Modelling migration in multilayer systems by a finite difference method: the spherical symmetry case
International Nuclear Information System (INIS)
Hojbota, C I; Toşa, V; Mercea, P V
2013-01-01
We present a numerical model based on finite differences to solve the problem of chemical impurity migration within a multilayer spherical system. Migration here means diffusion of chemical species in conditions of concentration partitioning at layer interfaces due to different solubilities of the migrant in different layers. We detail here the numerical model and discuss the results of its implementation. To validate the method we compare it with cases where an analytic solution exists. We also present an application of our model to a practical problem in which we compute the migration of caprolactam from the packaging multilayer foil into the food
Shao, Qingguo; Tang, Jie; Sun, Yige; Li, Jing; Zhang, Kun; Yuan, Jinshi; Zhu, Da-Ming; Qin, Lu-Chang
2017-03-30
We have designed and synthesized a unique structured graphene/SnO 2 composite, where SnO 2 nanoparticles are inserted in between interconnected graphene sheets which form hollow spherical multilayers. The hollow spherical multilayered structure provides much flexibility to accommodate the configuration and volume changes of SnO 2 in the material. When it is used as an anode material for lithium-ion batteries, such a novel nanostructure can not only provide a stable conductive matrix and suppress the mechanical stress, but also eliminate the need of any binders for constructing electrodes. Electrochemical tests show that the unique graphene/SnO 2 composite electrode as designed could exhibit a large reversible capacity over 1000 mA h g -1 and long cycling life with 88% retention after 100 cycles. These results indicate the great potential of the composite for being used as a high performance anode material for lithium-ion batteries.
Multilayer mirror and foil filter AXUV diode arrays on CDX-U spherical torus
International Nuclear Information System (INIS)
Soukhanovskii, V. A.; Stutman, D.; Iovea, M.; Finkenthal, M.; Moos, H. W.; Munsat, T.; Jones, B.; Hoffman, D.; Kaita, R.; Majeski, R.
2001-01-01
Recent upgrades to CDX-U spherical torus diagnostics include two 10-channel AXUV diode arrays. The multilayer mirror (MLM) array measures the λ150 O VI brightness profile in the poloidal plane using the Mo/B 4 C synthetic multilayer structures as dispersive elements. The foil filter array has a tangential view and is equipped with interchangeable clear aperture, beryllium and titanium filters. This allows measurements of radiated power, O VI or C V radial distributions, respectively. The O VI and C V emissivity and the radiated power profiles are highly peaked. A Neoclassical impurity accumulation mechanism is considered as an explanation. For radiated power measurements in the T e ≤100 eV plasmas, photon energy dependent corrections must be used in order to account for nonlinear AXUV sensitivity in the range E phot ≤20 eV. The arrays are also used for characterization of resistive MHD phenomena, such as the low m modes, saw-tooth oscillations and internal reconnection events. Based on the successful operation of the diagnostics, a new ultra soft x-ray multilayer mirror diode AXUV diode array monitoring the 34 Aa emissivity distribution of C VI will be built and installed on the National Spherical Torus Experiment
International Nuclear Information System (INIS)
He, Lei; Li, Junping; Feng, Zhihai; Sun, Dongfeng; Wang, Tingyu; Li, Ruixing; Xu, Yaohui
2014-01-01
Highlights: • Various morphologies of CeO 2 are gotten by controlling the solvothermal conditions. • The various morphologies are synthesized without any template or surfactant. • The chemical mechanisms for the formation of the products in the solvothermal process are discussed. • The morphology evolution from solid spheres to multilayered structures is supposed. • The as-synthesized CeO 2 samples possess excellent adsorption capacities. - Abstract: Ceria powders with different morphologies were synthesized using a facile template-free solvothermal process combined with calcination. The influence of solvothermal temperature and time on the powder was studied. Solid spheres, hollow spheres, and multilayered structures were controlled by adjusting the solvothermal conditions. The possible mechanisms for the formation of the precursors under the solvothermal conditions employed and the evolution of the powder from solid spherical to multilayered structures were discussed. Ethylene glycol played a key role in the morphology evolution of the powder. Cerium catalyzed the Guerbet-like reaction and reacted with ethylene glycol to produce ceria (CeO 2 ), Ce(HCOO) 3 , and Ce(OH)CO 3 . The redox-assisted dissolution–recrystallization process significantly contributed to the morphology transformation from solid spheres to multilayered structures. Moreover, the samples synthesized at different temperatures for 24 h possessed excellent adsorption capacities towards the removal of acid orange 7 when compared with commercial ceria
On the dynamics of relativistic multi-layer spherical shell systems
Energy Technology Data Exchange (ETDEWEB)
Gaspar, Merse E; Racz, Istvan, E-mail: merse@rmki.kfki.hu, E-mail: iracz@rmki.kfki.hu [RMKI, H-1121 Budapest, Konkoly Thege Miklos ut 29-33, Budapest (Hungary)
2011-04-21
The relativistic time evolution of multi-layer spherically symmetric shell systems-consisting of infinitely thin shells separated by vacuum regions-is examined. Whenever two shells collide the evolution is continued with the assumption that the collision is totally transparent. The time evolution of various multi-layer shell systems-comprising large number of shells thereby mimicking the behavior of a thick shell making it possible to study the formation of acoustic singularities-is analyzed numerically and compared in certain cases to the corresponding Newtonian time evolution. The analytic setup is chosen such that the developed code is capable of following the evolution even inside the black hole region. This, in particular, allowed us to investigate the mass inflation phenomenon in the chosen framework.
Kirkpatrick-Baez microscope with spherical multilayer mirrors around 2.5keV photon energy
An, Ning; Du, Xuewei; Wang, Qiuping; Cao, Zhurong; Jiang, Shaoen; Ding, Yongkun
2014-09-01
A Kirkpatrick-Baez (KB) x-ray microscope has been developed for the diagnostics of inertial confinement fusion (ICF). The KB microscope system works around 2.5keV with the magnification of 20. It consists of two spherical multilayer mirrors. The grazing angle is 3.575° at 2.5keV. The influence of the slope error of optical components and the alignment errors is simulated by SHADOW software. The mechanical structure which can perform fine tuning is designed. Experiment result with Manson x-ray source shows that the spatial resolution of the system is about 3-4μm over a field of view of 200μm.
International Nuclear Information System (INIS)
Karimi, M.J.; Rezaei, G.; Nazari, M.
2014-01-01
Based on the effective mass and parabolic one band approximations, simultaneous effects of the geometrical size, hydrogenic impurity, hydrostatic pressure, and temperature on the intersubband optical absorption coefficients and refractive index changes in multilayered spherical quantum dots are studied. Energy eigenvalues and eigenvectors are calculated using the fourth-order Runge–Kutta method and optical properties are obtained using the compact density matrix approach. The results indicate that the hydrogenic impurity, hydrostatic pressure, temperature and geometrical parameters such as the well and barrier widths have a great influence on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes. -- Highlights: • Hydrogenic impurity effects on the optical properties of a MSQD are investigated. • Hydrostatic pressure and temperature effects are also studied. • Hydrogenic impurity has a great influence on the linear and nonlinear ACs and RICs. • Hydrostatic pressure and temperature change the linear and nonlinear ACs and RICs
Enhanced optical fields in a multilayered microsphere with a quasiperiodic spherical stack
International Nuclear Information System (INIS)
Burlak, Gennadiy N
2007-01-01
Radiation of a nanosource placed in a microsphere with a quasiperiodic subwavelength spherical stack is studied. The spectral evolution of transmittance at the change of the thickness of two-layer blocks constructed following the Fibonacci sequence is investigated. When the number of layers (Fibonacci order) increases the structure of the spectrum acquires a fractal form. Our calculations show a rising strong field peak, when the ratio of width of layers in two-layer blocks of the stack is close to the golden mean value
Directory of Open Access Journals (Sweden)
Gennadiy N. Burlak
2008-01-01
Full Text Available We study the frequency spectrum of nanoemitters placed in a microsphere with a quasiperiodic subwavelength spherical stack. The spectral evolution of transmittancy at the change of thickness of two-layer blocks, constructed following the Fibonacci sequence, is investigated. When the number of layers (Fibonacci order increases, the structure of spectrum acquires a fractal form. Our calculations show the radiation confinement and gigantic field enhancement, when the ratio of layers’ widths in twolayer blocks of the stack is close to the golden mean value.
Zhang, J R; Norris, S J
1998-08-01
The Lyme disease spirochete Borrelia burgdorferi possesses 15 silent vls cassettes and a vls expression site (vlsE) encoding a surface-exposed lipoprotein. Segments of the silent vls cassettes have been shown to recombine with the vlsE cassette region in the mammalian host, resulting in combinatorial antigenic variation. Despite promiscuous recombination within the vlsE cassette region, the 5' and 3' coding sequences of vlsE that flank the cassette region are not subject to sequence variation during these recombination events. The segments of the silent vls cassettes recombine in the vlsE cassette region through a unidirectional process such that the sequence and organization of the silent vls loci are not affected. As a result of recombination, the previously expressed segments are replaced by incoming segments and apparently degraded. These results provide evidence for a gene conversion mechanism in VlsE antigenic variation.
Transcriptional regulation of the Borrelia burgdorferi antigenically variable VlsE surface protein.
Bykowski, Tomasz; Babb, Kelly; von Lackum, Kate; Riley, Sean P; Norris, Steven J; Stevenson, Brian
2006-07-01
The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that synthesis of VlsE is regulated during the natural mammal-tick infectious cycle, being activated in mammals but repressed during tick colonization. Examination of cultured B. burgdorferi cells indicated that the spirochete controls vlsE transcription levels in response to environmental cues. Analysis of PvlsE::gfp fusions in B. burgdorferi indicated that VlsE production is controlled at the level of transcriptional initiation, and regions of 5' DNA involved in the regulation were identified. Electrophoretic mobility shift assays detected qualitative and quantitative changes in patterns of protein-DNA complexes formed between the vlsE promoter and cytoplasmic proteins, suggesting the involvement of DNA-binding proteins in the regulation of vlsE, with at least one protein acting as a transcriptional activator.
International Nuclear Information System (INIS)
Xiao Chunyan; Lei Yinzhao
2005-01-01
A model of a multilayered spherical volume conductor with four electrodes is built. In this model, a time-harmonic electric current is injected into the sphere through a pair of drive electrodes, and electric potential is measured by the other pair of measurement electrodes. By solving the boundary value problem of the electromagnetic field, the analytical solutions of electric potential and impedance in the whole conduction region are derived. The theoretical values of electric potential on the surface of the sphere are in good accordance with the experimental results. The analytical solutions are then applied to the simulation of the forward problem of brain electrical impedance tomography (EIT). The results show that, for a real human head, the imaginary part of the electric potential is not small enough to be ignored at above 20 kHz, and there exists an approximate linear relationship between the real and imaginary parts of the electric potential when the electromagnetic parameters of the innermost layer keep unchanged. Increase in the conductivity of the innermost layer leads to a decrease of the magnitude of both real and imaginary parts of the electric potential on the scalp. However, the increase of permittivity makes the magnitude of the imaginary part of the electric potential increase while that of the real part decreases, and vice versa
Directory of Open Access Journals (Sweden)
Loïc Coutte
2009-02-01
Full Text Available Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained "template-independent" sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses.
Directory of Open Access Journals (Sweden)
Tao Lin
2009-12-01
Full Text Available Antigenic variation plays a vital role in the pathogenesis of many infectious bacteria and protozoa including Borrelia burgdorferi, the causative agent of Lyme disease. VlsE, a 35 kDa surface-exposed lipoprotein, undergoes antigenic variation during B. burgdorferi infection of mammalian hosts, and is believed to be a critical mechanism by which the spirochetes evade immune clearance. Random, segmental recombination between the expressed vlsE gene and adjacent vls silent cassettes generates a large number of different VlsE variants within the infected host. Although the occurrence and importance of vlsE sequence variation is well established, little is known about the biological mechanism of vlsE recombination. To identify factors important in antigenic variation and vlsE recombination, we screened transposon mutants of genes known to be involved in DNA recombination and repair for their effects on infectivity and vlsE recombination. Several mutants, including those in BB0023 (ruvA, BB0022 (ruvB, BB0797 (mutS, and BB0098 (mutS-II, showed reduced infectivity in immunocompetent C3H/HeN mice. Mutants in ruvA and ruvB exhibited greatly reduced rates of vlsE recombination in C3H/HeN mice, as determined by restriction fragment polymorphism (RFLP screening and DNA sequence analysis. In severe combined immunodeficiency (C3H/scid mice, the ruvA mutant retained full infectivity; however, all recovered clones retained the 'parental' vlsE sequence, consistent with low rates of vlsE recombination. These results suggest that the reduced infectivity of ruvA and ruvB mutants is the result of ineffective vlsE recombination and underscores the important role that vlsE recombination plays in immune evasion. Based on functional studies in other organisms, the RuvAB complex of B. burgdorferi may promote branch migration of Holliday junctions during vlsE recombination. Our findings are consistent with those in the accompanying article by Dresser et al., and together
Synthesis and growth mechanisms of ZrC whiskers fabricated by a VLS process
Energy Technology Data Exchange (ETDEWEB)
Lee, Dongju [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of). Nuclear Materials Development Division; Song, Sung Ho [Kongju National Univ., Chungnam (Korea, Republic of). Division of Advanced Materials Engineering
2017-08-15
The mechanisms of nano-sized ZrC whisker formation by a vapor-liquid-solid process (VLS) are investigated, which produces a very high purity, single crystal whisker. Rectangular ZrC whiskers with a cross-sectional diameter of 100-200 nm and lengths up to tens of microns are formed under the catalytic effect of nickel. The ZrC whiskers are characterized using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. ZrC whiskers can be used as a potential reinforcing and strengthening phase for ceramic composites.
Energy Technology Data Exchange (ETDEWEB)
Holovatsky, V.A., E-mail: ktf@chnu.edu.ua; Bernik, I.B.; Yakhnevych, M. Ya.
2017-03-01
The theoretical investigation of magnetic field effect on energy spectrum and localization of the electron and oscillator strengths of intraband quantum transitions in the nanostructure CdS/HgS/CdS/HgS/CdS is performed. The calculations are made in the framework of effective mass approximation and rectangular potential barriers model using the method of the expansion of quasi-particle wave functions over the complete basis of functions obtained as the exact solutions of the Schrodinger equation for the electron in the nanostructure without the magnetic field. It is shown that the magnetic field violates the spherical symmetry of the system and takes off the degeneration of energy spectrum with respect to the magnetic quantum number. The energy of the electron in the states with m≥0 increases when magnetic field enhances; for the states with m<0 these dependences are non-monotonous (decreasing at first and then increasing). Moreover, the ground state of electron is formed alternately by the states with m=0, −1, −2, …. Magnetic field influences on the distribution of quasi-particle density. It is shown that the electron significantly changes its localization in the nanostructure with two potential wells tunneling through the potential barrier under the effect of magnetic field, changing the oscillator strengths of intraband quantum transitions.
Directory of Open Access Journals (Sweden)
Wilske Bettina
2006-08-01
Full Text Available Abstract Background At least three species of Borrelia burgdorferi sensu lato (Bbsl cause tick-borne Lyme disease. Previous work including the genome analysis of B. burgdorferi B31 and B. garinii PBi suggested a highly variable plasmid part. The frequent occurrence of duplicated sequence stretches, the observed plasmid redundancy, as well as the mainly unknown function and variability of plasmid encoded genes rendered the relationships between plasmids within and between species largely unresolvable. Results To gain further insight into Borreliae genome properties we completed the plasmid sequences of B. garinii PBi, added the genome of a further species, B. afzelii PKo, to our analysis, and compared for both species the genomes of pathogenic and apathogenic strains. The core of all Bbsl genomes consists of the chromosome and two plasmids collinear between all species. We also found additional groups of plasmids, which share large parts of their sequences. This makes it very likely that these plasmids are relatively stable and share common ancestors before the diversification of Borrelia species. The analysis of the differences between B. garinii PBi and B. afzelii PKo genomes of low and high passages revealed that the loss of infectivity is accompanied in both species by a loss of similar genetic material. Whereas B. garinii PBi suffered only from the break-off of a plasmid end, B. afzelii PKo lost more material, probably an entire plasmid. In both cases the vls gene locus encoding for variable surface proteins is affected. Conclusion The complete genome sequences of a B. garinii and a B. afzelii strain facilitate further comparative studies within the genus Borrellia. Our study shows that loss of infectivity can be traced back to only one single event in B. garinii PBi: the loss of the vls cassettes possibly due to error prone gene conversion. Similar albeit extended losses in B. afzelii PKo support the hypothesis that infectivity of Borrelia
VLS-grown diffusion doped ZnO nanowires and their luminescence properties
International Nuclear Information System (INIS)
Roy, Pushan Guha; Dutta, Amartya; Das, Arpita; Bhattacharyya, Anirban; Sen, Sayantani; Pramanik, Pallabi
2015-01-01
Zinc Oxide (ZnO) nanowires were deposited by vapor–liquid–solid (VLS) method on to aluminum doped ZnO (AZO) thin films grown by sol-gel technique. For various device applications, current injection into such nanowires is critical. This is expected to be more efficient for ZnO nanowires deposited on to AZO compared to those deposited on to a foreign substrate such as silicon. In this work we compare the morphological and optical properties of nanowires grown on AZO with those grown under similar conditions on silicon (Si) wafers. For nanowires grown on silicon, diameters around 44 nm with heights around 2.2 μm were obtained. For the growth on to AZO, the diameters were around 90 nm while the heights were around 520 nm. Room temperature photoluminescence (RT-PL) measurements show improved near band-edge emission for nanowires grown on to AZO, indicating higher material quality. This is further established by low temperature photoluminescence (LT-PL) measurements where excitonic transitions with width as small as 14 meV have been obtained at 4 K for such structures. Electron energy loss spectroscopy (EELS) studies indicate the presence of Al in the nanowires, indicating a new technique for introduction of dopants into these structures. These results indicate that ZnO nanowires on sol-gel grown AZO thin films show promise in the development of various optoelectronic devices. (paper)
Diameter optimization of VLS-synthesized ZnO nanowires, using statistical design of experiment
International Nuclear Information System (INIS)
Shafiei, Sepideh; Nourbakhsh, Amirhasan; Ganjipour, Bahram; Zahedifar, Mostafa; Vakili-Nezhaad, Gholamreza
2007-01-01
The possibility of diameter optimization of ZnO nanowires by using statistical design of experiment (DoE) is investigated. In this study, nanowires were synthesized using a vapor-liquid-solid (VLS) growth method in a horizontal reactor. The effects of six synthesis parameters (synthesis time, synthesis temperature, thickness of gold layer, distance between ZnO holder and substrate, mass of ZnO and Ar flow rate) on the average diameter of a ZnO nanowire were examined using the fractional factorial design (FFD) coupled with response surface methodology (RSM). Using a 2 III 6-3 FFD, the main effects of the thickness of the gold layer, synthesis temperature and synthesis time were concluded to be the key factors influencing the diameter. Then Box-Behnken design (BBD) was exploited to create a response surface from the main factors. The total number of required runs for the DoE process is 25, 8 runs for FFD parameter screening and 17 runs for the response surface obtained by BBD. Three extra runs are done to confirm the predicted results
Freeden, Willi; Schreiner, Michael
2018-01-01
This book presents, in a consistent and unified overview, results and developments in the field of today´s spherical sampling, particularly arising in mathematical geosciences. Although the book often refers to original contributions, the authors made them accessible to (graduate) students and scientists not only from mathematics but also from geosciences and geoengineering. Building a library of topics in spherical sampling theory it shows how advances in this theory lead to new discoveries in mathematical, geodetic, geophysical as well as other scientific branches like neuro-medicine. A must-to-read for everybody working in the area of spherical sampling.
Cohen, Taco S.; Geiger, Mario; Koehler, Jonas; Welling, Max
2018-01-01
Convolutional Neural Networks (CNNs) have become the method of choice for learning problems involving 2D planar images. However, a number of problems of recent interest have created a demand for models that can analyze spherical images. Examples include omnidirectional vision for drones, robots, and autonomous cars, molecular regression problems, and global weather and climate modelling. A naive application of convolutional networks to a planar projection of the spherical signal is destined t...
RECONSTRUCTION OF 3D VECTOR MODELS OF BUILDINGS BY COMBINATION OF ALS, TLS AND VLS DATA
Directory of Open Access Journals (Sweden)
H. Boulaassal
2012-09-01
Full Text Available Airborne Laser Scanning (ALS, Terrestrial Laser Scanning (TLS and Vehicle based Laser Scanning (VLS are widely used as data acquisition methods for 3D building modelling. ALS data is often used to generate, among others, roof models. TLS data has proven its effectiveness in the geometric reconstruction of building façades. Although the operating algorithms used in the processing chain of these two kinds of data are quite similar, their combination should be more investigated. This study explores the possibility of combining ALS and TLS data for simultaneously producing 3D building models from bird point of view and pedestrian point of view. The geometric accuracy of roofs and façades models is different due to the acquisition techniques. In order to take these differences into account, the surfaces composing roofs and façades are extracted with the same algorithm of segmentation. Nevertheless the segmentation algorithm must be adapted to the properties of the different point clouds. It is based on the RANSAC algorithm, but has been applied in a sequential way in order to extract all potential planar clusters from airborne and terrestrial datasets. Surfaces are fitted to planar clusters, allowing edge detection and reconstruction of vector polygons. Models resulting from TLS data are obviously more accurate than those generated from ALS data. Therefore, the geometry of the roofs is corrected and adapted according to the geometry of the corresponding façades. Finally, the effects of the differences between raw ALS and TLS data on the results of the modeling process are analyzed. It is shown that such combination could be used to produce reliable 3D building models.
Telles, J. E.; de Souza, R. E.; Penereiro, J. C.
1990-11-01
RESUMEN. Presentamos fotometria fotografica de 8 objetos y espectrosco- pla para 3 galaxias, las cuales son buenos candidatos para galaxias esfericas. Los resultados fotometricos se presentan en la forma de iso- fotas y de perfiles radiales promedlo, de los cuales se derivan para- metros estructurales. Estas observaciones combinadas con parametros di- namicos obtenidos de observaciones espectrosc6picas, son consistentes con el plano fundamental derivado por Djorgovski y Davis (1987). ABSTRACT. We present photographic surface photometry for 8 objects and spectroscopy for 3 galaxies which are good candidates for spherical galaxies. Photometric results are presented in the form of isophotes and mean radial profiles from which we derived structural parameters. These observations combined with dynamical parameters obtained from spectroscopic observations are consistent with the fundamental plane derived by Djorgovski and Davis (1987). Keq wo : CALAXIES-ELLIPTICAL
Energy Technology Data Exchange (ETDEWEB)
Ohnsorg, R.W.; Hollar, W.E. Jr.; Lau, S.K. [Carborundum Co., Niagara Falls, NY (United States). Technology Div.; Ko, F.K.; Schatz, K. [Advanced Product Development, Bristol, PA (United States)
1995-04-01
As reinforcements for composites, VLS SiC fibrils have attractive mechanical properties including high-strength, high modulus, and excellent creep resistance. To make use of their excellent mechanical properties in a composite, a significant volume fraction (>10%) of aligned, long fibrils (>2 mm) needs to be consolidated in the ceramic matrix. The fibrils must be processed into an assembly that will allow for composite fabrication while maintaining fibril alignment and length. With Advanced Product Development (APD) as the yam fabrication subcontractor, Carborundum investigated several approaches to achieve this goaL including traditional yam-forming processes such as carding and air-vortex spinning and nontraditional processes such as tape forming and wet casting. Carborundum additionally performed an economic analysis for producing 500 and 10,000 pounds of SiC fibrils annually using both conservative and more aggressive processing parameters. With the aggressive approach, the projected costs for SiC fibril production for 500 and 10,000 pounds per year are $1,340/pound and $340/pound, respectively.
Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.
2016-07-05
A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.
Are Nanoparticles Spherical or Quasi-Spherical?
Sokolov, Stanislav V; Batchelor-McAuley, Christopher; Tschulik, Kristina; Fletcher, Stephen; Compton, Richard G
2015-07-20
The geometry of quasi-spherical nanoparticles is investigated. The combination of SEM imaging and electrochemical nano-impact experiments is demonstrated to allow sizing and characterization of the geometry of single silver nanoparticles. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Leung, Ka-Ngo
2006-11-21
A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.
Fabrication of multilayer nanowires
Energy Technology Data Exchange (ETDEWEB)
Kaur, Jasveer, E-mail: kaurjasveer89@gmail.com; Singh, Avtar; Kumar, Davinder [Department of Physics, Punjabi University Patiala, 147002, Punjab (India); Thakur, Anup; Kaur, Raminder, E-mail: raminder-k-saini@yahoo.com [Department of Basic and Applied Sciences, Punjabi University Patiala, 147002, Punjab (India)
2016-05-06
Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.
Fabrication of multilayer nanowires
International Nuclear Information System (INIS)
Kaur, Jasveer; Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder
2016-01-01
Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.
Effective Interactions between Multilayered Ionic Microgels
Directory of Open Access Journals (Sweden)
Clemens Hanel
2014-12-01
Full Text Available Using a one-component reduction formalism, we calculate the effective interactions and the counterion density profiles for microgels that feature a multilayered shell structure. We follow a strategy that involves second order perturbation theory and obtain analytical expressions for the effective interactions by modeling the layers of the particles as linear superpostion of homogeneously charged spheres. The general method is applied to the important case of core–shell microgels and compared with the well-known results for a microgel that can be approximated by a macroscopic, and homogeneously charged, spherical macroion.
Multilayer X-ray imaging systems
Shealy, D. L.; Hoover, R. B.; Gabardi, D. R.
1986-01-01
An assessment of the imaging properties of multilayer X-ray imaging systems with spherical surfaces has been made. A ray trace analysis was performed to investigate the effects of using spherical substrates (rather than the conventional paraboloidal/hyperboloidal contours) for doubly reflecting Cassegrain telescopes. These investigations were carried out for mirrors designed to operate at selected soft X-ray/XUV wavelengths that are of significance for studies of the solar corona/transition region from the Stanford/MSFC Rocket X-Ray Telescope. The effects of changes in separation of the primary and secondary elements were also investigated. These theoretical results are presented as well as the results of ray trace studies to establish the resolution and vignetting effects as a function of field angle and system parameters.
Vaiana, Michael; Muldoon, Sarah Feldt
2018-01-01
The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently, multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure-function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems.
Interfacial effects in multilayers
International Nuclear Information System (INIS)
Barbee, T.W. Jr.
1998-01-01
Interfacial structure and the atomic interactions between atoms at interfaces in multilayers or nano-laminates have significant impact on the physical properties of these materials. A technique for the experimental evaluation of interfacial structure and interfacial structure effects is presented and compared to experiment. In this paper the impact of interfacial structure on the performance of x-ray, soft x-ray and extreme ultra-violet multilayer optic structures is emphasized. The paper is concluded with summary of these results and an assessment of their implications relative to multilayer development and the study of buried interfaces in solids in general
International Nuclear Information System (INIS)
Conley, Ray; Liu Chian; Qian Jun; Kewish, Cameron M.; Macrander, Albert T.; Yan Hanfei; Maser, Joerg; Kang, Hyon Chol; Stephenson, G. Brian
2008-01-01
A multilayer Laue lens (MLL) is an x-ray focusing optic fabricated from a multilayer structure consisting of thousands of layers of two different materials produced by thin-film deposition. The sequence of layer thicknesses is controlled to satisfy the Fresnel zone plate law and the multilayer is sectioned to form the optic. An improved MLL geometry can be created by growing each layer with an in-plane thickness gradient to form a wedge, so that every interface makes the correct angle with the incident beam for symmetric Bragg diffraction. The ultimate hard x-ray focusing performance of a wedged MLL has been predicted to be significantly better than that of a nonwedged MLL, giving subnanometer resolution with high efficiency. Here, we describe a method to deposit the multilayer structure needed for an ideal wedged MLL and report our initial deposition results to produce these structures
The Spherical Deformation Model
DEFF Research Database (Denmark)
Hobolth, Asgar
2003-01-01
Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...
Spherical rhenium metal powder
International Nuclear Information System (INIS)
Leonhardt, T.; Moore, N.; Hamister, M.
2001-01-01
The development of a high-density, spherical rhenium powder (SReP) possessing excellent flow characteristics has enabled the use of advanced processing techniques for the manufacture of rhenium components. The techniques that were investigated were vacuum plasma spraying (VPS), direct-hot isostatic pressing (D-HIP), and various other traditional powder metallurgy processing methods of forming rhenium powder into near-net shaped components. The principal disadvantages of standard rhenium metal powder (RMP) for advanced consolidation applications include: poor flow characteristics; high oxygen content; and low and varying packing densities. SReP will lower costs, reduce processing times, and improve yields when manufacturing powder metallurgy rhenium components. The results of the powder characterization of spherical rhenium powder and the consolidation of the SReP are further discussed. (author)
International Nuclear Information System (INIS)
Berg, S.; Semmes, P.B.; Nazarewicz, W.
1997-01-01
Various theoretical approaches to proton emission from spherical nuclei are investigated, and it is found that all the methods employed give very similar results. The calculated decay widths are found to be qualitatively insensitive to the parameters of the proton-nucleus potential, i.e., changing the potential parameters over a fairly large range typically changes the decay width by no more than a factor of ∼3. Proton half-lives of observed heavy proton emitters are, in general, well reproduced by spherical calculations with the spectroscopic factors calculated in the independent quasiparticle approximation. The quantitative agreement with experimental data obtained in our study requires that the parameters of the proton-nucleus potential be chosen carefully. It also suggests that deformed proton emitters will provide invaluable spectroscopic information on the angular momentum decomposition of single-proton orbitals in deformed nuclei. copyright 1997 The American Physical Society
The Spherical Deformation Model
DEFF Research Database (Denmark)
Hobolth, Asgar
2003-01-01
Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...... a single central section of the object. We use maximum-likelihood-based inference for this purpose and demonstrate the suggested methods on real data....
International Nuclear Information System (INIS)
Marinova, Maya; Zoulis, Georgios; Robert, Teddy; Mercier, Frederic; Mantzari, Alkioni; Galben, Irina; Kim-Hak, Olivier; Lorenzzi, Jean; Juillaguet, Sandrine; Chaussende, Didier; Ferro, Gabriel; Camassel, Jean; Polychroniadis, Efstathios K.
2009-01-01
The results of transmission electron microscopy (TEM) with low-temperature photoluminescence (LTPL) and Raman studies of liquid phase grown epilayers on top of a vapor liquid solid (VLS) grown 3C-SiC buffer layer are compared. While the 6H-SiC substrate was completely covered by the 3C-SiC seed after the first VLS process, degradation occurred during the early stage of the liquid phase epitaxy process. This resulted in polytype instabilities, such that several rhombohedral forms stabilized one after the other. These (21R-SiC, 57R-SiC) eventually led after few microns to a final transition back to 6H-SiC. This interplay of polytypes resulted in a complex optical signature, with specific LTPL and Raman features.
Controlling light with plasmonic multilayers
DEFF Research Database (Denmark)
Orlov, Alexey A.; Zhukovsky, Sergei; Iorsh, Ivan V.
2014-01-01
metamaterials and describe their use for light manipulation at the nanoscale. While demonstrating the recently emphasized hallmark effect of hyperbolic dispersion, we put special emphasis to the comparison between multilayered hyperbolic metamaterials and more broadly defined plasmonic-multilayer metamaterials...
Branda, John A; Aguero-Rosenfeld, Maria E; Ferraro, Mary Jane; Johnson, Barbara J B; Wormser, Gary P; Steere, Allen C
2010-01-01
Standard 2-tiered immunoglobulin G (IgG) testing has performed well in late Lyme disease (LD), but IgM testing early in the illness has been problematic. IgG VlsE antibody testing, by itself, improves early sensitivity, but may lower specificity. We studied whether elements of the 2 approaches could be combined to produce a second-tier IgG blot that performs well throughout the infection. Separate serum sets from LD patients and control subjects were tested independently at 2 medical centers using whole-cell enzyme immunoassays and IgM and IgG immunoblots, with recombinant VlsE added to the IgG blots. The results from both centers were combined, and a new second-tier IgG algorithm was developed. With standard 2-tiered IgM and IgG testing, 31% of patients with active erythema migrans (stage 1), 63% of those with acute neuroborreliosis or carditis (stage 2), and 100% of those with arthritis or late neurologic involvement (stage 3) had positive results. Using new IgG criteria, in which only the VlsE band was scored as a second-tier test among patients with early LD (stage 1 or 2) and 5 of 11 IgG bands were required in those with stage 3 LD, 34% of patients with stage 1, 96% of those with stage 2, and 100% of those with stage 3 infection had positive responses. Both new and standard testing achieved 100% specificity. Compared with standard IgM and IgG testing, the new IgG algorithm (with VlsE band) eliminates the need for IgM testing; it provides comparable or better sensitivity, and it maintains high specificity.
Fundamentals of spherical array processing
Rafaely, Boaz
2015-01-01
This book provides a comprehensive introduction to the theory and practice of spherical microphone arrays. It is written for graduate students, researchers and engineers who work with spherical microphone arrays in a wide range of applications. The first two chapters provide the reader with the necessary mathematical and physical background, including an introduction to the spherical Fourier transform and the formulation of plane-wave sound fields in the spherical harmonic domain. The third chapter covers the theory of spatial sampling, employed when selecting the positions of microphones to sample sound pressure functions in space. Subsequent chapters present various spherical array configurations, including the popular rigid-sphere-based configuration. Beamforming (spatial filtering) in the spherical harmonics domain, including axis-symmetric beamforming, and the performance measures of directivity index and white noise gain are introduced, and a range of optimal beamformers for spherical arrays, includi...
Holographic Spherically Symmetric Metrics
Petri, Michael
The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.
Evolution of the spherical clusters
International Nuclear Information System (INIS)
Surdin, V.G.
1978-01-01
The possible processes of the Galaxy spherical clusters formation and evolution are described on a popular level. The orbits of spherical cluster motion and their spatial velocities are determined. Given are the distrbutions of spherical cluster stars according to their velocities and the observed distribution of spherical clusters in the area of the Galaxy slow evolution. The dissipation and dynamic friction processes destructing clusters with the mass less than 10 4 of solar mass and bringing about the reduction of clusters in the Galaxy are considered. The paradox of forming mainly X-ray sources in spherical clusters is explained. The schematic image of possible ways of forming X-ray sources in spherical clusters is given
Spherical tokamak development in Brazil
Energy Technology Data Exchange (ETDEWEB)
Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] (and others)
2003-07-01
The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)
Spherical tokamak development in Brazil
International Nuclear Information System (INIS)
Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes
2003-01-01
The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)
Spherical grating spectrometers
O'Donoghue, Darragh; Clemens, J. Christopher
2014-07-01
We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.
Energy Technology Data Exchange (ETDEWEB)
Garralaga Rojas, Enrique; Hensen, Jan; Brendel, Rolf [Institut fuer Solarenergieforschung Hameln (ISFH), Emmerthal (Germany); Carstensen, Juergen; Foell, Helmut [Chair for General Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany)
2011-06-15
We present the reproducible fabrication of porous germanium (PGe) single- and multilayers. Mesoporous layers form on heavily doped 4'' p-type Ge wafers by electrochemical etching in highly concentrated HF-based electrolytes with concentrations in a range of 30-50 wt.%. Direct PGe formation is accompanied by a constant dissolution of the already-formed porous layer at the electrolyte/PGe interface, hence yielding a thinner substrate after etching. This effect inhibits multilayer formation as the starting layer is etched while forming the second layer. We avoid dissolution of the porous layer by alternating the etching bias from anodic to cathodic. PGe formation occurs during anodic etching whereas the cathodic step passivates pore walls with H-atoms and avoids electropolishing. The passivation lasts a limited time depending on the etching current density and electrolyte concentration, necessitating a repetition of the cathodic step at suitable intervals. With optimized alternating bias mesoporous multilayer production is possible. We control the porosity of each single layer by varying the etching current density and the electrolyte (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
First results of spherical GEMs
Pinto, Serge Duarte; Brock, Ian; Croci, Gabriele; David, Eric; de Oliveira, Rui; Ropelewski, Leszek; van Stenis, Miranda; Taureg, Hans; Villa, Marco
2010-01-01
We developed a method to make GEM foils with a spherical geometry. Tests of this procedure and with the resulting spherical GEMs are presented. Together with a spherical drift electrode, a spherical conversion gap can be formed. This eliminates the parallax error for detection of x-rays, neutrons or UV photons when a gaseous converter is used. This parallax error limits the spatial resolution at wide scattering angles. Besides spherical GEMs, we have developed curved spacers to maintain accurate spacing, and a conical field cage to prevent edge distortion of the radial drift field up to the limit of the angular acceptance of the detector. With these components first tests are done in a setup with a spherical entrance window but a planar readout structure; results will be presented and discussed. A flat readout structure poses difficulties, however. Therefore we will show advanced plans to make a prototype of an entirely spherical double-GEM detector, including a spherical 2D readout structure. This detector w...
Spherical Torus Center Stack Design
International Nuclear Information System (INIS)
C. Neumeyer; P. Heitzenroeder; C. Kessel; M. Ono; M. Peng; J. Schmidt; R. Woolley; I. Zatz
2002-01-01
The low aspect ratio spherical torus (ST) configuration requires that the center stack design be optimized within a limited available space, using materials within their established allowables. This paper presents center stack design methods developed by the National Spherical Torus Experiment (NSTX) Project Team during the initial design of NSTX, and more recently for studies of a possible next-step ST (NSST) device
Energy Technology Data Exchange (ETDEWEB)
Dowker, J S, E-mail: dowker@man.ac.uk [Theory Group, School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom)
2011-08-07
A piston is introduced into a spherical lune Casimir cavity turning it into two adjacent lunes separated by the (hemispherical) piston. On the basis of zeta-function regularization, the vacuum energy of the arrangement is finite for conformal propagation in spacetime. For even spheres this energy is independent of the angle of the lune. For odd dimensions it is shown that for all Neumann, or all Dirichlet, boundary conditions the piston is repelled or attracted by the nearest wall if d = 3, 7, ... or if d = 1, 5, ... , respectively. For hybrid N-D conditions these requirements are switched. If a mass is added, divergences arise which render the model suspect. The analysis, however, is relatively straightforward and involves the Barnes zeta function. The extension to finite temperatures is made and it is shown that for the 3, 7, ... series of odd spheres, the repulsion by the walls continues but that, above a certain temperature, the free energy acquires two minima symmetrically placed about the midpoint.
International Nuclear Information System (INIS)
Dowker, J S
2011-01-01
A piston is introduced into a spherical lune Casimir cavity turning it into two adjacent lunes separated by the (hemispherical) piston. On the basis of zeta-function regularization, the vacuum energy of the arrangement is finite for conformal propagation in spacetime. For even spheres this energy is independent of the angle of the lune. For odd dimensions it is shown that for all Neumann, or all Dirichlet, boundary conditions the piston is repelled or attracted by the nearest wall if d = 3, 7, ... or if d = 1, 5, ... , respectively. For hybrid N-D conditions these requirements are switched. If a mass is added, divergences arise which render the model suspect. The analysis, however, is relatively straightforward and involves the Barnes zeta function. The extension to finite temperatures is made and it is shown that for the 3, 7, ... series of odd spheres, the repulsion by the walls continues but that, above a certain temperature, the free energy acquires two minima symmetrically placed about the midpoint.
Guzenko, Nataliia; Gabchak, Oleksandra; Pakhlov, Evgenij
The complexation of polyhexamethylenguanidine hydrochloride (PHMG) and sodium carboxymethylcellulose (CMC) was investigated for different conditions. Mixing of equiconcentrated aqueous solutions of the polyelectrolytes was found to result in the formation of an insoluble interpolyelectrolyte complex with an overweight of carboxymethylcellulose. A step-by-step formation of stable, irreversibly adsorbed multilayer film of the polymers was demonstrated using the quartz crystal microbalance method. Unusually thick polymer shells with a large number of loops and tails of the polyanion were formed by the method of layer-by-layer self-assembly of PHMG and CMC on spherical CaCO3 particles. Hollow multilayer capsules stable in neutral media were obtained by dissolution of the inorganic matrix in EDTA solution.
International Nuclear Information System (INIS)
Dueber, C.; Klose, K.J.; Thelen, M.
1991-01-01
With digital multilayer tomography a sequence of projection images is recorded by an image intensifier television system and stored as digital data during a linear run of a layer sequence. Using this data record, tomograms of the examined body region can be computed for any layer thickness by shifts and superimposition of the single projections later at a digital workstation. The qualities of digital and conventional tomograms are basically comparable. A drawback of digital tomography is its lower local resolution (512 x 512 image matrix), advantages are a lower radiation exposure, a shorter patient examination time, and the facilities of digital image processing (later processing, archive setup, transmission). (orig.) [de
Surface current double-heterogeneous multilayer multicell methodology
International Nuclear Information System (INIS)
Stepanek, J.; Segev, M.
1991-01-01
A surface current methodology is developed to respond to the need for treating the various levels of material heterogeneity in a double-heterogeneous multilayer multicell in processing neutron multigroup cross sections in the resonance as well as thermal energy range. First, the basic surface cosine current transport equations to calculate the energy-dependent neutron flux spatial distribution in the multilayered multicell are formulated. Slab, spherical and cylindrical geometries, as well as square and hexagonal lattices and pebble-bed configurations with white or reflective cell boundary conditions, are considered. Second, starting from the surface cosine-current formulation, a two-zone three-layer multicell formalism for reduction of heterogeneous flux expressions to equivalent homogeneous flux expression for table method was developed. This formalism allows an infinite, as well as a limited, number of second-heterogeneity cells within a partial first-heterogeneity cell layer to be considered. Also, the number of the first-and second-heterogeneity cell types is quite general. The 'outer' (right side) as well as 'inner' (left side) Dancoff probabilities can be calculated for any particular layer. An accurate, efficient, and compact interpolation procedure is developed to calculate the basic collision probabilities. These are transmission and escape probabilities for shells in slab, cylindrical, and spherical geometries, as well as Dancoff probabilities for cylinders in square and hexagonal lattices. The use of the interpolation procedure is exemplified in a multilayer multicell approximation for the Dancoff probability, enabling a routine evaluation of the equivalence-based shielded resonance integral in highly complex lattices of slab, cylindrical, or spherical cells. (author) 1 fig., 2 tabs., 10 refs
Interfacial behaviour of biopolymer multilayers
Corstens, Meinou N.; Osorio Caltenco, Lilia A.; Vries, de Renko; Schroën, Karin; Berton-Carabin, Claire C.
2017-01-01
Although multilayered emulsions have been related to reduced lipolysis, the involved interfacial phenomena have never been studied directly. In this work, we systematically built multilayers of whey protein and pectin, which we further subjected to digestive conditions, using two different
Compositionally Graded Multilayer Ceramic Capacitors.
Song, Hyun-Cheol; Zhou, Jie E; Maurya, Deepam; Yan, Yongke; Wang, Yu U; Priya, Shashank
2017-09-27
Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (filters and power converters.
JUST: Joint Upgraded Spherical Tokamak
International Nuclear Information System (INIS)
Azizov, E.A.; Dvorkin, N.Ya.; Filatov, O.G.
1997-01-01
The main goals, ideas and the programme of JUST, spherical tokamak (ST) for the plasma burn investigation, are presented. The place and prospects of JUST in thermonuclear investigations are discussed. (author)
International Nuclear Information System (INIS)
Chrzan, D.C.; Dugger, M.; Follstaedt, D.M.; Friedman, Lawrence H.; Friedmann, T.A.; Knapp, J.A.; McCarty, K.F.; Medlin, D.L.; Mirkarimi, P.B.; Missert, N.; Newcomer, P.P.; Sullivan, J.P.; Tallant, D.R.
1999-01-01
We have developed a new multilayer a-tC material that is thick stress-free, adherent, low friction, and with hardness and stiffness near that of diamond. The new a-tC material is deposited by J pulsed-laser deposition (PLD) at room temperature, and fully stress-relieved by a short thermal anneal at 600 ampersand deg;C. A thick multilayer is built up by repeated deposition and annealing steps. We measured 88 GPa hardness, 1100 GPa Young's modulus, and 0.1 friction coefficient (under high load). Significantly, these results are all well within the range reported for crystalline diamond. In fact, this material, if considered separate from crystalline diamond, is the 2nd hardest material known to man. Stress-free a-tC also has important advantages over thin film diamond; namely, it is smooth, processed at lower temperature, and can be grown on a much broader range of substrates. This breakthrough will enable a host of applications that we are actively pursuing in MEMs, sensors, LIGA, etc
International Nuclear Information System (INIS)
Hood, R.Q.
1994-04-01
Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons
Dye, Scott A.
2015-01-01
New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.
Spherical tokamak development in Brazil
International Nuclear Information System (INIS)
Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J.; Barbosa, L.F.W.; Patire Junior, H.; The high-power microwave sources group
2003-01-01
This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)
Miniaturization of Spherical Magnetodielectric Antennas
DEFF Research Database (Denmark)
Hansen, Troels Vejle
; Arbitrary order of the spherical wave, arbitrary radius of the spherical antenna, as well as arbitrarily large core permeability and/or permittivity, given an inversely proportional frequency variation of the imaginary part(s) and an arbitrary dispersion of the real part(s) - thus describing both lossless...... with a magnetic loss tangent of 1 and relative permeability of 300 yield Q/e equal 65% of the Chu lower bound, with a simultaneous e of 71%....
Spherical tokamak development in Brazil
Energy Technology Data Exchange (ETDEWEB)
Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma; Barbosa, L.F.W. [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Mecanica Espacial e Controle; The high-power microwave sources group
2003-12-01
This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)
Magneto-optical transitions in multilayer semiconductor nanocrystals
Climente, J; Jaskolski, W; Aliaga, J I
2003-01-01
Absorption spectra of chemically synthesized uniform and multilayer semiconductor nanocrystals in a magnetic field are investigated theoretically. The nanocrystals are modelled by spherical barrier/well potentials. The electron states are calculated within the effective mass model. A four-band k centre dot p Hamiltonian, accounting for the valence subband mixing, is used to obtain the hole states. The magneto-optical transition spectrum depends strongly on the size and composition of the nanocrystals. In the case of small uniform quantum dots, only the linear Zeeman splitting of the electron and hole energy levels is observed even for very strong magnetic fields. In larger nanocrystals, the quadratic magnetic interaction turns out to be important and the transition spectrum becomes complicated. The most complicated influence of the magnetic field is found in quantum dot-quantum well systems in which the lowest electron and hole states are localized in a thin spherical layer. It is shown that transitions that ...
Neutron optics with multilayer monochromators
International Nuclear Information System (INIS)
Saxena, A.M.; Majkrzak, C.F.
1984-01-01
A multilayer monochromator is made by depositing thin films of two materials in an alternating sequence on a glass substrate. This makes a multilayer periodic in a direction perpendicular to the plane of the films, with a d-spacing equal to the thickness of one bilayer. Neutrons of wavelength λ incident on a multilayer will be reflected at an angle phi given by the Bragg relation nλ = 2d sinphi, where n is the order of reflection. The use of thin-film multilayers for monochromating neutrons is discussed. Because of the low flux of neutrons, the samples have to be large, and the width of the incident beam can be as much as 2 cm. Multilayers made earlier were fabricated by resistive heating of the materials in a vacuum chamber. Because of geometrical constraints imposed by the size of the vacuum chamber, limits on the amount of material that can be loaded in a boat, and finite life of the boats, this method of preparation limits the length of a multilayer to ∼ 15 cm and the total number of bilayers in a multilayer to about 200. This paper discusses a thin-film deposition system using RF sputtering for depositing films
Directory of Open Access Journals (Sweden)
J. Szajnar
2010-01-01
Full Text Available In paper is presented the possibility of making of multi-layers cast steel castings in result of connection of casting and welding coating technologies. First layer was composite surface layer on the basis of Fe-Cr-C alloy, which was put directly in founding process of cast carbon steel 200–450 with use of preparation of mould cavity method. Second layer were padding welds, which were put with use of TIG – Tungsten Inert Gas surfacing by welding technology with filler on Ni matrix, Ni and Co matrix with wolfram carbides WC and on the basis on Fe-Cr-C alloy, which has the same chemical composition with alloy, which was used for making of composite surface layer. Usability for industrial applications of surface layers of castings were estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.
Integrated Multilayer Insulation
Dye, Scott
2009-01-01
Integrated multilayer insulation (IMLI) is being developed as an improved alternative to conventional multilayer insulation (MLI), which is more than 50 years old. A typical conventional MLI blanket comprises between 10 and 120 metallized polymer films separated by polyester nets. MLI is the best thermal- insulation material for use in a vacuum, and is the insulation material of choice for spacecraft and cryogenic systems. However, conventional MLI has several disadvantages: It is difficult or impossible to maintain the desired value of gap distance between the film layers (and consequently, it is difficult or impossible to ensure consistent performance), and fabrication and installation are labor-intensive and difficult. The development of IMLI is intended to overcome these disadvantages to some extent and to offer some additional advantages over conventional MLI. The main difference between IMLI and conventional MLI lies in the method of maintaining the gaps between the film layers. In IMLI, the film layers are separated by what its developers call a micro-molded discrete matrix, which can be loosely characterized as consisting of arrays of highly engineered, small, lightweight, polymer (typically, thermoplastic) frames attached to, and placed between, the film layers. The term "micro-molded" refers to both the smallness of the frames and the fact that they are fabricated in a process that forms precise small features, described below, that are essential to attainment of the desired properties. The term "discrete" refers to the nature of the matrix as consisting of separate frames, in contradistinction to a unitary frame spanning entire volume of an insulation blanket.
Spherical Demons: Fast Surface Registration
Yeo, B.T. Thomas; Sabuncu, Mert; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2009-01-01
We present the fast Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizers for the modified demons objective function can be efficiently implemented on the sphere using convolution. Based on the one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast – registration of two cortical mesh models with more than 100k nodes takes less than 5 minutes, comparable to the fastest surface registration algorithms. Moreover, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different settings: (1) parcellation in a set of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:18979813
Trapped surfaces in spherical stars
International Nuclear Information System (INIS)
Bizon, P.; Malec, E.; O'Murchadha, N.
1988-01-01
We give necessary and sufficient conditions for the existence of trapped surfaces in spherically symmetric spacetimes. These conditions show that the formation of trapped surfaces depends on both the degree of concentration and the average flow of the matter. The result can be considered as a partial validation of the cosmic-censorship hypothesis
Spherical Pendulum, Actions, and Spin
Richter, Peter H.; Dullin, Holger R.; Waalkens, Holger; Wiersig, Jan
1996-01-01
The classical and quantum mechanics of a spherical pendulum are worked out, including the dynamics of a suspending frame with moment of inertia θ. The presence of two separatrices in the bifurcation diagram of the energy-momentum mapping has its mathematical expression in the hyperelliptic nature of
Multilayer graphene rubber nanocomposites
Schartel, Bernhard; Frasca, Daniele; Schulze, Dietmar; Wachtendorf, Volker; Krafft, Bernd; Morys, Michael; Böhning, Martin; Rybak, Thomas
2016-05-01
Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m2/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young's modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development.
Laplacian eigenmodes for spherical spaces
International Nuclear Information System (INIS)
Lachieze-Rey, M; Caillerie, S
2005-01-01
The possibility that our space is multi-rather than singly-connected has gained renewed interest after the discovery of the low power for the first multipoles of the CMB by WMAP. To test the possibility that our space is a multi-connected spherical space, it is necessary to know the eigenmodes of such spaces. Except for lens and prism space, and to some extent for dodecahedral space, this remains an open problem. Here we derive the eigenmodes of all spherical spaces. For dodecahedral space, the demonstration is much shorter, and the calculation method much simpler than before. We also apply our method to tetrahedric, octahedric and icosahedric spaces. This completes the knowledge of eigenmodes for spherical spaces, and opens the door to new observational tests of the cosmic topology. The vector space V k of the eigenfunctions of the Laplacian on the 3-sphere S 3 , corresponding to the same eigenvalue λ k = -k(k + 2), has dimension (k + 1) 2 . We show that the Wigner functions provide a basis for such a space. Using the properties of the latter, we express the behaviour of a general function of V k under an arbitrary rotation G of SO(4). This offers the possibility of selecting those functions of V k which remain invariant under G. Specifying G to be a generator of the holonomy group of a spherical space X, we give the expression of the vector space V x k of the eigenfunctions of X. We provide a method to calculate the eigenmodes up to an arbitrary order. As an illustration, we give the first modes for the spherical spaces mentioned
Sectioning of multilayers to make a multilayer Laue lens
International Nuclear Information System (INIS)
Kang, Hyon Chol; Stephenson, G. Brian; Liu Chian; Conley, Ray; Khachatryan, Ruben; Wieczorek, Michael; Macrander, Albert T.; Yan Hanfei; Maser, Joerg; Hiller, Jon; Koritala, Rachel
2007-01-01
We report a process to fabricate multilayer Laue lenses (MLL's) by sectioning and thinning multilayer films. This method can produce a linear zone plate structure with a very large ratio of zone depth to width (e.g., >1000), orders of magnitude larger than can be attained with photolithography. Consequently, MLL's are advantageous for efficient nanofocusing of hard x rays. MLL structures prepared by the technique reported here have been tested at an x-ray energy of 19.5 keV, and a diffraction-limited performance was observed. The present article reports the fabrication techniques that were used to make the MLL's
Design and fabrication of heat resistant multilayers
International Nuclear Information System (INIS)
Thorne, J.M.; Knight, L.V.; Peterson, B.G.; Perkins, R.T.; Gray, K.J.
1986-01-01
Many promising applications of multilayer x-ray optical elements subject them to intense radiation. This paper discusses the selection of optimal pairs of materials to resist heat damage and presents simulations of multilayer performance under extreme heat loadings
Developement of Spherical Polyurethane Beads
Institute of Scientific and Technical Information of China (English)
K. Maeda; H. Ohmori; H. Gyotoku
2005-01-01
@@ 1Results and Discussion We established a new method to produce the spherical polyurethane beads which have narrower distribution of particle size. This narrower distribution was achieved by the polyurethane prepolymer which contains ketimine as a blocked chain-extending agent. Firstly, the prepolymer is dispersed into the aqueous solution containing surfactant. Secondaly, water comes into the inside of prepolymer as oil phase. Thirdly, ketimine is hydrolyzed to amine, and amine reacts with prepolymer immediately to be polyurethane.Our spherical polyurethane beads are very suitable for automotive interior parts especially for instrument panel cover sheet producing under the slush molding method, because of good process ability, excellent durability to the sunlight and mechanical properties at low temperature. See Fig. 1 ,Fig. 2 and Fig. 3 (Page 820).
Contractions of affine spherical varieties
International Nuclear Information System (INIS)
Arzhantsev, I V
1999-01-01
The language of filtrations and contractions is used to describe the class of G-varieties obtainable as the total spaces of the construction of contraction applied to affine spherical varieties, which is well-known in invariant theory. These varieties are local models for arbitrary affine G-varieties of complexity 1 with a one-dimensional categorical quotient. As examples, reductive algebraic semigroups and three-dimensional SL 2 -varieties are considered
Spherical subsystem of galactic radiosources
Energy Technology Data Exchange (ETDEWEB)
Gorshkov, A G; Popov, M V [Moskovskij Gosudarstvennyj Univ. (USSR). Gosudarstvennyj Astronomicheskij Inst. ' ' GAISh' '
1975-05-01
The concentration of statistically complete sampling radiosources of the Ohiof scanning with plane spectra towards the Galaxy centre has been discovered. Quantitative calculations have showed that the sources form a spheric subsystem, which is close in parameters to such old formations in the Galaxy as globular clusters and the RRLsub(YR) type stars. The luminosity of the galaxy spheric subsystem object equals 10/sup 33/ erg/sec, the total number of objects being 7000. The existence of such a subsystem explains s the anomalously by low incline of statistics lgN-lgS in HF scanning PKS (..gamma..-2700Mgz) and the Michigan University scanning (..gamma..=8000Mgz) because the sources of galaxy spheric subsystem make up a considerable share in the total number of sources, especially at high frequencies (50% of sources with a flux greater than a unit of flux per 8000Mgz). It is very probable that the given subsystem consists of the representatives of one of the following class of objects: a) heat sources - the H2H regions with T=10/sup 40/K, Nsub(e)=10/sup 3/, l=1 ps b) supermass black holes with mass M/Mo approximately 10/sup 5/.
Transfer matrices for multilayer structures
International Nuclear Information System (INIS)
Baquero, R.
1988-08-01
We consider four of the transfer matrices defined to deal with multilayer structures. We deduce algorithms to calculate them numerically, in a simple and neat way. We illustrate their application to semi-infinite systems using SGFM formulae. These algorithms are of fast convergence and allow a calculation of bulk-, surface- and inner-layers band structure in good agreement with much more sophisticated calculations. Supermatrices, interfaces and multilayer structures can be calculated in this way with a small computational effort. (author). 10 refs
Multilayer Controller for Outdoor Vehicle
DEFF Research Database (Denmark)
Reske-Nielsen, Anders; Mejnertsen, Asbjørn; Andersen, Nils Axel
2006-01-01
A full software and hardware solution has been designed, implemented and tested for control of a small agricultural automatic tractor. The objective was to realise a user-friendly, multi-layer controller architecture for an outdoor platform. The collaborative research work was done as a part of a...
New developments in Ni/Ti multilayers
Energy Technology Data Exchange (ETDEWEB)
Anderson, I; Hoghoj, P [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
It is now 20 years since super-mirrors were first used as a neutron optical element. Since then the field of multilayer neutron-optics has matured with multilayers finding their way to application in many neutron scattering instruments. However, there is still room for progress in terms of multilayer quality, performance and application. Along with work on multilayers for neutron polarisation Ni/Ti super-mirrors have been optimised. The state-of-the-art Ni/Ti super-mirror performance and the results obtained in two neutron-optics applications of Ni/Ti multilayers are presented. (author).
A Spherical Aerial Terrestrial Robot
Dudley, Christopher J.
This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.
Cooperative effects in spherical spasers
DEFF Research Database (Denmark)
Bordo, Vladimir
2017-01-01
A fully analytical semiclassical theory of cooperative optical processes which occur in an ensemble of molecules embedded in a spherical core-shell nanoparticle is developed from first principles. Both the plasmonic Dicke effect and spaser generation are investigated for the designs in which...... a shell/core contains an arbitrarily large number of active molecules in the vicinity of a metallic core/shell. An essential aspect of the theory is an ab initio account of the feedback from the core/shell boundaries which significantly modifies the molecular dynamics. The theory provides rigorous, albeit...
Spherical bodies of constant width
Lassak, Marek; Musielak, Michał
2018-01-01
The intersection $L$ of two different non-opposite hemispheres $G$ and $H$ of a $d$-dimensional sphere $S^d$ is called a lune. By the thickness of $L$ we mean the distance of the centers of the $(d-1)$-dimensional hemispheres bounding $L$. For a hemisphere $G$ supporting a %spherical convex body $C \\subset S^d$ we define ${\\rm width}_G(C)$ as the thickness of the narrowest lune or lunes of the form $G \\cap H$ containing $C$. If ${\\rm width}_G(C) =w$ for every hemisphere $G$ supporting $C$, we...
International Nuclear Information System (INIS)
Ionescu-Pallas, N.; Vlad, V.I.
1999-01-01
The spectrum of black body radiation at the absolute temperature T, in an ideal spherical cavity of radius R, is studied. The departures from the classical predictions of Planck's theory, due to the discrete energies of the radiation quanta confined inside the cavity, depend on the adiabatic invariant RT and are significant for RT≤ 1 cm K. Special attention was paid to evidence sudden changes in the spectrum intensities, forbidden bands of frequency, as well as major modifications of the total energy for RT≤ 1 cm K. Similar effects were present in case of a cubic cavity too. (authors)
Huang, Qiushi; Louis, Eric; Bijkerk, Frederik; de Boer, Meint J.; von Blanckenhagen, G.
2016-01-01
A multilayer mirror (M) reflecting extreme ultraviolet (EUV) radiation from a first wave-length range in a EUV spectral region comprises a substrate (SUB) and a stack of layers (SL) on the substrate, the stack of layers comprising layers comprising a low index material and a high index material, the
Interactions between charged spherical macroions
International Nuclear Information System (INIS)
Stevens, M.J.; Falk, M.L.; Robbins, M.O.
1996-01-01
Monte Carlo (MC) simulations were used to study the screened interactions between charged spherical macroions surrounded by discrete counterions, and to test previous theories of screening. The simulations were performed in the primitive cell of the bcc lattice, and in the spherical Wigner endash Seitz cell that is commonly used in approximate calculations. We found that the Wigner endash Seitz approximation is valid even at high volume fractions φ and large macroion charges Z, because the macroion charge becomes strongly screened. Pressures calculated from Poisson endash Boltzmann theory and local density functional theory deviate from MC values as φ and Z increase, but continue to provide upper and lower bounds for the MC results. While Debye endash Hueckel (DH) theory fails badly when the bare charge is used, MC pressures can be fit with an effective DH charge, Z DH , that is nearly independent of volume fraction. As Z diverges, Z DH saturates at zψ max R m /λ, where z is the counterion charge, R m is the macroion radius, λ is the Bjerrum length, and ψ max is a constant of order 10. copyright 1996 American Institute of Physics
National Spherical Torus Experiment (NSTX)
International Nuclear Information System (INIS)
Masayuki Ono
2000-01-01
The main aim of National Spherical Torus Experiment (NSTX) is to establish the fusion physics principles of the innovative spherical torus (ST) concept. Physics outcome of the NSTX research program is relevant to near-term applications such as the Volume Neutron Source (VNS) and burning plasmas, and future applications such as the pilot and power plants. The NSTX device began plasma operations in February 1999 and the plasma current was successfully ramped up to the design value of 1 million amperes (MA) on December 14, 1999. The CHI (Coaxial Helicity Injection) and HHFW (High Harmonic Fast Wave) experiments have also started. Stable CHI discharges of up to 133 kA and 130-msec duration have been produced using 20 kA of injected current. Using eight antennas connected to two transmitters, up to 2 MW of HHFW power was successfully coupled to the plasma. The Neutral-beam Injection (NBI) heating system and associated NBI-based diagnostics such as the Charge-exchange Recombination Spectrometer (CHERS) will be operational in October 2000
Casimir effect in spherical shells
International Nuclear Information System (INIS)
Ruggiero, J.R.
1985-01-01
The analytic regularization method is applied to study the Casimir effect for spherical cavities. Although many works have been presented in the past few years, problems related to the elimination of the regulator parameter still remain. A way to calculate the zero point energy of a perfectly conducting spherical shell which is a miscellaneous of those presented early is here proposed, How a cancelation of divergent terms occurs and how a finite parte is obtained after the elimination of the regulator parameter is shown. As a by-product the zero point energy of the interior vibration modes is obtained and this has some relevance to the quarks bag model. This relev ance is also discussed. The calculation of the energy fom the density view is also discussed. Some works in this field are criticized. The logarithmic divergent terms in the zero point energy are studied when the interior and exterior of the sphere are considered as a medium not dispersive and characterized by a dielectric constants ε 1 and ε 2 and peermeability constants μ 1 and μ 2 respectivelly. The logarithmic divergent terms are not present in the case of ε i μ i =K, with K some constant and i=1,2. (author) [pt
Progress in octahedral spherical hohlraum study
Directory of Open Access Journals (Sweden)
Ke Lan
2016-01-01
Full Text Available In this paper, we give a review of our theoretical and experimental progress in octahedral spherical hohlraum study. From our theoretical study, the octahedral spherical hohlraums with 6 Laser Entrance Holes (LEHs of octahedral symmetry have robust high symmetry during the capsule implosion at hohlraum-to-capsule radius ratio larger than 3.7. In addition, the octahedral spherical hohlraums also have potential superiority on low backscattering without supplementary technology. We studied the laser arrangement and constraints of the octahedral spherical hohlraums, and gave a design on the laser arrangement for ignition octahedral hohlraums. As a result, the injection angle of laser beams of 50°–60° was proposed as the optimum candidate range for the octahedral spherical hohlraums. We proposed a novel octahedral spherical hohlraum with cylindrical LEHs and LEH shields, in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport. We studied on the sensitivity of the octahedral spherical hohlraums to random errors and compared the sensitivity among the octahedral spherical hohlraums, the rugby hohlraums and the cylindrical hohlraums, and the results show that the octahedral spherical hohlraums are robust to these random errors while the cylindrical hohlraums are the most sensitive. Up till to now, we have carried out three experiments on the spherical hohlraum with 2 LEHs on Shenguang(SG laser facilities, including demonstration of improving laser transport by using the cylindrical LEHs in the spherical hohlraums, spherical hohlraum energetics on the SGIII prototype laser facility, and comparisons of laser plasma instabilities between the spherical hohlraums and the cylindrical hohlraums on the SGIII laser facility.
Thermally induced delamination of multilayers
DEFF Research Database (Denmark)
Sørensen, Bent F.; Sarraute, S.; Jørgensen, O.
1998-01-01
Steady-state delamination of multilayered structures, caused by stresses arising during processing due to thermal expansion mismatch, is analyzed by a fracture mechanics model based on laminate theory. It is found that inserting just a few interlayers with intermediate thermal expansion coefficie...... coefficients may be an effective way of reducing the delamination energy release rate. Uneven layer thickness and increasing elastic mismatch are shown to raise the energy release rate. Experimental work confirms important trends of the model.......Steady-state delamination of multilayered structures, caused by stresses arising during processing due to thermal expansion mismatch, is analyzed by a fracture mechanics model based on laminate theory. It is found that inserting just a few interlayers with intermediate thermal expansion...
Anomalous magnetoresistance in Fibonacci multilayers.
Energy Technology Data Exchange (ETDEWEB)
Machado, L. D.; Bezerra, C. G.; Correa, M. A.; Chesman, C.; Pearson, J. E.; Hoffmann, A. (Materials Science Division); (Universidade Federal do Rio Grande do Norte)
2012-01-01
We theoretically investigated magnetoresistance curves in quasiperiodic magnetic multilayers for two different growth directions, namely, [110] and [100]. We considered identical ferromagnetic layers separated by nonmagnetic layers with two different thicknesses chosen based on the Fibonacci sequence. Using parameters for Fe/Cr multilayers, four terms were included in our description of the magnetic energy: Zeeman, cubic anisotropy, bilinear coupling, and biquadratic coupling. The minimum energy was determined by the gradient method and the equilibrium magnetization directions found were used to calculate magnetoresistance curves. By choosing spacers with a thickness such that biquadratic coupling is stronger than bilinear coupling, unusual behaviors for the magnetoresistance were observed: (i) for the [110] case, there is a different behavior for structures based on even and odd Fibonacci generations, and, more interesting, (ii) for the [100] case, we found magnetic field ranges for which the magnetoresistance increases with magnetic field.
Collective mechanical behavior of multilayer colloidal arrays of hollow nanoparticles.
Yin, Jie; Retsch, Markus; Thomas, Edwin L; Boyce, Mary C
2012-04-03
The collective mechanical behavior of multilayer colloidal arrays of hollow silica nanoparticles (HSNP) is explored under spherical nanoindentation through a combination of experimental, numerical, and theoretical approaches. The effective indentation modulus E(ind) is found to decrease with an increasing number of layers in a nonlinear manner. The indentation force versus penetration depth behavior for multilayer hollow particle arrays is predicted by an approximate analytical model based on the spring stiffness of the individual particles and the multipoint, multiparticle interactions as well as force transmission between the layers. The model is in good agreement with experiments and with detailed finite element simulations. The ability to tune the effective indentation modulus, E(ind), of the multilayer arrays by manipulating particle geometry and layering is revealed through the model, where E(ind) = (0.725m(-3/2) + 0.275)E(mon) and E(mon) is the monolayer modulus and m is number of layers. E(ind) is seen to plateau with increasing m to E(ind_plateau) = 0.275E(mon) and E(mon) scales with (t/R)(2), t being the particle shell thickness and R being the particle radius. The scaling law governing the nonlinear decrease in indentation modulus with an increase in layer number (E(ind) scaling with m(-3/2)) is found to be similar to that governing the indentation modulus of thin solid films E(ind_solid) on a stiff substrate (where E(ind_solid) scales with h(-1.4) and also decreases until reaching a plateau value) which also decreases with an increase in film thickness h. However, the mechanisms underlying this trend for the colloidal array are clearly different, where discrete particle-to-particle interactions govern the colloidal array behavior in contrast to the substrate constraint on deformation, which governs the thickness dependence of the continuous thin film indentation modulus.
Analytic sensing for multi-layer spherical models with application to EEG source imaging
Kandaswamy, Djano; Blu, Thierry; Van De Ville, Dimitri
2013-01-01
Source imaging maps back boundary measurements to underlying generators within the domain; e. g., retrieving the parameters of the generating dipoles from electrical potential measurements on the scalp such as in electroencephalography (EEG). Fitting such a parametric source model is non-linear in the positions of the sources and renewed interest in mathematical imaging has led to several promising approaches. One important step in these methods is the application of a sensing principle that ...
The ETE spherical Tokamak project. IAEA report
Energy Technology Data Exchange (ETDEWEB)
Ludwig, Gerson Otto; Del Bosco, E.; Berni, L.A.; Ferreira, J.G.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Barroso, J.J.; Castro, P.J.; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: ludwig@plasma.inpe.br
2002-07-01
This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and operating conditions as of October, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)
Spherical sila- and germa-homoaromaticity.
Chen, Zhongfang; Hirsch, Andreas; Nagase, Shigeru; Thiel, Walter; Schleyer, Paul von Ragué
2003-12-17
Guided by the 2(N + 1)2 electron-counting rule for spherical aromatic molecules, we have designed various spherical sila- and germa-homoaromatic systems rich in group 14 elements. Their aromaticity is revealed by density-functional computations of their structures and the nucleus-independent chemical shifts (NICS). Besides the formerly used endohedral inclusion strategy, spherical homoaromaticity is another way to stabilize silicon and germanium clusters.
Spherical collapse in chameleon models
International Nuclear Information System (INIS)
Brax, Ph.; Rosenfeld, R.; Steer, D.A.
2010-01-01
We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity
Spherical collapse in chameleon models
Energy Technology Data Exchange (ETDEWEB)
Brax, Ph. [Institut de Physique Théorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Rosenfeld, R. [Instituto de Física Teórica, Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, 01140-070, São Paulo (Brazil); Steer, D.A., E-mail: brax@spht.saclay.cea.fr, E-mail: rosenfel@ift.unesp.br, E-mail: daniele.steer@apc.univ-paris7.fr [APC, UMR 7164, CNRS, Université Paris 7, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France)
2010-08-01
We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity.
Spherical Collapse in Chameleon Models
Brax, Ph; Steer, D A
2010-01-01
We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse depends on the initial comoving size of the inhomogeneity.
Relativistic fluids in spherically symmetric space
International Nuclear Information System (INIS)
Dipankar, R.
1977-12-01
Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat
Mathematical Formulation of Multilayer Networks
De Domenico, Manlio; Solé-Ribalta, Albert; Cozzo, Emanuele; Kivelä, Mikko; Moreno, Yamir; Porter, Mason A.; Gómez, Sergio; Arenas, Alex
2013-10-01
A network representation is useful for describing the structure of a large variety of complex systems. However, most real and engineered systems have multiple subsystems and layers of connectivity, and the data produced by such systems are very rich. Achieving a deep understanding of such systems necessitates generalizing “traditional” network theory, and the newfound deluge of data now makes it possible to test increasingly general frameworks for the study of networks. In particular, although adjacency matrices are useful to describe traditional single-layer networks, such a representation is insufficient for the analysis and description of multiplex and time-dependent networks. One must therefore develop a more general mathematical framework to cope with the challenges posed by multilayer complex systems. In this paper, we introduce a tensorial framework to study multilayer networks, and we discuss the generalization of several important network descriptors and dynamical processes—including degree centrality, clustering coefficients, eigenvector centrality, modularity, von Neumann entropy, and diffusion—for this framework. We examine the impact of different choices in constructing these generalizations, and we illustrate how to obtain known results for the special cases of single-layer and multiplex networks. Our tensorial approach will be helpful for tackling pressing problems in multilayer complex systems, such as inferring who is influencing whom (and by which media) in multichannel social networks and developing routing techniques for multimodal transportation systems.
Dong, Tianyu; Shi, Yi; Liu, Hui; Chen, Feng; Ma, Xikui; Mittra, Raj
2017-12-01
In this work, we present a rigorous approach for analyzing the optical response of multilayered spherical nano-particles comprised of either plasmonic metal or dielectric, when there is no longer radial symmetry and when nonlocality is included. The Lorenz-Mie theory is applied, and a linearized hydrodynamic Drude model as well as the general nonlocal optical response model for the metals are employed. Additional boundary conditions, viz., the continuity of normal components of polarization current density and the continuity of first-order pressure of free electron density, respectively, are incorporated when handling interfaces involving metals. The application of spherical addition theorems, enables us to express a spherical harmonic about one origin to spherical harmonics about a different origin, and leads to a linear system of equations for the inward- and outward-field modal coefficients for all the layers in the nanoparticle. Scattering matrices at interfaces are obtained and cascaded to obtain the expansion coefficients, to yield the final solution. Through extensive modelling of stratified concentric and eccentric metal-involved spherical nanoshells illuminating by a plane wave, we show that, within a nonlocal description, significant modifications of plasmonic response appear, e.g. a blue-shift in the extinction / scattering spectrum and a broadening spectrum of the resonance. In addition, it has been demonstrated that core-shell nanostructures provide an option for tunable Fano-resonance generators. The proposed method shows its capability and flexibility to analyze the nonlocal response of eccentric hybrid metal-dielectric multilayer structures as well as adjoined metal-involved nanoparticles, even when the number of layers is large.
Magnetoresistive multilayers deposited on the AAO membranes
International Nuclear Information System (INIS)
Malkinski, Leszek M.; Chalastaras, Athanasios; Vovk, Andriy; Jung, Jin-Seung; Kim, Eun-Mee; Jun, Jong-Ho; Ventrice, Carl A.
2005-01-01
Silicon and GaAs wafers are the most commonly used substrates for deposition of giant magnetoresistive (GMR) multilayers. We explored a new type of a substrate, prepared electrochemically by anodization of aluminum sheets, for deposition of GMR multilayers. The surface of this AAO substrate consists of nanosized hemispheres organized in a regular hexagonal array. The current applied along the substrate surface intersects many magnetic layers in the multilayered structure, which results in enhancement of giant magnetoresistance effect. The GMR effect in uncoupled Co/Cu multilayers was significantly larger than the magnetoresistance of similar structures deposited on Si
Stability of the spherical form of nuclei
International Nuclear Information System (INIS)
Sabry, A.A.
1976-08-01
An extension of the mass formula for a spherical nucleus in the drop model to include a largely deformed nucleus of different forms is investigated. It is found that although the spherical form is stable under small deformations from equilibrium, there exists for heavier nuclei another more favourable stable form, which can be approximated by two, or three touching prolate ellipsoids of revolution
How Spherical Is a Cube (Gravitationally)?
Sanny, Jeff; Smith, David
2015-01-01
An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center. By integrating over ring elements of a spherical shell, we show that the…
Spherical Tensor Calculus for Local Adaptive Filtering
Reisert, Marco; Burkhardt, Hans
In 3D image processing tensors play an important role. While rank-1 and rank-2 tensors are well understood and commonly used, higher rank tensors are rare. This is probably due to their cumbersome rotation behavior which prevents a computationally efficient use. In this chapter we want to introduce the notion of a spherical tensor which is based on the irreducible representations of the 3D rotation group. In fact, any ordinary cartesian tensor can be decomposed into a sum of spherical tensors, while each spherical tensor has a quite simple rotation behavior. We introduce so called tensorial harmonics that provide an orthogonal basis for spherical tensor fields of any rank. It is just a generalization of the well known spherical harmonics. Additionally we propose a spherical derivative which connects spherical tensor fields of different degree by differentiation. Based on the proposed theory we present two applications. We propose an efficient algorithm for dense tensor voting in 3D, which makes use of tensorial harmonics decomposition of the tensor-valued voting field. In this way it is possible to perform tensor voting by linear-combinations of convolutions in an efficient way. Secondly, we propose an anisotropic smoothing filter that uses a local shape and orientation adaptive filter kernel which can be computed efficiently by the use spherical derivatives.
Plastic deformation in nano-scale multilayer materials — A biomimetic approach based on nacre
Energy Technology Data Exchange (ETDEWEB)
Lackner, Juergen M., E-mail: juergen.lackner@joanneum.at [JOANNEUM RESEARCH Forschungsges.m.b.H., Institute for Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712 Niklasdorf (Austria); Waldhauser, Wolfgang [JOANNEUM RESEARCH Forschungsges.m.b.H., Institute for Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712 Niklasdorf (Austria); Major, Boguslaw; Major, Lukasz [Polish Academy of Sciences, Institute of Metallurgy and Materials Sciences, IMIM-PAN, ul. Reymonta 25, PL-30059 Krakow (Poland); Kot, Marcin [University of Science and Technology, AGH, Aleja Adama Mickiewicza 30, 30-059 Krakow (Poland)
2013-05-01
The paper reports about a biomimetic based comparison of deformation in magnetron sputtered multilayer coatings based on titanium (Ti), titanium nitride (TiN) and diamond-like carbon (DLC) layers and the deformation mechanisms in nacre of mollusc shells. Nacre as highly mineralized tissue combines high stiffness and hardness with high toughness, enabling resistance to fracture and crack propagation during tensile loading. Such behaviour is based on a combination of load transmission by tensile stressed aragonite tablets and shearing in layers between the tablets. Shearing in these polysaccharide and protein interlayers demands hydrated conditions. Otherwise, nacre has similar brittle behaviour to aragonite. To prevent shear failure, shear hardening occurs by progressive tablet locking due to wavy dovetail-like surface geometry of the tablets. Similar effects by shearing and strain hardening mechanisms were found for Ti interlayers between TiN and DLC layers in high-resolution transmission electron microscopy studies, performed in deformed zones beneath spherical indentations. 7 nm thin Ti films are sufficient for strong toughening of the whole multi-layered coating structure, providing a barrier for propagation of cracks, starting from tensile-stressed, hard, brittle TiN or DLC layers. - Highlights: • Biomimetic approach to TiN-diamond-like carbon (DLC) multilayers by sputtering • Investigation of deformation in/around hardness indents by HR-TEM • Plastic deformation with shearing in 7-nm thick Ti interlayers in TiN–DLC multilayers • Biomimetically comparable to nacre deformation.
Electrical properties of spherical syncytia.
Eisenberg, R S; Barcilon, V; Mathias, R T
1979-01-01
Syncytial tissues consist of many cells whose intracellular spaces are electrically coupled one to another. Such tissues typically include narrow, tortuous extracellular space and often have specialized membranes at their outer surface. We derive differential equations to describe the potentials induced when a sinusoidal or steady current is applied to the intracellular space with a microelectrode. We derive solutions for spherical preparations with isotropic properties or with a particular anisotropy in effective extracellular and intracellular resistivities. Solutions are presented in an approximate form with a simple physical interpretation. The leading term in the intracellular potential describes an "isopotential" cell in which there is no spatial variation of intracellular potential. The leading term in the extracellular potential, and thus the potential across the inner membranes, varies with radial position, even at zero frequency. The next term of the potentials describes the direct effects of the point source of current and, for the parameters given here, acts as a series resistance producing a large local potential drop essentially independent of frequency. A lumped equivalent circuit describes the "low frequency" behavior of the syncytium, and a distributed circuit gives a reasonably accurate general description. Graphs of the spatial variation and frequency dependence of intracellular, extracellular, and transmembrane potential are given, the response to sinusoidal currents is used to calculate numerically the response to a step function of current.
Intrinsic cylindrical and spherical waves
International Nuclear Information System (INIS)
Ludlow, I K
2008-01-01
Intrinsic waveforms associated with cylindrical and spherical Bessel functions are obtained by eliminating the factors responsible for the inverse radius and inverse square radius laws of wave power per unit area of wavefront. The resulting expressions are Riccati-Bessel functions for both cases and these can be written in terms of amplitude and phase functions of order v and wave variable z. When z is real, it is shown that a spatial phase angle of the intrinsic wave can be defined and this, together with its amplitude function, is systematically investigated for a range of fixed orders and varying z. The derivatives of Riccati-Bessel functions are also examined. All the component functions exhibit different behaviour in the near field depending on the order being less than, equal to or greater than 1/2. Plots of the phase angle can be used to display the locations of the zeros of the general Riccati-Bessel functions and lead to new relations concerning the ordering of the real zeros of Bessel functions and the occurrence of multiple zeros when the argument of the Bessel function is fixed
Alfven Eigenmodes in spherical tokamaks
International Nuclear Information System (INIS)
Gryaznevich, Mikhail P.; Sharapov, Sergei E.; Berk, Herbert L.; Pinches, Simon D.
2005-01-01
Electromagnetic instabilities are often excited by fast super-Alfvenic ions produced by neutral beam injection (NBI) in plasmas of the spherical tokamaks START and MAST (toroidal magnetic confinement devices in which the minor a and major R 0 radii of the torus are comparable, R 0 /a≅1.2/1.8). These instabilities are seen as discrete weakly-damped toroidal and elliptical Alfven Eigenmodes (TAEs and EAEs) with frequencies tracing in time the Alfven scaling with the equilibrium magnetic field and plasma density, or as energetic particle modes (EPMs) whose frequencies don't start from TAE-frequency and sweep down in time faster than the equilibrium parameters change. In some discharges the beam drives Aflvenic-type modes that start from the TAE frequency and sweep in both up- and down- directions. Such electromagnetic perturbations are interpreted as 'hole-clump' long-living nonlinear fluctuations of the fast ion distribution function predicted by Berk-Breizman-Petviashvili [Phys. Lett. A238 (1998) 408]. It is found on both START and MAST that the Alfven instabilities weaken in their mode amplitude and in the number of unstable modes as the pressure of the thermal plasma increases, in agreement with increased thermal ion Landau damping and the pressure effect on core-localised TAEs. (author)
Spherically symmetric charged compact stars
Energy Technology Data Exchange (ETDEWEB)
Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chowdhury, Sourav Roy [Seth Anandaram Jaipuria College, Department of Physics, Kolkata, West Bengal (India)
2015-08-15
In this article we consider the static spherically symmetric metric of embedding class 1. When solving the Einstein-Maxwell field equations we take into account the presence of ordinary baryonic matter together with the electric charge. Specific new charged stellar models are obtained where the solutions are entirely dependent on the electromagnetic field, such that the physical parameters, like density, pressure etc. do vanish for the vanishing charge. We systematically analyze altogether the three sets of Solutions I, II, and III of the stellar models for a suitable functional relation of ν(r). However, it is observed that only the Solution I provides a physically valid and well-behaved situation, whereas the Solutions II and III are not well behaved and hence not included in the study. Thereafter it is exclusively shown that the Solution I can pass through several standard physical tests performed by us. To validate the solution set presented here a comparison has also been made with that of the compact stars, like RX J 1856 - 37, Her X - 1, PSR 1937+21, PSRJ 1614-2230, and PSRJ 0348+0432, and we have shown the feasibility of the models. (orig.)
Beig, Robert; Siddiqui, Azad A.
2007-11-01
It is known that spherically symmetric static spacetimes admit a foliation by flat hypersurfaces. Such foliations have explicitly been constructed for some spacetimes, using different approaches, but none of them have proved or even discussed the uniqueness of these foliations. The issue of uniqueness becomes more important due to suitability of flat foliations for studying black hole physics. Here, flat spherically symmetric spacelike hypersurfaces are obtained by a direct method. It is found that spherically symmetric static spacetimes admit flat spherically symmetric hypersurfaces, and that these hypersurfaces are unique up to translation under the timelike Killing vector. This result guarantees the uniqueness of flat spherically symmetric foliations for such spacetimes.
Bioinspired design of dental multilayers.
Huang, M; Wang, R; Thompson, V; Rekow, D; Soboyejo, W O
2007-01-01
This paper considers the use of bioinspired functionally graded structures in the design of dental multi-layers that are more resistant to sub-surface crack nucleation. Unlike existing dental crown restorations that give rise to high stress concentration, the functionally graded layers (between crown materials and the joins that attach them to dentin) are shown to promote significant reductions in stress and improvements in the critical crack size. Special inspiration is drawn from the low stress concentrations associated with the graded distributions in the dentin-enamel-junction (DEJ). The implications of such functionally graded structures are also discussed for the design of dental restorations.
DEFF Research Database (Denmark)
Fotiadis, Panagiotis; Polignano, Michele; Gimenez, Lucas Chavarria
2013-01-01
This paper investigates the potentials of traffic steering in the Radio Resource Control (RRC) Idle state by evaluating the Absolute Priorities (AP) framework in a multilayer Long Term Evolution (LTE) macrocell scenario. Frequency priorities are broadcast on the system information and RRC Idle...... periods are not significantly long. Finally, better alignment between the RRC Connected and Idle mobility procedures is observed, guarantying significant decrease of handovers/reselections and potential battery life savings by minimizing the Inter-Frequency (IF) measurement rate in the RRC Idle....
Robust giant magnetoresistive effect type multilayer sensor
Lenssen, K.M.H.; Kuiper, A.E.T.; Roozeboom, F.
2002-01-01
A robust Giant Magneto Resistive effect type multilayer sensor comprising a free and a pinned ferromagnetic layer, which can withstand high temperatures and strong magnetic fields as required in automotive applications. The GMR multi-layer has an asymmetric magneto-resistive curve and enables
Multi-Layer E-Textile Circuits
Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory
2012-01-01
Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.
Multilayer Graphene for Waveguide Terahertz Modulator
DEFF Research Database (Denmark)
Khromova, I.; Andryieuski, Andrei; Lavrinenko, Andrei
2014-01-01
We study terahertz to infrared electromagnetic properties of multilayer graphene/dielectric artificial medium and present a novel concept of terahertz modulation at midinfrared wavelengths. This approach allows the realization of high-speed electrically controllable terahertz modulators based...... on hollow waveguide sections filled with multilayer graphene....
Modeling mantle convection in the spherical annulus
Hernlund, John W.; Tackley, Paul J.
2008-12-01
Most methods for modeling mantle convection in a two-dimensional (2D) circular annular domain suffer from innate shortcomings in their ability to capture several characteristics of the spherical shell geometry of planetary mantles. While methods such as rescaling the inner and outer radius to reduce anomalous effects in a 2D polar cylindrical coordinate system have been introduced and widely implemented, such fixes may have other drawbacks that adversely affect the outcome of some kinds of mantle convection studies. Here we propose a new approach that we term the "spherical annulus," which is a 2D slice that bisects the spherical shell and is quantitatively formulated at the equator of a spherical polar coordinate system after neglecting terms in the governing equations related to variations in latitude. Spherical scaling is retained in this approximation since the Jacobian function remains proportional to the square of the radius. We present example calculations to show that the behavior of convection in the spherical annulus compares favorably against calculations performed in other 2D annular domains when measured relative to those in a fully three-dimensional (3D) spherical shell.
Figure correction of multilayer coated optics
Chapman; Henry N. , Taylor; John S.
2010-02-16
A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.
Multilayer Nanoporous Graphene Membranes for Water Desalination.
Cohen-Tanugi, David; Lin, Li-Chiang; Grossman, Jeffrey C
2016-02-10
While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical molecular dynamic simulations. We show that, while multilayer NPG exhibits similarly promising desalination properties to single-layer membranes, their separation performance can be designed by manipulating various configurational variables in the multilayer case. This work establishes an atomic-level understanding of the effects of additional NPG layers, layer separation, and pore alignment on desalination performance, providing useful guidelines for the design of multilayer NPG membranes.
Averaging in spherically symmetric cosmology
International Nuclear Information System (INIS)
Coley, A. A.; Pelavas, N.
2007-01-01
The averaging problem in cosmology is of fundamental importance. When applied to study cosmological evolution, the theory of macroscopic gravity (MG) can be regarded as a long-distance modification of general relativity. In the MG approach to the averaging problem in cosmology, the Einstein field equations on cosmological scales are modified by appropriate gravitational correlation terms. We study the averaging problem within the class of spherically symmetric cosmological models. That is, we shall take the microscopic equations and effect the averaging procedure to determine the precise form of the correlation tensor in this case. In particular, by working in volume-preserving coordinates, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. We find that the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background must be of the form of a spatial curvature. Inhomogeneities and spatial averaging, through this spatial curvature correction term, can have a very significant dynamical effect on the dynamics of the Universe and cosmological observations; in particular, we discuss whether spatial averaging might lead to a more conservative explanation of the observed acceleration of the Universe (without the introduction of exotic dark matter fields). We also find that the correlation tensor for a non-FLRW background can be interpreted as the sum of a spatial curvature and an anisotropic fluid. This may lead to interesting effects of averaging on astrophysical scales. We also discuss the results of averaging an inhomogeneous Lemaitre-Tolman-Bondi solution as well as calculations of linear perturbations (that is, the backreaction) in an FLRW background, which support the main conclusions of the analysis
Dynamical diffraction in periodic multilayers
Sears, V F
1997-01-01
Exact reflectivity curves are calculated numerically for various periodic multilayers using the optical matrix method in order to test the dynamical theory of diffraction. The theory is generally valid for values of the bilayer thickness d up to about 100 A. For somewhat larger values of d, where the theory begins to break down, the initial discrepancy is in the phase of the oscillations in the wings of the peaks. For very large values of d, where the first-order Bragg peak approaches the edge of the mirror reflection, two general types of multilayers can be distinguished. In the first (typified in the present work by Ni/Ti), there is a large (30% or more) reduction in the actual value of the critical wave vector for total reflection while, in the second (typified here by Fe/Ge), there is very little reduction (3 % or so). The origin of these two very different types of behavior is explained. It is also shown that, within the dynamical theory of diffraction, the change in the position of the center of the Dar...
Elastic interaction between surface and spherical pore
International Nuclear Information System (INIS)
Ganeev, G.Z.; Kadyrzhanov, K.K.; Kislitsyn, S.B.; Turkebaev, T.Eh.
2000-01-01
The energy of elastic interaction of a gas-filled spherical cavity with a boundary of an elastic isotropic half-space is determined. The elastic field of a system of a spherical cavity - boundary is represented as an expansion in series of potential functions. The factors of expansions are determined by boundary conditions on a free surface of an elastic half-space and on a spherical surface of a cavity with pressure of gas P. Function of a Tresca-Miesesa on a surface of elastic surface is defined additionally with purpose creep condition determination caused by gas pressure in the cavity. (author)
Monodromy in the quantum spherical pendulum
International Nuclear Information System (INIS)
Guillemin, V.; Uribe, A.
1989-01-01
In this article we show that monodromy in the quantum spherical pendulum can be interpreted as a Maslov effect: i.e. as multi-valuedness of a certain generating function of the quantum energy levels. (orig.)
Transformation of Real Spherical Harmonics under Rotations
Romanowski, Z.; Krukowski, St.; Jalbout, A. F.
2008-08-01
The algorithm rotating the real spherical harmonics is presented. The convenient and ready to use formulae for l = 0, 1, 2, 3 are listed. The rotation in R3 space is determined by the rotation axis and the rotation angle; the Euler angles are not used. The proposed algorithm consists of three steps. (i) Express the real spherical harmonics as the linear combination of canonical polynomials. (ii) Rotate the canonical polynomials. (iii) Express the rotated canonical polynomials as the linear combination of real spherical harmonics. Since the three step procedure can be treated as a superposition of rotations, the searched rotation matrix for real spherical harmonics is a product of three matrices. The explicit formulae of matrix elements are given for l = 0, 1, 2, 3, what corresponds to s, p, d, f atomic orbitals.
Optical properties of spherical gold mesoparticles
DEFF Research Database (Denmark)
Evlyukhin, A. B.; Kuznetsov, A. I.; Novikov, S. M.
2012-01-01
Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond...
Spiral CT manifestations of spherical pneumonia
International Nuclear Information System (INIS)
Li Xiaohong; Yang Hongwei; Xu Chunmin; Qin Xiu
2008-01-01
Objective: To explore the Spiral CT manifestations and differential diagnosis of spherical pneumonia. Methods: 18 cases of spherical pneumonia and 20 cases of peripheral pulmonary carcinoma were selected, both of them were confirmed by clinic and/or pathology. The SCT findings of both groups were compared retrospectively. Results: Main spiral CT findings of spherical pneumonia were showed as followings: square or triangular lesions adjacent to pleura; with irregular shape, blurry, slightly lobulated margin, sometimes with halo sign. Small inflammatory patches and intensified vascular markings around the lesions were seen. Lesions became smaller or vanished after short-term anti-inflammatory treatment. Conclusion: Spherical pneumonia showed some characteristics on Spiral CT scan, which are helpful in diagnosis and differential diagnosis of this disease. (authors)
FY 2006 Miniature Spherical Retroreflectors Final Report
Energy Technology Data Exchange (ETDEWEB)
Anheier, Norman C.; Bernacki, Bruce E.; Krishnaswami, Kannan
2006-12-28
Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniature spherical retroreflectors using the unique optical and material properties of chalcogenide glass to reduce both performance limiting spherical aberrations. The optimized optical performance will provide efficient signal retroreflection that enables a broad range of remote detection scenarios for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. Miniature spherical retroreflectors can be developed to aid in the detection of signatures of nuclear proliferation or other chemical vapor or radiation signatures. Miniature spherical retroreflectors are not only well suited to traditional LIDAR methods for chemical plume detection and identification, but could enable remote detection of difficult semi-volatile chemical materials or low level radiation sources.
Feasibility study for the Spherical Torus Experiment
International Nuclear Information System (INIS)
Lazarus, E.A.; Attenberger, S.E.; Baylor, L.R.
1985-10-01
The design of the Spherical Torus Experiment (STX) is discussed. The physics of the plasma are given in a magnetohydrodynamic model. The structural aspects and instrumentation of the device are described. 19 refs., 103 figs
3D Printing Electrically Small Spherical Antennas
DEFF Research Database (Denmark)
Kim, Oleksiy S.
2013-01-01
3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....
Method of producing spherical lithium aluminate particles
International Nuclear Information System (INIS)
Yang, L.; Medico, R.R.; Baugh, W.A.
1983-01-01
Spherical particles of lithium aluminate are formed by initially producing aluminium hydroxide spheroids, and immersing the spheroids in a lithium ion-containing solution to infuse lithium ions into the spheroids. The lithium-infused spheroids are rinsed to remove excess lithium ion from the surface, and the rinsed spheroids are soaked for a period of time in a liquid medium, dried and sintered to form lithium aluminate spherical particles. (author)
START: the creation of a spherical tokamak
International Nuclear Information System (INIS)
Sykes, Alan
1992-01-01
The START (Small Tight Aspect Ratio Tokamak) plasma fusion experiment is now operational at AEA Fusion's Culham Laboratory. It is the world's first experiment to explore an extreme limit of the tokamak - the Spherical Tokamak - which theoretical studies predict may have substantial advantages in the search for economic fusion power. The Head of the START project, describes the concept, some of the initial experimental results and the possibility of developing a spherical tokamak power reactor. (author)
International Nuclear Information System (INIS)
Koike, Masato; Ishino, Masahiko; Sasai, Hiroyuki
2006-01-01
A grazing incidence objective monochromator consisting of a spherical mirror, a varied-line-spacing plane grating with multilayered coating, a movable plane multilayered mirror, and a fixed exit slit for the 1-6 keV region has been designed. The included angle at the grating was chosen to satisfy the grating equation and extended Bragg condition simultaneously. The aberration was corrected by means of a hybrid design method. A spectral resolving power of ∼600-∼6000 and a throughput of ∼2%-∼40% is expected for the monochromator when used in an undulator beamline
Nano selenium as antioxidant agent in a multilayer food packaging material.
Vera, Paula; Echegoyen, Yolanda; Canellas, Elena; Nerín, Cristina; Palomo, María; Madrid, Yolanda; Cámara, Carmen
2016-09-01
Selenium nanoparticles (SeNPs) were incorporated in a flexible multilayer plastic material using a water-base adhesive as vehicle for SeNPs. The antioxidant performance of the original solutions containing spherical SeNPs of 50-60 nm diameter, the adhesive containing these SeNPs, and the final multilayer plastic material to be used as food packaging were quantitatively measured. The radical scavenging capacity due to SeNPs was quantified by a free radical assay developed in the laboratory and by the diphenyl-1-picrylhydrazyl (DPPH) method. DPPH was not efficient to measure the scavenging capacity in the multilayer when the free radical scavenger is not in the surface in contact with it. Several multilayer laminated structures composed by [PET (20 m)-adhesive-LDPE (with variable thickness from 35 to 90 μm)] were prepared and measured, demonstrating for the first time that free radicals derived from oxygen (OH·, O2·, and O2H) cross the PE layer and arrive at the adhesive. SeNPs remain as such after manufacture and the final laminate is stable after 3 months of storage. The antioxidant multilayer is a non-migrating efficient free radical scavenger, able to protect the packaged product versus oxidation and extending the shelf life without being in direct contact with the product. Migration tests of both Se and SeNPs to simulants and hazelnuts demonstrated the non-migrating performance of this new active packaging. Graphical abstract ᅟ.
Spherical cows in dark matter indirect detection
Energy Technology Data Exchange (ETDEWEB)
Bernal, Nicolás [Centro de Investigaciones, Universidad Antonio Nariño, Cra 3 Este # 47A-15, Bogotá (Colombia); Necib, Lina; Slatyer, Tracy R., E-mail: nicolas.bernal@uan.edu.co, E-mail: lnecib@mit.edu, E-mail: tslatyer@mit.edu [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2016-12-01
Dark matter (DM) halos have long been known to be triaxial, but in studies of possible annihilation and decay signals they are often treated as approximately spherical. In this work, we examine the asymmetry of potential indirect detection signals of DM annihilation and decay, exploiting the large statistics of the hydrodynamic simulation Illustris. We carefully investigate the effects of the baryons on the sphericity of annihilation and decay signals for both the case where the observer is at 8.5 kpc from the center of the halo (exemplified in the case of Milky Way-like halos), and for an observer situated well outside the halo. In the case of Galactic signals, we find that both annihilation and decay signals are expected to be quite symmetric, with axis ratios very different from 1 occurring rarely. In the case of extragalactic signals, while decay signals are still preferentially spherical, the axis ratio for annihilation signals has a much flatter distribution, with elongated profiles appearing frequently. Many of these elongated profiles are due to large subhalos and/or recent mergers. Comparing to gamma-ray emission from the Milky Way and X-ray maps of clusters, we find that the gamma-ray background appears less spherical/more elongated than the expected DM signal from the large majority of halos, and the Galactic gamma ray excess appears very spherical, while the X-ray data would be difficult to distinguish from a DM signal by elongation/sphericity measurements alone.
Magnetic-plasmonic multilayered nanorods
Thumthan, Orathai
Multilayered nanorods which consist of alternating magnetic layers separated by Au layers combine two distinctive properties, magnetic properties and surface plasmonic resonance (SPR) properties into one nano-entity. Their magnetic properties are tunable by changing the layer thickness, varying from single domain to superparamagnetic state. Superparamagnetic is a key requirement for magnetic nanoparticles for bioapplications. Superparamagnetic nanoparticles exhibit high magnetic moments at low applied magnetic field while retain no magnetic moments when magnetic field is removed preventing them from aggregation due to magnetic attraction. Au layers in the nanorods provide anchorage sites for functional group attachment. Also, Au nanodisks exhibit SPR properties. The SPR peak can be tuned from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. In this research, there are three types of multilayered nanorod have been fabricated: Au/NiFe nanorods, Au/Fe nanorods, and Au/Co nanorods. These magnetic nanorods were fabricated by templated electrodeposition into the channels in Anodic Aluminum Oxide (AAO) membrane. The setup for AAO fabrication was developed as a part of this research. Our fabricated AAO membrane has channels with a diameter ranging from 40nm to 80 nm and a thickness of 10um to 12um. Magnetic properties of nanorods such as saturation field, saturation moment, coercivity and remanence are able to manipulate through their shape anisotropy. The magnetization will be easier in long axis rather than short axis of particle. In addition, Au nanodisks in the nanorod structure are not only serving as anchorage sites for functional groups but also provide SPR properties. Under irradiation of light Au nanodisks strongly absorb light at SPR frequency which ranging from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. The SPR tunability of nanorods in near
Multilayer Insulation Ascent Venting Model
Tramel, R. W.; Sutherlin, S. G.; Johnson, W. L.
2017-01-01
The thermal and venting transient experienced by tank-applied multilayer insulation (MLI) in the Earth-to-orbit environment is very dynamic and not well characterized. This new predictive code is a first principles-based engineering model which tracks the time history of the mass and temperature (internal energy) of the gas in each MLI layer. A continuum-based model is used for early portions of the trajectory while a kinetic theory-based model is used for the later portions of the trajectory, and the models are blended based on a reference mean free path. This new capability should improve understanding of the Earth-to-orbit transient and enable better insulation system designs for in-space cryogenic propellant systems.
Thermal transfer in multilayer materials
Energy Technology Data Exchange (ETDEWEB)
Bouayad, H.; Mokhtari, A.; Martin, C.; Fauchais, P. [Laboratoire de Materiaux Ceramiques et Traitements de Surface, 87 - Limoges (France)
1993-12-31
It is easier to measure the thermal diffusivity (a) of material rather than its thermal conductivity (k), a simple relationship (k=a cp) allowing to calculate k provided and cp are measured. However this relationship applies only if the considered material is homogenous. For composite materials, especially for multilayers ones, we have developed an analytical model and a numerical one. The first one allows to determine the thermal diffusivity and conductivity of a two-layer material. The second one allows to determine the thermal diffusivity of one of the layers provided the values of (a) are known for the two other layers (for a two or three-layer material). The use of the two models to calculate the apparent diffusivity of a two layer material results in values in fairly good agreement. (Authors). 4 refs., 3 figs., 3 tabs.
Superconductivity in multilayer perovskite. Weak coupling analysis
International Nuclear Information System (INIS)
Koikegami, Shigeru; Yanagisawa, Takashi
2006-01-01
We investigate the superconductivity of a three-dimensional d-p model with a multilayer perovskite structure on the basis of the second-order perturbation theory within the weak coupling framework. Our model has been designed with multilayer high-T c superconducting cuprates in mind. In our model, multiple Fermi surfaces appear, and the component of a superconducting gap function develops on each band. We have found that the multilayer structure can stabilize the superconductivity in a wide doping range. (author)
Nondestructive diagnosis of multilayer electronic plates
International Nuclear Information System (INIS)
Matvienko, A.N.; Savin, D.O.; Yas'ko, A.V.
1992-01-01
Methods of non-destructive tomographic investigation into multilayer printed plates using x radiation are described. Mathematic problem setting is given, experimental facility and methods for source data ecquisition are described. A special attention is paid to the consideration of the main factors differing the actual problem setting from the idealized one. Methods for accounting and correction of these factors are described. The efficiency of the approach proposed is demonstrated using the actual problems of reducing separate layers of multilayer printed plate metallization. The method developed is useful when exersizing control over multilayer printed plate production
International Nuclear Information System (INIS)
Aoi, Y; Tominaga, T
2013-01-01
Titanium dioxide (TiO 2 ) inverse opals in spherical shape were prepared by liquid phase deposition (LPD) using spherical colloidal crystals as templates. Spherical colloidal crystals were produced by ink-jet drying technique. Aqueous emulsion droplets that contain polystyrene latex particles were ejected into air and dried. Closely packed colloidal crystals with spherical shape were obtained. The obtained spherical colloidal crystals were used as templates for the LPD. The templates were dispersed in the deposition solution of the LPD, i.e. a mixed solution of ammonium hexafluorotitanate and boric acid and reacted for 4 h at 30 °C. After the LPD process, the interstitial spaces of the spherical colloidal crystals were completely filled with titanium oxide. Subsequent heat treatment resulted in removal of templates and spherical titanium dioxide inverse opals. The spherical shape of the template was retained. SEM observations indicated that the periodic ordered voids were surrounded by titanium dioxide. The optical reflectance spectra indicated that the optical properties of the spherical titanium dioxide inverse opals were due to Bragg diffractions from the ordered structure. Filling in the voids of the inverse opals with different solvents caused remarkable changes in the reflectance peak.
Soft X-ray multilayers and filters
Wang Zhan Shan; Tang Wei Xing; Qin Shuji; Zhou Bing; Chen Ling Ya
2002-01-01
The periodic and non-periodic multilayers were designed by using a random number to change each layer and a suitable merit function. Ion beam sputtering and magnetron sputtering were used to fabricate various multilayers and beam splitters in soft X-ray range. The characterization of multilayers by small angle X-ray diffraction, Auger electron spectroscopy, Rutherford back scattering spectroscopy and reflectivity illustrated the multilayers had good structures and smooth interlayers. The reflectivity and transmission of a beam splitter is about 5%. The fabrication and transmission properties of Ag, Zr were studied. The Rutherford back scattering spectroscopy and auger electron spectroscopy were used to investigate the contents and distributions of impurities and influence on qualities of filters. The attenuation coefficients were corrected by the data obtained by measurements
Lamellar multilayer hexadecylaniline-modified gold nanoparticle ...
Indian Academy of Sciences (India)
standard Wilhelmy plate was used for surface pressure sensing. Multilayer ... carried out on a JEOL model 1200EX instrument operated at an accelerating voltage of ... the gold nanoparticles within domains (and reorganization of the domains ...
An ultra-broadband multilayered graphene absorber
Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan
2013-01-01
An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon
Irradiated multilayer film for primal meat packaging
International Nuclear Information System (INIS)
Lustig, S.; Schuetz, J.M.; Vicik, S.J.
1987-01-01
This patent deals with a heat-shrinkable, multilayer film suitable for use in fabricating bags for packaging primal and sub-primal meat cuts and processed meats. The multilayer film has a first outer layer of a first ethylene-vinyl acetate copolymer, a core layer of a polyvinylidene chloride-vinyl chloride copolymer containing between about 70 weight percent and about 90 weight percent vinylidene chloride as a barrier film, and a second outer layer of a second ethylene-vinyl acetate copolymer. The multilayer film is preferably made by co-extrusion of the layers, and then it is biaxially stretched. After biaxial stretching, the entire multilayer film is substantially uniformly irradiated to a dosage level of between about 2 megarads and about 3 megarads and heat-sealed in the form of a bag. The film is not significantly discoloured by the irradiation and the bag has improved toughness properties and heat-sealing characteristics
Irradiated multilayer film for primal meat packaging
International Nuclear Information System (INIS)
Lustig, S.; Schuetz, J.M.; Vicik, S.J.
1987-01-01
This patent deals with a heat-shrinkable, multilayer film suitable for use in fabricating bags for packaging primal and sub-primal meat cuts and processed meats. The multilayer film has a first outer layer of an ethylene-vinyl acetate copolymer, a core layer of a barrier film comprising vinylidene chloride-methyl acrylate copolymer, and a second outer layer of an ethylene-vinyl acetate copolymer. The multilayer film is preferably made by co-extrusion of the layers, and then it is biaxially stretched. After biaxial stretching, the multilayer film is irradiated to a dosage level of between 1 megarad and 5 megarads and heat-sealed in the form of a bag. The bag has improved storage stability characteristics
Iijima, Yushi; Harigai, Toru; Isono, Ryo; Degai, Satoshi; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi; Yasui, Haruyuki; Kaneko, Satoru; Kunitsugu, Shinsuke; Kamiya, Masao; Taki, Makoto
2018-01-01
Conductive hard-coating films have potential application as protective films for contact pins used in the electrical inspection process for integrated circuit chips. In this study, multi-layer diamond-like carbon (DLC) films were prepared as conductive hard-coating films. The multi-layer DLC films consisting of DLC and nitrogen-containing DLC (N-DLC) film were prepared using a T-shape filtered arc deposition method. Periodic DLC/N-DLC four-layer and eight-layer films had the same film thickness by changing the thickness of each layer. In the ball-on-disk test, the N-DLC mono-layer film showed the highest wear resistance; however, in the spherical polishing method, the eight-layer film showed the highest polishing resistance. The wear and polishing resistance and the aggressiveness against an opponent material of the multi-layer DLC films improved by reducing the thickness of a layer. In multi-layer films, the soft N-DLC layer between hard DLC layers is believed to function as a cushion. Thus, the tribological properties of the DLC films were improved by a multi-layered structure. The electrical resistivity of multi-layer DLC films was approximately half that of the DLC mono-layer film. Therefore, the periodic DLC/N-DLC eight-layer film is a good conductive hard-coating film.
Ordered organic-organic multilayer growth
Forrest, Stephen R; Lunt, Richard R
2015-01-13
An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.
ELSA- The European Levitated Spherical Actruator
Ruiz, M.; Serin, J.; Telteu-Nedelcu, D.; De La Vallee Poussin, H.; Onillon, E.; Rossini, L.
2014-08-01
The reaction sphere is a magnetic bearing spherical actuator consisting of a permanent magnet spherical rotor that can be accelerated in any direction. It consists of an 8-pole permanent magnet spherical rotor that is magnetically levitated and can be accelerated about any axis by a 20-pole stator with electromagnets. The spherical actuator is proposed as a potential alternative to traditional momentum exchange devices such as reaction wheels (RWs) or control moment gyroscopes (CMGs). This new actuator provides several benefits such as reduced mass and power supply allocated to the attitude and navigation unit, performance gain, and improved reliability due to the absence of mechanical bearings. The paper presents the work done on the levitated spherical actuator and more precisely the electrical drive including its control unit and power parts. An elegant breadboard is currently being manufactured within the frame of an FP7 project. This project also comprises a feasibility study to show the feasibility of integrating such a system on a flight platform and to identify all the challenges to be solved in terms of technology or components to be developed.
Statistical Mechanics of Thin Spherical Shells
Directory of Open Access Journals (Sweden)
Andrej Košmrlj
2017-01-01
Full Text Available We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes, and the local out-of-plane undulations leads to novel phenomena. In spherical shells, thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated “pressure.” Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows nonlinearly with increasing outward pressure, with the same universal power-law exponent that characterizes the response of fluctuating flat membranes to a uniform tension.
Scaling of a fast spherical discharge
Energy Technology Data Exchange (ETDEWEB)
Antsiferov, P. S., E-mail: Ants@isan.troitsk.ru; Dorokhin, L. A. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)
2017-02-15
The influence of the discharge cavity dimensions on the properties of the spherical plasma formed in a fast discharge was studied experimentally. The passage of a current pulse with an amplitude of 30–40 kA and a rise rate of ~10{sup 12} A/s (a fast discharge) through a spherical ceramic (Al{sub 2}O{sub 3}) cavity with an inner diameter of 11 mm filled with argon at a pressure of 80 Pa results in the formation of a 1- to 2-mm-diameter spherical plasma with an electron temperature of several tens of electronvolts and a density of 10{sup 18}–10{sup 19} cm{sup –3}. It is shown that an increase in the inner diameter of the discharge cavity from 11 to 21 mm leads to the fourfold increase in the formation time of the spherical plasma and a decrease in the average ion charge. A decrease in the cavity diameter to 7 mm makes the spherical plasma unstable.
Spherical aberrations of human astigmatic corneas.
Zhao, Huawei; Dai, Guang-Ming; Chen, Li; Weeber, Henk A; Piers, Patricia A
2011-11-01
To evaluate whether the average spherical aberration of human astigmatic corneas is statistically equivalent to human nonastigmatic corneas. Spherical aberrations of 445 astigmatic corneas prior to laser vision correction were retrospectively investigated to determine Zernike coefficients for central corneal areas 6 mm in diameter using CTView (Sarver and Associates). Data were divided into groups according to cylinder power (0.01 to 0.25 diopters [D], 0.26 to 0.75 D, 0.76 to 1.06 D, 1.07 to 1.53 D, 1.54 to 2.00 D, and >2.00 D) and according to age by decade. Spherical aberrations were correlated with age and astigmatic power among groups and the entire population. Statistical analyses were conducted, and P.05 for all tested groups). Mean spherical aberration of astigmatic corneas was not correlated significantly with cylinder power or age (P>.05). Spherical aberrations are similar to those of nonastigmatic corneas, permitting the use of these additional data in the design of aspheric toric intra-ocular lenses. Copyright 2011, SLACK Incorporated.
Recent Progress on Spherical Torus Research
Energy Technology Data Exchange (ETDEWEB)
Ono, Masayuki [PPPL; Kaita, Robert [PPPL
2014-01-01
The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.
Friction factor for water flow through packed beds of spherical and non-spherical particles
Directory of Open Access Journals (Sweden)
Kaluđerović-Radoičić Tatjana
2017-01-01
Full Text Available The aim of this work was the experimental evaluation of different friction factor correlations for water flow through packed beds of spherical and non-spherical particles at ambient temperature. The experiments were performed by measuring the pressure drop across the bed. Packed beds made of monosized glass spherical particles of seven different diameters were used, as well as beds made of 16 fractions of quartz filtration sand obtained by sieving (polydisperse non-spherical particles. The range of bed voidages was 0.359–0.486, while the range of bed particle Reynolds numbers was from 0.3 to 286 for spherical particles and from 0.1 to 50 for non-spherical particles. The obtained results were compared using a number of available literature correlations. In order to improve the correlation results for spherical particles, a new simple equation was proposed in the form of Ergun’s equation, with modified coefficients. The new correlation had a mean absolute deviation between experimental and calculated values of pressure drop of 9.04%. For non-spherical quartz filtration sand particles the best fit was obtained using Ergun’s equation, with a mean absolute deviation of 10.36%. Surface-volume diameter (dSV necessary for correlating the data for filtration sand particles was calculated based on correlations for dV = f(dm and Ψ = f(dm. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. ON172022
The spherical harmonics method, II (application to problems with plane and spherical symmetry)
Energy Technology Data Exchange (ETDEWEB)
Mark, C
1958-12-15
The application of the spherical harmonic method to problems with plane or spherical symmetry is discussed in detail. The numerical results of some applications already made are included to indicate the degree of convergence obtained. Formulae for dealing with distributions of isotropic sources are developed. Tables useful in applying the method are given in Section 11. (author)
Finding overlapping communities in multilayer networks.
Liu, Weiyi; Suzumura, Toyotaro; Ji, Hongyu; Hu, Guangmin
2018-01-01
Finding communities in multilayer networks is a vital step in understanding the structure and dynamics of these layers, where each layer represents a particular type of relationship between nodes in the natural world. However, most community discovery methods for multilayer networks may ignore the interplay between layers or the unique topological structure in a layer. Moreover, most of them can only detect non-overlapping communities. In this paper, we propose a new community discovery method for multilayer networks, which leverages the interplay between layers and the unique topology in a layer to reveal overlapping communities. Through a comprehensive analysis of edge behaviors within and across layers, we first calculate the similarities for edges from the same layer and the cross layers. Then, by leveraging these similarities, we can construct a dendrogram for the multilayer networks that takes both the unique topological structure and the important interplay into consideration. Finally, by introducing a new community density metric for multilayer networks, we can cut the dendrogram to get the overlapping communities for these layers. By applying our method on both synthetic and real-world datasets, we demonstrate that our method has an accurate performance in discovering overlapping communities in multilayer networks.
Acoustic radiation force on a multilayered sphere in a Gaussian standing field
Wang, Haibin; Liu, Xiaozhou; Gao, Sha; Cui, Jun; Liu, Jiehui; He, Aijun; Zhang, Gutian
2018-03-01
We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach. An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid. The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed, with particular emphasis on the shell thickness of every layer, and the width of the Gaussian beam. The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka, as well as the shell thickness of each layer. This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave, which may benefit the improvement and development of acoustic control technology, such as trapping, sorting, and assembling a cell, and drug delivery applications. Project supported by National Key R&D Program (Grant No. 2016YFF0203000), the National Natural Science Foundation of China (Grant Nos. 11774167 and 61571222), the Fundamental Research Funds for the Central Universities of China (Grant No. 020414380001), the Key Laboratory of Underwater Acoustic Environment, Institute of Acoustics, Chinese Academy of Sciences (Grant No. SSHJ-KFKT-1701), and the AQSIQ Technology R&D Program of China (Grant No. 2017QK125).
Electromagnetic cloaking in higher order spherical cloaks
Sidhwa, H. H.; Aiyar, R. P. R. C.; Kulkarni, S. V.
2017-06-01
The inception of transformation optics has led to the realisation of the invisibility devices for various applications, one of which is spherical cloaking. In this paper, a formulation for a higher-order spherical cloak has been proposed to reduce its physical thickness significantly by introducing a nonlinear relation between the original and transformed coordinate systems and it has been verified using the ray tracing approach. Analysis has been carried out to observe the anomalies in the variation of refractive index for higher order cloaks indicating the presence of poles in the relevant equations. Furthermore, a higher-order spherical cloak with predefined values of the material characteristics on its inner and outer surfaces has been designed for practical application.
A spherical Taylor-Couette dynamo
Marcotte, Florence; Gissinger, Christophe
2016-04-01
We present a new scenario for magnetic field amplification in the planetary interiors where an electrically conducting fluid is confined in a differentially rotating, spherical shell (spherical Couette flow) with thin aspect-ratio. When the angular momentum sufficiently decreases outwards, a primary hydrodynamic instability is widely known to develop in the equatorial region, characterized by pairs of counter-rotating, axisymmetric toroidal vortices (Taylor vortices) similar to those observed in cylindrical Couette flow. We characterize the subcritical dynamo bifurcation due to this spherical Taylor-Couette flow and study its evolution as the flow successively breaks into wavy and turbulent Taylor vortices for increasing Reynolds number. We show that the critical magnetic Reynolds number seems to reach a constant value as the Reynolds number is gradually increased. The role of global rotation on the dynamo threshold and the implications for planetary interiors are finally discussed.
Spherical tokamak power plant design issues
International Nuclear Information System (INIS)
Hender, T.C.; Bond, A.; Edwards, J.; Karditsas, P.J.; McClements, K.G.; Mustoe, J.; Sherwood, D.V.; Voss, G.M.; Wilson, H.R.
2000-01-01
The very high β potential of the spherical tokamak has been demonstrated in the START experiment. Systems code studies show the cost of electricity from spherical tokamak power plants, operating at high β in second ballooning mode stable regime, is comparable with fossil fuels and fission. Outline engineering designs are presented based on two concepts for the central rod of the toroidal field (TF) circuit - a room temperature water cooled copper rod or a helium cooled cryogenic aluminium rod. For the copper rod case the TF return limbs are supported by the vacuum vessel, while for the aluminium rod the TF coils form an independent structure. In both cases thermohydraulic and stress calculations indicate the viability of the design. Two-dimensional neutronics calculations show the feasibility of tritium self-sufficiency without an inboard blanket. The spherical tokamak has unique maintenance possibilities based on lowering major component structures into a hot cell beneath the device and these are discussed
Dynamics of a spherical minority game
International Nuclear Information System (INIS)
Galla, T; Coolen, A C C; Sherrington, D
2003-01-01
We present an exact dynamical solution of a spherical version of the batch minority game (MG) with random external information. The control parameters in this model are the ratio of the number of possible values for the public information over the number of agents, and the radius of the spherical constraint on the microscopic degrees of freedom. We find a phase diagram with three phases: two without anomalous response (an oscillating versus a frozen state) and a further frozen phase with divergent integrated response. In contrast to standard MG versions, we can also calculate the volatility exactly. Our study reveals similarities between the spherical and the conventional MG, but also intriguing differences. Numerical simulations confirm our analytical results
Electrostatic axisymmetric mirror with removable spherical aberration
International Nuclear Information System (INIS)
Birmuzaev, S.B.; Serikbaeva, G.S.; Hizirova, M.A.
1999-01-01
The electrostatic axisymmetric mirror, assembled from three coaxial cylinders with an equal diameter d and under the potential v1, v2 and v3, was computed. The proportions of geometrical and electric parameters of the mirror, with which the spherical 3-order aberration may be eliminated, were determined. The computation outcomes of the case, when the focal power of the mirror is enough large and the object plane in the focus is out of its field, are presented (Fig. 1 - potentials proportion that makes elimination of the spherical aberration possible; Fig. 2 - the focus coordinates when the spherical aberration is eliminated). The geometrical values are presented by d, and the electric ones are presented by v1. The figures on the curves present a length of the second (middle) electrode. The zero point is located in the middle of the gap between the first and second electrodes The investigated mirror may be used as a lens for the transmission electron microscope
Flow and scour around spherical bodies
DEFF Research Database (Denmark)
Truelsen, Christoffer
2003-01-01
Spherical bodies placed in the marine environment may bury themselves due to the action of the waves and the current on the sediment in their immediate neighborhood. The present study addresses this topic by a numerical and an experimental investigation of the flow and scour around a spherical body...... results except in the critical flow regime. For flow around a near-wall sphere, a weak horseshoe vortex emerges as the gap ratio becomes less than or equal to 0.3. In Chapter 3, a RANS flow solver has been used to compute the bed shear stress for a near-wall sphere. The model results compare well...... 4, an experimental study on the scour around spherical bodies and self-burial in sand for steady current and waves has been carried out. The effect of the contraction of streamlines is found to be the key element in the scour process both for steady current and waves. Furthermore, it is demonstrated...
Elastic properties of spherically anisotropic piezoelectric composites
International Nuclear Information System (INIS)
En-Bo, Wei; Guo-Qing, Gu; Ying-Ming, Poon
2010-01-01
Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed. (condensed matter: structure, thermal and mechanical properties)
Studies of spherical inertial-electrostatic confinement
International Nuclear Information System (INIS)
Miley, G.H.
1992-01-01
Theoretical and experimental results from studies of Spherical Inertial-Electrostatic Confinement (SIEC) are presented. This principle of IEC involves the confinement by multiple potential wells created by ion injection into a spherical device containing biased grids. A semitransparent cathode accelerates ions, generating a spherical ion-beam flow which converges at the center of the spherical volume, creating a space charge (potential well) region. An electron flow is created by the core (virtual anode) region, forming in turn a virtual cathode. Ions trapped inside this well oscillate back and forth until they fuse or degrade in energy. Such multiple wells with virtual anodes and cathodes, have been called ''Poissors'' following the original work by Farnsworth and by Hirsch. Fusion within the core occurs by reactions between non-Maxwellian beam-beam type ions. This has the potential for achieving a high power density and also for burning both D-T and advanced fuels. If successful, such a device would be attractive for a variety of high power density applications, e.g., space power or as a neutron source based on D-D or D-T operation. Simulations of recent SIEC experiments have been carried out using the XL-code, to solve Poisson's equation, self-consistently with the collisionless Vlasov equation in spherical geometry for several current species and grid parameters. The potential profile predictions are reasonably consistent with experimental results. Potential well measurements used a collimated proton detector. Results indicate that an ∼ 15-kV virtual anode, at least one centimeter in radius, was formed in a spherical device with a cathode potential of 30 kV using an ion current of ∼ 30 mA. Analysis indicates D + densities on the order of 10 9 cm -3 , and D 2 + densities on the order of 10 10 cm -3 . Steady-state D-D neutron emission of about 10 6 n/sec is observed
Analysis of a spherical permanent magnet actuator
International Nuclear Information System (INIS)
Wang, J.; Jewell, G.W.; Howe, D.
1997-01-01
This paper describes a new form of actuator with a spherical permanent magnet rotor and a simple winding arrangement, which is capable of a high specific torque by utilizing a rare-earth permanent magnet. The magnetic-field distribution is established using an analytical technique formulated in spherical coordinates, and the results are validated by finite element analysis. The analytical field solution allows the prediction of the actuator torque and back emf in closed forms. In turn, these facilitate the characterization of the actuator and provide a firm basis for design optimization, system dynamic modeling, and closed-loop control law development. copyright 1997 American Institute of Physics
Development of a spherical neutron rem monitor
International Nuclear Information System (INIS)
Panchal, C.G.; Madhavi, V.; Bansode, P.Y.; Jakati, R.K.; Ghodgaonkar, M.D.; Desai, S.S.; Shaikh, A.M.; Sathian, V.
2007-01-01
A new neutron rem monitor based on spherical LINUS with the state of art electronic circuits has been designed in Electronics Division. This prototype instrument encompasses a spherical double polythene moderator to improve an isotropic response and a lead layer to extend its energy response compared to the conventional neutron rem monitors. A systematic testing and calibration of the energy and directional response of the prototype monitor have been carried out. Although the monitor is expected to perform satisfactorily upto an energy ∼ 55 MeV, at present its response has been tested upto 5 MeV. (author)
Multilayer Piezoelectric Stack Actuator Characterization
Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph
2008-01-01
Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.
Repeatability of Cryogenic Multilayer Insulation
Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.
2017-12-01
Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation (MLI) has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five Glenn Research Center (GRC) provided coupons with 25 layers was shown to be +/- 8.4% whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0%. A second group of 10 coupons has been fabricated by Yetispace and tested by Florida State University, the repeatability between coupons has been shown to be +/- 15-25%. Based on detailed statistical analysis, the data has been shown to be statistically significant.
Multilayer heterostructures and their manufacture
Hammond, Scott R; Reese, Matthew; Rupert, Benjamin; Miedaner, Alexander; Curtis, Clavin; Olson, Dana; Ginley, David S
2015-11-04
A method of synthesizing multilayer heterostructures including an inorganic oxide layer residing on a solid substrate is described. Exemplary embodiments include producing an inorganic oxide layer on a solid substrate by a liquid coating process under relatively mild conditions. The relatively mild conditions include temperatures below 225.degree. C. and pressures above 9.4 mb. In an exemplary embodiment, a solution of diethyl aluminum ethoxide in anhydrous diglyme is applied to a flexible solid substrate by slot-die coating at ambient atmospheric pressure, and the diglyme removed by evaporation. An AlO.sub.x layer is formed by subjecting material remaining on the solid substrate to a relatively mild oven temperature of approximately 150.degree. C. The resulting AlO.sub.x layer exhibits relatively high light transmittance and relatively low vapor transmission rates for water. An exemplary embodiment of a flexible solid substrate is polyethylene napthalate (PEN). The PEN is not substantially adversely affected by exposure to 150.degree. C
EUV multilayer mirrors with enhanced stability
Benoit, Nicolas; Yulin, Sergiy; Feigl, Torsten; Kaiser, Norbert
2006-08-01
The application of multilayer optics in EUV lithography requires not only the highest possible normal-incidence reflectivity but also a long-term thermal and radiation stability at operating temperatures. This requirement is most important in the case of the collector mirror of the illumination system close to the EUV source where a short-time decrease in reflectivity is most likely. Mo/Si multilayer mirrors, designed for high normal reflectivity at the wavelength of 13.5 nm and deposited by dc magnetron sputtering, were directly exposed to EUV radiation without mitigation system. They presented a loss of reflectivity of more than 18% after only 8 hours of irradiation by a Xe-discharge source. Another problem of Mo/Si multilayers is the instability of reflectivity and peak wavelength under high heat load. It becomes especially critical at temperatures above 200°C, where interdiffusion between the molybdenum and the silicon layers is observed. The development of high-temperature multilayers was focused on two alternative Si-based systems: MoSi II/Si and interface engineered Mo/C/Si/C multilayer mirrors. The multilayer designs as well as the deposition parameters of all systems were optimized in terms of high peak reflectivity (>= 60 %) at a wavelength of 13.5 nm and high thermal stability. Small thermally induced changes of the MoSi II/Si multilayer properties were found but they were independent of the annealing time at all temperatures examined. A wavelength shift of -1.7% and a reflectivity drop of 1.0% have been found after annealing at 500°C for 100 hours. The total degradation of optical properties above 650°C can be explained by a recrystallization process of MoSi II layers.
Multi-layer adaptive thin shells for future space telescopes
International Nuclear Information System (INIS)
Bastaits, R; Preumont, A; Rodrigues, G; Jetteur, Ph; Hagedorn, P
2012-01-01
This paper examines the morphing capability of doubly curved elastic shells with various layers of active materials with strain actuation capability. The equivalent piezoelectric loads of an orthotropic multi-layer shell is established and it is demonstrated that a set of four active layers offer independent control of the in-plane forces and bending moments, which guarantees optimum morphing with arbitrary profile. This is illustrated by a numerical example which compares a unimorph configuration (single layer of active material) with a twin-bimorph (two pairs of symmetrical layers of active material with orthotropic properties). Numerical simulations indicate that the optical (Zernike) modes with shapes where the curvatures in orthogonal directions have opposite signs (e.g. astigmatism, trefoil, tetrafoil) are fairly easy to control with both configurations and that substantial amplitudes may be achieved. However, the optical modes with shapes where the curvatures in orthogonal directions have the same sign (e.g. defocus, coma, spherical aberration) are difficult to control with the unimorph configuration, and they lead to the appearance of slope discontinuities at the interface between the independent electrodes. As expected, a much better morphing is achieved with a twin-bimorph configuration. (paper)
Novel Electrically Small Spherical Electric Dipole Antenna
DEFF Research Database (Denmark)
Kim, Oleksiy S.
2010-01-01
This paper introduces a novel electrically small spherical meander antenna. Horizontal sections of the meander are composed of wire loops, radii of which are chosen so that the whole structure is conformal to a sphere of radius a. To form the meander the loops are connected by wires at a meridian...
Preparations of spherical polymeric particles from Tanzanian ...
African Journals Online (AJOL)
Spherical Polymeric Particles (SPP) have been prepared from Tanzanian Cashew Nut Shell Liquid (CNSL) by suspension polymerization technique involving either step-growth or chain- growth polymerization mechanisms. The sizes of the SPP, which ranged from 0.1 to 2.0 mm were strongly influenced by the amounts of ...
Sphericity in the interacting boson model
International Nuclear Information System (INIS)
Ogata, H.
1977-01-01
The interacting boson model (IBM) of Arima and Iachello is examined. The transition between the rotational and vibrational modes of even-even nuclei is presented as a function of a sphericity parameter, which is determined primarily from yrast band spectra. The backbending feature is reasonably reproduced. (author)
Exact solutions of the spherically symmetric multidimensional ...
African Journals Online (AJOL)
The complete orthonormalised energy eigenfunctions and the energy eigenvalues of the spherically symmetric isotropic harmonic oscillator in N dimensions, are obtained through the methods of separation of variables. Also, the degeneracy of the energy levels are examined. KEY WORDS: - Schrödinger Equation, Isotropic ...
Added Mass of a Spherical Cap Body
Czech Academy of Sciences Publication Activity Database
Šimčík, Miroslav; Punčochář, Miroslav; Růžička, Marek
2014-01-01
Roč. 118, OCT 18 (2014), s. 1-8 ISSN 0009-2509 R&D Projects: GA MŠk(CZ) LD13018 Institutional support: RVO:67985858 Keywords : spherical cap * added mass * single particle Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.337, year: 2014
Effective pair potentials for spherical nanoparticles
International Nuclear Information System (INIS)
Van Zon, Ramses
2009-01-01
An effective description for rigid spherical nanoparticles in a fluid of point particles is presented. The points inside the nanoparticles and the point particles are assumed to interact via spherically symmetric additive pair potentials, while the distribution of points inside the nanoparticles is taken to be spherically symmetric and smooth. The resulting effective pair interactions between a nanoparticle and a point particle, as well as between two nanoparticles, are then given by spherically symmetric potentials. If overlap between particles is allowed, as can occur for some forms of the pair potentials, the effective potential generally has non-analytic points. It is shown that for each effective potential the expressions for different overlapping cases can be written in terms of one analytic auxiliary potential. Even when only non-overlapping situations are possible, the auxiliary potentials facilitate the formulation of the effective potentials. Effective potentials for hollow nanoparticles (appropriate e.g. for buckyballs) are also considered and shown to be related to those for solid nanoparticles. For hollow nanoparticles overlap is more physical, since this covers the case of a smaller particle embedded in a larger, hollow nanoparticle. Finally, explicit expressions are given for the effective potentials derived from basic pair potentials of power law and exponential form, as well as from the commonly used London–van der Waals, Morse, Buckingham, and Lennard-Jones potentials. The applicability of the latter is demonstrated by comparison with an atomic description of nanoparticles with an internal face centered cubic structure
MAST: a Mega Amp Spherical Tokamak
International Nuclear Information System (INIS)
Darke, A.C.; Harbar, J.R.; Hay, J.H.; Hicks, J.B.; Hill, J.W.; McKenzie, J.S.; Morris, A.W.; Nightingale, M.P.S.; Todd, T.N.; Voss, G.M.; Watkins, J.R.
1995-01-01
The highly successful tight aspect ratio tokamak research pioneered on the START machine at Culham, together with the attractive possibilities of the concept, suggest a larger device should be considered. The design of a Mega Amp Spherical Tokamak is described, operating at much higher currents and over longer pulses than START and compatible with strong additional heating. (orig.)
A Generalization of the Spherical Inversion
Ramírez, José L.; Rubiano, Gustavo N.
2017-01-01
In the present article, we introduce a generalization of the spherical inversion. In particular, we define an inversion with respect to an ellipsoid, and prove several properties of this new transformation. The inversion in an ellipsoid is the generalization of the elliptic inversion to the three-dimensional space. We also study the inverse images…
Sparse acoustic imaging with a spherical array
DEFF Research Database (Denmark)
Fernandez Grande, Efren; Xenaki, Angeliki
2015-01-01
In recent years, a number of methods for sound source localization and sound field reconstruction with spherical microphone arrays have been proposed. These arrays have properties that are potentially very useful, e.g. omni-directionality, robustness, compensable scattering, etc. This paper propo...
Spherical torus, compact fusion at low field
International Nuclear Information System (INIS)
Peng, Y.K.M.
1985-02-01
A spherical torus is obtained by retaining only the indispensable components on the inboard side of a tokamak plasma, such as a cooled, normal conductor that carries current to produce a toroidal magnetic field. The resulting device features an exceptionally small aspect ratio (ranging from below 2 to about 1.3), a naturally elongated D-shaped plasma cross section, and ramp-up of the plasma current primarily by noninductive means. As a result of the favorable dependence of the tokamak plasma behavior to decreasing aspect ratio, a spherical torus is projected to have small size, high beta, and modest field. Assuming Mirnov confinement scaling, an ignition spherical torus at a field of 2 T features a major radius of 1.5 m, a minor radius of 1.0 m, a plasma current of 14 MA, comparable toroidal and poloidal field coil currents, an average beta of 24%, and a fusion power of 50 MW. At 2 T, a Q = 1 spherical torus will have a major radius of 0.8 m, a minor radius of 0.5 m, and a fusion power of a few megawatts
Refractive index contrast in porous silicon multilayers
Energy Technology Data Exchange (ETDEWEB)
Nava, R.; Mora, M.B. de la; Tagueena-Martinez, J. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos (Mexico); Rio, J.A. del [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos (Mexico); Centro Morelense de Innovacion y Transferencia Tecnologica, Consejo de Ciencia y Tecnologia del Estado de Morelos (Mexico)
2009-07-15
Two of the most important properties of a porous silicon multilayer for photonic applications are flat interfaces and a relative large refractive index contrast between layers in the optical wavelength range. In this work, we studied the effect of the current density and HF electrolyte concentration on the refractive index of porous silicon. With the purpose of increasing the refractive index contrast in a multilayer, the refractive index of porous silicon produced at low current was studied in detail. The current density applied to produce the low porosity layers was limited in order to keep the electrolyte flow through the multilayer structure and to avoid deformation of layer interfaces. We found that an electrolyte composed of hydrofluoric acid, ethanol and glycerin in a ratio of 3:7:1 gives a refractive index contrast around 1.3/2.8 at 600 nm. Several multilayer structures with this refractive index contrast were fabricated, such as dielectric Bragg mirrors and microcavities. Reflectance spectra of the structures show the photonic quality of porous silicon multilayers produced under these electrochemical conditions. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Base Metal Co-Fired Multilayer Piezoelectrics
Directory of Open Access Journals (Sweden)
Lisheng Gao
2016-03-01
Full Text Available Piezoelectrics have been widely used in different kinds of applications, from the automobile industry to consumer electronics. The novel multilayer piezoelectrics, which are inspired by multilayer ceramic capacitors, not only minimize the size of the functional parts, but also maximize energy efficiency. Development of multilayer piezoelectric devices is at a significant crossroads on the way to achieving low costs, high efficiency, and excellent reliability. Concerning the costs of manufacturing multilayer piezoelectrics, the trend is to replace the costly noble metal internal electrodes with base metal materials. This paper discusses the materials development of metal co-firing and the progress of integrating current base metal chemistries. There are some significant considerations in metal co-firing multilayer piezoelectrics: retaining stoichiometry with volatile Pb and alkaline elements in ceramics, the selection of appropriate sintering agents to lower the sintering temperature with minimum impact on piezoelectric performance, and designing effective binder formulation for low pO2 burnout to prevent oxidation of Ni and Cu base metal.
Corrugated grating on organic multilayer Bragg reflector
Jaquet, Sylvain; Scharf, Toralf; Herzig, Hans Peter
2007-08-01
Polymeric multilayer Bragg structures are combined with diffractive gratings to produce artificial visual color effects. A particular effect is expected due to the angular reflection dependence of the multilayer Bragg structure and the dispersion caused by the grating. The combined effects can also be used to design particular filter functions and various resonant structures. The multilayer Bragg structure is fabricated by spin-coating of two different low-cost polymer materials in solution on a cleaned glass substrate. These polymers have a refractive index difference of about 0.15 and permit multilayer coatings without interlayer problems. Master gratings of different periods are realized by laser beam interference and replicated gratings are superimposed on the multilayer structure by soft embossing in a UV curing glue. The fabrication process requires only polymer materials. The obtained devices are stable and robust. Angular dependent reflection spectrums for the visible are measured. These results show that it is possible to obtain unexpected reflection effects. A rich variety of color spectra can be generated, which is not possible with a single grating. This can be explained by the coupling of transmission of grating orders and the Bragg reflection band. A simple model permits to explain some of the spectral vs angular dependence of reflected light.
Magnetic surfaces, thin films, and multilayers
International Nuclear Information System (INIS)
Parkin, S.S.P.; Renard, J.P.; Shinjo, T.; Zinn, W.
1992-01-01
This paper details recent developments in the magnetism of surfaces, thin films and multilayers. More than 20 invited contributions and more than 60 contributed papers attest to the great interest and vitality of this subject. In recent years the study of magnetic surfaces, thin films and multilayers has undergone a renaissance, partly motivated by the development of new growth and characterization techniques, but perhaps more so by the discovery of many exciting new properties, some quite unanticipated. These include, most recently, the discovery of enormous values of magnetoresistance in magnetic multilayers far exceeding those found in magnetic single layer films and the discovery of oscillatory interlayer coupling in transition metal multilayers. These experimental studies have motivated much theoretical work. However these developments are to a large extent powered by materials engineering and our ability to control and understand the growth of thin layers just a few atoms thick. The preparation of single crystal thin film layers and multilayers remains important for many studies, in particular, for properties dependent. These studies obviously require engineering not just a layer thicknesses but of lateral dimensions as well. The properties of such structures are already proving to be a great interest
Spherical Bessel transform via exponential sum approximation of spherical Bessel function
Ikeno, Hidekazu
2018-02-01
A new algorithm for numerical evaluation of spherical Bessel transform is proposed in this paper. In this method, the spherical Bessel function is approximately represented as an exponential sum with complex parameters. This is obtained by expressing an integral representation of spherical Bessel function in complex plane, and discretizing contour integrals along steepest descent paths and a contour path parallel to real axis using numerical quadrature rule with the double-exponential transformation. The number of terms in the expression is reduced using the modified balanced truncation method. The residual part of integrand is also expanded by exponential functions using Prony-like method. The spherical Bessel transform can be evaluated analytically on arbitrary points in half-open interval.
Multilayer cladding with hyperbolic dispersion for plasmonic waveguides
DEFF Research Database (Denmark)
Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi
2015-01-01
We study the properties of plasmonic waveguides with a dielectric core and multilayer metal-dielectric claddings that possess hyperbolic dispersion. The waveguides hyperbolic multilayer claddings show better performance in comparison to conventional plasmonic waveguides. © OSA 2015....
Multilayer Integrated Film Bulk Acoustic Resonators
Zhang, Yafei
2013-01-01
Multilayer Integrated Film Bulk Acoustic Resonators mainly introduces the theory, design, fabrication technology and application of a recently developed new type of device, multilayer integrated film bulk acoustic resonators, at the micro and nano scale involving microelectronic devices, integrated circuits, optical devices, sensors and actuators, acoustic resonators, micro-nano manufacturing, multilayer integration, device theory and design principles, etc. These devices can work at very high frequencies by using the newly developed theory, design, and fabrication technology of nano and micro devices. Readers in fields of IC, electronic devices, sensors, materials, and films etc. will benefit from this book by learning the detailed fundamentals and potential applications of these advanced devices. Prof. Yafei Zhang is the director of the Ministry of Education’s Key Laboratory for Thin Films and Microfabrication Technology, PRC; Dr. Da Chen was a PhD student in Prof. Yafei Zhang’s research group.
Exchange interactions in Fe/Y multilayers
International Nuclear Information System (INIS)
Elkabil, R.; Elkaidi, I.; Annouar, F.; Lassri, H.; Hamdoun, A.; Bensassi, B.; Berrada, A.; Krishnan, R.
2005-01-01
The magnetization of Fe/Y multilayers has been measured as a function of temperature. A bulk-like T 3/2 temperature dependence of the magnetization is observed for all multilayers in the temperature range 5-300 K. The spin-wave constant B is found to decrease inversely with t Fe . A simple theoretical model with exchange interactions only, and with non-interacting magnons, has been used to explain the temperature dependence of the magnetization and the approximate values for the bulk exchange interaction J b , surface exchange interaction J s and the interlayer exchange interaction J I for various Fe layer thicknesses have been obtained
Measure of Node Similarity in Multilayer Networks
DEFF Research Database (Denmark)
Møllgaard, Anders; Zettler, Ingo; Dammeyer, Jesper
2016-01-01
university.Our analysis is based on data obtained using smartphones equipped with customdata collection software, complemented by questionnaire-based data. The networkof social contacts is represented as a weighted multilayer network constructedfrom different channels of telecommunication as well as data...... might bepresent in one layer of the multilayer network and simultaneously be absent inthe other layers. For a variable such as gender, our measure reveals atransition from similarity between nodes connected with links of relatively lowweight to dis-similarity for the nodes connected by the strongest...
Piezoelectric multilayer actuator life test.
Sherrit, Stewart; Bao, Xiaoqi; Jones, Christopher M; Aldrich, Jack B; Blodget, Chad J; Moore, James D; Carson, John W; Goullioud, Renaud
2011-04-01
Potential NASA optical missions such as the Space Interferometer Mission require actuators for precision positioning to accuracies of the order of nanometers. Commercially available multilayer piezoelectric stack actuators are being considered for driving these precision mirror positioning mechanisms. These mechanisms have potential mission operational requirements that exceed 5 years for one mission life. To test the feasibility of using these commercial actuators for these applications and to determine their reliability and the redundancy requirements, a life test study was undertaken. The nominal actuator requirements for the most critical actuators on the Space Interferometry Mission (SIM) in terms of number of cycles was estimated from the Modulation Optics Mechanism (MOM) and Pathlength control Optics Mechanism (POM) and these requirements were used to define the study. At a nominal drive frequency of 250 Hz, one mission life is calculated to be 40 billion cycles. In this study, a set of commercial PZT stacks configured in a potential flight actuator configuration (pre-stressed to 18 MPa and bonded in flexures) were tested for up to 100 billion cycles. Each test flexure allowed for two sets of primary and redundant stacks to be mechanically connected in series. The tests were controlled using an automated software control and data acquisition system that set up the test parameters and monitored the waveform of the stack electrical current and voltage. The samples were driven between 0 and 20 V at 2000 Hz to accelerate the life test and mimic the voltage amplitude that is expected to be applied to the stacks during operation. During the life test, 10 primary stacks were driven and 10 redundant stacks, mechanically in series with the driven stacks, were open-circuited. The stroke determined from a strain gauge, the temperature and humidity in the chamber, and the temperature of each individual stack were recorded. Other properties of the stacks, including the
75 FR 79019 - Multilayered Wood Flooring From China
2010-12-17
...)] Multilayered Wood Flooring From China Determinations On the basis of the record \\1\\ developed in the subject... imports from China of multilayered wood flooring, provided for in subheadings 4409.10, 4409.29, 4412.31... multilayered wood flooring. The following companies are members of the CAHP: Anderson Hardwood Floors, LLC...
Non-conformal contact mechanical characteristic analysis on spherical components
Energy Technology Data Exchange (ETDEWEB)
Zhen-zhi, G.; Bin, H.; Zheng-ming, G.; Feng-mei, Y.; Jin, Q [The 2. Artillery Engineering Univ., Xi' an (China)
2017-03-15
Non-conformal spherical-contact mechanical problems is a three-dimensional coordination or similar to the coordination spherical contact. Due to the complexity of the problem of spherical-contact and difficulties of solving higher-order partial differential equations, problems of three-dimensional coordination or similar to the coordination spherical-contact is still no exact analytical method for solving. It is based on three-dimensional taper model is proposed a model based on the contour surface of the spherical contact and concluded of the formula of the contact pressure and constructed of finite element model by contact pressure distribution under the non-conformal spherical. The results shows spherical contact model can reflect non-conformal spherical-contacting mechanical problems more than taper-contacting model, and apply for the actual project.
Normal modes and quality factors of spherical dielectric resonators: I ...
Indian Academy of Sciences (India)
Eigenmodes; spherical resonators; spherical dielectric resonators; quality factors. PACS No. 42.50. .... Alternatively, introducing the angular momentum operator L defined as, L = (1/j)( r × ∇) ...... referee of the article for some helpful comments.
Quality metric for spherical panoramic video
Zakharchenko, Vladyslav; Choi, Kwang Pyo; Park, Jeong Hoon
2016-09-01
Virtual reality (VR)/ augmented reality (AR) applications allow users to view artificial content of a surrounding space simulating presence effect with a help of special applications or devices. Synthetic contents production is well known process form computer graphics domain and pipeline has been already fixed in the industry. However emerging multimedia formats for immersive entertainment applications such as free-viewpoint television (FTV) or spherical panoramic video require different approaches in content management and quality assessment. The international standardization on FTV has been promoted by MPEG. This paper is dedicated to discussion of immersive media distribution format and quality estimation process. Accuracy and reliability of the proposed objective quality estimation method had been verified with spherical panoramic images demonstrating good correlation results with subjective quality estimation held by a group of experts.
Simplified discrete ordinates method in spherical geometry
International Nuclear Information System (INIS)
Elsawi, M.A.; Abdurrahman, N.M.; Yavuz, M.
1999-01-01
The authors extend the method of simplified discrete ordinates (SS N ) to spherical geometry. The motivation for such an extension is that the appearance of the angular derivative (redistribution) term in the spherical geometry transport equation makes it difficult to decide which differencing scheme best approximates this term. In the present method, the angular derivative term is treated implicitly and thus avoids the need for the approximation of such term. This method can be considered to be analytic in nature with the advantage of being free from spatial truncation errors from which most of the existing transport codes suffer. In addition, it treats the angular redistribution term implicitly with the advantage of avoiding approximations to that term. The method also can handle scattering in a very general manner with the advantage of spending almost the same computational effort for all scattering modes. Moreover, the methods can easily be applied to higher-order S N calculations
Spherical harmonics and integration in superspace
International Nuclear Information System (INIS)
Bie, H de; Sommen, F
2007-01-01
In this paper, the classical theory of spherical harmonics in R m is extended to superspace using techniques from Clifford analysis. After defining a super-Laplace operator and studying some basic properties of polynomial null-solutions of this operator, a new type of integration over the supersphere is introduced by exploiting the formal equivalence with an old result of Pizzetti. This integral is then used to prove orthogonality of spherical harmonics of different degree, Green-like theorems and also an extension of the important Funk-Hecke theorem to superspace. Finally, this integration over the supersphere is used to define an integral over the whole superspace, and it is proven that this is equivalent with the Berezin integral, thus providing a more sound definition of the Berezin integral
Spherical projections and liftings in geometric tomography
DEFF Research Database (Denmark)
Goodey, Paul; Kiderlen, Markus; Weil, Wolfgang
2011-01-01
We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies and to rad......We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies...... and to radial functions of star bodies. We then investigate averages of lifted projections and show that they correspond to self-adjoint intertwining operators. We obtain formulas for the eigenvalues of these operators and use them to ascertain circumstances under which tomographic measurements determine...... the original bodies. This approach via mean lifted projections leads us to some unexpected relationships between seemingly disparate geometric constructions....
Lowry, Troy Warren
supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Presented next is a nanointaglio based method for quantitative measurements of lipid-protein interactions and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1. Optical diffraction gratings composed of lipids are printed on surfaces using nanointaglio, resulting in lipid multilayer gratings. Exposure of lipid multilayer gratings to Sar1 results in the inflation of lipid multilayers into unilamellar structures, the kinetics of which can be detected in a label-free manner by monitoring the diffraction of white light through an optical microscope. Local variations in lipid multilayer volume on the surface can be used to vary substrate availability in a microarray format, allowing kinetic and thermodynamic data to be obtained from a single experiment without the need for varying enzyme concentration. A quantitative model is developed and fits to the data allow measurements of both binding affinity (KD) and kinetics (kon and koff). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1 induced inflation of single bilayers from surface supported multilayers, the semi-cylindrical grating lines are observed to remodel into semi-spherical buds when a critical radius of curvature equal to 300 nm is reached, which is explained in terms of a Rayleigh type instability.
Spherical Cancer Models in Tumor Biology
Directory of Open Access Journals (Sweden)
Louis-Bastien Weiswald
2015-01-01
Full Text Available Three-dimensional (3D in vitro models have been used in cancer research as an intermediate model between in vitro cancer cell line cultures and in vivo tumor. Spherical cancer models represent major 3D in vitro models that have been described over the past 4 decades. These models have gained popularity in cancer stem cell research using tumorospheres. Thus, it is crucial to define and clarify the different spherical cancer models thus far described. Here, we focus on in vitro multicellular spheres used in cancer research. All these spherelike structures are characterized by their well-rounded shape, the presence of cancer cells, and their capacity to be maintained as free-floating cultures. We propose a rational classification of the four most commonly used spherical cancer models in cancer research based on culture methods for obtaining them and on subsequent differences in sphere biology: the multicellular tumor spheroid model, first described in the early 70s and obtained by culture of cancer cell lines under nonadherent conditions; tumorospheres, a model of cancer stem cell expansion established in a serum-free medium supplemented with growth factors; tissue-derived tumor spheres and organotypic multicellular spheroids, obtained by tumor tissue mechanical dissociation and cutting. In addition, we describe their applications to and interest in cancer research; in particular, we describe their contribution to chemoresistance, radioresistance, tumorigenicity, and invasion and migration studies. Although these models share a common 3D conformation, each displays its own intrinsic properties. Therefore, the most relevant spherical cancer model must be carefully selected, as a function of the study aim and cancer type.
Fusion technology applications of the spherical tokamak
International Nuclear Information System (INIS)
Robinson, D.C.; Akers, R.; Allfrey, S.J.
1999-01-01
Fusion technology applications of the spherical tokamak are presented, exploiting its high β capability, normal conducting TF coils, compact core, high natural elongation, disruption resilience and low capital cost. We concentrate here on two particular applications: a volume neutron source (VNS) for component testing and a power plant, addressing engineering and physics issues for steady state operation. The prospect of nearer term burning plasma ST devices are discussed in the conclusions. (author)
Fusion technology applications of the spherical tokamak
International Nuclear Information System (INIS)
Robinson, D.C.; Akers, R.; Allfrey, S.J.
2001-01-01
Fusion technology applications of the spherical tokamak are presented, exploiting its high β capability, normal conducting TF coils, compact core, high natural elongation, disruption resilience and low capital cost. We concentrate here on two particular applications: a volume neutron source (VNS) for component testing and a power plant, addressing engineering and physics issues for steady state operation. The prospect of nearer term burning plasma ST devices are discussed in the conclusions. (author)
Particles in spherical electromagnetic radiation fields
International Nuclear Information System (INIS)
Mitter, H.; Thaller, B.
1984-03-01
If the time-dependence of a Hamiltonian can be compensated by an appropriate symmetry transformation, the corresponding quantum mechanical problem can be reduced to an effectively stationary one. With this result we investigate the behavior of nonrelativistic particles in a spherical radiation field produced by a rotating source. Then the symmetry transformation corresponds to a rotation. We calculate the transition probabilities in Born approximation. The extension to problems involving an additional Coulomb potential is briefly discussed. (Author)
New mathematical framework for spherical gravitational collapse
International Nuclear Information System (INIS)
Giambo, Roberto; Giannoni, Fabio; Magli, Giulio; Piccione, Paolo
2003-01-01
A theorem, giving necessary and sufficient condition for naked singularity formation in spherically symmetric non-static spacetimes under hypotheses of physical acceptability, is formulated and proved. The theorem relates the existence of singular null geodesics to the existence of regular curves which are supersolutions of the radial null geodesic equation, and allows us to treat all the known examples of naked singularities from a unified viewpoint. New examples are also found using this approach, and perspectives are discussed. (letter to the editor)
Particle Entrainment in Spherical-Cap Wakes
Energy Technology Data Exchange (ETDEWEB)
Warncke, Norbert G W; Delfos, Rene; Ooms, Gijs; Westerweel, Jerry, E-mail: n.g.w.warncke@tudelft.nl [Laboratory for Aero- and Hydrodynamics, Delft University of Technology (Netherlands)
2011-12-22
In this work we study the preferential concentration of small particles in the turbulent wake behind a spherical-cap object. We present a model predicting the mean particle concentration in the near-wake as a function of the characteristic Stokes number of the problem, the turbulence level and the Froude number. We compare the model with our experimental results on this flow, measured in a vertical water tunnel.
Spherical tokamak without external toroidal fields
International Nuclear Information System (INIS)
Kaw, P.K.; Avinash, K.; Srinivasan, R.
2001-01-01
A spherical tokamak design without external toroidal field coils is proposed. The tokamak is surrounded by a spheromak shell carrying requisite force free currents to produce the toroidal field in the core. Such equilibria are constructed and it is indicated that these equilibria are likely to have robust ideal and resistive stability. The advantage of this scheme in terms of a reduced ohmic dissipation is pointed out. (author)
All silicon waveguide spherical microcavity coupler device.
Xifré-Pérez, E; Domenech, J D; Fenollosa, R; Muñoz, P; Capmany, J; Meseguer, F
2011-02-14
A coupler based on silicon spherical microcavities coupled to silicon waveguides for telecom wavelengths is presented. The light scattered by the microcavity is detected and analyzed as a function of the wavelength. The transmittance signal through the waveguide is strongly attenuated (up to 25 dB) at wavelengths corresponding to the Mie resonances of the microcavity. The coupling between the microcavity and the waveguide is experimentally demonstrated and theoretically modeled with the help of FDTD calculations.
Indicators of Mass in Spherical Stellar Atmospheres
Lester, John B.; Dinshaw, Rayomond; Neilson, Hilding R.
2013-04-01
Mass is the most important stellar parameter, but it is not directly observable for a single star. Spherical model stellar atmospheres are explicitly characterized by their luminosity ( L⋆), mass ( M⋆), and radius ( R⋆), and observations can now determine directly L⋆ and R⋆. We computed spherical model atmospheres for red giants and for red supergiants holding L⋆ and R⋆ constant at characteristic values for each type of star but varying M⋆, and we searched the predicted flux spectra and surface-brightness distributions for features that changed with mass. For both stellar classes we found similar signatures of the stars’ mass in both the surface-brightness distribution and the flux spectrum. The spectral features have been use previously to determine log 10(g), and now that the luminosity and radius of a non-binary red giant or red supergiant can be observed, spherical model stellar atmospheres can be used to determine a star’s mass from currently achievable spectroscopy. The surface-brightness variations of mass are slightly smaller than can be resolved by current stellar imaging, but they offer the advantage of being less sensitive to the detailed chemical composition of the atmosphere.
Fusion potential for spherical and compact tokamaks
International Nuclear Information System (INIS)
Sandzelius, Mikael
2003-02-01
The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high β-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect
Fusion potential for spherical and compact tokamaks
Energy Technology Data Exchange (ETDEWEB)
Sandzelius, Mikael
2003-02-01
The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high {beta}-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect.
Collisions of droplets on spherical particles
Charalampous, Georgios; Hardalupas, Yannis
2017-10-01
Head-on collisions between droplets and spherical particles are examined for water droplets in the diameter range between 170 μm and 280 μm and spherical particles in the diameter range between 500 μm and 2000 μm. The droplet velocities range between 6 m/s and 11 m/s, while the spherical particles are fixed in space. The Weber and Ohnesorge numbers and ratio of droplet to particle diameter were between 92 deposition and splashing regimes, a regime is observed in the intermediate region, where the droplet forms a stable crown, which does not breakup but propagates along the particle surface and passes around the particle. This regime is prevalent when the droplets collide on small particles. The characteristics of the collision at the onset of rim instability are also described in terms of the location of the film on the particle surface and the orientation and length of the ejected crown. Proper orthogonal decomposition identified that the first 2 modes are enough to capture the overall morphology of the crown at the splashing threshold.
Next Step Spherical Torus Design Studies
International Nuclear Information System (INIS)
Neumeyer, C.; Heitzenroeder, P.; Kessel, C.; Ono, M.; Peng, M.; Schmidt, J.; Woolley, R.; Zatz, I.
2002-01-01
Studies are underway to identify and characterize a design point for a Next Step Spherical Torus (NSST) experiment. This would be a ''Proof of Performance'' device which would follow and build upon the successes of the National Spherical Torus Experiment (NSTX) a ''Proof of Principle'' device which has operated at PPPL since 1999. With the Decontamination and Decommissioning (DandD) of the Tokamak Fusion Test Reactor (TFTR) nearly completed, the TFTR test cell and facility will soon be available for a device such as NSST. By utilizing the TFTR test cell, NSST can be constructed for a relatively low cost on a short time scale. In addition, while furthering spherical torus (ST) research, this device could achieve modest fusion power gain for short-pulse lengths, a significant step toward future large burning plasma devices now under discussion in the fusion community. The selected design point is Q=2 at HH=1.4, P subscript ''fusion''=60 MW, 5 second pulse, with R subscript ''0''=1.5 m, A=1.6, I subscript ''p''=10vMA, B subscript ''t''=2.6 T, CS flux=16 weber. Most of the research would be conducted in D-D, with a limited D-T campaign during the last years of the program
Integrals of products of spherical functions
International Nuclear Information System (INIS)
Veverka, O.
1975-01-01
Various branches of mathematical physics use integral formulas of the products of spherical functions. In quantum mechanics and in transport theory the integrals ∫sub((4π))dΩ vectorYsub(s)sup(t)(Ω vector)Ysub(l)sup(k)(Ω vector)Ysub(n)sup(m)(Ω vector), ∫sub(-1)sup(1)dμPsub(s)sup(t)(μ)Psub(l)sup(k)(μ)Psub(n)sup(m)(μ), ∫sub(-1)sup(1)dμPsub(s)(μ)Psub(l)(μ)Psub(n)(μ) are generally applied, where Ysub(α)sup(β)(Ω vector) are spherical harmonics, Psub(α)sup(β)(μ) are associated Legendre functions, and Psub(α)(μ) are Legendre polynomials. In the paper, the general procedure of calculating the integrals of the products of any combination of spherical functions is given. The procedure is referred to in a report on the boundary conditions for the cylindrical geometry in neutron transport theory for both the outer and inner cylindrical boundaries. (author)
International Nuclear Information System (INIS)
Liu Liwang; Wang Chinhua; Yuan Xiao; Mandelis, Andreas
2010-01-01
A generalized similarity normalization (SN) methodology for characterizing depth profiles of continuously varying thermophysical properties in curvilinear (cylindrical and spherical) solids is presented. Specifically, the principle and the physical mechanism of the elimination of the surface curvature effect from the overall photothermal signal is introduced based on theoretical models of cylindrical, spherical and flat solids with multi-layer structures. The effects of the relative values of radii of curvature of the curvilinear solid, the thickness of the inhomogeneous surface layer and the measurement azimuthal angle on the validity of the technique are discussed in detail. Experimental reconstructions of thermophysical depth profiles of hardened cylindrical steel rods of various diameters are performed based on both curvilinear theory and the equivalent flat surface theory. The reconstructed results are compared and validated.
Guided wave sensing of polyelectrolyte multilayers
DEFF Research Database (Denmark)
Horvath, R.; Pedersen, H.C.; Cuisinier, F.J.G.
2006-01-01
A planar optical waveguide configuration is proposed to monitor the buildup of thick polyelectrolyte multilayers on the surface of the waveguide in aqueous solutions. Instead of detecting the layer by the electromagnetic evanescent field the polyelectrolyte layer acts as an additional waveguiding...
Josephson plasma resonance in superconducting multilayers
DEFF Research Database (Denmark)
Pedersen, Niels Falsig
1999-01-01
We derive an analytical solution for the josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low T-c systems with magnetic coupling between the superconducting layers, but many features of our results are more general, and thus an application...... to the recently derived plasma resonance phenomena for high T-c superconductors of the BSCCO type is discussed....
Study of thermal conductivity of multilayer insulation
Energy Technology Data Exchange (ETDEWEB)
Dutta, D; Sundaram, S; Nath, G K; Sethuram, N P; Chandrasekharan, T; Varadarajan, T G [Heavy Water Division, Bhabha Atomic Research Centre, Mumbai (India)
1994-06-01
This paper presents experimental determination of the apparent thermal conductivity of multilayer insulation for a cryogenic system. The variation of thermal conductivity with residual gas pressure is studied and the optimum vacuum for good insulating performance is determined. Evaporation loss technique for heat-inleak determination is employed. (author). 3 refs., 3 figs.
The visco-elastic multilayer program VEROAD
Hopman, P.C.
1996-01-01
The mathematical principles and derivation of a linear visco-elastic multilayer computer program are described. The mathematical derivation is based on Fourier Transformation. The program is called VEROAD, which is an acronym for Visco-Elastic ROad Analysis Delft. The program allows calculation of
Transmission fingerprints in quasiperiodic magnonic multilayers
Energy Technology Data Exchange (ETDEWEB)
Coelho, I.P. [Departamento de Ensino Superior, Instituto Federal de Educacao, Ciencia e Tecnologia do Maranhao, Imperatriz-MA 65919-050 (Brazil); Departamento de Fisica, Universidade Federal do Rio Grande do Norte, Natal-RN 59072-970 (Brazil); Vasconcelos, M.S. [Escola de Ciencias e Tecnologia, Universidade Federal do Rio Grande do Norte, Natal-RN 59072-970 (Brazil); Bezerra, C.G., E-mail: cbezerra@dfte.ufrn.br [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, Natal-RN 59072-970 (Brazil)
2011-12-15
In this paper we investigated the influence of mirror symmetry on the transmission spectra of quasiperiodic magnonic multilayers arranged according to Fibonacci, Thue-Morse and double period quasiperiodic sequences. We consider that the multilayers composed of two simple cubic Heisenberg ferromagnets with bulk exchange constants J{sub A} and J{sub B} and spin quantum numbers S{sub A} and S{sub B}, respectively. The multilayer structure is surrounded by two semi-infinite slabs of a third Heisenberg ferromagnetic material with exchange constant J{sub C} and spin quantum number S{sub C}. For simplicity, the lattice constant has the same value a in each material, corresponding to epitaxial growth at the interfaces. The transfer matrix treatment was used for the exchange-dominated regime, taking into account the random phase approximation (RPA). Our numerical results illustrate the effects of mirror symmetry on (i) transmission spectra and (ii) transmission fingerprints. - Highlights: > We model quasiperiodic magnetic multilayers presenting mirror symmetry. > We investigated the allowed and forbidden bands of magnonic transmission. > Transmission return maps show the influence of mirror symmetry. > Mirror symmetry has no effect on the Fibonacci case. > Mirror symmetry does have effect on the Thue-Morse and double period cases.
Transmission fingerprints in quasiperiodic magnonic multilayers
International Nuclear Information System (INIS)
Coelho, I.P.; Vasconcelos, M.S.; Bezerra, C.G.
2011-01-01
In this paper we investigated the influence of mirror symmetry on the transmission spectra of quasiperiodic magnonic multilayers arranged according to Fibonacci, Thue-Morse and double period quasiperiodic sequences. We consider that the multilayers composed of two simple cubic Heisenberg ferromagnets with bulk exchange constants J A and J B and spin quantum numbers S A and S B , respectively. The multilayer structure is surrounded by two semi-infinite slabs of a third Heisenberg ferromagnetic material with exchange constant J C and spin quantum number S C . For simplicity, the lattice constant has the same value a in each material, corresponding to epitaxial growth at the interfaces. The transfer matrix treatment was used for the exchange-dominated regime, taking into account the random phase approximation (RPA). Our numerical results illustrate the effects of mirror symmetry on (i) transmission spectra and (ii) transmission fingerprints. - Highlights: → We model quasiperiodic magnetic multilayers presenting mirror symmetry. → We investigated the allowed and forbidden bands of magnonic transmission. → Transmission return maps show the influence of mirror symmetry. → Mirror symmetry has no effect on the Fibonacci case. → Mirror symmetry does have effect on the Thue-Morse and double period cases.
Josephson plasma resonance in superconducting multilayers
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Sakai, S
1998-01-01
We derive an analytical solution for the Josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low-T-c systems with magnetic coupling between the superconducting layers. but many features of our results are more general, and thus an application...
Multilayer Network Planning - A Practical Perspective
Autenrieth, Achim
2018-01-01
The paper presents a pragmatic and practical multilayer network planning approach based on a candidate lightpath auxiliary graph model. The paper discusses, how this approach can be applied to offline network planning as well as dynamic planning and provisioning of services.
Multilayer scaffolds in orthopaedic tissue engineering.
Atesok, Kivanc; Doral, M Nedim; Karlsson, Jon; Egol, Kenneth A; Jazrawi, Laith M; Coelho, Paulo G; Martinez, Amaury; Matsumoto, Tomoyuki; Owens, Brett D; Ochi, Mitsuo; Hurwitz, Shepard R; Atala, Anthony; Fu, Freddie H; Lu, Helen H; Rodeo, Scott A
2016-07-01
The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.
Study of thermal conductivity of multilayer insulation
International Nuclear Information System (INIS)
Dutta, D.; Sundaram, S.; Nath, G.K.; Sethuram, N.P.; Chandrasekharan, T.; Varadarajan, T.G.
1994-01-01
This paper presents experimental determination of the apparent thermal conductivity of multilayer insulation for a cryogenic system. The variation of thermal conductivity with residual gas pressure is studied and the optimum vacuum for good insulating performance is determined. Evaporation loss technique for heat-inleak determination is employed. (author)
Optical and structural study of BST multilayers
Czech Academy of Sciences Publication Activity Database
Železný, Vladimír; Chvostová, Dagmar; Pajasová, Libuše; Jelínek, Miroslav; Kocourek, Tomáš; Daniš, S.; Valvoda, V.
2010-01-01
Roč. 12, č. 3 (2010), 538-541 ISSN 1454-4164 R&D Projects: GA ČR GA202/07/0591 Institutional research plan: CEZ:AV0Z10100522; CEZ:AV0Z10100520 Keywords : ellipsometry * structure * ferroelectric multilayers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.412, year: 2010
Numerical simulation and experiment on multilayer stagger-split die.
Liu, Zhiwei; Li, Mingzhe; Han, Qigang; Yang, Yunfei; Wang, Bolong; Sui, Zhou
2013-05-01
A novel ultra-high pressure device, multilayer stagger-split die, has been constructed based on the principle of "dividing dies before cracking." Multilayer stagger-split die includes an encircling ring and multilayer assemblages, and the mating surfaces of the multilayer assemblages are mutually staggered between adjacent layers. In this paper, we investigated the stressing features of this structure through finite element techniques, and the results were compared with those of the belt type die and single split die. The contrast experiments were also carried out to test the bearing pressure performance of multilayer stagger-split die. It is concluded that the stress distributions are reasonable and the materials are utilized effectively for multilayer stagger-split die. And experiments indicate that the multilayer stagger-split die can bear the greatest pressure.
Watermarking on 3D mesh based on spherical wavelet transform.
Jin, Jian-Qiu; Dai, Min-Ya; Bao, Hu-Jun; Peng, Qun-Sheng
2004-03-01
In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.
Miskevich, Alexander A.; Loiko, Valery A.
2015-12-01
Enhancement of the performance of photovoltaic cells through increasing light absorption due to optimization of an active layer is considered. The optimization consists in creation of particulate structure of active layer. The ordered monolayers and multilayers of submicron crystalline silicon (c-Si) spherical particles are examined. The quasicrystalline approximation (QCA) and the transfer matrix method (TMM) are used to calculate light absorption in the wavelength range from 0.28 μm to 1.12 μm. The integrated over the terrestial solar spectral irradiance "Global tilt" ASTM G173-03 absorption coefficient is calculated. In the wavelength range of small absorption index of c-Si (0.8-1.12 μm) the integral absorption coefficient of monolayer can be more than 20 times higher than the one of the plane-parallel plate of the equivalent volume of material. In the overall considered range (0.28-1.12 μm) the enhancement factor up to ~1.45 for individual monolayer is observed. Maximum value of the spectral absorption coefficient approaches unity for multilayers consisting of large amount of sparse monolayers of small particles. Multilayers with variable concentration and size of particles in the monolayer sequences are considered. Absorption increasing by such gradient multilayers as compared to the non-gradient ones is illustrated. The considered structures are promising for creation of high efficiency thin-film solar cells.
Chiral pion dynamics for spherical nucleon bags
International Nuclear Information System (INIS)
Vento, V.; Rho, M.; Nyman, E.M.; Jun, J.H.; Brown, G.E.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette
1980-01-01
A chirally symmetric quark-bag model for the nucleon is obtained by introducing an explicit, classical, pion field exterior to the bag. The coupling at the bag surface is determined by the requirement of a conserved axial-vector current. The pion field satisfies equations of motion corresponding to the non-linear sigma-model. We study on this paper the simplified case where the bag and the pion field are spherically symmetric. Corrections due to gluon exchange between the quarks are ignored along with other interactions which split the N- and Δ-masses. The equations of motion for the pion field are solved and we find a substantial pion pressure at the bag surface, along with an attractive contribution to the nucleon self-energy. The total energy of the system, bag plus meson cloud, turns out to be approximately Msub(n)c 2 for a wide range of bag radii, from 1.5 fm down to about 0.5 fm. Introduction of a form factor for the pion would extend the range of possible radii to even smaller values. We propose that the bag with the smallest allowed radius be identified with the 'little bag' discussed before. One surprising result of the paper is that as long as one restricts to spherically symmetric bags, restoring chiral symmetry to the bag model makes the axial-vector current coupling constant gsub(A) to be always too large compared with the experimental value for any bag radius, suggesting a deviation from spherical symmetry for the intrinsic bag wave functions of the 'ground-state' hadrons. (orig.)
Spherical transceivers for ultrafast optical wireless communications
Jin, Xian; Hristovski, Blago A.; Collier, Christopher M.; Geoffroy-Gagnon, Simon; Born, Brandon; Holzman, Jonathan F.
2016-02-01
Optical wireless communications (OWC) offers the potential for high-speed and mobile operation in indoor networks. Such OWC systems often employ a fixed transmitter grid and mobile transceivers, with the mobile transceivers carrying out bi-directional communication via active downlinks (ideally with high-speed signal detection) and passive uplinks (ideally with broad angular retroreflection and high-speed modulation). It can be challenging to integrate all of these bidirectional communication capabilities within the mobile transceivers, however, as there is a simultaneous desire for compact packaging. With this in mind, the work presented here introduces a new form of transceiver for bi-directional OWC systems. The transceiver incorporates radial photoconductive switches (for high-speed signal detection) and a spherical retro-modulator (for broad angular retroreflection and high-speed all-optical modulation). All-optical retromodulation are investigated by way of theoretical models and experimental testing, for spherical retro-modulators comprised of three glasses, N-BK7, N-LASF9, and S-LAH79, having differing levels of refraction and nonlinearity. It is found that the spherical retro-modulator comprised of S-LAH79, with a refractive index of n ≍ 2 and a Kerr nonlinear index of n2 ≍ (1.8 ± 0.1) × 10-15 cm2/W, yields both broad angular retroreflection (over a solid angle of 2π steradians) and ultrafast modulation (over a duration of 120 fs). Such transceivers can become important elements for all-optical implementations in future bi-directional OWC systems.
Spherically symmetric self-similar universe
Energy Technology Data Exchange (ETDEWEB)
Dyer, C C [Toronto Univ., Ontario (Canada)
1979-10-01
A spherically symmetric self-similar dust-filled universe is considered as a simple model of a hierarchical universe. Observable differences between the model in parabolic expansion and the corresponding homogeneous Einstein-de Sitter model are considered in detail. It is found that an observer at the centre of the distribution has a maximum observable redshift and can in principle see arbitrarily large blueshifts. It is found to yield an observed density-distance law different from that suggested by the observations of de Vaucouleurs. The use of these solutions as central objects for Swiss-cheese vacuoles is discussed.
The generalized spherical model of ferromagnetic films
International Nuclear Information System (INIS)
Costache, G.
1977-12-01
The D→ infinity of the D-vectorial model of a ferromagnetic film with free surfaces is exactly solved. The mathematical mechanism responsible for the onset of a phase transition in the system is a generalized sticking phenomenon. It is shown that the temperature at which the sticking appears, the transition temperature of the model is monotonously increasing with increasing the number of layers of the film, contrary to what happens in the spherical model with overall constraint. Certain correlation inequalities of Griffiths type are shown to hold. (author)
The spherical tokamak fusion power plant
International Nuclear Information System (INIS)
Wilson, H.R.; Voss, G.; Ahn, J.W.
2003-01-01
The design of a 1GW(e) steady state fusion power plant, based on the spherical tokamak concept, has been further iterated towards a fully self-consistent solution taking account of plasma physics, engineering and neutronics constraints. In particular a plausible solution to exhaust handling is proposed and the steam cycle refined to further improve efficiency. The physics design takes full account of confinement, MHD stability and steady state current drive. It is proposed that such a design may offer a fusion power plant which is easy to maintain: an attractive feature for the power plants following ITER. (author)
The status of the Brazilian spherical detector
International Nuclear Information System (INIS)
Aguiar, O D; Andrade, L A; Filho, L Camargo; Costa, C A; Araujo, J C N de; Neto, E C de Rey; Souza, S T de; Fauth, A C; Frajuca, C; Frossati, G; Furtado, S R; Furtado, V G S; Magalhaes, N S; Jr, R M Marinho; Matos, E S; Meliani, M T; Melo, J L; Miranda, O D; Jr, N F Oliveira; Ribeiro, K L; Salles, K B M; Stellati, C; Jr, W F Velloso
2002-01-01
The first phase of the Brazilian Graviton Project is the construction and operation of the gravitational wave detector Mario Schenberg at the Physics Institute of the University of Sao Paulo. This gravitational wave spherical antenna is planned to feature a sensitivity better than h = 10 -21 Hz -1/2 at the 3.0-3.4 kHz bandwidth, and to work not only as a detector, but also as a testbed for the development of new technologies. Here we present the status of this detector
Spherical conformal models for compact stars
Energy Technology Data Exchange (ETDEWEB)
Takisa, P.M.; Maharaj, S.D.; Manjonjo, A.M.; Moopanar, S. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)
2017-10-15
We consider spherical exact models for compact stars with anisotropic pressures and a conformal symmetry. The conformal symmetry condition generates an integral relationship between the gravitational potentials. We solve this condition to find a new anisotropic solution to the Einstein field equations. We demonstrate that the exact solution produces a relativistic model of a compact star. The model generates stellar radii and masses consistent with PSR J1614-2230, Vela X1, PSR J1903+327 and Cen X-3. A detailed physical examination shows that the model is regular, well behaved and stable. The mass-radius limit and the surface red shift are consistent with observational constraints. (orig.)
Galileon radiation from a spherical collapsing shell
Energy Technology Data Exchange (ETDEWEB)
Martín-García, Javier [Instituto de Física Teórica UAM/CSIC,C/ Nicolás Cabrera 15, E-28049 Madrid (Spain); Vázquez-Mozo, Miguel Á. [Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM),Universidad de Salamanca, Plaza de la Merced s/n, E-37008 Salamanca (Spain)
2017-01-17
Galileon radiation in the collapse of a thin spherical shell of matter is analyzed. In the framework of a cubic Galileon theory, we compute the field profile produced at large distances by a short collapse, finding that the radiated field has two peaks traveling ahead of light fronts. The total energy radiated during the collapse follows a power law scaling with the shell’s physical width and results from two competing effects: a Vainshtein suppression of the emission and an enhancement due to the thinness of the shell.
Equivalent-spherical-shield neutron dose calculations
International Nuclear Information System (INIS)
Russell, G.J.; Robinson, H.
1988-01-01
Neutron doses through 162-cm-thick spherical shields were calculated to be 1090 and 448 mrem/h for regular and magnetite concrete, respectively. These results bracket the measured data, for reinforced regular concrete, of /approximately/600 mrem/h. The calculated fraction of the high-energy (>20 MeV) dose component also bracketed the experimental data. The measured and calculated doses were for a graphite beam stop bombarded with 100 nA of 800-MeV protons. 6 refs., 2 figs., 1 tab
Spherical Panoramas for Astrophysical Data Visualization
Kent, Brian R.
2017-05-01
Data immersion has advantages in astrophysical visualization. Complex multi-dimensional data and phase spaces can be explored in a seamless and interactive viewing environment. Putting the user in the data is a first step toward immersive data analysis. We present a technique for creating 360° spherical panoramas with astrophysical data. The three-dimensional software package Blender and the Google Spatial Media module are used together to immerse users in data exploration. Several examples employing these methods exhibit how the technique works using different types of astronomical data.
Geometrodynamics of spherically symmetric Lovelock gravity
International Nuclear Information System (INIS)
Kunstatter, Gabor; Taves, Tim; Maeda, Hideki
2012-01-01
We derive the Hamiltonian for spherically symmetric Lovelock gravity using the geometrodynamics approach pioneered by Kuchar (1994 Phys. Rev. D 50 3961) in the context of four-dimensional general relativity. When written in terms of the areal radius, the generalized Misner-Sharp mass and their conjugate momenta, the generic Lovelock action and Hamiltonian take on precisely the same simple forms as in general relativity. This result supports the interpretation of Lovelock gravity as the natural higher dimensional extension of general relativity. It also provides an important first step towards the study of the quantum mechanics, Hamiltonian thermodynamics and formation of generic Lovelock black holes. (fast track communication)
Spin coating and plasma process for 2.5D and hybrid 3D micro-resonators on multilayer polymers
Bêche, B.; Gaviot, E.; Godet, C.; Zebda, A.; Potel, A.; Barbe, J.; Camberlein, L.; Vié, V.; Panizza, P.; Loas, G.; Hamel, C.; Zyss, J.; Huby, N.
2009-05-01
We have designed and realized three integrated photonic families of micro-resonators (MR) on multilayer organic materials. Such so-called 2.5D-MR and 3D-MR structures show off radius values ranging from 40 to 200μm. Both first and second families are especially designed on organic multilayer materials and shaped as ring- and disk-MR organics structures arranged upon (and coupled with) a pair of SU8-organic waveguides. The third family is related to hybrid 3D-MR structures composed of spherical glass-MR coupled to organic waveguides by a Langmuir-Blodgett lipid film about three nanometers in thickness. At first, polymer spin coating, surface plasma treatment and selective UV-lithography processes have been developed to realize 2.5D photonic micro-resonators. Secondly, we have designed and characterized photonic-quadripoles made of 3D-glass-MR arranged upon a pair of SU8 waveguides. Such structures are defined by a 4-ports or 4-waveguides coupled by the spherical glass-MR. We have achieved an evanescent photonic coupling between the 3D-MR and the 4-ports structure. Spectral resonances have been measured for 4-whispering gallery-modes (WGM) into such 3D-structures respectively characterized by a 0.97 nm free spectral range (FSR) and a high quality Q-factor up to 4.104.
Carr, Elliot J; Pontrelli, Giuseppe
2018-04-12
We present a general mechanistic model of mass diffusion for a composite sphere placed in a large ambient medium. The multi-layer problem is described by a system of diffusion equations coupled via interlayer boundary conditions such as those imposing a finite mass resistance at the external surface of the sphere. While the work is applicable to the generic problem of heat or mass transfer in a multi-layer sphere, the analysis and results are presented in the context of drug kinetics for desorbing and absorbing spherical microcapsules. We derive an analytical solution for the concentration in the sphere and in the surrounding medium that avoids any artificial truncation at a finite distance. The closed-form solution in each concentric layer is expressed in terms of a suitably-defined inverse Laplace transform that can be evaluated numerically. Concentration profiles and drug mass curves in the spherical layers and in the external environment are presented and the dependency of the solution on the mass transfer coefficient at the surface of the sphere analyzed. Copyright © 2018 Elsevier Inc. All rights reserved.
Characteristic wave velocities in spherical electromagnetic cloaks
International Nuclear Information System (INIS)
Yaghjian, A D; Maci, S; Martini, E
2009-01-01
We investigate the characteristic wave velocities in spherical electromagnetic cloaks, namely, phase, ray, group and energy-transport velocities. After deriving explicit expressions for the phase and ray velocities (the latter defined as the phase velocity along the direction of the Poynting vector), special attention is given to the determination of group and energy-transport velocities, because a cursory application of conventional formulae for local group and energy-transport velocities can lead to a discrepancy between these velocities if the permittivity and permeability dyadics are not equal over a frequency range about the center frequency. In contrast, a general theorem can be proven from Maxwell's equations that the local group and energy-transport velocities are equal in linear, lossless, frequency dispersive, source-free bianisotropic material. This apparent paradox is explained by showing that the local fields of the spherical cloak uncouple into an E wave and an H wave, each with its own group and energy-transport velocities, and that the group and energy-transport velocities of either the E wave or the H wave are equal and thus satisfy the general theorem.
Initial assessments of ignition spherical torus
International Nuclear Information System (INIS)
Peng, Y.K.M.; Borowski, S.K.; Bussell, G.T.
1985-12-01
Initial assessments of ignition spherical tori suggest that they can be highly cost effective and exceptionally small in unit size. Assuming advanced methods of current drive to ramp up the plasma current (e.g., via lower hybrid wave at modest plasma densities and temperatures), the inductive solenoid can largely be eliminated. Given the uncertainties in plasma energy confinement times and the effects of strong paramagnetism on plasma pressure, and allowing for the possible use of high-strength copper alloys (e.g., C-17510, Cu-Ni-Be alloy), ignition spherical tori with a 50-s burn are estimated to have major radii ranging from 1.0 to 1.6 m, aspect ratios from 1.4 to 1.7, vacuum toroidal fields from 2 to 3 T, plasma currents from 10 to 19 MA, and fusion power from 50 to 300 MW. Because of its modest field strength and simple poloidal field coil configuration, only conventional engineering approaches are needed in the design. A free-standing toroidal field coil/vacuum vessel structure is assessed to be feasible and relatively independent of the shield structure and the poloidal field coils. This exceptionally simple configuration depends significantly, however, on practical fabrication approaches of the center conductor post, about which there is presently little experience. 19 refs
Saltation of non-spherical sand particles.
Directory of Open Access Journals (Sweden)
Zhengshi Wang
Full Text Available Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement.
Spherical aggregates composed of gold nanoparticles
International Nuclear Information System (INIS)
Chen, C-C; Kuo, P-L; Cheng, Y-C
2009-01-01
Alkylated triethylenetetramine (C12E3) was synthesized and used as both a reductant in the preparation of gold nanoparticles by the reduction of HAuCl 4 and a stabilizer in the subsequent self-assembly of the gold nanoparticles. In acidic aqueous solution, spherical aggregates (with a diameter of about 202 ± 22 nm) of gold nanoparticles (with the mean diameter of ∼18.7 nm) were formed. The anion-induced ammonium adsorption of the alkylated amines on the gold nanoparticles was considered to provide the electrostatic repulsion and steric hindrance between the gold nanoparticles, which constituted the barrier that prevented the individual particles from coagulating. However, as the amino groups became deprotonated with increasing pH, the ammonium adsorption was weakened, and the amino groups were desorbed from the gold surface, resulting in discrete gold particles. The results indicate that the morphology of the reduced gold nanoparticles is controllable through pH-'tunable' aggregation under the mediation of the amino groups of alkylated amine to create spherical microstructures.
Status of National Spherical Torus Experiment (NSTX)*
Ono, Masayuki
2001-10-01
The main aim of National Spherical Torus Experiment (NSTX) is to establish the fusion physics principles of the innovative spherical torus (ST) concept. The NSTX experimental facility has been operating reliably and its capabilities steadily improving. Due to relatively efficient ohmic current drive and benign halo current behavior, the plasma current was increased to 1.4 MA, which is well above the design value of 1 MA. The plasmas at 1 MA are now routinely heated by NBI to the average toroidal beta value of 20 percent range at 3 kG with electrons and ions in the 1-2 keV range. Even with the “L-mode” edge, the energy confinement time can well exceed the so-called L-mode (and even H-mode) scaling values. As a part of ST tool development, High Harmonic Fast Wave (HHFW) heating has demonstrated efficient electron heating with the central electron temperatures reaching 3.7 keV. HHFW induced H-modes have been also observed. For CHI (Coaxial Helicity Injection) non-inductive start-up, CHI discharges of up to 300 kA of toroidal current and 300 msec duration have been produced from zero current using = 25 kA of injected current. The poster presentation will also include the near term NSTX facility upgrade plan.
Bidispersed Sphere Packing on Spherical Surfaces
Atherton, Timothy; Mascioli, Andrew; Burke, Christopher
Packing problems on spherical surfaces have a long history, originating in the classic Thompson problem of finding the ground state configuration of charges on a sphere. Such packings contain a minimal number of defects needed to accommodate the curvature; this is predictable using the Gauss-Bonnet theorem from knowledge of the topology of the surface and the local symmetry of the ordering. Famously, the packing of spherical particles on a sphere contains a 'scar' transition, where additional defects over those required by topology appear above a certain critical number of particles and self-organize into chains or scars. In this work, we study the packing of bidispersed packings on a sphere, and hence determine the interaction of bidispersity and curvature. The resultant configurations are nearly crystalline for low values of bidispersity and retain scar-like structures; these rapidly become disordered for intermediate values and approach a so-called Appollonian limit at the point where smaller particles can be entirely accommodated within the voids left by the larger particles. We connect our results with studies of bidispersed packings in the bulk and on flat surfaces from the literature on glassy systems and jamming. Supported by a Cottrell Award from the Research Corporation for Science Advancement.
Rotating field current drive in spherical plasmas
International Nuclear Information System (INIS)
Brotherton-Ratcliffe, D.; Storer, R.G.
1988-01-01
The technique of driving a steady Hall current in plasmas using a rotating magnetic field is studied both numerically and analytically in the approximation of negligible ion flow. A spherical plasma bounded by an insulating wall and immersed in a uniform magnetic field which has both a rotating component (for current drive) and a constant ''vertical'' component (for MHD equilibrium) is considered. The problem is formulated in terms of an expansion of field quantities in vector spherical harmonics. The numerical code SPHERE solves the resulting pseudo-harmonic equations by a multiple shooting technique. The results presented, in addition to being relevant to non-inductive current drive generally, have a direct relevance to the rotamak experiments. For the case of no applied vertical field the steady state toroidal current driven by the rotating field per unit volume of plasma is several times less than in the long cylinder limit for a plasma of the same density, resistivity and radius. The application of a vertical field, which for certain parameter regimes gives rise to a compact torus configuration, improves the current drive dramatically and in many cases gives ''better'' current drive than the long cylinder limit. This result is also predicted by a second order perturbation analysis of the pseudo-harmonic equations. A steady state toroidal field is observed which appears consistent with experimental observations in rotamaks regarding magnitude and spatial dependence. This is an advance over previous analytical theory which predicted an oppositely directed toroidal field of undefined magnitude. (author)
Crack propagation on spherical pressure vessels
International Nuclear Information System (INIS)
Lebey, J.; Roche, R.
1975-01-01
The risk presented by a crack on a pressure vessel built with a ductile steel cannot be well evaluated by simple application of the rules of Linear Elastic Fracture Mechanics, which only apply to brittle materials. Tests were carried out on spherical vessels of three different scales built with the same steel. Cracks of different length were machined through the vessel wall. From the results obtained, crack initiation stress (beginning of stable propagation) and instable propagation stress may be plotted against the lengths of these cracks. For small and medium size, subject to ductile fracture, the resulting curves are identical, and may be used for ductile fracture prediction. Brittle rupture was observed on larger vessels and crack propagation occurred at lower stress level. Preceedings curves are not usable for fracture analysis. Ultimate pressure can be computed with a good accuracy by using equivalent energy toughness, Ksub(1cd), characteristic of the metal plates. Satisfactory measurements have been obtained on thin samples. The risks of brittle fracture may then judged by comparing Ksub(1cd) with the calculated K 1 value, in which corrections for vessel shape are taken into account. It is thus possible to establish the bursting pressure of cracked spherical vessels, with the help of two rules, one for brittle fracture, the other for ductile instability. A practical method is proposed on the basis of the work reported here
A new approximating formula for calculating gamma-ray buildup factors in multilayer shields
International Nuclear Information System (INIS)
Assad, A.; Chiron, M.; Nimal, J.C.; Diop, C.M.; Ridoux, P.
1999-01-01
This study proposes a new approximating formula for calculating gamma-ray buildup factors in multilayer shields. The formula combines the buildup factors of single-layer shields with products and quotients. The feasibility of the formula for reproducing the buildup factors was tested by using point isotropic buildup factors calculated with the SN1D discrete ordinates code as reference data. The dose buildup factors of single-, double-, and multilayer shields composed of water, aluminum, iron, and lead were calculated for a spherical geometry in the energy range between 10 MeV and 40 keV and for total thicknesses of up to 30 mean free paths. The calculation of the buildup factors takes into account the bound electron effect of Compton scattering (incoherent scattering), the coherent scattering, the pair production, and the secondary sources of bremsstrahlung and fluorescence. The tests have shown that the approximating formula reproduces the reference data of double-layer shields very well for most cases. With the same parameters and with a new physical consideration that takes into account in a global way the degradation of the gamma-ray energy spectrum, the buildup factors of three- and five-layer shields were also very well reproduced
Measure of Node Similarity in Multilayer Networks
DEFF Research Database (Denmark)
Møllgaard, Anders; Zettler, Ingo; Dammeyer, Jesper
2016-01-01
The weight of links in a network is often related to the similarity of thenodes. Here, we introduce a simple tunable measure for analysing the similarityof nodes across different link weights. In particular, we use the measure toanalyze homophily in a group of 659 freshman students at a large...... university.Our analysis is based on data obtained using smartphones equipped with customdata collection software, complemented by questionnaire-based data. The networkof social contacts is represented as a weighted multilayer network constructedfrom different channels of telecommunication as well as data...... might bepresent in one layer of the multilayer network and simultaneously be absent inthe other layers. For a variable such as gender, our measure reveals atransition from similarity between nodes connected with links of relatively lowweight to dis-similarity for the nodes connected by the strongest...
Topological edge modes in multilayer graphene systems
Ge, Lixin
2015-08-10
Plasmons can be supported on graphene sheets as the Dirac electrons oscillate collectively. A tight-binding model for graphene plasmons is a good description as the field confinement in the normal direction is strong. With this model, the topological properties of plasmonic bands in multilayer graphene systems are investigated. The Zak phases of periodic graphene sheet arrays are obtained for different configurations. Analogous to Su-Schrieffer-Heeger (SSH) model in electronic systems, topological edge plasmon modes emerge when two periodic graphene sheet arrays with different Zak phases are connected. Interestingly, the dispersion of these topological edge modes is the same as that in the monolayer graphene and is invariant as the geometric parameters of the structure such as the separation and period change. These plasmonic edge states in multilayer graphene systems can be further tuned by electrical gating or chemical doping. © 2015 Optical Society of America.
Nanosecond Surface Microdischarges in Multilayer Structures
Dubinov, A. E.; Lyubimtseva, V. A.
2018-05-01
Multilayer structures in which nanosecond surface microdischarges are generated have been developed, fabricated, and investigated. In these structures, layers are made in the form of thin transparent films, and a plasma discharge channel is formed in thin spacings between the layers. Passage of the discharge channel from one layer into the neighboring layer is implemented via pre-fabricated microholes. Images of microdischarges were obtained which confirmed that their plasma channels are formed according to the route assigned by the holes. The route may follow a fairly complex scheme and have self-intersection points and portions in which the electrons are bound to move in opposition to the electric field. In studying the shape of channels in multilayer strictures, the authors have found a new physical effect which lies in the azimuthal self-orientation of the discharge channel as it passes from one microhole to another.
KLASIFIKASI WEBSITE MENGGUNAKAN ALGORITMA MULTILAYER PERCEPTRON
Directory of Open Access Journals (Sweden)
Nyoman Purnama
2014-12-01
Full Text Available Sistem klasifikasi merupakan proses temu balik informasi yang sangat bergantung dari elemen-elemen penyusunnya.Sistem ini banyak digunakan untuk mengatasi permasalahan segmentasi data. Klasifikasi dapat digunakan pada website sebagaimetode untuk mengelompokkan website. Website merupakan salah satu data yang memiliki informasi yang beraneka-ragam,sehingga pengelompokan data ini penting untuk diteliti. Sistem klasifikasi dimulai dengan melakukan proses pengumpulaninformasi dari halaman website (parsing dan untuk setiap hasil parsing dilakukan proses penghapusan kata henti, stemming,feature selection dengan tf-idf. Hasil dari proses ini berupa fitur yang menjadi inputan algoritma Multilayer Perceptron. Dalamalgoritma ini terjadi proses pembelajaran terhadap pola input masukan dan pembuatan bobot pelatihan. Bobot ini akandigunakan pada proses klasifikasi. Hasil dari penelitian menunjukkan bahwa algoritma Multilayer Perceptron dapatmenghasilkan klasifikasi website dengan akurasi yang bagus. Hal ini dibuktikan dengan beberapa tahapan penelitian yangberbeda dan didapatkan nilai akurasi rata-rata diatas 70%.
Analysis of Fracture Behaviour of Multilayer Pipes
Czech Academy of Sciences Publication Activity Database
Nezbedová, E.; Knésl, Zdeněk; Vlach, B.
2007-01-01
Roč. 36, č. 5 (2007), s. 207-212 ISSN 1465-8011. [Plastic Pipes /13./. Washington, D. C., 02.10.2006-05.10.2006] R&D Projects: GA ČR GA106/07/1284 Institutional research plan: CEZ:AV0Z20410507 Keywords : multi-layer pipes Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.431, year: 2007
Training trajectories by continuous recurrent multilayer networks.
Leistritz, L; Galicki, M; Witte, H; Kochs, E
2002-01-01
This paper addresses the problem of training trajectories by means of continuous recurrent neural networks whose feedforward parts are multilayer perceptrons. Such networks can approximate a general nonlinear dynamic system with arbitrary accuracy. The learning process is transformed into an optimal control framework where the weights are the controls to be determined. A training algorithm based upon a variational formulation of Pontryagin's maximum principle is proposed for such networks. Computer examples demonstrating the efficiency of the given approach are also presented.
Process of obtaining the multilayer structure
International Nuclear Information System (INIS)
Buzdugan, A.; Dolghieru, V.; Jitari, V.; Colomeico, E.; Popescu, A.
1997-01-01
The invention relates to the multilayer structures of glassy semiconductors with the refractive index abrupt and smooth variation at the bound between the layers and may be used for manufacturing the optical information transmission and recording media. With a view to simplify the technology, compositionally different layers of chalcogenide glassy semiconductors having various refractive indexes from As 2 S 3 , are being by thermal vacuum evaporation, changing the vaporization temperature thereof from 120 to 280 C
Quaternionic Multilayer Perceptron with Local Analyticity
Directory of Open Access Journals (Sweden)
Nobuyuki Matsui
2012-11-01
Full Text Available A multi-layered perceptron type neural network is presented and analyzed in this paper. All neuronal parameters such as input, output, action potential and connection weight are encoded by quaternions, which are a class of hypercomplex number system. Local analytic condition is imposed on the activation function in updating neurons’ states in order to construct learning algorithm for this network. An error back-propagation algorithm is introduced for modifying the connection weights of the network.
Thermoelastoplastic Deformation of a Multilayer Ball
Murashkin, E. V.; Dats, E. P.
2017-09-01
The problem of centrally symmetric deformation of a multilayer elastoplastic ball in the process of successive accretion of preheated layers to its outer surface is considered in the framework of small elastoplastic deformations. The problems of residual stress formation in the elastoplastic ball with an inclusion and a cavity are solved under various mechanical boundary conditions on the inner surface and for prescribed thermal compression distributions. The graphs of residual stress and displacement fields are constructed.
Automation Enhancement of Multilayer Laue Lenses
Energy Technology Data Exchange (ETDEWEB)
Lauer K. R.; Conley R.
2010-12-01
X-ray optics fabrication at Brookhaven National Laboratory has been facilitated by a new, state of the art magnetron sputtering physical deposition system. With its nine magnetron sputtering cathodes and substrate carrier that moves on a linear rail via a UHV brushless linear servo motor, the system is capable of accurately depositing the many thousands of layers necessary for multilayer Laue lenses. I have engineered a versatile and automated control program from scratch for the base system and many subsystems. Its main features include a custom scripting language, a fully customizable graphical user interface, wireless and remote control, and a terminal-based interface. This control system has already been successfully used in the creation of many types of x-ray optics, including several thousand layer multilayer Laue lenses.Before reaching the point at which a deposition can be run, stencil-like masks for the sputtering cathodes must be created to ensure the proper distribution of sputtered atoms. Quality of multilayer Laue lenses can also be difficult to measure, given the size of the thin film layers. I employ my knowledge of software and algorithms to further ease these previously painstaking processes with custom programs. Additionally, I will give an overview of an x-ray optic simulator package I helped develop during the summer of 2010. In the interest of keeping my software free and open, I have worked mostly with the multiplatform Python and the PyQt application framework, utilizing C and C++ where necessary.
Symmetric scrolled packings of multilayered carbon nanoribbons
Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.
2016-06-01
Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.
Subwavelength resolution from multilayered structure (Conference Presentation)
Cheng, Bo Han; Jen, Yi-Jun; Liu, Wei-Chih; Lin, Shan-wen; Lan, Yung-Chiang; Tsai, Din Ping
2016-10-01
Breaking optical diffraction limit is one of the most important issues needed to be overcome for the demand of high-density optoelectronic components. Here, a multilayered structure which consists of alternating semiconductor and dielectric layers for breaking optical diffraction limitation at THz frequency region are proposed and analyzed. We numerically demonstrate that such multilayered structure not only can act as a hyperbolic metamaterial but also a birefringence material via the control of the external temperature (or magnetic field). A practical approach is provided to control all the diffraction signals toward a specific direction by using transfer matrix method and effective medium theory. Numerical calculations and computer simulation (based on finite element method, FEM) are carried out, which agree well with each other. The temperature (or magnetic field) parameter can be tuned to create an effective material with nearly flat isofrequency feature to transfer (project) all the k-space signals excited from the object to be resolved to the image plane. Furthermore, this multilayered structure can resolve subwavelength structures at various incident THz light sources simultaneously. In addition, the resolution power for a fixed operating frequency also can be tuned by only changing the magnitude of external magnetic field. Such a device provides a practical route for multi-functional material, photolithography and real-time super-resolution image.
Multilayer network decoding versatility and trust
Sarkar, Camellia; Yadav, Alok; Jalan, Sarika
2016-01-01
In the recent years, the multilayer networks have increasingly been realized as a more realistic framework to understand emergent physical phenomena in complex real-world systems. We analyze massive time-varying social data drawn from the largest film industry of the world under a multilayer network framework. The framework enables us to evaluate the versatility of actors, which turns out to be an intrinsic property of lead actors. Versatility in dimers suggests that working with different types of nodes are more beneficial than with similar ones. However, the triangles yield a different relation between type of co-actor and the success of lead nodes indicating the importance of higher-order motifs in understanding the properties of the underlying system. Furthermore, despite the degree-degree correlations of entire networks being neutral, multilayering picks up different values of correlation indicating positive connotations like trust, in the recent years. The analysis of weak ties of the industry uncovers nodes from a lower-degree regime being important in linking Bollywood clusters. The framework and the tools used herein may be used for unraveling the complexity of other real-world systems.
Multilayer modal actuator-based piezoelectric transformers.
Huang, Yao-Tien; Wu, Wen-Jong; Wang, Yen-Chieh; Lee, Chih-Kung
2007-02-01
An innovative, multilayer piezoelectric transformer equipped with a full modal filtering input electrode is reported herein. This modal-shaped electrode, based on the orthogonal property of structural vibration modes, is characterized by full modal filtering to ensure that only the desired vibration mode is excited during operation. The newly developed piezoelectric transformer is comprised of three layers: a multilayered input layer, an insulation layer, and a single output layer. The electrode shape of the input layer is derived from its structural vibration modal shape, which takes advantage of the orthogonal property of the vibration modes to achieve a full modal filtering effect. The insulation layer possesses two functions: first, to couple the mechanical vibration energy between the input and output, and second, to provide electrical insulation between the two layers. To meet the two functions, a low temperature, co-fired ceramic (LTCC) was used to provide the high mechanical rigidity and high electrical insulation. It can be shown that this newly developed piezoelectric transformer has the advantage of possessing a more efficient energy transfer and a wider optimal working frequency range when compared to traditional piezoelectric transformers. A multilayer piezoelectric, transformer-based inverter applicable for use in LCD monitors or portable displays is presented as well.
Performance of multilayer coated silicon pore optics
Ackermann, M. D.; Collon, M. J.; Jensen, C. P.; Christensen, F. E.; Krumrey, M.; Cibik, L.; Marggraf, S.; Bavdaz, M.; Lumb, D.; Shortt, B.
2010-07-01
The requirements for the IXO (International X-ray Observatory) telescope are very challenging in respect of angular resolution and effective area. Within a clear aperture with 1.7 m > R > 0.25 m that is dictated by the spacecraft envelope, the optics technology must be developed to satisfy simultaneously requirements for effective area of 2.5 m2 at 1.25 keV, 0.65 m2 at 6 keV and 150 cm2 at 30 keV. The reflectivity of the bare mirror substrate materials does not allow these requirements to be met. As such the IXO baseline design contains a coating layout that varies as a function of mirror radius and in accordance with the variation in grazing incidence angle. The higher energy photon response is enhanced through the use of depth-graded multilayer coatings on the inner radii mirror modules. In this paper we report on the first reflectivity measurements of wedged ribbed silicon pore optics mirror plates coated with a depth graded W/Si multilayer. The measurements demonstrate that the deposition and performance of the multilayer coatings is compatible with the SPO production process.
Technique for etching monolayer and multilayer materials
Bouet, Nathalie C. D.; Conley, Raymond P.; Divan, Ralu; Macrander, Albert
2015-10-06
A process is disclosed for sectioning by etching of monolayers and multilayers using an RIE technique with fluorine-based chemistry. In one embodiment, the process uses Reactive Ion Etching (RIE) alone or in combination with Inductively Coupled Plasma (ICP) using fluorine-based chemistry alone and using sufficient power to provide high ion energy to increase the etching rate and to obtain deeper anisotropic etching. In a second embodiment, a process is provided for sectioning of WSi.sub.2/Si multilayers using RIE in combination with ICP using a combination of fluorine-based and chlorine-based chemistries and using RF power and ICP power. According to the second embodiment, a high level of vertical anisotropy is achieved by a ratio of three gases; namely, CHF.sub.3, Cl.sub.2, and O.sub.2 with RF and ICP. Additionally, in conjunction with the second embodiment, a passivation layer can be formed on the surface of the multilayer which aids in anisotropic profile generation.
Inkjet-printed Polyvinyl Alcohol Multilayers.
Salaoru, Iulia; Zhou, Zuoxin; Morris, Peter; Gibbons, Gregory J
2017-05-11
Inkjet printing is a modern method for polymer processing, and in this work, we demonstrate that this technology is capable of producing polyvinyl alcohol (PVOH) multilayer structures. A polyvinyl alcohol aqueous solution was formulated. The intrinsic properties of the ink, such as surface tension, viscosity, pH, and time stability, were investigated. The PVOH-based ink was a neutral solution (pH 6.7) with a surface tension of 39.3 mN/m and a viscosity of 7.5 cP. The ink displayed pseudoplastic (non-Newtonian shear thinning) behavior at low shear rates, and overall, it demonstrated good time stability. The wettability of the ink on different substrates was investigated, and glass was identified as the most suitable substrate in this particular case. A proprietary 3D inkjet printer was employed to manufacture polymer multilayer structures. The morphology, surface profile, and thickness uniformity of inkjet-printed multilayers were evaluated via optical microscopy.
Evolutionary games on multilayer networks: a colloquium
Wang, Zhen; Wang, Lin; Szolnoki, Attila; Perc, Matjaž
2015-05-01
Networks form the backbone of many complex systems, ranging from the Internet to human societies. Accordingly, not only is the range of our interactions limited and thus best described and modeled by networks, it is also a fact that the networks that are an integral part of such models are often interdependent or even interconnected. Networks of networks or multilayer networks are therefore a more apt description of social systems. This colloquium is devoted to evolutionary games on multilayer networks, and in particular to the evolution of cooperation as one of the main pillars of modern human societies. We first give an overview of the most significant conceptual differences between single-layer and multilayer networks, and we provide basic definitions and a classification of the most commonly used terms. Subsequently, we review fascinating and counterintuitive evolutionary outcomes that emerge due to different types of interdependencies between otherwise independent populations. The focus is on coupling through the utilities of players, through the flow of information, as well as through the popularity of different strategies on different network layers. The colloquium highlights the importance of pattern formation and collective behavior for the promotion of cooperation under adverse conditions, as well as the synergies between network science and evolutionary game theory.
Mechanical properties of highly textured Cu/Ni multilayers
International Nuclear Information System (INIS)
Liu, Y.; Bufford, D.; Wang, H.; Sun, C.; Zhang, X.
2011-01-01
We report on the synthesis of highly (1 1 1) and (1 0 0) textured Cu/Ni multilayers with individual layer thicknesses, h, varying from 1 to 200 nm. When, h, decreases to 5 nm or less, X-ray diffraction spectra show epitaxial growth of Cu/Ni multilayers. High resolution transmission electron microscopy studies show the coexistence of nanotwins and coherent layer interfaces in highly (1 1 1) textured Cu/Ni multilayers with smaller h. Hardnesses of multilayer films increase with decreasing h, approach a maximum at h of a few nanometers, and show softening thereafter at smaller h. The influence of layer interfaces as well as twin interfaces on strengthening mechanisms of multilayers and the formation of twins in Ni in multilayers are discussed.
Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems
Jiang, Bingbing; Barnett, John B; Li, Bingyun
2009-01-01
There has been considerable interest in polyelectrolyte multilayer nanofilms, which have a variety of applications ranging from optical and electrochemical materials to biomedical devices. Polyelectrolyte multilayer nanofilms are constructed from aqueous solutions using electrostatic layer-by-layer self-assembly of oppositely-charged polyelectrolytes on a solid substrate. Multifunctional polyelectrolyte multilayer nanofilms have been studied using charged dyes, metal and inorganic nanoparticles, DNA, proteins, and viruses. In the past few years, there has been increasing attention to developing polyelectrolyte multilayer nanofilms as drug delivery vehicles. In this mini-review, we present recent developments in polyelectrolyte multilayer nanofilms with tunable drug delivery properties, with particular emphasis on the strategies in tuning the loading and release of drugs in polyelectrolyte multilayer nanofilms as well as their applications. PMID:24198464
Measurement of Turbulence Modulation by Non-Spherical Particles
DEFF Research Database (Denmark)
Mandø, Matthias; Rosendahl, Lasse
2010-01-01
The change in the turbulence intensity of an air jet resulting from the addition of particles to the flow is measured using Laser Doppler Anemometry. Three distinct shapes are considered: the prolate spheroid, the disk and the sphere. Measurements of the carrier phase and particle phase velocities...... at the centerline of the jet are carried out for mass loadings of 0.5, 1, 1.6 and particle sizes 880μm, 1350μm, 1820μm for spherical particles. For each non-spherical shape only a single size and loading are considered. The turbulence modulation of the carrier phase is found to highly dependent on the turbulence......, the particle mass flow and the integral length scale of the flow. The expression developed on basis of spherical particles only is applied on the data for the non-spherical particles. The results suggest that non-spherical particles attenuate the carrier phase turbulence significantly more than spherical...
The prediction of spherical aberration with schematic eyes.
Liou, H L; Brennan, N A
1996-07-01
Many model eyes have been proposed; they differ in optical characteristics and therefore have different aberrations and image quality. In predicting the visual performance of the eye, we are most concerned with the central foveal vision. Spherical aberration is the only on-axis monochromatic aberration and can be used as a criterion to assess the degree of resemblance of eye models to the human eye. We reviewed and compiled experimental values of the spherical aberration of the eye, calculated the spherical aberration of several different categories of model eyes and compared the calculated results to the experimental data. Results show an over-estimation of spherical aberration by all models, the finite schematic eyes predicting values of spherical aberration closest to the experimental data. Current model eyes do not predict the average experimental values of the spherical aberration of the eye. A new model eye satisfying this assessment criterion is required for investigations of the visual performance of the eye.
Multiperiodicity in plasmonic multilayers: General description and diversity of topologies
DEFF Research Database (Denmark)
Orlov, Alexey A.; Krylova, Anastasia K.; Zhukovsky, Sergei
2014-01-01
We introduce multiperiodicity in periodicmetal-dielectric multilayers by stacking more than two types of metal and/or dielectric layers into the unit cell. A simple way to characterize arbitrary multiperiodic multilayers using permutation vectors is suggested and employed. Effects of multiperiodi...... of multiperiodicity up to its fourth order are investigated. We demonstrate that various topologies of multiple-sheet isofrequency and dispersion surfaces exist for such plasmonic multilayers, including a photonic realization of nontrivial isolated Dirac cones....
Neutron diffraction studies of thin film multilayer structures
International Nuclear Information System (INIS)
Majkrzak, C.F.
1985-01-01
The application of neutron diffraction methods to the study of the microscopic chemical and magnetic structures of thin film multilayers is reviewed. Multilayer diffraction phenomena are described in general and in particular for the case in which one of the materials of a bilayer is ferromagnetic and the neutron beam polarized. Recent neutron diffraction measurements performed on some interesting multilayer systems are discussed. 70 refs., 5 figs
Non-Spherical Gravitational Collapse of Strange Quark Matter
Institute of Scientific and Technical Information of China (English)
Zade S S; Patil K D; Mulkalwar P N
2008-01-01
We study the non-spherical gravitational collapse of the strange quark null fluid.The interesting feature which emerges is that the non-spherical collapse of charged strange quark matter leads to a naked singularity whereas the gravitational collapse of neutral quark matter proceeds to form a black hole.We extend the earlier work of Harko and Cheng[Phys.Lett.A 266 (2000) 249]to the non-spherical case.
Spherical solitons in Earth’S mesosphere plasma
International Nuclear Information System (INIS)
Annou, K.; Annou, R.
2016-01-01
Soliton formation in Earth’s mesosphere plasma is described. Nonlinear acoustic waves in plasmas with two-temperature ions and a variable dust charge where transverse perturbation is dealt with are studied in bounded spherical geometry. Using the perturbation method, a spherical Kadomtsev–Petviashvili equation that describes dust acoustic waves is derived. It is found that the parameters taken into account have significant effects on the properties of nonlinear waves in spherical geometry
On the phase diagram of non-spherical nanoparticles
Wautelet, M; Hecq, M
2003-01-01
The phase diagram of nanoparticles is known to be a function of their size. In the literature, this is generally demonstrated for cases where their shape is spherical. Here, it is shown theoretically that the phase diagram of non-spherical particles may be calculated from the spherical case, at the same surface area/volume ratio, both with and without surface segregation, provided the surface tension is considered to be isotropic.
On three-dimensional spherical acoustic cloaking
International Nuclear Information System (INIS)
Munteanu, Ligia; Chiroiu, Veturia
2011-01-01
Transformation acoustics opens a new avenue towards the design of acoustic metamaterials, which are materials engineered at the subwavelength scale in order to mimic the parameters in wave equations. The design of the acoustic cloaking is based on the property of equations being invariant under a coordinate transformation, i.e. a specific spatial compression is equivalent to a variation of the material parameters in the original space. In this paper, the sound invisibility performance is discussed for spherical cloaks. The original domain consists of alternating concentric layers made from piezoelectric ceramics and epoxy resin, following a triadic Cantor sequence. The spatial compression, obtained by applying the concave-down transformation, leads to an equivalent domain with an inhomogeneous and anisotropic distribution of the material parameters.
Nuclear structure investigations on spherical nuclei
International Nuclear Information System (INIS)
Heisenberg, J.; Calarco, J.; Dawson, J.; Hersman, F.W.
1989-09-01
This report discusses the following topics: electron scattering studies on spherical nuclei; electron scattering from collective states in deformed nuclei; proton and pion scattering studies; 12 C(e,e'p) and 16 O(e,e'p); 12 C(e,e'α) and 16 O(e,e'α); studies at high q at Bates; measurements with rvec e at Bates; 12 C(γ,p); future directions in giant resonance studies; proton knockout from 16 O; quasielastic studies at Bates; triple coincidence studies of nuclear correlations; contributions to (e,e'2p) at KIKHEF; contributions to instrumentation at CEBAF; instrumentation development at UNH; the Bates large acceptance spectrometer toroid; shell model and core polarization calculations; and the relativistic nuclear model
Saltation movement of large spherical particles
Chara, Z.; Dolansky, J.; Kysela, B.
2017-07-01
The paper presents experimental and numerical investigations of the saltation motion of a large spherical particle in an open channel. The channel bottom was roughed by one layer of glass rods of diameter 6 mm. The plastic spheres of diameter 25.7 mm and density 1160 kgm-3 were fed into the water channel and theirs positions were viewed by a digital camera. Two light sheets were placed above and under the channel, so the flow was simultaneously lighted from the top and the bottom. Only particles centers of which moved through the light sheets were recorded. Using a 2D PIV method the trajectories of the spheres and the velocity maps of the channel flow were analyzed. The Lattice-Boldzmann Method (LBM) was used to simulate the particle motion.
Coulomb potentials between spherical heavy ions
International Nuclear Information System (INIS)
Iwe, H.
1982-01-01
The Coulomb interaction between spherical nuclei having arbitrary radial nuclear charge distributions is calculated. All these realistic Coulomb potentials are given in terms of analytical expressions and are available for immediate application. So in no case a numerical computation of the Coulomb integral is required. The parameters of the charge distributions are taken from electron scattering analysis. The Coulomb self-energies of the charge distributions used are also calculated analytically in a closed form. For a number of nucleus-nucleus pairs, the Coulomb potentials derived from realistic charge distributions are compared with those normally used in various nucleus-nucleus optical model calculations. In this connection a detailed discussion of the problem how to choose consistently Coulomb parameters for different approximations is given. (orig.)
Application studies of spherical tokamak plasma merging
International Nuclear Information System (INIS)
Ono, Yasushi; Inomoto, Michiaki
2012-01-01
The experiment of plasma merging and heating has long history in compact torus studies since Wells. The study of spherical tokamak (ST), starting from TS-3 plasma merging experiment of Tokyo University in the late 1980s, is followed by START of Culham laboratory in the 1900s, TS-4 and UTST of Tokyo University and MAST of Culham laboratory in the 2000s, and last year by VEST of Soul University. ST has the following advantages: 1) plasma heating by magnetic reconnection at a MW-GW level, 2) rapid start-up of high beta plasma, 3) current drive/flux multiplication and distribution control of ST plasma, 4) fueling and helium-ash exhaust. In the present article, we emphasize that magnetic reconnection and plasma merging phenomena are important in ST plasma study as well as in plasma physics. (author)
Confined detonations with cylindrical and spherical symmetry
International Nuclear Information System (INIS)
Linan, A.; Lecuona, A.
1979-01-01
An imploding spherical or cylindrical detonation, starting in the interface of the detonantion with an external inert media, used as a reflector, creates on it a strong shock wave moving outward from the interface. An initially weak shock wave appears in the detonated media that travels toward the center, and it could reach the detonation wave, enforcing it in its process of implosion. To describe the fluid field, the Euler s equations are solved by means of expansions valid for the early stages of the process. Isentropic of the type P/pγ-K for the detonated and compressed inert media are used. For liquid or solid reflectors a more appropriate equation is used. (Author) 8 refs
Simple spherical ablative-implosion model
International Nuclear Information System (INIS)
Mayer, F.J.; Steele, J.T.; Larsen, J.T.
1980-01-01
A simple model of the ablative implosion of a high-aspect-ratio (shell radius to shell thickness ratio) spherical shell is described. The model is similar in spirit to Rosenbluth's snowplow model. The scaling of the implosion time was determined in terms of the ablation pressure and the shell parameters such as diameter, wall thickness, and shell density, and compared these to complete hydrodynamic code calculations. The energy transfer efficiency from ablation pressure to shell implosion kinetic energy was examined and found to be very efficient. It may be possible to attach a simple heat-transport calculation to our implosion model to describe the laser-driven ablation-implosion process. The model may be useful for determining other energy driven (e.g., ion beam) implosion scaling
Space Propulsion via Spherical Torus Fusion Reactor
International Nuclear Information System (INIS)
Williams, Craig H.; Juhasz, Albert J.; Borowski, Stanley K.; Dudzinski, Leonard A.
2003-01-01
A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 204 days, with an initial mass in low Earth orbit of 1630 mt. Engineering conceptual design, analysis, and assessment were performed on all major systems including nuclear fusion reactor, magnetic nozzle, power conversion, fast wave plasma heating, fuel pellet injector, startup/re-start fission reactor and battery, and other systems. Detailed fusion reactor design included analysis of plasma characteristics, power balance and utilization, first wall, toroidal field coils, heat transfer, and neutron/X-ray radiation
Canonical quantization of static spherically symmetric geometries
International Nuclear Information System (INIS)
Christodoulakis, T; Dimakis, N; Terzis, P A; Doulis, G; Grammenos, Th; Melas, E; Spanou, A
2013-01-01
The conditional symmetries of the reduced Einstein–Hilbert action emerging from a static, spherically symmetric geometry are used as supplementary conditions on the wave function. Based on their integrability conditions, only one of the three existing symmetries can be consistently imposed, while the unique Casimir invariant, being the product of the remaining two symmetries, is calculated as the only possible second condition on the wave function. This quadratic integral of motion is identified with the reparametrization generator, as an implication of the uniqueness of the dynamical evolution, by fixing a suitable parametrization of the r-lapse function. In this parametrization, the determinant of the supermetric plays the role of the mesure. The combined Wheeler – DeWitt and linear conditional symmetry equations are analytically solved. The solutions obtained depend on the product of the two ''scale factors''
Laser Pulse Heating of Spherical Metal Particles
Directory of Open Access Journals (Sweden)
Michael I. Tribelsky
2011-12-01
Full Text Available We consider the general problem of laser pulse heating of spherical metal particles with the sizes ranging from nanometers to millimeters. We employ the exact Mie solution of the diffraction problem and solve the heat-transfer equation to determine the maximum temperature rise at the particle surface as a function of optical and thermometric parameters of the problem. Primary attention is paid to the case when the thermal diffusivity of the particle is much larger than that of the environment, as it is in the case of metal particles in fluids. We show that, in this case, for any given duration of the laser pulse, the maximum temperature rise as a function of the particle size reaches a maximum at a certain finite size of the particle. We suggest simple approximate analytical expressions for this dependence, which cover the entire parameter range of the problem and agree well with direct numerical simulations.
Spherical Nb single crystals containerlessly grown by electrostatic levitation
International Nuclear Information System (INIS)
Sung, Y.S.; Takeya, H.; Hirata, K.; Togano, K.
2003-01-01
Spherical Nb (T m =2750 K) single crystals were grown via containerless electrostatic levitation (ESL). Samples became spherical at melting in levitation and undercooled typically 300-450 K prior to nucleation. As-processed samples were still spherical without any macroscopic shape change by solidification showing a uniform dendritic surface morphology. Crystallographic {111} planes exposed in equilateral triangular shapes on the surface by preferential macroetching and spotty back-reflection Laue patterns confirm the single crystal nature of the ESL-processed Nb samples. No hysteresis in magnetization between zero field and field cooling also implies a clean defect-free condition of the spherical Nb single crystals
Investigation of spherical and concentric mechanism of compound droplets
Directory of Open Access Journals (Sweden)
Meifang Liu
2016-07-01
Full Text Available Polymer shells with high sphericity and uniform wall thickness are always needed in the inertial confined fusion (ICF experiments. Driven by the need to control the shape of water-in-oil (W1/O compound droplets, the effects of the density matching level, the interfacial tension and the rotation speed of the continuing fluid field on the sphericity and wall thickness uniformity of the resulting polymer shells were investigated and the spherical and concentric mechanisms were also discussed. The centering of W1/O compound droplets, the location and movement of W1/O compound droplets in the external phase (W2 were significantly affected by the density matching level of the key stage and the rotation speed of the continuing fluid field. Therefore, by optimizing the density matching level and rotation speed, the batch yield of polystyrene (PS shells with high sphericity and uniform wall thickness increased. Moreover, the sphericity also increased by raising the oil/water (O/W2 interfacial tension, which drove a droplet to be spherical. The experimental results show that the spherical driving force is from the interfacial tension affected by the two relative phases, while the concentric driving force, as a resultant force, is not only affected by the three phases, but also by the continuing fluid field. The understanding of spherical and concentric mechanism can provide some guidance for preparing polymer shells with high sphericity and uniform wall thickness.
Low-Q Electrically Small Spherical Magnetic Dipole Antennas
DEFF Research Database (Denmark)
Kim, Oleksiy S.
2010-01-01
Three novel electrically small antenna configurations radiating a TE10 spherical mode corresponding to a magnetic dipole are presented and investigated: multiarm spherical helix (MSH) antenna, spherical split ring resonator (S-SRR) antenna, and spherical split ring (SSR) antenna. All three antennas...... are self-resonant, with the input resistance tuned to 50 ohms by an excitation curved dipole/monopole. A prototype of the SSR antenna has been fabricated and measured, yielding results that are consistent with the numerical simulations. Radiation quality factors (Q) of these electrically small antennas (in...
Fluid Fuel Fluctuations in the Spherical Tank
Directory of Open Access Journals (Sweden)
H. D. Nguyen
2014-01-01
Full Text Available Many authors tried to solve a task concerning small fluctuations of the incompressible ideal liquid, which partially fills a stationary tank of any shape. There is a long list of references to this subject. The article presents a task solution on own fluctuations of liquid in spherical capacity, with boundary conditions on a free surface and a surface with a resistance – drain surface. Relevance of problem consists in assessment of influence of intra tank devices (measuring, intaking, damping devices, etc. on the liquid fuel fluctuations. The special attention is paid to finding the own values and frequencies of the equations of disturbed flow fluctuations with dissipation available on the boundary surfaces. In contrast to the previous examples, the lowering speed and the free surface area at undisturbed state are variable.The article also considers a variation formulation of the auxiliary boundary tasks. In solution of variation tasks, the attached Legendre's functions were used as coordinate functions. Further, after substitution of the variation tasks solution in the boundary conditions and the subsequent mathematical operations the characteristic equation was obtained. To obtain solutions of the cubic characteristic equation Cardano formulas were used. The article also considers the task on the own motions of liquid filling a capacity between two concentric spheres and flowing out via the intake in case there is a free surface. Reliability of the obtained numerical results is confirmed by comparison with calculation results of frequencies resulting from solutions of a task on the own fluctuations of liquid in the spherical capacity with the constant depth of liquid. All numerical calculations were performed using the Matlab environment.
2011-01-03
... DEPARTMENT OF COMMERCE International Trade Administration [C-570-971] Multilayered Wood Flooring... Department'') initiated an investigation of multilayered wood flooring from the People's Republic of China (``PRC''). See Multilayered Wood Flooring From the People's Republic of China: Initiation of...
Directory of Open Access Journals (Sweden)
Elena Dellacasa
2016-01-01
Full Text Available The enantiomers poly(D-lactic acid (PDLA and poly(L-lactic acid (PLLA were alternately adsorbed directly on calcium carbonate (CaCO3 templates and on poly(styrene sulfonate (PSS and poly(allylamine hydrochloride (PAH multilayer precursors in order to fabricate a novel layer-by-layer (LBL assembly. A single layer of poly(L-lysine (PLL was used as a linker between the (PDLA/PLLAn stereocomplex and the cores with and without the polymeric (PSS/PAHn/PLL multilayer precursor (PEM. Nuclear magnetic resonance (NMR and gel permeation chromatography (GPC were used to characterize the chemical composition and molecular weight of poly(lactic acid polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC and wide X-ray diffraction (WXRD analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM and transmission electron microscopy (TEM measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release.
Yang, Gesheng; Pastorino, Laura
2016-01-01
Summary The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release. PMID:26925356
International Nuclear Information System (INIS)
Sahni, D.C.; Sharma, A.
2000-01-01
The integral form of one-speed, spherically symmetric neutron transport equation with isotropic scattering is considered. Two standard problems are solved using normal mode expansion technique. The expansion coefficients are obtained by solving their singular integral equations. It is shown that these expansion coefficients provide a representation of all spherical harmonics moments of the angular flux as a superposition of Bessel functions. It is seen that large errors occur in the computation of higher moments unless we take certain precautions. The reasons for this phenomenon are explained. They throw some light on the failure of spherical harmonics method in treating spherical geometry problems as observed by Aronsson
Structural integrity of ceramic multilayer capacitor materials and ceramic multilayer capacitors
With, de G.
1993-01-01
An review with 61 refs. is given of the fracture of and stress situation in ceramic capacitor materials and ceramic multilayer capacitors. A brief introduction to the relevant concepts is given first. Next the data for capacitor materials and the data for capacitors are discussed. The materials data
A multilayer approach for turbidity currents
Fernandez-Nieto, Enrique; Castro Díaz, Manuel J.; Morales de Luna, Tomás
2017-04-01
When a river that carries sediment in suspension enters into a lake or the ocean it can form a plume that can be classified as hyperpycnal or hypopycnal. Hypopycnal plumes occurs if the combined density of the sediment and interstitial fluid is lower than that of the ambient. Hyperpycnal plumes are a class of sediment-laden gravity current commonly referred to as turbidity currents [7,9]. Some layer-averaged models have been previously developed (see [3, 4, 8] among others). Although this layer-averaged approach gives a fast and valuable information, it has the disadvantage that the vertical distribution of the sediment in suspension is lost. A recent technique based on a multilayer approach [1, 2, 6] has shown to be specially useful to generalize shallow water type models in order to keep track of the vertical components of the averaged variables in the classical shallow water equations. In [5] multilayer model is obtained using a vertical discontinuous Galerkin approach for which the vertical velocity is supposed to be piecewise linear and the horizontal velocity is supposed to be piecewise constant. In this work the technique introduced in [5] is generalized to derive a model for turbidity currents. This model allows to simulate hyperpycnal as well as hypopycnal plumes. Several numerical tests will be presented. References [1] E. Audusse, M. Bristeau, B. Perthame, and J. Sainte-Marie. A multilayer Saint-Venant system with mass exchanges for shallow water flows. derivation and numerical validation. ESAIM: Mathematical Modelling and Numerical Analysis, 45(1):169-200, (2010). [2] E. Audusse, M.-O. Bristeau, M. Pelanti, and J. Sainte-Marie. Approximation of the hydrostatic Navier‚ÄìStokes system for density stratified flows by a multilayer model: Kinetic interpretation and numerical solution. Journal of Computational Physics, 230(9):3453-3478, (2011). [3] S. F. Bradford and N. D. Katopodes. Hydrodynamics of turbid underflows. i: Formulation and numerical
High-precision MoSi multilayer coatings for radial and 2D designs on curved optics
Kriese, Michael D.; Li, Yang; Platonov, Yuriy Y.
2017-10-01
The development of industrial infrastructure for EUV lithography requires a wide array of optics beyond the mask and the scanner optics, which include optics for critical instruments such as exposure testing and actinic inspection. This paper will detail recent results in the production of a variety of high-precision multilayer coatings achieved to support this development. It is critical that the optical designs factor in the capabilities of the achievable multilayer gradients and the associated achievable precision, including impact to surface distortion from the added figure error of the multilayer coating, which adds additional requirements of a specific shape to the period distribution. For example, two different coatings may achieve a ±0.2% variation in multilayer period, but have considerably different added figure error. Part I of the paper will focus on radially-symmetric spherical and aspherical optics. Typical azimuthal uniformity (variation at a fixed radius) achieved is less than ±0.005nm total variation, including measurement precision, on concave optics up to 200mm diameter. For highly curved convex optics (radius of curvature less than 50mm), precision is more challenging and the total variation increases to ±0.01nm total variation for optics 10-30mm in diameter. Total added figure error achieved has been as low as 0.05nm. Part II of the paper will focus on multilayer designs graded in two directions, rather than radially, in order to accommodate the increased complexity of elliptical, toroidal and hyperbolic surfaces. In most cases, the symmetry of the required multilayer gradient does not match the symmetry of the optical surface, and this interaction must be countered via the process design. Achieving such results requires additional flexibility in the design of the deposition equipment, and will be discussed with several examples in the paper, such as the use of variable velocity of an inline substrate carrier in conjunction with a shaped
Dipole radiation in a multilayer geometry
International Nuclear Information System (INIS)
Reed, C.E.; Giergiel, J.; Hemminger, J.C.; Ushioda, S.
1987-01-01
There are several kinds of experiments that can be done with multilayer stacks of dielectric media which require an understanding of light emission by sources within the stack for their analysis. These experiments may involve, for example, light-emitting tunnel junctions, Raman scattering in Kretschmann and other multilayered geometries, and Rayleigh scattering by small amounts of surface or interface roughness, either alone or in combination with other processes. A set of electromagnetic Green's functions for a multilayer stack of isotropic dielectric media [D. L. Mills and A. A. Maradudin, Phys. Rev. B 12, 2943 (1975)] gives the electric fields produced everywhere by a point source of current oscillating at a frequency f. These Green's functions can thus be used to solve this type of problem. In this paper we show how these Green's functions can be written in terms of 2 x 2 transfer matrices of the type commonly used to find the fields in a dielectric stack due to an incident plane wave. With this simplification we can easily evaluate the Green's functions for a stack with an arbitrary number of layers. We further show that, when the electric fields generated by a point source within the stack are evaluated far away, they can be written directly in terms of the electric fields that would be generated at the location of the current source by plane waves incident from the direction of the observation point. We show that this follows from the Lorentz reciprocity theorem. Thus, in this case the formalism of Green's functions is not needed
Multilayer models of photosynthetic membranes. Final report
Energy Technology Data Exchange (ETDEWEB)
Brocklehurst, J R; Flanagan, M T
1982-01-01
The primary aim of this project has been to build an artificial membrane in which is incorporated, in a functional state, the protein bacteriorhodopsin responsible for generating an electrical potential difference across the membrane of the photosynthetic bacterium, halobacterium halobium, and to investigate the use of this artificial system as the basis of a solar cell. the bacteriorhodopsin has been incorporated into Langmuir-Blodgett multilayers. If ths supporting filter is then illuminated, a potential difference is generated between the two compartments. The lipid in the filter appears to act as a charge carrier for protons, the charge species that forms the electrochemical gradient generated by the bacteriorhodopsin when this molecule absorbs light. The internal resistances of such solar cells were determined and found to be so high that the cells could not be seriously considered as competitors with classical semiconductor cells. Multilayerswere deposited onto filters in which ion carriers that make the filters permeable to sodium ions had been dissolved in the paraffin. The photovoltage obtained indicated that protons transferred from one side of the filter to the other by the action of the bacteriorhodopsin were bing exchanged for sodium ions. A secondary aim of the project has been to examine the possibility of depositing mixed multilayers of a dye and a long chain quinone onto a semiconductor surface. A sensitizing multilayer has been prepared and the mobility of long chain quinones within the layers is high enough to warrant further research. However, it was found that, with the dyes and quinones used, quenched complexes were formed which would not act as sensitizers.
Magnetic pinning in superconductor-ferromagnet multilayers
International Nuclear Information System (INIS)
Bulaevskii, L. N.; Chudnovsky, E. M.; Maley, M. P.
2000-01-01
We argue that superconductor/ferromagnet multilayers of nanoscale period should exhibit strong pinning of vortices by the magnetic domain structure in magnetic fields below the coercive field when ferromagnetic layers exhibit strong perpendicular magnetic anisotropy. The estimated maximum magnetic pinning energy for single vortex in such a system is about 100 times larger than the pinning energy by columnar defects. This pinning energy may provide critical currents as high as 10 6 -10 7 A/cm 2 at high temperatures (but not very close to T c ) at least in magnetic fields below 0.1 T. (c) 2000 American Institute of Physics
Magnetic pinning in superconductor-ferromagnet multilayers
Energy Technology Data Exchange (ETDEWEB)
Bulaevskii, L. N. [Department of Physics and Astronomy, CUNY Lehman College 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Chudnovsky, E. M. [Department of Physics and Astronomy, CUNY Lehman College, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Maley, M. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2000-05-01
We argue that superconductor/ferromagnet multilayers of nanoscale period should exhibit strong pinning of vortices by the magnetic domain structure in magnetic fields below the coercive field when ferromagnetic layers exhibit strong perpendicular magnetic anisotropy. The estimated maximum magnetic pinning energy for single vortex in such a system is about 100 times larger than the pinning energy by columnar defects. This pinning energy may provide critical currents as high as 10{sup 6}-10{sup 7} A/cm{sup 2} at high temperatures (but not very close to T{sub c}) at least in magnetic fields below 0.1 T. (c) 2000 American Institute of Physics.
Magnetic anisotropy of Ni/Cr multilayers
International Nuclear Information System (INIS)
Kang, S.; Xia, H.
1997-01-01
The magnetic anisotropy of Ni/Cr multilayers has been investigated by using vibrating sample magnetometer (VSM) and ferromagnetic resonance techniques (FMR). The FMR spectra are obtained as a function of the orientation of the applied magnetic field from in-plane to out-of-plane. The results are fitted theoretically to determine the magnetic anisotropy. From VSM and FMR, a positive value for Ni/Cr interface anisotropy is obtained, which favours a perpendicular easy axis. The possible mechanism for the perpendicular anisotropy has been discussed and it may be attributed to the magnetostriction, caused by intrinsic stress due to lattice mismatch. (orig.). With 005 figs., 001 tabs
Magnetic properties of Dy/Zr multilayers
International Nuclear Information System (INIS)
Luche, M.C.; Boyer, P.
1992-01-01
[Dy(xA)/Zr(30A)] n superlattices (x ≤ 30), were evaporated under ultra-high vacuum on Si(100) substrates. Magnetization measurements indicate that the antiferromagnetic transition occurring at 178K in bulk Dy is suppressed in the multilayers. This phenomenon is attributed to magnetoelastic effects induced by strains at Zr/Dy interfaces. A perpendicular magnetic anisotropy takes place for x ≤ 15. However, the magnetic anisotropy is found to depend markedly on the technique used for Dy deposition. (author). 11 refs., 4 figs
Multilayer detector for skin absorbed dose measuring
International Nuclear Information System (INIS)
Osanov, D.P.; Panova, V.P.; Shaks, A.I.
1985-01-01
A method for skin dosimetry based on utilization of multilayer detectors and permitting to estimate distribution of absorbed dose by skin depth is described. The detector represents a set of thin sensitive elements separated by tissue-equivalent absorbers. Quantitative evaluation and forecasting the degree of radiation injury of skin are determined by the formula based on determination of the probability of the fact that cells are not destroyed and they can divide further on. The given method ensures a possibility of quantitative evaluation of radiobiological effect and forecasting clinical consequences of skin irradiation by results of corresponding measurements of dose by means of the miultilayer detector
Optics and multilayer coatings for EUVL systems
Energy Technology Data Exchange (ETDEWEB)
Soufli, R; Bajt, S; Hudyma, R M; Taylor, J S
2008-03-21
EUV lithography (EUVL) employs illumination wavelengths around 13.5 nm, and in many aspects it is considered an extension of optical lithography, which is used for the high-volume manufacturing (HVM) of today's microprocessors. The EUV wavelength of illumination dictates the use of reflective optical elements (mirrors) as opposed to the refractive lenses used in conventional lithographic systems. Thus, EUVL tools are based on all-reflective concepts: they use multilayer (ML) coated optics for their illumination and projection systems, and they have a ML-coated reflective mask.
Multilayer Perceptron: Architecture Optimization and Training
Directory of Open Access Journals (Sweden)
Hassan Ramchoun
2016-09-01
Full Text Available The multilayer perceptron has a large wide of classification and regression applications in many fields: pattern recognition, voice and classification problems. But the architecture choice has a great impact on the convergence of these networks. In the present paper we introduce a new approach to optimize the network architecture, for solving the obtained model we use the genetic algorithm and we train the network with a back-propagation algorithm. The numerical results assess the effectiveness of the theoretical results shown in this paper, and the advantages of the new modeling compared to the previous model in the literature.
Optimization of Perfect Absorbers with Multilayer Structures
Li Voti, Roberto
2018-02-01
We study wide-angle and broadband perfect absorbers with compact multilayer structures made of a sequence of ITO and TiN layers deposited onto a silver thick layer. An optimization procedure is introduced for searching the optimal thicknesses of the layers so as to design a perfect broadband absorber from 400 nm to 750 nm, for a wide range of angles of incidence from 0{°} to 50{°}, for both polarizations and with a low emissivity in the mid-infrared. We eventually compare the performances of several optimal structures that can be very promising for solar thermal energy harvesting and collectors.
Fabrication and Properties of Multilayer Structures
1983-09-01
according to both the high x-ray count and a Read camera pattern which showed only the 111 8 SiC reflection in a tight ± 30 distribution about the substrate...structural rearrangement. X-ray analysis of the deposited films at the composition of Pd2 Si using a Read camera indicated strong texturing. The...Phys. 35, 547 (1964). 11. C.A. Neubauer and J.R. Randen, Proc. IEEE 52, 1234 (1964). 12. W.A. Tiller, "Fabrication and Properties of Multilayer
Initial value formulation for the spherically symmetric dust solution
International Nuclear Information System (INIS)
Liu, H.
1990-01-01
An initial value formulation for the dust solution with spherical symmetry is given explicitly in which the initial distributions of dust and its velocity on an initial surface are chosen to be the initial data. As special cases, the Friedmann universe, the Schwarzschild solution in comoving coordinates, and a spherically symmetric and radially inhomogeneous cosmological model are derived
Cylindrical and spherical dust-acoustic wave modulations in dusty ...
Indian Academy of Sciences (India)
Abstract. The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distribu- tions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified ...
Systematic Calibration for a Backpacked Spherical Photogrammetry Imaging System
Rau, J. Y.; Su, B. W.; Hsiao, K. W.; Jhan, J. P.
2016-06-01
A spherical camera can observe the environment for almost 720 degrees' field of view in one shoot, which is useful for augmented reality, environment documentation, or mobile mapping applications. This paper aims to develop a spherical photogrammetry imaging system for the purpose of 3D measurement through a backpacked mobile mapping system (MMS). The used equipment contains a Ladybug-5 spherical camera, a tactical grade positioning and orientation system (POS), i.e. SPAN-CPT, and an odometer, etc. This research aims to directly apply photogrammetric space intersection technique for 3D mapping from a spherical image stereo-pair. For this purpose, several systematic calibration procedures are required, including lens distortion calibration, relative orientation calibration, boresight calibration for direct georeferencing, and spherical image calibration. The lens distortion is serious on the ladybug-5 camera's original 6 images. Meanwhile, for spherical image mosaicking from these original 6 images, we propose the use of their relative orientation and correct their lens distortion at the same time. However, the constructed spherical image still contains systematic error, which will reduce the 3D measurement accuracy. Later for direct georeferencing purpose, we need to establish a ground control field for boresight/lever-arm calibration. Then, we can apply the calibrated parameters to obtain the exterior orientation parameters (EOPs) of all spherical images. In the end, the 3D positioning accuracy after space intersection will be evaluated, including EOPs obtained by structure from motion method.
Stability of transparent spherically symmetric thin shells and wormholes
International Nuclear Information System (INIS)
Ishak, Mustapha; Lake, Kayll
2002-01-01
The stability of transparent spherically symmetric thin shells (and wormholes) to linearized spherically symmetric perturbations about static equilibrium is examined. This work generalizes and systematizes previous studies and explores the consequences of including the cosmological constant. The approach shows how the existence (or not) of a domain wall dominates the landscape of possible equilibrium configurations
Invariants of the spherical sector in conformal mechanics
International Nuclear Information System (INIS)
Hakobyan, Tigran; Nersessian, Armen; Saghatelian, Armen; Lechtenfeld, Olaf
2011-01-01
A direct relation is established between the constants of motion for conformal mechanics and those for its spherical part. In this way, we find the complete set of functionally independent constants of motion for the so-called cuboctahedric Higgs oscillator, which is just the spherical part of the rational A 3 Calogero model (describing four Calogero particles after decoupling their center of mass).
Rapid Prototyping of Electrically Small Spherical Wire Antennas
DEFF Research Database (Denmark)
Kim, Oleksiy S.
2014-01-01
It is shown how modern rapid prototyping technologies can be applied for quick and inexpensive, but still accurate, fabrication of electrically small wire antennas. A well known folded spherical helix antenna and a novel spherical zigzag antenna have been fabricated and tested, exhibiting...
Effect of the spherical Earth on a simple pendulum
Burko, Lior M.
2003-01-01
We consider the period of a simple pendulum in the gravitational field of the spherical Earth. Effectively, gravity is enhanced compared with the often used flat Earth approximation, such that the period of the pendulum is shortened. We discuss the flat Earth approximation, and show when the corrections due to the spherical Earth may be of interest.
Sextupole system for the correction of spherical aberration
Crewe, A.V.; Kopf, D.A.
In an electron beam device in which an electron beam is developed and then focused by a lens to a particular spot, there is provided a means for eliminating spherical aberration. A sextupole electromagnetic lens is positioned between two focusing lenses. The interaction of the sextupole with the beam compensates for spherical aberration. (GHT)
Erosion and damage by hard spherical particles on glass
Slikkerveer, P.J.; Verspui, M.A.; Skerka, G.J.E.
1999-01-01
Solid particle impact of hard spherical particles on glass is of fundamental interest because of the presence of a number of different impact regimes. Understanding the impact of spherical particles is also a step toward modeling the behavior of rounded particles. This paper verifies theoretical
Equilibrium spherically curved two-dimensional Lennard-Jones systems
Voogd, J.M.; Sloot, P.M.A.; van Dantzig, R.
2005-01-01
To learn about basic aspects of nano-scale spherical molecular shells during their formation, spherically curved two-dimensional N-particle Lennard-Jones systems are simulated, studying curvature evolution paths at zero-temperature. For many N-values (N < 800) equilibrium configu- rations are traced
Acoustic radiation force control: Pulsating spherical carriers.
Rajabi, Majid; Mojahed, Alireza
2018-02-01
The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required
Multilayer thin films: sequential assembly of nanocomposite materials
National Research Council Canada - National Science Library
Decher, Gero; Schlenoff, Joseph B
2003-01-01
... polymeric or nanoparticulate building blocks, understanding the polymer physical chemistry of multilayers, or characterizing their optical, electrical or biological activities. The reasons for the intense interest in the field are also clearly evident: multilayers bridge the gap between monolayers and spun-on or dip-coated films, ...
Identifying key nodes in multilayer networks based on tensor decomposition.
Wang, Dingjie; Wang, Haitao; Zou, Xiufen
2017-06-01
The identification of essential agents in multilayer networks characterized by different types of interactions is a crucial and challenging topic, one that is essential for understanding the topological structure and dynamic processes of multilayer networks. In this paper, we use the fourth-order tensor to represent multilayer networks and propose a novel method to identify essential nodes based on CANDECOMP/PARAFAC (CP) tensor decomposition, referred to as the EDCPTD centrality. This method is based on the perspective of multilayer networked structures, which integrate the information of edges among nodes and links between different layers to quantify the importance of nodes in multilayer networks. Three real-world multilayer biological networks are used to evaluate the performance of the EDCPTD centrality. The bar chart and ROC curves of these multilayer networks indicate that the proposed approach is a good alternative index to identify real important nodes. Meanwhile, by comparing the behavior of both the proposed method and the aggregated single-layer methods, we demonstrate that neglecting the multiple relationships between nodes may lead to incorrect identification of the most versatile nodes. Furthermore, the Gene Ontology functional annotation demonstrates that the identified top nodes based on the proposed approach play a significant role in many vital biological processes. Finally, we have implemented many centrality methods of multilayer networks (including our method and the published methods) and created a visual software based on the MATLAB GUI, called ENMNFinder, which can be used by other researchers.
75 FR 66126 - Multilayered Wood Flooring From China
2010-10-27
...)] Multilayered Wood Flooring From China AGENCY: United States International Trade Commission. ACTION: Institution... flooring, provided for in subheadings 4409.10, 4409.29, 4412.31, 4412.32, 4412.39, 4412.94, 4412.99, 4418... multilayered wood flooring. The following companies are members of the CAHP: Anderson Hardwood Floors, LLC...
78 FR 30329 - Multilayered Wood Flooring from China
2013-05-22
...)] Multilayered Wood Flooring from China AGENCY: United States International Trade Commission. ACTION: Notice of...-1179 (Final) concerning multilayered wood flooring (``MLWF'') from China. For further information... reconsider ``its decision not to investigate domestic producers of hardwood plywood used for flooring'' 2. to...
76 FR 76435 - Multilayered Wood Flooring From China
2011-12-07
...)] Multilayered Wood Flooring From China Determinations On the basis of the record \\1\\ developed in the subject... multilayered wood flooring, provided for in subheadings 4409.10, 4409.29, 4412.31, 4412.32, 4412.39, 4412.94... flooring. The following companies are members of the CAHP: Anderson Hardwood Floors, LLC, Fountain Inn, SC...
Multiple analysis of an unknown optical multilayer coating
International Nuclear Information System (INIS)
Dobrowolski, J.A.; Ho, F.C.; Waldorf, A.
1985-01-01
Results are given of the analysis at five different laboratories of an unknown optical multilayer coating. In all, eleven different analytical and laboratory techniques were applied to the problem. The multilayer nominally consisted of three dielectric and two metallic layers. It was demonstrated convincingly that with present day techniques it is possible to determine the basic structure of such a coating
Simulation of reflectivity spectrum for non-absorbing multilayer ...
Indian Academy of Sciences (India)
Reflectivity simulation is an essential tool for the design and optimization of optical thin ... with the experimental results of the multilayer optical thin films grown by electron-beam evaporation ... beam splitters [4] and various optical filters. ... thickness (QWOT) layer AR coating and multilayer HR coating using electron- beam ...
Stress in tungsten carbide-diamond like carbon multilayer coatings
Pujada, B.R.; Tichelaar, F.D.; Janssen, G.C.A.M.
2007-01-01
Tungsten carbide-diamond like carbon (WC-DLC) multilayer coatings have been prepared by sputter deposition from a tungsten-carbide target and periodic switching on and off of the reactive acetylene gas flow. The stress in the resulting WC-DLC multilayers has been studied by substrate curvature.
Heat stability evaluations of Co/SiO2 multilayers
International Nuclear Information System (INIS)
Ishino, Masahiko; Koike, Masato; Kanehira, Mika; Satou, Futami; Terauchi, Masami; Sano, Kazuo
2008-01-01
The heat stability of Co/SiO 2 multilayers was evaluated. Co/SiO 2 multilayer samples were deposited on Si substrate by means of an ion beam sputtering method, and annealed at temperatures from 100degC to 600degC in a vacuum furnace. For the structural and optical evaluations, small angle x-ray diffraction (XRD) measurements, soft x-ray reflectivity measurements, and transmission electron microscopy (TEM) observations were carried out. As the results, the Co/SiO 2 multilayer samples annealed up to 400degC maintained the initial multilayer structures, and kept almost the same soft x-ray reflectivities as that of the as-deposited Co/SiO 2 multilayer sample. A deterioration of the multilayer structure caused by the growth of Co grains was found on the Co/SiO 2 multilayer samples annealed over 500degC, and the soft x-ray reflectivity dropped in accordance with the deterioration of the multilayer structure. (author)
Multilayer tape cast SOFC – Effect of anode sintering temperature
DEFF Research Database (Denmark)
Hauch, Anne; Birkl, Christoph; Brodersen, Karen
2012-01-01
Multilayer tape casting (MTC) is considered a promising, cost-efficient, up-scalable shaping process for production of planar anode supported solid oxide fuel cells (SOFC). Multilayer tape casting of the three layers comprising the half cell (anode support/active anode/electrolyte) can potentially...
Phosphorus-based compounds for EUV multilayer optics materials
Medvedev, Viacheslav; Yakshin, Andrey; van de Kruijs, Robbert Wilhelmus Elisabeth; Bijkerk, Frederik
2015-01-01
We have evaluated the prospects of phosphorus-based compounds in extreme ultraviolet multilayer optics. Boron phosphide (BP) is suggested to be used as a spacer material in reflective multilayer optics operating just above the L-photoabsorption edge of P (λ ≈9.2 nm). Mo, Ag, Ru, Rh, and Pd were
Characterization of Mo/Si multilayer growth on stepped topographies
van den Boogaard, Toine; Louis, Eric; Zoethout, E.; Goldberg, K.A.; Bijkerk, Frederik
2011-01-01
Mo/Si multilayer mirrors with nanoscale bilayer thicknesses have been deposited on stepped substrate topographies, using various deposition angles. The multilayer morphology at the step-edge region was studied by cross section transmission electron microscopy. A transition from a continuous- to
A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 1. MODEL FORMULATION
A multilayer biochemical dry deposition model has been developed based on the NOAA Multilayer Model (MLM) to study gaseous exchanges between the soil, plants, and the atmosphere. Most of the parameterizations and submodels have been updated or replaced. The numerical integration ...
A refined model for characterizing x-ray multilayers
International Nuclear Information System (INIS)
Oren, A.L.; Henke, B.L.
1987-12-01
The ability to quickly and accurately characterize arbitrary multilayers is very valuable for not only can we use the characterizations to predict the reflectivity of a multilayer for any soft x-ray wavelength, we also can generalize the results to apply to other multilayers of the same type. In addition, we can use the characterizations as a means of evaluating various sputtering environments and refining sputtering techniques to obtain better multilayers. In this report we have obtained improved characterizations for sample molybdenum-silicon and vanadium-silicon multilayers. However, we only examined five crystals overall, so the conclusions that we could draw about the structure of general multilayers is limited. Research involving many multilayers manufactured under the same sputtering conditions is clearly in order. In order to best understand multilayer structures it may be necessary to further refine our model, e.g., adopting a Gaussian form for the interface regions. With such improvements we can expect even better agreement with experimental values and continued concurrence with other characterization techniques. 18 refs., 30 figs., 7 tabs
Theory and applications of spherical microphone array processing
Jarrett, Daniel P; Naylor, Patrick A
2017-01-01
This book presents the signal processing algorithms that have been developed to process the signals acquired by a spherical microphone array. Spherical microphone arrays can be used to capture the sound field in three dimensions and have received significant interest from researchers and audio engineers. Algorithms for spherical array processing are different to corresponding algorithms already known in the literature of linear and planar arrays because the spherical geometry can be exploited to great beneficial effect. The authors aim to advance the field of spherical array processing by helping those new to the field to study it efficiently and from a single source, as well as by offering a way for more experienced researchers and engineers to consolidate their understanding, adding either or both of breadth and depth. The level of the presentation corresponds to graduate studies at MSc and PhD level. This book begins with a presentation of some of the essential mathematical and physical theory relevant to ...
A modular spherical harmonics approach to the neutron transport equation
International Nuclear Information System (INIS)
Inanc, F.; Rohach, A.F.
1989-01-01
A modular nodal method was developed for solving the neutron transport equation in 2-D xy coordinates. The spherical harmonic expansion was used for approximating the second-order even-parity form of the neutron transport equation. The boundary conditions of the spherical harmonics approximation were derived in a form to have forms analogous to the partial currents in the neutron diffusion equation. Relations were developed for generating both the second-order spherical harmonic equations and the boundary conditions in an automated computational algorithm. Nodes using different orders of the spherical harmonics approximation to the transport equation were interfaced through mixed-type boundary conditions. The determination of spherical harmonic orders implemented in the nodes were determined by the scheme in an automated manner. Results of the method compared favorably to benchmark problems. (author)
An X-ray grazing incidence phase multilayer grating
Chernov, V A; Mytnichenko, S V
2001-01-01
An X-ray grazing incidence phase multilayer grating, representing a thin grating placed on a multilayer mirror, is proposed. A high efficiency of grating diffraction can be obtained by the possibility of changing the phase shift of the wave diffracted from the multilayer under the Bragg and total external reflection conditions. A grazing incidence phase multilayer grating consisting of Pt grating stripes on a Ni/C multilayer and optimized for the hard X-ray range was fabricated. Its diffraction properties were studied at photon energies of 7 and 8 keV. The obtained maximum value of the diffraction efficiency of the +1 grating order was 9% at 7 keV and 6.5% at 8 keV. The data obtained are in a rather good accordance with the theory.
Bonded Multilayer Laue Lens for focusing hard X-rays
International Nuclear Information System (INIS)
Liu Chian; Conley, R.; Qian, J.; Kewish, C.M.; Macrander, A.T.; Maser, J.; Kang, H.C.; Yan, H.; Stephenson, G.B.
2007-01-01
We have fabricated partial Multilayer Laue Lens (MLL) linear zone plate structures with thousands of alternating WSi 2 and Si layers and various outermost zone widths according to the Fresnel zone plate formula. Using partial MLL structures, we were able to focus hard X-rays to line foci with a width of 30 nm and below. Here, we describe challenges and approaches used to bond these multilayers to achieve line and point focusing. Bonding was done by coating two multilayers with AuSn and heating in a vacuum oven at 280-300 o C. X-ray reflectivity measurements confirmed that there was no change in the multilayers after heating to 350 o C. A bonded MLL was polished to a 5-25 μm wedge without cracking. SEM image analyses found well-positioned multilayers after bonding. These results demonstrate the feasibility of a bonded full MLL for focusing hard X-rays
Excitation of Alfvenic instabilities in spherical tokamaks
International Nuclear Information System (INIS)
McClements, K.G.; Appel, L.C.; Hole, M.J.; Thyagaraja, A.
2003-01-01
Understanding energetic particle confinement in spherical tokamak (STs) is important for optimising the design of ST power plants, and provides a testbed for theoretical modelling under conditions of strong toroidicity and shaping, and high beta. MHD analysis of some recent beam-heated discharges in the MAST ST indicates that high frequency modes observed in these discharges can be identified as toroidal Alfven Eigenmodes (TAEs) and elliptical Alfven Eigenmodes (EAEs). It is possible that such modes could strongly enhance fusion alpha-particle transport in an ST power plant. Computations of TAE growth rates for one particular MAST discharge, made using the HAGIS guiding centre code and benchmarked against analytical estimates, indicate strong drive by sub-Alfvenic neutral beam ions. HAGIS computations using higher mode amplitudes than those observed indicate that whereas co-passing beam ions provide the bulk of he TAE drive, counter-passing ions provide the dominant component of TAE-induced particle losses. Axisymmetric Alfvenic mode activity has been detected during ohmic discharges in MAST. These observations are shown by computational modelling to be consistent with the excitation of global Alfven Eigenmodes (GAEs) with n=0 and low m, driven impulsively by low frequency MHD. (author)
Plasmonic and silicon spherical nanoparticle antireflective coatings
Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.
2016-03-01
Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes.
The spheric tokamak programme at Culham
International Nuclear Information System (INIS)
Sykes, A.
1999-01-01
The Spherical Tokamak (ST) is the low aspect ratio limit of the conventional tokamak, and appears to offer attractive physics properties in a simpler device. The START (Small Tight Aspect Ratio Tokamak) experiment provided the world's first demonstration of the properties of hot plasmas in an ST configuration, and was operational at Culham from January 1991 to March 1998, obtaining plasma current of up to 300 kA and pulse durations of ∼ 50 ms. Its successor, MAST is scheduled to obtain first plasma in Autumn 1998 and is a purpose built, high vacuum machine designed to have a tenfold increase in plasma volume with plasma currents up to 2 MA. Current drive and heating will be by a combination of induction-compression as on START, a high-performance central solenoid, 1.5 MW ECRH and 5 MW of Neutral Beam Injection. The promising results from START are reviewed, and the many challenges posed for the next generation of purpose-built STs (such as MAST) are described. (author)
Spherical images and inextensible curved folding
Seffen, Keith A.
2018-02-01
In their study, Duncan and Duncan [Proc. R. Soc. London A 383, 191 (1982), 10.1098/rspa.1982.0126] calculate the shape of an inextensible surface folded in two about a general curve. They find the analytical relationships between pairs of generators linked across the fold curve, the shape of the original path, and the fold angle variation along it. They present two special cases of generator layouts for which the fold angle is uniform or the folded curve remains planar, for simplifying practical folding in sheet-metal processes. We verify their special cases by a graphical treatment according to a method of Gauss. We replace the fold curve by a piecewise linear path, which connects vertices of intersecting pairs of hinge lines. Inspired by the d-cone analysis by Farmer and Calladine [Int. J. Mech. Sci. 47, 509 (2005), 10.1016/j.ijmecsci.2005.02.013], we construct the spherical images for developable folding of successive vertices: the operating conditions of the special cases in Duncan and Duncan are then revealed straightforwardly by the geometric relationships between the images. Our approach may be used to synthesize folding patterns for novel deployable and shape-changing surfaces without need of complex calculation.
Spherical dust collapse in higher dimensions
International Nuclear Information System (INIS)
Goswami, Rituparno; Joshi, Pankaj S.
2004-01-01
We consider here whether it is possible to recover cosmic censorship when a transition is made to higher-dimensional spacetimes, by studying the spherically symmetric dust collapse in an arbitrary higher spacetime dimension. It is pointed out that if only black holes are to result as the end state of a continual gravitational collapse, several conditions must be imposed on the collapsing configuration, some of which may appear to be restrictive, and we need to study carefully if these can be suitably motivated physically in a realistic collapse scenario. It would appear, that, in a generic higher-dimensional dust collapse, both black holes and naked singularities would develop as end states as indicated by the results here. The mathematical approach developed here generalizes and unifies the earlier available results on higher-dimensional dust collapse as we point out. Further, the dependence of black hole or naked singularity end states as collapse outcomes on the nature of the initial data from which the collapse develops is brought out explicitly and in a transparent manner as we show here. Our method also allows us to consider here in some detail the genericity and stability aspects related to the occurrence of naked singularities in gravitational collapse
Scaling laws for spherical pinch experiments
International Nuclear Information System (INIS)
Singh, D.P.; Palleschi, V.; Vaselli, M.
1991-01-01
In spherical pinch (SP) experiments, the plasma heated at the center of a cell to reach ignition temperature is confined by imploding shock waves for a time long enough to satisfy the Lawson criterion for plasma fusion. In earlier theoretical studies, the expansion of the central plasma either is neglected or is assumed to be radially uniform. The energy is considered to be deposited instantaneously at the center of the cell and the nonlinear heat conduction equation is solved to study the temporal evolution of the central plasma. Incorporating the ignition condition for the average temperature of the expanding fireball, and its confinement by imploding convergent shock waves, which may be fired from the periphery of the cell with some time delay, the scaling laws for satisfying the Lawson criterion are investigated in detail. The relevant calculations indicate that the cumulative effects of the convergent shock waves in the vicinity of the center of the cell play an important role in these scaling laws. (author)
Spherical radial basis functions, theory and applications
Hubbert, Simon; Morton, Tanya M
2015-01-01
This book is the first to be devoted to the theory and applications of spherical (radial) basis functions (SBFs), which is rapidly emerging as one of the most promising techniques for solving problems where approximations are needed on the surface of a sphere. The aim of the book is to provide enough theoretical and practical details for the reader to be able to implement the SBF methods to solve real world problems. The authors stress the close connection between the theory of SBFs and that of the more well-known family of radial basis functions (RBFs), which are well-established tools for solving approximation theory problems on more general domains. The unique solvability of the SBF interpolation method for data fitting problems is established and an in-depth investigation of its accuracy is provided. Two chapters are devoted to partial differential equations (PDEs). One deals with the practical implementation of an SBF-based solution to an elliptic PDE and another which describes an SBF approach for solvi...
Failure internal pressure of spherical steel containments
International Nuclear Information System (INIS)
Sanchez Sarmiento, G.
1985-01-01
An application of the British CEGB's R6 Failure Assessment Approach to the determination of failure internal pressure of nuclear power plant spherical steel containments is presented. The presence of hypothetical cracks both in the base metal and in the welding material of the containment, with geometrical idealizations according to the ASME Boiler and Pressure Vessel Code (Section XI), was taken into account in order to analyze the sensitivity of the failure assessment with the values of the material fracture properties. Calculations of the elastoplastic collapse load have been performed by means of the Finite Element System SAMCEF. The clean axisymmetric shell (neglecting the influence of nozzles and minor irregularities) and two major penetrations (personnel and emergency locks) have been taken separately into account. Large-strain elastoplastic behaviour of the material was considered in the Code, using lower bounds of true stress-true strain relations obtained by testing a collection of tensile specimens. Assuming the presence of cracks in non-perturbed regions, the reserve factor for test pressure and the failure internal pressure have been determined as a function of the flaw depth. (orig.)
Synchrotron radiation from spherically accreting black holes
International Nuclear Information System (INIS)
Ipser, J.R.; Price, R.H.
1982-01-01
Spherical accretion onto a Schwartzchild black hole, of gas with frozen-in magnetic field, is studied numerically and analytically for a range of hole masses and accretion rates in which synchrotron emission is the dominant radiative mechanism. At small radii the equipartition of magnetic, kinetic, and gravitational energy is assumed to apply, and the gas is heated by dissipation of infalling magnetic energy, turbulent energy, etc. The models can be classified into three types: (a) synchrotron cooling negligible, (b) synchrotron cooling important but synchrotron self-absorption negligible, (c) synchrotron cooling and self-absorption important. In the first case gas temperatures become very high near the horizon but luminosity efficiencies (luminosity/mass-energy accretion rate) are low. In cases (b) and (c) the gas flow near the horizon is essentially isothermal and luminosity efficiencies are fairly high. The analysis and results for the isothermal cases (b) and (c) are valid only for moderate dissipative heating and synchrotron self-absorption. If self-absorption is very strong or if dissipated energy is comparable to infall energy, Comptonization effects, not included in the analysis, become important
Spherical Process Models for Global Spatial Statistics
Jeong, Jaehong
2017-11-28
Statistical models used in geophysical, environmental, and climate science applications must reflect the curvature of the spatial domain in global data. Over the past few decades, statisticians have developed covariance models that capture the spatial and temporal behavior of these global data sets. Though the geodesic distance is the most natural metric for measuring distance on the surface of a sphere, mathematical limitations have compelled statisticians to use the chordal distance to compute the covariance matrix in many applications instead, which may cause physically unrealistic distortions. Therefore, covariance functions directly defined on a sphere using the geodesic distance are needed. We discuss the issues that arise when dealing with spherical data sets on a global scale and provide references to recent literature. We review the current approaches to building process models on spheres, including the differential operator, the stochastic partial differential equation, the kernel convolution, and the deformation approaches. We illustrate realizations obtained from Gaussian processes with different covariance structures and the use of isotropic and nonstationary covariance models through deformations and geographical indicators for global surface temperature data. To assess the suitability of each method, we compare their log-likelihood values and prediction scores, and we end with a discussion of related research problems.
Transitions between compound states of spherical nuclei
International Nuclear Information System (INIS)
Kadmenskii, S.G.; Markushev, V.P.; Furman, V.I.
1980-01-01
Wigner's statistical matrices are used to study the average reduced g widths and their dispersion for g transitions from a compound state c to another state f, with a lower excitation energy but of arbitrary complexity, for spherical nuclei. It is found that the Porter--Thomas distribution holds for the g widths for all cases of practical interest. In g transitions between compound states c and c' with E/sub g/< or =2 MeV, the most important transitions are M1 transitions involving the major many-quasiparticle components of state c and E1 transitions involving the minor components of state c. It is shown that the strength functions predicted by the various theories for M1 and E1 transitions between compound states with E/sub g/< or =2 MeV are similar. Preference is assigned to the M1-transition version because of experimental results on (n,ga) reactions with thermal and resonance neutrons
Painleve-Gullstrand synchronizations in spherical symmetry
International Nuclear Information System (INIS)
Herrero, Alicia; Morales-Lladosa, Juan Antonio
2010-01-01
A Painleve-Gullstrand synchronization is a slicing of the spacetime by a family of flat space-like 3-surfaces. For spherically symmetric spacetimes, we show that a Painleve-Gullstrand synchronization only exists in the region where (dr) 2 ≤ 1, r being the curvature radius of the isometry group orbits (2-spheres). This condition states that the Misner-Sharp gravitational energy of these 2-spheres is not negative and has an intrinsic meaning in terms of the norm of the mean extrinsic curvature vector. It also provides an algebraic inequality involving the Weyl curvature scalar and the Ricci eigenvalues. We prove that the energy and momentum densities associated with the Weinberg complex of a Painleve-Gullstrand slice vanish in these curvature coordinates, and we give a new interpretation of these slices by using semi-metric Newtonian connections. It is also outlined that, by solving the vacuum Einstein's equations in a coordinate system adapted to a Painleve-Gullstrand synchronization, the Schwarzschild solution is directly obtained in a whole coordinate domain that includes the horizon and both its interior and exterior regions.
Load responsive multilayer insulation performance testing
International Nuclear Information System (INIS)
Dye, S.; Kopelove, A.; Mills, G. L.
2014-01-01
Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI
Measure of Node Similarity in Multilayer Networks.
Directory of Open Access Journals (Sweden)
Anders Mollgaard
Full Text Available The weight of links in a network is often related to the similarity of the nodes. Here, we introduce a simple tunable measure for analysing the similarity of nodes across different link weights. In particular, we use the measure to analyze homophily in a group of 659 freshman students at a large university. Our analysis is based on data obtained using smartphones equipped with custom data collection software, complemented by questionnaire-based data. The network of social contacts is represented as a weighted multilayer network constructed from different channels of telecommunication as well as data on face-to-face contacts. We find that even strongly connected individuals are not more similar with respect to basic personality traits than randomly chosen pairs of individuals. In contrast, several socio-demographics variables have a significant degree of similarity. We further observe that similarity might be present in one layer of the multilayer network and simultaneously be absent in the other layers. For a variable such as gender, our measure reveals a transition from similarity between nodes connected with links of relatively low weight to dis-similarity for the nodes connected by the strongest links. We finally analyze the overlap between layers in the network for different levels of acquaintanceships.
Polymer multilayer tattooing for enhanced DNA vaccination
Demuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.
2013-04-01
DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These ‘multilayer tattoo’ DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination.
Relaxation dynamics of multilayer triangular Husimi cacti
Galiceanu, Mircea; Jurjiu, Aurel
2016-09-01
We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number.
Load responsive multilayer insulation performance testing
Energy Technology Data Exchange (ETDEWEB)
Dye, S.; Kopelove, A. [Quest Thermal Group, 6452 Fig Street Suite A, Arvada, CO 80004 (United States); Mills, G. L. [Ball Aerospace and Technologies Corp, 1600 Commerce Street, Boulder, CO 80301 (United States)
2014-01-29
Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.
Superconductivity and vortex properties in various multilayers
International Nuclear Information System (INIS)
Koorevaar, P.
1994-01-01
In this thesis three qualitatively different type of superconducting multilayers are studied. We discuss the vortex lattice structure in Nb/NbZr multilayers, a system where both type of constituting layers are superconducting. At certain temperatures and for parallel fields close to H c2parallel , the Nb/NbZr system has a strongly modulated order parameter, and in this aspect resembles the high-Tc materials. By lowering the field the modulation decreases, having important consequences for the vortex lattice structure. By studying the transport critical currents we show that in the case of strong modulation the vortex lattice has a kinked structure, but at weaker modulations the vortices are straight, and the change in modulation actually results in a vortex lattice transition. Our study confirms the picture of the existence of kinked vortex lattices, but it is rather surprising that these kinked structures can exist in a system which in itself is not at all that anisotropic. It indicates the relevance of other parameters governing the vortex lattice structure. (orig.)
Multiple leaders on a multilayer social media
International Nuclear Information System (INIS)
Borondo, J.; Morales, A.J.; Benito, R.M.; Losada, J.C.
2015-01-01
Twitter is a social media platform where users can interact in three different ways: following, mentioning, or retweeting. Accordingly, one can define Twitter as a multilayer social network where each layer represents one of the three interaction mechanisms. First, we review the main findings of our previous work regarding two Twitter political conversations: the 2010 Venezuelan protest and the 2011 Spanish general elections. We found that the structure of the follower layer conditions the retweet layer, as having a low number of followers represents a constrain to effectively propagate information. The collapsed directed multiplex network does not present a rich-club ordering, as politicians presided large communities of regular users in the mention layer; while media accounts were the sources from which people retweeted information. However, when considering reciprocal interactions the rich-club ordering emerges, as elite accounts preferentially interacted among themselves and largely ignored the crowd. Finally, we explore the main relationships between the community structure of the three layers. At the follower level users cluster in large and dense communities holding various hubs, that break into smaller and more segregated ones in the mention and retweet layers. Hence, we argue that to fully understand Twitter we have to analyze it as a multilayer social network, evaluating the three types of interactions
Optimization of multi-layered metallic shield
International Nuclear Information System (INIS)
Ben-Dor, G.; Dubinsky, A.; Elperin, T.
2011-01-01
Research highlights: → We investigated the problem of optimization of a multi-layered metallic shield. → The maximum ballistic limit velocity is a criterion of optimization. → The sequence of materials and the thicknesses of layers in the shield are varied. → The general problem is reduced to the problem of Geometric Programming. → Analytical solutions are obtained for two- and three-layered shields. - Abstract: We investigate the problem of optimization of multi-layered metallic shield whereby the goal is to determine the sequence of materials and the thicknesses of the layers that provide the maximum ballistic limit velocity of the shield. Optimization is performed under the following constraints: fixed areal density of the shield, the upper bound on the total thickness of the shield and the bounds on the thicknesses of the plates manufactured from every material. The problem is reduced to the problem of Geometric Programming which can be solved numerically using known methods. For the most interesting in practice cases of two-layered and three-layered shields the solution is obtained in the explicit analytical form.
Dry etching technologies for reflective multilayer
Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori
2012-11-01
We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.
A Designed Room Temperature Multilayered Magnetic Semiconductor
Bouma, Dinah Simone; Charilaou, Michalis; Bordel, Catherine; Duchin, Ryan; Barriga, Alexander; Farmer, Adam; Hellman, Frances; Materials Science Division, Lawrence Berkeley National Lab Team
2015-03-01
A room temperature magnetic semiconductor has been designed and fabricated by using an epitaxial antiferromagnet (NiO) grown in the (111) orientation, which gives surface uncompensated magnetism for an odd number of planes, layered with the lightly doped semiconductor Al-doped ZnO (AZO). Magnetization and Hall effect measurements of multilayers of NiO and AZO are presented for varying thickness of each. The magnetic properties vary as a function of the number of Ni planes in each NiO layer; an odd number of Ni planes yields on each NiO layer an uncompensated moment which is RKKY-coupled to the moments on adjacent NiO layers via the carriers in the AZO. This RKKY coupling oscillates with the AZO layer thickness, and it disappears entirely in samples where the AZO is replaced with undoped ZnO. The anomalous Hall effect data indicate that the carriers in the AZO are spin-polarized according to the direction of the applied field at both low temperature and room temperature. NiO/AZO multilayers are therefore a promising candidate for spintronic applications demanding a room-temperature semiconductor.
Finite element analysis of multilayer coextrusion.
Energy Technology Data Exchange (ETDEWEB)
Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A. (Proctor & Gamble Company, West Chester, OH); Mrozek, Randy A. (Army Research Laboratory, Adelphi, MD); Lenhart, Joseph Ludlow (Army Research Laboratory, Adelphi, MD); Rao, Rekha Ranjana; Collins, Robert (Oak Ridge National Laboratory); Mondy, Lisa Ann
2011-09-01
Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.
Polymer multilayer tattooing for enhanced DNA vaccination
DeMuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.
2014-01-01
DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These “multilayer tattoo” DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination. PMID:23353628
Hoshyaripour, A.; Vogel, B.; Vogel, H.
2017-12-01
Mineral dust, emitted from arid and semi-arid regions, is the most dominant atmospheric aerosol by mass. Beside detrimental effect on air quality, airborne dust also influences the atmospheric radiation by absorbing and scattering solar and terrestrial radiation. As a result, while the long-term radiative impacts of dust are important for climate, the short-term effects are significant for the photovoltaic energy production. Therefore, it is a vital requirement to accurately forecast the effects of dust on energy budget of the atmosphere and surface. To this end, a major issue is the fact that dust particles are non-spherical. Thus, the optical properties of such particles cannot be calculated precisely using the conventional methods like Mie theory that are often used in climate and numerical weather forecast models. In this study, T-Matrix method is employed, which is able to treat the non-sphericity of particles. Dust particles are assumed to be prolate spheroids with aspect ratio of 1.5 distributed in three lognormal modes. The wavelength-dependent refractive indices of dust are used in T-Matrix algorithm to calculate the extinction coefficient, single scattering albedo, asymmetry parameter and backscattering ratio at different wavelengths. These parameters are then implemented in ICON-ART model (ICOsahedral Nonhydrostatic model with Aerosols and Reactive Trace gases) to conduct a global simulation with 80 km horizontal resolution and 90 vertical levels. April 2014 is selected as the simulation period during which North African dust plumes reached central Europe and Germany. Results show that treatment of non-sphericity reduces the dust AOD in the range of 10 to 30%/. The impacts on diffuse and direct radiation at global, regional and local scales show strong dependency on the size distribution of the airborne dust. The implications for modeling and remote sensing the dust impacts on solar energy are also discussed.
High frequency fast wave results from the CDX-U spherical torus
International Nuclear Information System (INIS)
Kaita, R.; Majeski, R.; Menard, J.
2001-01-01
The Current Drive Experiment-Upgrade (CDX-U) is the first spherical torus (ST) to investigate radio frequency (RF) heating and current drive. To address the concern that large magnetic field line pitch at the outboard midplane of ST's could inhibit successful coupling to the high harmonic fast wave (HHFW), a rotatable, two strap antenna was installed on CDX-U. Parasitic loading and impurity generation were discovered to be weak and nearly independent of antenna phasing and angle over a wide range, and fast wave electron heating has been observed. Plasma densities up to about 10 12 cm -3 were obtained with noninductive startup solely with HHFW. New ST diagnostics under development on CDX-U include a multilayer mirror (MLM) detector to measure ultrasoft X-rays, a twelve spatial point Thomson scattering (TS) system, and an Electron Bernstein Wave (EBW) system for both electron heating and electron temperature measurements. Preliminary experiments with a boron low velocity edge micropellet injector have also been performed, and further studies of its effectiveness for impurity control will be conducted with a variety of spectroscopic and imaging diagnostics on CDX-U. (author)
High frequency fast wave results from the CDX-U spherical torus
International Nuclear Information System (INIS)
Kaita, R.; Majeski, R.; Menard, J.
1999-01-01
The Current Drive Experiment-Upgrade (CDX-U) is the first spherical torus (ST) to investigate radio frequency (RF) heating and current drive. To address the concern that large magnetic field line pitch at the outboard midplane of ST's could inhibit successful coupling to the high harmonic fast wave (HHFW), a rotatable, two strap antenna was installed on CDX-U. Parasitic loading and impurity generation were discovered to be weak and nearly independent of antenna phasing and angle over a wide range, and fast wave electron heating has been observed. Plasma densities up to about 10 12 cm -3 were obtained with noninductive startup solely with HHFW. New ST diagnostics under development on CDX-U include a multilayer mirror (MLM) detector to measure ultrasoft X-rays, a twelve spatial point Thomson scattering (TS) system, and an Electron Bernstein Wave (EBW) system for both electron heating and electron temperature measurements. Preliminary experiments with a boron low velocity edge micropellet injector have also been performed, and further studies of its effectiveness for impurity control will be conducted with a variety of spectroscopic and imaging diagnostics on CDX-U. (author)
HFE and Spherical Cryostats MC Study
International Nuclear Information System (INIS)
Brodsky, Jason P.
2016-01-01
The copper vessel containing the nEXO TPC is surrounded by a buffer of HFE, a liquid refrigerant with very low levels of radioactive element contamination. The HFE is contained within the cryostat's inner vessel, which is in turn inside the outer vessel. While some HFE may be necessary for stable cooling of nEXO, it is possible that using substantially more than necessary for thermal reasons will help reduce backgrounds originating in the cryostats. Using a larger amount of HFE is accomplished by making the cryostat vessels larger. By itself, increasing the cryostat size somewhat increases the background rate, as the thickness of the cryostat wall must increase at larger sizes. However, the additional space inside the cryostat will be filled with HFE which can absorb gamma rays headed for the TPC. As a result, increasing the HFE reduces the number of backgrounds reaching the TPC. The aim of this study was to determine the relationship between HFE thickness and background rate. Ultimately, this work should support choosing a cryostat and HFE size that satisfies nEXO's background budget. I have attempted to account for every consequence of changing the cryostat size, although naturally this remains a work in progress until a final design is achieved. At the moment, the scope of the study includes only the spherical cryostat design. This study concludes that increasing cryostat size reduces backgrounds, reaching neglible backgrounds originating from the cryostat at the largest sizes. It also shows that backgrounds originating from the inherent radioactivity of the HFE plateau quickly, so may be considered essentially fixed at any quantity of HFE.
Electrically small circularly polarized spherical antenna with air core
DEFF Research Database (Denmark)
Kim, O. S.
2013-01-01
An electrically small circularly polarized self-resonant spherical antenna with air core is presented. The antenna is a modified multiarm spherical helix exciting TM10 and TE10 spherical modes with equal radiated power, and thus yielding perfect circular polarization over the entire far......-field sphere (except the polar regions, where the radiation is low). The self-resonance is achieved by exciting higher-order TM modes, which provide the necessary electric stored energy in the near-field, while contributing negligibly to the far-field radiation of the antenna. The antenna has electrical size...
Spherical reconciliation for a continuous-variable quantum key distribution
International Nuclear Information System (INIS)
Lu Zhao; Shi Jian-Hong; Li Feng-Guang
2017-01-01
Information reconciliation is a significant step for a continuous-variable quantum key distribution (CV-QKD) system. We propose a reconciliation method that allows two authorized parties to extract a consistent and secure binary key in a CV-QKD protocol, which is based on Gaussian-modulated coherent states and homodyne detection. This method named spherical reconciliation is based on spherical quantization and non-binary low-density parity-check (LDPC) codes. With the suitable signal-to-noise ratio (SNR) and code rate of non-binary LDPC codes, spherical reconciliation algorithm has a high efficiency and can extend the transmission distance of CV-QKD. (paper)
Virial theorem and hypervirial theorem in a spherical geometry
International Nuclear Information System (INIS)
Li Yan; Chen Jingling; Zhang Fulin
2011-01-01
The virial theorem in the one- and two-dimensional spherical geometry are presented in both classical and quantum mechanics. Choosing a special class of hypervirial operators, the quantum hypervirial relations in the spherical spaces are obtained. With the aid of the Hellmann-Feynman theorem, these relations can be used to formulate a perturbation theorem without wavefunctions, corresponding to the hypervirial-Hellmann-Feynman theorem perturbation theorem of Euclidean geometry. The one-dimensional harmonic oscillator and two-dimensional Coulomb system in the spherical spaces are given as two sample examples to illustrate the perturbation method. (paper)
Non-Spherical Microcapsules for Increased Core Content Volume Delivery
Oliva-Buisson, Yvette J.
2014-01-01
The goal of this project was to advance microencapsulation from the standard spherical microcapsule to a non-spherical, high-aspect ratio (HAR), elongated microcapsule. This was to be accomplished by developing reproducible methods of synthesizing or fabricating robust, non-spherical, HAR microcapsules. An additional goal of this project was to develop the techniques to the point where scale-up of these methods could be examined. Additionally, this project investigated ways to apply the microencapsulation techniques developed as part of this project to self-healing formulations.
Extended asymmetric-cut multilayer X-ray gratings.
Prasciolu, Mauro; Haase, Anton; Scholze, Frank; Chapman, Henry N; Bajt, Saša
2015-06-15
The fabrication and characterization of a large-area high-dispersion blazed grating for soft X-rays based on an asymmetric-cut multilayer structure is reported. An asymmetric-cut multilayer structure acts as a perfect blazed grating of high efficiency that exhibits a single diffracted order, as described by dynamical diffraction throughout the depth of the layered structure. The maximum number of grating periods created by cutting a multilayer deposited on a flat substrate is equal to the number of layers deposited, which limits the size of the grating. The size limitation was overcome by depositing the multilayer onto a substrate which itself is a coarse blazed grating and then polish it flat to reveal the uniformly spaced layers of the multilayer. The number of deposited layers required is such that the multilayer thickness exceeds the step height of the substrate structure. The method is demonstrated by fabricating a 27,060 line pairs per mm blazed grating (36.95 nm period) that is repeated every 3,200 periods by the 120-μm period substrate structure. This preparation technique also relaxes the requirements on stress control and interface roughness of the multilayer film. The dispersion and efficiency of the grating is demonstrated for soft X-rays of 13.2 nm wavelength.
Localization of multilayer networks by optimized single-layer rewiring.
Jalan, Sarika; Pradhan, Priodyuti
2018-04-01
We study localization properties of principal eigenvectors (PEVs) of multilayer networks (MNs). Starting with a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring process. We show that rewiring only one layer is enough to attain a MN having a highly localized PEV. Our investigation reveals that a single edge rewiring of the optimized MN can lead to the complete delocalization of a highly localized PEV. This sensitivity in the localization behavior of PEVs is accompanied with the second largest eigenvalue lying very close to the largest one. This observation opens an avenue to gain a deeper insight into the origin of PEV localization of networks. Furthermore, analysis of multilayer networks constructed using real-world social and biological data shows that the localization properties of these real-world multilayer networks are in good agreement with the simulation results for the model multilayer network. This paper is relevant to applications that require understanding propagation of perturbation in multilayer networks.
Design innovations of the next-step spherical torus experiment and spherical torus development path
International Nuclear Information System (INIS)
Ono, M.; Kessel, C.; Peng, M.
2003-01-01
The spherical torus (ST) fusion energy development path is complementary to the tokamak burning plasma experiment such as ITER as it focuses toward the compact Component Test Facility (CTF) and higher toroidal beta regimes to improve the design of DEMO and a Power Plant. To support the ST development path, one option of a Next Step Spherical Torus (NSST) device is examined. NSST is a 'performance extension' (PE) stage ST with a plasma current of 5 - 10 MA, R = 1.5, B T ≤ 2.7 T with flexible physics capability to 1) Provide a sufficient physics basis for the design of the CTF, 2) Explore advanced operating scenarios with high bootstrap current fraction/high performance regimes, which can then be utilized by CTF, DEMO, and Power Plants, 3) Contribute to the general plasma/fusion science of high β toroidal plasmas. The NSST facility is designed to utilize the TFTR site to minimize the cost and time required for the construction. (author)
International Nuclear Information System (INIS)
Ono, M.; Peng, M.; Kessel, C.; Neumeyer, C.; Schmidt, J.; Chrzanowski, J.; Darrow, D.; Grisham, L.; Heitzenroeder, P.; Jarboe, T.; Jun, C.; Kaye, S.; Menard, J.; Raman, R.; Stevenson, T.; Viola, M.; Wilson, J.; Woolley, R.; Zatz, I.
2003-01-01
A spherical torus (ST) fusion energy development path which is complementary to proposed tokamak burning plasma experiments such as ITER is described. The ST strategy focuses on a compact Component Test Facility (CTF) and higher performance advanced regimes leading to more attractive DEMO and Power Plant scale reactors. To provide the physics basis for the CTF an intermediate step needs to be taken which we refer to as the ''Next Step Spherical Torus'' (NSST) device and examine in some detail herein. NSST is a ''performance extension'' (PE) stage ST with the plasma current of 5-10 MA, R = 1.5 m, and Beta(sub)T less than or equal to 2.7 T with flexible physics capability. The mission of NSST is to: (1) provide a sufficient physics basis for the design of CTF, (2) explore advanced operating scenarios with high bootstrap current fraction/high performance regimes, which can then be utilized by CTF, DEMO, and Power Plants, and (3) contribute to the general plasma/fusion science of high beta toroidal plasmas. The NSST facility is designed to utilize the Tokamak Fusion Test Reactor (or similar) site to minimize the cost and time required for the design and construction
Multilayer Stochastic Block Models Reveal the Multilayer Structure of Complex Networks
Directory of Open Access Journals (Sweden)
Toni Vallès-Català
2016-03-01
Full Text Available In complex systems, the network of interactions we observe between systems components is the aggregate of the interactions that occur through different mechanisms or layers. Recent studies reveal that the existence of multiple interaction layers can have a dramatic impact in the dynamical processes occurring on these systems. However, these studies assume that the interactions between systems components in each one of the layers are known, while typically for real-world systems we do not have that information. Here, we address the issue of uncovering the different interaction layers from aggregate data by introducing multilayer stochastic block models (SBMs, a generalization of single-layer SBMs that considers different mechanisms of layer aggregation. First, we find the complete probabilistic solution to the problem of finding the optimal multilayer SBM for a given aggregate-observed network. Because this solution is computationally intractable, we propose an approximation that enables us to verify that multilayer SBMs are more predictive of network structure in real-world complex systems.
Critical currents in multilayered superconducting films
International Nuclear Information System (INIS)
Raffy, Helene
1977-01-01
The superconducting critical currents Isub(c) were measured as a function of magnetic field H and temperature T, on multilayered films. These films consist of alternating layers of two different superconductors S 1 and S 2 being a weaker superconductor acting as a flux pinning barrier region. A strong anisotropy was observed between the two situations where the magnetic field H is applied parallel or perpendicular to the layers. In the case discussed, there is a peak effect in the curves Isub(c)H well defined at the highest temperatures, and disappearing at low temperatures. The anisotropy of the critical current at constant field presents a maximum at a temperature T* close to the critical temperature Tsub(c 2 ) of S 2 [fr
Plasmon resonance in multilayer graphene nanoribbons
DEFF Research Database (Denmark)
Emani, Naresh Kumar; Wang, Di; Chung, Ting Fung
2015-01-01
Plasmon resonances in nanopatterned single-layer graphene nanoribbons (SL-GNRs), double-layer graphene nanoribbons (DL-GNRs) and triple-layer graphene nanoribbons (TL-GNRs) are studied experimentally using 'realistic' graphene samples. The existence of electrically tunable plasmons in stacked...... multilayer graphene nanoribbons was first experimentally verified by infrared microscopy. We find that the strength of the plasmonic resonance increases in DL-GNRs when compared to SL-GNRs. However, further increase was not observed in TL-GNRs when compared to DL-GNRs. We carried out systematic full......-wave simulations using a finite-element technique to validate and fit experimental results, and extract the carrier-scattering rate as a fitting parameter. The numerical simulations show remarkable agreement with experiments for an unpatterned SLG sheet, and a qualitative agreement for a patterned graphene sheet...
Multilayer Statistical Intrusion Detection in Wireless Networks
Hamdi, Mohamed; Meddeb-Makhlouf, Amel; Boudriga, Noureddine
2008-12-01
The rapid proliferation of mobile applications and services has introduced new vulnerabilities that do not exist in fixed wired networks. Traditional security mechanisms, such as access control and encryption, turn out to be inefficient in modern wireless networks. Given the shortcomings of the protection mechanisms, an important research focuses in intrusion detection systems (IDSs). This paper proposes a multilayer statistical intrusion detection framework for wireless networks. The architecture is adequate to wireless networks because the underlying detection models rely on radio parameters and traffic models. Accurate correlation between radio and traffic anomalies allows enhancing the efficiency of the IDS. A radio signal fingerprinting technique based on the maximal overlap discrete wavelet transform (MODWT) is developed. Moreover, a geometric clustering algorithm is presented. Depending on the characteristics of the fingerprinting technique, the clustering algorithm permits to control the false positive and false negative rates. Finally, simulation experiments have been carried out to validate the proposed IDS.
Optimisation of Multilayer Insulation an Engineering Approach
Chorowski, M; Parente, C; Riddone, G
2001-01-01
A mathematical model has been developed to describe the heat flux through multilayer insulation (MLI). The total heat flux between the layers is the result of three distinct heat transfer modes: radiation, residual gas conduction and solid spacer conduction. The model describes the MLI behaviour considering a layer-to-layer approach and is based on an electrical analogy, in which the three heat transfer modes are treated as parallel thermal impedances. The values of each of the transfer mode vary from layer to layer, although the total heat flux remains constant across the whole MLI blanket. The model enables the optimisation of the insulation with regard to different MLI parameters, such as residual gas pressure, number of layers and boundary temperatures. The model has been tested with experimental measurements carried out at CERN and the results revealed to be in a good agreement, especially for insulation vacuum between 10-5 Pa and 10-3 Pa.
Interface stress in Au/Ni multilayers
DEFF Research Database (Denmark)
Schweitz, K.O.; Böttiger, J.; Chevallier, J.
2000-01-01
The effect of intermixing on the apparent interface stress is studied in -textured dc-magnetron sputtered Au/Ni multilayers by use of two methods commonly used for determining interface stress. The method using profilometry and in-plane x-ray diffraction does not take intermixing...... into account and yields an apparent interface stress of -8.46 +/- 0.99 J m(-2). However, observed discrepancies between model calculations and measured high-angle x-ray diffractograms indicate intermixing, and by use of the profilometry and sin(2) psi method the real interface stress value of -2.69 +/- 0.43 J...... m(-2) is found. This method also reveals a significant and systematic change of the stress-free lattice parameter of both constituents as a function of modulation period which is shown to account for the difference between the two findings. The method using in-plane diffraction is thus shown...
Properties of multilayer nonuniform holographic structures
International Nuclear Information System (INIS)
Pen, E F; Rodionov, Mikhail Yu
2010-01-01
Experimental results and analysis of properties of multilayer nonuniform holographic structures formed in photopolymer materials are presented. The theoretical hypotheses is proved that the characteristics of angular selectivity for the considered structures have a set of local maxima, whose number and width are determined by the thicknesses of intermediate layers and deep holograms and that the envelope of the maxima coincides with the selectivity contour of a single holographic array. It is also experimentally shown that hologram nonuniformities substantially distort shapes of selectivity characteristics: they become asymmetric, the local maxima differ in size and the depths of local minima reduce. The modelling results are made similar to experimental data by appropriately choosing the nonuniformity parameters. (imaging and image processing. holography)
A multilayer surface detector for ultracold neutrons
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhehui, E-mail: zwang@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hoffbauer, M.A.; Morris, C.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Callahan, N.B.; Adamek, E.R. [Indiana University, Bloomington, IN 47405 (United States); Bacon, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Blatnik, M. [Cleveland State University, Cleveland, OH 44115 (United States); Brandt, A.E. [North Carolina State University, Raleigh, NC 27695 (United States); Broussard, L.J.; Clayton, S.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cude-Woods, C. [North Carolina State University, Raleigh, NC 27695 (United States); Currie, S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Dees, E.B. [North Carolina State University, Raleigh, NC 27695 (United States); Ding, X. [Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Gao, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Gray, F.E. [Regis University, Denver, CO 80221 (United States); Hickerson, K.P. [University of California Los Angeles, Los Angeles, CA 90095 (United States); Holley, A.T. [Tennessee Technological University, Cookeville, TN 38505 (United States); Ito, T.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Liu, C.-Y. [Indiana University, Bloomington, IN 47405 (United States); and others
2015-10-21
A multilayer surface detector for ultracold neutrons (UCNs) is described. The top {sup 10}B layer is exposed to vacuum and directly captures UCNs. The ZnS:Ag layer beneath the {sup 10}B layer is a few microns thick, which is sufficient to detect the charged particles from the {sup 10}B(n,α){sup 7}Li neutron-capture reaction, while thin enough that ample light due to α and {sup 7}Li escapes for detection by photomultiplier tubes. A 100-nm thick {sup 10}B layer gives high UCN detection efficiency, as determined by the mean UCN kinetic energy, detector materials, and other parameters. Low background, including negligible sensitivity to ambient neutrons, has also been verified through pulse-shape analysis and comparison with other existing {sup 3}He and {sup 10}B detectors. This type of detector has been configured in different ways for UCN flux monitoring, development of UCN guides and neutron lifetime research.
Multilayer Network Analysis of Nuclear Reactions
Zhu, Liang; Ma, Yu-Gang; Chen, Qu; Han, Ding-Ding
2016-08-01
The nuclear reaction network is usually studied via precise calculation of differential equation sets, and much research interest has been focused on the characteristics of nuclides, such as half-life and size limit. In this paper, however, we adopt the methods from both multilayer and reaction networks, and obtain a distinctive view by mapping all the nuclear reactions in JINA REACLIB database into a directed network with 4 layers: neutron, proton, 4He and the remainder. The layer names correspond to reaction types decided by the currency particles consumed. This combined approach reveals that, in the remainder layer, the β-stability has high correlation with node degree difference and overlapping coefficient. Moreover, when reaction rates are considered as node strength, we find that, at lower temperatures, nuclide half-life scales reciprocally with its out-strength. The connection between physical properties and topological characteristics may help to explore the boundary of the nuclide chart.
The polymorphic, multilayered and networked urbanised territory
DEFF Research Database (Denmark)
Nielsen, Tom
2015-01-01
The discussion of the network city has in recent years been supplemented by an increasing interest in reconsidering the notion of territory. Looking into both geographical and urban design theories, we find examples of a focus on how the networks of the city not only connect them irreversibly...... with sites and systems without any direct physical relation, but also of how this does not necessarily result in complete fragmentation and dissociation between the parts and the surrounding landscapes, as described in network city theory. By relating examples from this literature to a description...... in theory. The concept of The Polymorphic, Multilayered and Networked Urbanised Territory is introduced to grasp the reality experienced in European regions outside the largest and most potent versions of contemporary cities....
Channel Equalization Using Multilayer Perceptron Networks
Directory of Open Access Journals (Sweden)
Saba Baloch
2012-07-01
Full Text Available In most digital communication systems, bandwidth limited channel along with multipath propagation causes ISI (Inter Symbol Interference to occur. This phenomenon causes distortion of the given transmitted symbol due to other transmitted symbols. With the help of equalization ISI can be reduced. This paper presents a solution to the ISI problem by performing blind equalization using ANN (Artificial Neural Networks. The simulated network is a multilayer feedforward Perceptron ANN, which has been trained by utilizing the error back-propagation algorithm. The weights of the network are updated in accordance with training of the network. This paper presents a very effective method for blind channel equalization, being more efficient than the pre-existing algorithms. The obtained results show a visible reduction in the noise content.
An ultra-broadband multilayered graphene absorber
Amin, Muhammad
2013-01-01
An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backedup with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene\\'s damping factor is increased by lowering its electron mobility to 1000cm 2=Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers. © 2013 Optical Society of America.
Magnons in ultrahigh vacuum deposited Fe/Ag multilayers
International Nuclear Information System (INIS)
El Kiadi, I.; Lassri, H.; Benkirane, K.; Bensassi, B.
2007-01-01
We have grown Fe/Ag multilayers with Ag buffer layer, by evaporation under UHV conditions on glass substrates. The magnetic properties of Fe/Ag multilayers are examined as a function of Fe layer thickness t Fe . The temperature dependence of the spontaneous magnetization M(T) is well described by a T 3/2 law in all multilayers. A spin-wave theory has been used to explain the temperature dependence of the magnetization and the approximate values for the bulk exchange interaction J b and surface exchange interaction J s for various Fe layer thicknesses have been obtained
Status and limitations of multilayer X-ray interference structures
International Nuclear Information System (INIS)
Kortright, J.B.
1996-01-01
Trends in the performance of x-ray multilayer interference structures with periods ranging from 9 to 130 (angstrom) are reviewed. Analysis of near-normal incidence reflectance data vs photon energy reveals that the effective interface with σ in a static Debye-Waller model, describing interdiffusion and roughness, decreases as the multilayer period decreases, and reaches a lower limit of roughly 2 (angstrom). Specular reflectance and diffuse scattering from uncoated and multilayer-coated substrates having different roughness suggest that this lower limit results largely from substrate roughness. The increase in interface width with period thus results from increasing roughness of interdiffusion as the layer thickness increases
Laminated multilayer sheet structure and its utilization
International Nuclear Information System (INIS)
Chiba, K.; Itoh, K.; Mitani, Y.; Sobajima, S.; Yonemura, U.
1980-01-01
A laminated multilayer sheet structure is described comprising (A) an opaque flexible sheet layer, and (B) a flexible layer laminated on the surface of layer (A) and composed of a transparent thermic ray reflecting layer (B 1 ) bonded to a transparent synthetic resin layer (B 2 ), said layer (B 1 ) being a transparent thermic ray reflecting layer composed of (I) a layer of a metal having a thickness of about 50 to about 600 A, said metal being selected from the group consisting of gold, silver, copper, aluminum and a mixture of alloy of at least two of said metals, and (II) a high refractive substance layer having a thickness of about 50 to about 600 A, of an oxide of titanium derived from a layer of an organic titanium compound of the formula Ti 1 O/sub m/R/sub n/, where R is alkyl of 1-20 carbon atoms, l=1-30, m=4+3(1-1), and n=4+2(1-1), and containing the organic residual moiety of the organic titanium compound, the amount of said organic residual moiety being 0.1 to 30% by weight based on the weight of the high refractive substance layer; or said layer (B 1 ) being a transparent semiconductive layer having a thickness of about 500 to about 5,000 a and being composed of a compound selected from the group consisting of indium oxide, tin oxide, cadmium oxide, antimony oxide, copper iodide, and a mixture of at least two of said compounds. A method is described for heat-insulating a room, which comprises applying to the surface of a floor, wall, ceiling or partition in the room a laminated multilayer sheet structure comprising (A) an opaque flexible sheet layer, and (B) a flexible layer laminated on the surface of layer (A) and composed of a transparent thermic ray reflecting layer (B 1 ) bonded to a transparent synthetic resin layer
Multilayer Approach for Advanced Hybrid Lithium Battery
Ming, Jun
2016-06-06
Conventional intercalated rechargeable batteries have shown their capacity limit, and the development of an alternative battery system with higher capacity is strongly needed for sustainable electrical vehicles and hand-held devices. Herein, we introduce a feasible and scalable multilayer approach to fabricate a promising hybrid lithium battery with superior capacity and multivoltage plateaus. A sulfur-rich electrode (90 wt % S) is covered by a dual layer of graphite/Li4Ti5O12, where the active materials S and Li4Ti5O12 can both take part in redox reactions and thus deliver a high capacity of 572 mAh gcathode -1 (vs the total mass of electrode) or 1866 mAh gs -1 (vs the mass of sulfur) at 0.1C (with the definition of 1C = 1675 mA gs -1). The battery shows unique voltage platforms at 2.35 and 2.1 V, contributed from S, and 1.55 V from Li4Ti5O12. A high rate capability of 566 mAh gcathode -1 at 0.25C and 376 mAh gcathode -1 at 1C with durable cycle ability over 100 cycles can be achieved. Operando Raman and electron microscope analysis confirm that the graphite/Li4Ti5O12 layer slows the dissolution/migration of polysulfides, thereby giving rise to a higher sulfur utilization and a slower capacity decay. This advanced hybrid battery with a multilayer concept for marrying different voltage plateaus from various electrode materials opens a way of providing tunable capacity and multiple voltage platforms for energy device applications. © 2016 American Chemical Society.
Analytic theory of the spherical electron to ion convertor
International Nuclear Information System (INIS)
Verdeyen, J.T.; Miller, P.A.
1980-01-01
Calculations will be presented which indicate that one could, with high efficiency, convert the electron beam energy transported from many pinched diode to ions at a reasonably sized evacuated spherical shell - or a light bulb
Turbulence Modulation by Non-Spherical Particles
DEFF Research Database (Denmark)
Mandø, Matthias
This study deals with the interaction between turbulence and non-spherical particles and represents an extension of the modeling framework for particleladen flows. The effect of turbulence on particles is commonly referred to as turbulent dispersion while the effect of particles on the carrier....... This study encompass an outlook on existing work, an experimental study, development of a numerical model and a case study advancing the modeling techniques for pulverized coal combustion to deal with larger non-spherical biomass particles. Firstly, existing knowledge concerning the motion of non......-spherical particles and turbulence modulation are outlined. A complete description of the motion of non-spherical particles is still lacking. However, evidence suggests that the equation of motion for a sphere only represent an asymptotical value for a more general, but yet unformulated, description of the motion...
Ultrasmooth, Highly Spherical Monocrystalline Gold Particles for Precision Plasmonics
Lee, You-Jin; Schade, Nicholas B.; Sun, Li; Fan, Jonathan A.; Bae, Doo Ri; Mariscal, Marcelo M.; Lee, Gaehang; Capasso, Federico; Sacanna, Stefano; Manoharan, Vinothan N.; Yi, Gi-Ra
2013-01-01
isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even
Spherical convolutions and their application in molecular modelling
DEFF Research Database (Denmark)
Boomsma, Wouter; Frellsen, Jes
2017-01-01
Convolutional neural networks are increasingly used outside the domain of image analysis, in particular in various areas of the natural sciences concerned with spatial data. Such networks often work out-of-the box, and in some cases entire model architectures from image analysis can be carried over...... to other problem domains almost unaltered. Unfortunately, this convenience does not trivially extend to data in non-euclidean spaces, such as spherical data. In this paper, we introduce two strategies for conducting convolutions on the sphere, using either a spherical-polar grid or a grid based...... of spherical convolutions in the context of molecular modelling, by considering structural environments within proteins. We show that the models are capable of learning non-trivial functions in these molecular environments, and that our spherical convolutions generally outperform standard 3D convolutions...
A variational solution of transport equation based on spherical geometry
International Nuclear Information System (INIS)
Liu Hui; Zhang Ben'ai
2002-01-01
A variational method with differential forms gives better precision for numerical solution of transport critical problem based on spherical geometry, and its computation seems simple than other approximate methods
Spherical loudspeaker array for local active control of sound.
Rafaely, Boaz
2009-05-01
Active control of sound has been employed to reduce noise levels around listeners' head using destructive interference from noise-canceling sound sources. Recently, spherical loudspeaker arrays have been studied as multiple-channel sound sources, capable of generating sound fields with high complexity. In this paper, the potential use of a spherical loudspeaker array for local active control of sound is investigated. A theoretical analysis of the primary and secondary sound fields around a spherical sound source reveals that the natural quiet zones for the spherical source have a shell-shape. Using numerical optimization, quiet zones with other shapes are designed, showing potential for quiet zones with extents that are significantly larger than the well-known limit of a tenth of a wavelength for monopole sources. The paper presents several simulation examples showing quiet zones in various configurations.
On a randomly imperfect spherical cap pressurized by a random ...
African Journals Online (AJOL)
On a randomly imperfect spherical cap pressurized by a random dynamic load. ... In this paper, we investigate a dynamical system in a random setting of dual ... characterization of the random process for determining the dynamic buckling load ...
Some comments on the hydrogen atom in a spherical enclosure
International Nuclear Information System (INIS)
Aguilera-Navarro, V.C.; Koo, E.L.; Zimerman, A.H.
1980-01-01
Some properties of the ground state energy solutions for the hydrogen atom in a spherical enclosure are discussed. The application of the many-point Pade approximants to this kind of systems inside a box is consider also. (Author) [pt
Spherical collapse in quintessence models with zero speed of sound
International Nuclear Information System (INIS)
Creminelli, Paolo; D'Amico, Guido; Noreña, Jorge; Senatore, Leonardo; Vernizzi, Filippo
2010-01-01
We study the spherical collapse model in the presence of quintessence with negligible speed of sound. This case is particularly motivated for w Q /Ω m . This gives a distinctive modification of the total mass function at low redshift
Aircraft navigation and surveillance analysis for a spherical earth
2014-10-01
This memorandum addresses a fundamental function in surveillance and navigation analysis : quantifying the geometry of two or more locations relative to each other and to a spherical earth. Here, geometry refers to: (a) points (idealized lo...
Electron Optics for Biologists: Physical Origins of Spherical Aberrations
Geissler, Peter; Zadunaisky, Jose
1974-01-01
Reports on the physical origins of spherical aberrations in axially symmetric electrostatic lenses to convey the essentials of electon optics to those who must think critically about the resolution of the electron microscope. (GS)
Ragozin, Eugene N.; Mednikov, Konstantin N.; Pertsov, Andrei A.; Pirozhkov, Alexander S.; Reva, Anton A.; Shestov, Sergei V.; Ul'yanov, Artem S.; Vishnyakov, Eugene A.
2009-05-01
We report measurements of the reflection spectra of (i) concave (spherical and parabolic) Mo/Si, Mg/Si, and Al/Zr multilayer mirrors (MMs) intended for imaging solar spectroscopy in the framework of the TESIS/CORONAS-FOTON Satellite Project and of (ii) an aperiodic Mo/Si MM optimized for maximum uniform reflectivity in the 125-250 Å range intended for laboratory applications. The reflection spectra were measured in the configuration of a transmission grating spectrometer employing the radiation of a tungsten laser-driven plasma as the source. The function of detectors was fulfilled by backside-illuminated CCDs coated with Al or Zr/Si multilayer absorption filters. High-intensity second-order interference reflection peaks at wavelengths of about 160 Å were revealed in the reflection spectra of the 304-Å Mo/Si MMs. By contrast, the second-order reflection peak in the spectra of the new-generation narrow-band (~12 Å FWHM) 304-Å Mg/Si MMs is substantially depressed. Manifestations of the NEXAFS structure of the L2, 3 absorption edges of Al and Al2O3 were observed in the spectra recorded. The broadband Mo/Si MM was employed as the focusing element of spectrometers in experiments involving (i) the charge exchange of multiply charged ions with the donor atoms of a rare-gas jet; (ii) the spectroscopic characterization of a debris-free soft X-ray radiation source excited by Nd laser pulses in a Xe jet (iii) near-IR-to-soft-X-ray frequency conversion (double Doppler effect) occurring in the retroreflection from the relativistic electron plasma wake wave (flying mirror) driven by a multiterawatt laser in a pulsed helium jet.
Volume of the domain visited by N spherical Brownian particles
International Nuclear Information System (INIS)
Berezhkovskii, A.M.
1994-01-01
The average value and variance of the volume of the domain visited in time t by N spherical Brownian particles starting initially at the same point are presented as quadratures of the solutions of simple diffusion problems of the survival of a point Brownian particle in the presence of one and two spherical traps. As an illustration, explicit time dependences are obtained for the average volume in one and three dimensions
Fluorescence of molecules placed near a spherical particle: Rabi splitting
Directory of Open Access Journals (Sweden)
M.M. Dvoynenko
2017-12-01
Full Text Available Theoretical study of spontaneously emitted spectra of point-like source placed near spherical Ag particle was performed. It was shown that near-field electromagnetic interaction between a point-like emitter and spherical Ag particle leads to strong coupling between them at very small emitter-metal surface distances. It was shown that values of Rabi splitting are quantitatively close to that of emitter-flat substrate interaction.
Effect of Rolling Resistance in Dem Models With Spherical Bodies
Directory of Open Access Journals (Sweden)
Dubina Radek
2016-12-01
Full Text Available The rolling resistance is an artificial moment arising on the contact of two discrete elements which mimics resistance of two grains of complex shape in contact rolling relatively to each other. The paper investigates the influence of rolling resistance on behaviour of an assembly of spherical discrete elements. Besides the resistance to rolling, the contacts between spherical particles obey the Hertzian law in normal straining and Coulomb model of friction in shear.
Features of spherical uranium-graphite HTGR fuel elements control
International Nuclear Information System (INIS)
Kreindlin, I.I.; Oleynikov, P.P.; Shtan, A.S.
1985-01-01
Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described
Features of spherical uranium-graphite HTGR fuel elements control
Energy Technology Data Exchange (ETDEWEB)
Kreindlin, I I; Oleynikov, P P; Shtan, A S
1985-07-01
Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described.
Minimum Q Electrically Small Spherical Magnetic Dipole Antenna - Theory
DEFF Research Database (Denmark)
Breinbjerg, Olav; Kim, Oleksiy S.
2009-01-01
The stored energies, radiated power, and quality factor of a magnetic-dipole antenna, consisting of a spherical electrical surface current density enclosing a magnetic core, is obtained through direct spatial integration of the internally and externally radiated field expressed in terms...... of spherical vector waves. The obtained quality factor agrees with that of Wheeler and Thal for vanishing free-space electric radius but holds also for larger radii and facilitates the optimal choice of permeability in the presence of the resonances....
Multilayer Spectral Graph Clustering via Convex Layer Aggregation: Theory and Algorithms
Chen, Pin-Yu; Hero, Alfred O.
2017-01-01
Multilayer graphs are commonly used for representing different relations between entities and handling heterogeneous data processing tasks. Non-standard multilayer graph clustering methods are needed for assigning clusters to a common multilayer node set and for combining information from each layer. This paper presents a multilayer spectral graph clustering (SGC) framework that performs convex layer aggregation. Under a multilayer signal plus noise model, we provide a phase transition analys...
International Nuclear Information System (INIS)
Kim, J. S.; Lee, D. H.; Hwang, S. S.; Suh, J. H.
2002-01-01
A laser multi-layer cladding technology was developed to mitigate the fretting wear damages occurred at fuel spacers in Hanaro reactor. The detailed experimental results are as follows. 1) Analyses of fretting wear damages and fabrication process of fuel spacers 2) Development and analysis of spherical Al 6061 T-6 alloy powders for the laser cladding 3) Analysis of parameter effects on laser cladding process for clad bids, and optimization of laser cladding process 4) Analysis on the changes of cladding layers due to overlapping factor change 5) Microstructural observation and phase analysis 6) Characterization of materials properties (hardness and wear tests) 7) Manufacture of prototype fuel spacers 8) Development of a vision system and revision of its related softwares
Models for randomly distributed nanoscopic domains on spherical vesicles
Anghel, Vinicius N. P.; Bolmatov, Dima; Katsaras, John
2018-06-01
The existence of lipid domains in the plasma membrane of biological systems has proven controversial, primarily due to their nanoscopic size—a length scale difficult to interrogate with most commonly used experimental techniques. Scattering techniques have recently proven capable of studying nanoscopic lipid domains populating spherical vesicles. However, the development of analytical methods able of predicting and analyzing domain pair correlations from such experiments has not kept pace. Here, we developed models for the random distribution of monodisperse, circular nanoscopic domains averaged on the surface of a spherical vesicle. Specifically, the models take into account (i) intradomain correlations corresponding to form factors and interdomain correlations corresponding to pair distribution functions, and (ii) the analytical computation of interdomain correlations for cases of two and three domains on a spherical vesicle. In the case of more than three domains, these correlations are treated either by Monte Carlo simulations or by spherical analogs of the Ornstein-Zernike and Percus-Yevick (PY) equations. Importantly, the spherical analog of the PY equation works best in the case of nanoscopic size domains, a length scale that is mostly inaccessible by experimental approaches such as, for example, fluorescent techniques and optical microscopies. The analytical form factors and structure factors of nanoscopic domains populating a spherical vesicle provide a new and important framework for the quantitative analysis of experimental data from commonly studied phase-separated vesicles used in a wide range of biophysical studies.
Physics and technology development of multilayer EUV reflective optics
Louis, Eric
2012-01-01
This thesis describes the development of molybdenum/silicon based multilayer reflective elements for the Extreme UV wavelength range, as motivated by their application in photolithography for semiconductor manufacturing. The thesis reflects the basic thin film physics, technological developments,
Photo-crosslinkable polymers for fabrication of photonic multilayer sensors
Chiappelli, Maria; Hayward, Ryan C.
2013-03-01
We have used photo-crosslinkable polymers to fabricate photonic multilayer sensors. Benzophenone is utilized as a covalently incorporated pendent photo-crosslinker, providing a convenient means of fabricating multilayer films by sequential spin-coating and crosslinking processes. Colorimetric temperature sensors were designed from thermally-responsive, low-refractive index poly(N-isopropylacrylamide) (PNIPAM) and high-refractive index poly(para-methyl styrene) (P pMS). Copolymer chemistries and layer thicknesses were selected to provide robust multilayer sensors which show color changes across nearly the full visible spectrum due to changes in temperature of the hydrated film stack. We have characterized the uniformity and interfacial broadening within the multilayers, the kinetics of swelling and de-swelling, and the reversibility over multiple hydration/dehydration cycles. We also describe how the approach can be extended to alternative sensor designs through the ability to tailor each layer independently, as well as to additional stimuli by selecting alternative copolymer chemistries.
Wave transmission prediction of multilayer floating breakwater using neural network
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Patil, S.G.; Hegde, A.V.
In the present study, an artificial neural network method has been applied for wave transmission prediction of multilayer floating breakwater. Two neural network models are constructed based on the parameters which influence the wave transmission...
SIW based multilayer transition and power divider in LTCC technology
Abuzaid, Hattan; Doghri, Ali; Wu, Ke; Shamim, Atif
2013-01-01
A multilayer transition and balanced power divider are presented for millimeter-wave system-on-package (SoP). These two components operate at Ka-band and exploit the substrate integrate waveguide (SIW) technology with its shielding characteristics
Acoustic transmittance of an aperiodic deterministic multilayer structure
International Nuclear Information System (INIS)
Madrigal-Melchor, J; Enciso-Muñoz, A; Contreras-Solorio, D A
2013-01-01
We study theoretically the acoustic transmission for a multilayer structure where the characteristic acoustic impedance follows the values generated by the self-similar sequence called the 1 s counting sequence . The transmission spectrum shows clearly self-similarity characteristics.
Multi-layer protective armour for underwater shock wave mitigation
Directory of Open Access Journals (Sweden)
Ahmed Hawass
2015-12-01
The strain gauge data and displacement sensors results showed that the multi-layer plates have higher level of underwater shock wave mitigation than the triple aluminum plates with strain and deflection of nearly 50%.
Modeling Delamination of Interfacial Corner Cracks in Multilayered Structures
DEFF Research Database (Denmark)
Veluri, Badrinath (Badri); Jensen, Henrik Myhre
2013-01-01
Multilayered electronic components, typically of heterogeneous materials, delaminate under thermal and mechanical loading. A phenomenological model focused on modeling the shape of such interface cracks close to corners in layered interconnect structures for calculating the critical stress...
Robots for Field Operations with Comprehensive Multilayer Control
DEFF Research Database (Denmark)
Jæger, Claes Lund Dühring; Griepentrog, H. W.; Paraforos, D. S.
2013-01-01
artificial intelligence. A multilayer controller has successfully been implemented on two outdoor machines with various implements to conduct several agricultural applications in autonomous mode. Future work has to be conducted to achieve a more integrated and flexible implement control....
Optical Properties of Multilayer CdSe/POLYMER Structures
Red'Ko, V. P.; Voitenkov, A. I.; Kovalenko, O. E.
The effects of preparation condition, concentration and size of particles upon optical and photoelectrical characteristics of multilayer structures CdSe/polyethylene terephthalate obtained by electron-beam evaporation were investigated.
Magnetic and transport properties of sputtered Gd-Y multilayers
International Nuclear Information System (INIS)
Freitas, P.P.; From, M.; Melo, L.V.
1991-01-01
Gd-Y-Gd multilayers were prepared that show a magnetoresistance enhancement for an Y layer separation of 30 A. This magnetoresistance enhancement is an interface effect and occurs in samples where some degree of antiferromagnetic coupling is present
Tunable drug loading and release from polypeptide multilayer nanofilms
Jiang, Bingbing; Li, Bingyun
2009-01-01
Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibioticloaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients. PMID:19421369
Multi-layer Far-Infrared Component Technology, Phase I
National Aeronautics and Space Administration — This Phase I SBIR will demonstrate the feasibility of a process to create multi-layer thin-film optics for the far-infrared/sub-millimeter wave spectral region. The...
Reference Models for Multi-Layer Tissue Structures
2016-09-01
function of multi-layer tissues (etiology and management of pressure ulcers ). What was the impact on other disciplines? As part of the project, a data...simplification to develop cost -effective models of surface manipulation of multi-layer tissues. Deliverables. Specimen- (or subject) and region-specific...simplification to develop cost -effective models of surgical manipulation. Deliverables. Specimen-specific surrogate models of upper legs confirmed against data
Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices
Ke, Yonggang; Voigt, Niels V.; Gothelf, Kurt V.; Shih, William M.
2012-01-01
“Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher r...
Advanced materials for multilayer mirrors for extreme ultraviolet solar astronomy.
Bogachev, S A; Chkhalo, N I; Kuzin, S V; Pariev, D E; Polkovnikov, V N; Salashchenko, N N; Shestov, S V; Zuev, S Y
2016-03-20
We provide an analysis of contemporary multilayer optics for extreme ultraviolet (EUV) solar astronomy in the wavelength ranges: λ=12.9-13.3 nm, λ=17-21 nm, λ=28-33 nm, and λ=58.4 nm. We found new material pairs, which will make new spaceborne experiments possible due to the high reflection efficiencies, spectral resolution, and long-term stabilities of the proposed multilayer coatings. In the spectral range λ=13 nm, Mo/Be multilayer mirrors were shown to demonstrate a better ratio of reflection efficiency and spectral resolution compared with the commonly used Mo/Si. In the spectral range λ=17-21 nm, a new multilayer structure Al/Si was proposed, which had higher spectral resolution along with comparable reflection efficiency compared with the commonly used Al/Zr multilayer structures. In the spectral range λ=30 nm, the Si/B4C/Mg/Cr multilayer structure turned out to best obey reflection efficiency and long-term stability. The B4C and Cr layers prevented mutual diffusion of the Si and Mg layers. For the spectral range λ=58 nm, a new multilayer Mo/Mg-based structure was developed; its reflection efficiency and long-term stability have been analyzed. We also investigated intrinsic stresses inherent for most of the multilayer structures and proposed possibilities for stress elimination.
Finite-width plasmonic waveguides with hyperbolic multilayer cladding
DEFF Research Database (Denmark)
Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi
2015-01-01
Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogeniz......Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any...
Multilayer Relaxation and Surface Energies of Metallic Surfaces
Bozzolo, Guillermo; Rodriguez, Agustin M.; Ferrante, John
1994-01-01
The perpendicular and parallel multilayer relaxations of fcc (210) surfaces are studied using equivalent crystal theory (ECT). A comparison with experimental and theoretical results is made for AI(210). The effect of uncertainties in the input parameters on the magnitudes and ordering of surface relaxations for this semiempirical method is estimated. A new measure of surface roughness is proposed. Predictions for the multilayer relaxations and surface energies of the (210) face of Cu and Ni are also included.
Spherical grating based x-ray Talbot interferometry
Energy Technology Data Exchange (ETDEWEB)
Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu [Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)
2015-11-15
Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and
Spherical grating based x-ray Talbot interferometry
International Nuclear Information System (INIS)
Cong, Wenxiang; Xi, Yan; Wang, Ge
2015-01-01
Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and
Energy Technology Data Exchange (ETDEWEB)
Akbar, M.M., E-mail: akbar@utdallas.edu
2017-06-10
It is well known that static spherically symmetric spacetimes can admit foliations by flat spacelike hypersurfaces, which are best described in terms of the Painlevè–Gullstrand coordinates. The uniqueness and existence of such foliations were addressed earlier. In this paper, we prove, purely geometrically, that any possible foliation of a static spherically symmetric spacetime by an arbitrary codimension-one spherical spacelike geometry, up to time translation and rotation, is unique, and we find the algebraic condition under which it exists. This leads us to what can be considered as the most natural generalization of the Painlevè–Gullstrand coordinate system for static spherically symmetric metrics, which, in turn, makes it easy to derive generic conclusions on foliation and to study specific cases as well as to easily reproduce previously obtained generalizations as special cases. In particular, we note that the existence of foliation by flat hypersurfaces guarantees the existence of foliation by hypersurfaces whose Ricci curvature tensor is everywhere non-positive (constant negative curvature is a special case). The study of uniqueness and the existence concurrently solves the question of embeddability of a spherical spacelike geometry in one-dimensional higher static spherically symmetric spacetimes, and this produces known and new results geometrically, without having to go through the momentum and Hamiltonian constraints.
Zhao, Bing; Yang, Yaqing; Wang, Zhixuan; Huang, Shoushuang; Wang, Yanyan; Wang, Shanshan; Chen, Zhiwen; Jiang, Yong
2018-02-01
SnS is widely studied as anode materials since of its superior structural stability and physicochemical property comparing with other Sn-based composites. Nevertheless, the inconvenience of phase morphology control and excessive consumption of sulfur sources during synthesis hinder the scalable application of SnS nanocomposites. Herein, we report a facile in-situ sulfuration strategy to synthesize sandwiched spherical SnS/sulfur-doped graphene (SnS/S-SG) composite. An ultra-low sulfur content with approximately stoichiometric ratio of Sn:S can effectively promote the sulfuration reaction of SnO2 to SnS and simultaneous sulfur-doping of graphene. The as-prepared SnS/S-SG composite shows a three-dimensional interconnected spherical structure as a whole, in which SnS nanoparticles are sandwiched between the multilayers of graphene sheets forming a hollow sphere. The sandwiched sphere structure and high S doping amount can improve the binding force between SnS and graphene, as well as the structural stability and electrical conductivity of the composite. Thus, a high reversibility of conversion reaction, promising specific capacity (772 mAh g-1 after 100 cycles at 0.1 C) and excellent rate performance (705 and 411 mAh g-1 at 1 C and 10 C, respectively) are exhibited in the SnS/S-SG electrode, which are much higher than that of the SnS/spherical graphene synthesized by traditional post-sulfuration method.
International Nuclear Information System (INIS)
Roa, J.J.; Jiménez-Piqué, E.; Martínez, R.; Ramírez, G.; Tarragó, J.M.
2014-01-01
In this study, systematic nanomechanical and micromechanical studies have been conducted in three multilayer TiN/CrN systems with different bilayer periods (8, 19 and 25 nm). Additionally, experimental work has been performed on corresponding TiN and CrN single layers, for comparison purposes. The investigation includes the use of different indenter tip geometries as well as contact loading conditions (i.e. indentation/scratch) such to induce different stress field and damage scenarios within the films. The surface and subsurface damage under the different indentation imprints and scratch tracks have been observed by atomic force microscopy, field emission scanning electron microscopy and focused ion beam. Multilayer TiN/CrN coated systems are found to exhibit higher adhesion strength (under sliding contact load) and cracking resistance (under spherical indentation) than those coated with reference TiN and CrN monolayers. The main reason behind these findings is the effective development of microstructurally-driven deformation and cracking resistant micromechanisms: rotation of columnar grains (and associated distortion of bilayer period) and crack deflection of interlayer thickness length scale, respectively. - Highlights: • Nanomechanical and micromechanical study in TiN/CrN systems • TiN/CrN coated systems exhibit higher adhesion strength and cracking resistance. • Main deformation and cracking micromechanisms: columnar grain rotation and crack deflection
Energy Technology Data Exchange (ETDEWEB)
Roa, J.J., E-mail: joan.josep.roa@upc.edu [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Universitat Politècnica de Catalunya, C. Pasqual i Vila 15, 08028 Barcelona (Spain); Jiménez-Piqué, E. [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Universitat Politècnica de Catalunya, C. Pasqual i Vila 15, 08028 Barcelona (Spain); Martínez, R. [Centro de Ingeniería Avanzada de Superfícies, Asociación de la Industria Navarra — AIN, Crta. Pamplona, 1, Edificio AIN, 31191 Cordovilla (Spain); Ramírez, G. [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnològic, Avda. Bases de Manresa 1, 08243 Manresa (Spain); Tarragó, J.M. [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Universitat Politècnica de Catalunya, C. Pasqual i Vila 15, 08028 Barcelona (Spain); and others
2014-11-28
In this study, systematic nanomechanical and micromechanical studies have been conducted in three multilayer TiN/CrN systems with different bilayer periods (8, 19 and 25 nm). Additionally, experimental work has been performed on corresponding TiN and CrN single layers, for comparison purposes. The investigation includes the use of different indenter tip geometries as well as contact loading conditions (i.e. indentation/scratch) such to induce different stress field and damage scenarios within the films. The surface and subsurface damage under the different indentation imprints and scratch tracks have been observed by atomic force microscopy, field emission scanning electron microscopy and focused ion beam. Multilayer TiN/CrN coated systems are found to exhibit higher adhesion strength (under sliding contact load) and cracking resistance (under spherical indentation) than those coated with reference TiN and CrN monolayers. The main reason behind these findings is the effective development of microstructurally-driven deformation and cracking resistant micromechanisms: rotation of columnar grains (and associated distortion of bilayer period) and crack deflection of interlayer thickness length scale, respectively. - Highlights: • Nanomechanical and micromechanical study in TiN/CrN systems • TiN/CrN coated systems exhibit higher adhesion strength and cracking resistance. • Main deformation and cracking micromechanisms: columnar grain rotation and crack deflection.
Magnetic damping phenomena in ferromagnetic thin-films and multilayers
Azzawi, S.; Hindmarch, A. T.; Atkinson, D.
2017-11-01
Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.
Desktop aligner for fabrication of multilayer microfluidic devices.
Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping
2015-07-01
Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.
The characterization of multilayers analyzers: Models and measurements
International Nuclear Information System (INIS)
Henke, B.L.; Vejio, J.Y.; Tackaberry, R.E.; Yamada, H.T.
1985-01-01
A procedure is described for the detailed characterization of multilayer analyzers which can be effectively applied to their design, optimization and application for absolute x-ray spectrometry. An accurate analytical model has been developed that is based upon a simple modification of the dynamical Darwin-Prins theory to extend its application to finite multilayer systems. Its equivalence to the optical E and M solution of the Fresnel equations at each interface is demonstrated by detailed calculation comparisons for the reflectivity of a multilayer throughout the angular range of incidence of 0 to 90 0 . A special spectrograph and experimental method is described for the measurement of the absolute reflectivity characteristics of the multilayer. The experimental measurements at three photon energies in the 100-200 eV region are fit by the analytical modified Darwin-Prins equation (MDP) for I(θ), generating a detailed characterization of two ''state of the art'' multilayers, a sputtered tungsten-carbon of 2d ≅ 70 A and a molecular lead separate of 2d ≅ 100 A. The fitting parameters that are determined in this procedure are applied to help establish the structural characteristics of the particular multilayer
Clustering network layers with the strata multilayer stochastic block model.
Stanley, Natalie; Shai, Saray; Taylor, Dane; Mucha, Peter J
2016-01-01
Multilayer networks are a useful data structure for simultaneously capturing multiple types of relationships between a set of nodes. In such networks, each relational definition gives rise to a layer. While each layer provides its own set of information, community structure across layers can be collectively utilized to discover and quantify underlying relational patterns between nodes. To concisely extract information from a multilayer network, we propose to identify and combine sets of layers with meaningful similarities in community structure. In this paper, we describe the "strata multilayer stochastic block model" (sMLSBM), a probabilistic model for multilayer community structure. The central extension of the model is that there exist groups of layers, called "strata", which are defined such that all layers in a given stratum have community structure described by a common stochastic block model (SBM). That is, layers in a stratum exhibit similar node-to-community assignments and SBM probability parameters. Fitting the sMLSBM to a multilayer network provides a joint clustering that yields node-to-community and layer-to-stratum assignments, which cooperatively aid one another during inference. We describe an algorithm for separating layers into their appropriate strata and an inference technique for estimating the SBM parameters for each stratum. We demonstrate our method using synthetic networks and a multilayer network inferred from data collected in the Human Microbiome Project.
Oromucosal multilayer films for tailor-made, controlled drug delivery.
Lindert, Sandra; Breitkreutz, Jörg
2017-11-01
The oral mucosa has recently become increasingly important as an alternative administration route for tailor-made, controlled drug delivery. Oromucosal multilayer films, assigned to the monograph oromucosal preparations in the Ph.Eur. may be a promising dosage form to overcome the requirements related to this drug delivery site. Areas covered: We provide an overview of multilayer films as drug delivery tools, and discuss manufacturing processes and characterization methods. We focus on the suitability of characterization methods for particular requirements of multilayer films. A classification was performed covering indication areas and APIs incorporated in multilayer film systems for oromucosal use in order to provide a summary of data published in this field. Expert opinion: The shift in drug development to high molecular weight drugs will influence the field of pharmaceutical development and delivery technologies. For a high number of indication areas, such as hormonal disorders, cardiovascular diseases or local treatment of infections, the flexible layer design of oromucosal multilayer films provides a promising option for tailor-made, controlled delivery of APIs to or through defined surfaces in the oral cavity. However, there is a lack of discriminating or standardized testing methods to assess the quality of multilayer films in a reliable way.
Asynchronous cracking with dissimilar paths in multilayer graphene.
Jang, Bongkyun; Kim, Byungwoon; Kim, Jae-Hyun; Lee, Hak-Joo; Sumigawa, Takashi; Kitamura, Takayuki
2017-11-16
Multilayer graphene consists of a stack of single-atomic-thick monolayer graphene sheets bound with π-π interactions and is a fascinating model material opening up a new field of fracture mechanics. In this study, fracture behavior of single-crystalline multilayer graphene was investigated using an in situ mode I fracture test under a scanning electron microscope, and abnormal crack propagation in multilayer graphene was identified for the first time. The fracture toughness of graphene was determined from the measured load-displacement curves and the realistic finite element modelling of specimen geometries. Nonlinear fracture behavior of the multilayer graphene is discussed based on nonlinear elastic fracture mechanics. In situ scanning electron microscope images obtained during the fracture test showed asynchronous crack propagation along independent paths, causing interlayer shear stress and slippages. We also found that energy dissipation by interlayer slippages between the graphene layers is the reason for the enhanced fracture toughness of multilayer graphene. The asynchronous cracking with independent paths is a unique cracking and toughening mechanism for single-crystalline multilayer graphene, which is not observed for the monolayer graphene. This could provide a useful insight for the design and development of graphene-based composite materials for structural applications.
Recycling of Polymer-Based Multilayer Packaging: A Review
Directory of Open Access Journals (Sweden)
Katharina Kaiser
2017-12-01
Full Text Available Polymer-based multilayer packaging materials are commonly used in order to combine the respective performance of different polymers. By this approach, the tailored functionality of packaging concepts is created to sufficiently protect sensitive food products and thus obtain extended shelf life. However, because of their poor recyclability, most multilayers are usually incinerated or landfilled, counteracting the efforts towards a circular economy and crude oil independency. This review depicts the current state of the European multilayer packaging market and sketches the current end-of-life situation of postconsumer multilayer packaging waste in Germany. In the main section, a general overview of the state of research about material recycling of different multilayer packaging systems is provided. It is divided into two subsections, whereby one describes methods to achieve a separation of the different components, either by delamination or the selective dissolution–reprecipitation technique, and the other describes methods to achieve recycling by compatibilization of nonmiscible polymer types. While compatibilization methods and the technique of dissolution–reprecipitation are already extensively studied, the delamination of packaging has not been investigated systematically. All the presented options are able to recycle multilayer packaging, but also have drawbacks like a limited scope or a high expenditure of energy.
Polymerization of vinyl stearate multilayers by electron beam irradiation
International Nuclear Information System (INIS)
Nishii, Masanobu; Hatada, Motoyoshi
1975-01-01
Studies on the radiation-induced polymerization of vinyl stearate (VST) multilayers were carried out. The VST multilayers built-up on an aluminum plated glass plate by Langmuir-Blodgett technique were irradiated with electron beams from a Van de Graaff electron accelerator in nitrogen atmosphere. The structure of the multilayers and the effects of irradiation were investigated by X-ray diffractometry, contact angle measurement, multireflection infrared spectroscopy, and scanning electron microscopy. The VST multilayers became insoluble to methanol by the irradiation, and the multi-reflection infrared spectrum of the VST multilayers turned into that of poly (VST) with increasing dosage. The polymerization proceeded during the irradiation at the temperature range between -10 0 and 10 0 C, and the conversion attained to 90% within 2.5 minutes (total dose, 5.6 Mrads). The multilayers irradiated above 13 Mrads turned into the polymer film insoluble to benzene, indicating that the polymer chains were cross-linked by the irradiation. Stearic acid which was formed by the irradiation of VST at nitrogen-water interface as a hydrolysis product was not detected in this system. (auth.)
Multilayer composition coatings for cutting tools: formation and performance properties
Tabakov, Vladimir P.; Vereschaka, Anatoly S.; Vereschaka, Alexey A.
2018-03-01
The paper considers the concept of a multi-layer architecture of the coating in which each layer has a predetermined functionality. Latest generation of coatings with multi-layered architecture for cutting tools secure a dual nature of the coating, in which coatings should not only improve the mechanical and physical characteristics of the cutting tool material, but also reduce the thermo-mechanical effect on the cutting tool determining wear intensity. Here are presented the results of the development of combined methods of forming multi-layer coatings with improved properties. Combined method of forming coatings using a pulsed laser allowed reducing excessively high levels of compressive residual stress and increasing micro hardness of the multilayered coatings. The results in testing coated HSS tools showed that the use of additional pulse of laser processing increases tool life up to 3 times. Using filtered cathodic vacuum arc deposition for the generation of multilayer coatings based on TiAlN compound has increased the wear-resistance of carbide tools by 2 fold compared with tool life of cutting tool with commercial TiN coatings. The aim of this study was to develop an innovative methodological approach to the deposition of multilayer coatings for cutting tools with functional architectural selection, properties and parameters of the coating based on sound knowledge of coating failure in machining process.
Electron density profile in multilayer systems
International Nuclear Information System (INIS)
Toekesi, K.
2004-01-01
Complete text of publication follows. Electron energy loss spectroscopy (EELS) has been used extensively to study the multilayer systems, where the thickness of layers are in the nanometer range. These studies has received considerable attention because of its technological interest, for example in the nanotechnology. On the most fundamental level, its importance is derived from the basic physics that is involved. One key quantities of interest is the response of a many-body system to an external perturbation: How act and how modify the interface between the solid-solid or solid-vacuum the excitations in the solid and in the vicinity of the interfaces. In this work, as a starting point of such investigations we calculated the electron density profile for multilayer systems. Our approach employs the time-dependent density functional theory (TDDFT), that is, the solution of a time-dependent Schroedinger equation in which the potential and forces are determined selfconsistently from the dynamics governed by the Schroedinger equation. We treat the problem in TDDFT at the level of the local-density approximation (LDA). Later, the comparison of experimentally obtained loss functions and the theory, based on our TDDFT calculations can provide deeper understanding of surface physics. We performed the calculations for half-infinite samples characterized by r s =1.642 and r s =1.997. We also performed the calculations for double layer systems. The substrate was characterized by r s =1.997 and the coverage by r s =1.642. Fig. 1. shows the obtained electron density profile in LDA approximation. Because of the sharp cutoff of electronic wave vectors at the Fermi surface, the densities in the interior exhibit slowly decaying Friedel oscillations. To highlight the Friedel oscillation we enlarged the electron density profile in Fig. 1a. and Fig. 1b. The work was supported by the Hungarian Scientific Research Found: OTKA No. T038016, the grant 'Bolyai' from the Hungarian Academy of
Organizing Books and Authors by Multilayer SOM.
Zhang, Haijun; Chow, Tommy W S; Wu, Q M Jonathan
2016-12-01
This paper introduces a new framework for the organization of electronic books (e-books) and their corresponding authors using a multilayer self-organizing map (MLSOM). An author is modeled by a rich tree-structured representation, and an MLSOM-based system is used as an efficient solution to the organizational problem of structured data. The tree-structured representation formulates author features in a hierarchy of author biography, books, pages, and paragraphs. To efficiently tackle the tree-structured representation, we used an MLSOM algorithm that serves as a clustering technique to handle e-books and their corresponding authors. A book and author recommender system is then implemented using the proposed framework. The effectiveness of our approach was examined in a large-scale data set containing 3868 authors along with the 10500 e-books that they wrote. We also provided visualization results of MLSOM for revealing the relevance patterns hidden from presented author clusters. The experimental results corroborate that the proposed method outperforms other content-based models (e.g., rate adapting poisson, latent Dirichlet allocation, probabilistic latent semantic indexing, and so on) and offers a promising solution to book recommendation, author recommendation, and visualization.
Progress at the ESRF multilayer facility
International Nuclear Information System (INIS)
Morawe, Ch; Peffen, J Ch; Friedrich, K; Osterhoff, M
2013-01-01
The ESRF multilayer (ML) deposition facility is fully operational since 2009. By the end of 2011, almost 50 ML projects were completed using the new machine, bringing the total number to 143 since 1998. Thanks to the new equipment and its improved performance the throughput could be significantly increased. The ESRF upgrade project caused strong demands for new ML optics, in particular dynamically bent KB focusing devices requiring very precise and steeply graded ML coatings. Thanks to this technology, the ESRF nano-imaging end-station ID22NI now provides the users with spot sizes of the order of 50×50 nm 2 at a photon flux of 10 12 ph/s. Among various in-house research and development activities the study of stress evolution during thin film and ML growth will be highlighted. Additional projects involving a PhD student and a PostDoc fellow cover the fields of wave optical simulations using curved MLs and the exposure of ML based monochromators to the white beam.
Cellulose multilayer Membranes manufacture with Ionic liquid
Livazovic, Sara
2015-05-09
Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.
Pentacene Multilayers On Ag(111) Surface
International Nuclear Information System (INIS)
Mete, E.
2010-01-01
The structural profiles and electronic properties of pentacene (C 2 2H 1 4) multilayers on Ag(111) surface has been studied within the density functional theory (DFT) framework. We have performed first-principle total energy calculations based on the projector augmented wave (PAW) method to investigate the initial growth patterns of pentacene (Pn) on Ag(111) surface. In its bulk phase, pentacene crystallizes with a triclinic symmetry while a thin film phase having an orthorhombic unit cell is energetically less favorable by 0.12 eV/cell. Pentacene prefers to stay planar on Ag(111) surface and aligns perfectly along lattice vector (1,-1,0) without any molecular deformation at a height of 3.9 angstroms. At one monolayer (ML) coverage the separation between the molecular layer and the surface plane extends to 4.1 angstroms due to intermolecular interactions weakening surface-pentacene attraction. While the first ML remains flat, the molecules on a second full pentacene layer deposited on the surface rearrange so that they become skewed with respect to each other. This adsorption mode is energetically more preferable than the one for which the molecules form a flat pentacene layer by an energy difference similar to that obtained for bulk and thin film phases. Moreover, as new layers added, pentacenes assemble to maintain this skewness for 3 and 4 ML similar to its bulk phase while the first ML always remains flat. Therefore, our calculations indicate bulk-like initial stages for the growth pattern.
Hawking radiation from a spherical loop quantum gravity black hole
International Nuclear Information System (INIS)
Gambini, Rodolfo; Pullin, Jorge
2014-01-01
We introduce quantum field theory on quantum space-times techniques to characterize the quantum vacua as a first step toward studying black hole evaporation in spherical symmetry in loop quantum gravity and compute the Hawking radiation. We use as quantum space-time the recently introduced exact solution of the quantum Einstein equations in vacuum with spherical symmetry and consider a spherically symmetric test scalar field propagating on it. The use of loop quantum gravity techniques in the background space-time naturally regularizes the matter content, solving one of the main obstacles to back-reaction calculations in more traditional treatments. The discreteness of area leads to modifications of the quantum vacua, eliminating the trans-Planckian modes close to the horizon, which in turn eliminates all singularities from physical quantities, like the expectation value of the stress–energy tensor. Apart from this, the Boulware, Hartle–Hawking and Unruh vacua differ little from the treatment on a classical space-time. The asymptotic modes near scri are reproduced very well. We show that the Hawking radiation can be computed, leading to an expression similar to the conventional one but with a high frequency cutoff. Since many of the conclusions concern asymptotic behavior, where the spherical mode of the field behaves in a similar way as higher multipole modes do, the results can be readily generalized to non spherically symmetric fields. (paper)
Fabrication and Characterization of Nanoenergetic Hollow Spherical Hexanitrostibene (HNS Derivatives
Directory of Open Access Journals (Sweden)
Xiong Cao
2018-05-01
Full Text Available The spherization of nanoenergetic materials is the best way to improve the sensitivity and increase loading densities and detonation properties for weapons and ammunition, but the preparation of spherical nanoenergetic materials with high regularization, uniform size and monodispersity is still a challenge. In this paper, nanoenergetic hollow spherical hexanitrostibene (HNS derivatives were fabricated via a one-pot copolymerization strategy, which is based on the reaction of HNS and piperazine in acetonitrile solution. Characterization results indicated the as-prepared reaction nanoenergetic products were HNS-derived oligomers, where a free radical copolymerization reaction process was inferred. The hollow sphere structure of the HNS derivatives was characterized by scanning electron microscopy (SEM, transmission electron microscope (TEM, and synchrotron radiation X-ray imaging technology. The properties of the nanoenergetic hollow spherical derivatives, including thermal decomposition and sensitivity are discussed in detail. Sensitivity studies showed that the nanoenergetic derivatives exhibited lower impact, friction and spark sensitivity than raw HNS. Thermogravimetric-differential scanning calorimeter (TG-DSC results showed that continuous exothermic decomposition occurred in the whole temperature range, which indicated that nanoenergetic derivatives have a unique role in thermal applications. Therefore, nanoenergetic hollow spherical HNS derivatives could provide a new way to modify the properties of certain energetic compounds and fabricate spherical nanomaterials to improve the charge configuration.
Numerical relativity in spherical coordinates with the Einstein Toolkit
Mewes, Vassilios; Zlochower, Yosef; Campanelli, Manuela; Ruchlin, Ian; Etienne, Zachariah B.; Baumgarte, Thomas W.
2018-04-01
Numerical relativity codes that do not make assumptions on spatial symmetries most commonly adopt Cartesian coordinates. While these coordinates have many attractive features, spherical coordinates are much better suited to take advantage of approximate symmetries in a number of astrophysical objects, including single stars, black holes, and accretion disks. While the appearance of coordinate singularities often spoils numerical relativity simulations in spherical coordinates, especially in the absence of any symmetry assumptions, it has recently been demonstrated that these problems can be avoided if the coordinate singularities are handled analytically. This is possible with the help of a reference-metric version of the Baumgarte-Shapiro-Shibata-Nakamura formulation together with a proper rescaling of tensorial quantities. In this paper we report on an implementation of this formalism in the Einstein Toolkit. We adapt the Einstein Toolkit infrastructure, originally designed for Cartesian coordinates, to handle spherical coordinates, by providing appropriate boundary conditions at both inner and outer boundaries. We perform numerical simulations for a disturbed Kerr black hole, extract the gravitational wave signal, and demonstrate that the noise in these signals is orders of magnitude smaller when computed on spherical grids rather than Cartesian grids. With the public release of our new Einstein Toolkit thorns, our methods for numerical relativity in spherical coordinates will become available to the entire numerical relativity community.
Preparation of spherical particles by vibrating orifice technique
Shibata, Shuichi; Tomizawa, Atsushi; Yoshikawa, Hidemi; Yano, Tetsuji; Yamane, Masayuki
2000-05-01
Preparation of micrometer-sized spherical particles containing Rhodamine 6G (R6G) has been investigated for the spherical cavity micro-laser. Using phenyl triethoxy silane (PTES) as a starting material, R6G-doped monodisperse spherical particles were prepared by the vibrating orifice technique. Processing consists of two major processes: (1) Hydrolysis and polymerization of PTES and (2) Droplet formation from PTES oligomers by vibrating orifice technique. A cylindrical liquid jet passing through the orifice of 10 and 20 micrometers in diameter breaks up into equal- sized droplets by mechanical vibration. Alcohol solvent of these droplets was evaporated during flying with carrier gas and subsequently solidified in ammonium water trap. For making smooth surface and god shaped particles, control of molecular weight of PTES oligomer was essential. R6G-doped hybrid spherical particles of 4 to 10 micrometers size of cavity structure were successfully obtained. The spherical particles were pumped by a second harmonic pulse of Q- switched Nd:YAG laser and laser emission peaks were observed at wavelengths which correspond to the resonance modes.
Multilayer optics for x-ray analysis: design - fabrication - application
International Nuclear Information System (INIS)
Dietsch, R.; Holz, Th.; Bruegemann, L.
2002-01-01
Full text: The use of multilayer optics induced a decisive extension of opportunities in laboratory based X-ray analysis. With the growing number of different applications, more and more dedicated X-ray optics are required, optimized for the spectral range they are intended to be used for. Both the characteristic of the used X-ray source and the design of the multilayer optics finally define the performance of the conditioned incident beam for the application. In any case, qualified spacer and absorber materials have to be selected for the deposition of the multilayer in respect to the designated X-ray wavelength. X-ray optical devices based on uniform multilayers have the advantage of a wide acceptance angle but show chromatic aberrations. This effect can be avoided by synthesizing a multilayer with a lateral thickness gradient. The gradient ensures that any beam of a certain wavelength emitted from an infinite narrow X-ray source impinging the multilayer optics fulfills the Bragg condition. Three different types of curvature of laterally graded multilayer mirrors are used for X-ray analysis experiments: parabolic, elliptic and planar, which result in parallel, focusing and divergent beam conditions, respectively. Furthermore, the X-ray beam characteristics: intensity, monochromasy, divergence, beam width and brilliance can be additionally conditioned by combining one multilayer optics with either a different optic and/or with a crystal monochromator. The deposition of nanometer-multilayers, used as X-ray optical components, result in extraordinary requirements of the deposition process concerning precision, reproducibility and long term stability. Across a stack of more than 150 individual layers with thicknesses in the range between 1 to 10 nm, a variation of single layer thickness considerably lower than σ D = 0.1 nm and an interface roughness below σ R = 0.25 nm have to be achieved. Thickness homogeneity Δd/d -8 have to be guaranteed across macroscopic
International Nuclear Information System (INIS)
Bahar, E.
1976-01-01
The propagation of electromagnetic waves excited by electric dipoles oriented along the axis of multilayered spheroidal structures of finite conductivity is investigated. The electromagnetic parameters and the thickness of the layers of the structure are assumed to be functions of the latitude. In the analysis, electric and magnetic field transforms that constitute a discrete and a continuous spectrum of spherical waves are used to provide a suitable basis for the expansion of the electromagnetic fields at any point in the irregular spheroidal structure. For spheroidal structures with good conducting cores, the terms in the solutions associated with the continuous part of the wave spectrum vanish. In general, however, when the skin depth for the core is large compared to its dimensions or when the sources are located in the core of the structure and propagation in the core is of special interest, the contribution from the continuous part of the wave spectrum cannot be neglected. At each interface between the layers of the irregular spheroidal structure, exact boundary conditions are imposed. Since the terms of the field expansions in the irregular structure do not individually satisfy the boundary conditions, Maxwell's equations are reduced to sets of coupled ordinary first-order differential equations for the wave amplitudes. The solutions are shown to satisfy the reciprocity relationships in electromagnetic theory. The analysis may be applied to problems of radio wave propagation in a nonuniform model of the earth-ionosphere waveguide, particularly when focusing effects at the antipodes are important
Design and Transmission Analysis of an Asymmetrical Spherical Parallel Manipulator
DEFF Research Database (Denmark)
Wu, Guanglei; Caro, Stéphane; Wang, Jiawei
2015-01-01
analysis and optimal design of the proposed manipulator based on its kinematic analysis. The input and output transmission indices of the manipulator are defined for its optimum design based on the virtual coefficient between the transmission wrenches and twist screws. The sets of optimal parameters......This paper presents an asymmetrical spherical parallel manipulator and its transmissibility analysis. This manipulator contains a center shaft to both generate a decoupled unlimited-torsion motion and support the mobile platform for high positioning accuracy. This work addresses the transmission...... are identified and the distribution of the transmission index is visualized. Moreover, a comparative study regarding to the performances with the symmetrical spherical parallel manipulators is conducted and the comparison shows the advantages of the proposed manipulator with respect to its spherical parallel...
Influence of initial imperfections on ultimate strength of spherical shells
Directory of Open Access Journals (Sweden)
Chang-Li Yu
2017-09-01
Full Text Available Comprehensive consideration regarding influence mechanisms of initial imperfections on ultimate strength of spherical shells is taken to satisfy requirement of deep-sea structural design. The feasibility of innovative numerical procedure that combines welding simulation and non-linear buckling analysis is verified by a good agreement to experimental and theoretical results. Spherical shells with a series of wall thicknesses to radius ratios are studied. Residual stress and deformations from welding process are investigated separately. Variant influence mechanisms are discovered. Residual stress is demonstrated to be influential to stress field and buckling behavior but not to the ultimate strength. Deformations are proved to have a significant impact on ultimate strength. When central angles are less than critical value, concave magnitudes reduce ultimate strengths linearly. However, deformations with central angles above critical value are of much greater harm. Less imperfection susceptibility is found in spherical shells with larger wall thicknesses to radius ratios.
Resonance energy transfer: The unified theory via vector spherical harmonics
Energy Technology Data Exchange (ETDEWEB)
Grinter, Roger, E-mail: r.grinter@uea.ac.uk; Jones, Garth A., E-mail: garth.jones@uea.ac.uk [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)
2016-08-21
In this work, we derive the well-established expression for the quantum amplitude associated with the resonance energy transfer (RET) process between a pair of molecules that are beyond wavefunction overlap. The novelty of this work is that the field of the mediating photon is described in terms of a spherical wave rather than a plane wave. The angular components of the field are constructed in terms of vector spherical harmonics while Hankel functions are used to define the radial component. This approach alleviates the problem of having to select physically correct solution from non-physical solutions, which seems to be inherent in plane wave derivations. The spherical coordinate system allows one to easily decompose the photon’s fields into longitudinal and transverse components and offers a natural way to analyse near-, intermediate-, and far-zone RET within the context of the relative orientation of the transition dipole moments for the two molecules.
Towards linearization of atmospheric radiative transfer in spherical geometry
International Nuclear Information System (INIS)
Walter, Holger H.; Landgraf, Jochen
2005-01-01
We present a general approach for the linearization of radiative transfer in a spherical planetary atmosphere. The approach is based on the forward-adjoint perturbation theory. In the first part we develop the theoretical background for a linearization of radiative transfer in spherical geometry. Using an operator formulation of radiative transfer allows one to derive the linearization principles in a universally valid notation. The application of the derived principles is demonstrated for a radiative transfer problem in simplified spherical geometry in the second part of this paper. Here, we calculate the derivatives of the radiance at the top of the atmosphere with respect to the absorption properties of a trace gas species in the case of a nadir-viewing satellite instrument
An electromagnetic spherical phased array thermonuclear fusion reactor
International Nuclear Information System (INIS)
Okress, E.C.
1983-01-01
Discussed are salient physics aspects of a microwave singly reentrant spherical periodic phased array of uniformally distributed identical coaxial radiation elements in an essentially simulated infinite array environment. The array is capable of maintaining coherence or phase control (to the limit of the order of 300 GHz) of its spherically converging electromagnetic transverse magnetic mode radiation field, for confinement (and heating) of thermonuclear plasma in steady-state or inertial thermonuclear fusion. The array also incorporates capability for coaxial directional coupler extraction of fusionpower. The radiation elements of the array are shielded against DT Thermonuclear plasma emissions (i.e., neutrons and bremsstrahlung) by either sufficiently (available) low less tangent and cooled, spherically concentric shield (e.g., Titanium oxide); or alternately by identical material dome windows mounted on each radiation element's aperture of the array. The pump microwave power required for thermonuclear fusion feasibility comprises an array of phase-locked available klystron amplifiers (comparable gyratron amplifiers remain to be developed)
Mixed-Degree Spherical Simplex-Radial Cubature Kalman Filter
Directory of Open Access Journals (Sweden)
Shiyuan Wang
2017-01-01
Full Text Available Conventional low degree spherical simplex-radial cubature Kalman filters often generate low filtering accuracy or even diverge for handling highly nonlinear systems. The high-degree Kalman filters can improve filtering accuracy at the cost of increasing computational complexity; nevertheless their stability will be influenced by the negative weights existing in the high-dimensional systems. To efficiently improve filtering accuracy and stability, a novel mixed-degree spherical simplex-radial cubature Kalman filter (MSSRCKF is proposed in this paper. The accuracy analysis shows that the true posterior mean and covariance calculated by the proposed MSSRCKF can agree accurately with the third-order moment and the second-order moment, respectively. Simulation results show that, in comparison with the conventional spherical simplex-radial cubature Kalman filters that are based on the same degrees, the proposed MSSRCKF can perform superior results from the aspects of filtering accuracy and computational complexity.
Plane-wave decomposition by spherical-convolution microphone array
Rafaely, Boaz; Park, Munhum
2004-05-01
Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.
Mechanisms of Stochastic Diffusion of Energetic Ions in Spherical Tori
Energy Technology Data Exchange (ETDEWEB)
Ya.I. Kolesnichenko; R.B. White; Yu.V. Yakovenko
2001-01-18
Stochastic diffusion of the energetic ions in spherical tori is considered. The following issues are addressed: (I) Goldston-White-Boozer diffusion in a rippled field; (ii) cyclotron-resonance-induced diffusion caused by the ripple; (iii) effects of non-conservation of the magnetic moment in an axisymmetric field. It is found that the stochastic diffusion in spherical tori with a weak magnetic field has a number of peculiarities in comparison with conventional tokamaks; in particular, it is characterized by an increased role of mechanisms associated with non-conservation of the particle magnetic moment. It is concluded that in current experiments on National Spherical Torus eXperiment (NSTX) the stochastic diffusion does not have a considerable influence on the confinement of energetic ions.
Classical properties and semiclassical quantization of a spherical nuclear potential
International Nuclear Information System (INIS)
Carbonell, J.; Brut, F.; Arvieu, R.; Touchard, J.
1984-03-01
The geometrical properties of the classical energy-action surface are studied for a nuclear Woods-Saxon-like spherical potential, in connection with the E.B.K. semiclassical method of quantization. Comparisons are made with other well known cases: the spherical harmonic oscillator and the spherical billiard. The shift of single particle energies from A = 208 to A = 16 is calculated by a simple method inspired by the Erhenfest adiabatic invariants. Semiclassical results are then compared with exact Schroedinger energies. It is seen that the most significant features of the single particle spectrum are explained by local properties of the energy action surface (curvature, slope) and by their evolution with the particle number
Spherical null geodesics of rotating Kerr black holes
International Nuclear Information System (INIS)
Hod, Shahar
2013-01-01
The non-equatorial spherical null geodesics of rotating Kerr black holes are studied analytically. Unlike the extensively studied equatorial circular orbits whose radii are known analytically, no closed-form formula exists in the literature for the radii of generic (non-equatorial) spherical geodesics. We provide here an approximate formula for the radii r ph (a/M;cosi) of these spherical null geodesics, where a/M is the dimensionless angular momentum of the black hole and cos i is an effective inclination angle (with respect to the black-hole equatorial plane) of the orbit. It is well-known that the equatorial circular geodesics of the Kerr spacetime (the prograde and the retrograde orbits with cosi=±1) are characterized by a monotonic dependence of their radii r ph (a/M;cosi=±1) on the dimensionless spin-parameter a/M of the black hole. We use here our novel analytical formula to reveal that this well-known property of the equatorial circular geodesics is actually not a generic property of the Kerr spacetime. In particular, we find that counter-rotating spherical null orbits in the range (3√(3)−√(59))/4≲cosi ph (a/M;cosi=const) on the dimensionless rotation-parameter a/M of the black hole. Furthermore, it is shown that spherical photon orbits of rapidly-rotating black holes are characterized by a critical inclination angle, cosi=√(4/7), above which the coordinate radii of the orbits approach the black-hole radius in the extremal limit. We prove that this critical inclination angle signals a transition in the physical properties of the spherical null geodesics: in particular, it separates orbits which are characterized by finite proper distances to the black-hole horizon from orbits which are characterized by infinite proper distances to the horizon.
[Depth of focus in spherical and aspheric intraocular lenses].
Nan, Li; Tang, Xin; Liu, Yong-ji
2012-02-01
To investigate depth of focus (DOF) in spherical and aspheric IOL eye models. Computer numerical simulation experiment was used. IOL eye model based on Liou-Brennan eye model was constructed by using ZEMAX optical design software. Different IOL were implanted in this eye model. Monochromatic through focus modulation transfer function (MTF) curves were computed. Pupil and aspheric designs' effect on DOF were analyzed. DOF of eye model increased with pupil shrinkage in 550 nm monochromatic light (FY60AD 1.20 D at 6 mm pupil, 1.35 D at 5 mm pupil, 1.70 D at 4 mm pupil, 2.46 D at 3 mm pupil; YA60BBR 1.24 D at 6 mm pupil, 1.48 D at 5 mm pupil, 1.80 D at 4 mm pupil, 2.50 D at 3 mm pupil). MTF in spherical IOL eye model was higher with minus defocus, this trend was obvious at larger pupil. MTF of aspheric IOL eyes were higher than spherical IOL eyes when well focused at 5 mm pupil, while the DOF was lower in aspheric IOL with negative spherical aberration (Tecnis Z9000 1.31 D, FY60AD 1.35 D, CeeOn911 1.55 D, YA60BBR 1.48 D). DOF decreased less in aspheric IOL with zero spherical aberration (LI61AO 1.42 D). DOF in IOL eye model was higher at smaller pupil. When the pupil was large, well focused aspheric IOL improved optical quality compared with spherical IOL, while DOF and the tolerance to defocus in aspheric IOL were partially lost; this phenomenon was obvious with minus defocus.
A Robust Solution of the Spherical Burmester Problem
DEFF Research Database (Denmark)
Angeles, Jorge; Bai, Shaoping
2010-01-01
The problem of spherical four-bar linkage synthesis is revisited in this paper. The work is aimed at developing a robust synthesis method by taking into account both the formulation and the solution method. In addition, the synthesis of linkages with spherical prismatic joints is considered...... by treating them as a special case of the linkages under study. A two-step synthesis method is developed, which sequentially deals with equation-solving by a semigraphical approach and branching-detection. Examples are included to demonstrate the proposed method....
Positivity of the spherically averaged atomic one-electron density
DEFF Research Database (Denmark)
Fournais, Søren; Hoffmann-Ostenhof, Maria; Hoffmann-Ostenhof, Thomas
2008-01-01
We investigate the positivity of the spherically averaged atomic one-electron density . For a which stems from a physical ground state we prove that for r ≥ 0. This article may be reproduced in its entirety for non-commercial purposes.......We investigate the positivity of the spherically averaged atomic one-electron density . For a which stems from a physical ground state we prove that for r ≥ 0. This article may be reproduced in its entirety for non-commercial purposes....
Current drive experiments on the HIT-II spherical torus
International Nuclear Information System (INIS)
Jarboe, T.R.; Raman, R.; Nelson, B.A.; Holcomb, C.T.; McCollam, K.J.; Sieck, P.E.
1999-01-01
This paper describes the following new achievements from the Helicity Injected Torus (HIT) program: a) formation and sustainment of a toroidal magnetic equilibrium using coaxial helicity injection (CHI) in a conducting shell that has an L/R time much shorter than the pulse length; b) static formation of a spherical torus with plasma current over 180 kA using a transformer and feedback controlled equilibrium coils; and c) production of a current increase in a transformer produced spherical torus using CHI. (author)
Current drive experiments on the HIT-II spherical torus
International Nuclear Information System (INIS)
Jarboe, T.; Raman, R.; Nelson, B.; Holcomb, C.T.; McCollam, K.J.; Sieck, P.E.
2001-01-01
This paper describes the following new achievements from the Helicity Injected Torus (HIT) program: a) formation and sustainment of a toroidal magnetic equilibrium using coaxial helicity injection (CHI) in a conducting shell that has an L/R time much shorter than the pulse length; b) static formation of a spherical torus with plasma current over 180 kA using a transformer and feedback controlled equilibrium coils; and c) production of a current increase in a transformer produced spherical torus using CHI. (author)
Spherical powder for retaining thermosetting acrylic resin veneers.
Tanaka, T; Atsuta, M; Uchiyama, Y; Nakabayashi, N; Masuhara, E
1978-03-01
1. Nine different sizes of spherical powder were prepared, and their effectiveness as retentive devices was evaluated against those available commercially. 2. Smaller-diameter spherical powder (No. 5) gave the best results of all retaining devices tested. 3. The physical properties of the resins play an important role in the retentive strength with No. 5 retention beads. The retentive strength was reduced when brittle resin was used. 4. The retentive strength of the resin veneer was greatly affected by the angle of stress at the incisal resin. The retentive strength increased as the angle between the longitudinal axis of the specimen and the direction of stress decreased.
Photodetachment of H− near a Hard Spherical Surface
International Nuclear Information System (INIS)
Haneef, M.; Rahman, A.; Ahmad, Iftikhar; Afaq, A.
2012-01-01
The photodetachment of a hydrogen negative ion (H − ) near a hard spherical surface is investigated by using the theoretical imaging method. The surface is oriented in such a fashion that the laser polarization direction is perpendicular to the principal axis of the spherical surface. Analytical expressions are derived for the detached-electron flux and photodetachment cross section. Strong interference patterns are observed in the detached-electron flux, while no visible oscillations are found in the photodetachment cross section. (atomic and molecular physics)
Preserving spherical symmetry in axisymmetric coordinates for diffusion problems
International Nuclear Information System (INIS)
Brunner, T. A.; Kolev, T. V.; Bailey, T. S.; Till, A. T.
2013-01-01
Persevering symmetric solutions, even in the under-converged limit, is important to the robustness of production simulation codes. We explore the symmetry preservation in both a continuous nodal and a mixed finite element method. In their standard formulation, neither method preserves spherical solution symmetry in axisymmetric (RZ) coordinates. We propose two methods, one for each family of finite elements, that recover spherical symmetry for low-order finite elements on linear or curvilinear meshes. This is a first step toward understanding achieving symmetry for higher-order elements. (authors)
Strongly Localized Image States of Spherical Graphitic Particles
Directory of Open Access Journals (Sweden)
Godfrey Gumbs
2014-01-01
Full Text Available We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube.
Neutron production in a spherical phantom aboard ISS
International Nuclear Information System (INIS)
Tasbaz, A.; Machrafi, R.
2012-01-01
As part of an ongoing research program on radiation monitoring on International Space Station (ISS) that was established to analyze the radiation exposure levels onboard the ISS using different radiation instruments and a spherical phantom to simulate human body. Monte Carlo transport code was used to simulate the interaction of high energy protons and neutrons with the spherical phantom currently onboard ISS. The phantom has been exposed to individual proton energies and to a spectrum of neutrons. The internal to external neutron flux ratio was calculated and compared to the experimental data, recently, measured on the ISS. (author)
Spherical and cylindrical particle resonator as a cloak system
Minin, I. V.; Minin, O. V.; Eremeev, A. I.; Tseplyaev, I. S.
2018-05-01
The concept of dielectric spherical or cylindrical particle in resonant mode as a cloak system is offered. In fundamental modes (modes with the smallest volume correspond to |m| = l, and s = 1) the field is concentrated mostly in the equatorial plane and at the surface of the sphere. Thus under resonance modes, such perturbation due to cuboid particle inserted in the spherical or cylindrical particle has almost no effect on the field forming resonance regardless of the value of internal particle material (defect) as long as this material does not cover the region where resonance takes place.
Fabrication technology of spherical fuel element for HTR-10
International Nuclear Information System (INIS)
He Jun; Zou Yanwen; Liang Tongxiang; Qiu Xueliang
2002-01-01
R and D on the fabrication technology of the spherical fuel elements for the 10 MW HTR Test Module (HTR-10) began from 1986. Cold quasi-isostatic molding with a silicon rubber die is used for manufacturing the spherical fuel elements.The fabrication technology and the graphite matrix materials were investigated and optimized. Twenty five batches of fuel elements, about 11000 of the fuel elements, have been produced. The cold properties of the graphite matrix materials satisfied the design specifications. The mean free uranium fraction of 25 batches was 5 x 10 -5
Spectroscopy and probe diagnostics of dc spherical glow discharge
International Nuclear Information System (INIS)
Zhovtyansky, V.A.; Nazarenko, V.G.; Syrotyuk, R.P.
2016-01-01
Probe and spectroscopic investigations of a spherical glow discharge (GD) were done in nitrogen and argon plasma. There were obtained the distributions of electron temperature and electron density in a discharge gap as well as plasma potential distribution. These results were compared with theoretical ones and the conclusion about their convergence was done in the present study. Particular attention was paid to the anode processes role in the formation of self-organized structure in a spherical glow discharge. It was shown the necessity of taking into account the possibility of the anode potential drop forming in this discharge region
Buckling strength of spherical shells under combined loads
International Nuclear Information System (INIS)
Nagashima, H.; Kokubo, K.; Takayanagi, M.; Hayasaka, Y.; Kume, T.; Nagata, T.
1995-01-01
Many studies on buckling of cylindrical shells have been conducted, and many buckling evaluation equations have been proposed for actual plant designs; however, buckling of spherical shells under combined horizontal and vertical loads cannot be evaluated due to insufficient data. There is a particular lack of buckling data for spherical shells under lateral loads. To establish a method for estimating the buckling strength of spherical shells, we investigate the interactions between horizontal and vertical (compressive tensile) loads by conducting buckling tests. Applying several combinations of these loads in tests and using computer linear analysis, we obtain interaction curves. This study reports on the buckling tests conducted using spherical shell 1120 mm in dia., 0.7 mm thick and 696 mm high, which are shaped individually by press-forming and finally joined together by four meridional welds, using a specially made jig. Initial imperfections before testing and local deformations after each loading increment during testing are measured with special measuring equipment, and the interaction curve of horizontal and vertical loads and effect of imperfection on the buckling strength of spherical shells are obtained. Nonlinear FEM programs are developed using an 8-node isoparametric shell element and a four-node quadrilateral element of C 0 type with reduced integration based upon a Mindlin-Reissner theory which includes transverse shear. Actual initial imperfections are generally in irregular patterns. Thus, there may be several definitions of the equivalent magnitudes of initial imperfections related to buckling loads. Equivalent magnitudes have no practical meaning unless they can be obtained easily not only for small structures such as test shells but also for large actual structures. In the present study, we define the equivalent magnitude of initial imperfections as the maximum local ruggedness measured radially from a circular temperature having a radius equal
Flat synchronizations in spherically symmetric space-times
International Nuclear Information System (INIS)
Herrero, Alicia; Morales-Lladosa, Juan Antonio
2010-01-01
It is well known that the Schwarzschild space-time admits a spacelike slicing by flat instants and that the metric is regular at the horizon in the associated adapted coordinates (Painleve-Gullstrand metric form). We consider this type of flat slicings in an arbitrary spherically symmetric space-time. The condition ensuring its existence is analyzed, and then, we prove that, for any spherically symmetric flat slicing, the densities of the Weinberg momenta vanish. Finally, we deduce the Schwarzschild solution in the extended Painleve-Gullstrand-LemaItre metric form by considering the coordinate decomposition of the vacuum Einstein equations with respect to a flat spacelike slicing.
Static solutions with spherical symmetry in f(T) theories
International Nuclear Information System (INIS)
Wang Tower
2011-01-01
The spherically symmetric static solutions are searched for in some f(T) models of gravity theory with a Maxwell term. To do this, we demonstrate that reconstructing the Lagrangian of f(T) theories is sensitive to the choice of frame, and then we introduce a particular frame based on the conformally Cartesian coordinates. In this particular frame, the existence conditions of various solutions are presented. Our results imply that only a limited class of f(T) models can be solved in this frame. For more general models, the search for spherically symmetric static solutions is still an open and challenging problem, hopefully solvable in other frames.
Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics
Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert; Yakshin, Andrey; Louis, Eric; Bijkerk, Fred
2017-03-01
Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV experiments. Both planar and three dimensional multilayer structures have been developed to tailor the spectral response in a wide wavelength range. For the planar multilayer optics, different layered schemes are explored. Stacks of periodic multilayers and capping layers are demonstrated to achieve multi-channel reflection or suppression of the reflective properties. Aperiodic multilayer structures enable broadband reflection both in angles and wavelengths, with the possibility of polarization control. The broad wavelength band multilayer is also used to shape attosecond pulses for the study of ultrafast phenomena. Narrowband multilayer monochromators are delivered to bridge the resolution gap between crystals and regular multilayers. High spectral purity multilayers with innovated anti-reflection structures are shown to select spectrally clean XUV radiation from broadband X-ray sources, especially the plasma sources for EUV lithography. Significant progress is also made in the three dimensional multilayer optics, i.e., combining micro- and nanostructures with multilayers, in order to provide new freedom to tune the spectral response. Several kinds of multilayer gratings, including multilayer coated gratings, sliced multilayer gratings, and lamellar multilayer gratings are being pursued for high resolution and high efficiency XUV spectrometers/monochromators, with their advantages and disadvantages, respectively. Multilayer diffraction optics are also developed for spectral purity enhancement. New structures like gratings, zone plates, and pyramids that obtain full suppression of the unwanted radiation and high XUV reflectance are reviewed. Based on the present achievement
Multilayer porous UHMWPE scaffolds for bone defects replacement
Energy Technology Data Exchange (ETDEWEB)
Maksimkin, A.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Senatov, F.S., E-mail: senatov@misis.ru [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Anisimova, N.Yu.; Kiselevskiy, M.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); N.N. Blokhin Russian Cancer Research Center, Moscow (Russian Federation); Zalepugin, D.Yu.; Chernyshova, I.V.; Tilkunova, N.A. [State Plant of Medicinal Drugs, Moscow (Russian Federation); Kaloshkin, S.D. [National University of Science and Technology “MISIS”, Moscow (Russian Federation)
2017-04-01
Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79 ± 2%; the pore size range was 80–700 μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility - Highlights: • Porous UHMWPE scaffold mimics cancellous bone architecture, maintaining its flexibility. • Multilayer UHMWPE scaffold is able to simulate different types of bone tissue. • Fixation of scaffolds in the bone provides through ingrowths of the connective tissue into pores. • Multilayer UHMWPE scaffolds can be used for the formation of bone implants.
Multilayer porous UHMWPE scaffolds for bone defects replacement
International Nuclear Information System (INIS)
Maksimkin, A.V.; Senatov, F.S.; Anisimova, N.Yu.; Kiselevskiy, M.V.; Zalepugin, D.Yu.; Chernyshova, I.V.; Tilkunova, N.A.; Kaloshkin, S.D.
2017-01-01
Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79 ± 2%; the pore size range was 80–700 μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility - Highlights: • Porous UHMWPE scaffold mimics cancellous bone architecture, maintaining its flexibility. • Multilayer UHMWPE scaffold is able to simulate different types of bone tissue. • Fixation of scaffolds in the bone provides through ingrowths of the connective tissue into pores. • Multilayer UHMWPE scaffolds can be used for the formation of bone implants.
Elastic properties of suspended multilayer WSe{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Zhang, Rui, E-mail: rui.zhang@ed.ac.uk; Cheung, Rebecca [Scottish Microelectronics Centre, Alexander Crum Brown Road, The University of Edinburgh, King' s Buildings, Edinburgh EH9 3FF (United Kingdom); Koutsos, Vasileios [Institute for Materials and Processes, School of Engineering, The University of Edinburgh, King' s Buildings, Edinburgh EH9 3FB (United Kingdom)
2016-01-25
We report the experimental determination of the elastic properties of suspended multilayer WSe{sub 2}, a promising two-dimensional (2D) semiconducting material combined with high optical quality. The suspended WSe{sub 2} membranes have been fabricated by mechanical exfoliation of bulk WSe{sub 2} and transfer of the exfoliated multilayer WSe{sub 2} flakes onto SiO{sub 2}/Si substrates pre-patterned with hole arrays. Then, indentation experiments have been performed on these membranes with an atomic force microscope. The results show that the 2D elastic modulus of the multilayer WSe{sub 2} membranes increases linearly while the prestress decreases linearly as the number of layers increases. The interlayer interaction in WSe{sub 2} has been observed to be strong enough to prevent the interlayer sliding during the indentation experiments. The Young's modulus of multilayer WSe{sub 2} (167.3 ± 6.7 GPa) is statistically independent of the thickness of the membranes, whose value is about two thirds of other most investigated 2D semiconducting transition metal dichalcogenides, namely, MoS{sub 2} and WS{sub 2}. Moreover, the multilayer WSe{sub 2} can endure ∼12.4 GPa stress and ∼7.3% strain without fracture or mechanical degradation. The 2D WSe{sub 2} can be an attractive semiconducting material for application in flexible optoelectronic devices and nano-electromechanical systems.
Self-Propagating Reactive Fronts in Compacts of Multilayered Particles
International Nuclear Information System (INIS)
Sraj, I.; Vohra, M.; Alawieh, L.; Weihs, T.P.; Knio, O.M.
2013-01-01
Reactive multilayered foils in the form of thin films have gained interest in various applications such as joining, welding, and ignition. Typically, thin film multilayers support self-propagating reaction fronts with speeds ranging from 1 to 20 m/s. In some applications, however, reaction fronts with much smaller velocities are required. This recently motivated Fritz et al. (2011) to fabricate compacts of regular sized/shaped multilayered particles and demonstrate self-sustained reaction fronts having much smaller velocities than thin films with similar layering. In this work, we develop a simplified numerical model to simulate the self-propagation of reactive fronts in an idealized compact, comprising identical Ni/Al multilayered particles in thermal contact. The evolution of the reaction in the compact is simulated using a two-dimensional transient model, based on a reduced description of mixing, heat release, and thermal transport. Computed results reveal that an advancing reaction front can be substantially delayed as it crosses from one particle to a neighboring particle, which results in a reduced mean propagation velocity. A quantitative analysis is thus conducted on the dependence of these phenomena on the contact area between the particles, the thermal contact resistance, and the arrangement of the multilayered particles.
Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy.
Oh, Keun Sang; Kim, Kyungim; Yoon, Byeong Deok; Lee, Hye Jin; Park, Dal Yong; Kim, Eun-Yeong; Lee, Kiho; Seo, Jae Hong; Yuk, Soon Hong
2016-01-01
A mixture of docetaxel (DTX) and Solutol(®) HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects.
Self-Propagating Reactive Fronts in Compacts of Multilayered Particles
Directory of Open Access Journals (Sweden)
Ihab Sraj
2013-01-01
Full Text Available Reactive multilayered foils in the form of thin films have gained interest in various applications such as joining, welding, and ignition. Typically, thin film multilayers support self-propagating reaction fronts with speeds ranging from 1 to 20 m/s. In some applications, however, reaction fronts with much smaller velocities are required. This recently motivated Fritz et al. (2011 to fabricate compacts of regular sized/shaped multilayered particles and demonstrate self-sustained reaction fronts having much smaller velocities than thin films with similar layering. In this work, we develop a simplified numerical model to simulate the self-propagation of reactive fronts in an idealized compact, comprising identical Ni/Al multilayered particles in thermal contact. The evolution of the reaction in the compact is simulated using a two-dimensional transient model, based on a reduced description of mixing, heat release, and thermal transport. Computed results reveal that an advancing reaction front can be substantially delayed as it crosses from one particle to a neighboring particle, which results in a reduced mean propagation velocity. A quantitative analysis is thus conducted on the dependence of these phenomena on the contact area between the particles, the thermal contact resistance, and the arrangement of the multilayered particles.
Tidal heating in multilayered terrestrial exoplanets
Energy Technology Data Exchange (ETDEWEB)
Henning, Wade G.; Hurford, Terry, E-mail: wade.g.henning@nasa.gov [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)
2014-07-01
The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R{sub E} is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.
Tidal Heating in Multilayered Terrestrial Exoplanets
Henning, Wade G.; Hurford, Terry
2014-01-01
The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R(sub E) is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.
Tidal heating in multilayered terrestrial exoplanets
International Nuclear Information System (INIS)
Henning, Wade G.; Hurford, Terry
2014-01-01
The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R E is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.
Photoluminescence properties of perovskite multilayer thin films
Energy Technology Data Exchange (ETDEWEB)
Macario, Leilane Roberta; Longo, Elson, E-mail: leilanemacario@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil); Mazzo, Tatiana Martelli [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil); Bouquet, Valerie; Deputier, Stephanie; Ollivier, Sophie; Guilloux-Viry, Maryline [Universite de Rennes (France)
2016-07-01
Full text: The knowledge of the optical properties of thin films is important in many scientific, technological and industrial applications of thin films such as photoconductivity, solar energy, photography, and numerous other applications [1]. In this study, perovskite type oxides were grown by pulsed laser deposition [2] in order to obtain thin films with applicable optical properties. The LaNiO{sub 3} (LN), BaTiO{sub 3} (BT) and KNbO{sub 3} (KNb) targets were prepared by solid-state reaction. The X-ray Diffraction revealed the presence of the desired phases, containing the elements of interest in the targets and in the thin films that were produced. The LN, BT and KNb thin films were polycrystalline and the corresponding diffraction peaks were indexed in the with JCPDS cards n. 00-033-0711, n. 00-005-0626, and n. 00-009-0156, respectively. The multilayers films were polycrystalline. The majority of the micrographs obtained by scanning electron microscopy presented films with a thickness from 100 to 400 nm. The photoluminescent (PL) emission spectra of thin films show different broad bands that occupies large region of the visible spectrum, ranging from about 300-350 to 600-650 nm of the electromagnetic spectrum. The PL emission is associated with the order-disorder structural, even small structural changes can modify the interactions between electronic states. The structural disorder results in formation of new energy levels in the forbidden region. The proximity or distance of these new energy levels formed in relation to valence band and to the conduction band results in PL spectra located at higher or lower energies. These interactions change the electronic states which can be influenced by defects, particularly the interface defects between the layers of the thin films. The presence of defects results in changes in the broad band matrix intensity and in displacement of the PL emission maximum. (author)
Wind speed estimation using multilayer perceptron
International Nuclear Information System (INIS)
Velo, Ramón; López, Paz; Maseda, Francisco
2014-01-01
Highlights: • We present a method for determining the average wind speed using neural networks. • We use data from that site in the short term and data from other nearby stations. • The inputs used in the ANN were wind speed and direction data from a station. • The method allows knowing the wind speed without topographical data. - Abstract: Wind speed knowledge is prerequisite in the siting of wind turbines. In consequence the wind energy use requires meticulous and specified knowledge of the wind characteristics at a location. This paper presents a method for determining the annual average wind speed at a complex terrain site by using neural networks, when only short term data are available for that site. This information is useful for preliminary calculations of the wind resource at a remote area having only a short time period of wind measurements measurement in a site. Artificial neural networks are useful for implementing non-linear process variables over time, and therefore are a useful tool for estimating the wind speed. The neural network used is multilayer perceptron with three layers and the supervised learning algorithm used is backpropagation. The inputs used in the neural network were wind speed and direction data from a single station, and the training patterns used correspond to sixty days data. The results obtained by simulating the annual average wind speed at the selected site based on data from nearby stations with correlation coefficients above 0.5 were satisfactory, compared with actual values. Reliable estimations were obtained, with errors below 6%
Song, Jing; Hempenius, Mark A.; Chung, H.J.; Vancso, Gyula J.
2015-01-01
Nanoelectrochemical patterning of redox responsive organometallic poly(ferrocenylsilane) (PFS) multilayers is demonstrated by electrochemical dip pen lithography (EDPN). Local electrochemical oxidation and Joule heating of PFS multilayers from the tip are considered as relevant mechanisms related to
Zone compensated multilayer laue lens and apparatus and method of fabricating the same
Conley, Raymond P.; Liu, Chian Qian; Macrander, Albert T.; Yan, Hanfei; Maser, Jorg; Kang, Hyon Chol; Stephenson, Gregory Brian
2015-07-14
A multilayer Laue Lens includes a compensation layer formed in between a first multilayer section and a second multilayer section. Each of the first and second multilayer sections includes a plurality of alternating layers made of a pair of different materials. Also, the thickness of layers of the first multilayer section is monotonically increased so that a layer adjacent the substrate has a minimum thickness, and the thickness of layers of the second multilayer section is monotonically decreased so that a layer adjacent the compensation layer has a maximum thickness. In particular, the compensation layer of the multilayer Laue lens has an in-plane thickness gradient laterally offset by 90.degree. as compared to other layers in the first and second multilayer sections, thereby eliminating the strict requirement of the placement error.
Neutron spin quantum precession using multilayer spin splitters and a phase-spin echo interferometer
International Nuclear Information System (INIS)
Ebisawa, Toru; Tasaki, Seiji; Kawai, Takeshi; Hino, Masahiro; Akiyoshi, Tsunekazu; Achiwa, Norio; Otake, Yoshie; Funahashi, Haruhiko.
1996-01-01
Neutron spin quantum precession by multilayer spin splitter has been demonstrated using a new spin interferometer. The multilayer spin splitter consists of a magnetic multilayer mirror on top, followed by a gap layer and a non magnetic multilayer mirror which are evaporated on a silicon substrate. Using the multilayer spin splitter, a polarized neutron wave in a magnetic field perpendicular to the polarization is split into two spin eigenstates with a phase shift in the direction of the magnetic field. The spin quantum precession is equal to the phase shift, which depends on the effective thickness of the gap layer. The demonstration experiments verify the multilayer spin splitter as a neutron spin precession device as well as the coherent superposition principle of the two spin eigenstates. We have developed a new phase-spin echo interferometer using the multilayer spin splitters. We present successful performance tests of the multilayer spin splitter and the phase-spin echo interferometer. (author)
Multilayer mirrors as power filters in insertion device beamlines
International Nuclear Information System (INIS)
Kortright, J.B.; DiGennaro, R.S.
1988-08-01
The power-filtering capabilities of multilayer band-pass x-ray mirrors relative to total reflection low-pass mirrors is presented. Results are based on calculations assuming proposed wiggler sources on the upcoming generation of low energy (1.5 GeV) and high energy (7.0 GeV) synchrotron radiation sources. Results show that multilayers out-perform total reflection mirrors in terms of reduction in reflected power by roughly an order of magnitude, with relatively small increases in total absorbed power and power density over total reflection mirrors, and with comparable reflected flux values. Various aspects of this potential application of multilayer x-ray optics are discussed. 13 refs., 3 figs., 1 tab
Young’s modulus of multi-layer microcantilevers
Directory of Open Access Journals (Sweden)
Zhikang Deng
2017-12-01
Full Text Available A theoretical model for calculating the Young’s modulus of multi-layer microcantilevers with a coating is proposed, and validated by a three-dimensional (3D finite element (FE model using ANSYS parametric design language (APDL and atomic force microscopy (AFM characterization. Compared with typical theoretical models (Rayleigh-Ritz model, Euler-Bernoulli (E-B beam model and spring mass model, the proposed theoretical model can obtain Young’s modulus of multi-layer microcantilevers more precisely. Also, the influences of coating’s geometric dimensions on Young’s modulus and resonant frequency of microcantilevers are discussed. The thickness of coating has a great influence on Young’s modulus and resonant frequency of multi-layer microcantilevers, and the coating should be considered to calculate Young’s modulus more precisely, especially when fairly thicker coating is employed.
Anomalously Weak Scattering in Metal-Semiconductor Multilayer Hyperbolic Metamaterials
Directory of Open Access Journals (Sweden)
Hao Shen
2015-05-01
Full Text Available In contrast to strong plasmonic scattering from metal particles or structures in metal films, we show that patterns of arbitrary shape fabricated out of multilayer hyperbolic metamaterials become invisible within a chosen band of optical frequencies. This is due to anomalously weak scattering when the in-plane permittivity of the multilayer hyperbolic metamaterials is tuned to match with the surrounding medium. This new phenomenon is described theoretically and demonstrated experimentally by optical characterization of various patterns in Au-Si multilayer hyperbolic metamaterials. This anomalously weak scattering is insensitive to pattern sizes, shapes, and incident angles, and has potential applications in scattering cross-section engineering, optical encryption, low-observable conductive probes, and optoelectric devices.
Multilayer Photonic Crystal for Spectral Narrowing of Emission
Directory of Open Access Journals (Sweden)
Zhanfang LIU
2017-08-01
Full Text Available Multilayer colloidal crystal has been prepared by the layer-by-layer deposition of silica microspheres on a glass slide. Each layer is a slab consisting of a fcc close-packed colloidal arrays. By properly choosing the sizes of spheres, the whole spectral feature of multilayer colloidal crystal can be tuned. Here, we engineered a multilayer superlattice structure with an effective passband between two stop bands. This gives a strong narrowing effect on emission spectrum. With the stop bands at the shortwave and longwave edges of emission spectrum, the passband in the central wavelength region can be regarded as a strong decrease of suppression effect and enhancement of a narrow wavelength region of emission. The spectral narrowing modification effect of suitably engineered colloidal crystals shows up their importance in potential application as optical filters and lasing devices.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16320