nm exceedingly porous structure for high loading capacity. The high porosity allows perchlorate to freely partition into the film, leading to high current density that is useful for sensitive electrochemical measurements.

  15. Neutron optics with multilayer monochromators

    International Nuclear Information System (INIS)

    Saxena, A.M.; Majkrzak, C.F.

    1984-01-01

    A multilayer monochromator is made by depositing thin films of two materials in an alternating sequence on a glass substrate. This makes a multilayer periodic in a direction perpendicular to the plane of the films, with a d-spacing equal to the thickness of one bilayer. Neutrons of wavelength λ incident on a multilayer will be reflected at an angle phi given by the Bragg relation nλ = 2d sinphi, where n is the order of reflection. The use of thin-film multilayers for monochromating neutrons is discussed. Because of the low flux of neutrons, the samples have to be large, and the width of the incident beam can be as much as 2 cm. Multilayers made earlier were fabricated by resistive heating of the materials in a vacuum chamber. Because of geometrical constraints imposed by the size of the vacuum chamber, limits on the amount of material that can be loaded in a boat, and finite life of the boats, this method of preparation limits the length of a multilayer to ∼ 15 cm and the total number of bilayers in a multilayer to about 200. This paper discusses a thin-film deposition system using RF sputtering for depositing films

  16. Poisson–Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes

    NARCIS (Netherlands)

    Ubbink, J.; Khokhlov, A.R.

    2004-01-01

    A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the

  17. Nanomechanical Behavior of High Gas Barrier Multilayer Thin Films.

    Science.gov (United States)

    Humood, Mohammad; Chowdhury, Shahla; Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C; Polycarpou, Andreas A

    2016-05-04

    Nanoindentation and nanoscratch experiments were performed on thin multilayer films manufactured using the layer-by-layer (LbL) assembly technique. These films are known to exhibit high gas barrier, but little is known about their durability, which is an important feature for various packaging applications (e.g., food and electronics). Films were prepared from bilayer and quadlayer sequences, with varying thickness and composition. In an effort to evaluate multilayer thin film surface and mechanical properties, and their resistance to failure and wear, a comprehensive range of experiments were conducted: low and high load indentation, low and high load scratch. Some of the thin films were found to have exceptional mechanical behavior and exhibit excellent scratch resistance. Specifically, nanobrick wall structures, comprising montmorillonite (MMT) clay and polyethylenimine (PEI) bilayers, are the most durable coatings. PEI/MMT films exhibit high hardness, large elastic modulus, high elastic recovery, low friction, low scratch depth, and a smooth surface. When combined with the low oxygen permeability and high optical transmission of these thin films, these excellent mechanical properties make them good candidates for hard coating surface-sensitive substrates, where polymers are required to sustain long-term surface aesthetics and quality.

  18. The interplay of nanointerface curvature and calcium binding in weak polyelectrolyte-coated nanoparticles.

    Science.gov (United States)

    Nap, Rikkert J; Gonzalez Solveyra, Estefania; Szleifer, Igal

    2018-05-01

    When engineering nanomaterials for application in biological systems, it is important to understand how multivalent ions, such as calcium, affect the structural and chemical properties of polymer-modified nanoconstructs. In this work, a recently developed molecular theory was employed to study the effect of surface curvature on the calcium-induced collapse of end-tethered weak polyelectrolytes. In particular, we focused on cylindrical and spherical nanoparticles coated with poly(acrylic acid) in the presence of different amounts of Ca2+ ions. We describe the structural changes that grafted polyelectrolytes undergo as a function of calcium concentration, surface curvature, and morphology. The polymer layers collapse in aqueous solutions that contain sufficient amounts of Ca2+ ions. This collapse, due to the formation of calcium bridges, is not only controlled by the calcium ion concentration but also strongly influenced by the curvature of the tethering surface. The transition from a swollen to a collapsed layer as a function of calcium concentration broadens and shifts to lower amounts of calcium ions as a function of the radius of cylindrical and spherical nanoparticles. The results show how the interplay between calcium binding and surface curvature governs the structural and functional properties of the polymer molecules. This would directly impact the fate of weak polyelectrolyte-coated nanoparticles in biological environments, in which calcium levels are tightly regulated. Understanding such interplay would also contribute to the rational design and optimization of smart interfaces with applications in, e.g., salt-sensitive and ion-responsive materials and devices.

  19. Interaction between two polyelectrolyte brushes.

    Science.gov (United States)

    Kumar, N Arun; Seidel, Christian

    2007-08-01

    We report molecular dynamics simulations on completely charged polyelectrolyte brushes grafted to two parallel surfaces. The pressure Pi is evaluated as a function of separation D between the two grafting planes. For decreasing separation, Pi shows several regimes distinguished by their scaling with D which reflects the different physical nature of the various regimes. At weak compression the pressure obeys the 1D power law predicted by scaling theory of an ideal gas of counterions in the osmotic brush regime. In addition we find that the brushes shrink as they approach each other trying to avoid interpenetration. At higher compressions where excluded volume interactions become important, we obtain scaling exponents between -2 at small grafting density rho(a) and -3 at large rho(a). This behavior indicates a transition from a brush under good solvent condition to the melt regime with increasing grafting density.

  20. Monte Carlo simulation and equation of state for flexible charged hard-sphere chain fluids: Polyampholyte and polyelectrolyte solutions

    International Nuclear Information System (INIS)

    Jiang, Hao; Adidharma, Hertanto

    2014-01-01

    The thermodynamic modeling of flexible charged hard-sphere chains representing polyampholyte or polyelectrolyte molecules in solution is considered. The excess Helmholtz energy and osmotic coefficients of solutions containing short polyampholyte and the osmotic coefficients of solutions containing short polyelectrolytes are determined by performing canonical and isobaric-isothermal Monte Carlo simulations. A new equation of state based on the thermodynamic perturbation theory is also proposed for flexible charged hard-sphere chains. For the modeling of such chains, the use of solely the structure information of monomer fluid for calculating the chain contribution is found to be insufficient and more detailed structure information must therefore be considered. Two approaches, i.e., the dimer and dimer-monomer approaches, are explored to obtain the contribution of the chain formation to the Helmholtz energy. By comparing with the simulation results, the equation of state with either the dimer or dimer-monomer approach accurately predicts the excess Helmholtz energy and osmotic coefficients of polyampholyte and polyelectrolyte solutions except at very low density. It also well captures the effect of temperature on the thermodynamic properties of these solutions

  1. Behaviour of human mesenchymal stem cells on a polyelectrolyte-modified HEMA hydrogel for silk-based ligament tissue engineering.

    Science.gov (United States)

    Bosetti, M; Boccafoschi, F; Calarco, A; Leigheb, M; Gatti, S; Piffanelli, V; Peluso, G; Cannas, M

    2008-01-01

    The aim of this study was to design a functional bio-engineered material to be used as scaffold for autologous mesenchymal stem cells in ligament tissue engineering. Polyelectrolyte modified HEMA hydrogel (HEMA-co-METAC), applied as coating on silk fibroin fibres, has been formulated in order to take advantage of the biocompatibility of the polyelectrolyte by increasing its mechanical properties with silk fibres. Human bone marrow mesenchymal stem cells behaviour on such reinforced polyelectrolyte has been studied by evaluating cell morphology, cell number, attachment, spreading and proliferation together with collagen matrix production and its mRNA expression. Silk fibroin fibres matrices with HEMA-co-METAC coating exhibited acceptable mechanical behaviour compared to the natural ligament, good human mesenchymal stem cell adhesion and with mRNA expression studies higher levels of collagen types I and III expression when compared to control cells on polystyrene. These data indicate high expression of mRNA for proteins responsible for the functional characteristics of the ligaments and suggest a potential for use of this biomaterial in ligament tissue-engineering applications.

  2. Smaller Counter Cation for Higher Transconductance in Anionic Conjugated Polyelectrolytes

    KAUST Repository

    Schmidt, Martina M.

    2017-12-11

    Conjugated polyelectrolytes (CPEs) are a focus of research because combine their inherent electrical conductivity and the ability to interact with ions in aqueous solutions or biological systems. However, it is still not understood to what degree the counter ion in CPEs influences the properties of the CPE itself and the performance of electronic transducers. In order to investigate this, three different conjugated polyelectrolytes, poly(6-(thiophen-3-yl)hexane-1-sulfonate)s (PTHS−X+), are synthesized, which have the same polythiophene backbone but different X+ counter ions: the bulky tetrabutylammonium (TBA+), tetraethylammonium (TEA+), and the smallest tetramethylammonium (TMA+). At the interface with biological systems, thin CPE films have to be stable in an aqueous environment and should allow the inward and outward flow of ions from the electrolyte. Since the studied PTHS−X+ have different solubilities in water, the optical properties of pristine PTHS−X+ as well as of crosslinked PTHS−X+ via UV–vis absorption spectroscopy are investigated additionally. PTHS−TMA+ exhibits better aggregation, fast interdiffusion of ions, and fast recovery from the oxidized state. Additionally, spectroelectrochemical and cyclic voltammetric as well as electrochemical capacitance investigations show that PTHS−TMA+ can be oxidized to a higher degree. This leads to a better performance of PTHS−TMA+-based organic electrochemical transistors.

  3. Effects of annealing on electrical and optical properties of a multilayer InAs/GaAs quantum dots system

    Directory of Open Access Journals (Sweden)

    Adenilson José Chiquito

    2004-09-01

    Full Text Available A systematic investigation of the properties of the InAs/GaAs self-assembled quantum dots (SAQDs system subjected to a post-growth annealing using capacitance-voltage, Raman scattering and photoluminescence measurements is presented. The application of both electrical and optical methods allowed us to obtain reliable information on the microscopic structural evolution of this system. The single layer and the multilayer quantum dots were found to respond differently to the annealing process, due to the differences in strain that occur in both systems. The diffusion activated by strain provoked the appearance of an InGaAs alloy layer in substitution to the quantum dots layers; this change occurred at the annealing temperature T = 600 ºC in the multilayer system. A single dot layer, however, was observed even after the annealing at T = 700 ºC. Moreover, the low temperature annealing was found to improve the homogeneity of the multilayer system and to decrease the electrical interlayer coupling.

  4. Water-Dispersible Silica-Polyelectrolyte Nanocomposites Prepared via Acid-Triggered Polycondensation of Silicic Acid and Directed by Polycations

    Directory of Open Access Journals (Sweden)

    Philip Overton

    2016-03-01

    Full Text Available The present work describes the acid-triggered condensation of silicic acid, Si(OH4, as directed by selected polycations in aqueous solution in the pH range of 6.5–8.0 at room temperature, without the use of additional solvents or surfactants. This process results in the formation of silica-polyelectrolyte (S-PE nanocomposites in the form of precipitate or water-dispersible particles. The mean hydrodynamic diameter (dh of size distributions of the prepared water-dispersible S-PE composites is presented as a function of the solution pH at which the composite formation was achieved. Poly(2-(dimethylaminoethyl methacrylate (PDMAEMA and block copolymers of DMAEMA and oligo(ethylene glycol methyl ether methacrylate (OEGMA were used as weak polyelectrolytes in S-PE composite formation. The activity of the strong polyelectrolytes poly(methacryloxyethyl trimethylammonium iodide (PMOTAI and PMOTAI-b-POEGMA in S-PE formation is also examined. The effect of polyelectrolyte strength and the OEGMA block on the formation of the S-PE composites is assessed with respect to the S-PE composites prepared using the PDMAEMA homopolymer. In the presence of the PDMAEMA60 homopolymer (Mw = 9400 g/mol, the size of the dispersible S-PE composites increases with solution pH in the range pH 6.6–8.1, from dh = 30 nm to dh = 800 nm. S-PDMAEMA60 prepared at pH 7.8 contained 66% silica by mass (TGA. The increase in dispersible S-PE particle size is diminished when directed by PDMAEMA300 (Mw = 47,000 g/mol, reaching a maximum of dh = 75 nm. S-PE composites formed using PDMAEMA-b-POEGMA remain in the range dh = 20–30 nm across this same pH regime. Precipitated S-PE composites were obtained as spheres of up to 200 nm in diameter (SEM and up to 65% mass content of silica (TGA. The conditions of pH for the preparation of dispersible and precipitate S-PE nanocomposites, as directed by the five selected polyelectrolytes PDMAEMA60, PDMAEMA300, PMOTAI60, PDMAEMA60-b-POEGMA38 and

  5. Filterability of membrane bioreactor (MBR) sludge: impacts of polyelectrolytes and mixing with conventional activated sludge.

    Science.gov (United States)

    Yigit, Nevzat O; Civelekoglu, Gokhan; Cinar, Ozer; Kitis, Mehmet

    2010-01-01

    The main objective of this work was to investigate the filterability of MBR sludge and its mixture with conventional activated sludge (CAS). In addition, the impacts of type and dose of various polyelectrolytes, filter type and sludge properties on the filterability of both MBR and Mixed sludges were determined. Specific cake resistance (SCR) measured by the Buchner funnel filtration test apparatus and the solids content of the resulting sludge cake were used to assess the dewaterability of tested sludges. The type of filter paper used in Buchner tests affected the results of filterability for MBR, CAS and Mixed sludges. SCR values and optimum polyelectrolyte doses increased with increasing MLSS concentrations in the MBR, which suggested that increase in MLSS concentrations accompanied by increases in EPS and SMP concentrations and a shift toward smaller particles caused poorer dewaterability of the MBR sludge. The significant differences observed among the filterability of CAS and MBR sludges suggested that MLSS alone is not a good predictor of sludge dewaterability. Combining CAS and MBR sludges at different proportions generally improved their dewaterability. Combining MBR sludges having typically high MLSS and EPS concentrations with CAS having much lower MLSS concentrations may be an option for full-scale treatment plants experiencing sludge dewaterability problems. Better filterability and higher cake dry solids were achieved with cationic polyelectrolytes compared to anionic and non-ionic ones for all sludge types tested.

  6. Polyelectrolyte microparticles for enhancing anode performance in an air–cathode μ-Liter microbial fuel cell

    International Nuclear Information System (INIS)

    Chen, Yan-Yu; Wang, Hsiang-Yu

    2015-01-01

    Highlights: • Microparticles with high consistency and surface area per volume are fabricated. • P(DADMAC) microparticles facilitate microorganism accumulation and charge transfer. • Microbes in microparticles are capable of proliferation and electricity generation. • Microparticles increase limiting current/power output to more than 200% of biofilm. • Microparticles decrease the anode charge-transfer resistance to 44% of biofilm. - Abstract: Microbial fuel cell (MFC) is considered an environmentally friendly energy source because it generates electrical power by digesting organic substrates in the wastewater. However, it is still challenging for MFC to become an economically affordable and highly efficient energy source due to its relatively low power output and coulombic efficiency. The aim of this study is to increase the performance of anode by using polyelectrolyte microparticles to facilitate the accumulation of microorganisms and the collection of electrons. The polyelectrolyte microparticle is subjected to microscopy, cyclic voltammetry, electrochemical impedance spectroscopy and continuous electricity generation in an air–cathode μ-Liter MFC (μMFC) to validate its biocompatibility, ability in retaining redox species, reduced electron transfer resistance, and sustained energy generation. During the 168-hour operation, microorganisms proliferate inside the microparticle and generate around 250% power output and 200% limiting current of those from microorganism biofilm. The polyelectrolyte microparticle also decreased charge-transfer resistance of anode electrode in air–cathode μMFC by 56% compared with biofilm.

  7. Structural hierarchy in flow-aligned hexagonally self-organized microphases with parallel polyelectrolytic structures

    NARCIS (Netherlands)

    Ruotsalainen, T; Torkkeli, M; Serimaa, R; Makela, T; Maki-Ontto, R; Ruokolainen, J; ten Brinke, G; Ikkala, O; Mäkelä, Tapio; Mäki-Ontto, Riikka

    2003-01-01

    We report a novel structural hierarchy where a flow-aligned hexagonal self-organized structure is combined with a polyelectrolytic self-organization on a smaller length scale and where the two structures are mutually parallel. Polystyrene-block-poly(4-vinylpyridine) (PS-block-P4VP) is selected with

  8. Adsorption of polyelectrolytes and charged block copolymers on oxides consequences for colloidal stability

    NARCIS (Netherlands)

    Hoogeveen, N.G.

    1996-01-01


    The aim of the study described in this thesis was to examine the adsorption properties of polyelectrolytes and charged block copolymers on oxides, and the effect of these polymers on the colloidal stability of oxidic dispersions. For this purpose the interaction of some well-characterised

  9. Brownian dynamics simulations of polyelectrolyte adsorption in shear flow with hydrodynamic interaction

    Science.gov (United States)

    Hoda, Nazish; Kumar, Satish

    2007-12-01

    The adsorption of single polyelectrolyte molecules in shear flow is studied using Brownian dynamics simulations with hydrodynamic interaction (HI). Simulations are performed with bead-rod and bead-spring chains, and electrostatic interactions are incorporated through a screened Coulombic potential with excluded volume accounted for by the repulsive part of a Lennard-Jones potential. A correction to the Rotne-Prager-Yamakawa tensor is derived that accounts for the presence of a planar wall. The simulations show that migration away from an uncharged wall, which is due to bead-wall HI, is enhanced by increases in the strength of flow and intrachain electrostatic repulsion, consistent with kinetic theory predictions. When the wall and polyelectrolyte are oppositely charged, chain behavior depends on the strength of electrostatic screening. For strong screening, chains get depleted from a region close to the wall and the thickness of this depletion layer scales as N1/3Wi2/3 at high Wi, where N is the chain length and Wi is the Weissenberg number. At intermediate screening, bead-wall electrostatic attraction competes with bead-wall HI, and it is found that there is a critical Weissenberg number for desorption which scales as N-1/2κ-3(lB∣σq∣)3/2, where κ is the inverse screening length, lB is the Bjerrum length, σ is the surface charge density, and q is the bead charge. When the screening is weak, adsorbed chains are observed to align in the vorticity direction at low shear rates due to the effects of repulsive intramolecular interactions. At higher shear rates, the chains align in the flow direction. The simulation method and results of this work are expected to be useful for a number of applications in biophysics and materials science in which polyelectrolyte adsorption plays a key role.

  10. Formation of polyelectrolyte complexes with diethylaminoethyl dextran: charge ratio and molar mass effect.

    Science.gov (United States)

    Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc

    2014-11-26

    The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Thermal performance of various multilayer insulation systems below 80K

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1992-04-01

    The SSC collider dipole cryostat consists of a vacuum shell operating at room temperature, two thermal shields operating near 80K and 20K respectively, and the superconducting magnet assembly operating near 4K. The cryostat design incorporates multilayer insulation (MLI) blankets to limit radiant heat transfer into the 80K and 20K thermal shields. Also, an MLI blanket is used to impede heat transfer through residual gas conduction into the 4K superconducting magnet assembly. A measurement facility at Fermilab has been used to experimentally optimize the thermal insulation system for the dipole cryostat. Previous thermal measurements have been used to define the 80K MLI system configuration and verify system performance. With the 80K MLI system defined, the current effort has focused on experimentally defining the optimum insulation scheme for the 20K thermal shield. The SSC design specification requires that radiant heat transfer be limited to 0.093 W/m 2 at an insulating vacuum of 10 -6 torr

  12. Simulations of free-solution electrophoresis of polyelectrolytes with a finite Debye length using the Debye-Hückel approximation.

    Science.gov (United States)

    Hickey, Owen A; Shendruk, Tyler N; Harden, James L; Slater, Gary W

    2012-08-31

    We introduce a mesoscale simulation method based on multiparticle collision dynamics (MPCD) for the electrohydrodynamics of polyelectrolytes with finite Debye lengths. By applying the Debye-Hückel approximation to assign an effective charge to MPCD particles near charged monomers, our simulations are able to reproduce the rapid rise in the electrophoretic mobility with respect to the degree of polymerization for the shortest polymer lengths followed by a small decrease for longer polymers due to charge condensation. Moreover, these simulations demonstrate the importance of a finite Debye length in accurately determining the mobility of uniformly charged polyelectrolytes and net neutral polyampholytes.

  13. Wedged multilayer Laue lens

    International Nuclear Information System (INIS)

    Conley, Ray; Liu Chian; Qian Jun; Kewish, Cameron M.; Macrander, Albert T.; Yan Hanfei; Maser, Joerg; Kang, Hyon Chol; Stephenson, G. Brian

    2008-01-01

    A multilayer Laue lens (MLL) is an x-ray focusing optic fabricated from a multilayer structure consisting of thousands of layers of two different materials produced by thin-film deposition. The sequence of layer thicknesses is controlled to satisfy the Fresnel zone plate law and the multilayer is sectioned to form the optic. An improved MLL geometry can be created by growing each layer with an in-plane thickness gradient to form a wedge, so that every interface makes the correct angle with the incident beam for symmetric Bragg diffraction. The ultimate hard x-ray focusing performance of a wedged MLL has been predicted to be significantly better than that of a nonwedged MLL, giving subnanometer resolution with high efficiency. Here, we describe a method to deposit the multilayer structure needed for an ideal wedged MLL and report our initial deposition results to produce these structures

  14. Acoustic radiation force on a multilayered sphere in a Gaussian standing field

    Science.gov (United States)

    Wang, Haibin; Liu, Xiaozhou; Gao, Sha; Cui, Jun; Liu, Jiehui; He, Aijun; Zhang, Gutian

    2018-03-01

    We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach. An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid. The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed, with particular emphasis on the shell thickness of every layer, and the width of the Gaussian beam. The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka, as well as the shell thickness of each layer. This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave, which may benefit the improvement and development of acoustic control technology, such as trapping, sorting, and assembling a cell, and drug delivery applications. Project supported by National Key R&D Program (Grant No. 2016YFF0203000), the National Natural Science Foundation of China (Grant Nos. 11774167 and 61571222), the Fundamental Research Funds for the Central Universities of China (Grant No. 020414380001), the Key Laboratory of Underwater Acoustic Environment, Institute of Acoustics, Chinese Academy of Sciences (Grant No. SSHJ-KFKT-1701), and the AQSIQ Technology R&D Program of China (Grant No. 2017QK125).

  15. Interfacial effects in multilayers

    International Nuclear Information System (INIS)

    Barbee, T.W. Jr.

    1998-01-01

    Interfacial structure and the atomic interactions between atoms at interfaces in multilayers or nano-laminates have significant impact on the physical properties of these materials. A technique for the experimental evaluation of interfacial structure and interfacial structure effects is presented and compared to experiment. In this paper the impact of interfacial structure on the performance of x-ray, soft x-ray and extreme ultra-violet multilayer optic structures is emphasized. The paper is concluded with summary of these results and an assessment of their implications relative to multilayer development and the study of buried interfaces in solids in general

  16. Surface colonized silver nano particles over chitosan poly-electrolyte micro-spheres and their multi-functional behavior

    Science.gov (United States)

    Prakash, B.; Asha, S.; Nimrodh Ananth, A.; Vanithakumari, G.; Okram, G. S.; Jose, Sujin P.; Jothi Rajan, M. A.

    2018-02-01

    Chitosan/tripolyphosphate polyelectrolyte (TPP) microspheres, decorated and surface functionalized with silver nanoparticles (NPs) of average diameter of 15 nm, were synthesized following a simple two-step procedure. These Ag NP-functionalized polyelectrolyte microspheres (Ag-CSPMs) are found to be biocompatible and enhancing the reactive oxygen species in curcumin with excellent anti-bacterial activity for selected Gram-positive and negative bacterial strains, making them much attractive relative to bare surface counterparts; the well-stabilized silver NPs do not form any agglomerations on the surface of the chitosan microspheres. They also show excellent cytotoxic behavior towards MCF7 cell lines, showing a half-maximal inhibitory concentration (IC50) of 32 μg ml-1. Therefore, Ag-CSPMs exhibit multi-functional ability having potential towards theranostics applications.

  17. Intelligent saline enabled self-healing of multilayer coatings and its optimization to achieve redox catalytically provoked anti-corrosion ability

    Energy Technology Data Exchange (ETDEWEB)

    Syed, Junaid Ali; Tang, Shaochun; Meng, Xiangkang, E-mail: mengxk@nju.edu.cn

    2016-10-15

    Highlights: • Multilayer coatings were prepared with good self-healing and anti-corrosion ability. • The lifespan of SS is much improved and it is stable even after 120 h in 3.5% NaCl. • Multilayer structure with redox catalytic and self-healing ability leads to high P{sub e}. • Saline-triggered self-healing and anti-corrosion mechanisms were envisaged. - Abstract: To obtain a coating with both self-healing and redox catalytic ability to protect a metal substrate from corrosion under aggressive environment is strongly desired. Herein, we report the design and fabrication of intelligent polyaniline-polyacrylic acid/polyethyleneimine (PANI-PAA/PEI) multilayer composite coatings by spin assembly. The main influencing factors, including solution concentration (c) and disk rotating speed (ω) were studied in order to gain excellent performance. The resulting multilayer coatings with thickness in a range from 0.47 to 2.94 μm can heal severe structural damages and sustain a superior anti-corrosive performance for 120 h in 3.5% NaCl. The PANI-PAA layer enhances the anti-corrosion property and PEI layer contributes to the self-healing ability as well as their multilayer combination strengthens them. The improved self-healing ability is attributed to the rearrangement and reversible non-covalent interactions of the PANI-PAA and PEI layers that facilitates electrostatic repairing.

  18. Charge Density Quantification of Polyelectrolyte Polysaccharides by Conductometric Titration: An Analytical Chemistry Experiment

    Science.gov (United States)

    Farris, Stefano; Mora, Luigi; Capretti, Giorgio; Piergiovanni, Luciano

    2012-01-01

    An easy analytical method for determination of the charge density of polyelectrolytes, including polysaccharides and other biopolymers, is presented. The basic principles of conductometric titration, which is used in the pulp and paper industry as well as in colloid and interface science, were adapted to quantify the charge densities of a…

  19. ToF-SIMS study of growth behavior in all-nanoparticle multilayer films using a novel indicator layer

    International Nuclear Information System (INIS)

    Chen, B.-J.; Yin, Y.-S.; Ling, Y.-C.

    2008-01-01

    All-nanoparticle multilayer films found novel applications in the areas of photonics, catalysis, sensors, and biomaterials. The assembly of nanoparticles into conformal and uniform films with precise control over chemical and physical properties poses a significant challenge. Using time-of-flight secondary ion mass spectrometry (ToF-SIMS), we have investigated the growth behavior in all-nanoparticle multilayer films using a novel indicator layer. The all-nanoparticle multilayer films were prepared by dipping the polyester substrate with electrostatic charges alternatively into solutions containing three different types of nanoparticles (TiO 2 , Al 2 O 3 , and SiO 2 ). Upon the deposition of each layer, ToF-SIMS was employed to determine the surface chemical composition of intermediate products. The intermixing extent of TiO 2 indicator layer was used to reveal the stratification of each layer. Combining with zeta-potential measurements, the solvation and deposition of the under-layer species in the aqueous environment during fresh layer formation was proposed as a plausible cause for mutilayers not stratified into well-defined layers but displaying a nonlinear growth behavior.

  20. Nucleation and growth of elastin-like peptide fibril multilayers: an in situ atomic force microscopy study

    International Nuclear Information System (INIS)

    Yang Guocheng; Yip, Christopher M; Wong, Michael K; Lin, Lauren E

    2011-01-01

    Controlling how molecules assemble into complex supramolecular architectures requires careful consideration of the subtle inter- and intra-molecular interactions that control their association. This is particularly crucial in the context of assembly at interfaces, where both surface chemistry and structure can play a role in directing structure formation. We report here the results of a study into the self-assembly of the elastin-like peptide EP I on structurally modified highly ordered pyrolytic graphite, including the role of spatial confinement on fibril nucleation and the growth of oriented fibril multilayers. In situ atomic force microscopy performed in fluid and at elevated temperature provided direct evidence of frustrated fibril nuclei and oriented growth of independent fibril domains. These results portend the application of this in situ strategy for studies of the nucleation and growth mechanisms of other fibril- and amyloid-forming proteins.